xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 8730046c)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86 
87 /*
88  * Ordering of locks:
89  *
90  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92 
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96 
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100 
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103 
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105 
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108 
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111 
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 			   unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 				  unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120 
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122 
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125 
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128 
129 static bool largepages_enabled = true;
130 
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 	if (pfn_valid(pfn))
134 		return PageReserved(pfn_to_page(pfn));
135 
136 	return true;
137 }
138 
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 	int cpu;
145 
146 	if (mutex_lock_killable(&vcpu->mutex))
147 		return -EINTR;
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155 
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 	preempt_disable();
159 	kvm_arch_vcpu_put(vcpu);
160 	preempt_notifier_unregister(&vcpu->preempt_notifier);
161 	preempt_enable();
162 	mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165 
166 static void ack_flush(void *_completed)
167 {
168 }
169 
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 	int i, cpu, me;
173 	cpumask_var_t cpus;
174 	bool called = true;
175 	struct kvm_vcpu *vcpu;
176 
177 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178 
179 	me = get_cpu();
180 	kvm_for_each_vcpu(i, vcpu, kvm) {
181 		kvm_make_request(req, vcpu);
182 		cpu = vcpu->cpu;
183 
184 		/* Set ->requests bit before we read ->mode. */
185 		smp_mb__after_atomic();
186 
187 		if (cpus != NULL && cpu != -1 && cpu != me &&
188 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 			cpumask_set_cpu(cpu, cpus);
190 	}
191 	if (unlikely(cpus == NULL))
192 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 	else if (!cpumask_empty(cpus))
194 		smp_call_function_many(cpus, ack_flush, NULL, 1);
195 	else
196 		called = false;
197 	put_cpu();
198 	free_cpumask_var(cpus);
199 	return called;
200 }
201 
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 	/*
206 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 	 * kvm_make_all_cpus_request.
208 	 */
209 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210 
211 	/*
212 	 * We want to publish modifications to the page tables before reading
213 	 * mode. Pairs with a memory barrier in arch-specific code.
214 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 	 *
218 	 * There is already an smp_mb__after_atomic() before
219 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 	 * barrier here.
221 	 */
222 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 		++kvm->stat.remote_tlb_flush;
224 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228 
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233 
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 	struct page *page;
237 	int r;
238 
239 	mutex_init(&vcpu->mutex);
240 	vcpu->cpu = -1;
241 	vcpu->kvm = kvm;
242 	vcpu->vcpu_id = id;
243 	vcpu->pid = NULL;
244 	init_swait_queue_head(&vcpu->wq);
245 	kvm_async_pf_vcpu_init(vcpu);
246 
247 	vcpu->pre_pcpu = -1;
248 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249 
250 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 	if (!page) {
252 		r = -ENOMEM;
253 		goto fail;
254 	}
255 	vcpu->run = page_address(page);
256 
257 	kvm_vcpu_set_in_spin_loop(vcpu, false);
258 	kvm_vcpu_set_dy_eligible(vcpu, false);
259 	vcpu->preempted = false;
260 
261 	r = kvm_arch_vcpu_init(vcpu);
262 	if (r < 0)
263 		goto fail_free_run;
264 	return 0;
265 
266 fail_free_run:
267 	free_page((unsigned long)vcpu->run);
268 fail:
269 	return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272 
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 	put_pid(vcpu->pid);
276 	kvm_arch_vcpu_uninit(vcpu);
277 	free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280 
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 	return container_of(mn, struct kvm, mmu_notifier);
285 }
286 
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 					     struct mm_struct *mm,
289 					     unsigned long address)
290 {
291 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 	int need_tlb_flush, idx;
293 
294 	/*
295 	 * When ->invalidate_page runs, the linux pte has been zapped
296 	 * already but the page is still allocated until
297 	 * ->invalidate_page returns. So if we increase the sequence
298 	 * here the kvm page fault will notice if the spte can't be
299 	 * established because the page is going to be freed. If
300 	 * instead the kvm page fault establishes the spte before
301 	 * ->invalidate_page runs, kvm_unmap_hva will release it
302 	 * before returning.
303 	 *
304 	 * The sequence increase only need to be seen at spin_unlock
305 	 * time, and not at spin_lock time.
306 	 *
307 	 * Increasing the sequence after the spin_unlock would be
308 	 * unsafe because the kvm page fault could then establish the
309 	 * pte after kvm_unmap_hva returned, without noticing the page
310 	 * is going to be freed.
311 	 */
312 	idx = srcu_read_lock(&kvm->srcu);
313 	spin_lock(&kvm->mmu_lock);
314 
315 	kvm->mmu_notifier_seq++;
316 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 	/* we've to flush the tlb before the pages can be freed */
318 	if (need_tlb_flush)
319 		kvm_flush_remote_tlbs(kvm);
320 
321 	spin_unlock(&kvm->mmu_lock);
322 
323 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324 
325 	srcu_read_unlock(&kvm->srcu, idx);
326 }
327 
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 					struct mm_struct *mm,
330 					unsigned long address,
331 					pte_t pte)
332 {
333 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 	int idx;
335 
336 	idx = srcu_read_lock(&kvm->srcu);
337 	spin_lock(&kvm->mmu_lock);
338 	kvm->mmu_notifier_seq++;
339 	kvm_set_spte_hva(kvm, address, pte);
340 	spin_unlock(&kvm->mmu_lock);
341 	srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 						    struct mm_struct *mm,
346 						    unsigned long start,
347 						    unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 	int need_tlb_flush = 0, idx;
351 
352 	idx = srcu_read_lock(&kvm->srcu);
353 	spin_lock(&kvm->mmu_lock);
354 	/*
355 	 * The count increase must become visible at unlock time as no
356 	 * spte can be established without taking the mmu_lock and
357 	 * count is also read inside the mmu_lock critical section.
358 	 */
359 	kvm->mmu_notifier_count++;
360 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 	need_tlb_flush |= kvm->tlbs_dirty;
362 	/* we've to flush the tlb before the pages can be freed */
363 	if (need_tlb_flush)
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 						  struct mm_struct *mm,
372 						  unsigned long start,
373 						  unsigned long end)
374 {
375 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * This sequence increase will notify the kvm page fault that
380 	 * the page that is going to be mapped in the spte could have
381 	 * been freed.
382 	 */
383 	kvm->mmu_notifier_seq++;
384 	smp_wmb();
385 	/*
386 	 * The above sequence increase must be visible before the
387 	 * below count decrease, which is ensured by the smp_wmb above
388 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 	 */
390 	kvm->mmu_notifier_count--;
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395 
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 					      struct mm_struct *mm,
398 					      unsigned long start,
399 					      unsigned long end)
400 {
401 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 	int young, idx;
403 
404 	idx = srcu_read_lock(&kvm->srcu);
405 	spin_lock(&kvm->mmu_lock);
406 
407 	young = kvm_age_hva(kvm, start, end);
408 	if (young)
409 		kvm_flush_remote_tlbs(kvm);
410 
411 	spin_unlock(&kvm->mmu_lock);
412 	srcu_read_unlock(&kvm->srcu, idx);
413 
414 	return young;
415 }
416 
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 					struct mm_struct *mm,
419 					unsigned long start,
420 					unsigned long end)
421 {
422 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 	int young, idx;
424 
425 	idx = srcu_read_lock(&kvm->srcu);
426 	spin_lock(&kvm->mmu_lock);
427 	/*
428 	 * Even though we do not flush TLB, this will still adversely
429 	 * affect performance on pre-Haswell Intel EPT, where there is
430 	 * no EPT Access Bit to clear so that we have to tear down EPT
431 	 * tables instead. If we find this unacceptable, we can always
432 	 * add a parameter to kvm_age_hva so that it effectively doesn't
433 	 * do anything on clear_young.
434 	 *
435 	 * Also note that currently we never issue secondary TLB flushes
436 	 * from clear_young, leaving this job up to the regular system
437 	 * cadence. If we find this inaccurate, we might come up with a
438 	 * more sophisticated heuristic later.
439 	 */
440 	young = kvm_age_hva(kvm, start, end);
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 				       struct mm_struct *mm,
449 				       unsigned long address)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	young = kvm_test_age_hva(kvm, address);
457 	spin_unlock(&kvm->mmu_lock);
458 	srcu_read_unlock(&kvm->srcu, idx);
459 
460 	return young;
461 }
462 
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 				     struct mm_struct *mm)
465 {
466 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 	int idx;
468 
469 	idx = srcu_read_lock(&kvm->srcu);
470 	kvm_arch_flush_shadow_all(kvm);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 }
473 
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
476 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
477 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
478 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
479 	.clear_young		= kvm_mmu_notifier_clear_young,
480 	.test_young		= kvm_mmu_notifier_test_young,
481 	.change_pte		= kvm_mmu_notifier_change_pte,
482 	.release		= kvm_mmu_notifier_release,
483 };
484 
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490 
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492 
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 	return 0;
496 }
497 
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499 
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 	int i;
503 	struct kvm_memslots *slots;
504 
505 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 	if (!slots)
507 		return NULL;
508 
509 	/*
510 	 * Init kvm generation close to the maximum to easily test the
511 	 * code of handling generation number wrap-around.
512 	 */
513 	slots->generation = -150;
514 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515 		slots->id_to_index[i] = slots->memslots[i].id = i;
516 
517 	return slots;
518 }
519 
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522 	if (!memslot->dirty_bitmap)
523 		return;
524 
525 	kvfree(memslot->dirty_bitmap);
526 	memslot->dirty_bitmap = NULL;
527 }
528 
529 /*
530  * Free any memory in @free but not in @dont.
531  */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533 			      struct kvm_memory_slot *dont)
534 {
535 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536 		kvm_destroy_dirty_bitmap(free);
537 
538 	kvm_arch_free_memslot(kvm, free, dont);
539 
540 	free->npages = 0;
541 }
542 
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545 	struct kvm_memory_slot *memslot;
546 
547 	if (!slots)
548 		return;
549 
550 	kvm_for_each_memslot(memslot, slots)
551 		kvm_free_memslot(kvm, memslot, NULL);
552 
553 	kvfree(slots);
554 }
555 
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558 	int i;
559 
560 	if (!kvm->debugfs_dentry)
561 		return;
562 
563 	debugfs_remove_recursive(kvm->debugfs_dentry);
564 
565 	if (kvm->debugfs_stat_data) {
566 		for (i = 0; i < kvm_debugfs_num_entries; i++)
567 			kfree(kvm->debugfs_stat_data[i]);
568 		kfree(kvm->debugfs_stat_data);
569 	}
570 }
571 
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574 	char dir_name[ITOA_MAX_LEN * 2];
575 	struct kvm_stat_data *stat_data;
576 	struct kvm_stats_debugfs_item *p;
577 
578 	if (!debugfs_initialized())
579 		return 0;
580 
581 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583 						 kvm_debugfs_dir);
584 	if (!kvm->debugfs_dentry)
585 		return -ENOMEM;
586 
587 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588 					 sizeof(*kvm->debugfs_stat_data),
589 					 GFP_KERNEL);
590 	if (!kvm->debugfs_stat_data)
591 		return -ENOMEM;
592 
593 	for (p = debugfs_entries; p->name; p++) {
594 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595 		if (!stat_data)
596 			return -ENOMEM;
597 
598 		stat_data->kvm = kvm;
599 		stat_data->offset = p->offset;
600 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 		if (!debugfs_create_file(p->name, 0644,
602 					 kvm->debugfs_dentry,
603 					 stat_data,
604 					 stat_fops_per_vm[p->kind]))
605 			return -ENOMEM;
606 	}
607 	return 0;
608 }
609 
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 	int r, i;
613 	struct kvm *kvm = kvm_arch_alloc_vm();
614 
615 	if (!kvm)
616 		return ERR_PTR(-ENOMEM);
617 
618 	spin_lock_init(&kvm->mmu_lock);
619 	atomic_inc(&current->mm->mm_count);
620 	kvm->mm = current->mm;
621 	kvm_eventfd_init(kvm);
622 	mutex_init(&kvm->lock);
623 	mutex_init(&kvm->irq_lock);
624 	mutex_init(&kvm->slots_lock);
625 	atomic_set(&kvm->users_count, 1);
626 	INIT_LIST_HEAD(&kvm->devices);
627 
628 	r = kvm_arch_init_vm(kvm, type);
629 	if (r)
630 		goto out_err_no_disable;
631 
632 	r = hardware_enable_all();
633 	if (r)
634 		goto out_err_no_disable;
635 
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639 
640 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641 
642 	r = -ENOMEM;
643 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 		kvm->memslots[i] = kvm_alloc_memslots();
645 		if (!kvm->memslots[i])
646 			goto out_err_no_srcu;
647 	}
648 
649 	if (init_srcu_struct(&kvm->srcu))
650 		goto out_err_no_srcu;
651 	if (init_srcu_struct(&kvm->irq_srcu))
652 		goto out_err_no_irq_srcu;
653 	for (i = 0; i < KVM_NR_BUSES; i++) {
654 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 					GFP_KERNEL);
656 		if (!kvm->buses[i])
657 			goto out_err;
658 	}
659 
660 	r = kvm_init_mmu_notifier(kvm);
661 	if (r)
662 		goto out_err;
663 
664 	spin_lock(&kvm_lock);
665 	list_add(&kvm->vm_list, &vm_list);
666 	spin_unlock(&kvm_lock);
667 
668 	preempt_notifier_inc();
669 
670 	return kvm;
671 
672 out_err:
673 	cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 	cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 	hardware_disable_all();
678 out_err_no_disable:
679 	for (i = 0; i < KVM_NR_BUSES; i++)
680 		kfree(kvm->buses[i]);
681 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682 		kvm_free_memslots(kvm, kvm->memslots[i]);
683 	kvm_arch_free_vm(kvm);
684 	mmdrop(current->mm);
685 	return ERR_PTR(r);
686 }
687 
688 /*
689  * Avoid using vmalloc for a small buffer.
