xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 				unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130 
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132 
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134 
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137 
138 static bool largepages_enabled = true;
139 
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145 
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 		unsigned long start, unsigned long end, bool blockable)
148 {
149 	return 0;
150 }
151 
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154 	if (pfn_valid(pfn))
155 		return PageReserved(pfn_to_page(pfn));
156 
157 	return true;
158 }
159 
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165 	int cpu = get_cpu();
166 	preempt_notifier_register(&vcpu->preempt_notifier);
167 	kvm_arch_vcpu_load(vcpu, cpu);
168 	put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171 
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174 	preempt_disable();
175 	kvm_arch_vcpu_put(vcpu);
176 	preempt_notifier_unregister(&vcpu->preempt_notifier);
177 	preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180 
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185 
186 	/*
187 	 * We need to wait for the VCPU to reenable interrupts and get out of
188 	 * READING_SHADOW_PAGE_TABLES mode.
189 	 */
190 	if (req & KVM_REQUEST_WAIT)
191 		return mode != OUTSIDE_GUEST_MODE;
192 
193 	/*
194 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
195 	 */
196 	return mode == IN_GUEST_MODE;
197 }
198 
199 static void ack_flush(void *_completed)
200 {
201 }
202 
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205 	if (unlikely(!cpus))
206 		cpus = cpu_online_mask;
207 
208 	if (cpumask_empty(cpus))
209 		return false;
210 
211 	smp_call_function_many(cpus, ack_flush, NULL, wait);
212 	return true;
213 }
214 
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218 	int i, cpu, me;
219 	struct kvm_vcpu *vcpu;
220 	bool called;
221 
222 	me = get_cpu();
223 
224 	kvm_for_each_vcpu(i, vcpu, kvm) {
225 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226 			continue;
227 
228 		kvm_make_request(req, vcpu);
229 		cpu = vcpu->cpu;
230 
231 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 			continue;
233 
234 		if (tmp != NULL && cpu != -1 && cpu != me &&
235 		    kvm_request_needs_ipi(vcpu, req))
236 			__cpumask_set_cpu(cpu, tmp);
237 	}
238 
239 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240 	put_cpu();
241 
242 	return called;
243 }
244 
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247 	cpumask_var_t cpus;
248 	bool called;
249 
250 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251 
252 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253 
254 	free_cpumask_var(cpus);
255 	return called;
256 }
257 
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261 	/*
262 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 	 * kvm_make_all_cpus_request.
264 	 */
265 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266 
267 	/*
268 	 * We want to publish modifications to the page tables before reading
269 	 * mode. Pairs with a memory barrier in arch-specific code.
270 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 	 *
274 	 * There is already an smp_mb__after_atomic() before
275 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 	 * barrier here.
277 	 */
278 	if (!kvm_arch_flush_remote_tlb(kvm)
279 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280 		++kvm->stat.remote_tlb_flush;
281 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285 
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290 
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293 	struct page *page;
294 	int r;
295 
296 	mutex_init(&vcpu->mutex);
297 	vcpu->cpu = -1;
298 	vcpu->kvm = kvm;
299 	vcpu->vcpu_id = id;
300 	vcpu->pid = NULL;
301 	init_swait_queue_head(&vcpu->wq);
302 	kvm_async_pf_vcpu_init(vcpu);
303 
304 	vcpu->pre_pcpu = -1;
305 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306 
307 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 	if (!page) {
309 		r = -ENOMEM;
310 		goto fail;
311 	}
312 	vcpu->run = page_address(page);
313 
314 	kvm_vcpu_set_in_spin_loop(vcpu, false);
315 	kvm_vcpu_set_dy_eligible(vcpu, false);
316 	vcpu->preempted = false;
317 	vcpu->ready = false;
318 
319 	r = kvm_arch_vcpu_init(vcpu);
320 	if (r < 0)
321 		goto fail_free_run;
322 	return 0;
323 
324 fail_free_run:
325 	free_page((unsigned long)vcpu->run);
326 fail:
327 	return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330 
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333 	/*
334 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
335 	 * will change the vcpu->pid pointer and on uninit all file
336 	 * descriptors are already gone.
337 	 */
338 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
339 	kvm_arch_vcpu_uninit(vcpu);
340 	free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343 
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347 	return container_of(mn, struct kvm, mmu_notifier);
348 }
349 
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351 					struct mm_struct *mm,
352 					unsigned long address,
353 					pte_t pte)
354 {
355 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
356 	int idx;
357 
358 	idx = srcu_read_lock(&kvm->srcu);
359 	spin_lock(&kvm->mmu_lock);
360 	kvm->mmu_notifier_seq++;
361 
362 	if (kvm_set_spte_hva(kvm, address, pte))
363 		kvm_flush_remote_tlbs(kvm);
364 
365 	spin_unlock(&kvm->mmu_lock);
366 	srcu_read_unlock(&kvm->srcu, idx);
367 }
368 
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370 					const struct mmu_notifier_range *range)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 	int need_tlb_flush = 0, idx;
374 	int ret;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * The count increase must become visible at unlock time as no
380 	 * spte can be established without taking the mmu_lock and
381 	 * count is also read inside the mmu_lock critical section.
382 	 */
383 	kvm->mmu_notifier_count++;
384 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385 	need_tlb_flush |= kvm->tlbs_dirty;
386 	/* we've to flush the tlb before the pages can be freed */
387 	if (need_tlb_flush)
388 		kvm_flush_remote_tlbs(kvm);
389 
390 	spin_unlock(&kvm->mmu_lock);
391 
392 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393 					range->end,
394 					mmu_notifier_range_blockable(range));
395 
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return ret;
399 }
400 
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402 					const struct mmu_notifier_range *range)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * This sequence increase will notify the kvm page fault that
409 	 * the page that is going to be mapped in the spte could have
410 	 * been freed.
411 	 */
412 	kvm->mmu_notifier_seq++;
413 	smp_wmb();
414 	/*
415 	 * The above sequence increase must be visible before the
416 	 * below count decrease, which is ensured by the smp_wmb above
417 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 	 */
419 	kvm->mmu_notifier_count--;
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424 
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 					      struct mm_struct *mm,
427 					      unsigned long start,
428 					      unsigned long end)
429 {
430 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
431 	int young, idx;
432 
433 	idx = srcu_read_lock(&kvm->srcu);
434 	spin_lock(&kvm->mmu_lock);
435 
436 	young = kvm_age_hva(kvm, start, end);
437 	if (young)
438 		kvm_flush_remote_tlbs(kvm);
439 
440 	spin_unlock(&kvm->mmu_lock);
441 	srcu_read_unlock(&kvm->srcu, idx);
442 
443 	return young;
444 }
445 
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 					struct mm_struct *mm,
448 					unsigned long start,
449 					unsigned long end)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	/*
457 	 * Even though we do not flush TLB, this will still adversely
458 	 * affect performance on pre-Haswell Intel EPT, where there is
459 	 * no EPT Access Bit to clear so that we have to tear down EPT
460 	 * tables instead. If we find this unacceptable, we can always
461 	 * add a parameter to kvm_age_hva so that it effectively doesn't
462 	 * do anything on clear_young.
463 	 *
464 	 * Also note that currently we never issue secondary TLB flushes
465 	 * from clear_young, leaving this job up to the regular system
466 	 * cadence. If we find this inaccurate, we might come up with a
467 	 * more sophisticated heuristic later.
468 	 */
469 	young = kvm_age_hva(kvm, start, end);
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 				       struct mm_struct *mm,
478 				       unsigned long address)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	young = kvm_test_age_hva(kvm, address);
486 	spin_unlock(&kvm->mmu_lock);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 
489 	return young;
490 }
491 
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 				     struct mm_struct *mm)
494 {
495 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
496 	int idx;
497 
498 	idx = srcu_read_lock(&kvm->srcu);
499 	kvm_arch_flush_shadow_all(kvm);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 }
502 
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
505 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
506 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
507 	.clear_young		= kvm_mmu_notifier_clear_young,
508 	.test_young		= kvm_mmu_notifier_test_young,
509 	.change_pte		= kvm_mmu_notifier_change_pte,
510 	.release		= kvm_mmu_notifier_release,
511 };
512 
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518 
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523 	return 0;
524 }
525 
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530 	int i;
531 	struct kvm_memslots *slots;
532 
533 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534 	if (!slots)
535 		return NULL;
536 
537 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538 		slots->id_to_index[i] = slots->memslots[i].id = i;
539 
540 	return slots;
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 			      struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568 	struct kvm_memory_slot *memslot;
569 
570 	if (!slots)
571 		return;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_memslot(kvm, memslot, NULL);
575 
576 	kvfree(slots);
577 }
578 
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581 	int i;
582 
583 	if (!kvm->debugfs_dentry)
584 		return;
585 
586 	debugfs_remove_recursive(kvm->debugfs_dentry);
587 
588 	if (kvm->debugfs_stat_data) {
589 		for (i = 0; i < kvm_debugfs_num_entries; i++)
590 			kfree(kvm->debugfs_stat_data[i]);
591 		kfree(kvm->debugfs_stat_data);
592 	}
593 }
594 
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597 	char dir_name[ITOA_MAX_LEN * 2];
598 	struct kvm_stat_data *stat_data;
599 	struct kvm_stats_debugfs_item *p;
600 
601 	if (!debugfs_initialized())
602 		return 0;
603 
604 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 
607 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 					 sizeof(*kvm->debugfs_stat_data),
609 					 GFP_KERNEL_ACCOUNT);
610 	if (!kvm->debugfs_stat_data)
611 		return -ENOMEM;
612 
613 	for (p = debugfs_entries; p->name; p++) {
614 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615 		if (!stat_data)
616 			return -ENOMEM;
617 
618 		stat_data->kvm = kvm;
619 		stat_data->offset = p->offset;
620 		stat_data->mode = p->mode ? p->mode : 0644;
621 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622 		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
623 				    stat_data, stat_fops_per_vm[p->kind]);
624 	}
625 	return 0;
626 }
627 
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630 	int r, i;
631 	struct kvm *kvm = kvm_arch_alloc_vm();
632 
633 	if (!kvm)
634 		return ERR_PTR(-ENOMEM);
635 
636 	spin_lock_init(&kvm->mmu_lock);
637 	mmgrab(current->mm);
638 	kvm->mm = current->mm;
639 	kvm_eventfd_init(kvm);
640 	mutex_init(&kvm->lock);
641 	mutex_init(&kvm->irq_lock);
642 	mutex_init(&kvm->slots_lock);
643 	refcount_set(&kvm->users_count, 1);
644 	INIT_LIST_HEAD(&kvm->devices);
645 
646 	r = kvm_arch_init_vm(kvm, type);
647 	if (r)
648 		goto out_err_no_disable;
649 
650 	r = hardware_enable_all();
651 	if (r)
652 		goto out_err_no_disable;
653 
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657 
658 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659 
660 	r = -ENOMEM;
661 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662 		struct kvm_memslots *slots = kvm_alloc_memslots();
663 		if (!slots)
664 			goto out_err_no_srcu;
665 		/* Generations must be different for each address space. */
666 		slots->generation = i;
667 		rcu_assign_pointer(kvm->memslots[i], slots);
668 	}
669 
670 	if (init_srcu_struct(&kvm->srcu))
671 		goto out_err_no_srcu;
672 	if (init_srcu_struct(&kvm->irq_srcu))
673 		goto out_err_no_irq_srcu;
674 	for (i = 0; i < KVM_NR_BUSES; i++) {
675 		rcu_assign_pointer(kvm->buses[i],
676 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677 		if (!kvm->buses[i])
678 			goto out_err;
679 	}
680 
681 	r = kvm_init_mmu_notifier(kvm);
682 	if (r)
683 		goto out_err;
684 
685 	mutex_lock(&kvm_lock);
686 	list_add(&kvm->vm_list, &vm_list);
687 	mutex_unlock(&kvm_lock);
688 
689 	preempt_notifier_inc();
690 
691 	return kvm;
692 
693 out_err:
694 	cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696 	cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698 	hardware_disable_all();
699 out_err_no_disable:
700 	refcount_set(&kvm->users_count, 0);
701 	for (i = 0; i < KVM_NR_BUSES; i++)
702 		kfree(kvm_get_bus(kvm, i));
703 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705 	kvm_arch_free_vm(kvm);
706 	mmdrop(current->mm);
707 	return ERR_PTR(r);
708 }
709 
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712 	struct kvm_device *dev, *tmp;
713 
714 	/*
715 	 * We do not need to take the kvm->lock here, because nobody else
716 	 * has a reference to the struct kvm at this point and therefore
717 	 * cannot access the devices list anyhow.
