xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 867a0e05)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /*
70  * Ordering of locks:
71  *
72  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74 
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78 
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82 
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85 
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87 
88 struct dentry *kvm_debugfs_dir;
89 
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 			   unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 				  unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98 
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	cpu = get_cpu();
128 	preempt_notifier_register(&vcpu->preempt_notifier);
129 	kvm_arch_vcpu_load(vcpu, cpu);
130 	put_cpu();
131 	return 0;
132 }
133 
134 void vcpu_put(struct kvm_vcpu *vcpu)
135 {
136 	preempt_disable();
137 	kvm_arch_vcpu_put(vcpu);
138 	preempt_notifier_unregister(&vcpu->preempt_notifier);
139 	preempt_enable();
140 	mutex_unlock(&vcpu->mutex);
141 }
142 
143 static void ack_flush(void *_completed)
144 {
145 }
146 
147 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
148 {
149 	int i, cpu, me;
150 	cpumask_var_t cpus;
151 	bool called = true;
152 	struct kvm_vcpu *vcpu;
153 
154 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
155 
156 	me = get_cpu();
157 	kvm_for_each_vcpu(i, vcpu, kvm) {
158 		kvm_make_request(req, vcpu);
159 		cpu = vcpu->cpu;
160 
161 		/* Set ->requests bit before we read ->mode */
162 		smp_mb();
163 
164 		if (cpus != NULL && cpu != -1 && cpu != me &&
165 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
166 			cpumask_set_cpu(cpu, cpus);
167 	}
168 	if (unlikely(cpus == NULL))
169 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
170 	else if (!cpumask_empty(cpus))
171 		smp_call_function_many(cpus, ack_flush, NULL, 1);
172 	else
173 		called = false;
174 	put_cpu();
175 	free_cpumask_var(cpus);
176 	return called;
177 }
178 
179 void kvm_flush_remote_tlbs(struct kvm *kvm)
180 {
181 	long dirty_count = kvm->tlbs_dirty;
182 
183 	smp_mb();
184 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
185 		++kvm->stat.remote_tlb_flush;
186 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
187 }
188 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
189 
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194 
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199 
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204 
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 	struct page *page;
208 	int r;
209 
210 	mutex_init(&vcpu->mutex);
211 	vcpu->cpu = -1;
212 	vcpu->kvm = kvm;
213 	vcpu->vcpu_id = id;
214 	vcpu->pid = NULL;
215 	init_waitqueue_head(&vcpu->wq);
216 	kvm_async_pf_vcpu_init(vcpu);
217 
218 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 	if (!page) {
220 		r = -ENOMEM;
221 		goto fail;
222 	}
223 	vcpu->run = page_address(page);
224 
225 	kvm_vcpu_set_in_spin_loop(vcpu, false);
226 	kvm_vcpu_set_dy_eligible(vcpu, false);
227 	vcpu->preempted = false;
228 
229 	r = kvm_arch_vcpu_init(vcpu);
230 	if (r < 0)
231 		goto fail_free_run;
232 	return 0;
233 
234 fail_free_run:
235 	free_page((unsigned long)vcpu->run);
236 fail:
237 	return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240 
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 	put_pid(vcpu->pid);
244 	kvm_arch_vcpu_uninit(vcpu);
245 	free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248 
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 	return container_of(mn, struct kvm, mmu_notifier);
253 }
254 
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 					     struct mm_struct *mm,
257 					     unsigned long address)
258 {
259 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 	int need_tlb_flush, idx;
261 
262 	/*
263 	 * When ->invalidate_page runs, the linux pte has been zapped
264 	 * already but the page is still allocated until
265 	 * ->invalidate_page returns. So if we increase the sequence
266 	 * here the kvm page fault will notice if the spte can't be
267 	 * established because the page is going to be freed. If
268 	 * instead the kvm page fault establishes the spte before
269 	 * ->invalidate_page runs, kvm_unmap_hva will release it
270 	 * before returning.
271 	 *
272 	 * The sequence increase only need to be seen at spin_unlock
273 	 * time, and not at spin_lock time.
274 	 *
275 	 * Increasing the sequence after the spin_unlock would be
276 	 * unsafe because the kvm page fault could then establish the
277 	 * pte after kvm_unmap_hva returned, without noticing the page
278 	 * is going to be freed.
