1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 struct kmem_cache *kvm_vcpu_cache; 107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations *stat_fops_per_vm[]; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 125 unsigned long arg) { return -EINVAL; } 126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 127 #endif 128 static int hardware_enable_all(void); 129 static void hardware_disable_all(void); 130 131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 132 133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 134 135 __visible bool kvm_rebooting; 136 EXPORT_SYMBOL_GPL(kvm_rebooting); 137 138 static bool largepages_enabled = true; 139 140 #define KVM_EVENT_CREATE_VM 0 141 #define KVM_EVENT_DESTROY_VM 1 142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 143 static unsigned long long kvm_createvm_count; 144 static unsigned long long kvm_active_vms; 145 146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 147 unsigned long start, unsigned long end, bool blockable) 148 { 149 return 0; 150 } 151 152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 153 { 154 if (pfn_valid(pfn)) 155 return PageReserved(pfn_to_page(pfn)); 156 157 return true; 158 } 159 160 /* 161 * Switches to specified vcpu, until a matching vcpu_put() 162 */ 163 void vcpu_load(struct kvm_vcpu *vcpu) 164 { 165 int cpu = get_cpu(); 166 preempt_notifier_register(&vcpu->preempt_notifier); 167 kvm_arch_vcpu_load(vcpu, cpu); 168 put_cpu(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_load); 171 172 void vcpu_put(struct kvm_vcpu *vcpu) 173 { 174 preempt_disable(); 175 kvm_arch_vcpu_put(vcpu); 176 preempt_notifier_unregister(&vcpu->preempt_notifier); 177 preempt_enable(); 178 } 179 EXPORT_SYMBOL_GPL(vcpu_put); 180 181 /* TODO: merge with kvm_arch_vcpu_should_kick */ 182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 183 { 184 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 185 186 /* 187 * We need to wait for the VCPU to reenable interrupts and get out of 188 * READING_SHADOW_PAGE_TABLES mode. 189 */ 190 if (req & KVM_REQUEST_WAIT) 191 return mode != OUTSIDE_GUEST_MODE; 192 193 /* 194 * Need to kick a running VCPU, but otherwise there is nothing to do. 195 */ 196 return mode == IN_GUEST_MODE; 197 } 198 199 static void ack_flush(void *_completed) 200 { 201 } 202 203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 204 { 205 if (unlikely(!cpus)) 206 cpus = cpu_online_mask; 207 208 if (cpumask_empty(cpus)) 209 return false; 210 211 smp_call_function_many(cpus, ack_flush, NULL, wait); 212 return true; 213 } 214 215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 216 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 217 { 218 int i, cpu, me; 219 struct kvm_vcpu *vcpu; 220 bool called; 221 222 me = get_cpu(); 223 224 kvm_for_each_vcpu(i, vcpu, kvm) { 225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 226 continue; 227 228 kvm_make_request(req, vcpu); 229 cpu = vcpu->cpu; 230 231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 232 continue; 233 234 if (tmp != NULL && cpu != -1 && cpu != me && 235 kvm_request_needs_ipi(vcpu, req)) 236 __cpumask_set_cpu(cpu, tmp); 237 } 238 239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 240 put_cpu(); 241 242 return called; 243 } 244 245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 246 { 247 cpumask_var_t cpus; 248 bool called; 249 250 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 251 252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 253 254 free_cpumask_var(cpus); 255 return called; 256 } 257 258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 259 void kvm_flush_remote_tlbs(struct kvm *kvm) 260 { 261 /* 262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 263 * kvm_make_all_cpus_request. 264 */ 265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 266 267 /* 268 * We want to publish modifications to the page tables before reading 269 * mode. Pairs with a memory barrier in arch-specific code. 270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 271 * and smp_mb in walk_shadow_page_lockless_begin/end. 272 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 273 * 274 * There is already an smp_mb__after_atomic() before 275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 276 * barrier here. 277 */ 278 if (!kvm_arch_flush_remote_tlb(kvm) 279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 280 ++kvm->stat.remote_tlb_flush; 281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 282 } 283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 284 #endif 285 286 void kvm_reload_remote_mmus(struct kvm *kvm) 287 { 288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 289 } 290 291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 292 { 293 struct page *page; 294 int r; 295 296 mutex_init(&vcpu->mutex); 297 vcpu->cpu = -1; 298 vcpu->kvm = kvm; 299 vcpu->vcpu_id = id; 300 vcpu->pid = NULL; 301 init_swait_queue_head(&vcpu->wq); 302 kvm_async_pf_vcpu_init(vcpu); 303 304 vcpu->pre_pcpu = -1; 305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 306 307 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 308 if (!page) { 309 r = -ENOMEM; 310 goto fail; 311 } 312 vcpu->run = page_address(page); 313 314 kvm_vcpu_set_in_spin_loop(vcpu, false); 315 kvm_vcpu_set_dy_eligible(vcpu, false); 316 vcpu->preempted = false; 317 vcpu->ready = false; 318 319 r = kvm_arch_vcpu_init(vcpu); 320 if (r < 0) 321 goto fail_free_run; 322 return 0; 323 324 fail_free_run: 325 free_page((unsigned long)vcpu->run); 326 fail: 327 return r; 328 } 329 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 330 331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 332 { 333 /* 334 * no need for rcu_read_lock as VCPU_RUN is the only place that 335 * will change the vcpu->pid pointer and on uninit all file 336 * descriptors are already gone. 337 */ 338 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 339 kvm_arch_vcpu_uninit(vcpu); 340 free_page((unsigned long)vcpu->run); 341 } 342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 343 344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 346 { 347 return container_of(mn, struct kvm, mmu_notifier); 348 } 349 350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 351 struct mm_struct *mm, 352 unsigned long address, 353 pte_t pte) 354 { 355 struct kvm *kvm = mmu_notifier_to_kvm(mn); 356 int idx; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 spin_lock(&kvm->mmu_lock); 360 kvm->mmu_notifier_seq++; 361 362 if (kvm_set_spte_hva(kvm, address, pte)) 363 kvm_flush_remote_tlbs(kvm); 364 365 spin_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 370 const struct mmu_notifier_range *range) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 int need_tlb_flush = 0, idx; 374 int ret; 375 376 idx = srcu_read_lock(&kvm->srcu); 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * The count increase must become visible at unlock time as no 380 * spte can be established without taking the mmu_lock and 381 * count is also read inside the mmu_lock critical section. 382 */ 383 kvm->mmu_notifier_count++; 384 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 385 need_tlb_flush |= kvm->tlbs_dirty; 386 /* we've to flush the tlb before the pages can be freed */ 387 if (need_tlb_flush) 388 kvm_flush_remote_tlbs(kvm); 389 390 spin_unlock(&kvm->mmu_lock); 391 392 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 393 range->end, 394 mmu_notifier_range_blockable(range)); 395 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return ret; 399 } 400 401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 402 const struct mmu_notifier_range *range) 403 { 404 struct kvm *kvm = mmu_notifier_to_kvm(mn); 405 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * This sequence increase will notify the kvm page fault that 409 * the page that is going to be mapped in the spte could have 410 * been freed. 411 */ 412 kvm->mmu_notifier_seq++; 413 smp_wmb(); 414 /* 415 * The above sequence increase must be visible before the 416 * below count decrease, which is ensured by the smp_wmb above 417 * in conjunction with the smp_rmb in mmu_notifier_retry(). 418 */ 419 kvm->mmu_notifier_count--; 420 spin_unlock(&kvm->mmu_lock); 421 422 BUG_ON(kvm->mmu_notifier_count < 0); 423 } 424 425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 426 struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429 { 430 struct kvm *kvm = mmu_notifier_to_kvm(mn); 431 int young, idx; 432 433 idx = srcu_read_lock(&kvm->srcu); 434 spin_lock(&kvm->mmu_lock); 435 436 young = kvm_age_hva(kvm, start, end); 437 if (young) 438 kvm_flush_remote_tlbs(kvm); 439 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 447 struct mm_struct *mm, 448 unsigned long start, 449 unsigned long end) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 /* 457 * Even though we do not flush TLB, this will still adversely 458 * affect performance on pre-Haswell Intel EPT, where there is 459 * no EPT Access Bit to clear so that we have to tear down EPT 460 * tables instead. If we find this unacceptable, we can always 461 * add a parameter to kvm_age_hva so that it effectively doesn't 462 * do anything on clear_young. 463 * 464 * Also note that currently we never issue secondary TLB flushes 465 * from clear_young, leaving this job up to the regular system 466 * cadence. If we find this inaccurate, we might come up with a 467 * more sophisticated heuristic later. 468 */ 469 young = kvm_age_hva(kvm, start, end); 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long address) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 young = kvm_test_age_hva(kvm, address); 486 spin_unlock(&kvm->mmu_lock); 487 srcu_read_unlock(&kvm->srcu, idx); 488 489 return young; 490 } 491 492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 493 struct mm_struct *mm) 494 { 495 struct kvm *kvm = mmu_notifier_to_kvm(mn); 496 int idx; 497 498 idx = srcu_read_lock(&kvm->srcu); 499 kvm_arch_flush_shadow_all(kvm); 500 srcu_read_unlock(&kvm->srcu, idx); 501 } 502 503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 507 .clear_young = kvm_mmu_notifier_clear_young, 508 .test_young = kvm_mmu_notifier_test_young, 509 .change_pte = kvm_mmu_notifier_change_pte, 510 .release = kvm_mmu_notifier_release, 511 }; 512 513 static int kvm_init_mmu_notifier(struct kvm *kvm) 514 { 515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 517 } 518 519 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 520 521 static int kvm_init_mmu_notifier(struct kvm *kvm) 522 { 523 return 0; 524 } 525 526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 527 528 static struct kvm_memslots *kvm_alloc_memslots(void) 529 { 530 int i; 531 struct kvm_memslots *slots; 532 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 534 if (!slots) 535 return NULL; 536 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 538 slots->id_to_index[i] = slots->memslots[i].id = i; 539 540 return slots; 541 } 542 543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 544 { 545 if (!memslot->dirty_bitmap) 546 return; 547 548 kvfree(memslot->dirty_bitmap); 549 memslot->dirty_bitmap = NULL; 550 } 551 552 /* 553 * Free any memory in @free but not in @dont. 554 */ 555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 556 struct kvm_memory_slot *dont) 557 { 558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 559 kvm_destroy_dirty_bitmap(free); 560 561 kvm_arch_free_memslot(kvm, free, dont); 562 563 free->npages = 0; 564 } 565 566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 567 { 568 struct kvm_memory_slot *memslot; 569 570 if (!slots) 571 return; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_memslot(kvm, memslot, NULL); 575 576 kvfree(slots); 577 } 578 579 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 580 { 581 int i; 582 583 if (!kvm->debugfs_dentry) 584 return; 585 586 debugfs_remove_recursive(kvm->debugfs_dentry); 587 588 if (kvm->debugfs_stat_data) { 589 for (i = 0; i < kvm_debugfs_num_entries; i++) 590 kfree(kvm->debugfs_stat_data[i]); 591 kfree(kvm->debugfs_stat_data); 592 } 593 } 594 595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 596 { 597 char dir_name[ITOA_MAX_LEN * 2]; 598 struct kvm_stat_data *stat_data; 599 struct kvm_stats_debugfs_item *p; 600 601 if (!debugfs_initialized()) 602 return 0; 603 604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 606 607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 608 sizeof(*kvm->debugfs_stat_data), 609 GFP_KERNEL_ACCOUNT); 610 if (!kvm->debugfs_stat_data) 611 return -ENOMEM; 612 613 for (p = debugfs_entries; p->name; p++) { 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 615 if (!stat_data) 616 return -ENOMEM; 617 618 stat_data->kvm = kvm; 619 stat_data->offset = p->offset; 620 stat_data->mode = p->mode ? p->mode : 0644; 621 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 622 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry, 623 stat_data, stat_fops_per_vm[p->kind]); 624 } 625 return 0; 626 } 627 628 static struct kvm *kvm_create_vm(unsigned long type) 629 { 630 int r, i; 631 struct kvm *kvm = kvm_arch_alloc_vm(); 632 633 if (!kvm) 634 return ERR_PTR(-ENOMEM); 635 636 spin_lock_init(&kvm->mmu_lock); 637 mmgrab(current->mm); 638 kvm->mm = current->mm; 639 kvm_eventfd_init(kvm); 640 mutex_init(&kvm->lock); 641 mutex_init(&kvm->irq_lock); 642 mutex_init(&kvm->slots_lock); 643 refcount_set(&kvm->users_count, 1); 644 INIT_LIST_HEAD(&kvm->devices); 645 646 r = kvm_arch_init_vm(kvm, type); 647 if (r) 648 goto out_err_no_disable; 649 650 r = hardware_enable_all(); 651 if (r) 652 goto out_err_no_disable; 653 654 #ifdef CONFIG_HAVE_KVM_IRQFD 655 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 656 #endif 657 658 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 659 660 r = -ENOMEM; 661 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 662 struct kvm_memslots *slots = kvm_alloc_memslots(); 663 if (!slots) 664 goto out_err_no_srcu; 665 /* Generations must be different for each address space. */ 666 slots->generation = i; 667 rcu_assign_pointer(kvm->memslots[i], slots); 668 } 669 670 if (init_srcu_struct(&kvm->srcu)) 671 goto out_err_no_srcu; 672 if (init_srcu_struct(&kvm->irq_srcu)) 673 goto out_err_no_irq_srcu; 674 for (i = 0; i < KVM_NR_BUSES; i++) { 675 rcu_assign_pointer(kvm->buses[i], 676 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 677 if (!kvm->buses[i]) 678 goto out_err; 679 } 680 681 r = kvm_init_mmu_notifier(kvm); 682 if (r) 683 goto out_err; 684 685 mutex_lock(&kvm_lock); 686 list_add(&kvm->vm_list, &vm_list); 687 mutex_unlock(&kvm_lock); 688 689 preempt_notifier_inc(); 690 691 return kvm; 692 693 out_err: 694 cleanup_srcu_struct(&kvm->irq_srcu); 695 out_err_no_irq_srcu: 696 cleanup_srcu_struct(&kvm->srcu); 697 out_err_no_srcu: 698 hardware_disable_all(); 699 out_err_no_disable: 700 refcount_set(&kvm->users_count, 0); 701 for (i = 0; i < KVM_NR_BUSES; i++) 702 kfree(kvm_get_bus(kvm, i)); 703 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 704 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 705 kvm_arch_free_vm(kvm); 706 mmdrop(current->mm); 707 return ERR_PTR(r); 708 } 709 710 static void kvm_destroy_devices(struct kvm *kvm) 711 { 712 struct kvm_device *dev, *tmp; 713 714 /* 715 * We do not need to take the kvm->lock here, because nobody else 716 * has a reference to the struct kvm at this point and therefore 717 * cannot access the devices list anyhow. 