718 	 */
719 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720 		list_del(&dev->vm_node);
721 		dev->ops->destroy(dev);
722 	}
723 }
724 
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727 	int i;
728 	struct mm_struct *mm = kvm->mm;
729 
730 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731 	kvm_destroy_vm_debugfs(kvm);
732 	kvm_arch_sync_events(kvm);
733 	mutex_lock(&kvm_lock);
734 	list_del(&kvm->vm_list);
735 	mutex_unlock(&kvm_lock);
736 	kvm_free_irq_routing(kvm);
737 	for (i = 0; i < KVM_NR_BUSES; i++) {
738 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739 
740 		if (bus)
741 			kvm_io_bus_destroy(bus);
742 		kvm->buses[i] = NULL;
743 	}
744 	kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748 	kvm_arch_flush_shadow_all(kvm);
749 #endif
750 	kvm_arch_destroy_vm(kvm);
751 	kvm_destroy_devices(kvm);
752 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754 	cleanup_srcu_struct(&kvm->irq_srcu);
755 	cleanup_srcu_struct(&kvm->srcu);
756 	kvm_arch_free_vm(kvm);
757 	preempt_notifier_dec();
758 	hardware_disable_all();
759 	mmdrop(mm);
760 }
761 
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764 	refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767 
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770 	if (refcount_dec_and_test(&kvm->users_count))
771 		kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774 
775 
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778 	struct kvm *kvm = filp->private_data;
779 
780 	kvm_irqfd_release(kvm);
781 
782 	kvm_put_kvm(kvm);
783 	return 0;
784 }
785 
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793 
794 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795 	if (!memslot->dirty_bitmap)
796 		return -ENOMEM;
797 
798 	return 0;
799 }
800 
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808 			    struct kvm_memory_slot *new,
809 			    enum kvm_mr_change change)
810 {
811 	int id = new->id;
812 	int i = slots->id_to_index[id];
813 	struct kvm_memory_slot *mslots = slots->memslots;
814 
815 	WARN_ON(mslots[i].id != id);
816 	switch (change) {
817 	case KVM_MR_CREATE:
818 		slots->used_slots++;
819 		WARN_ON(mslots[i].npages || !new->npages);
820 		break;
821 	case KVM_MR_DELETE:
822 		slots->used_slots--;
823 		WARN_ON(new->npages || !mslots[i].npages);
824 		break;
825 	default:
826 		break;
827 	}
828 
829 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
830 	       new->base_gfn <= mslots[i + 1].base_gfn) {
831 		if (!mslots[i + 1].npages)
832 			break;
833 		mslots[i] = mslots[i + 1];
834 		slots->id_to_index[mslots[i].id] = i;
835 		i++;
836 	}
837 
838 	/*
839 	 * The ">=" is needed when creating a slot with base_gfn == 0,
840 	 * so that it moves before all those with base_gfn == npages == 0.
841 	 *
842 	 * On the other hand, if new->npages is zero, the above loop has
843 	 * already left i pointing to the beginning of the empty part of
844 	 * mslots, and the ">=" would move the hole backwards in this
845 	 * case---which is wrong.  So skip the loop when deleting a slot.
846 	 */
847 	if (new->npages) {
848 		while (i > 0 &&
849 		       new->base_gfn >= mslots[i - 1].base_gfn) {
850 			mslots[i] = mslots[i - 1];
851 			slots->id_to_index[mslots[i].id] = i;
852 			i--;
853 		}
854 	} else
855 		WARN_ON_ONCE(i != slots->used_slots);
856 
857 	mslots[i] = *new;
858 	slots->id_to_index[mslots[i].id] = i;
859 }
860 
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864 
865 #ifdef __KVM_HAVE_READONLY_MEM
866 	valid_flags |= KVM_MEM_READONLY;
867 #endif
868 
869 	if (mem->flags & ~valid_flags)
870 		return -EINVAL;
871 
872 	return 0;
873 }
874 
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876 		int as_id, struct kvm_memslots *slots)
877 {
878 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879 	u64 gen = old_memslots->generation;
880 
881 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883 
884 	rcu_assign_pointer(kvm->memslots[as_id], slots);
885 	synchronize_srcu_expedited(&kvm->srcu);
886 
887 	/*
888 	 * Increment the new memslot generation a second time, dropping the
889 	 * update in-progress flag and incrementing then generation based on
890 	 * the number of address spaces.  This provides a unique and easily
891 	 * identifiable generation number while the memslots are in flux.
892 	 */
893 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894 
895 	/*
896 	 * Generations must be unique even across address spaces.  We do not need
897 	 * a global counter for that, instead the generation space is evenly split
898 	 * across address spaces.  For example, with two address spaces, address
899 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
900 	 * use generations 1, 3, 5, ...
901 	 */
902 	gen += KVM_ADDRESS_SPACE_NUM;
903 
904 	kvm_arch_memslots_updated(kvm, gen);
905 
906 	slots->generation = gen;
907 
908 	return old_memslots;
909 }
910 
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920 			    const struct kvm_userspace_memory_region *mem)
921 {
922 	int r;
923 	gfn_t base_gfn;
924 	unsigned long npages;
925 	struct kvm_memory_slot *slot;
926 	struct kvm_memory_slot old, new;
927 	struct kvm_memslots *slots = NULL, *old_memslots;
928 	int as_id, id;
929 	enum kvm_mr_change change;
930 
931 	r = check_memory_region_flags(mem);
932 	if (r)
933 		goto out;
934 
935 	r = -EINVAL;
936 	as_id = mem->slot >> 16;
937 	id = (u16)mem->slot;
938 
939 	/* General sanity checks */
940 	if (mem->memory_size & (PAGE_SIZE - 1))
941 		goto out;
942 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943 		goto out;
944 	/* We can read the guest memory with __xxx_user() later on. */
945 	if ((id < KVM_USER_MEM_SLOTS) &&
946 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948 			mem->memory_size)))
949 		goto out;
950 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951 		goto out;
952 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953 		goto out;
954 
955 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957 	npages = mem->memory_size >> PAGE_SHIFT;
958 
959 	if (npages > KVM_MEM_MAX_NR_PAGES)
960 		goto out;
961 
962 	new = old = *slot;
963 
964 	new.id = id;
965 	new.base_gfn = base_gfn;
966 	new.npages = npages;
967 	new.flags = mem->flags;
968 
969 	if (npages) {
970 		if (!old.npages)
971 			change = KVM_MR_CREATE;
972 		else { /* Modify an existing slot. */
973 			if ((mem->userspace_addr != old.userspace_addr) ||
974 			    (npages != old.npages) ||
975 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976 				goto out;
977 
978 			if (base_gfn != old.base_gfn)
979 				change = KVM_MR_MOVE;
980 			else if (new.flags != old.flags)
981 				change = KVM_MR_FLAGS_ONLY;
982 			else { /* Nothing to change. */
983 				r = 0;
984 				goto out;
985 			}
986 		}
987 	} else {
988 		if (!old.npages)
989 			goto out;
990 
991 		change = KVM_MR_DELETE;
992 		new.base_gfn = 0;
993 		new.flags = 0;
994 	}
995 
996 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997 		/* Check for overlaps */
998 		r = -EEXIST;
999 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000 			if (slot->id == id)
1001 				continue;
1002 			if (!((base_gfn + npages <= slot->base_gfn) ||
1003 			      (base_gfn >= slot->base_gfn + slot->npages)))
1004 				goto out;
1005 		}
1006 	}
1007 
1008 	/* Free page dirty bitmap if unneeded */
1009 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010 		new.dirty_bitmap = NULL;
1011 
1012 	r = -ENOMEM;
1013 	if (change == KVM_MR_CREATE) {
1014 		new.userspace_addr = mem->userspace_addr;
1015 
1016 		if (kvm_arch_create_memslot(kvm, &new, npages))
1017 			goto out_free;
1018 	}
1019 
1020 	/* Allocate page dirty bitmap if needed */
1021 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022 		if (kvm_create_dirty_bitmap(&new) < 0)
1023 			goto out_free;
1024 	}
1025 
1026 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027 	if (!slots)
1028 		goto out_free;
1029 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030 
1031 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032 		slot = id_to_memslot(slots, id);
1033 		slot->flags |= KVM_MEMSLOT_INVALID;
1034 
1035 		old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037 		/* From this point no new shadow pages pointing to a deleted,
1038 		 * or moved, memslot will be created.
1039 		 *
1040 		 * validation of sp->gfn happens in:
1041 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1043 		 */
1044 		kvm_arch_flush_shadow_memslot(kvm, slot);
1045 
1046 		/*
1047 		 * We can re-use the old_memslots from above, the only difference
1048 		 * from the currently installed memslots is the invalid flag.  This
1049 		 * will get overwritten by update_memslots anyway.
1050 		 */
1051 		slots = old_memslots;
1052 	}
1053 
1054 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055 	if (r)
1056 		goto out_slots;
1057 
1058 	/* actual memory is freed via old in kvm_free_memslot below */
1059 	if (change == KVM_MR_DELETE) {
1060 		new.dirty_bitmap = NULL;
1061 		memset(&new.arch, 0, sizeof(new.arch));
1062 	}
1063 
1064 	update_memslots(slots, &new, change);
1065 	old_memslots = install_new_memslots(kvm, as_id, slots);
1066 
1067 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068 
1069 	kvm_free_memslot(kvm, &old, &new);
1070 	kvfree(old_memslots);
1071 	return 0;
1072 
1073 out_slots:
1074 	kvfree(slots);
1075 out_free:
1076 	kvm_free_memslot(kvm, &new, &old);
1077 out:
1078 	return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081 
1082 int kvm_set_memory_region(struct kvm *kvm,
1083 			  const struct kvm_userspace_memory_region *mem)
1084 {
1085 	int r;
1086 
1087 	mutex_lock(&kvm->slots_lock);
1088 	r = __kvm_set_memory_region(kvm, mem);
1089 	mutex_unlock(&kvm->slots_lock);
1090 	return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093 
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095 					  struct kvm_userspace_memory_region *mem)
1096 {
1097 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098 		return -EINVAL;
1099 
1100 	return kvm_set_memory_region(kvm, mem);
1101 }
1102 
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104 			struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106 	struct kvm_memslots *slots;
1107 	struct kvm_memory_slot *memslot;
1108 	int i, as_id, id;
1109 	unsigned long n;
1110 	unsigned long any = 0;
1111 
1112 	as_id = log->slot >> 16;
1113 	id = (u16)log->slot;
1114 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115 		return -EINVAL;
1116 
1117 	slots = __kvm_memslots(kvm, as_id);
1118 	memslot = id_to_memslot(slots, id);
1119 	if (!memslot->dirty_bitmap)
1120 		return -ENOENT;
1121 
1122 	n = kvm_dirty_bitmap_bytes(memslot);
1123 
1124 	for (i = 0; !any && i < n/sizeof(long); ++i)
1125 		any = memslot->dirty_bitmap[i];
1126 
1127 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128 		return -EFAULT;
1129 
1130 	if (any)
1131 		*is_dirty = 1;
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135 
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1139  *	and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:	pointer to kvm instance
1141  * @log:	slot id and address to which we copy the log
1142  * @flush:	true if TLB flush is needed by caller
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160 			struct kvm_dirty_log *log, bool *flush)
1161 {
1162 	struct kvm_memslots *slots;
1163 	struct kvm_memory_slot *memslot;
1164 	int i, as_id, id;
1165 	unsigned long n;
1166 	unsigned long *dirty_bitmap;
1167 	unsigned long *dirty_bitmap_buffer;
1168 
1169 	as_id = log->slot >> 16;
1170 	id = (u16)log->slot;
1171 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172 		return -EINVAL;
1173 
1174 	slots = __kvm_memslots(kvm, as_id);
1175 	memslot = id_to_memslot(slots, id);
1176 
1177 	dirty_bitmap = memslot->dirty_bitmap;
1178 	if (!dirty_bitmap)
1179 		return -ENOENT;
1180 
1181 	n = kvm_dirty_bitmap_bytes(memslot);
1182 	*flush = false;
1183 	if (kvm->manual_dirty_log_protect) {
1184 		/*
1185 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1186 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187 		 * is some code duplication between this function and
1188 		 * kvm_get_dirty_log, but hopefully all architecture
1189 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190 		 * can be eliminated.
1191 		 */
1192 		dirty_bitmap_buffer = dirty_bitmap;
1193 	} else {
1194 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195 		memset(dirty_bitmap_buffer, 0, n);
1196 
1197 		spin_lock(&kvm->mmu_lock);
1198 		for (i = 0; i < n / sizeof(long); i++) {
1199 			unsigned long mask;
1200 			gfn_t offset;
1201 
1202 			if (!dirty_bitmap[i])
1203 				continue;
1204 
1205 			*flush = true;
1206 			mask = xchg(&dirty_bitmap[i], 0);
1207 			dirty_bitmap_buffer[i] = mask;
1208 
1209 			offset = i * BITS_PER_LONG;
1210 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211 								offset, mask);
1212 		}
1213 		spin_unlock(&kvm->mmu_lock);
1214 	}
1215 
1216 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217 		return -EFAULT;
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *	and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:	pointer to kvm instance
1226  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1227  * @flush:	true if TLB flush is needed by caller
1228  */
1229 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1230 				struct kvm_clear_dirty_log *log, bool *flush)
1231 {
1232 	struct kvm_memslots *slots;
1233 	struct kvm_memory_slot *memslot;
1234 	int as_id, id;
1235 	gfn_t offset;
1236 	unsigned long i, n;
1237 	unsigned long *dirty_bitmap;
1238 	unsigned long *dirty_bitmap_buffer;
1239 
1240 	as_id = log->slot >> 16;
1241 	id = (u16)log->slot;
1242 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1243 		return -EINVAL;
1244 
1245 	if (log->first_page & 63)
1246 		return -EINVAL;
1247 
1248 	slots = __kvm_memslots(kvm, as_id);
1249 	memslot = id_to_memslot(slots, id);
1250 
1251 	dirty_bitmap = memslot->dirty_bitmap;
1252 	if (!dirty_bitmap)
1253 		return -ENOENT;
1254 
1255 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1256 
1257 	if (log->first_page > memslot->npages ||
1258 	    log->num_pages > memslot->npages - log->first_page ||
1259 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1260 	    return -EINVAL;
1261 
1262 	*flush = false;
1263 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1264 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1265 		return -EFAULT;
1266 
1267 	spin_lock(&kvm->mmu_lock);
1268 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1269 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1270 	     i++, offset += BITS_PER_LONG) {
1271 		unsigned long mask = *dirty_bitmap_buffer++;
1272 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1273 		if (!mask)
1274 			continue;
1275 
1276 		mask &= atomic_long_fetch_andnot(mask, p);
1277 
1278 		/*
1279 		 * mask contains the bits that really have been cleared.  This
1280 		 * never includes any bits beyond the length of the memslot (if
1281 		 * the length is not aligned to 64 pages), therefore it is not
1282 		 * a problem if userspace sets them in log->dirty_bitmap.