279 	 */
280 	idx = srcu_read_lock(&kvm->srcu);
281 	spin_lock(&kvm->mmu_lock);
282 
283 	kvm->mmu_notifier_seq++;
284 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 	/* we've to flush the tlb before the pages can be freed */
286 	if (need_tlb_flush)
287 		kvm_flush_remote_tlbs(kvm);
288 
289 	spin_unlock(&kvm->mmu_lock);
290 
291 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
292 
293 	srcu_read_unlock(&kvm->srcu, idx);
294 }
295 
296 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
297 					struct mm_struct *mm,
298 					unsigned long address,
299 					pte_t pte)
300 {
301 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
302 	int idx;
303 
304 	idx = srcu_read_lock(&kvm->srcu);
305 	spin_lock(&kvm->mmu_lock);
306 	kvm->mmu_notifier_seq++;
307 	kvm_set_spte_hva(kvm, address, pte);
308 	spin_unlock(&kvm->mmu_lock);
309 	srcu_read_unlock(&kvm->srcu, idx);
310 }
311 
312 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
313 						    struct mm_struct *mm,
314 						    unsigned long start,
315 						    unsigned long end)
316 {
317 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 	int need_tlb_flush = 0, idx;
319 
320 	idx = srcu_read_lock(&kvm->srcu);
321 	spin_lock(&kvm->mmu_lock);
322 	/*
323 	 * The count increase must become visible at unlock time as no
324 	 * spte can be established without taking the mmu_lock and
325 	 * count is also read inside the mmu_lock critical section.
326 	 */
327 	kvm->mmu_notifier_count++;
328 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
329 	need_tlb_flush |= kvm->tlbs_dirty;
330 	/* we've to flush the tlb before the pages can be freed */
331 	if (need_tlb_flush)
332 		kvm_flush_remote_tlbs(kvm);
333 
334 	spin_unlock(&kvm->mmu_lock);
335 	srcu_read_unlock(&kvm->srcu, idx);
336 }
337 
338 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
339 						  struct mm_struct *mm,
340 						  unsigned long start,
341 						  unsigned long end)
342 {
343 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
344 
345 	spin_lock(&kvm->mmu_lock);
346 	/*
347 	 * This sequence increase will notify the kvm page fault that
348 	 * the page that is going to be mapped in the spte could have
349 	 * been freed.
350 	 */
351 	kvm->mmu_notifier_seq++;
352 	smp_wmb();
353 	/*
354 	 * The above sequence increase must be visible before the
355 	 * below count decrease, which is ensured by the smp_wmb above
356 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
357 	 */
358 	kvm->mmu_notifier_count--;
359 	spin_unlock(&kvm->mmu_lock);
360 
361 	BUG_ON(kvm->mmu_notifier_count < 0);
362 }
363 
364 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
365 					      struct mm_struct *mm,
366 					      unsigned long start,
367 					      unsigned long end)
368 {
369 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
370 	int young, idx;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 
375 	young = kvm_age_hva(kvm, start, end);
376 	if (young)
377 		kvm_flush_remote_tlbs(kvm);
378 
379 	spin_unlock(&kvm->mmu_lock);
380 	srcu_read_unlock(&kvm->srcu, idx);
381 
382 	return young;
383 }
384 
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 				       struct mm_struct *mm,
387 				       unsigned long address)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int young, idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	young = kvm_test_age_hva(kvm, address);
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return young;
399 }
400 
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 				     struct mm_struct *mm)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 	int idx;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	kvm_arch_flush_shadow_all(kvm);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 }
411 
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
414 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
415 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
416 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
417 	.test_young		= kvm_mmu_notifier_test_young,
418 	.change_pte		= kvm_mmu_notifier_change_pte,
419 	.release		= kvm_mmu_notifier_release,
420 };
421 
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427 
428 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429 
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 	return 0;
433 }
434 
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436 
437 static void kvm_init_memslots_id(struct kvm *kvm)
438 {
439 	int i;
440 	struct kvm_memslots *slots = kvm->memslots;
441 
442 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
443 		slots->id_to_index[i] = slots->memslots[i].id = i;
444 }
445 
446 static struct kvm *kvm_create_vm(unsigned long type)
447 {
448 	int r, i;
449 	struct kvm *kvm = kvm_arch_alloc_vm();
450 
451 	if (!kvm)
452 		return ERR_PTR(-ENOMEM);
453 
454 	r = kvm_arch_init_vm(kvm, type);
455 	if (r)
456 		goto out_err_no_disable;
457 
458 	r = hardware_enable_all();
459 	if (r)
460 		goto out_err_no_disable;
461 
462 #ifdef CONFIG_HAVE_KVM_IRQFD
463 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
464 #endif
465 
466 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467 
468 	r = -ENOMEM;
469 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
470 	if (!kvm->memslots)
471 		goto out_err_no_srcu;
472 
473 	/*
474 	 * Init kvm generation close to the maximum to easily test the
475 	 * code of handling generation number wrap-around.