690  * Should not be used when the size is statically known.
691  */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694 	if (size > PAGE_SIZE)
695 		return vzalloc(size);
696 	else
697 		return kzalloc(size, GFP_KERNEL);
698 }
699 
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702 	struct kvm_device *dev, *tmp;
703 
704 	/*
705 	 * We do not need to take the kvm->lock here, because nobody else
706 	 * has a reference to the struct kvm at this point and therefore
707 	 * cannot access the devices list anyhow.
708 	 */
709 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710 		list_del(&dev->vm_node);
711 		dev->ops->destroy(dev);
712 	}
713 }
714 
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717 	int i;
718 	struct mm_struct *mm = kvm->mm;
719 
720 	kvm_destroy_vm_debugfs(kvm);
721 	kvm_arch_sync_events(kvm);
722 	spin_lock(&kvm_lock);
723 	list_del(&kvm->vm_list);
724 	spin_unlock(&kvm_lock);
725 	kvm_free_irq_routing(kvm);
726 	for (i = 0; i < KVM_NR_BUSES; i++)
727 		kvm_io_bus_destroy(kvm->buses[i]);
728 	kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 	kvm_arch_flush_shadow_all(kvm);
733 #endif
734 	kvm_arch_destroy_vm(kvm);
735 	kvm_destroy_devices(kvm);
736 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 		kvm_free_memslots(kvm, kvm->memslots[i]);
738 	cleanup_srcu_struct(&kvm->irq_srcu);
739 	cleanup_srcu_struct(&kvm->srcu);
740 	kvm_arch_free_vm(kvm);
741 	preempt_notifier_dec();
742 	hardware_disable_all();
743 	mmdrop(mm);
744 }
745 
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 	atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751 
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 	if (atomic_dec_and_test(&kvm->users_count))
755 		kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758 
759 
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 	struct kvm *kvm = filp->private_data;
763 
764 	kvm_irqfd_release(kvm);
765 
766 	kvm_put_kvm(kvm);
767 	return 0;
768 }
769 
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777 
778 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779 	if (!memslot->dirty_bitmap)
780 		return -ENOMEM;
781 
782 	return 0;
783 }
784 
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792 			    struct kvm_memory_slot *new)
793 {
794 	int id = new->id;
795 	int i = slots->id_to_index[id];
796 	struct kvm_memory_slot *mslots = slots->memslots;
797 
798 	WARN_ON(mslots[i].id != id);
799 	if (!new->npages) {
800 		WARN_ON(!mslots[i].npages);
801 		if (mslots[i].npages)
802 			slots->used_slots--;
803 	} else {
804 		if (!mslots[i].npages)
805 			slots->used_slots++;
806 	}
807 
808 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 	       new->base_gfn <= mslots[i + 1].base_gfn) {
810 		if (!mslots[i + 1].npages)
811 			break;
812 		mslots[i] = mslots[i + 1];
813 		slots->id_to_index[mslots[i].id] = i;
814 		i++;
815 	}
816 
817 	/*
818 	 * The ">=" is needed when creating a slot with base_gfn == 0,
819 	 * so that it moves before all those with base_gfn == npages == 0.
820 	 *
821 	 * On the other hand, if new->npages is zero, the above loop has
822 	 * already left i pointing to the beginning of the empty part of
823 	 * mslots, and the ">=" would move the hole backwards in this
824 	 * case---which is wrong.  So skip the loop when deleting a slot.
825 	 */
826 	if (new->npages) {
827 		while (i > 0 &&
828 		       new->base_gfn >= mslots[i - 1].base_gfn) {
829 			mslots[i] = mslots[i - 1];
830 			slots->id_to_index[mslots[i].id] = i;
831 			i--;
832 		}
833 	} else
834 		WARN_ON_ONCE(i != slots->used_slots);
835 
836 	mslots[i] = *new;
837 	slots->id_to_index[mslots[i].id] = i;
838 }
839 
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843 
844 #ifdef __KVM_HAVE_READONLY_MEM
845 	valid_flags |= KVM_MEM_READONLY;
846 #endif
847 
848 	if (mem->flags & ~valid_flags)
849 		return -EINVAL;
850 
851 	return 0;
852 }
853 
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 		int as_id, struct kvm_memslots *slots)
856 {
857 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858 
859 	/*
860 	 * Set the low bit in the generation, which disables SPTE caching
861 	 * until the end of synchronize_srcu_expedited.
862 	 */
863 	WARN_ON(old_memslots->generation & 1);
864 	slots->generation = old_memslots->generation + 1;
865 
866 	rcu_assign_pointer(kvm->memslots[as_id], slots);
867 	synchronize_srcu_expedited(&kvm->srcu);
868 
869 	/*
870 	 * Increment the new memslot generation a second time. This prevents
871 	 * vm exits that race with memslot updates from caching a memslot
872 	 * generation that will (potentially) be valid forever.
873 	 */
874 	slots->generation++;
875 
876 	kvm_arch_memslots_updated(kvm, slots);
877 
878 	return old_memslots;
879 }
880 
881 /*
882  * Allocate some memory and give it an address in the guest physical address
883  * space.
884  *
885  * Discontiguous memory is allowed, mostly for framebuffers.
886  *
887  * Must be called holding kvm->slots_lock for write.
888  */
889 int __kvm_set_memory_region(struct kvm *kvm,
890 			    const struct kvm_userspace_memory_region *mem)
891 {
892 	int r;
893 	gfn_t base_gfn;
894 	unsigned long npages;
895 	struct kvm_memory_slot *slot;
896 	struct kvm_memory_slot old, new;
897 	struct kvm_memslots *slots = NULL, *old_memslots;
898 	int as_id, id;
899 	enum kvm_mr_change change;
900 
901 	r = check_memory_region_flags(mem);
902 	if (r)
903 		goto out;
904 
905 	r = -EINVAL;
906 	as_id = mem->slot >> 16;
907 	id = (u16)mem->slot;
908 
909 	/* General sanity checks */
910 	if (mem->memory_size & (PAGE_SIZE - 1))
911 		goto out;
912 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 		goto out;
914 	/* We can read the guest memory with __xxx_user() later on. */
915 	if ((id < KVM_USER_MEM_SLOTS) &&
916 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917 	     !access_ok(VERIFY_WRITE,
918 			(void __user *)(unsigned long)mem->userspace_addr,
919 			mem->memory_size)))
920 		goto out;
921 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922 		goto out;
923 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924 		goto out;
925 
926 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928 	npages = mem->memory_size >> PAGE_SHIFT;
929 
930 	if (npages > KVM_MEM_MAX_NR_PAGES)
931 		goto out;
932 
933 	new = old = *slot;
934 
935 	new.id = id;
936 	new.base_gfn = base_gfn;
937 	new.npages = npages;
938 	new.flags = mem->flags;
939 
940 	if (npages) {
941 		if (!old.npages)
942 			change = KVM_MR_CREATE;
943 		else { /* Modify an existing slot. */
944 			if ((mem->userspace_addr != old.userspace_addr) ||
945 			    (npages != old.npages) ||
946 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947 				goto out;
948 
949 			if (base_gfn != old.base_gfn)
950 				change = KVM_MR_MOVE;
951 			else if (new.flags != old.flags)
952 				change = KVM_MR_FLAGS_ONLY;
953 			else { /* Nothing to change. */
954 				r = 0;
955 				goto out;
956 			}
957 		}
958 	} else {
959 		if (!old.npages)
960 			goto out;
961 
962 		change = KVM_MR_DELETE;
963 		new.base_gfn = 0;
964 		new.flags = 0;
965 	}
966 
967 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968 		/* Check for overlaps */
969 		r = -EEXIST;
970 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972 			    (slot->id == id))
973 				continue;
974 			if (!((base_gfn + npages <= slot->base_gfn) ||
975 			      (base_gfn >= slot->base_gfn + slot->npages)))
976 				goto out;
977 		}
978 	}
979 
980 	/* Free page dirty bitmap if unneeded */
981 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 		new.dirty_bitmap = NULL;
983 
984 	r = -ENOMEM;
985 	if (change == KVM_MR_CREATE) {
986 		new.userspace_addr = mem->userspace_addr;
987 
988 		if (kvm_arch_create_memslot(kvm, &new, npages))
989 			goto out_free;
990 	}
991 
992 	/* Allocate page dirty bitmap if needed */
993 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 		if (kvm_create_dirty_bitmap(&new) < 0)
995 			goto out_free;
996 	}
997 
998 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999 	if (!slots)
1000 		goto out_free;
1001 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002 
1003 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 		slot = id_to_memslot(slots, id);
1005 		slot->flags |= KVM_MEMSLOT_INVALID;
1006 
1007 		old_memslots = install_new_memslots(kvm, as_id, slots);
1008 
1009 		/* slot was deleted or moved, clear iommu mapping */
1010 		kvm_iommu_unmap_pages(kvm, &old);
1011 		/* From this point no new shadow pages pointing to a deleted,
1012 		 * or moved, memslot will be created.
1013 		 *
1014 		 * validation of sp->gfn happens in:
1015 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1017 		 */
1018 		kvm_arch_flush_shadow_memslot(kvm, slot);
1019 
1020 		/*
1021 		 * We can re-use the old_memslots from above, the only difference
1022 		 * from the currently installed memslots is the invalid flag.  This
1023 		 * will get overwritten by update_memslots anyway.
1024 		 */
1025 		slots = old_memslots;
1026 	}
1027 
1028 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029 	if (r)
1030 		goto out_slots;
1031 
1032 	/* actual memory is freed via old in kvm_free_memslot below */
1033 	if (change == KVM_MR_DELETE) {
1034 		new.dirty_bitmap = NULL;
1035 		memset(&new.arch, 0, sizeof(new.arch));
1036 	}
1037 
1038 	update_memslots(slots, &new);
1039 	old_memslots = install_new_memslots(kvm, as_id, slots);
1040 
1041 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042 
1043 	kvm_free_memslot(kvm, &old, &new);
1044 	kvfree(old_memslots);
1045 
1046 	/*
1047 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1048 	 * un-mapped and re-mapped if their base changes.  Since base change
1049 	 * unmapping is handled above with slot deletion, mapping alone is
1050 	 * needed here.  Anything else the iommu might care about for existing
1051 	 * slots (size changes, userspace addr changes and read-only flag
1052 	 * changes) is disallowed above, so any other attribute changes getting
1053 	 * here can be skipped.