718 */ 719 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 720 list_del(&dev->vm_node); 721 dev->ops->destroy(dev); 722 } 723 } 724 725 static void kvm_destroy_vm(struct kvm *kvm) 726 { 727 int i; 728 struct mm_struct *mm = kvm->mm; 729 730 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 731 kvm_destroy_vm_debugfs(kvm); 732 kvm_arch_sync_events(kvm); 733 mutex_lock(&kvm_lock); 734 list_del(&kvm->vm_list); 735 mutex_unlock(&kvm_lock); 736 kvm_free_irq_routing(kvm); 737 for (i = 0; i < KVM_NR_BUSES; i++) { 738 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 739 740 if (bus) 741 kvm_io_bus_destroy(bus); 742 kvm->buses[i] = NULL; 743 } 744 kvm_coalesced_mmio_free(kvm); 745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 746 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 747 #else 748 kvm_arch_flush_shadow_all(kvm); 749 #endif 750 kvm_arch_destroy_vm(kvm); 751 kvm_destroy_devices(kvm); 752 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 753 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 754 cleanup_srcu_struct(&kvm->irq_srcu); 755 cleanup_srcu_struct(&kvm->srcu); 756 kvm_arch_free_vm(kvm); 757 preempt_notifier_dec(); 758 hardware_disable_all(); 759 mmdrop(mm); 760 } 761 762 void kvm_get_kvm(struct kvm *kvm) 763 { 764 refcount_inc(&kvm->users_count); 765 } 766 EXPORT_SYMBOL_GPL(kvm_get_kvm); 767 768 void kvm_put_kvm(struct kvm *kvm) 769 { 770 if (refcount_dec_and_test(&kvm->users_count)) 771 kvm_destroy_vm(kvm); 772 } 773 EXPORT_SYMBOL_GPL(kvm_put_kvm); 774 775 776 static int kvm_vm_release(struct inode *inode, struct file *filp) 777 { 778 struct kvm *kvm = filp->private_data; 779 780 kvm_irqfd_release(kvm); 781 782 kvm_put_kvm(kvm); 783 return 0; 784 } 785 786 /* 787 * Allocation size is twice as large as the actual dirty bitmap size. 788 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 789 */ 790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 791 { 792 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 793 794 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 795 if (!memslot->dirty_bitmap) 796 return -ENOMEM; 797 798 return 0; 799 } 800 801 /* 802 * Insert memslot and re-sort memslots based on their GFN, 803 * so binary search could be used to lookup GFN. 804 * Sorting algorithm takes advantage of having initially 805 * sorted array and known changed memslot position. 806 */ 807 static void update_memslots(struct kvm_memslots *slots, 808 struct kvm_memory_slot *new, 809 enum kvm_mr_change change) 810 { 811 int id = new->id; 812 int i = slots->id_to_index[id]; 813 struct kvm_memory_slot *mslots = slots->memslots; 814 815 WARN_ON(mslots[i].id != id); 816 switch (change) { 817 case KVM_MR_CREATE: 818 slots->used_slots++; 819 WARN_ON(mslots[i].npages || !new->npages); 820 break; 821 case KVM_MR_DELETE: 822 slots->used_slots--; 823 WARN_ON(new->npages || !mslots[i].npages); 824 break; 825 default: 826 break; 827 } 828 829 while (i < KVM_MEM_SLOTS_NUM - 1 && 830 new->base_gfn <= mslots[i + 1].base_gfn) { 831 if (!mslots[i + 1].npages) 832 break; 833 mslots[i] = mslots[i + 1]; 834 slots->id_to_index[mslots[i].id] = i; 835 i++; 836 } 837 838 /* 839 * The ">=" is needed when creating a slot with base_gfn == 0, 840 * so that it moves before all those with base_gfn == npages == 0. 841 * 842 * On the other hand, if new->npages is zero, the above loop has 843 * already left i pointing to the beginning of the empty part of 844 * mslots, and the ">=" would move the hole backwards in this 845 * case---which is wrong. So skip the loop when deleting a slot. 846 */ 847 if (new->npages) { 848 while (i > 0 && 849 new->base_gfn >= mslots[i - 1].base_gfn) { 850 mslots[i] = mslots[i - 1]; 851 slots->id_to_index[mslots[i].id] = i; 852 i--; 853 } 854 } else 855 WARN_ON_ONCE(i != slots->used_slots); 856 857 mslots[i] = *new; 858 slots->id_to_index[mslots[i].id] = i; 859 } 860 861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 862 { 863 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 864 865 #ifdef __KVM_HAVE_READONLY_MEM 866 valid_flags |= KVM_MEM_READONLY; 867 #endif 868 869 if (mem->flags & ~valid_flags) 870 return -EINVAL; 871 872 return 0; 873 } 874 875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 876 int as_id, struct kvm_memslots *slots) 877 { 878 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 879 u64 gen = old_memslots->generation; 880 881 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 882 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 883 884 rcu_assign_pointer(kvm->memslots[as_id], slots); 885 synchronize_srcu_expedited(&kvm->srcu); 886 887 /* 888 * Increment the new memslot generation a second time, dropping the 889 * update in-progress flag and incrementing then generation based on 890 * the number of address spaces. This provides a unique and easily 891 * identifiable generation number while the memslots are in flux. 892 */ 893 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 894 895 /* 896 * Generations must be unique even across address spaces. We do not need 897 * a global counter for that, instead the generation space is evenly split 898 * across address spaces. For example, with two address spaces, address 899 * space 0 will use generations 0, 2, 4, ... while address space 1 will 900 * use generations 1, 3, 5, ... 901 */ 902 gen += KVM_ADDRESS_SPACE_NUM; 903 904 kvm_arch_memslots_updated(kvm, gen); 905 906 slots->generation = gen; 907 908 return old_memslots; 909 } 910 911 /* 912 * Allocate some memory and give it an address in the guest physical address 913 * space. 914 * 915 * Discontiguous memory is allowed, mostly for framebuffers. 916 * 917 * Must be called holding kvm->slots_lock for write. 918 */ 919 int __kvm_set_memory_region(struct kvm *kvm, 920 const struct kvm_userspace_memory_region *mem) 921 { 922 int r; 923 gfn_t base_gfn; 924 unsigned long npages; 925 struct kvm_memory_slot *slot; 926 struct kvm_memory_slot old, new; 927 struct kvm_memslots *slots = NULL, *old_memslots; 928 int as_id, id; 929 enum kvm_mr_change change; 930 931 r = check_memory_region_flags(mem); 932 if (r) 933 goto out; 934 935 r = -EINVAL; 936 as_id = mem->slot >> 16; 937 id = (u16)mem->slot; 938 939 /* General sanity checks */ 940 if (mem->memory_size & (PAGE_SIZE - 1)) 941 goto out; 942 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 943 goto out; 944 /* We can read the guest memory with __xxx_user() later on. */ 945 if ((id < KVM_USER_MEM_SLOTS) && 946 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 947 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 948 mem->memory_size))) 949 goto out; 950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 951 goto out; 952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 953 goto out; 954 955 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 956 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 957 npages = mem->memory_size >> PAGE_SHIFT; 958 959 if (npages > KVM_MEM_MAX_NR_PAGES) 960 goto out; 961 962 new = old = *slot; 963 964 new.id = id; 965 new.base_gfn = base_gfn; 966 new.npages = npages; 967 new.flags = mem->flags; 968 969 if (npages) { 970 if (!old.npages) 971 change = KVM_MR_CREATE; 972 else { /* Modify an existing slot. */ 973 if ((mem->userspace_addr != old.userspace_addr) || 974 (npages != old.npages) || 975 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 976 goto out; 977 978 if (base_gfn != old.base_gfn) 979 change = KVM_MR_MOVE; 980 else if (new.flags != old.flags) 981 change = KVM_MR_FLAGS_ONLY; 982 else { /* Nothing to change. */ 983 r = 0; 984 goto out; 985 } 986 } 987 } else { 988 if (!old.npages) 989 goto out; 990 991 change = KVM_MR_DELETE; 992 new.base_gfn = 0; 993 new.flags = 0; 994 } 995 996 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 997 /* Check for overlaps */ 998 r = -EEXIST; 999 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1000 if (slot->id == id) 1001 continue; 1002 if (!((base_gfn + npages <= slot->base_gfn) || 1003 (base_gfn >= slot->base_gfn + slot->npages))) 1004 goto out; 1005 } 1006 } 1007 1008 /* Free page dirty bitmap if unneeded */ 1009 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1010 new.dirty_bitmap = NULL; 1011 1012 r = -ENOMEM; 1013 if (change == KVM_MR_CREATE) { 1014 new.userspace_addr = mem->userspace_addr; 1015 1016 if (kvm_arch_create_memslot(kvm, &new, npages)) 1017 goto out_free; 1018 } 1019 1020 /* Allocate page dirty bitmap if needed */ 1021 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1022 if (kvm_create_dirty_bitmap(&new) < 0) 1023 goto out_free; 1024 } 1025 1026 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1027 if (!slots) 1028 goto out_free; 1029 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1030 1031 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1032 slot = id_to_memslot(slots, id); 1033 slot->flags |= KVM_MEMSLOT_INVALID; 1034 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 /* From this point no new shadow pages pointing to a deleted, 1038 * or moved, memslot will be created. 1039 * 1040 * validation of sp->gfn happens in: 1041 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1042 * - kvm_is_visible_gfn (mmu_check_roots) 1043 */ 1044 kvm_arch_flush_shadow_memslot(kvm, slot); 1045 1046 /* 1047 * We can re-use the old_memslots from above, the only difference 1048 * from the currently installed memslots is the invalid flag. This 1049 * will get overwritten by update_memslots anyway. 1050 */ 1051 slots = old_memslots; 1052 } 1053 1054 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1055 if (r) 1056 goto out_slots; 1057 1058 /* actual memory is freed via old in kvm_free_memslot below */ 1059 if (change == KVM_MR_DELETE) { 1060 new.dirty_bitmap = NULL; 1061 memset(&new.arch, 0, sizeof(new.arch)); 1062 } 1063 1064 update_memslots(slots, &new, change); 1065 old_memslots = install_new_memslots(kvm, as_id, slots); 1066 1067 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1068 1069 kvm_free_memslot(kvm, &old, &new); 1070 kvfree(old_memslots); 1071 return 0; 1072 1073 out_slots: 1074 kvfree(slots); 1075 out_free: 1076 kvm_free_memslot(kvm, &new, &old); 1077 out: 1078 return r; 1079 } 1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1081 1082 int kvm_set_memory_region(struct kvm *kvm, 1083 const struct kvm_userspace_memory_region *mem) 1084 { 1085 int r; 1086 1087 mutex_lock(&kvm->slots_lock); 1088 r = __kvm_set_memory_region(kvm, mem); 1089 mutex_unlock(&kvm->slots_lock); 1090 return r; 1091 } 1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1093 1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1095 struct kvm_userspace_memory_region *mem) 1096 { 1097 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1098 return -EINVAL; 1099 1100 return kvm_set_memory_region(kvm, mem); 1101 } 1102 1103 int kvm_get_dirty_log(struct kvm *kvm, 1104 struct kvm_dirty_log *log, int *is_dirty) 1105 { 1106 struct kvm_memslots *slots; 1107 struct kvm_memory_slot *memslot; 1108 int i, as_id, id; 1109 unsigned long n; 1110 unsigned long any = 0; 1111 1112 as_id = log->slot >> 16; 1113 id = (u16)log->slot; 1114 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1115 return -EINVAL; 1116 1117 slots = __kvm_memslots(kvm, as_id); 1118 memslot = id_to_memslot(slots, id); 1119 if (!memslot->dirty_bitmap) 1120 return -ENOENT; 1121 1122 n = kvm_dirty_bitmap_bytes(memslot); 1123 1124 for (i = 0; !any && i < n/sizeof(long); ++i) 1125 any = memslot->dirty_bitmap[i]; 1126 1127 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1128 return -EFAULT; 1129 1130 if (any) 1131 *is_dirty = 1; 1132 return 0; 1133 } 1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1135 1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1137 /** 1138 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1139 * and reenable dirty page tracking for the corresponding pages. 1140 * @kvm: pointer to kvm instance 1141 * @log: slot id and address to which we copy the log 1142 * @flush: true if TLB flush is needed by caller 1143 * 1144 * We need to keep it in mind that VCPU threads can write to the bitmap 1145 * concurrently. So, to avoid losing track of dirty pages we keep the 1146 * following order: 1147 * 1148 * 1. Take a snapshot of the bit and clear it if needed. 1149 * 2. Write protect the corresponding page. 1150 * 3. Copy the snapshot to the userspace. 1151 * 4. Upon return caller flushes TLB's if needed. 