476 	 */
477 	kvm->memslots->generation = -150;
478 
479 	kvm_init_memslots_id(kvm);
480 	if (init_srcu_struct(&kvm->srcu))
481 		goto out_err_no_srcu;
482 	if (init_srcu_struct(&kvm->irq_srcu))
483 		goto out_err_no_irq_srcu;
484 	for (i = 0; i < KVM_NR_BUSES; i++) {
485 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 					GFP_KERNEL);
487 		if (!kvm->buses[i])
488 			goto out_err;
489 	}
490 
491 	spin_lock_init(&kvm->mmu_lock);
492 	kvm->mm = current->mm;
493 	atomic_inc(&kvm->mm->mm_count);
494 	kvm_eventfd_init(kvm);
495 	mutex_init(&kvm->lock);
496 	mutex_init(&kvm->irq_lock);
497 	mutex_init(&kvm->slots_lock);
498 	atomic_set(&kvm->users_count, 1);
499 	INIT_LIST_HEAD(&kvm->devices);
500 
501 	r = kvm_init_mmu_notifier(kvm);
502 	if (r)
503 		goto out_err;
504 
505 	spin_lock(&kvm_lock);
506 	list_add(&kvm->vm_list, &vm_list);
507 	spin_unlock(&kvm_lock);
508 
509 	return kvm;
510 
511 out_err:
512 	cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 	cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 	hardware_disable_all();
517 out_err_no_disable:
518 	for (i = 0; i < KVM_NR_BUSES; i++)
519 		kfree(kvm->buses[i]);
520 	kfree(kvm->memslots);
521 	kvm_arch_free_vm(kvm);
522 	return ERR_PTR(r);
523 }
524 
525 /*
526  * Avoid using vmalloc for a small buffer.
527  * Should not be used when the size is statically known.
528  */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 	if (size > PAGE_SIZE)
532 		return vzalloc(size);
533 	else
534 		return kzalloc(size, GFP_KERNEL);
535 }
536 
537 void kvm_kvfree(const void *addr)
538 {
539 	if (is_vmalloc_addr(addr))
540 		vfree(addr);
541 	else
542 		kfree(addr);
543 }
544 
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 	if (!memslot->dirty_bitmap)
548 		return;
549 
550 	kvm_kvfree(memslot->dirty_bitmap);
551 	memslot->dirty_bitmap = NULL;
552 }
553 
554 /*
555  * Free any memory in @free but not in @dont.
556  */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 				  struct kvm_memory_slot *dont)
559 {
560 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 		kvm_destroy_dirty_bitmap(free);
562 
563 	kvm_arch_free_memslot(kvm, free, dont);
564 
565 	free->npages = 0;
566 }
567 
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 	struct kvm_memslots *slots = kvm->memslots;
571 	struct kvm_memory_slot *memslot;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_physmem_slot(kvm, memslot, NULL);
575 
576 	kfree(kvm->memslots);
577 }
578 
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 	struct list_head *node, *tmp;
582 
583 	list_for_each_safe(node, tmp, &kvm->devices) {
584 		struct kvm_device *dev =
585 			list_entry(node, struct kvm_device, vm_node);
586 
587 		list_del(node);
588 		dev->ops->destroy(dev);
589 	}
590 }
591 
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 	int i;
595 	struct mm_struct *mm = kvm->mm;
596 
597 	kvm_arch_sync_events(kvm);
598 	spin_lock(&kvm_lock);
599 	list_del(&kvm->vm_list);
600 	spin_unlock(&kvm_lock);
601 	kvm_free_irq_routing(kvm);
602 	for (i = 0; i < KVM_NR_BUSES; i++)
603 		kvm_io_bus_destroy(kvm->buses[i]);
604 	kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 	kvm_arch_flush_shadow_all(kvm);
609 #endif
610 	kvm_arch_destroy_vm(kvm);
611 	kvm_destroy_devices(kvm);
612 	kvm_free_physmem(kvm);
613 	cleanup_srcu_struct(&kvm->irq_srcu);
614 	cleanup_srcu_struct(&kvm->srcu);
615 	kvm_arch_free_vm(kvm);
616 	hardware_disable_all();
617 	mmdrop(mm);
618 }
619 
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 	atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625 
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 	if (atomic_dec_and_test(&kvm->users_count))
629 		kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632 
633 
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 	struct kvm *kvm = filp->private_data;
637 
638 	kvm_irqfd_release(kvm);
639 
640 	kvm_put_kvm(kvm);
641 	return 0;
642 }
643 
644 /*
645  * Allocation size is twice as large as the actual dirty bitmap size.