1054 	 */
1055 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056 		r = kvm_iommu_map_pages(kvm, &new);
1057 		return r;
1058 	}
1059 
1060 	return 0;
1061 
1062 out_slots:
1063 	kvfree(slots);
1064 out_free:
1065 	kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 	return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070 
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 			  const struct kvm_userspace_memory_region *mem)
1073 {
1074 	int r;
1075 
1076 	mutex_lock(&kvm->slots_lock);
1077 	r = __kvm_set_memory_region(kvm, mem);
1078 	mutex_unlock(&kvm->slots_lock);
1079 	return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082 
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 					  struct kvm_userspace_memory_region *mem)
1085 {
1086 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 		return -EINVAL;
1088 
1089 	return kvm_set_memory_region(kvm, mem);
1090 }
1091 
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 			struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095 	struct kvm_memslots *slots;
1096 	struct kvm_memory_slot *memslot;
1097 	int r, i, as_id, id;
1098 	unsigned long n;
1099 	unsigned long any = 0;
1100 
1101 	r = -EINVAL;
1102 	as_id = log->slot >> 16;
1103 	id = (u16)log->slot;
1104 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105 		goto out;
1106 
1107 	slots = __kvm_memslots(kvm, as_id);
1108 	memslot = id_to_memslot(slots, id);
1109 	r = -ENOENT;
1110 	if (!memslot->dirty_bitmap)
1111 		goto out;
1112 
1113 	n = kvm_dirty_bitmap_bytes(memslot);
1114 
1115 	for (i = 0; !any && i < n/sizeof(long); ++i)
1116 		any = memslot->dirty_bitmap[i];
1117 
1118 	r = -EFAULT;
1119 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 		goto out;
1121 
1122 	if (any)
1123 		*is_dirty = 1;
1124 
1125 	r = 0;
1126 out:
1127 	return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130 
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *	are dirty write protect them for next write.
1135  * @kvm:	pointer to kvm instance
1136  * @log:	slot id and address to which we copy the log
1137  * @is_dirty:	flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 			struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 	struct kvm_memslots *slots;
1158 	struct kvm_memory_slot *memslot;
1159 	int r, i, as_id, id;
1160 	unsigned long n;
1161 	unsigned long *dirty_bitmap;
1162 	unsigned long *dirty_bitmap_buffer;
1163 
1164 	r = -EINVAL;
1165 	as_id = log->slot >> 16;
1166 	id = (u16)log->slot;
1167 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 		goto out;
1169 
1170 	slots = __kvm_memslots(kvm, as_id);
1171 	memslot = id_to_memslot(slots, id);
1172 
1173 	dirty_bitmap = memslot->dirty_bitmap;
1174 	r = -ENOENT;
1175 	if (!dirty_bitmap)
1176 		goto out;
1177 
1178 	n = kvm_dirty_bitmap_bytes(memslot);
1179 
1180 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181 	memset(dirty_bitmap_buffer, 0, n);
1182 
1183 	spin_lock(&kvm->mmu_lock);
1184 	*is_dirty = false;
1185 	for (i = 0; i < n / sizeof(long); i++) {
1186 		unsigned long mask;
1187 		gfn_t offset;
1188 
1189 		if (!dirty_bitmap[i])
1190 			continue;
1191 
1192 		*is_dirty = true;
1193 
1194 		mask = xchg(&dirty_bitmap[i], 0);
1195 		dirty_bitmap_buffer[i] = mask;
1196 
1197 		if (mask) {
1198 			offset = i * BITS_PER_LONG;
1199 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 								offset, mask);
1201 		}
1202 	}
1203 
1204 	spin_unlock(&kvm->mmu_lock);
1205 
1206 	r = -EFAULT;
1207 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 		goto out;
1209 
1210 	r = 0;
1211 out:
1212 	return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216 
1217 bool kvm_largepages_enabled(void)
1218 {
1219 	return largepages_enabled;
1220 }
1221 
1222 void kvm_disable_largepages(void)
1223 {
1224 	largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227 
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233 
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238 
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242 
1243 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244 	      memslot->flags & KVM_MEMSLOT_INVALID)
1245 		return false;
1246 
1247 	return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250 
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253 	struct vm_area_struct *vma;
1254 	unsigned long addr, size;
1255 
1256 	size = PAGE_SIZE;
1257 
1258 	addr = gfn_to_hva(kvm, gfn);
1259 	if (kvm_is_error_hva(addr))
1260 		return PAGE_SIZE;
1261 
1262 	down_read(&current->mm->mmap_sem);
1263 	vma = find_vma(current->mm, addr);
1264 	if (!vma)
1265 		goto out;
1266 
1267 	size = vma_kernel_pagesize(vma);
1268 
1269 out:
1270 	up_read(&current->mm->mmap_sem);
1271 
1272 	return size;
1273 }
1274 
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277 	return slot->flags & KVM_MEM_READONLY;
1278 }
1279 
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281 				       gfn_t *nr_pages, bool write)
1282 {
1283 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284 		return KVM_HVA_ERR_BAD;
1285 
1286 	if (memslot_is_readonly(slot) && write)
1287 		return KVM_HVA_ERR_RO_BAD;
1288 
1289 	if (nr_pages)
1290 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1291 
1292 	return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294 
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296 				     gfn_t *nr_pages)
1297 {
1298 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300 
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302 					gfn_t gfn)
1303 {
1304 	return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307 
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313 
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319 
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325 				      gfn_t gfn, bool *writable)
1326 {
1327 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328 
1329 	if (!kvm_is_error_hva(hva) && writable)
1330 		*writable = !memslot_is_readonly(slot);
1331 
1332 	return hva;
1333 }
1334 
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338 
1339 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341 
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345 
1346 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348 
1349 static int get_user_page_nowait(unsigned long start, int write,
1350 		struct page **page)
1351 {
1352 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353 
1354 	if (write)
1355 		flags |= FOLL_WRITE;
1356 
1357 	return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359 
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363 
1364 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365 	return rc == -EHWPOISON;
1366 }
1367 
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375 	struct page *page[1];
1376 	int npages;
1377 
1378 	if (!(async || atomic))
1379 		return false;
1380 
1381 	/*
1382 	 * Fast pin a writable pfn only if it is a write fault request
1383 	 * or the caller allows to map a writable pfn for a read fault
1384 	 * request.
1385 	 */
1386 	if (!(write_fault || writable))
1387 		return false;
1388 
1389 	npages = __get_user_pages_fast(addr, 1, 1, page);
1390 	if (npages == 1) {
1391 		*pfn = page_to_pfn(page[0]);
1392 
1393 		if (writable)
1394 			*writable = true;
1395 		return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406 			   bool *writable, kvm_pfn_t *pfn)
1407 {
1408 	struct page *page[1];
1409 	int npages = 0;
1410 
1411 	might_sleep();
1412 
1413 	if (writable)
1414 		*writable = write_fault;
1415 
1416 	if (async) {
1417 		down_read(&current->mm->mmap_sem);
1418 		npages = get_user_page_nowait(addr, write_fault, page);
1419 		up_read(&current->mm->mmap_sem);
1420 	} else {
1421 		unsigned int flags = FOLL_HWPOISON;
1422 
1423 		if (write_fault)
1424 			flags |= FOLL_WRITE;
1425 
1426 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1427 	}
1428 	if (npages != 1)
1429 		return npages;
1430 
1431 	/* map read fault as writable if possible */
1432 	if (unlikely(!write_fault) && writable) {
1433 		struct page *wpage[1];
1434 
1435 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436 		if (npages == 1) {
1437 			*writable = true;
1438 			put_page(page[0]);
1439 			page[0] = wpage[0];
1440 		}
1441 
1442 		npages = 1;
1443 	}
1444 	*pfn = page_to_pfn(page[0]);
1445 	return npages;
1446 }
1447 
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450 	if (unlikely(!(vma->vm_flags & VM_READ)))
1451 		return false;
1452 
1453 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460 			       unsigned long addr, bool *async,
1461 			       bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463 	unsigned long pfn;
1464 	int r;
1465 
1466 	r = follow_pfn(vma, addr, &pfn);
1467 	if (r) {
1468 		/*
1469 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470 		 * not call the fault handler, so do it here.
1471 		 */
1472 		bool unlocked = false;
1473 		r = fixup_user_fault(current, current->mm, addr,
1474 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1475 				     &unlocked);
1476 		if (unlocked)
1477 			return -EAGAIN;
1478 		if (r)
1479 			return r;
1480 
1481 		r = follow_pfn(vma, addr, &pfn);
1482 		if (r)
1483 			return r;
1484 
1485 	}
1486 
1487 
1488 	/*
1489 	 * Get a reference here because callers of *hva_to_pfn* and
1490 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1492 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493 	 * simply do nothing for reserved pfns.
1494 	 *
1495 	 * Whoever called remap_pfn_range is also going to call e.g.
1496 	 * unmap_mapping_range before the underlying pages are freed,
1497 	 * causing a call to our MMU notifier.
1498 	 */
1499 	kvm_get_pfn(pfn);
1500 
1501 	*p_pfn = pfn;
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Pin guest page in memory and return its pfn.
1507  * @addr: host virtual address which maps memory to the guest
1508  * @atomic: whether this function can sleep
1509  * @async: whether this function need to wait IO complete if the
1510  *         host page is not in the memory
1511  * @write_fault: whether we should get a writable host page
1512  * @writable: whether it allows to map a writable host page for !@write_fault
1513  *
1514  * The function will map a writable host page for these two cases:
1515  * 1): @write_fault = true
1516  * 2): @write_fault = false && @writable, @writable will tell the caller
1517  *     whether the mapping is writable.