1152 * 1153 * Between 2 and 4, the guest may write to the page using the remaining TLB 1154 * entry. This is not a problem because the page is reported dirty using 1155 * the snapshot taken before and step 4 ensures that writes done after 1156 * exiting to userspace will be logged for the next call. 1157 * 1158 */ 1159 int kvm_get_dirty_log_protect(struct kvm *kvm, 1160 struct kvm_dirty_log *log, bool *flush) 1161 { 1162 struct kvm_memslots *slots; 1163 struct kvm_memory_slot *memslot; 1164 int i, as_id, id; 1165 unsigned long n; 1166 unsigned long *dirty_bitmap; 1167 unsigned long *dirty_bitmap_buffer; 1168 1169 as_id = log->slot >> 16; 1170 id = (u16)log->slot; 1171 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1172 return -EINVAL; 1173 1174 slots = __kvm_memslots(kvm, as_id); 1175 memslot = id_to_memslot(slots, id); 1176 1177 dirty_bitmap = memslot->dirty_bitmap; 1178 if (!dirty_bitmap) 1179 return -ENOENT; 1180 1181 n = kvm_dirty_bitmap_bytes(memslot); 1182 *flush = false; 1183 if (kvm->manual_dirty_log_protect) { 1184 /* 1185 * Unlike kvm_get_dirty_log, we always return false in *flush, 1186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1187 * is some code duplication between this function and 1188 * kvm_get_dirty_log, but hopefully all architecture 1189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1190 * can be eliminated. 1191 */ 1192 dirty_bitmap_buffer = dirty_bitmap; 1193 } else { 1194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1195 memset(dirty_bitmap_buffer, 0, n); 1196 1197 spin_lock(&kvm->mmu_lock); 1198 for (i = 0; i < n / sizeof(long); i++) { 1199 unsigned long mask; 1200 gfn_t offset; 1201 1202 if (!dirty_bitmap[i]) 1203 continue; 1204 1205 *flush = true; 1206 mask = xchg(&dirty_bitmap[i], 0); 1207 dirty_bitmap_buffer[i] = mask; 1208 1209 offset = i * BITS_PER_LONG; 1210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1211 offset, mask); 1212 } 1213 spin_unlock(&kvm->mmu_lock); 1214 } 1215 1216 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1217 return -EFAULT; 1218 return 0; 1219 } 1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1221 1222 /** 1223 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1224 * and reenable dirty page tracking for the corresponding pages. 1225 * @kvm: pointer to kvm instance 1226 * @log: slot id and address from which to fetch the bitmap of dirty pages 1227 * @flush: true if TLB flush is needed by caller 1228 */ 1229 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1230 struct kvm_clear_dirty_log *log, bool *flush) 1231 { 1232 struct kvm_memslots *slots; 1233 struct kvm_memory_slot *memslot; 1234 int as_id, id; 1235 gfn_t offset; 1236 unsigned long i, n; 1237 unsigned long *dirty_bitmap; 1238 unsigned long *dirty_bitmap_buffer; 1239 1240 as_id = log->slot >> 16; 1241 id = (u16)log->slot; 1242 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1243 return -EINVAL; 1244 1245 if (log->first_page & 63) 1246 return -EINVAL; 1247 1248 slots = __kvm_memslots(kvm, as_id); 1249 memslot = id_to_memslot(slots, id); 1250 1251 dirty_bitmap = memslot->dirty_bitmap; 1252 if (!dirty_bitmap) 1253 return -ENOENT; 1254 1255 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1256 1257 if (log->first_page > memslot->npages || 1258 log->num_pages > memslot->npages - log->first_page || 1259 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1260 return -EINVAL; 1261 1262 *flush = false; 1263 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1264 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1265 return -EFAULT; 1266 1267 spin_lock(&kvm->mmu_lock); 1268 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1269 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1270 i++, offset += BITS_PER_LONG) { 1271 unsigned long mask = *dirty_bitmap_buffer++; 1272 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1273 if (!mask) 1274 continue; 1275 1276 mask &= atomic_long_fetch_andnot(mask, p); 1277 1278 /* 1279 * mask contains the bits that really have been cleared. This 1280 * never includes any bits beyond the length of the memslot (if 1281 * the length is not aligned to 64 pages), therefore it is not 1282 * a problem if userspace sets them in log->dirty_bitmap. 1283 */ 1284 if (mask) { 1285 *flush = true; 1286 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1287 offset, mask); 1288 } 1289 } 1290 spin_unlock(&kvm->mmu_lock); 1291 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1295 #endif 1296 1297 bool kvm_largepages_enabled(void) 1298 { 1299 return largepages_enabled; 1300 } 1301 1302 void kvm_disable_largepages(void) 1303 { 1304 largepages_enabled = false; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1307 1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1309 { 1310 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1313 1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1315 { 1316 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1317 } 1318 1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1320 { 1321 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1322 1323 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1324 memslot->flags & KVM_MEMSLOT_INVALID) 1325 return false; 1326 1327 return true; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1330 1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1332 { 1333 struct vm_area_struct *vma; 1334 unsigned long addr, size; 1335 1336 size = PAGE_SIZE; 1337 1338 addr = gfn_to_hva(kvm, gfn); 1339 if (kvm_is_error_hva(addr)) 1340 return PAGE_SIZE; 1341 1342 down_read(¤t->mm->mmap_sem); 1343 vma = find_vma(current->mm, addr); 1344 if (!vma) 1345 goto out; 1346 1347 size = vma_kernel_pagesize(vma); 1348 1349 out: 1350 up_read(¤t->mm->mmap_sem); 1351 1352 return size; 1353 } 1354 1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1356 { 1357 return slot->flags & KVM_MEM_READONLY; 1358 } 1359 1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1361 gfn_t *nr_pages, bool write) 1362 { 1363 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1364 return KVM_HVA_ERR_BAD; 1365 1366 if (memslot_is_readonly(slot) && write) 1367 return KVM_HVA_ERR_RO_BAD; 1368 1369 if (nr_pages) 1370 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1371 1372 return __gfn_to_hva_memslot(slot, gfn); 1373 } 1374 1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1376 gfn_t *nr_pages) 1377 { 1378 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1379 } 1380 1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1382 gfn_t gfn) 1383 { 1384 return gfn_to_hva_many(slot, gfn, NULL); 1385 } 1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1387 1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1389 { 1390 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1391 } 1392 EXPORT_SYMBOL_GPL(gfn_to_hva); 1393 1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1395 { 1396 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1399 1400 /* 1401 * Return the hva of a @gfn and the R/W attribute if possible. 1402 * 1403 * @slot: the kvm_memory_slot which contains @gfn 1404 * @gfn: the gfn to be translated 1405 * @writable: used to return the read/write attribute of the @slot if the hva 1406 * is valid and @writable is not NULL 1407 */ 1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1409 gfn_t gfn, bool *writable) 1410 { 1411 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1412 1413 if (!kvm_is_error_hva(hva) && writable) 1414 *writable = !memslot_is_readonly(slot); 1415 1416 return hva; 1417 } 1418 1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1420 { 1421 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1422 1423 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1424 } 1425 1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1427 { 1428 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1429 1430 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1431 } 1432 1433 static inline int check_user_page_hwpoison(unsigned long addr) 1434 { 1435 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1436 1437 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1438 return rc == -EHWPOISON; 1439 } 1440 1441 /* 1442 * The fast path to get the writable pfn which will be stored in @pfn, 1443 * true indicates success, otherwise false is returned. It's also the 1444 * only part that runs if we can are in atomic context. 1445 */ 1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1447 bool *writable, kvm_pfn_t *pfn) 1448 { 1449 struct page *page[1]; 1450 int npages; 1451 1452 /* 1453 * Fast pin a writable pfn only if it is a write fault request 1454 * or the caller allows to map a writable pfn for a read fault 1455 * request. 1456 */ 1457 if (!(write_fault || writable)) 1458 return false; 1459 1460 npages = __get_user_pages_fast(addr, 1, 1, page); 1461 if (npages == 1) { 1462 *pfn = page_to_pfn(page[0]); 1463 1464 if (writable) 1465 *writable = true; 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 1472 /* 1473 * The slow path to get the pfn of the specified host virtual address, 1474 * 1 indicates success, -errno is returned if error is detected. 1475 */ 1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1477 bool *writable, kvm_pfn_t *pfn) 1478 { 1479 unsigned int flags = FOLL_HWPOISON; 1480 struct page *page; 1481 int npages = 0; 1482 1483 might_sleep(); 1484 1485 if (writable) 1486 *writable = write_fault; 1487 1488 if (write_fault) 1489 flags |= FOLL_WRITE; 1490 if (async) 1491 flags |= FOLL_NOWAIT; 1492 1493 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1494 if (npages != 1) 1495 return npages; 1496 1497 /* map read fault as writable if possible */ 1498 if (unlikely(!write_fault) && writable) { 1499 struct page *wpage; 1500 1501 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1502 *writable = true; 1503 put_page(page); 1504 page = wpage; 1505 } 1506 } 1507 *pfn = page_to_pfn(page); 1508 return npages; 1509 } 1510 1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1512 { 1513 if (unlikely(!(vma->vm_flags & VM_READ))) 1514 return false; 1515 1516 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1517 return false; 1518 1519 return true; 1520 } 1521 1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1523 unsigned long addr, bool *async, 1524 bool write_fault, bool *writable, 1525 kvm_pfn_t *p_pfn) 1526 { 1527 unsigned long pfn; 1528 int r; 1529 1530 r = follow_pfn(vma, addr, &pfn); 1531 if (r) { 1532 /* 1533 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1534 * not call the fault handler, so do it here. 1535 */ 1536 bool unlocked = false; 1537 r = fixup_user_fault(current, current->mm, addr, 1538 (write_fault ? FAULT_FLAG_WRITE : 0), 1539 &unlocked); 1540 if (unlocked) 1541 return -EAGAIN; 1542 if (r) 1543 return r; 1544 1545 r = follow_pfn(vma, addr, &pfn); 1546 if (r) 1547 return r; 1548 1549 } 1550 1551 if (writable) 1552 *writable = true; 1553 1554 /* 1555 * Get a reference here because callers of *hva_to_pfn* and 1556 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1557 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1558 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1559 * simply do nothing for reserved pfns. 1560 * 1561 * Whoever called remap_pfn_range is also going to call e.g. 1562 * unmap_mapping_range before the underlying pages are freed, 1563 * causing a call to our MMU notifier. 1564 */ 1565 kvm_get_pfn(pfn); 1566 1567 *p_pfn = pfn; 1568 return 0; 1569 } 1570 1571 /* 1572 * Pin guest page in memory and return its pfn. 1573 * @addr: host virtual address which maps memory to the guest 1574 * @atomic: whether this function can sleep 1575 * @async: whether this function need to wait IO complete if the 1576 * host page is not in the memory 1577 * @write_fault: whether we should get a writable host page 1578 * @writable: whether it allows to map a writable host page for !@write_fault 1579 * 1580 * The function will map a writable host page for these two cases: 1581 * 1): @write_fault = true 1582 * 2): @write_fault = false && @writable, @writable will tell the caller 1583 * whether the mapping is writable. 1584 */ 1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1586 bool write_fault, bool *writable) 1587 { 1588 struct vm_area_struct *vma; 1589 kvm_pfn_t pfn = 0; 1590 int npages, r; 1591 1592 /* we can do it either atomically or asynchronously, not both */ 1593 BUG_ON(atomic && async); 1594 1595 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1596 return pfn; 1597 1598 if (atomic) 1599 return KVM_PFN_ERR_FAULT; 1600 1601 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1602 if (npages == 1) 1603 return pfn; 1604 1605 down_read(¤t->mm->mmap_sem); 1606 if (npages == -EHWPOISON || 1607 (!async && check_user_page_hwpoison(addr))) { 1608 pfn = KVM_PFN_ERR_HWPOISON; 1609 goto exit; 1610 } 1611 1612 retry: 1613 vma = find_vma_intersection(current->mm, addr, addr + 1); 1614 1615 if (vma == NULL) 1616 pfn = KVM_PFN_ERR_FAULT; 1617 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1618 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1619 if (r == -EAGAIN) 1620 goto retry; 1621 if (r < 0) 1622 pfn = KVM_PFN_ERR_FAULT; 1623 } else { 1624 if (async && vma_is_valid(vma, write_fault)) 1625 *async = true; 1626 pfn = KVM_PFN_ERR_FAULT; 1627 } 1628 exit: 1629 up_read(¤t->mm->mmap_sem); 1630 return pfn; 1631 } 1632 1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1634 bool atomic, bool *async, bool write_fault, 1635 bool *writable) 1636 { 1637 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1638 1639 if (addr == KVM_HVA_ERR_RO_BAD) { 1640 if (writable) 1641 *writable = false; 1642 return KVM_PFN_ERR_RO_FAULT; 1643 } 1644 1645 if (kvm_is_error_hva(addr)) { 1646 if (writable) 1647 *writable = false; 1648 return KVM_PFN_NOSLOT; 1649 } 1650 1651 /* Do not map writable pfn in the readonly memslot. */ 1652 if (writable && memslot_is_readonly(slot)) { 1653 *writable = false; 1654 writable = NULL; 1655 } 1656 1657 return hva_to_pfn(addr, atomic, async, write_fault, 1658 writable); 1659 } 1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1661 1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1663 bool *writable) 1664 { 1665 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1666 write_fault, writable); 1667 } 1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1669 