646  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647  */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651 
652 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 	if (!memslot->dirty_bitmap)
654 		return -ENOMEM;
655 
656 	return 0;
657 }
658 
659 /*
660  * Insert memslot and re-sort memslots based on their GFN,
661  * so binary search could be used to lookup GFN.
662  * Sorting algorithm takes advantage of having initially
663  * sorted array and known changed memslot position.
664  */
665 static void update_memslots(struct kvm_memslots *slots,
666 			    struct kvm_memory_slot *new)
667 {
668 	int id = new->id;
669 	int i = slots->id_to_index[id];
670 	struct kvm_memory_slot *mslots = slots->memslots;
671 
672 	WARN_ON(mslots[i].id != id);
673 	if (!new->npages) {
674 		WARN_ON(!mslots[i].npages);
675 		new->base_gfn = 0;
676 		if (mslots[i].npages)
677 			slots->used_slots--;
678 	} else {
679 		if (!mslots[i].npages)
680 			slots->used_slots++;
681 	}
682 
683 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
684 	       new->base_gfn <= mslots[i + 1].base_gfn) {
685 		if (!mslots[i + 1].npages)
686 			break;
687 		mslots[i] = mslots[i + 1];
688 		slots->id_to_index[mslots[i].id] = i;
689 		i++;
690 	}
691 
692 	/*
693 	 * The ">=" is needed when creating a slot with base_gfn == 0,
694 	 * so that it moves before all those with base_gfn == npages == 0.
695 	 *
696 	 * On the other hand, if new->npages is zero, the above loop has
697 	 * already left i pointing to the beginning of the empty part of
698 	 * mslots, and the ">=" would move the hole backwards in this
699 	 * case---which is wrong.  So skip the loop when deleting a slot.
700 	 */
701 	if (new->npages) {
702 		while (i > 0 &&
703 		       new->base_gfn >= mslots[i - 1].base_gfn) {
704 			mslots[i] = mslots[i - 1];
705 			slots->id_to_index[mslots[i].id] = i;
706 			i--;
707 		}
708 	} else
709 		WARN_ON_ONCE(i != slots->used_slots);
710 
711 	mslots[i] = *new;
712 	slots->id_to_index[mslots[i].id] = i;
713 }
714 
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 {
717 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718 
719 #ifdef __KVM_HAVE_READONLY_MEM
720 	valid_flags |= KVM_MEM_READONLY;
721 #endif
722 
723 	if (mem->flags & ~valid_flags)
724 		return -EINVAL;
725 
726 	return 0;
727 }
728 
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730 		struct kvm_memslots *slots)
731 {
732 	struct kvm_memslots *old_memslots = kvm->memslots;
733 
734 	/*
735 	 * Set the low bit in the generation, which disables SPTE caching
736 	 * until the end of synchronize_srcu_expedited.
737 	 */
738 	WARN_ON(old_memslots->generation & 1);
739 	slots->generation = old_memslots->generation + 1;
740 
741 	rcu_assign_pointer(kvm->memslots, slots);
742 	synchronize_srcu_expedited(&kvm->srcu);
743 
744 	/*
745 	 * Increment the new memslot generation a second time. This prevents
746 	 * vm exits that race with memslot updates from caching a memslot
747 	 * generation that will (potentially) be valid forever.
748 	 */
749 	slots->generation++;
750 
751 	kvm_arch_memslots_updated(kvm);
752 
753 	return old_memslots;
754 }
755 
756 /*
757  * Allocate some memory and give it an address in the guest physical address
758  * space.
759  *
760  * Discontiguous memory is allowed, mostly for framebuffers.
761  *
762  * Must be called holding kvm->slots_lock for write.