1283 		*/
1284 		if (mask) {
1285 			*flush = true;
1286 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1287 								offset, mask);
1288 		}
1289 	}
1290 	spin_unlock(&kvm->mmu_lock);
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1295 #endif
1296 
1297 bool kvm_largepages_enabled(void)
1298 {
1299 	return largepages_enabled;
1300 }
1301 
1302 void kvm_disable_largepages(void)
1303 {
1304 	largepages_enabled = false;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1307 
1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1309 {
1310 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1313 
1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1317 }
1318 
1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1320 {
1321 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1322 
1323 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1324 	      memslot->flags & KVM_MEMSLOT_INVALID)
1325 		return false;
1326 
1327 	return true;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1330 
1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1332 {
1333 	struct vm_area_struct *vma;
1334 	unsigned long addr, size;
1335 
1336 	size = PAGE_SIZE;
1337 
1338 	addr = gfn_to_hva(kvm, gfn);
1339 	if (kvm_is_error_hva(addr))
1340 		return PAGE_SIZE;
1341 
1342 	down_read(&current->mm->mmap_sem);
1343 	vma = find_vma(current->mm, addr);
1344 	if (!vma)
1345 		goto out;
1346 
1347 	size = vma_kernel_pagesize(vma);
1348 
1349 out:
1350 	up_read(&current->mm->mmap_sem);
1351 
1352 	return size;
1353 }
1354 
1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1356 {
1357 	return slot->flags & KVM_MEM_READONLY;
1358 }
1359 
1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1361 				       gfn_t *nr_pages, bool write)
1362 {
1363 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1364 		return KVM_HVA_ERR_BAD;
1365 
1366 	if (memslot_is_readonly(slot) && write)
1367 		return KVM_HVA_ERR_RO_BAD;
1368 
1369 	if (nr_pages)
1370 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1371 
1372 	return __gfn_to_hva_memslot(slot, gfn);
1373 }
1374 
1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1376 				     gfn_t *nr_pages)
1377 {
1378 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1379 }
1380 
1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1382 					gfn_t gfn)
1383 {
1384 	return gfn_to_hva_many(slot, gfn, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1387 
1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1389 {
1390 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1391 }
1392 EXPORT_SYMBOL_GPL(gfn_to_hva);
1393 
1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1395 {
1396 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1399 
1400 /*
1401  * Return the hva of a @gfn and the R/W attribute if possible.
1402  *
1403  * @slot: the kvm_memory_slot which contains @gfn
1404  * @gfn: the gfn to be translated
1405  * @writable: used to return the read/write attribute of the @slot if the hva
1406  * is valid and @writable is not NULL
1407  */
1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1409 				      gfn_t gfn, bool *writable)
1410 {
1411 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1412 
1413 	if (!kvm_is_error_hva(hva) && writable)
1414 		*writable = !memslot_is_readonly(slot);
1415 
1416 	return hva;
1417 }
1418 
1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1420 {
1421 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1422 
1423 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1424 }
1425 
1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1427 {
1428 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429 
1430 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1431 }
1432 
1433 static inline int check_user_page_hwpoison(unsigned long addr)
1434 {
1435 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1436 
1437 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1438 	return rc == -EHWPOISON;
1439 }
1440 
1441 /*
1442  * The fast path to get the writable pfn which will be stored in @pfn,
1443  * true indicates success, otherwise false is returned.  It's also the
1444  * only part that runs if we can are in atomic context.
1445  */
1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1447 			    bool *writable, kvm_pfn_t *pfn)
1448 {
1449 	struct page *page[1];
1450 	int npages;
1451 
1452 	/*
1453 	 * Fast pin a writable pfn only if it is a write fault request
1454 	 * or the caller allows to map a writable pfn for a read fault
1455 	 * request.
1456 	 */
1457 	if (!(write_fault || writable))
1458 		return false;
1459 
1460 	npages = __get_user_pages_fast(addr, 1, 1, page);
1461 	if (npages == 1) {
1462 		*pfn = page_to_pfn(page[0]);
1463 
1464 		if (writable)
1465 			*writable = true;
1466 		return true;
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 /*
1473  * The slow path to get the pfn of the specified host virtual address,
1474  * 1 indicates success, -errno is returned if error is detected.
1475  */
1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1477 			   bool *writable, kvm_pfn_t *pfn)
1478 {
1479 	unsigned int flags = FOLL_HWPOISON;
1480 	struct page *page;
1481 	int npages = 0;
1482 
1483 	might_sleep();
1484 
1485 	if (writable)
1486 		*writable = write_fault;
1487 
1488 	if (write_fault)
1489 		flags |= FOLL_WRITE;
1490 	if (async)
1491 		flags |= FOLL_NOWAIT;
1492 
1493 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1494 	if (npages != 1)
1495 		return npages;
1496 
1497 	/* map read fault as writable if possible */
1498 	if (unlikely(!write_fault) && writable) {
1499 		struct page *wpage;
1500 
1501 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1502 			*writable = true;
1503 			put_page(page);
1504 			page = wpage;
1505 		}
1506 	}
1507 	*pfn = page_to_pfn(page);
1508 	return npages;
1509 }
1510 
1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1512 {
1513 	if (unlikely(!(vma->vm_flags & VM_READ)))
1514 		return false;
1515 
1516 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1517 		return false;
1518 
1519 	return true;
1520 }
1521 
1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1523 			       unsigned long addr, bool *async,
1524 			       bool write_fault, bool *writable,
1525 			       kvm_pfn_t *p_pfn)
1526 {
1527 	unsigned long pfn;
1528 	int r;
1529 
1530 	r = follow_pfn(vma, addr, &pfn);
1531 	if (r) {
1532 		/*
1533 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1534 		 * not call the fault handler, so do it here.
1535 		 */
1536 		bool unlocked = false;
1537 		r = fixup_user_fault(current, current->mm, addr,
1538 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1539 				     &unlocked);
1540 		if (unlocked)
1541 			return -EAGAIN;
1542 		if (r)
1543 			return r;
1544 
1545 		r = follow_pfn(vma, addr, &pfn);
1546 		if (r)
1547 			return r;
1548 
1549 	}
1550 
1551 	if (writable)
1552 		*writable = true;
1553 
1554 	/*
1555 	 * Get a reference here because callers of *hva_to_pfn* and
1556 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1557 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1558 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1559 	 * simply do nothing for reserved pfns.
1560 	 *
1561 	 * Whoever called remap_pfn_range is also going to call e.g.
1562 	 * unmap_mapping_range before the underlying pages are freed,
1563 	 * causing a call to our MMU notifier.
1564 	 */
1565 	kvm_get_pfn(pfn);
1566 
1567 	*p_pfn = pfn;
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Pin guest page in memory and return its pfn.
1573  * @addr: host virtual address which maps memory to the guest
1574  * @atomic: whether this function can sleep
1575  * @async: whether this function need to wait IO complete if the
1576  *         host page is not in the memory
1577  * @write_fault: whether we should get a writable host page
1578  * @writable: whether it allows to map a writable host page for !@write_fault
1579  *
1580  * The function will map a writable host page for these two cases:
1581  * 1): @write_fault = true
1582  * 2): @write_fault = false && @writable, @writable will tell the caller
1583  *     whether the mapping is writable.
1584  */
1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1586 			bool write_fault, bool *writable)
1587 {
1588 	struct vm_area_struct *vma;
1589 	kvm_pfn_t pfn = 0;
1590 	int npages, r;
1591 
1592 	/* we can do it either atomically or asynchronously, not both */
1593 	BUG_ON(atomic && async);
1594 
1595 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1596 		return pfn;
1597 
1598 	if (atomic)
1599 		return KVM_PFN_ERR_FAULT;
1600 
1601 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1602 	if (npages == 1)
1603 		return pfn;
1604 
1605 	down_read(&current->mm->mmap_sem);
1606 	if (npages == -EHWPOISON ||
1607 	      (!async && check_user_page_hwpoison(addr))) {
1608 		pfn = KVM_PFN_ERR_HWPOISON;
1609 		goto exit;
1610 	}
1611 
1612 retry:
1613 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1614 
1615 	if (vma == NULL)
1616 		pfn = KVM_PFN_ERR_FAULT;
1617 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1618 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1619 		if (r == -EAGAIN)
1620 			goto retry;
1621 		if (r < 0)
1622 			pfn = KVM_PFN_ERR_FAULT;
1623 	} else {
1624 		if (async && vma_is_valid(vma, write_fault))
1625 			*async = true;
1626 		pfn = KVM_PFN_ERR_FAULT;
1627 	}
1628 exit:
1629 	up_read(&current->mm->mmap_sem);
1630 	return pfn;
1631 }
1632 
1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1634 			       bool atomic, bool *async, bool write_fault,
1635 			       bool *writable)
1636 {
1637 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1638 
1639 	if (addr == KVM_HVA_ERR_RO_BAD) {
1640 		if (writable)
1641 			*writable = false;
1642 		return KVM_PFN_ERR_RO_FAULT;
1643 	}
1644 
1645 	if (kvm_is_error_hva(addr)) {
1646 		if (writable)
1647 			*writable = false;
1648 		return KVM_PFN_NOSLOT;
1649 	}
1650 
1651 	/* Do not map writable pfn in the readonly memslot. */
1652 	if (writable && memslot_is_readonly(slot)) {
1653 		*writable = false;
1654 		writable = NULL;
1655 	}
1656 
1657 	return hva_to_pfn(addr, atomic, async, write_fault,
1658 			  writable);
1659 }
1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1661 
1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1663 		      bool *writable)
1664 {
1665 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1666 				    write_fault, writable);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1669 
1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1671 {
1672 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1675 
1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1677 {
1678 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1681 
1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1683 {
1684 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1687 
1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1693 
1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1695 {
1696 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1697 }
1698 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1699 
1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1701 {
1702 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1705 
1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1707 			    struct page **pages, int nr_pages)
1708 {
1709 	unsigned long addr;
1710 	gfn_t entry = 0;
1711 
1712 	addr = gfn_to_hva_many(slot, gfn, &entry);
1713 	if (kvm_is_error_hva(addr))
1714 		return -1;
1715 
1716 	if (entry < nr_pages)
1717 		return 0;
1718 
1719 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1720 }
1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1722 
1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1724 {
1725 	if (is_error_noslot_pfn(pfn))
1726 		return KVM_ERR_PTR_BAD_PAGE;
1727 
1728 	if (kvm_is_reserved_pfn(pfn)) {
1729 		WARN_ON(1);
1730 		return KVM_ERR_PTR_BAD_PAGE;
1731 	}
1732 
1733 	return pfn_to_page(pfn);
1734 }
1735 
1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1737 {
1738 	kvm_pfn_t pfn;
1739 
1740 	pfn = gfn_to_pfn(kvm, gfn);
1741 
1742 	return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(gfn_to_page);
1745 
1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1747 			 struct kvm_host_map *map)
1748 {
1749 	kvm_pfn_t pfn;
1750 	void *hva = NULL;
1751 	struct page *page = KVM_UNMAPPED_PAGE;
1752 
1753 	if (!map)
1754 		return -EINVAL;
1755 
1756 	pfn = gfn_to_pfn_memslot(slot, gfn);
1757 	if (is_error_noslot_pfn(pfn))
1758 		return -EINVAL;
1759 
1760 	if (pfn_valid(pfn)) {
1761 		page = pfn_to_page(pfn);
1762 		hva = kmap(page);
1763 #ifdef CONFIG_HAS_IOMEM
1764 	} else {
1765 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1766 #endif
1767 	}
1768 
1769 	if (!hva)
1770 		return -EFAULT;
1771 
1772 	map->page = page;
1773 	map->hva = hva;
1774 	map->pfn = pfn;
1775 	map->gfn = gfn;
1776 
1777 	return 0;
1778 }
1779 
1780 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1781 {
1782 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1785 
1786 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1787 		    bool dirty)
1788 {
1789 	if (!map)
1790 		return;
1791 
1792 	if (!map->hva)
1793 		return;
1794 
1795 	if (map->page != KVM_UNMAPPED_PAGE)
1796 		kunmap(map->page);
1797 #ifdef CONFIG_HAS_IOMEM
1798 	else
1799 		memunmap(map->hva);
1800 #endif
1801 
1802 	if (dirty) {
1803 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1804 		kvm_release_pfn_dirty(map->pfn);
1805 	} else {
1806 		kvm_release_pfn_clean(map->pfn);
1807 	}
1808 
1809 	map->hva = NULL;
1810 	map->page = NULL;
1811 }
1812 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1813 
1814 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1815 {
1816 	kvm_pfn_t pfn;
1817 
1818 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1819 
1820 	return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1823 
1824 void kvm_release_page_clean(struct page *page)
1825 {
1826 	WARN_ON(is_error_page(page));
1827 
1828 	kvm_release_pfn_clean(page_to_pfn(page));
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1831 
1832 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1833 {
1834 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1835 		put_page(pfn_to_page(pfn));
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1838 
1839 void kvm_release_page_dirty(struct page *page)
1840 {
1841 	WARN_ON(is_error_page(page));
1842 
1843 	kvm_release_pfn_dirty(page_to_pfn(page));
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1846 
1847 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1848 {
1849 	kvm_set_pfn_dirty(pfn);
1850 	kvm_release_pfn_clean(pfn);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1853 
1854 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1855 {
1856 	if (!kvm_is_reserved_pfn(pfn)) {
1857 		struct page *page = pfn_to_page(pfn);
1858 
1859 		SetPageDirty(page);
1860 	}
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863 
1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 {
1866 	if (!kvm_is_reserved_pfn(pfn))
1867 		mark_page_accessed(pfn_to_page(pfn));
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870 
1871 void kvm_get_pfn(kvm_pfn_t pfn)
1872 {
1873 	if (!kvm_is_reserved_pfn(pfn))
1874 		get_page(pfn_to_page(pfn));
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877 
1878 static int next_segment(unsigned long len, int offset)
1879 {
1880 	if (len > PAGE_SIZE - offset)
1881 		return PAGE_SIZE - offset;
1882 	else
1883 		return len;
1884 }
1885 