1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1671 { 1672 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1673 } 1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1675 1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1677 { 1678 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1679 } 1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1681 1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1683 { 1684 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1685 } 1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1687 1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1689 { 1690 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1691 } 1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1693 1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1695 { 1696 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1697 } 1698 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1699 1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1701 { 1702 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1703 } 1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1705 1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1707 struct page **pages, int nr_pages) 1708 { 1709 unsigned long addr; 1710 gfn_t entry = 0; 1711 1712 addr = gfn_to_hva_many(slot, gfn, &entry); 1713 if (kvm_is_error_hva(addr)) 1714 return -1; 1715 1716 if (entry < nr_pages) 1717 return 0; 1718 1719 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1720 } 1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1722 1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1724 { 1725 if (is_error_noslot_pfn(pfn)) 1726 return KVM_ERR_PTR_BAD_PAGE; 1727 1728 if (kvm_is_reserved_pfn(pfn)) { 1729 WARN_ON(1); 1730 return KVM_ERR_PTR_BAD_PAGE; 1731 } 1732 1733 return pfn_to_page(pfn); 1734 } 1735 1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1737 { 1738 kvm_pfn_t pfn; 1739 1740 pfn = gfn_to_pfn(kvm, gfn); 1741 1742 return kvm_pfn_to_page(pfn); 1743 } 1744 EXPORT_SYMBOL_GPL(gfn_to_page); 1745 1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1747 struct kvm_host_map *map) 1748 { 1749 kvm_pfn_t pfn; 1750 void *hva = NULL; 1751 struct page *page = KVM_UNMAPPED_PAGE; 1752 1753 if (!map) 1754 return -EINVAL; 1755 1756 pfn = gfn_to_pfn_memslot(slot, gfn); 1757 if (is_error_noslot_pfn(pfn)) 1758 return -EINVAL; 1759 1760 if (pfn_valid(pfn)) { 1761 page = pfn_to_page(pfn); 1762 hva = kmap(page); 1763 #ifdef CONFIG_HAS_IOMEM 1764 } else { 1765 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1766 #endif 1767 } 1768 1769 if (!hva) 1770 return -EFAULT; 1771 1772 map->page = page; 1773 map->hva = hva; 1774 map->pfn = pfn; 1775 map->gfn = gfn; 1776 1777 return 0; 1778 } 1779 1780 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1781 { 1782 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1783 } 1784 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1785 1786 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1787 bool dirty) 1788 { 1789 if (!map) 1790 return; 1791 1792 if (!map->hva) 1793 return; 1794 1795 if (map->page != KVM_UNMAPPED_PAGE) 1796 kunmap(map->page); 1797 #ifdef CONFIG_HAS_IOMEM 1798 else 1799 memunmap(map->hva); 1800 #endif 1801 1802 if (dirty) { 1803 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1804 kvm_release_pfn_dirty(map->pfn); 1805 } else { 1806 kvm_release_pfn_clean(map->pfn); 1807 } 1808 1809 map->hva = NULL; 1810 map->page = NULL; 1811 } 1812 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1813 1814 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1815 { 1816 kvm_pfn_t pfn; 1817 1818 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1819 1820 return kvm_pfn_to_page(pfn); 1821 } 1822 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1823 1824 void kvm_release_page_clean(struct page *page) 1825 { 1826 WARN_ON(is_error_page(page)); 1827 1828 kvm_release_pfn_clean(page_to_pfn(page)); 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1831 1832 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1833 { 1834 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1835 put_page(pfn_to_page(pfn)); 1836 } 1837 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1838 1839 void kvm_release_page_dirty(struct page *page) 1840 { 1841 WARN_ON(is_error_page(page)); 1842 1843 kvm_release_pfn_dirty(page_to_pfn(page)); 1844 } 1845 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1846 1847 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1848 { 1849 kvm_set_pfn_dirty(pfn); 1850 kvm_release_pfn_clean(pfn); 1851 } 1852 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1853 1854 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1855 { 1856 if (!kvm_is_reserved_pfn(pfn)) { 1857 struct page *page = pfn_to_page(pfn); 1858 1859 SetPageDirty(page); 1860 } 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1863 1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1865 { 1866 if (!kvm_is_reserved_pfn(pfn)) 1867 mark_page_accessed(pfn_to_page(pfn)); 1868 } 1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1870 1871 void kvm_get_pfn(kvm_pfn_t pfn) 1872 { 1873 if (!kvm_is_reserved_pfn(pfn)) 1874 get_page(pfn_to_page(pfn)); 1875 } 1876 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1877 1878 static int next_segment(unsigned long len, int offset) 1879 { 1880 if (len > PAGE_SIZE - offset) 1881 return PAGE_SIZE - offset; 1882 else 1883 return len; 1884 } 1885 1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1887 void *data, int offset, int len) 1888 { 1889 int r; 1890 unsigned long addr; 1891 1892 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1893 if (kvm_is_error_hva(addr)) 1894 return -EFAULT; 1895 r = __copy_from_user(data, (void __user *)addr + offset, len); 1896 if (r) 1897 return -EFAULT; 1898 return 0; 1899 } 1900 1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1902 int len) 1903 { 1904 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1905 1906 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1907 } 1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1909 1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1911 int offset, int len) 1912 { 1913 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1914 1915 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1918 1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1920 { 1921 gfn_t gfn = gpa >> PAGE_SHIFT; 1922 int seg; 1923 int offset = offset_in_page(gpa); 1924 int ret; 1925 1926 while ((seg = next_segment(len, offset)) != 0) { 1927 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1928 if (ret < 0) 1929 return ret; 1930 offset = 0; 1931 len -= seg; 1932 data += seg; 1933 ++gfn; 1934 } 1935 return 0; 1936 } 1937 EXPORT_SYMBOL_GPL(kvm_read_guest); 1938 1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1940 { 1941 gfn_t gfn = gpa >> PAGE_SHIFT; 1942 int seg; 1943 int offset = offset_in_page(gpa); 1944 int ret; 1945 1946 while ((seg = next_segment(len, offset)) != 0) { 1947 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1948 if (ret < 0) 1949 return ret; 1950 offset = 0; 1951 len -= seg; 1952 data += seg; 1953 ++gfn; 1954 } 1955 return 0; 1956 } 1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1958 1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1960 void *data, int offset, unsigned long len) 1961 { 1962 int r; 1963 unsigned long addr; 1964 1965 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1966 if (kvm_is_error_hva(addr)) 1967 return -EFAULT; 1968 pagefault_disable(); 1969 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1970 pagefault_enable(); 1971 if (r) 1972 return -EFAULT; 1973 return 0; 1974 } 1975 1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1977 unsigned long len) 1978 { 1979 gfn_t gfn = gpa >> PAGE_SHIFT; 1980 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1981 int offset = offset_in_page(gpa); 1982 1983 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1986 1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1988 void *data, unsigned long len) 1989 { 1990 gfn_t gfn = gpa >> PAGE_SHIFT; 1991 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1992 int offset = offset_in_page(gpa); 1993 1994 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1995 } 1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1997 1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1999 const void *data, int offset, int len) 2000 { 2001 int r; 2002 unsigned long addr; 2003 2004 addr = gfn_to_hva_memslot(memslot, gfn); 2005 if (kvm_is_error_hva(addr)) 2006 return -EFAULT; 2007 r = __copy_to_user((void __user *)addr + offset, data, len); 2008 if (r) 2009 return -EFAULT; 2010 mark_page_dirty_in_slot(memslot, gfn); 2011 return 0; 2012 } 2013 2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2015 const void *data, int offset, int len) 2016 { 2017 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2018 2019 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2020 } 2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2022 2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2024 const void *data, int offset, int len) 2025 { 2026 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2027 2028 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2029 } 2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2031 2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2033 unsigned long len) 2034 { 2035 gfn_t gfn = gpa >> PAGE_SHIFT; 2036 int seg; 2037 int offset = offset_in_page(gpa); 2038 int ret; 2039 2040 while ((seg = next_segment(len, offset)) != 0) { 2041 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2042 if (ret < 0) 2043 return ret; 2044 offset = 0; 2045 len -= seg; 2046 data += seg; 2047 ++gfn; 2048 } 2049 return 0; 2050 } 2051 EXPORT_SYMBOL_GPL(kvm_write_guest); 2052 2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2054 unsigned long len) 2055 { 2056 gfn_t gfn = gpa >> PAGE_SHIFT; 2057 int seg; 2058 int offset = offset_in_page(gpa); 2059 int ret; 2060 2061 while ((seg = next_segment(len, offset)) != 0) { 2062 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2063 if (ret < 0) 2064 return ret; 2065 offset = 0; 2066 len -= seg; 2067 data += seg; 2068 ++gfn; 2069 } 2070 return 0; 2071 } 2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2073 2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2075 struct gfn_to_hva_cache *ghc, 2076 gpa_t gpa, unsigned long len) 2077 { 2078 int offset = offset_in_page(gpa); 2079 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2080 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2081 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2082 gfn_t nr_pages_avail; 2083 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2084 2085 ghc->gpa = gpa; 2086 ghc->generation = slots->generation; 2087 ghc->len = len; 2088 ghc->hva = KVM_HVA_ERR_BAD; 2089 2090 /* 2091 * If the requested region crosses two memslots, we still 2092 * verify that the entire region is valid here. 2093 */ 2094 while (!r && start_gfn <= end_gfn) { 2095 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2096 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2097 &nr_pages_avail); 2098 if (kvm_is_error_hva(ghc->hva)) 2099 r = -EFAULT; 2100 start_gfn += nr_pages_avail; 2101 } 2102 2103 /* Use the slow path for cross page reads and writes. */ 2104 if (!r && nr_pages_needed == 1) 2105 ghc->hva += offset; 2106 else 2107 ghc->memslot = NULL; 2108 2109 return r; 2110 } 2111 2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2113 gpa_t gpa, unsigned long len) 2114 { 2115 struct kvm_memslots *slots = kvm_memslots(kvm); 2116 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2119 2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2121 void *data, unsigned int offset, 2122 unsigned long len) 2123 { 2124 struct kvm_memslots *slots = kvm_memslots(kvm); 2125 int r; 2126 gpa_t gpa = ghc->gpa + offset; 2127 2128 BUG_ON(len + offset > ghc->len); 2129 2130 if (slots->generation != ghc->generation) 2131 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2132 2133 if (unlikely(!ghc->memslot)) 2134 return kvm_write_guest(kvm, gpa, data, len); 2135 2136 if (kvm_is_error_hva(ghc->hva)) 2137 return -EFAULT; 2138 2139 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2140 if (r) 2141 return -EFAULT; 2142 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2143 2144 return 0; 2145 } 2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2147 2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2149 void *data, unsigned long len) 2150 { 2151 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2152 } 2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2154 2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2156 void *data, unsigned long len) 2157 { 2158 struct kvm_memslots *slots = kvm_memslots(kvm); 2159 int r; 2160 2161 BUG_ON(len > ghc->len); 2162 2163 if (slots->generation != ghc->generation) 2164 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2165 2166 if (unlikely(!ghc->memslot)) 2167 return kvm_read_guest(kvm, ghc->gpa, data, len); 2168 2169 if (kvm_is_error_hva(ghc->hva)) 2170 return -EFAULT; 2171 2172 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2173 if (r) 2174 return -EFAULT; 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2179 2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2181 { 2182 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2183 2184 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2185 } 2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2187 2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2189 { 2190 gfn_t gfn = gpa >> PAGE_SHIFT; 2191 int seg; 2192 int offset = offset_in_page(gpa); 2193 int ret; 2194 2195 while ((seg = next_segment(len, offset)) != 0) { 2196 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2197 if (ret < 0) 2198 return ret; 2199 offset = 0; 2200 len -= seg; 2201 ++gfn; 2202 } 2203 return 0; 2204 } 2205 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2206 2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2208 gfn_t gfn) 2209 { 2210 if (memslot && memslot->dirty_bitmap) { 2211 unsigned long rel_gfn = gfn - memslot->base_gfn; 2212 2213 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2214 } 2215 } 2216 2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2218 { 2219 struct kvm_memory_slot *memslot; 2220 2221 memslot = gfn_to_memslot(kvm, gfn); 2222 mark_page_dirty_in_slot(memslot, gfn); 2223 } 2224 EXPORT_SYMBOL_GPL(mark_page_dirty); 2225 2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2227 { 2228 struct kvm_memory_slot *memslot; 2229 2230 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2231 mark_page_dirty_in_slot(memslot, gfn); 2232 } 2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2234 2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2236 { 2237 if (!vcpu->sigset_active) 2238 return; 2239 2240 /* 2241 * This does a lockless modification of ->real_blocked, which is fine 2242 * because, only current can change ->real_blocked and all readers of 2243 * ->real_blocked don't care as long ->real_blocked is always a subset 2244 * of ->blocked. 