763  */
764 int __kvm_set_memory_region(struct kvm *kvm,
765 			    struct kvm_userspace_memory_region *mem)
766 {
767 	int r;
768 	gfn_t base_gfn;
769 	unsigned long npages;
770 	struct kvm_memory_slot *slot;
771 	struct kvm_memory_slot old, new;
772 	struct kvm_memslots *slots = NULL, *old_memslots;
773 	enum kvm_mr_change change;
774 
775 	r = check_memory_region_flags(mem);
776 	if (r)
777 		goto out;
778 
779 	r = -EINVAL;
780 	/* General sanity checks */
781 	if (mem->memory_size & (PAGE_SIZE - 1))
782 		goto out;
783 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
784 		goto out;
785 	/* We can read the guest memory with __xxx_user() later on. */
786 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
787 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
788 	     !access_ok(VERIFY_WRITE,
789 			(void __user *)(unsigned long)mem->userspace_addr,
790 			mem->memory_size)))
791 		goto out;
792 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
793 		goto out;
794 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
795 		goto out;
796 
797 	slot = id_to_memslot(kvm->memslots, mem->slot);
798 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
799 	npages = mem->memory_size >> PAGE_SHIFT;
800 
801 	if (npages > KVM_MEM_MAX_NR_PAGES)
802 		goto out;
803 
804 	if (!npages)
805 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
806 
807 	new = old = *slot;
808 
809 	new.id = mem->slot;
810 	new.base_gfn = base_gfn;
811 	new.npages = npages;
812 	new.flags = mem->flags;
813 
814 	if (npages) {
815 		if (!old.npages)
816 			change = KVM_MR_CREATE;
817 		else { /* Modify an existing slot. */
818 			if ((mem->userspace_addr != old.userspace_addr) ||
819 			    (npages != old.npages) ||
820 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
821 				goto out;
822 
823 			if (base_gfn != old.base_gfn)
824 				change = KVM_MR_MOVE;
825 			else if (new.flags != old.flags)
826 				change = KVM_MR_FLAGS_ONLY;
827 			else { /* Nothing to change. */
828 				r = 0;
829 				goto out;
830 			}
831 		}
832 	} else if (old.npages) {
833 		change = KVM_MR_DELETE;
834 	} else /* Modify a non-existent slot: disallowed. */
835 		goto out;
836 
837 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
838 		/* Check for overlaps */
839 		r = -EEXIST;
840 		kvm_for_each_memslot(slot, kvm->memslots) {
841 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
842 			    (slot->id == mem->slot))
843 				continue;
844 			if (!((base_gfn + npages <= slot->base_gfn) ||
845 			      (base_gfn >= slot->base_gfn + slot->npages)))
846 				goto out;
847 		}
848 	}
849 
850 	/* Free page dirty bitmap if unneeded */
851 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
852 		new.dirty_bitmap = NULL;
853 
854 	r = -ENOMEM;
855 	if (change == KVM_MR_CREATE) {
856 		new.userspace_addr = mem->userspace_addr;
857 
858 		if (kvm_arch_create_memslot(kvm, &new, npages))
859 			goto out_free;
860 	}
861 
862 	/* Allocate page dirty bitmap if needed */
863 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
864 		if (kvm_create_dirty_bitmap(&new) < 0)
865 			goto out_free;
866 	}
867 
868 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
869 			GFP_KERNEL);
870 	if (!slots)
871 		goto out_free;
872 
873 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
874 		slot = id_to_memslot(slots, mem->slot);
875 		slot->flags |= KVM_MEMSLOT_INVALID;
876 
877 		old_memslots = install_new_memslots(kvm, slots);
878 
879 		/* slot was deleted or moved, clear iommu mapping */
880 		kvm_iommu_unmap_pages(kvm, &old);
881 		/* From this point no new shadow pages pointing to a deleted,
882 		 * or moved, memslot will be created.
883 		 *
884 		 * validation of sp->gfn happens in:
885 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
887 		 */
888 		kvm_arch_flush_shadow_memslot(kvm, slot);
889 
890 		/*
891 		 * We can re-use the old_memslots from above, the only difference
892 		 * from the currently installed memslots is the invalid flag.  This
893 		 * will get overwritten by update_memslots anyway.
894 		 */
895 		slots = old_memslots;
896 	}
897 
898 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
899 	if (r)
900 		goto out_slots;
901 
902 	/* actual memory is freed via old in kvm_free_physmem_slot below */
903 	if (change == KVM_MR_DELETE) {
904 		new.dirty_bitmap = NULL;
905 		memset(&new.arch, 0, sizeof(new.arch));
906 	}
907 
908 	update_memslots(slots, &new);
909 	old_memslots = install_new_memslots(kvm, slots);
910 
911 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
912 
913 	kvm_free_physmem_slot(kvm, &old, &new);
914 	kfree(old_memslots);
915 
916 	/*
917 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
918 	 * un-mapped and re-mapped if their base changes.  Since base change
919 	 * unmapping is handled above with slot deletion, mapping alone is
920 	 * needed here.  Anything else the iommu might care about for existing
921 	 * slots (size changes, userspace addr changes and read-only flag
922 	 * changes) is disallowed above, so any other attribute changes getting
923 	 * here can be skipped.