1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1887 				 void *data, int offset, int len)
1888 {
1889 	int r;
1890 	unsigned long addr;
1891 
1892 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1893 	if (kvm_is_error_hva(addr))
1894 		return -EFAULT;
1895 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1896 	if (r)
1897 		return -EFAULT;
1898 	return 0;
1899 }
1900 
1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1902 			int len)
1903 {
1904 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 
1906 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909 
1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1911 			     int offset, int len)
1912 {
1913 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914 
1915 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918 
1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 {
1921 	gfn_t gfn = gpa >> PAGE_SHIFT;
1922 	int seg;
1923 	int offset = offset_in_page(gpa);
1924 	int ret;
1925 
1926 	while ((seg = next_segment(len, offset)) != 0) {
1927 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1928 		if (ret < 0)
1929 			return ret;
1930 		offset = 0;
1931 		len -= seg;
1932 		data += seg;
1933 		++gfn;
1934 	}
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938 
1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 {
1941 	gfn_t gfn = gpa >> PAGE_SHIFT;
1942 	int seg;
1943 	int offset = offset_in_page(gpa);
1944 	int ret;
1945 
1946 	while ((seg = next_segment(len, offset)) != 0) {
1947 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1948 		if (ret < 0)
1949 			return ret;
1950 		offset = 0;
1951 		len -= seg;
1952 		data += seg;
1953 		++gfn;
1954 	}
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958 
1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1960 			           void *data, int offset, unsigned long len)
1961 {
1962 	int r;
1963 	unsigned long addr;
1964 
1965 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1966 	if (kvm_is_error_hva(addr))
1967 		return -EFAULT;
1968 	pagefault_disable();
1969 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1970 	pagefault_enable();
1971 	if (r)
1972 		return -EFAULT;
1973 	return 0;
1974 }
1975 
1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1977 			  unsigned long len)
1978 {
1979 	gfn_t gfn = gpa >> PAGE_SHIFT;
1980 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1981 	int offset = offset_in_page(gpa);
1982 
1983 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986 
1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1988 			       void *data, unsigned long len)
1989 {
1990 	gfn_t gfn = gpa >> PAGE_SHIFT;
1991 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992 	int offset = offset_in_page(gpa);
1993 
1994 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997 
1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1999 			          const void *data, int offset, int len)
2000 {
2001 	int r;
2002 	unsigned long addr;
2003 
2004 	addr = gfn_to_hva_memslot(memslot, gfn);
2005 	if (kvm_is_error_hva(addr))
2006 		return -EFAULT;
2007 	r = __copy_to_user((void __user *)addr + offset, data, len);
2008 	if (r)
2009 		return -EFAULT;
2010 	mark_page_dirty_in_slot(memslot, gfn);
2011 	return 0;
2012 }
2013 
2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2015 			 const void *data, int offset, int len)
2016 {
2017 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018 
2019 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022 
2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2024 			      const void *data, int offset, int len)
2025 {
2026 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027 
2028 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031 
2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2033 		    unsigned long len)
2034 {
2035 	gfn_t gfn = gpa >> PAGE_SHIFT;
2036 	int seg;
2037 	int offset = offset_in_page(gpa);
2038 	int ret;
2039 
2040 	while ((seg = next_segment(len, offset)) != 0) {
2041 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2042 		if (ret < 0)
2043 			return ret;
2044 		offset = 0;
2045 		len -= seg;
2046 		data += seg;
2047 		++gfn;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052 
2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2054 		         unsigned long len)
2055 {
2056 	gfn_t gfn = gpa >> PAGE_SHIFT;
2057 	int seg;
2058 	int offset = offset_in_page(gpa);
2059 	int ret;
2060 
2061 	while ((seg = next_segment(len, offset)) != 0) {
2062 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2063 		if (ret < 0)
2064 			return ret;
2065 		offset = 0;
2066 		len -= seg;
2067 		data += seg;
2068 		++gfn;
2069 	}
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073 
2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2075 				       struct gfn_to_hva_cache *ghc,
2076 				       gpa_t gpa, unsigned long len)
2077 {
2078 	int offset = offset_in_page(gpa);
2079 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2080 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2081 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2082 	gfn_t nr_pages_avail;
2083 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084 
2085 	ghc->gpa = gpa;
2086 	ghc->generation = slots->generation;
2087 	ghc->len = len;
2088 	ghc->hva = KVM_HVA_ERR_BAD;
2089 
2090 	/*
2091 	 * If the requested region crosses two memslots, we still
2092 	 * verify that the entire region is valid here.
2093 	 */
2094 	while (!r && start_gfn <= end_gfn) {
2095 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2096 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2097 					   &nr_pages_avail);
2098 		if (kvm_is_error_hva(ghc->hva))
2099 			r = -EFAULT;
2100 		start_gfn += nr_pages_avail;
2101 	}
2102 
2103 	/* Use the slow path for cross page reads and writes. */
2104 	if (!r && nr_pages_needed == 1)
2105 		ghc->hva += offset;
2106 	else
2107 		ghc->memslot = NULL;
2108 
2109 	return r;
2110 }
2111 
2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2113 			      gpa_t gpa, unsigned long len)
2114 {
2115 	struct kvm_memslots *slots = kvm_memslots(kvm);
2116 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119 
2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2121 				  void *data, unsigned int offset,
2122 				  unsigned long len)
2123 {
2124 	struct kvm_memslots *slots = kvm_memslots(kvm);
2125 	int r;
2126 	gpa_t gpa = ghc->gpa + offset;
2127 
2128 	BUG_ON(len + offset > ghc->len);
2129 
2130 	if (slots->generation != ghc->generation)
2131 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132 
2133 	if (unlikely(!ghc->memslot))
2134 		return kvm_write_guest(kvm, gpa, data, len);
2135 
2136 	if (kvm_is_error_hva(ghc->hva))
2137 		return -EFAULT;
2138 
2139 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2140 	if (r)
2141 		return -EFAULT;
2142 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147 
2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2149 			   void *data, unsigned long len)
2150 {
2151 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154 
2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2156 			   void *data, unsigned long len)
2157 {
2158 	struct kvm_memslots *slots = kvm_memslots(kvm);
2159 	int r;
2160 
2161 	BUG_ON(len > ghc->len);
2162 
2163 	if (slots->generation != ghc->generation)
2164 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165 
2166 	if (unlikely(!ghc->memslot))
2167 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2168 
2169 	if (kvm_is_error_hva(ghc->hva))
2170 		return -EFAULT;
2171 
2172 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2173 	if (r)
2174 		return -EFAULT;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179 
2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 {
2182 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183 
2184 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187 
2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 {
2190 	gfn_t gfn = gpa >> PAGE_SHIFT;
2191 	int seg;
2192 	int offset = offset_in_page(gpa);
2193 	int ret;
2194 
2195 	while ((seg = next_segment(len, offset)) != 0) {
2196 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2197 		if (ret < 0)
2198 			return ret;
2199 		offset = 0;
2200 		len -= seg;
2201 		++gfn;
2202 	}
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206 
2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2208 				    gfn_t gfn)
2209 {
2210 	if (memslot && memslot->dirty_bitmap) {
2211 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2212 
2213 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2214 	}
2215 }
2216 
2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 {
2219 	struct kvm_memory_slot *memslot;
2220 
2221 	memslot = gfn_to_memslot(kvm, gfn);
2222 	mark_page_dirty_in_slot(memslot, gfn);
2223 }
2224 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225 
2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 {
2228 	struct kvm_memory_slot *memslot;
2229 
2230 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231 	mark_page_dirty_in_slot(memslot, gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234 
2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 {
2237 	if (!vcpu->sigset_active)
2238 		return;
2239 
2240 	/*
2241 	 * This does a lockless modification of ->real_blocked, which is fine
2242 	 * because, only current can change ->real_blocked and all readers of
2243 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2244 	 * of ->blocked.
2245 	 */
2246 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2247 }
2248 
2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 {
2251 	if (!vcpu->sigset_active)
2252 		return;
2253 
2254 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2255 	sigemptyset(&current->real_blocked);
2256 }
2257 
2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 {
2260 	unsigned int old, val, grow, grow_start;
2261 
2262 	old = val = vcpu->halt_poll_ns;
2263 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2264 	grow = READ_ONCE(halt_poll_ns_grow);
2265 	if (!grow)
2266 		goto out;
2267 
2268 	val *= grow;
2269 	if (val < grow_start)
2270 		val = grow_start;
2271 
2272 	if (val > halt_poll_ns)
2273 		val = halt_poll_ns;
2274 
2275 	vcpu->halt_poll_ns = val;
2276 out:
2277 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2278 }
2279 
2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 {
2282 	unsigned int old, val, shrink;
2283 
2284 	old = val = vcpu->halt_poll_ns;
2285 	shrink = READ_ONCE(halt_poll_ns_shrink);
2286 	if (shrink == 0)
2287 		val = 0;
2288 	else
2289 		val /= shrink;
2290 
2291 	vcpu->halt_poll_ns = val;
2292 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2293 }
2294 
2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 {
2297 	int ret = -EINTR;
2298 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299 
2300 	if (kvm_arch_vcpu_runnable(vcpu)) {
2301 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2302 		goto out;
2303 	}
2304 	if (kvm_cpu_has_pending_timer(vcpu))
2305 		goto out;
2306 	if (signal_pending(current))
2307 		goto out;
2308 
2309 	ret = 0;
2310 out:
2311 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2312 	return ret;
2313 }
2314 
2315 /*
2316  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317  */
2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 {
2320 	ktime_t start, cur;
2321 	DECLARE_SWAITQUEUE(wait);
2322 	bool waited = false;
2323 	u64 block_ns;
2324 
2325 	kvm_arch_vcpu_blocking(vcpu);
2326 
2327 	start = cur = ktime_get();
2328 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2329 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2330 
2331 		++vcpu->stat.halt_attempted_poll;
2332 		do {
2333 			/*
2334 			 * This sets KVM_REQ_UNHALT if an interrupt
2335 			 * arrives.
2336 			 */
2337 			if (kvm_vcpu_check_block(vcpu) < 0) {
2338 				++vcpu->stat.halt_successful_poll;
2339 				if (!vcpu_valid_wakeup(vcpu))
2340 					++vcpu->stat.halt_poll_invalid;
2341 				goto out;
2342 			}
2343 			cur = ktime_get();
2344 		} while (single_task_running() && ktime_before(cur, stop));
2345 	}
2346 
2347 	for (;;) {
2348 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349 
2350 		if (kvm_vcpu_check_block(vcpu) < 0)
2351 			break;
2352 
2353 		waited = true;
2354 		schedule();
2355 	}
2356 
2357 	finish_swait(&vcpu->wq, &wait);
2358 	cur = ktime_get();
2359 out:
2360 	kvm_arch_vcpu_unblocking(vcpu);
2361 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2362 
2363 	if (!vcpu_valid_wakeup(vcpu))
2364 		shrink_halt_poll_ns(vcpu);
2365 	else if (halt_poll_ns) {
2366 		if (block_ns <= vcpu->halt_poll_ns)
2367 			;
2368 		/* we had a long block, shrink polling */
2369 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2370 			shrink_halt_poll_ns(vcpu);
2371 		/* we had a short halt and our poll time is too small */
2372 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2373 			block_ns < halt_poll_ns)
2374 			grow_halt_poll_ns(vcpu);
2375 	} else
2376 		vcpu->halt_poll_ns = 0;
2377 
2378 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2379 	kvm_arch_vcpu_block_finish(vcpu);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2382 
2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2384 {
2385 	struct swait_queue_head *wqp;
2386 
2387 	wqp = kvm_arch_vcpu_wq(vcpu);
2388 	if (swq_has_sleeper(wqp)) {
2389 		swake_up_one(wqp);
2390 		WRITE_ONCE(vcpu->ready, true);
2391 		++vcpu->stat.halt_wakeup;
2392 		return true;
2393 	}
2394 
2395 	return false;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2398 
2399 #ifndef CONFIG_S390
2400 /*
2401  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402  */
2403 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2404 {
2405 	int me;
2406 	int cpu = vcpu->cpu;
2407 
2408 	if (kvm_vcpu_wake_up(vcpu))
2409 		return;
2410 
2411 	me = get_cpu();
2412 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2413 		if (kvm_arch_vcpu_should_kick(vcpu))
2414 			smp_send_reschedule(cpu);
2415 	put_cpu();
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2418 #endif /* !CONFIG_S390 */
2419 
2420 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2421 {
2422 	struct pid *pid;
2423 	struct task_struct *task = NULL;
2424 	int ret = 0;
2425 
2426 	rcu_read_lock();
2427 	pid = rcu_dereference(target->pid);
2428 	if (pid)
2429 		task = get_pid_task(pid, PIDTYPE_PID);
2430 	rcu_read_unlock();
2431 	if (!task)
2432 		return ret;
2433 	ret = yield_to(task, 1);
2434 	put_task_struct(task);
2435 
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2439 
2440 /*
2441  * Helper that checks whether a VCPU is eligible for directed yield.
2442  * Most eligible candidate to yield is decided by following heuristics:
2443  *
2444  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2445  *  (preempted lock holder), indicated by @in_spin_loop.
2446  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2447  *
2448  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2449  *  chance last time (mostly it has become eligible now since we have probably
2450  *  yielded to lockholder in last iteration. This is done by toggling
2451  *  @dy_eligible each time a VCPU checked for eligibility.)
2452  *
2453  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2454  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2455  *  burning. Giving priority for a potential lock-holder increases lock
2456  *  progress.
2457  *
2458  *  Since algorithm is based on heuristics, accessing another VCPU data without
2459  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2460  *  and continue with next VCPU and so on.