2245 */ 2246 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2247 } 2248 2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2250 { 2251 if (!vcpu->sigset_active) 2252 return; 2253 2254 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2255 sigemptyset(¤t->real_blocked); 2256 } 2257 2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2259 { 2260 unsigned int old, val, grow, grow_start; 2261 2262 old = val = vcpu->halt_poll_ns; 2263 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2264 grow = READ_ONCE(halt_poll_ns_grow); 2265 if (!grow) 2266 goto out; 2267 2268 val *= grow; 2269 if (val < grow_start) 2270 val = grow_start; 2271 2272 if (val > halt_poll_ns) 2273 val = halt_poll_ns; 2274 2275 vcpu->halt_poll_ns = val; 2276 out: 2277 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2278 } 2279 2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2281 { 2282 unsigned int old, val, shrink; 2283 2284 old = val = vcpu->halt_poll_ns; 2285 shrink = READ_ONCE(halt_poll_ns_shrink); 2286 if (shrink == 0) 2287 val = 0; 2288 else 2289 val /= shrink; 2290 2291 vcpu->halt_poll_ns = val; 2292 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2293 } 2294 2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2296 { 2297 int ret = -EINTR; 2298 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2299 2300 if (kvm_arch_vcpu_runnable(vcpu)) { 2301 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2302 goto out; 2303 } 2304 if (kvm_cpu_has_pending_timer(vcpu)) 2305 goto out; 2306 if (signal_pending(current)) 2307 goto out; 2308 2309 ret = 0; 2310 out: 2311 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2312 return ret; 2313 } 2314 2315 /* 2316 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2317 */ 2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2319 { 2320 ktime_t start, cur; 2321 DECLARE_SWAITQUEUE(wait); 2322 bool waited = false; 2323 u64 block_ns; 2324 2325 kvm_arch_vcpu_blocking(vcpu); 2326 2327 start = cur = ktime_get(); 2328 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2329 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2330 2331 ++vcpu->stat.halt_attempted_poll; 2332 do { 2333 /* 2334 * This sets KVM_REQ_UNHALT if an interrupt 2335 * arrives. 2336 */ 2337 if (kvm_vcpu_check_block(vcpu) < 0) { 2338 ++vcpu->stat.halt_successful_poll; 2339 if (!vcpu_valid_wakeup(vcpu)) 2340 ++vcpu->stat.halt_poll_invalid; 2341 goto out; 2342 } 2343 cur = ktime_get(); 2344 } while (single_task_running() && ktime_before(cur, stop)); 2345 } 2346 2347 for (;;) { 2348 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2349 2350 if (kvm_vcpu_check_block(vcpu) < 0) 2351 break; 2352 2353 waited = true; 2354 schedule(); 2355 } 2356 2357 finish_swait(&vcpu->wq, &wait); 2358 cur = ktime_get(); 2359 out: 2360 kvm_arch_vcpu_unblocking(vcpu); 2361 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2362 2363 if (!vcpu_valid_wakeup(vcpu)) 2364 shrink_halt_poll_ns(vcpu); 2365 else if (halt_poll_ns) { 2366 if (block_ns <= vcpu->halt_poll_ns) 2367 ; 2368 /* we had a long block, shrink polling */ 2369 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2370 shrink_halt_poll_ns(vcpu); 2371 /* we had a short halt and our poll time is too small */ 2372 else if (vcpu->halt_poll_ns < halt_poll_ns && 2373 block_ns < halt_poll_ns) 2374 grow_halt_poll_ns(vcpu); 2375 } else 2376 vcpu->halt_poll_ns = 0; 2377 2378 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2379 kvm_arch_vcpu_block_finish(vcpu); 2380 } 2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2382 2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2384 { 2385 struct swait_queue_head *wqp; 2386 2387 wqp = kvm_arch_vcpu_wq(vcpu); 2388 if (swq_has_sleeper(wqp)) { 2389 swake_up_one(wqp); 2390 WRITE_ONCE(vcpu->ready, true); 2391 ++vcpu->stat.halt_wakeup; 2392 return true; 2393 } 2394 2395 return false; 2396 } 2397 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2398 2399 #ifndef CONFIG_S390 2400 /* 2401 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2402 */ 2403 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2404 { 2405 int me; 2406 int cpu = vcpu->cpu; 2407 2408 if (kvm_vcpu_wake_up(vcpu)) 2409 return; 2410 2411 me = get_cpu(); 2412 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2413 if (kvm_arch_vcpu_should_kick(vcpu)) 2414 smp_send_reschedule(cpu); 2415 put_cpu(); 2416 } 2417 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2418 #endif /* !CONFIG_S390 */ 2419 2420 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2421 { 2422 struct pid *pid; 2423 struct task_struct *task = NULL; 2424 int ret = 0; 2425 2426 rcu_read_lock(); 2427 pid = rcu_dereference(target->pid); 2428 if (pid) 2429 task = get_pid_task(pid, PIDTYPE_PID); 2430 rcu_read_unlock(); 2431 if (!task) 2432 return ret; 2433 ret = yield_to(task, 1); 2434 put_task_struct(task); 2435 2436 return ret; 2437 } 2438 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2439 2440 /* 2441 * Helper that checks whether a VCPU is eligible for directed yield. 2442 * Most eligible candidate to yield is decided by following heuristics: 2443 * 2444 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2445 * (preempted lock holder), indicated by @in_spin_loop. 2446 * Set at the beiginning and cleared at the end of interception/PLE handler. 2447 * 2448 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2449 * chance last time (mostly it has become eligible now since we have probably 2450 * yielded to lockholder in last iteration. This is done by toggling 2451 * @dy_eligible each time a VCPU checked for eligibility.) 2452 * 2453 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2454 * to preempted lock-holder could result in wrong VCPU selection and CPU 2455 * burning. Giving priority for a potential lock-holder increases lock 2456 * progress. 2457 * 2458 * Since algorithm is based on heuristics, accessing another VCPU data without 2459 * locking does not harm. It may result in trying to yield to same VCPU, fail 2460 * and continue with next VCPU and so on. 2461 */ 2462 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2463 { 2464 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2465 bool eligible; 2466 2467 eligible = !vcpu->spin_loop.in_spin_loop || 2468 vcpu->spin_loop.dy_eligible; 2469 2470 if (vcpu->spin_loop.in_spin_loop) 2471 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2472 2473 return eligible; 2474 #else 2475 return true; 2476 #endif 2477 } 2478 2479 /* 2480 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2481 * a vcpu_load/vcpu_put pair. However, for most architectures 2482 * kvm_arch_vcpu_runnable does not require vcpu_load. 2483 */ 2484 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2485 { 2486 return kvm_arch_vcpu_runnable(vcpu); 2487 } 2488 2489 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2490 { 2491 if (kvm_arch_dy_runnable(vcpu)) 2492 return true; 2493 2494 #ifdef CONFIG_KVM_ASYNC_PF 2495 if (!list_empty_careful(&vcpu->async_pf.done)) 2496 return true; 2497 #endif 2498 2499 return false; 2500 } 2501 2502 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2503 { 2504 struct kvm *kvm = me->kvm; 2505 struct kvm_vcpu *vcpu; 2506 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2507 int yielded = 0; 2508 int try = 3; 2509 int pass; 2510 int i; 2511 2512 kvm_vcpu_set_in_spin_loop(me, true); 2513 /* 2514 * We boost the priority of a VCPU that is runnable but not 2515 * currently running, because it got preempted by something 2516 * else and called schedule in __vcpu_run. Hopefully that 2517 * VCPU is holding the lock that we need and will release it. 2518 * We approximate round-robin by starting at the last boosted VCPU. 2519 */ 2520 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2521 kvm_for_each_vcpu(i, vcpu, kvm) { 2522 if (!pass && i <= last_boosted_vcpu) { 2523 i = last_boosted_vcpu; 2524 continue; 2525 } else if (pass && i > last_boosted_vcpu) 2526 break; 2527 if (!READ_ONCE(vcpu->ready)) 2528 continue; 2529 if (vcpu == me) 2530 continue; 2531 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2532 continue; 2533 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2534 !kvm_arch_vcpu_in_kernel(vcpu)) 2535 continue; 2536 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2537 continue; 2538 2539 yielded = kvm_vcpu_yield_to(vcpu); 2540 if (yielded > 0) { 2541 kvm->last_boosted_vcpu = i; 2542 break; 2543 } else if (yielded < 0) { 2544 try--; 2545 if (!try) 2546 break; 2547 } 2548 } 2549 } 2550 kvm_vcpu_set_in_spin_loop(me, false); 2551 2552 /* Ensure vcpu is not eligible during next spinloop */ 2553 kvm_vcpu_set_dy_eligible(me, false); 2554 } 2555 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2556 2557 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2558 { 2559 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2560 struct page *page; 2561 2562 if (vmf->pgoff == 0) 2563 page = virt_to_page(vcpu->run); 2564 #ifdef CONFIG_X86 2565 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2566 page = virt_to_page(vcpu->arch.pio_data); 2567 #endif 2568 #ifdef CONFIG_KVM_MMIO 2569 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2570 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2571 #endif 2572 else 2573 return kvm_arch_vcpu_fault(vcpu, vmf); 2574 get_page(page); 2575 vmf->page = page; 2576 return 0; 2577 } 2578 2579 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2580 .fault = kvm_vcpu_fault, 2581 }; 2582 2583 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2584 { 2585 vma->vm_ops = &kvm_vcpu_vm_ops; 2586 return 0; 2587 } 2588 2589 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2590 { 2591 struct kvm_vcpu *vcpu = filp->private_data; 2592 2593 debugfs_remove_recursive(vcpu->debugfs_dentry); 2594 kvm_put_kvm(vcpu->kvm); 2595 return 0; 2596 } 2597 2598 static struct file_operations kvm_vcpu_fops = { 2599 .release = kvm_vcpu_release, 2600 .unlocked_ioctl = kvm_vcpu_ioctl, 2601 .mmap = kvm_vcpu_mmap, 2602 .llseek = noop_llseek, 2603 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2604 }; 2605 2606 /* 2607 * Allocates an inode for the vcpu. 2608 */ 2609 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2610 { 2611 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2612 2613 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2614 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2615 } 2616 2617 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2618 { 2619 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2620 char dir_name[ITOA_MAX_LEN * 2]; 2621 2622 if (!debugfs_initialized()) 2623 return; 2624 2625 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2626 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2627 vcpu->kvm->debugfs_dentry); 2628 2629 kvm_arch_create_vcpu_debugfs(vcpu); 2630 #endif 2631 } 2632 2633 /* 2634 * Creates some virtual cpus. Good luck creating more than one. 2635 */ 2636 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2637 { 2638 int r; 2639 struct kvm_vcpu *vcpu; 2640 2641 if (id >= KVM_MAX_VCPU_ID) 2642 return -EINVAL; 2643 2644 mutex_lock(&kvm->lock); 2645 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2646 mutex_unlock(&kvm->lock); 2647 return -EINVAL; 2648 } 2649 2650 kvm->created_vcpus++; 2651 mutex_unlock(&kvm->lock); 2652 2653 vcpu = kvm_arch_vcpu_create(kvm, id); 2654 if (IS_ERR(vcpu)) { 2655 r = PTR_ERR(vcpu); 2656 goto vcpu_decrement; 2657 } 2658 2659 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2660 2661 r = kvm_arch_vcpu_setup(vcpu); 2662 if (r) 2663 goto vcpu_destroy; 2664 2665 kvm_create_vcpu_debugfs(vcpu); 2666 2667 mutex_lock(&kvm->lock); 2668 if (kvm_get_vcpu_by_id(kvm, id)) { 2669 r = -EEXIST; 2670 goto unlock_vcpu_destroy; 2671 } 2672 2673 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2674 2675 /* Now it's all set up, let userspace reach it */ 2676 kvm_get_kvm(kvm); 2677 r = create_vcpu_fd(vcpu); 2678 if (r < 0) { 2679 kvm_put_kvm(kvm); 2680 goto unlock_vcpu_destroy; 2681 } 2682 2683 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2684 2685 /* 2686 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2687 * before kvm->online_vcpu's incremented value. 