924 	 */
925 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
926 		r = kvm_iommu_map_pages(kvm, &new);
927 		return r;
928 	}
929 
930 	return 0;
931 
932 out_slots:
933 	kfree(slots);
934 out_free:
935 	kvm_free_physmem_slot(kvm, &new, &old);
936 out:
937 	return r;
938 }
939 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
940 
941 int kvm_set_memory_region(struct kvm *kvm,
942 			  struct kvm_userspace_memory_region *mem)
943 {
944 	int r;
945 
946 	mutex_lock(&kvm->slots_lock);
947 	r = __kvm_set_memory_region(kvm, mem);
948 	mutex_unlock(&kvm->slots_lock);
949 	return r;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
952 
953 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
954 					  struct kvm_userspace_memory_region *mem)
955 {
956 	if (mem->slot >= KVM_USER_MEM_SLOTS)
957 		return -EINVAL;
958 	return kvm_set_memory_region(kvm, mem);
959 }
960 
961 int kvm_get_dirty_log(struct kvm *kvm,
962 			struct kvm_dirty_log *log, int *is_dirty)
963 {
964 	struct kvm_memory_slot *memslot;
965 	int r, i;
966 	unsigned long n;
967 	unsigned long any = 0;
968 
969 	r = -EINVAL;
970 	if (log->slot >= KVM_USER_MEM_SLOTS)
971 		goto out;
972 
973 	memslot = id_to_memslot(kvm->memslots, log->slot);
974 	r = -ENOENT;
975 	if (!memslot->dirty_bitmap)
976 		goto out;
977 
978 	n = kvm_dirty_bitmap_bytes(memslot);
979 
980 	for (i = 0; !any && i < n/sizeof(long); ++i)
981 		any = memslot->dirty_bitmap[i];
982 
983 	r = -EFAULT;
984 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
985 		goto out;
986 
987 	if (any)
988 		*is_dirty = 1;
989 
990 	r = 0;
991 out:
992 	return r;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
995 
996 bool kvm_largepages_enabled(void)
997 {
998 	return largepages_enabled;
999 }
1000 
1001 void kvm_disable_largepages(void)
1002 {
1003 	largepages_enabled = false;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1006 
1007 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1008 {
1009 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1010 }
1011 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1012 
1013 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1014 {
1015 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1016 
1017 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1018 	      memslot->flags & KVM_MEMSLOT_INVALID)
1019 		return 0;
1020 
1021 	return 1;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1024 
1025 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1026 {
1027 	struct vm_area_struct *vma;
1028 	unsigned long addr, size;
1029 
1030 	size = PAGE_SIZE;
1031 
1032 	addr = gfn_to_hva(kvm, gfn);
1033 	if (kvm_is_error_hva(addr))
1034 		return PAGE_SIZE;
1035 
1036 	down_read(&current->mm->mmap_sem);
1037 	vma = find_vma(current->mm, addr);
1038 	if (!vma)
1039 		goto out;
1040 
1041 	size = vma_kernel_pagesize(vma);
1042 
1043 out:
1044 	up_read(&current->mm->mmap_sem);
1045 
1046 	return size;
1047 }
1048 
1049 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1050 {
1051 	return slot->flags & KVM_MEM_READONLY;
1052 }
1053 
1054 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1055 				       gfn_t *nr_pages, bool write)
1056 {
1057 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1058 		return KVM_HVA_ERR_BAD;
1059 
1060 	if (memslot_is_readonly(slot) && write)
1061 		return KVM_HVA_ERR_RO_BAD;
1062 
1063 	if (nr_pages)
1064 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1065 
1066 	return __gfn_to_hva_memslot(slot, gfn);
1067 }
1068 
1069 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1070 				     gfn_t *nr_pages)
1071 {
1072 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1073 }
1074 
1075 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1076 					gfn_t gfn)
1077 {
1078 	return gfn_to_hva_many(slot, gfn, NULL);
1079 }
1080 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1081 
1082 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1083 {
1084 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva);
1087 
1088 /*
1089  * If writable is set to false, the hva returned by this function is only
1090  * allowed to be read.