2461  */
2462 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2463 {
2464 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2465 	bool eligible;
2466 
2467 	eligible = !vcpu->spin_loop.in_spin_loop ||
2468 		    vcpu->spin_loop.dy_eligible;
2469 
2470 	if (vcpu->spin_loop.in_spin_loop)
2471 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2472 
2473 	return eligible;
2474 #else
2475 	return true;
2476 #endif
2477 }
2478 
2479 /*
2480  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2481  * a vcpu_load/vcpu_put pair.  However, for most architectures
2482  * kvm_arch_vcpu_runnable does not require vcpu_load.
2483  */
2484 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2485 {
2486 	return kvm_arch_vcpu_runnable(vcpu);
2487 }
2488 
2489 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2490 {
2491 	if (kvm_arch_dy_runnable(vcpu))
2492 		return true;
2493 
2494 #ifdef CONFIG_KVM_ASYNC_PF
2495 	if (!list_empty_careful(&vcpu->async_pf.done))
2496 		return true;
2497 #endif
2498 
2499 	return false;
2500 }
2501 
2502 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2503 {
2504 	struct kvm *kvm = me->kvm;
2505 	struct kvm_vcpu *vcpu;
2506 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2507 	int yielded = 0;
2508 	int try = 3;
2509 	int pass;
2510 	int i;
2511 
2512 	kvm_vcpu_set_in_spin_loop(me, true);
2513 	/*
2514 	 * We boost the priority of a VCPU that is runnable but not
2515 	 * currently running, because it got preempted by something
2516 	 * else and called schedule in __vcpu_run.  Hopefully that
2517 	 * VCPU is holding the lock that we need and will release it.
2518 	 * We approximate round-robin by starting at the last boosted VCPU.
2519 	 */
2520 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2521 		kvm_for_each_vcpu(i, vcpu, kvm) {
2522 			if (!pass && i <= last_boosted_vcpu) {
2523 				i = last_boosted_vcpu;
2524 				continue;
2525 			} else if (pass && i > last_boosted_vcpu)
2526 				break;
2527 			if (!READ_ONCE(vcpu->ready))
2528 				continue;
2529 			if (vcpu == me)
2530 				continue;
2531 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2532 				continue;
2533 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2534 				!kvm_arch_vcpu_in_kernel(vcpu))
2535 				continue;
2536 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2537 				continue;
2538 
2539 			yielded = kvm_vcpu_yield_to(vcpu);
2540 			if (yielded > 0) {
2541 				kvm->last_boosted_vcpu = i;
2542 				break;
2543 			} else if (yielded < 0) {
2544 				try--;
2545 				if (!try)
2546 					break;
2547 			}
2548 		}
2549 	}
2550 	kvm_vcpu_set_in_spin_loop(me, false);
2551 
2552 	/* Ensure vcpu is not eligible during next spinloop */
2553 	kvm_vcpu_set_dy_eligible(me, false);
2554 }
2555 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2556 
2557 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2558 {
2559 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2560 	struct page *page;
2561 
2562 	if (vmf->pgoff == 0)
2563 		page = virt_to_page(vcpu->run);
2564 #ifdef CONFIG_X86
2565 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2566 		page = virt_to_page(vcpu->arch.pio_data);
2567 #endif
2568 #ifdef CONFIG_KVM_MMIO
2569 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2570 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2571 #endif
2572 	else
2573 		return kvm_arch_vcpu_fault(vcpu, vmf);
2574 	get_page(page);
2575 	vmf->page = page;
2576 	return 0;
2577 }
2578 
2579 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2580 	.fault = kvm_vcpu_fault,
2581 };
2582 
2583 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2584 {
2585 	vma->vm_ops = &kvm_vcpu_vm_ops;
2586 	return 0;
2587 }
2588 
2589 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2590 {
2591 	struct kvm_vcpu *vcpu = filp->private_data;
2592 
2593 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2594 	kvm_put_kvm(vcpu->kvm);
2595 	return 0;
2596 }
2597 
2598 static struct file_operations kvm_vcpu_fops = {
2599 	.release        = kvm_vcpu_release,
2600 	.unlocked_ioctl = kvm_vcpu_ioctl,
2601 	.mmap           = kvm_vcpu_mmap,
2602 	.llseek		= noop_llseek,
2603 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2604 };
2605 
2606 /*
2607  * Allocates an inode for the vcpu.
2608  */
2609 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2610 {
2611 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2612 
2613 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2614 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2615 }
2616 
2617 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2618 {
2619 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2620 	char dir_name[ITOA_MAX_LEN * 2];
2621 
2622 	if (!debugfs_initialized())
2623 		return;
2624 
2625 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2626 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2627 						  vcpu->kvm->debugfs_dentry);
2628 
2629 	kvm_arch_create_vcpu_debugfs(vcpu);
2630 #endif
2631 }
2632 
2633 /*
2634  * Creates some virtual cpus.  Good luck creating more than one.
2635  */
2636 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2637 {
2638 	int r;
2639 	struct kvm_vcpu *vcpu;
2640 
2641 	if (id >= KVM_MAX_VCPU_ID)
2642 		return -EINVAL;
2643 
2644 	mutex_lock(&kvm->lock);
2645 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2646 		mutex_unlock(&kvm->lock);
2647 		return -EINVAL;
2648 	}
2649 
2650 	kvm->created_vcpus++;
2651 	mutex_unlock(&kvm->lock);
2652 
2653 	vcpu = kvm_arch_vcpu_create(kvm, id);
2654 	if (IS_ERR(vcpu)) {
2655 		r = PTR_ERR(vcpu);
2656 		goto vcpu_decrement;
2657 	}
2658 
2659 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2660 
2661 	r = kvm_arch_vcpu_setup(vcpu);
2662 	if (r)
2663 		goto vcpu_destroy;
2664 
2665 	kvm_create_vcpu_debugfs(vcpu);
2666 
2667 	mutex_lock(&kvm->lock);
2668 	if (kvm_get_vcpu_by_id(kvm, id)) {
2669 		r = -EEXIST;
2670 		goto unlock_vcpu_destroy;
2671 	}
2672 
2673 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2674 
2675 	/* Now it's all set up, let userspace reach it */
2676 	kvm_get_kvm(kvm);
2677 	r = create_vcpu_fd(vcpu);
2678 	if (r < 0) {
2679 		kvm_put_kvm(kvm);
2680 		goto unlock_vcpu_destroy;
2681 	}
2682 
2683 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2684 
2685 	/*
2686 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2687 	 * before kvm->online_vcpu's incremented value.
2688 	 */
2689 	smp_wmb();
2690 	atomic_inc(&kvm->online_vcpus);
2691 
2692 	mutex_unlock(&kvm->lock);
2693 	kvm_arch_vcpu_postcreate(vcpu);
2694 	return r;
2695 
2696 unlock_vcpu_destroy:
2697 	mutex_unlock(&kvm->lock);
2698 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2699 vcpu_destroy:
2700 	kvm_arch_vcpu_destroy(vcpu);
2701 vcpu_decrement:
2702 	mutex_lock(&kvm->lock);
2703 	kvm->created_vcpus--;
2704 	mutex_unlock(&kvm->lock);
2705 	return r;
2706 }
2707 
2708 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2709 {
2710 	if (sigset) {
2711 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2712 		vcpu->sigset_active = 1;
2713 		vcpu->sigset = *sigset;
2714 	} else
2715 		vcpu->sigset_active = 0;
2716 	return 0;
2717 }
2718 
2719 static long kvm_vcpu_ioctl(struct file *filp,
2720 			   unsigned int ioctl, unsigned long arg)
2721 {
2722 	struct kvm_vcpu *vcpu = filp->private_data;
2723 	void __user *argp = (void __user *)arg;
2724 	int r;
2725 	struct kvm_fpu *fpu = NULL;
2726 	struct kvm_sregs *kvm_sregs = NULL;
2727 
2728 	if (vcpu->kvm->mm != current->mm)
2729 		return -EIO;
2730 
2731 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2732 		return -EINVAL;
2733 
2734 	/*
2735 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2736 	 * execution; mutex_lock() would break them.
2737 	 */
2738 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2739 	if (r != -ENOIOCTLCMD)
2740 		return r;
2741 
2742 	if (mutex_lock_killable(&vcpu->mutex))
2743 		return -EINTR;
2744 	switch (ioctl) {
2745 	case KVM_RUN: {
2746 		struct pid *oldpid;
2747 		r = -EINVAL;
2748 		if (arg)
2749 			goto out;
2750 		oldpid = rcu_access_pointer(vcpu->pid);
2751 		if (unlikely(oldpid != task_pid(current))) {
2752 			/* The thread running this VCPU changed. */
2753 			struct pid *newpid;
2754 
2755 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2756 			if (r)
2757 				break;
2758 
2759 			newpid = get_task_pid(current, PIDTYPE_PID);
2760 			rcu_assign_pointer(vcpu->pid, newpid);
2761 			if (oldpid)
2762 				synchronize_rcu();
2763 			put_pid(oldpid);
2764 		}
2765 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2766 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2767 		break;
2768 	}
2769 	case KVM_GET_REGS: {
2770 		struct kvm_regs *kvm_regs;
2771 
2772 		r = -ENOMEM;
2773 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2774 		if (!kvm_regs)
2775 			goto out;
2776 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2777 		if (r)
2778 			goto out_free1;
2779 		r = -EFAULT;
2780 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2781 			goto out_free1;
2782 		r = 0;
2783 out_free1:
2784 		kfree(kvm_regs);
2785 		break;
2786 	}
2787 	case KVM_SET_REGS: {
2788 		struct kvm_regs *kvm_regs;
2789 
2790 		r = -ENOMEM;
2791 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2792 		if (IS_ERR(kvm_regs)) {
2793 			r = PTR_ERR(kvm_regs);
2794 			goto out;
2795 		}
2796 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2797 		kfree(kvm_regs);
2798 		break;
2799 	}
2800 	case KVM_GET_SREGS: {
2801 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2802 				    GFP_KERNEL_ACCOUNT);
2803 		r = -ENOMEM;
2804 		if (!kvm_sregs)
2805 			goto out;
2806 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2807 		if (r)
2808 			goto out;
2809 		r = -EFAULT;
2810 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2811 			goto out;
2812 		r = 0;
2813 		break;
2814 	}
2815 	case KVM_SET_SREGS: {
2816 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2817 		if (IS_ERR(kvm_sregs)) {
2818 			r = PTR_ERR(kvm_sregs);
2819 			kvm_sregs = NULL;
2820 			goto out;
2821 		}
2822 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2823 		break;
2824 	}
2825 	case KVM_GET_MP_STATE: {
2826 		struct kvm_mp_state mp_state;
2827 
2828 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2829 		if (r)
2830 			goto out;
2831 		r = -EFAULT;
2832 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2833 			goto out;
2834 		r = 0;
2835 		break;
2836 	}
2837 	case KVM_SET_MP_STATE: {
2838 		struct kvm_mp_state mp_state;
2839 
2840 		r = -EFAULT;
2841 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2842 			goto out;
2843 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2844 		break;
2845 	}
2846 	case KVM_TRANSLATE: {
2847 		struct kvm_translation tr;
2848 
2849 		r = -EFAULT;
2850 		if (copy_from_user(&tr, argp, sizeof(tr)))
2851 			goto out;
2852 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2853 		if (r)
2854 			goto out;
2855 		r = -EFAULT;
2856 		if (copy_to_user(argp, &tr, sizeof(tr)))
2857 			goto out;
2858 		r = 0;
2859 		break;
2860 	}
2861 	case KVM_SET_GUEST_DEBUG: {
2862 		struct kvm_guest_debug dbg;
2863 
2864 		r = -EFAULT;
2865 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2866 			goto out;
2867 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2868 		break;
2869 	}
2870 	case KVM_SET_SIGNAL_MASK: {
2871 		struct kvm_signal_mask __user *sigmask_arg = argp;
2872 		struct kvm_signal_mask kvm_sigmask;
2873 		sigset_t sigset, *p;
2874 
2875 		p = NULL;
2876 		if (argp) {
2877 			r = -EFAULT;
2878 			if (copy_from_user(&kvm_sigmask, argp,
2879 					   sizeof(kvm_sigmask)))
2880 				goto out;
2881 			r = -EINVAL;
2882 			if (kvm_sigmask.len != sizeof(sigset))
2883 				goto out;
2884 			r = -EFAULT;
2885 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2886 					   sizeof(sigset)))
2887 				goto out;
2888 			p = &sigset;
2889 		}
2890 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2891 		break;
2892 	}
2893 	case KVM_GET_FPU: {
2894 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2895 		r = -ENOMEM;
2896 		if (!fpu)
2897 			goto out;
2898 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2899 		if (r)
2900 			goto out;
2901 		r = -EFAULT;
2902 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2903 			goto out;
2904 		r = 0;
2905 		break;
2906 	}
2907 	case KVM_SET_FPU: {
2908 		fpu = memdup_user(argp, sizeof(*fpu));
2909 		if (IS_ERR(fpu)) {
2910 			r = PTR_ERR(fpu);
2911 			fpu = NULL;
2912 			goto out;
2913 		}
2914 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2915 		break;
2916 	}
2917 	default:
2918 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2919 	}
2920 out:
2921 	mutex_unlock(&vcpu->mutex);
2922 	kfree(fpu);
2923 	kfree(kvm_sregs);
2924 	return r;
2925 }
2926 
2927 #ifdef CONFIG_KVM_COMPAT
2928 static long kvm_vcpu_compat_ioctl(struct file *filp,
2929 				  unsigned int ioctl, unsigned long arg)
2930 {
2931 	struct kvm_vcpu *vcpu = filp->private_data;
2932 	void __user *argp = compat_ptr(arg);
2933 	int r;
2934 
2935 	if (vcpu->kvm->mm != current->mm)
2936 		return -EIO;
2937 
2938 	switch (ioctl) {
2939 	case KVM_SET_SIGNAL_MASK: {
2940 		struct kvm_signal_mask __user *sigmask_arg = argp;
2941 		struct kvm_signal_mask kvm_sigmask;
2942 		sigset_t sigset;
2943 
2944 		if (argp) {
2945 			r = -EFAULT;
2946 			if (copy_from_user(&kvm_sigmask, argp,
2947 					   sizeof(kvm_sigmask)))
2948 				goto out;
2949 			r = -EINVAL;
2950 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2951 				goto out;
2952 			r = -EFAULT;
2953 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2954 				goto out;