2688 */ 2689 smp_wmb(); 2690 atomic_inc(&kvm->online_vcpus); 2691 2692 mutex_unlock(&kvm->lock); 2693 kvm_arch_vcpu_postcreate(vcpu); 2694 return r; 2695 2696 unlock_vcpu_destroy: 2697 mutex_unlock(&kvm->lock); 2698 debugfs_remove_recursive(vcpu->debugfs_dentry); 2699 vcpu_destroy: 2700 kvm_arch_vcpu_destroy(vcpu); 2701 vcpu_decrement: 2702 mutex_lock(&kvm->lock); 2703 kvm->created_vcpus--; 2704 mutex_unlock(&kvm->lock); 2705 return r; 2706 } 2707 2708 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2709 { 2710 if (sigset) { 2711 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2712 vcpu->sigset_active = 1; 2713 vcpu->sigset = *sigset; 2714 } else 2715 vcpu->sigset_active = 0; 2716 return 0; 2717 } 2718 2719 static long kvm_vcpu_ioctl(struct file *filp, 2720 unsigned int ioctl, unsigned long arg) 2721 { 2722 struct kvm_vcpu *vcpu = filp->private_data; 2723 void __user *argp = (void __user *)arg; 2724 int r; 2725 struct kvm_fpu *fpu = NULL; 2726 struct kvm_sregs *kvm_sregs = NULL; 2727 2728 if (vcpu->kvm->mm != current->mm) 2729 return -EIO; 2730 2731 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2732 return -EINVAL; 2733 2734 /* 2735 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2736 * execution; mutex_lock() would break them. 2737 */ 2738 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2739 if (r != -ENOIOCTLCMD) 2740 return r; 2741 2742 if (mutex_lock_killable(&vcpu->mutex)) 2743 return -EINTR; 2744 switch (ioctl) { 2745 case KVM_RUN: { 2746 struct pid *oldpid; 2747 r = -EINVAL; 2748 if (arg) 2749 goto out; 2750 oldpid = rcu_access_pointer(vcpu->pid); 2751 if (unlikely(oldpid != task_pid(current))) { 2752 /* The thread running this VCPU changed. */ 2753 struct pid *newpid; 2754 2755 r = kvm_arch_vcpu_run_pid_change(vcpu); 2756 if (r) 2757 break; 2758 2759 newpid = get_task_pid(current, PIDTYPE_PID); 2760 rcu_assign_pointer(vcpu->pid, newpid); 2761 if (oldpid) 2762 synchronize_rcu(); 2763 put_pid(oldpid); 2764 } 2765 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2766 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2767 break; 2768 } 2769 case KVM_GET_REGS: { 2770 struct kvm_regs *kvm_regs; 2771 2772 r = -ENOMEM; 2773 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2774 if (!kvm_regs) 2775 goto out; 2776 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2777 if (r) 2778 goto out_free1; 2779 r = -EFAULT; 2780 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2781 goto out_free1; 2782 r = 0; 2783 out_free1: 2784 kfree(kvm_regs); 2785 break; 2786 } 2787 case KVM_SET_REGS: { 2788 struct kvm_regs *kvm_regs; 2789 2790 r = -ENOMEM; 2791 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2792 if (IS_ERR(kvm_regs)) { 2793 r = PTR_ERR(kvm_regs); 2794 goto out; 2795 } 2796 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2797 kfree(kvm_regs); 2798 break; 2799 } 2800 case KVM_GET_SREGS: { 2801 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2802 GFP_KERNEL_ACCOUNT); 2803 r = -ENOMEM; 2804 if (!kvm_sregs) 2805 goto out; 2806 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2807 if (r) 2808 goto out; 2809 r = -EFAULT; 2810 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2811 goto out; 2812 r = 0; 2813 break; 2814 } 2815 case KVM_SET_SREGS: { 2816 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2817 if (IS_ERR(kvm_sregs)) { 2818 r = PTR_ERR(kvm_sregs); 2819 kvm_sregs = NULL; 2820 goto out; 2821 } 2822 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2823 break; 2824 } 2825 case KVM_GET_MP_STATE: { 2826 struct kvm_mp_state mp_state; 2827 2828 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2829 if (r) 2830 goto out; 2831 r = -EFAULT; 2832 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2833 goto out; 2834 r = 0; 2835 break; 2836 } 2837 case KVM_SET_MP_STATE: { 2838 struct kvm_mp_state mp_state; 2839 2840 r = -EFAULT; 2841 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2842 goto out; 2843 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2844 break; 2845 } 2846 case KVM_TRANSLATE: { 2847 struct kvm_translation tr; 2848 2849 r = -EFAULT; 2850 if (copy_from_user(&tr, argp, sizeof(tr))) 2851 goto out; 2852 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2853 if (r) 2854 goto out; 2855 r = -EFAULT; 2856 if (copy_to_user(argp, &tr, sizeof(tr))) 2857 goto out; 2858 r = 0; 2859 break; 2860 } 2861 case KVM_SET_GUEST_DEBUG: { 2862 struct kvm_guest_debug dbg; 2863 2864 r = -EFAULT; 2865 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2866 goto out; 2867 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2868 break; 2869 } 2870 case KVM_SET_SIGNAL_MASK: { 2871 struct kvm_signal_mask __user *sigmask_arg = argp; 2872 struct kvm_signal_mask kvm_sigmask; 2873 sigset_t sigset, *p; 2874 2875 p = NULL; 2876 if (argp) { 2877 r = -EFAULT; 2878 if (copy_from_user(&kvm_sigmask, argp, 2879 sizeof(kvm_sigmask))) 2880 goto out; 2881 r = -EINVAL; 2882 if (kvm_sigmask.len != sizeof(sigset)) 2883 goto out; 2884 r = -EFAULT; 2885 if (copy_from_user(&sigset, sigmask_arg->sigset, 2886 sizeof(sigset))) 2887 goto out; 2888 p = &sigset; 2889 } 2890 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2891 break; 2892 } 2893 case KVM_GET_FPU: { 2894 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2895 r = -ENOMEM; 2896 if (!fpu) 2897 goto out; 2898 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2899 if (r) 2900 goto out; 2901 r = -EFAULT; 2902 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2903 goto out; 2904 r = 0; 2905 break; 2906 } 2907 case KVM_SET_FPU: { 2908 fpu = memdup_user(argp, sizeof(*fpu)); 2909 if (IS_ERR(fpu)) { 2910 r = PTR_ERR(fpu); 2911 fpu = NULL; 2912 goto out; 2913 } 2914 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2915 break; 2916 } 2917 default: 2918 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2919 } 2920 out: 2921 mutex_unlock(&vcpu->mutex); 2922 kfree(fpu); 2923 kfree(kvm_sregs); 2924 return r; 2925 } 2926 2927 #ifdef CONFIG_KVM_COMPAT 2928 static long kvm_vcpu_compat_ioctl(struct file *filp, 2929 unsigned int ioctl, unsigned long arg) 2930 { 2931 struct kvm_vcpu *vcpu = filp->private_data; 2932 void __user *argp = compat_ptr(arg); 2933 int r; 2934 2935 if (vcpu->kvm->mm != current->mm) 2936 return -EIO; 2937 2938 switch (ioctl) { 2939 case KVM_SET_SIGNAL_MASK: { 2940 struct kvm_signal_mask __user *sigmask_arg = argp; 2941 struct kvm_signal_mask kvm_sigmask; 2942 sigset_t sigset; 2943 2944 if (argp) { 2945 r = -EFAULT; 2946 if (copy_from_user(&kvm_sigmask, argp, 2947 sizeof(kvm_sigmask))) 2948 goto out; 2949 r = -EINVAL; 2950 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2951 goto out; 2952 r = -EFAULT; 2953 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2954 goto out; 2955 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2956 } else 2957 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2958 break; 2959 } 2960 default: 2961 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2962 } 2963 2964 out: 2965 return r; 2966 } 2967 #endif 2968 2969 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2970 { 2971 struct kvm_device *dev = filp->private_data; 2972 2973 if (dev->ops->mmap) 2974 return dev->ops->mmap(dev, vma); 2975 2976 return -ENODEV; 2977 } 2978 2979 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2980 int (*accessor)(struct kvm_device *dev, 2981 struct kvm_device_attr *attr), 2982 unsigned long arg) 2983 { 2984 struct kvm_device_attr attr; 2985 2986 if (!accessor) 2987 return -EPERM; 2988 2989 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2990 return -EFAULT; 2991 2992 return accessor(dev, &attr); 2993 } 2994 2995 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2996 unsigned long arg) 2997 { 2998 struct kvm_device *dev = filp->private_data; 2999 3000 if (dev->kvm->mm != current->mm) 3001 return -EIO; 3002 3003 switch (ioctl) { 3004 case KVM_SET_DEVICE_ATTR: 3005 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3006 case KVM_GET_DEVICE_ATTR: 3007 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3008 case KVM_HAS_DEVICE_ATTR: 3009 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3010 default: 3011 if (dev->ops->ioctl) 3012 return dev->ops->ioctl(dev, ioctl, arg); 3013 3014 return -ENOTTY; 3015 } 3016 } 3017 3018 static int kvm_device_release(struct inode *inode, struct file *filp) 3019 { 3020 struct kvm_device *dev = filp->private_data; 3021 struct kvm *kvm = dev->kvm; 3022 3023 if (dev->ops->release) { 3024 mutex_lock(&kvm->lock); 3025 list_del(&dev->vm_node); 3026 dev->ops->release(dev); 3027 mutex_unlock(&kvm->lock); 3028 } 3029 3030 kvm_put_kvm(kvm); 3031 return 0; 3032 } 3033 3034 static const struct file_operations kvm_device_fops = { 3035 .unlocked_ioctl = kvm_device_ioctl, 3036 .release = kvm_device_release, 3037 KVM_COMPAT(kvm_device_ioctl), 3038 .mmap = kvm_device_mmap, 3039 }; 3040 3041 struct kvm_device *kvm_device_from_filp(struct file *filp) 3042 { 3043 if (filp->f_op != &kvm_device_fops) 3044 return NULL; 3045 3046 return filp->private_data; 3047 } 3048 3049 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3050 #ifdef CONFIG_KVM_MPIC 3051 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3052 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3053 #endif 3054 }; 3055 3056 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3057 { 3058 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3059 return -ENOSPC; 3060 3061 if (kvm_device_ops_table[type] != NULL) 3062 return -EEXIST; 3063 3064 kvm_device_ops_table[type] = ops; 3065 return 0; 3066 } 3067 3068 void kvm_unregister_device_ops(u32 type) 3069 { 3070 if (kvm_device_ops_table[type] != NULL) 3071 kvm_device_ops_table[type] = NULL; 3072 } 3073 3074 static int kvm_ioctl_create_device(struct kvm *kvm, 3075 struct kvm_create_device *cd) 3076 { 3077 struct kvm_device_ops *ops = NULL; 3078 struct kvm_device *dev; 3079 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3080 int type; 3081 int ret; 3082 3083 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3084 return -ENODEV; 3085 3086 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3087 ops = kvm_device_ops_table[type]; 3088 if (ops == NULL) 3089 return -ENODEV; 3090 3091 if (test) 3092 return 0; 3093 3094 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3095 if (!dev) 3096 return -ENOMEM; 3097 3098 dev->ops = ops; 3099 dev->kvm = kvm; 3100 3101 mutex_lock(&kvm->lock); 3102 ret = ops->create(dev, type); 3103 if (ret < 0) { 3104 mutex_unlock(&kvm->lock); 3105 kfree(dev); 3106 return ret; 3107 } 3108 list_add(&dev->vm_node, &kvm->devices); 3109 mutex_unlock(&kvm->lock); 3110 3111 if (ops->init) 3112 ops->init(dev); 3113 3114 kvm_get_kvm(kvm); 3115 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3116 if (ret < 0) { 3117 kvm_put_kvm(kvm); 3118 mutex_lock(&kvm->lock); 3119 list_del(&dev->vm_node); 3120 mutex_unlock(&kvm->lock); 3121 ops->destroy(dev); 3122 return ret; 3123 } 3124 3125 cd->fd = ret; 3126 return 0; 3127 } 3128 3129 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3130 { 3131 switch (arg) { 3132 case KVM_CAP_USER_MEMORY: 3133 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3134 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3135 case KVM_CAP_INTERNAL_ERROR_DATA: 3136 #ifdef CONFIG_HAVE_KVM_MSI 3137 case KVM_CAP_SIGNAL_MSI: 3138 #endif 3139 #ifdef CONFIG_HAVE_KVM_IRQFD 3140 case KVM_CAP_IRQFD: 3141 case KVM_CAP_IRQFD_RESAMPLE: 3142 #endif 3143 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3144 case KVM_CAP_CHECK_EXTENSION_VM: 3145 case KVM_CAP_ENABLE_CAP_VM: 3146 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3147 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3148 #endif 3149 return 1; 3150 #ifdef CONFIG_KVM_MMIO 3151 case KVM_CAP_COALESCED_MMIO: 3152 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3153 case KVM_CAP_COALESCED_PIO: 3154 return 1; 3155 #endif 3156 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3157 case KVM_CAP_IRQ_ROUTING: 3158 return KVM_MAX_IRQ_ROUTES; 3159 #endif 3160 #if KVM_ADDRESS_SPACE_NUM > 1 3161 case KVM_CAP_MULTI_ADDRESS_SPACE: 3162 return KVM_ADDRESS_SPACE_NUM; 3163 #endif 3164 case KVM_CAP_NR_MEMSLOTS: 3165 return KVM_USER_MEM_SLOTS; 3166 default: 3167 break; 3168 } 3169 return kvm_vm_ioctl_check_extension(kvm, arg); 3170 } 3171 3172 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3173 struct kvm_enable_cap *cap) 3174 { 3175 return -EINVAL; 3176 } 3177 3178 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3179 struct kvm_enable_cap *cap) 3180 { 3181 switch (cap->cap) { 3182 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3183 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3184 if (cap->flags || (cap->args[0] & ~1)) 3185 return -EINVAL; 3186 kvm->manual_dirty_log_protect = cap->args[0]; 3187 return 0; 3188 #endif 3189 default: 3190 return kvm_vm_ioctl_enable_cap(kvm, cap); 3191 } 3192 } 3193 3194 static long kvm_vm_ioctl(struct file *filp, 3195 unsigned int ioctl, unsigned long arg) 3196 { 3197 struct kvm *kvm = filp->private_data; 3198 void __user *argp = (void __user *)arg; 3199 int r; 3200 3201 if (kvm->mm != current->mm) 3202 return -EIO; 3203 switch (ioctl) { 3204 case KVM_CREATE_VCPU: 3205 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3206 break; 3207 case KVM_ENABLE_CAP: { 3208 struct kvm_enable_cap cap; 3209 3210 r = -EFAULT; 3211 if (copy_from_user(&cap, argp, sizeof(cap))) 3212 goto out; 3213 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3214 break; 3215 } 3216 case KVM_SET_USER_MEMORY_REGION: { 3217 struct kvm_userspace_memory_region kvm_userspace_mem; 3218 3219 r = -EFAULT; 3220 if (copy_from_user(&kvm_userspace_mem, argp, 3221 sizeof(kvm_userspace_mem))) 3222 goto out; 3223 3224 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3225 break; 3226 } 3227 case KVM_GET_DIRTY_LOG: { 3228 struct kvm_dirty_log log; 3229 3230 r = -EFAULT; 3231 if (copy_from_user(&log, argp, sizeof(log))) 3232 goto out; 3233 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3234 break; 3235 } 3236 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3237 case KVM_CLEAR_DIRTY_LOG: { 3238 struct kvm_clear_dirty_log log; 3239 3240 r = -EFAULT; 3241 if (copy_from_user(&log, argp, sizeof(log))) 3242 goto out; 3243 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3244 break; 3245 } 3246 #endif 3247 #ifdef CONFIG_KVM_MMIO 3248 case KVM_REGISTER_COALESCED_MMIO: { 3249 struct kvm_coalesced_mmio_zone zone; 3250 3251 r = -EFAULT; 3252 if (copy_from_user(&zone, argp, sizeof(zone))) 3253 goto out; 3254 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3255 break; 3256 } 3257 case KVM_UNREGISTER_COALESCED_MMIO: { 3258 struct kvm_coalesced_mmio_zone zone; 3259 3260 r = -EFAULT; 3261 if (copy_from_user(&zone, argp, sizeof(zone))) 3262 goto out; 3263 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3264 break; 3265 } 3266 #endif 3267 case KVM_IRQFD: { 3268 struct kvm_irqfd