1518  */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520 			bool write_fault, bool *writable)
1521 {
1522 	struct vm_area_struct *vma;
1523 	kvm_pfn_t pfn = 0;
1524 	int npages, r;
1525 
1526 	/* we can do it either atomically or asynchronously, not both */
1527 	BUG_ON(atomic && async);
1528 
1529 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530 		return pfn;
1531 
1532 	if (atomic)
1533 		return KVM_PFN_ERR_FAULT;
1534 
1535 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536 	if (npages == 1)
1537 		return pfn;
1538 
1539 	down_read(&current->mm->mmap_sem);
1540 	if (npages == -EHWPOISON ||
1541 	      (!async && check_user_page_hwpoison(addr))) {
1542 		pfn = KVM_PFN_ERR_HWPOISON;
1543 		goto exit;
1544 	}
1545 
1546 retry:
1547 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1548 
1549 	if (vma == NULL)
1550 		pfn = KVM_PFN_ERR_FAULT;
1551 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553 		if (r == -EAGAIN)
1554 			goto retry;
1555 		if (r < 0)
1556 			pfn = KVM_PFN_ERR_FAULT;
1557 	} else {
1558 		if (async && vma_is_valid(vma, write_fault))
1559 			*async = true;
1560 		pfn = KVM_PFN_ERR_FAULT;
1561 	}
1562 exit:
1563 	up_read(&current->mm->mmap_sem);
1564 	return pfn;
1565 }
1566 
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568 			       bool atomic, bool *async, bool write_fault,
1569 			       bool *writable)
1570 {
1571 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572 
1573 	if (addr == KVM_HVA_ERR_RO_BAD) {
1574 		if (writable)
1575 			*writable = false;
1576 		return KVM_PFN_ERR_RO_FAULT;
1577 	}
1578 
1579 	if (kvm_is_error_hva(addr)) {
1580 		if (writable)
1581 			*writable = false;
1582 		return KVM_PFN_NOSLOT;
1583 	}
1584 
1585 	/* Do not map writable pfn in the readonly memslot. */
1586 	if (writable && memslot_is_readonly(slot)) {
1587 		*writable = false;
1588 		writable = NULL;
1589 	}
1590 
1591 	return hva_to_pfn(addr, atomic, async, write_fault,
1592 			  writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595 
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597 		      bool *writable)
1598 {
1599 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600 				    write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603 
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609 
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615 
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621 
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627 
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633 
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639 
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641 			    struct page **pages, int nr_pages)
1642 {
1643 	unsigned long addr;
1644 	gfn_t entry;
1645 
1646 	addr = gfn_to_hva_many(slot, gfn, &entry);
1647 	if (kvm_is_error_hva(addr))
1648 		return -1;
1649 
1650 	if (entry < nr_pages)
1651 		return 0;
1652 
1653 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656 
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659 	if (is_error_noslot_pfn(pfn))
1660 		return KVM_ERR_PTR_BAD_PAGE;
1661 
1662 	if (kvm_is_reserved_pfn(pfn)) {
1663 		WARN_ON(1);
1664 		return KVM_ERR_PTR_BAD_PAGE;
1665 	}
1666 
1667 	return pfn_to_page(pfn);
1668 }
1669 
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672 	kvm_pfn_t pfn;
1673 
1674 	pfn = gfn_to_pfn(kvm, gfn);
1675 
1676 	return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679 
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682 	kvm_pfn_t pfn;
1683 
1684 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685 
1686 	return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689 
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692 	WARN_ON(is_error_page(page));
1693 
1694 	kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697 
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701 		put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704 
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707 	WARN_ON(is_error_page(page));
1708 
1709 	kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712 
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715 	kvm_set_pfn_dirty(pfn);
1716 	kvm_release_pfn_clean(pfn);
1717 }
1718 
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721 	if (!kvm_is_reserved_pfn(pfn)) {
1722 		struct page *page = pfn_to_page(pfn);
1723 
1724 		if (!PageReserved(page))
1725 			SetPageDirty(page);
1726 	}
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729 
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732 	if (!kvm_is_reserved_pfn(pfn))
1733 		mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736 
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739 	if (!kvm_is_reserved_pfn(pfn))
1740 		get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743 
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746 	if (len > PAGE_SIZE - offset)
1747 		return PAGE_SIZE - offset;
1748 	else
1749 		return len;
1750 }
1751 
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753 				 void *data, int offset, int len)
1754 {
1755 	int r;
1756 	unsigned long addr;
1757 
1758 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759 	if (kvm_is_error_hva(addr))
1760 		return -EFAULT;
1761 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1762 	if (r)
1763 		return -EFAULT;
1764 	return 0;
1765 }
1766 
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768 			int len)
1769 {
1770 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771 
1772 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775 
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777 			     int offset, int len)
1778 {
1779 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780 
1781 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784 
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787 	gfn_t gfn = gpa >> PAGE_SHIFT;
1788 	int seg;
1789 	int offset = offset_in_page(gpa);
1790 	int ret;
1791 
1792 	while ((seg = next_segment(len, offset)) != 0) {
1793 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794 		if (ret < 0)
1795 			return ret;
1796 		offset = 0;
1797 		len -= seg;
1798 		data += seg;
1799 		++gfn;
1800 	}
1801 	return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804 
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807 	gfn_t gfn = gpa >> PAGE_SHIFT;
1808 	int seg;
1809 	int offset = offset_in_page(gpa);
1810 	int ret;
1811 
1812 	while ((seg = next_segment(len, offset)) != 0) {
1813 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814 		if (ret < 0)
1815 			return ret;
1816 		offset = 0;
1817 		len -= seg;
1818 		data += seg;
1819 		++gfn;
1820 	}
1821 	return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824 
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826 			           void *data, int offset, unsigned long len)
1827 {
1828 	int r;
1829 	unsigned long addr;
1830 
1831 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832 	if (kvm_is_error_hva(addr))
1833 		return -EFAULT;
1834 	pagefault_disable();
1835 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836 	pagefault_enable();
1837 	if (r)
1838 		return -EFAULT;
1839 	return 0;
1840 }
1841 
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843 			  unsigned long len)
1844 {
1845 	gfn_t gfn = gpa >> PAGE_SHIFT;
1846 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847 	int offset = offset_in_page(gpa);
1848 
1849 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852 
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854 			       void *data, unsigned long len)
1855 {
1856 	gfn_t gfn = gpa >> PAGE_SHIFT;
1857 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858 	int offset = offset_in_page(gpa);
1859 
1860 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863 
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865 			          const void *data, int offset, int len)
1866 {
1867 	int r;
1868 	unsigned long addr;
1869 
1870 	addr = gfn_to_hva_memslot(memslot, gfn);
1871 	if (kvm_is_error_hva(addr))
1872 		return -EFAULT;
1873 	r = __copy_to_user((void __user *)addr + offset, data, len);
1874 	if (r)
1875 		return -EFAULT;
1876 	mark_page_dirty_in_slot(memslot, gfn);
1877 	return 0;
1878 }
1879 
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881 			 const void *data, int offset, int len)
1882 {
1883 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884 
1885 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888 
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890 			      const void *data, int offset, int len)
1891 {
1892 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893 
1894 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897 
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899 		    unsigned long len)
1900 {
1901 	gfn_t gfn = gpa >> PAGE_SHIFT;
1902 	int seg;
1903 	int offset = offset_in_page(gpa);
1904 	int ret;
1905 
1906 	while ((seg = next_segment(len, offset)) != 0) {
1907 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908 		if (ret < 0)
1909 			return ret;
1910 		offset = 0;
1911 		len -= seg;
1912 		data += seg;
1913 		++gfn;
1914 	}
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918 
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920 		         unsigned long len)
1921 {
1922 	gfn_t gfn = gpa >> PAGE_SHIFT;
1923 	int seg;
1924 	int offset = offset_in_page(gpa);
1925 	int ret;
1926 
1927 	while ((seg = next_segment(len, offset)) != 0) {
1928 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929 		if (ret < 0)
1930 			return ret;
1931 		offset = 0;
1932 		len -= seg;
1933 		data += seg;
1934 		++gfn;
1935 	}
1936 	return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939 
1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 			      gpa_t gpa, unsigned long len)
1942 {
1943 	struct kvm_memslots *slots = kvm_memslots(kvm);
1944 	int offset = offset_in_page(gpa);
1945 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948 	gfn_t nr_pages_avail;
1949 
1950 	ghc->gpa = gpa;
1951 	ghc->generation = slots->generation;
1952 	ghc->len = len;
1953 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1954 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956 		ghc->hva += offset;
1957 	} else {
1958 		/*
1959 		 * If the requested region crosses two memslots, we still
1960 		 * verify that the entire region is valid here.
1961 		 */
1962 		while (start_gfn <= end_gfn) {
1963 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1964 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965 						   &nr_pages_avail);
1966 			if (kvm_is_error_hva(ghc->hva))
1967 				return -EFAULT;
1968 			start_gfn += nr_pages_avail;
1969 		}
1970 		/* Use the slow path for cross page reads and writes. */
1971 		ghc->memslot = NULL;
1972 	}
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1976 
1977 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978 			   void *data, int offset, unsigned long len)
1979 {
1980 	struct kvm_memslots *slots = kvm_memslots(kvm);
1981 	int r;
1982 	gpa_t gpa = ghc->gpa + offset;
1983 
1984 	BUG_ON(len + offset > ghc->len);
1985 
1986 	if (slots->generation != ghc->generation)
1987 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1988 
1989 	if (unlikely(!ghc->memslot))
1990 		return kvm_write_guest(kvm, gpa, data, len);
1991 
1992 	if (kvm_is_error_hva(ghc->hva))
1993 		return -EFAULT;
1994 
1995 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1996 	if (r)
1997 		return -EFAULT;
1998 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1999 
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2003 
2004 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2005 			   void *data, unsigned long len)
2006 {
2007 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2010 
2011 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2012 			   void *data, unsigned long len)
2013 {
2014 	struct kvm_memslots *slots = kvm_memslots(kvm);
2015 	int r;
2016 
2017 	BUG_ON(len > ghc->len);
2018 
2019 	if (slots->generation != ghc->generation)
2020 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2021 
2022 	if (unlikely(!ghc->memslot))
2023 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2024 
2025 	if (kvm_is_error_hva(ghc->hva))
2026 		return -EFAULT;
2027 
2028 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2029 	if (r)
2030 		return -EFAULT;
2031 
2032 	return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2035 
2036 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2037 {
2038 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2039 
2040 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2043 
2044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2045 {
2046 	gfn_t gfn = gpa >> PAGE_SHIFT;
2047 	int seg;
2048 	int offset = offset_in_page(gpa);
2049 	int ret;
2050 
2051 	while ((seg = next_segment(len, offset)) != 0) {
2052 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2053 		if (ret < 0)
2054 			return ret;
2055 		offset = 0;
2056 		len -= seg;
2057 		++gfn;
2058 	}
2059 	return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2062 
2063 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2064 				    gfn_t gfn)
2065 {
2066 	if (memslot && memslot->dirty_bitmap) {
2067 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2068 
2069 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2070 	}
2071 }
2072 
2073 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2074 {
2075 	struct kvm_memory_slot *memslot;
2076 
2077 	memslot = gfn_to_memslot(kvm, gfn);
2078 	mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(mark_page_dirty);
2081 
2082 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2083 {
2084 	struct kvm_memory_slot *memslot;
2085 
2086 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087 	mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2090 
2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2092 {
2093 	unsigned int old, val, grow;
2094 
2095 	old = val = vcpu->halt_poll_ns;
2096 	grow = READ_ONCE(halt_poll_ns_grow);
2097 	/* 10us base */
2098 	if (val == 0 && grow)
2099 		val = 10000;
2100 	else
2101 		val *= grow;
2102 
2103 	if (val > halt_poll_ns)
2104 		val = halt_poll_ns;
2105 
2106 	vcpu->halt_poll_ns = val;
2107 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2108 }
2109 
2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2111 {
2112 	unsigned int old, val, shrink;
2113 
2114 	old = val = vcpu->halt_poll_ns;
2115 	shrink = READ_ONCE(halt_poll_ns_shrink);
2116 	if (shrink == 0)
2117 		val = 0;
2118 	else
2119 		val /= shrink;
2120 
2121 	vcpu->halt_poll_ns = val;
2122 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2123 }
2124 
2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2126 {
2127 	if (kvm_arch_vcpu_runnable(vcpu)) {
2128 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2129 		return -EINTR;
2130 	}
2131 	if (kvm_cpu_has_pending_timer(vcpu))
2132 		return -EINTR;
2133 	if (signal_pending(current))
2134 		return -EINTR;
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2141  */
2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2143 {
2144 	ktime_t start, cur;
2145 	DECLARE_SWAITQUEUE(wait);
2146 	bool waited = false;
2147 	u64 block_ns;
2148 
2149 	start = cur = ktime_get();
2150 	if (vcpu->halt_poll_ns) {
2151 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2152 
2153 		++vcpu->stat.halt_attempted_poll;
2154 		do {
2155 			/*
2156 			 * This sets KVM_REQ_UNHALT if an interrupt
2157 			 * arrives.
2158 			 */
2159 			if (kvm_vcpu_check_block(vcpu) < 0) {
2160 				++vcpu->stat.halt_successful_poll;
2161 				if (!vcpu_valid_wakeup(vcpu))
2162 					++vcpu->stat.halt_poll_invalid;
2163 				goto out;
2164 			}
2165 			cur = ktime_get();
2166 		} while (single_task_running() && ktime_before(cur, stop));
2167 	}
2168 
2169 	kvm_arch_vcpu_blocking(vcpu);
2170 
2171 	for (;;) {
2172 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2173 
2174 		if (kvm_vcpu_check_block(vcpu) < 0)
2175 			break;
2176 
2177 		waited = true;
2178 		schedule();
2179 	}
2180 
2181 	finish_swait(&vcpu->wq, &wait);
2182 	cur = ktime_get();
2183 
2184 	kvm_arch_vcpu_unblocking(vcpu);
2185 out:
2186 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2187 
2188 	if (!vcpu_valid_wakeup(vcpu))
2189 		shrink_halt_poll_ns(vcpu);
2190 	else if (halt_poll_ns) {
2191 		if (block_ns <= vcpu->halt_poll_ns)
2192 			;
2193 		/* we had a long block, shrink polling */
2194 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2195 			shrink_halt_poll_ns(vcpu);
2196 		/* we had a short halt and our poll time is too small */
2197 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2198 			block_ns < halt_poll_ns)
2199 			grow_halt_poll_ns(vcpu);
2200 	} else
2201 		vcpu->halt_poll_ns = 0;
2202 
2203 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2204 	kvm_arch_vcpu_block_finish(vcpu);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2207 
2208 #ifndef CONFIG_S390
2209 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2210 {
2211 	struct swait_queue_head *wqp;
2212 
2213 	wqp = kvm_arch_vcpu_wq(vcpu);
2214 	if (swait_active(wqp)) {
2215 		swake_up(wqp);
2216 		++vcpu->stat.halt_wakeup;
2217 	}
2218 
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2221 
2222 /*
2223  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224  */
2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227 	int me;
2228 	int cpu = vcpu->cpu;
2229 
2230 	kvm_vcpu_wake_up(vcpu);
2231 	me = get_cpu();
2232 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2233 		if (kvm_arch_vcpu_should_kick(vcpu))
2234 			smp_send_reschedule(cpu);
2235 	put_cpu();
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2238 #endif /* !CONFIG_S390 */
2239 
2240 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2241 {
2242 	struct pid *pid;
2243 	struct task_struct *task = NULL;
2244 	int ret = 0;
2245 
2246 	rcu_read_lock();
2247 	pid = rcu_dereference(target->pid);
2248 	if (pid)
2249 		task = get_pid_task(pid, PIDTYPE_PID);
2250 	rcu_read_unlock();
2251 	if (!task)
2252 		return ret;
2253 	ret = yield_to(task, 1);
2254 	put_task_struct(task);
2255 
2256 	return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2259 
2260 /*
2261  * Helper that checks whether a VCPU is eligible for directed yield.