1091  */
1092 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1093 				      gfn_t gfn, bool *writable)
1094 {
1095 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1096 
1097 	if (!kvm_is_error_hva(hva) && writable)
1098 		*writable = !memslot_is_readonly(slot);
1099 
1100 	return hva;
1101 }
1102 
1103 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1104 {
1105 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1106 
1107 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1108 }
1109 
1110 static int kvm_read_hva(void *data, void __user *hva, int len)
1111 {
1112 	return __copy_from_user(data, hva, len);
1113 }
1114 
1115 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1116 {
1117 	return __copy_from_user_inatomic(data, hva, len);
1118 }
1119 
1120 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1121 	unsigned long start, int write, struct page **page)
1122 {
1123 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1124 
1125 	if (write)
1126 		flags |= FOLL_WRITE;
1127 
1128 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1129 }
1130 
1131 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1132 			 unsigned long addr, bool write_fault,
1133 			 struct page **pagep)
1134 {
1135 	int npages;
1136 	int locked = 1;
1137 	int flags = FOLL_TOUCH | FOLL_HWPOISON |
1138 		    (pagep ? FOLL_GET : 0) |
1139 		    (write_fault ? FOLL_WRITE : 0);
1140 
1141 	/*
1142 	 * If retrying the fault, we get here *not* having allowed the filemap
1143 	 * to wait on the page lock. We should now allow waiting on the IO with
1144 	 * the mmap semaphore released.
1145 	 */
1146 	down_read(&mm->mmap_sem);
1147 	npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1148 				  &locked);
1149 	if (!locked) {
1150 		VM_BUG_ON(npages);
1151 
1152 		if (!pagep)
1153 			return 0;
1154 
1155 		/*
1156 		 * The previous call has now waited on the IO. Now we can
1157 		 * retry and complete. Pass TRIED to ensure we do not re
1158 		 * schedule async IO (see e.g. filemap_fault).
1159 		 */
1160 		down_read(&mm->mmap_sem);
1161 		npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1162 					  pagep, NULL, NULL);
1163 	}
1164 	up_read(&mm->mmap_sem);
1165 	return npages;
1166 }
1167 
1168 static inline int check_user_page_hwpoison(unsigned long addr)
1169 {
1170 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1171 
1172 	rc = __get_user_pages(current, current->mm, addr, 1,
1173 			      flags, NULL, NULL, NULL);
1174 	return rc == -EHWPOISON;
1175 }
1176 
1177 /*
1178  * The atomic path to get the writable pfn which will be stored in @pfn,
1179  * true indicates success, otherwise false is returned.
1180  */
1181 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1182 			    bool write_fault, bool *writable, pfn_t *pfn)
1183 {
1184 	struct page *page[1];
1185 	int npages;
1186 
1187 	if (!(async || atomic))
1188 		return false;
1189 
1190 	/*
1191 	 * Fast pin a writable pfn only if it is a write fault request
1192 	 * or the caller allows to map a writable pfn for a read fault
1193 	 * request.
1194 	 */
1195 	if (!(write_fault || writable))
1196 		return false;
1197 
1198 	npages = __get_user_pages_fast(addr, 1, 1, page);
1199 	if (npages == 1) {
1200 		*pfn = page_to_pfn(page[0]);
1201 
1202 		if (writable)
1203 			*writable = true;
1204 		return true;
1205 	}
1206 
1207 	return false;
1208 }
1209 
1210 /*
1211  * The slow path to get the pfn of the specified host virtual address,
1212  * 1 indicates success, -errno is returned if error is detected.
1213  */
1214 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1215 			   bool *writable, pfn_t *pfn)
1216 {
1217 	struct page *page[1];
1218 	int npages = 0;
1219 
1220 	might_sleep();
1221 
1222 	if (writable)
1223 		*writable = write_fault;
1224 
1225 	if (async) {
1226 		down_read(&current->mm->mmap_sem);
1227 		npages = get_user_page_nowait(current, current->mm,
1228 					      addr, write_fault, page);
1229 		up_read(&current->mm->mmap_sem);
1230 	} else {
1231 		/*
1232 		 * By now we have tried gup_fast, and possibly async_pf, and we
1233 		 * are certainly not atomic. Time to retry the gup, allowing
1234 		 * mmap semaphore to be relinquished in the case of IO.
1235 		 */
1236 		npages = kvm_get_user_page_io(current, current->mm, addr,
1237 					      write_fault, page);
1238 	}
1239 	if (npages != 1)
1240 		return npages;
1241 
1242 	/* map read fault as writable if possible */
1243 	if (unlikely(!write_fault) && writable) {
1244 		struct page *wpage[1];
1245 
1246 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1247 		if (npages == 1) {
1248 			*writable = true;
1249 			put_page(page[0]);
1250 			page[0] = wpage[0];
1251 		}
1252 
1253 		npages = 1;
1254 	}
1255 	*pfn = page_to_pfn(page[0]);
1256 	return npages;
1257 }
1258 
1259 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1260 {
1261 	if (unlikely(!(vma->vm_flags & VM_READ)))
1262 		return false;
1263 
1264 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1265 		return false;
1266 
1267 	return true;
1268 }
1269 
1270 /*
1271  * Pin guest page in memory and return its pfn.