data; 3269 3270 r = -EFAULT; 3271 if (copy_from_user(&data, argp, sizeof(data))) 3272 goto out; 3273 r = kvm_irqfd(kvm, &data); 3274 break; 3275 } 3276 case KVM_IOEVENTFD: { 3277 struct kvm_ioeventfd data; 3278 3279 r = -EFAULT; 3280 if (copy_from_user(&data, argp, sizeof(data))) 3281 goto out; 3282 r = kvm_ioeventfd(kvm, &data); 3283 break; 3284 } 3285 #ifdef CONFIG_HAVE_KVM_MSI 3286 case KVM_SIGNAL_MSI: { 3287 struct kvm_msi msi; 3288 3289 r = -EFAULT; 3290 if (copy_from_user(&msi, argp, sizeof(msi))) 3291 goto out; 3292 r = kvm_send_userspace_msi(kvm, &msi); 3293 break; 3294 } 3295 #endif 3296 #ifdef __KVM_HAVE_IRQ_LINE 3297 case KVM_IRQ_LINE_STATUS: 3298 case KVM_IRQ_LINE: { 3299 struct kvm_irq_level irq_event; 3300 3301 r = -EFAULT; 3302 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3303 goto out; 3304 3305 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3306 ioctl == KVM_IRQ_LINE_STATUS); 3307 if (r) 3308 goto out; 3309 3310 r = -EFAULT; 3311 if (ioctl == KVM_IRQ_LINE_STATUS) { 3312 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3313 goto out; 3314 } 3315 3316 r = 0; 3317 break; 3318 } 3319 #endif 3320 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3321 case KVM_SET_GSI_ROUTING: { 3322 struct kvm_irq_routing routing; 3323 struct kvm_irq_routing __user *urouting; 3324 struct kvm_irq_routing_entry *entries = NULL; 3325 3326 r = -EFAULT; 3327 if (copy_from_user(&routing, argp, sizeof(routing))) 3328 goto out; 3329 r = -EINVAL; 3330 if (!kvm_arch_can_set_irq_routing(kvm)) 3331 goto out; 3332 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3333 goto out; 3334 if (routing.flags) 3335 goto out; 3336 if (routing.nr) { 3337 r = -ENOMEM; 3338 entries = vmalloc(array_size(sizeof(*entries), 3339 routing.nr)); 3340 if (!entries) 3341 goto out; 3342 r = -EFAULT; 3343 urouting = argp; 3344 if (copy_from_user(entries, urouting->entries, 3345 routing.nr * sizeof(*entries))) 3346 goto out_free_irq_routing; 3347 } 3348 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3349 routing.flags); 3350 out_free_irq_routing: 3351 vfree(entries); 3352 break; 3353 } 3354 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3355 case KVM_CREATE_DEVICE: { 3356 struct kvm_create_device cd; 3357 3358 r = -EFAULT; 3359 if (copy_from_user(&cd, argp, sizeof(cd))) 3360 goto out; 3361 3362 r = kvm_ioctl_create_device(kvm, &cd); 3363 if (r) 3364 goto out; 3365 3366 r = -EFAULT; 3367 if (copy_to_user(argp, &cd, sizeof(cd))) 3368 goto out; 3369 3370 r = 0; 3371 break; 3372 } 3373 case KVM_CHECK_EXTENSION: 3374 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3375 break; 3376 default: 3377 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3378 } 3379 out: 3380 return r; 3381 } 3382 3383 #ifdef CONFIG_KVM_COMPAT 3384 struct compat_kvm_dirty_log { 3385 __u32 slot; 3386 __u32 padding1; 3387 union { 3388 compat_uptr_t dirty_bitmap; /* one bit per page */ 3389 __u64 padding2; 3390 }; 3391 }; 3392 3393 static long kvm_vm_compat_ioctl(struct file *filp, 3394 unsigned int ioctl, unsigned long arg) 3395 { 3396 struct kvm *kvm = filp->private_data; 3397 int r; 3398 3399 if (kvm->mm != current->mm) 3400 return -EIO; 3401 switch (ioctl) { 3402 case KVM_GET_DIRTY_LOG: { 3403 struct compat_kvm_dirty_log compat_log; 3404 struct kvm_dirty_log log; 3405 3406 if (copy_from_user(&compat_log, (void __user *)arg, 3407 sizeof(compat_log))) 3408 return -EFAULT; 3409 log.slot = compat_log.slot; 3410 log.padding1 = compat_log.padding1; 3411 log.padding2 = compat_log.padding2; 3412 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3413 3414 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3415 break; 3416 } 3417 default: 3418 r = kvm_vm_ioctl(filp, ioctl, arg); 3419 } 3420 return r; 3421 } 3422 #endif 3423 3424 static struct file_operations kvm_vm_fops = { 3425 .release = kvm_vm_release, 3426 .unlocked_ioctl = kvm_vm_ioctl, 3427 .llseek = noop_llseek, 3428 KVM_COMPAT(kvm_vm_compat_ioctl), 3429 }; 3430 3431 static int kvm_dev_ioctl_create_vm(unsigned long type) 3432 { 3433 int r; 3434 struct kvm *kvm; 3435 struct file *file; 3436 3437 kvm = kvm_create_vm(type); 3438 if (IS_ERR(kvm)) 3439 return PTR_ERR(kvm); 3440 #ifdef CONFIG_KVM_MMIO 3441 r = kvm_coalesced_mmio_init(kvm); 3442 if (r < 0) 3443 goto put_kvm; 3444 #endif 3445 r = get_unused_fd_flags(O_CLOEXEC); 3446 if (r < 0) 3447 goto put_kvm; 3448 3449 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3450 if (IS_ERR(file)) { 3451 put_unused_fd(r); 3452 r = PTR_ERR(file); 3453 goto put_kvm; 3454 } 3455 3456 /* 3457 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3458 * already set, with ->release() being kvm_vm_release(). In error 3459 * cases it will be called by the final fput(file) and will take 3460 * care of doing kvm_put_kvm(kvm). 3461 */ 3462 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3463 put_unused_fd(r); 3464 fput(file); 3465 return -ENOMEM; 3466 } 3467 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3468 3469 fd_install(r, file); 3470 return r; 3471 3472 put_kvm: 3473 kvm_put_kvm(kvm); 3474 return r; 3475 } 3476 3477 static long kvm_dev_ioctl(struct file *filp, 3478 unsigned int ioctl, unsigned long arg) 3479 { 3480 long r = -EINVAL; 3481 3482 switch (ioctl) { 3483 case KVM_GET_API_VERSION: 3484 if (arg) 3485 goto out; 3486 r = KVM_API_VERSION; 3487 break; 3488 case KVM_CREATE_VM: 3489 r = kvm_dev_ioctl_create_vm(arg); 3490 break; 3491 case KVM_CHECK_EXTENSION: 3492 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3493 break; 3494 case KVM_GET_VCPU_MMAP_SIZE: 3495 if (arg) 3496 goto out; 3497 r = PAGE_SIZE; /* struct kvm_run */ 3498 #ifdef CONFIG_X86 3499 r += PAGE_SIZE; /* pio data page */ 3500 #endif 3501 #ifdef CONFIG_KVM_MMIO 3502 r += PAGE_SIZE; /* coalesced mmio ring page */ 3503 #endif 3504 break; 3505 case KVM_TRACE_ENABLE: 3506 case KVM_TRACE_PAUSE: 3507 case KVM_TRACE_DISABLE: 3508 r = -EOPNOTSUPP; 3509 break; 3510 default: 3511 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3512 } 3513 out: 3514 return r; 3515 } 3516 3517 static struct file_operations kvm_chardev_ops = { 3518 .unlocked_ioctl = kvm_dev_ioctl, 3519 .llseek = noop_llseek, 3520 KVM_COMPAT(kvm_dev_ioctl), 3521 }; 3522 3523 static struct miscdevice kvm_dev = { 3524 KVM_MINOR, 3525 "kvm", 3526 &kvm_chardev_ops, 3527 }; 3528 3529 static void hardware_enable_nolock(void *junk) 3530 { 3531 int cpu = raw_smp_processor_id(); 3532 int r; 3533 3534 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3535 return; 3536 3537 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3538 3539 r = kvm_arch_hardware_enable(); 3540 3541 if (r) { 3542 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3543 atomic_inc(&hardware_enable_failed); 3544 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3545 } 3546 } 3547 3548 static int kvm_starting_cpu(unsigned int cpu) 3549 { 3550 raw_spin_lock(&kvm_count_lock); 3551 if (kvm_usage_count) 3552 hardware_enable_nolock(NULL); 3553 raw_spin_unlock(&kvm_count_lock); 3554 return 0; 3555 } 3556 3557 static void hardware_disable_nolock(void *junk) 3558 { 3559 int cpu = raw_smp_processor_id(); 3560 3561 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3562 return; 3563 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3564 kvm_arch_hardware_disable(); 3565 } 3566 3567 static int kvm_dying_cpu(unsigned int cpu) 3568 { 3569 raw_spin_lock(&kvm_count_lock); 3570 if (kvm_usage_count) 3571 hardware_disable_nolock(NULL); 3572 raw_spin_unlock(&kvm_count_lock); 3573 return 0; 3574 } 3575 3576 static void hardware_disable_all_nolock(void) 3577 { 3578 BUG_ON(!kvm_usage_count); 3579 3580 kvm_usage_count--; 3581 if (!kvm_usage_count) 3582 on_each_cpu(hardware_disable_nolock, NULL, 1); 3583 } 3584 3585 static void hardware_disable_all(void) 3586 { 3587 raw_spin_lock(&kvm_count_lock); 3588 hardware_disable_all_nolock(); 3589 raw_spin_unlock(&kvm_count_lock); 3590 } 3591 3592 static int hardware_enable_all(void) 3593 { 3594 int r = 0; 3595 3596 raw_spin_lock(&kvm_count_lock); 3597 3598 kvm_usage_count++; 3599 if (kvm_usage_count == 1) { 3600 atomic_set(&hardware_enable_failed, 0); 3601 on_each_cpu(hardware_enable_nolock, NULL, 1); 3602 3603 if (atomic_read(&hardware_enable_failed)) { 3604 hardware_disable_all_nolock(); 3605 r = -EBUSY; 3606 } 3607 } 3608 3609 raw_spin_unlock(&kvm_count_lock); 3610 3611 return r; 3612 } 3613 3614 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3615 void *v) 3616 { 3617 /* 3618 * Some (well, at least mine) BIOSes hang on reboot if 3619 * in vmx root mode. 3620 * 3621 * And Intel TXT required VMX off for all cpu when system shutdown. 3622 */ 3623 pr_info("kvm: exiting hardware virtualization\n"); 3624 kvm_rebooting = true; 3625 on_each_cpu(hardware_disable_nolock, NULL, 1); 3626 return NOTIFY_OK; 3627 } 3628 3629 static struct notifier_block kvm_reboot_notifier = { 3630 .notifier_call = kvm_reboot, 3631 .priority = 0, 3632 }; 3633 3634 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3635 { 3636 int i; 3637 3638 for (i = 0; i < bus->dev_count; i++) { 3639 struct kvm_io_device *pos = bus->range[i].dev; 3640 3641 kvm_iodevice_destructor(pos); 3642 } 3643 kfree(bus); 3644 } 3645 3646 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3647 const struct kvm_io_range *r2) 3648 { 3649 gpa_t addr1 = r1->addr; 3650 gpa_t addr2 = r2->addr; 3651 3652 if (addr1 < addr2) 3653 return -1; 3654 3655 /* If r2->len == 0, match the exact address. If r2->len != 0, 3656 * accept any overlapping write. Any order is acceptable for 3657 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3658 * we process all of them. 3659 */ 3660 if (r2->len) { 3661 addr1 += r1->len; 3662 addr2 += r2->len; 3663 } 3664 3665 if (addr1 > addr2) 3666 return 1; 3667 3668 return 0; 3669 } 3670 3671 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3672 { 3673 return kvm_io_bus_cmp(p1, p2); 3674 } 3675 3676 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3677 gpa_t addr, int len) 3678 { 3679 struct kvm_io_range *range, key; 3680 int off; 3681 3682 key = (struct kvm_io_range) { 3683 .addr = addr, 3684 .len = len, 3685 }; 3686 3687 range = bsearch(&key, bus->range, bus->dev_count, 3688 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3689 if (range == NULL) 3690 return -ENOENT; 3691 3692 off = range - bus->range; 3693 3694 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3695 off--; 3696 3697 return off; 3698 } 3699 3700 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3701 struct kvm_io_range *range, const void *val) 3702 { 3703 int idx; 3704 3705 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3706 if (idx < 0) 3707 return -EOPNOTSUPP; 3708 3709 while (idx < bus->dev_count && 3710 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3711 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3712 range->len, val)) 3713 return idx; 3714 idx++; 3715 } 3716 3717 return -EOPNOTSUPP; 3718 } 3719 3720 /* kvm_io_bus_write - called under kvm->slots_lock */ 3721 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3722 int len, const void *val) 3723 { 3724 struct kvm_io_bus *bus; 3725 struct kvm_io_range range; 3726 int r; 3727 3728 range = (struct kvm_io_range) { 3729 .addr = addr, 3730 .len = len, 3731 }; 3732 3733 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3734 if (!bus) 3735 return -ENOMEM; 3736 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3737 return r < 0 ? r : 0; 3738 } 3739 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3740 3741 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3742 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3743 gpa_t addr, int len, const void *val, long cookie) 3744 { 3745 struct kvm_io_bus *bus; 3746 struct kvm_io_range range; 3747 3748 range = (struct kvm_io_range) { 3749 .addr = addr, 3750 .len = len, 3751 }; 3752 3753 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3754 if (!bus) 3755 return -ENOMEM; 3756 3757 /* First try the device referenced by cookie. */ 3758 if ((cookie >= 0) && (cookie < bus->dev_count) && 3759 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3760 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3761 val)) 3762 return cookie; 3763 3764 /* 3765 * cookie contained garbage; fall back to search and return the 3766 * correct cookie value. 