2262  * Most eligible candidate to yield is decided by following heuristics:
2263  *
2264  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2265  *  (preempted lock holder), indicated by @in_spin_loop.
2266  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2267  *
2268  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2269  *  chance last time (mostly it has become eligible now since we have probably
2270  *  yielded to lockholder in last iteration. This is done by toggling
2271  *  @dy_eligible each time a VCPU checked for eligibility.)
2272  *
2273  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2274  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2275  *  burning. Giving priority for a potential lock-holder increases lock
2276  *  progress.
2277  *
2278  *  Since algorithm is based on heuristics, accessing another VCPU data without
2279  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2280  *  and continue with next VCPU and so on.
2281  */
2282 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2283 {
2284 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2285 	bool eligible;
2286 
2287 	eligible = !vcpu->spin_loop.in_spin_loop ||
2288 		    vcpu->spin_loop.dy_eligible;
2289 
2290 	if (vcpu->spin_loop.in_spin_loop)
2291 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2292 
2293 	return eligible;
2294 #else
2295 	return true;
2296 #endif
2297 }
2298 
2299 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2300 {
2301 	struct kvm *kvm = me->kvm;
2302 	struct kvm_vcpu *vcpu;
2303 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2304 	int yielded = 0;
2305 	int try = 3;
2306 	int pass;
2307 	int i;
2308 
2309 	kvm_vcpu_set_in_spin_loop(me, true);
2310 	/*
2311 	 * We boost the priority of a VCPU that is runnable but not
2312 	 * currently running, because it got preempted by something
2313 	 * else and called schedule in __vcpu_run.  Hopefully that
2314 	 * VCPU is holding the lock that we need and will release it.
2315 	 * We approximate round-robin by starting at the last boosted VCPU.
2316 	 */
2317 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2318 		kvm_for_each_vcpu(i, vcpu, kvm) {
2319 			if (!pass && i <= last_boosted_vcpu) {
2320 				i = last_boosted_vcpu;
2321 				continue;
2322 			} else if (pass && i > last_boosted_vcpu)
2323 				break;
2324 			if (!ACCESS_ONCE(vcpu->preempted))
2325 				continue;
2326 			if (vcpu == me)
2327 				continue;
2328 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2329 				continue;
2330 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2331 				continue;
2332 
2333 			yielded = kvm_vcpu_yield_to(vcpu);
2334 			if (yielded > 0) {
2335 				kvm->last_boosted_vcpu = i;
2336 				break;
2337 			} else if (yielded < 0) {
2338 				try--;
2339 				if (!try)
2340 					break;
2341 			}
2342 		}
2343 	}
2344 	kvm_vcpu_set_in_spin_loop(me, false);
2345 
2346 	/* Ensure vcpu is not eligible during next spinloop */
2347 	kvm_vcpu_set_dy_eligible(me, false);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2350 
2351 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2352 {
2353 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2354 	struct page *page;
2355 
2356 	if (vmf->pgoff == 0)
2357 		page = virt_to_page(vcpu->run);
2358 #ifdef CONFIG_X86
2359 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2360 		page = virt_to_page(vcpu->arch.pio_data);
2361 #endif
2362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2363 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2364 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2365 #endif
2366 	else
2367 		return kvm_arch_vcpu_fault(vcpu, vmf);
2368 	get_page(page);
2369 	vmf->page = page;
2370 	return 0;
2371 }
2372 
2373 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2374 	.fault = kvm_vcpu_fault,
2375 };
2376 
2377 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2378 {
2379 	vma->vm_ops = &kvm_vcpu_vm_ops;
2380 	return 0;
2381 }
2382 
2383 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2384 {
2385 	struct kvm_vcpu *vcpu = filp->private_data;
2386 
2387 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2388 	kvm_put_kvm(vcpu->kvm);
2389 	return 0;
2390 }
2391 
2392 static struct file_operations kvm_vcpu_fops = {
2393 	.release        = kvm_vcpu_release,
2394 	.unlocked_ioctl = kvm_vcpu_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2397 #endif
2398 	.mmap           = kvm_vcpu_mmap,
2399 	.llseek		= noop_llseek,
2400 };
2401 
2402 /*
2403  * Allocates an inode for the vcpu.
2404  */
2405 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2406 {
2407 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2408 }
2409 
2410 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2411 {
2412 	char dir_name[ITOA_MAX_LEN * 2];
2413 	int ret;
2414 
2415 	if (!kvm_arch_has_vcpu_debugfs())
2416 		return 0;
2417 
2418 	if (!debugfs_initialized())
2419 		return 0;
2420 
2421 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2422 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2423 								vcpu->kvm->debugfs_dentry);
2424 	if (!vcpu->debugfs_dentry)
2425 		return -ENOMEM;
2426 
2427 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2428 	if (ret < 0) {
2429 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2430 		return ret;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Creates some virtual cpus.  Good luck creating more than one.
2438  */
2439 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2440 {
2441 	int r;
2442 	struct kvm_vcpu *vcpu;
2443 
2444 	if (id >= KVM_MAX_VCPU_ID)
2445 		return -EINVAL;
2446 
2447 	mutex_lock(&kvm->lock);
2448 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2449 		mutex_unlock(&kvm->lock);
2450 		return -EINVAL;
2451 	}
2452 
2453 	kvm->created_vcpus++;
2454 	mutex_unlock(&kvm->lock);
2455 
2456 	vcpu = kvm_arch_vcpu_create(kvm, id);
2457 	if (IS_ERR(vcpu)) {
2458 		r = PTR_ERR(vcpu);
2459 		goto vcpu_decrement;
2460 	}
2461 
2462 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2463 
2464 	r = kvm_arch_vcpu_setup(vcpu);
2465 	if (r)
2466 		goto vcpu_destroy;
2467 
2468 	r = kvm_create_vcpu_debugfs(vcpu);
2469 	if (r)
2470 		goto vcpu_destroy;
2471 
2472 	mutex_lock(&kvm->lock);
2473 	if (kvm_get_vcpu_by_id(kvm, id)) {
2474 		r = -EEXIST;
2475 		goto unlock_vcpu_destroy;
2476 	}
2477 
2478 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2479 
2480 	/* Now it's all set up, let userspace reach it */
2481 	kvm_get_kvm(kvm);
2482 	r = create_vcpu_fd(vcpu);
2483 	if (r < 0) {
2484 		kvm_put_kvm(kvm);
2485 		goto unlock_vcpu_destroy;
2486 	}
2487 
2488 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2489 
2490 	/*
2491 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2492 	 * before kvm->online_vcpu's incremented value.
2493 	 */
2494 	smp_wmb();
2495 	atomic_inc(&kvm->online_vcpus);
2496 
2497 	mutex_unlock(&kvm->lock);
2498 	kvm_arch_vcpu_postcreate(vcpu);
2499 	return r;
2500 
2501 unlock_vcpu_destroy:
2502 	mutex_unlock(&kvm->lock);
2503 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2504 vcpu_destroy:
2505 	kvm_arch_vcpu_destroy(vcpu);
2506 vcpu_decrement:
2507 	mutex_lock(&kvm->lock);
2508 	kvm->created_vcpus--;
2509 	mutex_unlock(&kvm->lock);
2510 	return r;
2511 }
2512 
2513 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2514 {
2515 	if (sigset) {
2516 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2517 		vcpu->sigset_active = 1;
2518 		vcpu->sigset = *sigset;
2519 	} else
2520 		vcpu->sigset_active = 0;
2521 	return 0;
2522 }
2523 
2524 static long kvm_vcpu_ioctl(struct file *filp,
2525 			   unsigned int ioctl, unsigned long arg)
2526 {
2527 	struct kvm_vcpu *vcpu = filp->private_data;
2528 	void __user *argp = (void __user *)arg;
2529 	int r;
2530 	struct kvm_fpu *fpu = NULL;
2531 	struct kvm_sregs *kvm_sregs = NULL;
2532 
2533 	if (vcpu->kvm->mm != current->mm)
2534 		return -EIO;
2535 
2536 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2537 		return -EINVAL;
2538 
2539 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2540 	/*
2541 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2542 	 * so vcpu_load() would break it.
2543 	 */
2544 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2545 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2546 #endif
2547 
2548 
2549 	r = vcpu_load(vcpu);
2550 	if (r)
2551 		return r;
2552 	switch (ioctl) {
2553 	case KVM_RUN:
2554 		r = -EINVAL;
2555 		if (arg)
2556 			goto out;
2557 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2558 			/* The thread running this VCPU changed. */
2559 			struct pid *oldpid = vcpu->pid;
2560 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2561 
2562 			rcu_assign_pointer(vcpu->pid, newpid);
2563 			if (oldpid)
2564 				synchronize_rcu();
2565 			put_pid(oldpid);
2566 		}
2567 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2568 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2569 		break;
2570 	case KVM_GET_REGS: {
2571 		struct kvm_regs *kvm_regs;
2572 
2573 		r = -ENOMEM;
2574 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2575 		if (!kvm_regs)
2576 			goto out;
2577 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2578 		if (r)
2579 			goto out_free1;
2580 		r = -EFAULT;
2581 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2582 			goto out_free1;
2583 		r = 0;
2584 out_free1:
2585 		kfree(kvm_regs);
2586 		break;
2587 	}
2588 	case KVM_SET_REGS: {
2589 		struct kvm_regs *kvm_regs;
2590 
2591 		r = -ENOMEM;
2592 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2593 		if (IS_ERR(kvm_regs)) {
2594 			r = PTR_ERR(kvm_regs);
2595 			goto out;
2596 		}
2597 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2598 		kfree(kvm_regs);
2599 		break;
2600 	}
2601 	case KVM_GET_SREGS: {
2602 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2603 		r = -ENOMEM;
2604 		if (!kvm_sregs)
2605 			goto out;
2606 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2607 		if (r)
2608 			goto out;
2609 		r = -EFAULT;
2610 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2611 			goto out;
2612 		r = 0;
2613 		break;
2614 	}
2615 	case KVM_SET_SREGS: {
2616 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2617 		if (IS_ERR(kvm_sregs)) {
2618 			r = PTR_ERR(kvm_sregs);
2619 			kvm_sregs = NULL;
2620 			goto out;
2621 		}
2622 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2623 		break;
2624 	}
2625 	case KVM_GET_MP_STATE: {
2626 		struct kvm_mp_state mp_state;
2627 
2628 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2629 		if (r)
2630 			goto out;
2631 		r = -EFAULT;
2632 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2633 			goto out;
2634 		r = 0;
2635 		break;
2636 	}
2637 	case KVM_SET_MP_STATE: {
2638 		struct kvm_mp_state mp_state;
2639 
2640 		r = -EFAULT;
2641 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2642 			goto out;
2643 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2644 		break;
2645 	}
2646 	case KVM_TRANSLATE: {
2647 		struct kvm_translation tr;
2648 
2649 		r = -EFAULT;
2650 		if (copy_from_user(&tr, argp, sizeof(tr)))
2651 			goto out;
2652 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2653 		if (r)
2654 			goto out;
2655 		r = -EFAULT;
2656 		if (copy_to_user(argp, &tr, sizeof(tr)))
2657 			goto out;
2658 		r = 0;
2659 		break;
2660 	}
2661 	case KVM_SET_GUEST_DEBUG: {
2662 		struct kvm_guest_debug dbg;
2663 
2664 		r = -EFAULT;
2665 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2666 			goto out;
2667 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2668 		break;
2669 	}
2670 	case KVM_SET_SIGNAL_MASK: {
2671 		struct kvm_signal_mask __user *sigmask_arg = argp;
2672 		struct kvm_signal_mask kvm_sigmask;
2673 		sigset_t sigset, *p;
2674 
2675 		p = NULL;
2676 		if (argp) {
2677 			r = -EFAULT;
2678 			if (copy_from_user(&kvm_sigmask, argp,
2679 					   sizeof(kvm_sigmask)))
2680 				goto out;
2681 			r = -EINVAL;
2682 			if (kvm_sigmask.len != sizeof(sigset))
2683 				goto out;
2684 			r = -EFAULT;
2685 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2686 					   sizeof(sigset)))
2687 				goto out;
2688 			p = &sigset;
2689 		}
2690 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2691 		break;