2955 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2956 		} else
2957 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2958 		break;
2959 	}
2960 	default:
2961 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2962 	}
2963 
2964 out:
2965 	return r;
2966 }
2967 #endif
2968 
2969 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2970 {
2971 	struct kvm_device *dev = filp->private_data;
2972 
2973 	if (dev->ops->mmap)
2974 		return dev->ops->mmap(dev, vma);
2975 
2976 	return -ENODEV;
2977 }
2978 
2979 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2980 				 int (*accessor)(struct kvm_device *dev,
2981 						 struct kvm_device_attr *attr),
2982 				 unsigned long arg)
2983 {
2984 	struct kvm_device_attr attr;
2985 
2986 	if (!accessor)
2987 		return -EPERM;
2988 
2989 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2990 		return -EFAULT;
2991 
2992 	return accessor(dev, &attr);
2993 }
2994 
2995 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2996 			     unsigned long arg)
2997 {
2998 	struct kvm_device *dev = filp->private_data;
2999 
3000 	if (dev->kvm->mm != current->mm)
3001 		return -EIO;
3002 
3003 	switch (ioctl) {
3004 	case KVM_SET_DEVICE_ATTR:
3005 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3006 	case KVM_GET_DEVICE_ATTR:
3007 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3008 	case KVM_HAS_DEVICE_ATTR:
3009 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3010 	default:
3011 		if (dev->ops->ioctl)
3012 			return dev->ops->ioctl(dev, ioctl, arg);
3013 
3014 		return -ENOTTY;
3015 	}
3016 }
3017 
3018 static int kvm_device_release(struct inode *inode, struct file *filp)
3019 {
3020 	struct kvm_device *dev = filp->private_data;
3021 	struct kvm *kvm = dev->kvm;
3022 
3023 	if (dev->ops->release) {
3024 		mutex_lock(&kvm->lock);
3025 		list_del(&dev->vm_node);
3026 		dev->ops->release(dev);
3027 		mutex_unlock(&kvm->lock);
3028 	}
3029 
3030 	kvm_put_kvm(kvm);
3031 	return 0;
3032 }
3033 
3034 static const struct file_operations kvm_device_fops = {
3035 	.unlocked_ioctl = kvm_device_ioctl,
3036 	.release = kvm_device_release,
3037 	KVM_COMPAT(kvm_device_ioctl),
3038 	.mmap = kvm_device_mmap,
3039 };
3040 
3041 struct kvm_device *kvm_device_from_filp(struct file *filp)
3042 {
3043 	if (filp->f_op != &kvm_device_fops)
3044 		return NULL;
3045 
3046 	return filp->private_data;
3047 }
3048 
3049 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3050 #ifdef CONFIG_KVM_MPIC
3051 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3052 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3053 #endif
3054 };
3055 
3056 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3057 {
3058 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3059 		return -ENOSPC;
3060 
3061 	if (kvm_device_ops_table[type] != NULL)
3062 		return -EEXIST;
3063 
3064 	kvm_device_ops_table[type] = ops;
3065 	return 0;
3066 }
3067 
3068 void kvm_unregister_device_ops(u32 type)
3069 {
3070 	if (kvm_device_ops_table[type] != NULL)
3071 		kvm_device_ops_table[type] = NULL;
3072 }
3073 
3074 static int kvm_ioctl_create_device(struct kvm *kvm,
3075 				   struct kvm_create_device *cd)
3076 {
3077 	struct kvm_device_ops *ops = NULL;
3078 	struct kvm_device *dev;
3079 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3080 	int type;
3081 	int ret;
3082 
3083 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3084 		return -ENODEV;
3085 
3086 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3087 	ops = kvm_device_ops_table[type];
3088 	if (ops == NULL)
3089 		return -ENODEV;
3090 
3091 	if (test)
3092 		return 0;
3093 
3094 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3095 	if (!dev)
3096 		return -ENOMEM;
3097 
3098 	dev->ops = ops;
3099 	dev->kvm = kvm;
3100 
3101 	mutex_lock(&kvm->lock);
3102 	ret = ops->create(dev, type);
3103 	if (ret < 0) {
3104 		mutex_unlock(&kvm->lock);
3105 		kfree(dev);
3106 		return ret;
3107 	}
3108 	list_add(&dev->vm_node, &kvm->devices);
3109 	mutex_unlock(&kvm->lock);
3110 
3111 	if (ops->init)
3112 		ops->init(dev);
3113 
3114 	kvm_get_kvm(kvm);
3115 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3116 	if (ret < 0) {
3117 		kvm_put_kvm(kvm);
3118 		mutex_lock(&kvm->lock);
3119 		list_del(&dev->vm_node);
3120 		mutex_unlock(&kvm->lock);
3121 		ops->destroy(dev);
3122 		return ret;
3123 	}
3124 
3125 	cd->fd = ret;
3126 	return 0;
3127 }
3128 
3129 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3130 {
3131 	switch (arg) {
3132 	case KVM_CAP_USER_MEMORY:
3133 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3134 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3135 	case KVM_CAP_INTERNAL_ERROR_DATA:
3136 #ifdef CONFIG_HAVE_KVM_MSI
3137 	case KVM_CAP_SIGNAL_MSI:
3138 #endif
3139 #ifdef CONFIG_HAVE_KVM_IRQFD
3140 	case KVM_CAP_IRQFD:
3141 	case KVM_CAP_IRQFD_RESAMPLE:
3142 #endif
3143 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3144 	case KVM_CAP_CHECK_EXTENSION_VM:
3145 	case KVM_CAP_ENABLE_CAP_VM:
3146 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3147 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3148 #endif
3149 		return 1;
3150 #ifdef CONFIG_KVM_MMIO
3151 	case KVM_CAP_COALESCED_MMIO:
3152 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3153 	case KVM_CAP_COALESCED_PIO:
3154 		return 1;
3155 #endif
3156 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3157 	case KVM_CAP_IRQ_ROUTING:
3158 		return KVM_MAX_IRQ_ROUTES;
3159 #endif
3160 #if KVM_ADDRESS_SPACE_NUM > 1
3161 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3162 		return KVM_ADDRESS_SPACE_NUM;
3163 #endif
3164 	case KVM_CAP_NR_MEMSLOTS:
3165 		return KVM_USER_MEM_SLOTS;
3166 	default:
3167 		break;
3168 	}
3169 	return kvm_vm_ioctl_check_extension(kvm, arg);
3170 }
3171 
3172 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3173 						  struct kvm_enable_cap *cap)
3174 {
3175 	return -EINVAL;
3176 }
3177 
3178 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3179 					   struct kvm_enable_cap *cap)
3180 {
3181 	switch (cap->cap) {
3182 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3183 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3184 		if (cap->flags || (cap->args[0] & ~1))
3185 			return -EINVAL;
3186 		kvm->manual_dirty_log_protect = cap->args[0];
3187 		return 0;
3188 #endif
3189 	default:
3190 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3191 	}
3192 }
3193 
3194 static long kvm_vm_ioctl(struct file *filp,
3195 			   unsigned int ioctl, unsigned long arg)
3196 {
3197 	struct kvm *kvm = filp->private_data;
3198 	void __user *argp = (void __user *)arg;
3199 	int r;
3200 
3201 	if (kvm->mm != current->mm)
3202 		return -EIO;
3203 	switch (ioctl) {
3204 	case KVM_CREATE_VCPU:
3205 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3206 		break;
3207 	case KVM_ENABLE_CAP: {
3208 		struct kvm_enable_cap cap;
3209 
3210 		r = -EFAULT;
3211 		if (copy_from_user(&cap, argp, sizeof(cap)))
3212 			goto out;
3213 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3214 		break;
3215 	}
3216 	case KVM_SET_USER_MEMORY_REGION: {
3217 		struct kvm_userspace_memory_region kvm_userspace_mem;
3218 
3219 		r = -EFAULT;
3220 		if (copy_from_user(&kvm_userspace_mem, argp,
3221 						sizeof(kvm_userspace_mem)))
3222 			goto out;
3223 
3224 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3225 		break;
3226 	}
3227 	case KVM_GET_DIRTY_LOG: {
3228 		struct kvm_dirty_log log;
3229 
3230 		r = -EFAULT;
3231 		if (copy_from_user(&log, argp, sizeof(log)))
3232 			goto out;
3233 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3234 		break;
3235 	}
3236 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3237 	case KVM_CLEAR_DIRTY_LOG: {
3238 		struct kvm_clear_dirty_log log;
3239 
3240 		r = -EFAULT;
3241 		if (copy_from_user(&log, argp, sizeof(log)))
3242 			goto out;
3243 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3244 		break;
3245 	}
3246 #endif
3247 #ifdef CONFIG_KVM_MMIO
3248 	case KVM_REGISTER_COALESCED_MMIO: {
3249 		struct kvm_coalesced_mmio_zone zone;
3250 
3251 		r = -EFAULT;
3252 		if (copy_from_user(&zone, argp, sizeof(zone)))
3253 			goto out;
3254 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3255 		break;
3256 	}
3257 	case KVM_UNREGISTER_COALESCED_MMIO: {
3258 		struct kvm_coalesced_mmio_zone zone;
3259 
3260 		r = -EFAULT;
3261 		if (copy_from_user(&zone, argp, sizeof(zone)))
3262 			goto out;
3263 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3264 		break;
3265 	}
3266 #endif
3267 	case KVM_IRQFD: {
3268 		struct kvm_irqfd data;
3269 
3270 		r = -EFAULT;
3271 		if (copy_from_user(&data, argp, sizeof(data)))
3272 			goto out;
3273 		r = kvm_irqfd(kvm, &data);
3274 		break;
3275 	}
3276 	case KVM_IOEVENTFD: {
3277 		struct kvm_ioeventfd data;
3278 
3279 		r = -EFAULT;
3280 		if (copy_from_user(&data, argp, sizeof(data)))
3281 			goto out;
3282 		r = kvm_ioeventfd(kvm, &data);
3283 		break;
3284 	}
3285 #ifdef CONFIG_HAVE_KVM_MSI
3286 	case KVM_SIGNAL_MSI: {
3287 		struct kvm_msi msi;
3288 
3289 		r = -EFAULT;
3290 		if (copy_from_user(&msi, argp, sizeof(msi)))
3291 			goto out;
3292 		r = kvm_send_userspace_msi(kvm, &msi);
3293 		break;
3294 	}
3295 #endif
3296 #ifdef __KVM_HAVE_IRQ_LINE
3297 	case KVM_IRQ_LINE_STATUS:
3298 	case KVM_IRQ_LINE: {
3299 		struct kvm_irq_level irq_event;
3300 
3301 		r = -EFAULT;
3302 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3303 			goto out;
3304 
3305 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3306 					ioctl == KVM_IRQ_LINE_STATUS);
3307 		if (r)
3308 			goto out;
3309 
3310 		r = -EFAULT;
3311 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3312 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3313 				goto out;
3314 		}
3315 
3316 		r = 0;
3317 		break;
3318 	}
3319 #endif
3320 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3321 	case KVM_SET_GSI_ROUTING: {
3322 		struct kvm_irq_routing routing;
3323 		struct kvm_irq_routing __user *urouting;
3324 		struct kvm_irq_routing_entry *entries = NULL;
3325 
3326 		r = -EFAULT;
3327 		if (copy_from_user(&routing, argp, sizeof(routing)))
3328 			goto out;
3329 		r = -EINVAL;
3330 		if (!kvm_arch_can_set_irq_routing(kvm))
3331 			goto out;
3332 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3333 			goto out;
3334 		if (routing.flags)
3335 			goto out;
3336 		if (routing.nr) {
3337 			r = -ENOMEM;
3338 			entries = vmalloc(array_size(sizeof(*entries),
3339 						     routing.nr));
3340 			if (!entries)
3341 				goto out;
3342 			r = -EFAULT;
3343 			urouting = argp;
3344 			if (copy_from_user(entries, urouting->entries,
3345 					   routing.nr * sizeof(*entries)))
3346 				goto out_free_irq_routing;
3347 		}
3348 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3349 					routing.flags);
3350 out_free_irq_routing:
3351 		vfree(entries);
3352 		break;
3353 	}
3354 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3355 	case KVM_CREATE_DEVICE: {
3356 		struct kvm_create_device cd;
3357 
3358 		r = -EFAULT;
3359 		if (copy_from_user(&cd, argp, sizeof(cd)))
3360 			goto out;
3361 
3362 		r = kvm_ioctl_create_device(kvm, &cd);
3363 		if (r)
3364 			goto out;
3365 
3366 		r = -EFAULT;
3367 		if (copy_to_user(argp, &cd, sizeof(cd)))
3368 			goto out;
3369 
3370 		r = 0;
3371 		break;
3372 	}
3373 	case KVM_CHECK_EXTENSION:
3374 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3375 		break;
3376 	default:
3377 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3378 	}
3379 out:
3380 	return r;
3381 }
3382 
3383 #ifdef CONFIG_KVM_COMPAT
3384 struct compat_kvm_dirty_log {
3385 	__u32 slot;
3386 	__u32 padding1;
3387 	union {
3388 		compat_uptr_t dirty_bitmap; /* one bit per page */
3389 		__u64 padding2;
3390 	};
3391 };
3392 
3393 static long kvm_vm_compat_ioctl(struct file *filp,
3394 			   unsigned int ioctl, unsigned long arg)
3395 {
3396 	struct kvm *kvm = filp->private_data;
3397 	int r;
3398 
3399 	if (kvm->mm != current->mm)
3400 		return -EIO;
3401 	switch (ioctl) {
3402 	case KVM_GET_DIRTY_LOG: {
3403 		struct compat_kvm_dirty_log compat_log;
3404 		struct kvm_dirty_log log;
3405 
3406 		if (copy_from_user(&compat_log, (void __user *)arg,
3407 				   sizeof(compat_log)))
3408 			return -EFAULT;
3409 		log.slot	 = compat_log.slot;
3410 		log.padding1	 = compat_log.padding1;
3411 		log.padding2	 = compat_log.padding2;
3412 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3413 
3414 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3415 		break;
3416 	}
3417 	default:
3418 		r = kvm_vm_ioctl(filp, ioctl, arg);
3419 	}
3420 	return r;
3421 }
3422 #endif
3423 
3424 static struct file_operations kvm_vm_fops = {
3425 	.release        = kvm_vm_release,
3426 	.unlocked_ioctl = kvm_vm_ioctl,
3427 	.llseek		= noop_llseek,
3428 	KVM_COMPAT(kvm_vm_compat_ioctl),
3429 };
3430 
3431 static int kvm_dev_ioctl_create_vm(unsigned long type)
3432 {
3433 	int r;
3434 	struct kvm *kvm;
3435 	struct file *file;
3436 
3437 	kvm = kvm_create_vm(type);
3438 	if (IS_ERR(kvm))
3439 		return PTR_ERR(kvm);
3440 #ifdef CONFIG_KVM_MMIO
3441 	r = kvm_coalesced_mmio_init(kvm);
3442 	if (r < 0)
3443 		goto put_kvm;
3444 #endif
3445 	r = get_unused_fd_flags(O_CLOEXEC);
3446 	if (r < 0)
3447 		goto put_kvm;
3448 
3449 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3450 	if (IS_ERR(file)) {
3451 		put_unused_fd(r);
3452 		r = PTR_ERR(file);
3453 		goto put_kvm;
3454 	}
3455 
3456 	/*
3457 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3458 	 * already set, with ->release() being kvm_vm_release().  In error
3459 	 * cases it will be called by the final fput(file) and will take
3460 	 * care of doing kvm_put_kvm(kvm).