3767 */ 3768 return __kvm_io_bus_write(vcpu, bus, &range, val); 3769 } 3770 3771 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3772 struct kvm_io_range *range, void *val) 3773 { 3774 int idx; 3775 3776 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3777 if (idx < 0) 3778 return -EOPNOTSUPP; 3779 3780 while (idx < bus->dev_count && 3781 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3782 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3783 range->len, val)) 3784 return idx; 3785 idx++; 3786 } 3787 3788 return -EOPNOTSUPP; 3789 } 3790 3791 /* kvm_io_bus_read - called under kvm->slots_lock */ 3792 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3793 int len, void *val) 3794 { 3795 struct kvm_io_bus *bus; 3796 struct kvm_io_range range; 3797 int r; 3798 3799 range = (struct kvm_io_range) { 3800 .addr = addr, 3801 .len = len, 3802 }; 3803 3804 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3805 if (!bus) 3806 return -ENOMEM; 3807 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3808 return r < 0 ? r : 0; 3809 } 3810 3811 /* Caller must hold slots_lock. */ 3812 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3813 int len, struct kvm_io_device *dev) 3814 { 3815 int i; 3816 struct kvm_io_bus *new_bus, *bus; 3817 struct kvm_io_range range; 3818 3819 bus = kvm_get_bus(kvm, bus_idx); 3820 if (!bus) 3821 return -ENOMEM; 3822 3823 /* exclude ioeventfd which is limited by maximum fd */ 3824 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3825 return -ENOSPC; 3826 3827 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3828 GFP_KERNEL_ACCOUNT); 3829 if (!new_bus) 3830 return -ENOMEM; 3831 3832 range = (struct kvm_io_range) { 3833 .addr = addr, 3834 .len = len, 3835 .dev = dev, 3836 }; 3837 3838 for (i = 0; i < bus->dev_count; i++) 3839 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3840 break; 3841 3842 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3843 new_bus->dev_count++; 3844 new_bus->range[i] = range; 3845 memcpy(new_bus->range + i + 1, bus->range + i, 3846 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3847 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3848 synchronize_srcu_expedited(&kvm->srcu); 3849 kfree(bus); 3850 3851 return 0; 3852 } 3853 3854 /* Caller must hold slots_lock. */ 3855 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3856 struct kvm_io_device *dev) 3857 { 3858 int i; 3859 struct kvm_io_bus *new_bus, *bus; 3860 3861 bus = kvm_get_bus(kvm, bus_idx); 3862 if (!bus) 3863 return; 3864 3865 for (i = 0; i < bus->dev_count; i++) 3866 if (bus->range[i].dev == dev) { 3867 break; 3868 } 3869 3870 if (i == bus->dev_count) 3871 return; 3872 3873 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3874 GFP_KERNEL_ACCOUNT); 3875 if (!new_bus) { 3876 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3877 goto broken; 3878 } 3879 3880 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3881 new_bus->dev_count--; 3882 memcpy(new_bus->range + i, bus->range + i + 1, 3883 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3884 3885 broken: 3886 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3887 synchronize_srcu_expedited(&kvm->srcu); 3888 kfree(bus); 3889 return; 3890 } 3891 3892 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3893 gpa_t addr) 3894 { 3895 struct kvm_io_bus *bus; 3896 int dev_idx, srcu_idx; 3897 struct kvm_io_device *iodev = NULL; 3898 3899 srcu_idx = srcu_read_lock(&kvm->srcu); 3900 3901 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3902 if (!bus) 3903 goto out_unlock; 3904 3905 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3906 if (dev_idx < 0) 3907 goto out_unlock; 3908 3909 iodev = bus->range[dev_idx].dev; 3910 3911 out_unlock: 3912 srcu_read_unlock(&kvm->srcu, srcu_idx); 3913 3914 return iodev; 3915 } 3916 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3917 3918 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3919 int (*get)(void *, u64 *), int (*set)(void *, u64), 3920 const char *fmt) 3921 { 3922 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3923 inode->i_private; 3924 3925 /* The debugfs files are a reference to the kvm struct which 3926 * is still valid when kvm_destroy_vm is called. 3927 * To avoid the race between open and the removal of the debugfs 3928 * directory we test against the users count. 3929 */ 3930 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3931 return -ENOENT; 3932 3933 if (simple_attr_open(inode, file, get, 3934 stat_data->mode & S_IWUGO ? set : NULL, 3935 fmt)) { 3936 kvm_put_kvm(stat_data->kvm); 3937 return -ENOMEM; 3938 } 3939 3940 return 0; 3941 } 3942 3943 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3944 { 3945 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3946 inode->i_private; 3947 3948 simple_attr_release(inode, file); 3949 kvm_put_kvm(stat_data->kvm); 3950 3951 return 0; 3952 } 3953 3954 static int vm_stat_get_per_vm(void *data, u64 *val) 3955 { 3956 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3957 3958 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3959 3960 return 0; 3961 } 3962 3963 static int vm_stat_clear_per_vm(void *data, u64 val) 3964 { 3965 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3966 3967 if (val) 3968 return -EINVAL; 3969 3970 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3971 3972 return 0; 3973 } 3974 3975 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3976 { 3977 __simple_attr_check_format("%llu\n", 0ull); 3978 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3979 vm_stat_clear_per_vm, "%llu\n"); 3980 } 3981 3982 static const struct file_operations vm_stat_get_per_vm_fops = { 3983 .owner = THIS_MODULE, 3984 .open = vm_stat_get_per_vm_open, 3985 .release = kvm_debugfs_release, 3986 .read = simple_attr_read, 3987 .write = simple_attr_write, 3988 .llseek = no_llseek, 3989 }; 3990 3991 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3992 { 3993 int i; 3994 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3995 struct kvm_vcpu *vcpu; 3996 3997 *val = 0; 3998 3999 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4000 *val += *(u64 *)((void *)vcpu + stat_data->offset); 4001 4002 return 0; 4003 } 4004 4005 static int vcpu_stat_clear_per_vm(void *data, u64 val) 4006 { 4007 int i; 4008 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4009 struct kvm_vcpu *vcpu; 4010 4011 if (val) 4012 return -EINVAL; 4013 4014 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4015 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4016 4017 return 0; 4018 } 4019 4020 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4021 { 4022 __simple_attr_check_format("%llu\n", 0ull); 4023 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4024 vcpu_stat_clear_per_vm, "%llu\n"); 4025 } 4026 4027 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4028 .owner = THIS_MODULE, 4029 .open = vcpu_stat_get_per_vm_open, 4030 .release = kvm_debugfs_release, 4031 .read = simple_attr_read, 4032 .write = simple_attr_write, 4033 .llseek = no_llseek, 4034 }; 4035 4036 static const struct file_operations *stat_fops_per_vm[] = { 4037 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4038 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4039 }; 4040 4041 static int vm_stat_get(void *_offset, u64 *val) 4042 { 4043 unsigned offset = (long)_offset; 4044 struct kvm *kvm; 4045 struct kvm_stat_data stat_tmp = {.offset = offset}; 4046 u64 tmp_val; 4047 4048 *val = 0; 4049 mutex_lock(&kvm_lock); 4050 list_for_each_entry(kvm, &vm_list, vm_list) { 4051 stat_tmp.kvm = kvm; 4052 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4053 *val += tmp_val; 4054 } 4055 mutex_unlock(&kvm_lock); 4056 return 0; 4057 } 4058 4059 static int vm_stat_clear(void *_offset, u64 val) 4060 { 4061 unsigned offset = (long)_offset; 4062 struct kvm *kvm; 4063 struct kvm_stat_data stat_tmp = {.offset = offset}; 4064 4065 if (val) 4066 return -EINVAL; 4067 4068 mutex_lock(&kvm_lock); 4069 list_for_each_entry(kvm, &vm_list, vm_list) { 4070 stat_tmp.kvm = kvm; 4071 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4072 } 4073 mutex_unlock(&kvm_lock); 4074 4075 return 0; 4076 } 4077 4078 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4079 4080 static int vcpu_stat_get(void *_offset, u64 *val) 4081 { 4082 unsigned offset = (long)_offset; 4083 struct kvm *kvm; 4084 struct kvm_stat_data stat_tmp = {.offset = offset}; 4085 u64 tmp_val; 4086 4087 *val = 0; 4088 mutex_lock(&kvm_lock); 4089 list_for_each_entry(kvm, &vm_list, vm_list) { 4090 stat_tmp.kvm = kvm; 4091 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4092 *val += tmp_val; 4093 } 4094 mutex_unlock(&kvm_lock); 4095 return 0; 4096 } 4097 4098 static int vcpu_stat_clear(void *_offset, u64 val) 4099 { 4100 unsigned offset = (long)_offset; 4101 struct kvm *kvm; 4102 struct kvm_stat_data stat_tmp = {.offset = offset}; 4103 4104 if (val) 4105 return -EINVAL; 4106 4107 mutex_lock(&kvm_lock); 4108 list_for_each_entry(kvm, &vm_list, vm_list) { 4109 stat_tmp.kvm = kvm; 4110 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4111 } 4112 mutex_unlock(&kvm_lock); 4113 4114 return 0; 4115 } 4116 4117 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4118 "%llu\n"); 4119 4120 static const struct file_operations *stat_fops[] = { 4121 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4122 [KVM_STAT_VM] = &vm_stat_fops, 4123 }; 4124 4125 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4126 { 4127 struct kobj_uevent_env *env; 4128 unsigned long long created, active; 4129 4130 if (!kvm_dev.this_device || !kvm) 4131 return; 4132 4133 mutex_lock(&kvm_lock); 4134 if (type == KVM_EVENT_CREATE_VM) { 4135 kvm_createvm_count++; 4136 kvm_active_vms++; 4137 } else if (type == KVM_EVENT_DESTROY_VM) { 4138 kvm_active_vms--; 4139 } 4140 created = kvm_createvm_count; 4141 active = kvm_active_vms; 4142 mutex_unlock(&kvm_lock); 4143 4144 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4145 if (!env) 4146 return; 4147 4148 add_uevent_var(env, "CREATED=%llu", created); 4149 add_uevent_var(env, "COUNT=%llu", active); 4150 4151 if (type == KVM_EVENT_CREATE_VM) { 4152 add_uevent_var(env, "EVENT=create"); 4153 kvm->userspace_pid = task_pid_nr(current); 4154 } else if (type == KVM_EVENT_DESTROY_VM) { 4155 add_uevent_var(env, "EVENT=destroy"); 4156 } 4157 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4158 4159 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4160 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4161 4162 if (p) { 4163 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4164 if (!IS_ERR(tmp)) 4165 add_uevent_var(env, "STATS_PATH=%s", tmp); 4166 kfree(p); 4167 } 4168 } 4169 /* no need for checks, since we are adding at most only 5 keys */ 4170 env->envp[env->envp_idx++] = NULL; 4171 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4172 kfree(env); 4173 } 4174 4175 static void kvm_init_debug(void) 4176 { 4177 struct kvm_stats_debugfs_item *p; 4178 4179 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4180 4181 kvm_debugfs_num_entries = 0; 4182 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4183 int mode = p->mode ? p->mode : 0644; 4184 debugfs_create_file(p->name, mode, kvm_debugfs_dir, 4185 (void *)(long)p->offset, 4186 stat_fops[p->kind]); 4187 } 4188 } 4189 4190 static int kvm_suspend(void) 4191 { 4192 if (kvm_usage_count) 4193 hardware_disable_nolock(NULL); 4194 return 0; 4195 } 4196 4197 static void kvm_resume(void) 4198 { 4199 if (kvm_usage_count) { 4200 #ifdef CONFIG_LOCKDEP 4201 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4202 #endif 4203 hardware_enable_nolock(NULL); 4204 } 4205 } 4206 4207 static struct syscore_ops kvm_syscore_ops = { 4208 .suspend = kvm_suspend, 4209 .resume = kvm_resume, 4210 }; 4211 4212 static inline 4213 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4214 { 4215 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4216 } 4217 4218 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4219 { 4220 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4221 4222 WRITE_ONCE(vcpu->preempted, false); 4223 WRITE_ONCE(vcpu->ready, false); 4224 4225 kvm_arch_sched_in(vcpu, cpu); 4226 4227 kvm_arch_vcpu_load(vcpu, cpu); 4228 } 4229 4230 static void kvm_sched_out(struct preempt_notifier *pn, 4231 struct task_struct *next) 4232 { 4233 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4234 4235 if (current->state == TASK_RUNNING) { 4236 WRITE_ONCE(vcpu->preempted, true); 4237 WRITE_ONCE(vcpu->ready, true); 4238 } 4239 kvm_arch_vcpu_put(vcpu); 4240 } 4241 4242 static void check_processor_compat(void *rtn) 4243 { 4244 *(int *)rtn = kvm_arch_check_processor_compat(); 4245 } 4246 4247 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4248 struct module *module) 4249 { 4250 int r; 4251 int cpu; 4252 4253 r = kvm_arch_init(opaque); 4254 if (r) 4255 goto out_fail; 4256 4257 /* 4258 * kvm_arch_init makes sure there's at most one caller 4259 * for architectures that support multiple implementations, 4260 * like intel and amd on x86. 4261 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4262 * conflicts in case kvm is already setup for another implementation. 4263 */ 4264 r = kvm_irqfd_init(); 4265 if (r) 4266 goto out_irqfd; 4267 4268 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4269 r = -ENOMEM; 4270 goto out_free_0; 4271 } 4272 4273 r = kvm_arch_hardware_setup(); 4274 if (r < 0) 4275 goto out_free_0a; 4276 4277 for_each_online_cpu(cpu) { 4278 smp_call_function_single(cpu, check_processor_compat, &r, 1); 4279 if (r < 0) 4280 goto out_free_1; 4281 } 4282 4283 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4284 kvm_starting_cpu, kvm_dying_cpu); 4285 if (r) 4286 goto out_free_2; 4287 register_reboot_notifier(&kvm_reboot_notifier); 4288 4289 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4290 if (!vcpu_align) 4291 vcpu_align = __alignof__(struct kvm_vcpu); 4292 kvm_vcpu_cache = 4293 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4294 SLAB_ACCOUNT, 4295 offsetof(struct kvm_vcpu, arch), 4296 sizeof_field(struct kvm_vcpu, arch), 4297 NULL); 4298 if (!kvm_vcpu_cache) { 4299 r = -ENOMEM; 4300 goto out_free_3; 4301 } 4302 4303 r = kvm_async_pf_init(); 4304 if (r) 4305 goto out_free; 4306 4307 kvm_chardev_ops.owner = module; 4308 kvm_vm_fops.owner = module; 4309 kvm_vcpu_fops.owner = module; 4310 4311 r = misc_register(&kvm_dev); 4312 if (r) { 4313 pr_err("kvm: misc device register failed\n"); 4314 goto out_unreg; 4315 } 4316 4317 register_syscore_ops(&kvm_syscore_ops); 4318 4319 kvm_preempt_ops.sched_in = kvm_sched_in; 4320 kvm_preempt_ops.sched_out = kvm_sched_out; 4321 4322 kvm_init_debug(); 4323 4324 r = kvm_vfio_ops_init(); 4325 WARN_ON(r); 4326 4327 return 0; 4328 4329 out_unreg: 4330 kvm_async_pf_deinit(); 4331 out_free: 4332 kmem_cache_destroy(kvm_vcpu_cache); 4333 out_free_3: 4334 unregister_reboot_notifier(&kvm_reboot_notifier); 4335 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4336 out_free_2: 4337 out_free_1: 4338 kvm_arch_hardware_unsetup(); 4339 out_free_0a: 4340 free_cpumask_var(cpus_hardware_enabled); 4341 out_free_0: 4342 kvm_irqfd_exit(); 4343 out_irqfd: 4344 kvm_arch_exit(); 4345 out_fail: 4346 return r; 4347 } 4348 EXPORT_SYMBOL_GPL(kvm_init); 4349 4350 void kvm_exit(void) 4351 { 4352 debugfs_remove_recursive(kvm_debugfs_dir); 4353 misc_deregister(&kvm_dev); 4354 kmem_cache_destroy(kvm_vcpu_cache); 4355 kvm_async_pf_deinit(); 4356 unregister_syscore_ops(&kvm_syscore_ops); 4357 unregister_reboot_notifier(&kvm_reboot_notifier); 4358 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4359 on_each_cpu(hardware_disable_nolock, NULL, 1); 4360 kvm_arch_hardware_unsetup(); 4361 kvm_arch_exit(); 4362 kvm_irqfd_exit(); 4363 free_cpumask_var(cpus_hardware_enabled); 4364 kvm_vfio_ops_exit(); 4365 } 4366 EXPORT_SYMBOL_GPL(kvm_exit); 4367