2692 	}
2693 	case KVM_GET_FPU: {
2694 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2695 		r = -ENOMEM;
2696 		if (!fpu)
2697 			goto out;
2698 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2699 		if (r)
2700 			goto out;
2701 		r = -EFAULT;
2702 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2703 			goto out;
2704 		r = 0;
2705 		break;
2706 	}
2707 	case KVM_SET_FPU: {
2708 		fpu = memdup_user(argp, sizeof(*fpu));
2709 		if (IS_ERR(fpu)) {
2710 			r = PTR_ERR(fpu);
2711 			fpu = NULL;
2712 			goto out;
2713 		}
2714 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2715 		break;
2716 	}
2717 	default:
2718 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2719 	}
2720 out:
2721 	vcpu_put(vcpu);
2722 	kfree(fpu);
2723 	kfree(kvm_sregs);
2724 	return r;
2725 }
2726 
2727 #ifdef CONFIG_KVM_COMPAT
2728 static long kvm_vcpu_compat_ioctl(struct file *filp,
2729 				  unsigned int ioctl, unsigned long arg)
2730 {
2731 	struct kvm_vcpu *vcpu = filp->private_data;
2732 	void __user *argp = compat_ptr(arg);
2733 	int r;
2734 
2735 	if (vcpu->kvm->mm != current->mm)
2736 		return -EIO;
2737 
2738 	switch (ioctl) {
2739 	case KVM_SET_SIGNAL_MASK: {
2740 		struct kvm_signal_mask __user *sigmask_arg = argp;
2741 		struct kvm_signal_mask kvm_sigmask;
2742 		compat_sigset_t csigset;
2743 		sigset_t sigset;
2744 
2745 		if (argp) {
2746 			r = -EFAULT;
2747 			if (copy_from_user(&kvm_sigmask, argp,
2748 					   sizeof(kvm_sigmask)))
2749 				goto out;
2750 			r = -EINVAL;
2751 			if (kvm_sigmask.len != sizeof(csigset))
2752 				goto out;
2753 			r = -EFAULT;
2754 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2755 					   sizeof(csigset)))
2756 				goto out;
2757 			sigset_from_compat(&sigset, &csigset);
2758 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2759 		} else
2760 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2761 		break;
2762 	}
2763 	default:
2764 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2765 	}
2766 
2767 out:
2768 	return r;
2769 }
2770 #endif
2771 
2772 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2773 				 int (*accessor)(struct kvm_device *dev,
2774 						 struct kvm_device_attr *attr),
2775 				 unsigned long arg)
2776 {
2777 	struct kvm_device_attr attr;
2778 
2779 	if (!accessor)
2780 		return -EPERM;
2781 
2782 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2783 		return -EFAULT;
2784 
2785 	return accessor(dev, &attr);
2786 }
2787 
2788 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2789 			     unsigned long arg)
2790 {
2791 	struct kvm_device *dev = filp->private_data;
2792 
2793 	switch (ioctl) {
2794 	case KVM_SET_DEVICE_ATTR:
2795 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2796 	case KVM_GET_DEVICE_ATTR:
2797 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2798 	case KVM_HAS_DEVICE_ATTR:
2799 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2800 	default:
2801 		if (dev->ops->ioctl)
2802 			return dev->ops->ioctl(dev, ioctl, arg);
2803 
2804 		return -ENOTTY;
2805 	}
2806 }
2807 
2808 static int kvm_device_release(struct inode *inode, struct file *filp)
2809 {
2810 	struct kvm_device *dev = filp->private_data;
2811 	struct kvm *kvm = dev->kvm;
2812 
2813 	kvm_put_kvm(kvm);
2814 	return 0;
2815 }
2816 
2817 static const struct file_operations kvm_device_fops = {
2818 	.unlocked_ioctl = kvm_device_ioctl,
2819 #ifdef CONFIG_KVM_COMPAT
2820 	.compat_ioctl = kvm_device_ioctl,
2821 #endif
2822 	.release = kvm_device_release,
2823 };
2824 
2825 struct kvm_device *kvm_device_from_filp(struct file *filp)
2826 {
2827 	if (filp->f_op != &kvm_device_fops)
2828 		return NULL;
2829 
2830 	return filp->private_data;
2831 }
2832 
2833 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2834 #ifdef CONFIG_KVM_MPIC
2835 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2836 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2837 #endif
2838 
2839 #ifdef CONFIG_KVM_XICS
2840 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2841 #endif
2842 };
2843 
2844 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2845 {
2846 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2847 		return -ENOSPC;
2848 
2849 	if (kvm_device_ops_table[type] != NULL)
2850 		return -EEXIST;
2851 
2852 	kvm_device_ops_table[type] = ops;
2853 	return 0;
2854 }
2855 
2856 void kvm_unregister_device_ops(u32 type)
2857 {
2858 	if (kvm_device_ops_table[type] != NULL)
2859 		kvm_device_ops_table[type] = NULL;
2860 }
2861 
2862 static int kvm_ioctl_create_device(struct kvm *kvm,
2863 				   struct kvm_create_device *cd)
2864 {
2865 	struct kvm_device_ops *ops = NULL;
2866 	struct kvm_device *dev;
2867 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2868 	int ret;
2869 
2870 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2871 		return -ENODEV;
2872 
2873 	ops = kvm_device_ops_table[cd->type];
2874 	if (ops == NULL)
2875 		return -ENODEV;
2876 
2877 	if (test)
2878 		return 0;
2879 
2880 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2881 	if (!dev)
2882 		return -ENOMEM;
2883 
2884 	dev->ops = ops;
2885 	dev->kvm = kvm;
2886 
2887 	mutex_lock(&kvm->lock);
2888 	ret = ops->create(dev, cd->type);
2889 	if (ret < 0) {
2890 		mutex_unlock(&kvm->lock);
2891 		kfree(dev);
2892 		return ret;
2893 	}
2894 	list_add(&dev->vm_node, &kvm->devices);
2895 	mutex_unlock(&kvm->lock);
2896 
2897 	if (ops->init)
2898 		ops->init(dev);
2899 
2900 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2901 	if (ret < 0) {
2902 		mutex_lock(&kvm->lock);
2903 		list_del(&dev->vm_node);
2904 		mutex_unlock(&kvm->lock);
2905 		ops->destroy(dev);
2906 		return ret;
2907 	}
2908 
2909 	kvm_get_kvm(kvm);
2910 	cd->fd = ret;
2911 	return 0;
2912 }
2913 
2914 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2915 {
2916 	switch (arg) {
2917 	case KVM_CAP_USER_MEMORY:
2918 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2919 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2920 	case KVM_CAP_INTERNAL_ERROR_DATA:
2921 #ifdef CONFIG_HAVE_KVM_MSI
2922 	case KVM_CAP_SIGNAL_MSI:
2923 #endif
2924 #ifdef CONFIG_HAVE_KVM_IRQFD
2925 	case KVM_CAP_IRQFD:
2926 	case KVM_CAP_IRQFD_RESAMPLE:
2927 #endif
2928 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2929 	case KVM_CAP_CHECK_EXTENSION_VM:
2930 		return 1;
2931 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2932 	case KVM_CAP_IRQ_ROUTING:
2933 		return KVM_MAX_IRQ_ROUTES;
2934 #endif
2935 #if KVM_ADDRESS_SPACE_NUM > 1
2936 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2937 		return KVM_ADDRESS_SPACE_NUM;
2938 #endif
2939 	case KVM_CAP_MAX_VCPU_ID:
2940 		return KVM_MAX_VCPU_ID;
2941 	default:
2942 		break;
2943 	}
2944 	return kvm_vm_ioctl_check_extension(kvm, arg);
2945 }
2946 
2947 static long kvm_vm_ioctl(struct file *filp,
2948 			   unsigned int ioctl, unsigned long arg)
2949 {
2950 	struct kvm *kvm = filp->private_data;
2951 	void __user *argp = (void __user *)arg;
2952 	int r;
2953 
2954 	if (kvm->mm != current->mm)
2955 		return -EIO;
2956 	switch (ioctl) {
2957 	case KVM_CREATE_VCPU:
2958 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2959 		break;
2960 	case KVM_SET_USER_MEMORY_REGION: {
2961 		struct kvm_userspace_memory_region kvm_userspace_mem;
2962 
2963 		r = -EFAULT;
2964 		if (copy_from_user(&kvm_userspace_mem, argp,
2965 						sizeof(kvm_userspace_mem)))
2966 			goto out;
2967 
2968 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2969 		break;
2970 	}
2971 	case KVM_GET_DIRTY_LOG: {
2972 		struct kvm_dirty_log log;
2973 
2974 		r = -EFAULT;
2975 		if (copy_from_user(&log, argp, sizeof(log)))
2976 			goto out;
2977 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2978 		break;
2979 	}
2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981 	case KVM_REGISTER_COALESCED_MMIO: {
2982 		struct kvm_coalesced_mmio_zone zone;
2983 
2984 		r = -EFAULT;
2985 		if (copy_from_user(&zone, argp, sizeof(zone)))
2986 			goto out;
2987 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2988 		break;
2989 	}
2990 	case KVM_UNREGISTER_COALESCED_MMIO: {
2991 		struct kvm_coalesced_mmio_zone zone;
2992 
2993 		r = -EFAULT;
2994 		if (copy_from_user(&zone, argp, sizeof(zone)))
2995 			goto out;
2996 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2997 		break;
2998 	}
2999 #endif
3000 	case KVM_IRQFD: {
3001 		struct kvm_irqfd data;
3002 
3003 		r = -EFAULT;
3004 		if (copy_from_user(&data, argp, sizeof(data)))
3005 			goto out;
3006 		r = kvm_irqfd(kvm, &data);
3007 		break;
3008 	}
3009 	case KVM_IOEVENTFD: {
3010 		struct kvm_ioeventfd data;
3011 
3012 		r = -EFAULT;
3013 		if (copy_from_user(&data, argp, sizeof(data)))
3014 			goto out;
3015 		r = kvm_ioeventfd(kvm, &data);
3016 		break;
3017 	}
3018 #ifdef CONFIG_HAVE_KVM_MSI
3019 	case KVM_SIGNAL_MSI: {
3020 		struct kvm_msi msi;
3021 
3022 		r = -EFAULT;
3023 		if (copy_from_user(&msi, argp, sizeof(msi)))
3024 			goto out;
3025 		r = kvm_send_userspace_msi(kvm, &msi);
3026 		break;
3027 	}
3028 #endif
3029 #ifdef __KVM_HAVE_IRQ_LINE
3030 	case KVM_IRQ_LINE_STATUS:
3031 	case KVM_IRQ_LINE: {
3032 		struct kvm_irq_level irq_event;
3033 
3034 		r = -EFAULT;
3035 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3036 			goto out;
3037 
3038 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3039 					ioctl == KVM_IRQ_LINE_STATUS);
3040 		if (r)
3041 			goto out;
3042 
3043 		r = -EFAULT;
3044 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3045 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3046 				goto out;
3047 		}
3048 
3049 		r = 0;
3050 		break;
3051 	}
3052 #endif
3053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3054 	case KVM_SET_GSI_ROUTING: {
3055 		struct kvm_irq_routing routing;
3056 		struct kvm_irq_routing __user *urouting;
3057 		struct kvm_irq_routing_entry *entries = NULL;
3058 
3059 		r = -EFAULT;
3060 		if (copy_from_user(&routing, argp, sizeof(routing)))
3061 			goto out;
3062 		r = -EINVAL;
3063 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3064 			goto out;
3065 		if (routing.flags)
3066 			goto out;
3067 		if (routing.nr) {
3068 			r = -ENOMEM;
3069 			entries = vmalloc(routing.nr * sizeof(*entries));
3070 			if (!entries)
3071 				goto out;
3072 			r = -EFAULT;
3073 			urouting = argp;
3074 			if (copy_from_user(entries, urouting->entries,
3075 					   routing.nr * sizeof(*entries)))
3076 				goto out_free_irq_routing;
3077 		}
3078 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3079 					routing.flags);
3080 out_free_irq_routing:
3081 		vfree(entries);
3082 		break;
3083 	}
3084 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3085 	case KVM_CREATE_DEVICE: {
3086 		struct kvm_create_device cd;
3087 
3088 		r = -EFAULT;
3089 		if (copy_from_user(&cd, argp, sizeof(cd)))
3090 			goto out;
3091 
3092 		r = kvm_ioctl_create_device(kvm, &cd);
3093 		if (r)
3094 			goto out;
3095 
3096 		r = -EFAULT;
3097 		if (copy_to_user(argp, &cd, sizeof(cd)))
3098 			goto out;
3099 
3100 		r = 0;
3101 		break;
3102 	}
3103 	case KVM_CHECK_EXTENSION:
3104 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3105 		break;
3106 	default:
3107 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3108 	}
3109 out:
3110 	return r;
3111 }
3112 
3113 #ifdef CONFIG_KVM_COMPAT
3114 struct compat_kvm_dirty_log {
3115 	__u32 slot;
3116 	__u32 padding1;
3117 	union {
3118 		compat_uptr_t dirty_bitmap; /* one bit per page */
3119 		__u64 padding2;
3120 	};
3121 };
3122 
3123 static long kvm_vm_compat_ioctl(struct file *filp,
3124 			   unsigned int ioctl, unsigned long arg)
3125 {
3126 	struct kvm *kvm = filp->private_data;
3127 	int r;
3128 
3129 	if (kvm->mm != current->mm)
3130 		return -EIO;
3131 	switch (ioctl) {
3132 	case KVM_GET_DIRTY_LOG: {
3133 		struct compat_kvm_dirty_log compat_log;
3134 		struct kvm_dirty_log log;
3135 
3136 		r = -EFAULT;
3137 		if (copy_from_user(&compat_log, (void __user *)arg,
3138 				   sizeof(compat_log)))
3139 			goto out;
3140 		log.slot	 = compat_log.slot;
3141 		log.padding1	 = compat_log.padding1;
3142 		log.padding2	 = compat_log.padding2;
3143 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3144 