3461 	 */
3462 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3463 		put_unused_fd(r);
3464 		fput(file);
3465 		return -ENOMEM;
3466 	}
3467 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3468 
3469 	fd_install(r, file);
3470 	return r;
3471 
3472 put_kvm:
3473 	kvm_put_kvm(kvm);
3474 	return r;
3475 }
3476 
3477 static long kvm_dev_ioctl(struct file *filp,
3478 			  unsigned int ioctl, unsigned long arg)
3479 {
3480 	long r = -EINVAL;
3481 
3482 	switch (ioctl) {
3483 	case KVM_GET_API_VERSION:
3484 		if (arg)
3485 			goto out;
3486 		r = KVM_API_VERSION;
3487 		break;
3488 	case KVM_CREATE_VM:
3489 		r = kvm_dev_ioctl_create_vm(arg);
3490 		break;
3491 	case KVM_CHECK_EXTENSION:
3492 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3493 		break;
3494 	case KVM_GET_VCPU_MMAP_SIZE:
3495 		if (arg)
3496 			goto out;
3497 		r = PAGE_SIZE;     /* struct kvm_run */
3498 #ifdef CONFIG_X86
3499 		r += PAGE_SIZE;    /* pio data page */
3500 #endif
3501 #ifdef CONFIG_KVM_MMIO
3502 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3503 #endif
3504 		break;
3505 	case KVM_TRACE_ENABLE:
3506 	case KVM_TRACE_PAUSE:
3507 	case KVM_TRACE_DISABLE:
3508 		r = -EOPNOTSUPP;
3509 		break;
3510 	default:
3511 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3512 	}
3513 out:
3514 	return r;
3515 }
3516 
3517 static struct file_operations kvm_chardev_ops = {
3518 	.unlocked_ioctl = kvm_dev_ioctl,
3519 	.llseek		= noop_llseek,
3520 	KVM_COMPAT(kvm_dev_ioctl),
3521 };
3522 
3523 static struct miscdevice kvm_dev = {
3524 	KVM_MINOR,
3525 	"kvm",
3526 	&kvm_chardev_ops,
3527 };
3528 
3529 static void hardware_enable_nolock(void *junk)
3530 {
3531 	int cpu = raw_smp_processor_id();
3532 	int r;
3533 
3534 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3535 		return;
3536 
3537 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3538 
3539 	r = kvm_arch_hardware_enable();
3540 
3541 	if (r) {
3542 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3543 		atomic_inc(&hardware_enable_failed);
3544 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3545 	}
3546 }
3547 
3548 static int kvm_starting_cpu(unsigned int cpu)
3549 {
3550 	raw_spin_lock(&kvm_count_lock);
3551 	if (kvm_usage_count)
3552 		hardware_enable_nolock(NULL);
3553 	raw_spin_unlock(&kvm_count_lock);
3554 	return 0;
3555 }
3556 
3557 static void hardware_disable_nolock(void *junk)
3558 {
3559 	int cpu = raw_smp_processor_id();
3560 
3561 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3562 		return;
3563 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3564 	kvm_arch_hardware_disable();
3565 }
3566 
3567 static int kvm_dying_cpu(unsigned int cpu)
3568 {
3569 	raw_spin_lock(&kvm_count_lock);
3570 	if (kvm_usage_count)
3571 		hardware_disable_nolock(NULL);
3572 	raw_spin_unlock(&kvm_count_lock);
3573 	return 0;
3574 }
3575 
3576 static void hardware_disable_all_nolock(void)
3577 {
3578 	BUG_ON(!kvm_usage_count);
3579 
3580 	kvm_usage_count--;
3581 	if (!kvm_usage_count)
3582 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3583 }
3584 
3585 static void hardware_disable_all(void)
3586 {
3587 	raw_spin_lock(&kvm_count_lock);
3588 	hardware_disable_all_nolock();
3589 	raw_spin_unlock(&kvm_count_lock);
3590 }
3591 
3592 static int hardware_enable_all(void)
3593 {
3594 	int r = 0;
3595 
3596 	raw_spin_lock(&kvm_count_lock);
3597 
3598 	kvm_usage_count++;
3599 	if (kvm_usage_count == 1) {
3600 		atomic_set(&hardware_enable_failed, 0);
3601 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3602 
3603 		if (atomic_read(&hardware_enable_failed)) {
3604 			hardware_disable_all_nolock();
3605 			r = -EBUSY;
3606 		}
3607 	}
3608 
3609 	raw_spin_unlock(&kvm_count_lock);
3610 
3611 	return r;
3612 }
3613 
3614 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3615 		      void *v)
3616 {
3617 	/*
3618 	 * Some (well, at least mine) BIOSes hang on reboot if
3619 	 * in vmx root mode.
3620 	 *
3621 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3622 	 */
3623 	pr_info("kvm: exiting hardware virtualization\n");
3624 	kvm_rebooting = true;
3625 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3626 	return NOTIFY_OK;
3627 }
3628 
3629 static struct notifier_block kvm_reboot_notifier = {
3630 	.notifier_call = kvm_reboot,
3631 	.priority = 0,
3632 };
3633 
3634 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3635 {
3636 	int i;
3637 
3638 	for (i = 0; i < bus->dev_count; i++) {
3639 		struct kvm_io_device *pos = bus->range[i].dev;
3640 
3641 		kvm_iodevice_destructor(pos);
3642 	}
3643 	kfree(bus);
3644 }
3645 
3646 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3647 				 const struct kvm_io_range *r2)
3648 {
3649 	gpa_t addr1 = r1->addr;
3650 	gpa_t addr2 = r2->addr;
3651 
3652 	if (addr1 < addr2)
3653 		return -1;
3654 
3655 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3656 	 * accept any overlapping write.  Any order is acceptable for
3657 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3658 	 * we process all of them.
3659 	 */
3660 	if (r2->len) {
3661 		addr1 += r1->len;
3662 		addr2 += r2->len;
3663 	}
3664 
3665 	if (addr1 > addr2)
3666 		return 1;
3667 
3668 	return 0;
3669 }
3670 
3671 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3672 {
3673 	return kvm_io_bus_cmp(p1, p2);
3674 }
3675 
3676 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3677 			     gpa_t addr, int len)
3678 {
3679 	struct kvm_io_range *range, key;
3680 	int off;
3681 
3682 	key = (struct kvm_io_range) {
3683 		.addr = addr,
3684 		.len = len,
3685 	};
3686 
3687 	range = bsearch(&key, bus->range, bus->dev_count,
3688 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3689 	if (range == NULL)
3690 		return -ENOENT;
3691 
3692 	off = range - bus->range;
3693 
3694 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3695 		off--;
3696 
3697 	return off;
3698 }
3699 
3700 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3701 			      struct kvm_io_range *range, const void *val)
3702 {
3703 	int idx;
3704 
3705 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3706 	if (idx < 0)
3707 		return -EOPNOTSUPP;
3708 
3709 	while (idx < bus->dev_count &&
3710 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3711 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3712 					range->len, val))
3713 			return idx;
3714 		idx++;
3715 	}
3716 
3717 	return -EOPNOTSUPP;
3718 }
3719 
3720 /* kvm_io_bus_write - called under kvm->slots_lock */
3721 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3722 		     int len, const void *val)
3723 {
3724 	struct kvm_io_bus *bus;
3725 	struct kvm_io_range range;
3726 	int r;
3727 
3728 	range = (struct kvm_io_range) {
3729 		.addr = addr,
3730 		.len = len,
3731 	};
3732 
3733 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3734 	if (!bus)
3735 		return -ENOMEM;
3736 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3737 	return r < 0 ? r : 0;
3738 }
3739 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3740 
3741 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3742 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3743 			    gpa_t addr, int len, const void *val, long cookie)
3744 {
3745 	struct kvm_io_bus *bus;
3746 	struct kvm_io_range range;
3747 
3748 	range = (struct kvm_io_range) {
3749 		.addr = addr,
3750 		.len = len,
3751 	};
3752 
3753 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3754 	if (!bus)
3755 		return -ENOMEM;
3756 
3757 	/* First try the device referenced by cookie. */
3758 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3759 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3760 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3761 					val))
3762 			return cookie;
3763 
3764 	/*
3765 	 * cookie contained garbage; fall back to search and return the
3766 	 * correct cookie value.
3767 	 */
3768 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3769 }
3770 
3771 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3772 			     struct kvm_io_range *range, void *val)
3773 {
3774 	int idx;
3775 
3776 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3777 	if (idx < 0)
3778 		return -EOPNOTSUPP;
3779 
3780 	while (idx < bus->dev_count &&
3781 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3782 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3783 				       range->len, val))
3784 			return idx;
3785 		idx++;
3786 	}
3787 
3788 	return -EOPNOTSUPP;
3789 }
3790 
3791 /* kvm_io_bus_read - called under kvm->slots_lock */
3792 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3793 		    int len, void *val)
3794 {
3795 	struct kvm_io_bus *bus;
3796 	struct kvm_io_range range;
3797 	int r;
3798 
3799 	range = (struct kvm_io_range) {
3800 		.addr = addr,
3801 		.len = len,
3802 	};
3803 
3804 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3805 	if (!bus)
3806 		return -ENOMEM;
3807 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3808 	return r < 0 ? r : 0;
3809 }
3810 
3811 /* Caller must hold slots_lock. */
3812 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3813 			    int len, struct kvm_io_device *dev)
3814 {
3815 	int i;
3816 	struct kvm_io_bus *new_bus, *bus;
3817 	struct kvm_io_range range;
3818 
3819 	bus = kvm_get_bus(kvm, bus_idx);
3820 	if (!bus)
3821 		return -ENOMEM;
3822 
3823 	/* exclude ioeventfd which is limited by maximum fd */
3824 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3825 		return -ENOSPC;
3826 
3827 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3828 			  GFP_KERNEL_ACCOUNT);
3829 	if (!new_bus)
3830 		return -ENOMEM;
3831 
3832 	range = (struct kvm_io_range) {
3833 		.addr = addr,
3834 		.len = len,
3835 		.dev = dev,
3836 	};
3837 
3838 	for (i = 0; i < bus->dev_count; i++)
3839 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3840 			break;
3841 
3842 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3843 	new_bus->dev_count++;
3844 	new_bus->range[i] = range;
3845 	memcpy(new_bus->range + i + 1, bus->range + i,
3846 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3847 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3848 	synchronize_srcu_expedited(&kvm->srcu);
3849 	kfree(bus);
3850 
3851 	return 0;
3852 }
3853 
3854 /* Caller must hold slots_lock. */
3855 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3856 			       struct kvm_io_device *dev)
3857 {
3858 	int i;
3859 	struct kvm_io_bus *new_bus, *bus;
3860 
3861 	bus = kvm_get_bus(kvm, bus_idx);
3862 	if (!bus)
3863 		return;
3864 
3865 	for (i = 0; i < bus->dev_count; i++)
3866 		if (bus->range[i].dev == dev) {
3867 			break;
3868 		}
3869 
3870 	if (i == bus->dev_count)
3871 		return;
3872 
3873 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3874 			  GFP_KERNEL_ACCOUNT);
3875 	if (!new_bus)  {
3876 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3877 		goto broken;
3878 	}
3879 
3880 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3881 	new_bus->dev_count--;
3882 	memcpy(new_bus->range + i, bus->range + i + 1,
3883 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3884 
3885 broken:
3886 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3887 	synchronize_srcu_expedited(&kvm->srcu);
3888 	kfree(bus);
3889 	return;
3890 }
3891 
3892 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3893 					 gpa_t addr)
3894 {
3895 	struct kvm_io_bus *bus;
3896 	int dev_idx, srcu_idx;
3897 	struct kvm_io_device *iodev = NULL;
3898 
3899 	srcu_idx = srcu_read_lock(&kvm->srcu);
3900 
3901 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3902 	if (!bus)
3903 		goto out_unlock;
3904 
3905 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3906 	if (dev_idx < 0)
3907 		goto out_unlock;
3908 
3909 	iodev = bus->range[dev_idx].dev;
3910 
3911 out_unlock:
3912 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3913 
3914 	return iodev;
3915 }
3916 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3917 
3918 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3919 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3920 			   const char *fmt)
3921 {
3922 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3923 					  inode->i_private;
3924 
3925 	/* The debugfs files are a reference to the kvm struct which
3926 	 * is still valid when kvm_destroy_vm is called.