3145 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3146 		break;
3147 	}
3148 	default:
3149 		r = kvm_vm_ioctl(filp, ioctl, arg);
3150 	}
3151 
3152 out:
3153 	return r;
3154 }
3155 #endif
3156 
3157 static struct file_operations kvm_vm_fops = {
3158 	.release        = kvm_vm_release,
3159 	.unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 	.compat_ioctl   = kvm_vm_compat_ioctl,
3162 #endif
3163 	.llseek		= noop_llseek,
3164 };
3165 
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 	int r;
3169 	struct kvm *kvm;
3170 	struct file *file;
3171 
3172 	kvm = kvm_create_vm(type);
3173 	if (IS_ERR(kvm))
3174 		return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176 	r = kvm_coalesced_mmio_init(kvm);
3177 	if (r < 0) {
3178 		kvm_put_kvm(kvm);
3179 		return r;
3180 	}
3181 #endif
3182 	r = get_unused_fd_flags(O_CLOEXEC);
3183 	if (r < 0) {
3184 		kvm_put_kvm(kvm);
3185 		return r;
3186 	}
3187 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 	if (IS_ERR(file)) {
3189 		put_unused_fd(r);
3190 		kvm_put_kvm(kvm);
3191 		return PTR_ERR(file);
3192 	}
3193 
3194 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 		put_unused_fd(r);
3196 		fput(file);
3197 		return -ENOMEM;
3198 	}
3199 
3200 	fd_install(r, file);
3201 	return r;
3202 }
3203 
3204 static long kvm_dev_ioctl(struct file *filp,
3205 			  unsigned int ioctl, unsigned long arg)
3206 {
3207 	long r = -EINVAL;
3208 
3209 	switch (ioctl) {
3210 	case KVM_GET_API_VERSION:
3211 		if (arg)
3212 			goto out;
3213 		r = KVM_API_VERSION;
3214 		break;
3215 	case KVM_CREATE_VM:
3216 		r = kvm_dev_ioctl_create_vm(arg);
3217 		break;
3218 	case KVM_CHECK_EXTENSION:
3219 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 		break;
3221 	case KVM_GET_VCPU_MMAP_SIZE:
3222 		if (arg)
3223 			goto out;
3224 		r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 		r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231 		break;
3232 	case KVM_TRACE_ENABLE:
3233 	case KVM_TRACE_PAUSE:
3234 	case KVM_TRACE_DISABLE:
3235 		r = -EOPNOTSUPP;
3236 		break;
3237 	default:
3238 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 	}
3240 out:
3241 	return r;
3242 }
3243 
3244 static struct file_operations kvm_chardev_ops = {
3245 	.unlocked_ioctl = kvm_dev_ioctl,
3246 	.compat_ioctl   = kvm_dev_ioctl,
3247 	.llseek		= noop_llseek,
3248 };
3249 
3250 static struct miscdevice kvm_dev = {
3251 	KVM_MINOR,
3252 	"kvm",
3253 	&kvm_chardev_ops,
3254 };
3255 
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258 	int cpu = raw_smp_processor_id();
3259 	int r;
3260 
3261 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 		return;
3263 
3264 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265 
3266 	r = kvm_arch_hardware_enable();
3267 
3268 	if (r) {
3269 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 		atomic_inc(&hardware_enable_failed);
3271 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272 	}
3273 }
3274 
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277 	raw_spin_lock(&kvm_count_lock);
3278 	if (kvm_usage_count)
3279 		hardware_enable_nolock(NULL);
3280 	raw_spin_unlock(&kvm_count_lock);
3281 	return 0;
3282 }
3283 
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286 	int cpu = raw_smp_processor_id();
3287 
3288 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 		return;
3290 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 	kvm_arch_hardware_disable();
3292 }
3293 
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296 	raw_spin_lock(&kvm_count_lock);
3297 	if (kvm_usage_count)
3298 		hardware_disable_nolock(NULL);
3299 	raw_spin_unlock(&kvm_count_lock);
3300 	return 0;
3301 }
3302 
3303 static void hardware_disable_all_nolock(void)
3304 {
3305 	BUG_ON(!kvm_usage_count);
3306 
3307 	kvm_usage_count--;
3308 	if (!kvm_usage_count)
3309 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311 
3312 static void hardware_disable_all(void)
3313 {
3314 	raw_spin_lock(&kvm_count_lock);
3315 	hardware_disable_all_nolock();
3316 	raw_spin_unlock(&kvm_count_lock);
3317 }
3318 
3319 static int hardware_enable_all(void)
3320 {
3321 	int r = 0;
3322 
3323 	raw_spin_lock(&kvm_count_lock);
3324 
3325 	kvm_usage_count++;
3326 	if (kvm_usage_count == 1) {
3327 		atomic_set(&hardware_enable_failed, 0);
3328 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3329 
3330 		if (atomic_read(&hardware_enable_failed)) {
3331 			hardware_disable_all_nolock();
3332 			r = -EBUSY;
3333 		}
3334 	}
3335 
3336 	raw_spin_unlock(&kvm_count_lock);
3337 
3338 	return r;
3339 }
3340 
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 		      void *v)
3343 {
3344 	/*
3345 	 * Some (well, at least mine) BIOSes hang on reboot if
3346 	 * in vmx root mode.
3347 	 *
3348 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 	 */
3350 	pr_info("kvm: exiting hardware virtualization\n");
3351 	kvm_rebooting = true;
3352 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 	return NOTIFY_OK;
3354 }
3355 
3356 static struct notifier_block kvm_reboot_notifier = {
3357 	.notifier_call = kvm_reboot,
3358 	.priority = 0,
3359 };
3360 
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363 	int i;
3364 
3365 	for (i = 0; i < bus->dev_count; i++) {
3366 		struct kvm_io_device *pos = bus->range[i].dev;
3367 
3368 		kvm_iodevice_destructor(pos);
3369 	}
3370 	kfree(bus);
3371 }
3372 
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 				 const struct kvm_io_range *r2)
3375 {
3376 	gpa_t addr1 = r1->addr;
3377 	gpa_t addr2 = r2->addr;
3378 
3379 	if (addr1 < addr2)
3380 		return -1;
3381 
3382 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3383 	 * accept any overlapping write.  Any order is acceptable for
3384 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 	 * we process all of them.
3386 	 */
3387 	if (r2->len) {
3388 		addr1 += r1->len;
3389 		addr2 += r2->len;
3390 	}
3391 
3392 	if (addr1 > addr2)
3393 		return 1;
3394 
3395 	return 0;
3396 }
3397 
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400 	return kvm_io_bus_cmp(p1, p2);
3401 }
3402 
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 			  gpa_t addr, int len)
3405 {
3406 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 		.addr = addr,
3408 		.len = len,
3409 		.dev = dev,
3410 	};
3411 
3412 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 		kvm_io_bus_sort_cmp, NULL);
3414 
3415 	return 0;
3416 }
3417 
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 			     gpa_t addr, int len)
3420 {
3421 	struct kvm_io_range *range, key;
3422 	int off;
3423 
3424 	key = (struct kvm_io_range) {
3425 		.addr = addr,
3426 		.len = len,
3427 	};
3428 
3429 	range = bsearch(&key, bus->range, bus->dev_count,
3430 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 	if (range == NULL)
3432 		return -ENOENT;
3433 
3434 	off = range - bus->range;
3435 
3436 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 		off--;
3438 
3439 	return off;
3440 }
3441 
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 			      struct kvm_io_range *range, const void *val)
3444 {
3445 	int idx;
3446 
3447 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 	if (idx < 0)
3449 		return -EOPNOTSUPP;
3450 
3451 	while (idx < bus->dev_count &&
3452 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 					range->len, val))
3455 			return idx;
3456 		idx++;
3457 	}
3458 
3459 	return -EOPNOTSUPP;
3460 }
3461 
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 		     int len, const void *val)
3465 {
3466 	struct kvm_io_bus *bus;
3467 	struct kvm_io_range range;
3468 	int r;
3469 
3470 	range = (struct kvm_io_range) {
3471 		.addr = addr,
3472 		.len = len,
3473 	};
3474 
3475 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477 	return r < 0 ? r : 0;
3478 }
3479 
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482 			    gpa_t addr, int len, const void *val, long cookie)
3483 {
3484 	struct kvm_io_bus *bus;
3485 	struct kvm_io_range range;
3486 
3487 	range = (struct kvm_io_range) {
3488 		.addr = addr,
3489 		.len = len,
3490 	};
3491 
3492 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493 
3494 	/* First try the device referenced by cookie. */
3495 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3496 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3497 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3498 					val))
3499 			return cookie;
3500 
3501 	/*
3502 	 * cookie contained garbage; fall back to search and return the
3503 	 * correct cookie value.
3504 	 */
3505 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3506 }
3507 
3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3509 			     struct kvm_io_range *range, void *val)
3510 {
3511 	int idx;
3512 
3513 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3514 	if (idx < 0)
3515 		return -EOPNOTSUPP;
3516 
3517 	while (idx < bus->dev_count &&
3518 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3519 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3520 				       range->len, val))
3521 			return idx;
3522 		idx++;
3523 	}
3524 
3525 	return -EOPNOTSUPP;
3526 }
3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3528 
3529 /* kvm_io_bus_read - called under kvm->slots_lock */
3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3531 		    int len, void *val)
3532 {
3533 	struct kvm_io_bus *bus;
3534 	struct kvm_io_range range;
3535 	int r;
3536 
3537 	range = (struct kvm_io_range) {
3538 		.addr = addr,
3539 		.len = len,
3540 	};
3541 
3542 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3543 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3544 	return r < 0 ? r : 0;
3545 }
3546 
3547 
3548 /* Caller must hold slots_lock. */
3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3550 			    int len, struct kvm_io_device *dev)
3551 {
3552 	struct kvm_io_bus *new_bus, *bus;
3553 
3554 	bus = kvm->buses[bus_idx];
3555 	/* exclude ioeventfd which is limited by maximum fd */
3556 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557 		return -ENOSPC;
3558 
3559 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3561 	if (!new_bus)
3562 		return -ENOMEM;
3563 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 	       sizeof(struct kvm_io_range)));
3565 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 	synchronize_srcu_expedited(&kvm->srcu);
3568 	kfree(bus);
3569 
3570 	return 0;
3571 }
3572 
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 			      struct kvm_io_device *dev)
3576 {
3577 	int i, r;
3578 	struct kvm_io_bus *new_bus, *bus;
3579 
3580 	bus = kvm->buses[bus_idx];
3581 	r = -ENOENT;
3582 	for (i = 0; i < bus->dev_count; i++)
3583 		if (bus->range[i].dev == dev) {
3584 			r = 0;
3585 			break;
3586 		}
3587 
3588 	if (r)
3589 		return r;
3590 
3591 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 	if (!new_bus)
3594 		return -ENOMEM;
3595 
3596 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597 	new_bus->dev_count--;
3598 	memcpy(new_bus->range + i, bus->range + i + 1,
3599 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600 
3601 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602 	synchronize_srcu_expedited(&kvm->srcu);
3603 	kfree(bus);
3604 	return r;
3605 }
3606 
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608 					 gpa_t addr)
3609 {
3610 	struct kvm_io_bus *bus;
3611 	int dev_idx, srcu_idx;
3612 	struct kvm_io_device *iodev = NULL;
3613 
3614 	srcu_idx = srcu_read_lock(&kvm->srcu);
3615 
3616 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617 
3618 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3619 	if (dev_idx < 0)
3620 		goto out_unlock;
3621 
3622 	iodev = bus->range[dev_idx].dev;
3623 
3624 out_unlock:
3625 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3626 
3627 	return iodev;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3630 
3631 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3632 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3633 			   const char *fmt)
3634 {
3635 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3636 					  inode->i_private;
3637 
3638 	/* The debugfs files are a reference to the kvm struct which
3639 	 * is still valid when kvm_destroy_vm is called.
3640 	 * To avoid the race between open and the removal of the debugfs
3641 	 * directory we test against the users count.
3642 	 */
3643 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3644 		return -ENOENT;
3645 
3646 	if (simple_attr_open(inode, file, get, set, fmt)) {
3647 		kvm_put_kvm(stat_data->kvm);
3648 		return -ENOMEM;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
3654 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3655 {
3656 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657 					  inode->i_private;
3658 
3659 	simple_attr_release(inode, file);
3660 	kvm_put_kvm(stat_data->kvm);
3661 
3662 	return 0;
3663 }
3664 
3665 static int vm_stat_get_per_vm(void *data, u64 *val)
3666 {
3667 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3668 
3669 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3670 
3671 	return 0;
3672 }
3673 
3674 static int vm_stat_clear_per_vm(void *data, u64 val)
3675 {
3676 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3677 
3678 	if (val)
3679 		return -EINVAL;
3680 
3681 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3682 
3683 	return 0;
3684 }
3685 
3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3687 {
3688 	__simple_attr_check_format("%llu\n", 0ull);
3689 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3690 				vm_stat_clear_per_vm, "%llu\n");
3691 }
3692 
3693 static const struct file_operations vm_stat_get_per_vm_fops = {
3694 	.owner   = THIS_MODULE,
3695 	.open    = vm_stat_get_per_vm_open,
3696 	.release = kvm_debugfs_release,
3697 	.read    = simple_attr_read,
3698 	.write   = simple_attr_write,
3699 	.llseek  = generic_file_llseek,
3700 };
3701 
3702 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3703 {
3704 	int i;
3705 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706 	struct kvm_vcpu *vcpu;
3707 
3708 	*val = 0;
3709 
3710 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3711 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3712 
3713 	return 0;
3714 }
3715 
3716 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3717 {
3718 	int i;
3719 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720 	struct kvm_vcpu *vcpu;
3721 
3722 	if (val)
3723 		return -EINVAL;
3724 
3725 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3727 
3728 	return 0;
3729 }
3730 
3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3732 {
3733 	__simple_attr_check_format("%llu\n", 0ull);
3734 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3735 				 vcpu_stat_clear_per_vm, "%llu\n");
3736 }
3737 
3738 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3739 	.owner   = THIS_MODULE,
3740 	.open    = vcpu_stat_get_per_vm_open,
3741 	.release = kvm_debugfs_release,
3742 	.read    = simple_attr_read,
3743 	.write   = simple_attr_write,
3744 	.llseek  = generic_file_llseek,
3745 };
3746 
3747 static const struct file_operations *stat_fops_per_vm[] = {
3748 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3749 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3750 };
3751 
3752 static int vm_stat_get(void *_offset, u64 *val)
3753 {
3754 	unsigned offset = (long)_offset;
3755 	struct kvm *kvm;
3756 	struct kvm_stat_data stat_tmp = {.offset = offset};
3757 	u64 tmp_val;
3758 
3759 	*val = 0;
3760 	spin_lock(&kvm_lock);
3761 	list_for_each_entry(kvm, &vm_list, vm_list) {
3762 		stat_tmp.kvm = kvm;
3763 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3764 		*val += tmp_val;
3765 	}
3766 	spin_unlock(&kvm_lock);
3767 	return 0;
3768 }
3769 
3770 static int vm_stat_clear(void *_offset, u64 val)
3771 {
3772 	unsigned offset = (long)_offset;
3773 	struct kvm *kvm;
3774 	struct kvm_stat_data stat_tmp = {.offset = offset};
3775 
3776 	if (val)
3777 		return -EINVAL;
3778 
3779 	spin_lock(&kvm_lock);
3780 	list_for_each_entry(kvm, &vm_list, vm_list) {
3781 		stat_tmp.kvm = kvm;
3782 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3783 	}
3784 	spin_unlock(&kvm_lock);
3785 
3786 	return 0;
3787 }
3788 
3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3790 
3791 static int vcpu_stat_get(void *_offset, u64 *val)
3792 {
3793 	unsigned offset = (long)_offset;
3794 	struct kvm *kvm;
3795 	struct kvm_stat_data stat_tmp = {.offset = offset};
3796 	u64 tmp_val;
3797 
3798 	*val = 0;
3799 	spin_lock(&kvm_lock);
3800 	list_for_each_entry(kvm, &vm_list, vm_list) {
3801 		stat_tmp.kvm = kvm;
3802 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803 		*val += tmp_val;
3804 	}
3805 	spin_unlock(&kvm_lock);
3806 	return 0;
3807 }
3808 
3809 static int vcpu_stat_clear(void *_offset, u64 val)
3810 {
3811 	unsigned offset = (long)_offset;
3812 	struct kvm *kvm;
3813 	struct kvm_stat_data stat_tmp = {.offset = offset};
3814 
3815 	if (val)
3816 		return -EINVAL;
3817 
3818 	spin_lock(&kvm_lock);
3819 	list_for_each_entry(kvm, &vm_list, vm_list) {
3820 		stat_tmp.kvm = kvm;
3821 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3822 	}
3823 	spin_unlock(&kvm_lock);
3824 
3825 	return 0;
3826 }
3827 
3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3829 			"%llu\n");
3830 
3831 static const struct file_operations *stat_fops[] = {
3832 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3833 	[KVM_STAT_VM]   = &vm_stat_fops,
3834 };
3835 
3836 static int kvm_init_debug(void)
3837 {
3838 	int r = -EEXIST;
3839 	struct kvm_stats_debugfs_item *p;
3840 
3841 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3842 	if (kvm_debugfs_dir == NULL)
3843 		goto out;
3844 
3845 	kvm_debugfs_num_entries = 0;
3846 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3847 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3848 					 (void *)(long)p->offset,
3849 					 stat_fops[p->kind]))
3850 			goto out_dir;
3851 	}
3852 
3853 	return 0;
3854 
3855 out_dir:
3856 	debugfs_remove_recursive(kvm_debugfs_dir);
3857 out:
3858 	return r;
3859 }
3860 
3861 static int kvm_suspend(void)
3862 {
3863 	if (kvm_usage_count)
3864 		hardware_disable_nolock(NULL);
3865 	return 0;
3866 }
3867 
3868 static void kvm_resume(void)
3869 {
3870 	if (kvm_usage_count) {
3871 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3872 		hardware_enable_nolock(NULL);
3873 	}
3874 }
3875 
3876 static struct syscore_ops kvm_syscore_ops = {
3877 	.suspend = kvm_suspend,
3878 	.resume = kvm_resume,
3879 };
3880 
3881 static inline
3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3883 {
3884 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3885 }
3886 
3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3888 {
3889 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3890 
3891 	if (vcpu->preempted)
3892 		vcpu->preempted = false;
3893 
3894 	kvm_arch_sched_in(vcpu, cpu);
3895 
3896 	kvm_arch_vcpu_load(vcpu, cpu);
3897 }
3898 
3899 static void kvm_sched_out(struct preempt_notifier *pn,
3900 			  struct task_struct *next)
3901 {
3902 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3903 
3904 	if (current->state == TASK_RUNNING)
3905 		vcpu->preempted = true;
3906 	kvm_arch_vcpu_put(vcpu);
3907 }
3908 
3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3910 		  struct module *module)
3911 {
3912 	int r;
3913 	int cpu;
3914 
3915 	r = kvm_arch_init(opaque);
3916 	if (r)
3917 		goto out_fail;
3918 
3919 	/*
3920 	 * kvm_arch_init makes sure there's at most one caller
3921 	 * for architectures that support multiple implementations,
3922 	 * like intel and amd on x86.
3923 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3924 	 * conflicts in case kvm is already setup for another implementation.
3925 	 */
3926 	r = kvm_irqfd_init();
3927 	if (r)
3928 		goto out_irqfd;
3929 
3930 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3931 		r = -ENOMEM;
3932 		goto out_free_0;
3933 	}
3934 
3935 	r = kvm_arch_hardware_setup();
3936 	if (r < 0)
3937 		goto out_free_0a;
3938 
3939 	for_each_online_cpu(cpu) {
3940 		smp_call_function_single(cpu,
3941 				kvm_arch_check_processor_compat,
3942 				&r, 1);
3943 		if (r < 0)
3944 			goto out_free_1;
3945 	}
3946 
3947 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3948 				      kvm_starting_cpu, kvm_dying_cpu);
3949 	if (r)
3950 		goto out_free_2;
3951 	register_reboot_notifier(&kvm_reboot_notifier);
3952 
3953 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3954 	if (!vcpu_align)
3955 		vcpu_align = __alignof__(struct kvm_vcpu);
3956 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3957 					   0, NULL);
3958 	if (!kvm_vcpu_cache) {
3959 		r = -ENOMEM;
3960 		goto out_free_3;
3961 	}
3962 
3963 	r = kvm_async_pf_init();
3964 	if (r)
3965 		goto out_free;
3966 
3967 	kvm_chardev_ops.owner = module;
3968 	kvm_vm_fops.owner = module;
3969 	kvm_vcpu_fops.owner = module;
3970 
3971 	r = misc_register(&kvm_dev);
3972 	if (r) {
3973 		pr_err("kvm: misc device register failed\n");
3974 		goto out_unreg;
3975 	}
3976 
3977 	register_syscore_ops(&kvm_syscore_ops);
3978 
3979 	kvm_preempt_ops.sched_in = kvm_sched_in;
3980 	kvm_preempt_ops.sched_out = kvm_sched_out;
3981 
3982 	r = kvm_init_debug();
3983 	if (r) {
3984 		pr_err("kvm: create debugfs files failed\n");
3985 		goto out_undebugfs;
3986 	}
3987 
3988 	r = kvm_vfio_ops_init();
3989 	WARN_ON(r);
3990 
3991 	return 0;
3992 
3993 out_undebugfs:
3994 	unregister_syscore_ops(&kvm_syscore_ops);
3995 	misc_deregister(&kvm_dev);
3996 out_unreg:
3997 	kvm_async_pf_deinit();
3998 out_free:
3999 	kmem_cache_destroy(kvm_vcpu_cache);
4000 out_free_3:
4001 	unregister_reboot_notifier(&kvm_reboot_notifier);
4002 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4003 out_free_2:
4004 out_free_1:
4005 	kvm_arch_hardware_unsetup();
4006 out_free_0a:
4007 	free_cpumask_var(cpus_hardware_enabled);
4008 out_free_0:
4009 	kvm_irqfd_exit();
4010 out_irqfd:
4011 	kvm_arch_exit();
4012 out_fail:
4013 	return r;
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init);
4016 
4017 void kvm_exit(void)
4018 {
4019 	debugfs_remove_recursive(kvm_debugfs_dir);
4020 	misc_deregister(&kvm_dev);
4021 	kmem_cache_destroy(kvm_vcpu_cache);
4022 	kvm_async_pf_deinit();
4023 	unregister_syscore_ops(&kvm_syscore_ops);
4024 	unregister_reboot_notifier(&kvm_reboot_notifier);
4025 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4026 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4027 	kvm_arch_hardware_unsetup();
4028 	kvm_arch_exit();
4029 	kvm_irqfd_exit();
4030 	free_cpumask_var(cpus_hardware_enabled);
4031 	kvm_vfio_ops_exit();
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_exit);
4034