3927 	 * To avoid the race between open and the removal of the debugfs
3928 	 * directory we test against the users count.
3929 	 */
3930 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3931 		return -ENOENT;
3932 
3933 	if (simple_attr_open(inode, file, get,
3934 			     stat_data->mode & S_IWUGO ? set : NULL,
3935 			     fmt)) {
3936 		kvm_put_kvm(stat_data->kvm);
3937 		return -ENOMEM;
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3944 {
3945 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3946 					  inode->i_private;
3947 
3948 	simple_attr_release(inode, file);
3949 	kvm_put_kvm(stat_data->kvm);
3950 
3951 	return 0;
3952 }
3953 
3954 static int vm_stat_get_per_vm(void *data, u64 *val)
3955 {
3956 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3957 
3958 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3959 
3960 	return 0;
3961 }
3962 
3963 static int vm_stat_clear_per_vm(void *data, u64 val)
3964 {
3965 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3966 
3967 	if (val)
3968 		return -EINVAL;
3969 
3970 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3971 
3972 	return 0;
3973 }
3974 
3975 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3976 {
3977 	__simple_attr_check_format("%llu\n", 0ull);
3978 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3979 				vm_stat_clear_per_vm, "%llu\n");
3980 }
3981 
3982 static const struct file_operations vm_stat_get_per_vm_fops = {
3983 	.owner   = THIS_MODULE,
3984 	.open    = vm_stat_get_per_vm_open,
3985 	.release = kvm_debugfs_release,
3986 	.read    = simple_attr_read,
3987 	.write   = simple_attr_write,
3988 	.llseek  = no_llseek,
3989 };
3990 
3991 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3992 {
3993 	int i;
3994 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3995 	struct kvm_vcpu *vcpu;
3996 
3997 	*val = 0;
3998 
3999 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4001 
4002 	return 0;
4003 }
4004 
4005 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4006 {
4007 	int i;
4008 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4009 	struct kvm_vcpu *vcpu;
4010 
4011 	if (val)
4012 		return -EINVAL;
4013 
4014 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4015 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4016 
4017 	return 0;
4018 }
4019 
4020 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4021 {
4022 	__simple_attr_check_format("%llu\n", 0ull);
4023 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4024 				 vcpu_stat_clear_per_vm, "%llu\n");
4025 }
4026 
4027 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4028 	.owner   = THIS_MODULE,
4029 	.open    = vcpu_stat_get_per_vm_open,
4030 	.release = kvm_debugfs_release,
4031 	.read    = simple_attr_read,
4032 	.write   = simple_attr_write,
4033 	.llseek  = no_llseek,
4034 };
4035 
4036 static const struct file_operations *stat_fops_per_vm[] = {
4037 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4038 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4039 };
4040 
4041 static int vm_stat_get(void *_offset, u64 *val)
4042 {
4043 	unsigned offset = (long)_offset;
4044 	struct kvm *kvm;
4045 	struct kvm_stat_data stat_tmp = {.offset = offset};
4046 	u64 tmp_val;
4047 
4048 	*val = 0;
4049 	mutex_lock(&kvm_lock);
4050 	list_for_each_entry(kvm, &vm_list, vm_list) {
4051 		stat_tmp.kvm = kvm;
4052 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4053 		*val += tmp_val;
4054 	}
4055 	mutex_unlock(&kvm_lock);
4056 	return 0;
4057 }
4058 
4059 static int vm_stat_clear(void *_offset, u64 val)
4060 {
4061 	unsigned offset = (long)_offset;
4062 	struct kvm *kvm;
4063 	struct kvm_stat_data stat_tmp = {.offset = offset};
4064 
4065 	if (val)
4066 		return -EINVAL;
4067 
4068 	mutex_lock(&kvm_lock);
4069 	list_for_each_entry(kvm, &vm_list, vm_list) {
4070 		stat_tmp.kvm = kvm;
4071 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4072 	}
4073 	mutex_unlock(&kvm_lock);
4074 
4075 	return 0;
4076 }
4077 
4078 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4079 
4080 static int vcpu_stat_get(void *_offset, u64 *val)
4081 {
4082 	unsigned offset = (long)_offset;
4083 	struct kvm *kvm;
4084 	struct kvm_stat_data stat_tmp = {.offset = offset};
4085 	u64 tmp_val;
4086 
4087 	*val = 0;
4088 	mutex_lock(&kvm_lock);
4089 	list_for_each_entry(kvm, &vm_list, vm_list) {
4090 		stat_tmp.kvm = kvm;
4091 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4092 		*val += tmp_val;
4093 	}
4094 	mutex_unlock(&kvm_lock);
4095 	return 0;
4096 }
4097 
4098 static int vcpu_stat_clear(void *_offset, u64 val)
4099 {
4100 	unsigned offset = (long)_offset;
4101 	struct kvm *kvm;
4102 	struct kvm_stat_data stat_tmp = {.offset = offset};
4103 
4104 	if (val)
4105 		return -EINVAL;
4106 
4107 	mutex_lock(&kvm_lock);
4108 	list_for_each_entry(kvm, &vm_list, vm_list) {
4109 		stat_tmp.kvm = kvm;
4110 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4111 	}
4112 	mutex_unlock(&kvm_lock);
4113 
4114 	return 0;
4115 }
4116 
4117 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4118 			"%llu\n");
4119 
4120 static const struct file_operations *stat_fops[] = {
4121 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4122 	[KVM_STAT_VM]   = &vm_stat_fops,
4123 };
4124 
4125 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4126 {
4127 	struct kobj_uevent_env *env;
4128 	unsigned long long created, active;
4129 
4130 	if (!kvm_dev.this_device || !kvm)
4131 		return;
4132 
4133 	mutex_lock(&kvm_lock);
4134 	if (type == KVM_EVENT_CREATE_VM) {
4135 		kvm_createvm_count++;
4136 		kvm_active_vms++;
4137 	} else if (type == KVM_EVENT_DESTROY_VM) {
4138 		kvm_active_vms--;
4139 	}
4140 	created = kvm_createvm_count;
4141 	active = kvm_active_vms;
4142 	mutex_unlock(&kvm_lock);
4143 
4144 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4145 	if (!env)
4146 		return;
4147 
4148 	add_uevent_var(env, "CREATED=%llu", created);
4149 	add_uevent_var(env, "COUNT=%llu", active);
4150 
4151 	if (type == KVM_EVENT_CREATE_VM) {
4152 		add_uevent_var(env, "EVENT=create");
4153 		kvm->userspace_pid = task_pid_nr(current);
4154 	} else if (type == KVM_EVENT_DESTROY_VM) {
4155 		add_uevent_var(env, "EVENT=destroy");
4156 	}
4157 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4158 
4159 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4160 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4161 
4162 		if (p) {
4163 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4164 			if (!IS_ERR(tmp))
4165 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4166 			kfree(p);
4167 		}
4168 	}
4169 	/* no need for checks, since we are adding at most only 5 keys */
4170 	env->envp[env->envp_idx++] = NULL;
4171 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4172 	kfree(env);
4173 }
4174 
4175 static void kvm_init_debug(void)
4176 {
4177 	struct kvm_stats_debugfs_item *p;
4178 
4179 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4180 
4181 	kvm_debugfs_num_entries = 0;
4182 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4183 		int mode = p->mode ? p->mode : 0644;
4184 		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4185 				    (void *)(long)p->offset,
4186 				    stat_fops[p->kind]);
4187 	}
4188 }
4189 
4190 static int kvm_suspend(void)
4191 {
4192 	if (kvm_usage_count)
4193 		hardware_disable_nolock(NULL);
4194 	return 0;
4195 }
4196 
4197 static void kvm_resume(void)
4198 {
4199 	if (kvm_usage_count) {
4200 #ifdef CONFIG_LOCKDEP
4201 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4202 #endif
4203 		hardware_enable_nolock(NULL);
4204 	}
4205 }
4206 
4207 static struct syscore_ops kvm_syscore_ops = {
4208 	.suspend = kvm_suspend,
4209 	.resume = kvm_resume,
4210 };
4211 
4212 static inline
4213 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4214 {
4215 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4216 }
4217 
4218 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4219 {
4220 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4221 
4222 	WRITE_ONCE(vcpu->preempted, false);
4223 	WRITE_ONCE(vcpu->ready, false);
4224 
4225 	kvm_arch_sched_in(vcpu, cpu);
4226 
4227 	kvm_arch_vcpu_load(vcpu, cpu);
4228 }
4229 
4230 static void kvm_sched_out(struct preempt_notifier *pn,
4231 			  struct task_struct *next)
4232 {
4233 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4234 
4235 	if (current->state == TASK_RUNNING) {
4236 		WRITE_ONCE(vcpu->preempted, true);
4237 		WRITE_ONCE(vcpu->ready, true);
4238 	}
4239 	kvm_arch_vcpu_put(vcpu);
4240 }
4241 
4242 static void check_processor_compat(void *rtn)
4243 {
4244 	*(int *)rtn = kvm_arch_check_processor_compat();
4245 }
4246 
4247 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4248 		  struct module *module)
4249 {
4250 	int r;
4251 	int cpu;
4252 
4253 	r = kvm_arch_init(opaque);
4254 	if (r)
4255 		goto out_fail;
4256 
4257 	/*
4258 	 * kvm_arch_init makes sure there's at most one caller
4259 	 * for architectures that support multiple implementations,
4260 	 * like intel and amd on x86.
4261 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4262 	 * conflicts in case kvm is already setup for another implementation.
4263 	 */
4264 	r = kvm_irqfd_init();
4265 	if (r)
4266 		goto out_irqfd;
4267 
4268 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4269 		r = -ENOMEM;
4270 		goto out_free_0;
4271 	}
4272 
4273 	r = kvm_arch_hardware_setup();
4274 	if (r < 0)
4275 		goto out_free_0a;
4276 
4277 	for_each_online_cpu(cpu) {
4278 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4279 		if (r < 0)
4280 			goto out_free_1;
4281 	}
4282 
4283 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4284 				      kvm_starting_cpu, kvm_dying_cpu);
4285 	if (r)
4286 		goto out_free_2;
4287 	register_reboot_notifier(&kvm_reboot_notifier);
4288 
4289 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4290 	if (!vcpu_align)
4291 		vcpu_align = __alignof__(struct kvm_vcpu);
4292 	kvm_vcpu_cache =
4293 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4294 					   SLAB_ACCOUNT,
4295 					   offsetof(struct kvm_vcpu, arch),
4296 					   sizeof_field(struct kvm_vcpu, arch),
4297 					   NULL);
4298 	if (!kvm_vcpu_cache) {
4299 		r = -ENOMEM;
4300 		goto out_free_3;
4301 	}
4302 
4303 	r = kvm_async_pf_init();
4304 	if (r)
4305 		goto out_free;
4306 
4307 	kvm_chardev_ops.owner = module;
4308 	kvm_vm_fops.owner = module;
4309 	kvm_vcpu_fops.owner = module;
4310 
4311 	r = misc_register(&kvm_dev);
4312 	if (r) {
4313 		pr_err("kvm: misc device register failed\n");
4314 		goto out_unreg;
4315 	}
4316 
4317 	register_syscore_ops(&kvm_syscore_ops);
4318 
4319 	kvm_preempt_ops.sched_in = kvm_sched_in;
4320 	kvm_preempt_ops.sched_out = kvm_sched_out;
4321 
4322 	kvm_init_debug();
4323 
4324 	r = kvm_vfio_ops_init();
4325 	WARN_ON(r);
4326 
4327 	return 0;
4328 
4329 out_unreg:
4330 	kvm_async_pf_deinit();
4331 out_free:
4332 	kmem_cache_destroy(kvm_vcpu_cache);
4333 out_free_3:
4334 	unregister_reboot_notifier(&kvm_reboot_notifier);
4335 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4336 out_free_2:
4337 out_free_1:
4338 	kvm_arch_hardware_unsetup();
4339 out_free_0a:
4340 	free_cpumask_var(cpus_hardware_enabled);
4341 out_free_0:
4342 	kvm_irqfd_exit();
4343 out_irqfd:
4344 	kvm_arch_exit();
4345 out_fail:
4346 	return r;
4347 }
4348 EXPORT_SYMBOL_GPL(kvm_init);
4349 
4350 void kvm_exit(void)
4351 {
4352 	debugfs_remove_recursive(kvm_debugfs_dir);
4353 	misc_deregister(&kvm_dev);
4354 	kmem_cache_destroy(kvm_vcpu_cache);
4355 	kvm_async_pf_deinit();
4356 	unregister_syscore_ops(&kvm_syscore_ops);
4357 	unregister_reboot_notifier(&kvm_reboot_notifier);
4358 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4359 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4360 	kvm_arch_hardware_unsetup();
4361 	kvm_arch_exit();
4362 	kvm_irqfd_exit();
4363 	free_cpumask_var(cpus_hardware_enabled);
4364 	kvm_vfio_ops_exit();
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_exit);
4367