1272  * @addr: host virtual address which maps memory to the guest
1273  * @atomic: whether this function can sleep
1274  * @async: whether this function need to wait IO complete if the
1275  *         host page is not in the memory
1276  * @write_fault: whether we should get a writable host page
1277  * @writable: whether it allows to map a writable host page for !@write_fault
1278  *
1279  * The function will map a writable host page for these two cases:
1280  * 1): @write_fault = true
1281  * 2): @write_fault = false && @writable, @writable will tell the caller
1282  *     whether the mapping is writable.
1283  */
1284 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1285 			bool write_fault, bool *writable)
1286 {
1287 	struct vm_area_struct *vma;
1288 	pfn_t pfn = 0;
1289 	int npages;
1290 
1291 	/* we can do it either atomically or asynchronously, not both */
1292 	BUG_ON(atomic && async);
1293 
1294 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1295 		return pfn;
1296 
1297 	if (atomic)
1298 		return KVM_PFN_ERR_FAULT;
1299 
1300 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1301 	if (npages == 1)
1302 		return pfn;
1303 
1304 	down_read(&current->mm->mmap_sem);
1305 	if (npages == -EHWPOISON ||
1306 	      (!async && check_user_page_hwpoison(addr))) {
1307 		pfn = KVM_PFN_ERR_HWPOISON;
1308 		goto exit;
1309 	}
1310 
1311 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1312 
1313 	if (vma == NULL)
1314 		pfn = KVM_PFN_ERR_FAULT;
1315 	else if ((vma->vm_flags & VM_PFNMAP)) {
1316 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1317 			vma->vm_pgoff;
1318 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1319 	} else {
1320 		if (async && vma_is_valid(vma, write_fault))
1321 			*async = true;
1322 		pfn = KVM_PFN_ERR_FAULT;
1323 	}
1324 exit:
1325 	up_read(&current->mm->mmap_sem);
1326 	return pfn;
1327 }
1328 
1329 static pfn_t
1330 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1331 		     bool *async, bool write_fault, bool *writable)
1332 {
1333 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1334 
1335 	if (addr == KVM_HVA_ERR_RO_BAD)
1336 		return KVM_PFN_ERR_RO_FAULT;
1337 
1338 	if (kvm_is_error_hva(addr))
1339 		return KVM_PFN_NOSLOT;
1340 
1341 	/* Do not map writable pfn in the readonly memslot. */
1342 	if (writable && memslot_is_readonly(slot)) {
1343 		*writable = false;
1344 		writable = NULL;
1345 	}
1346 
1347 	return hva_to_pfn(addr, atomic, async, write_fault,
1348 			  writable);
1349 }
1350 
1351 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1352 			  bool write_fault, bool *writable)
1353 {
1354 	struct kvm_memory_slot *slot;
1355 
1356 	if (async)
1357 		*async = false;
1358 
1359 	slot = gfn_to_memslot(kvm, gfn);
1360 
1361 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1362 				    writable);
1363 }
1364 
1365 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1366 {
1367 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1370 
1371 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1372 		       bool write_fault, bool *writable)
1373 {
1374 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1377 
1378 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1379 {
1380 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1383 
1384 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1385 		      bool *writable)
1386 {
1387 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1388 }
1389 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1390 
1391 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1392 {
1393 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1394 }
1395 
1396 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1397 {
1398 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1399 }
1400 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1401 
1402 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1403 								  int nr_pages)
1404 {
1405 	unsigned long addr;
1406 	gfn_t entry;
1407 
1408 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1409 	if (kvm_is_error_hva(addr))
1410 		return -1;
1411 
1412 	if (entry < nr_pages)
1413 		return 0;
1414 
1415 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1416 }
1417 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1418 
1419 static struct page *kvm_pfn_to_page(pfn_t pfn)
1420 {
1421 	if (is_error_noslot_pfn(pfn))
1422 		return KVM_ERR_PTR_BAD_PAGE;
1423 
1424 	if (kvm_is_reserved_pfn(pfn)) {
1425 		WARN_ON(1);
1426 		return KVM_ERR_PTR_BAD_PAGE;
1427 	}
1428 
1429 	return pfn_to_page(pfn);
1430 }
1431 
1432 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1433 {
1434 	pfn_t pfn;
1435 
1436 	pfn = gfn_to_pfn(kvm, gfn);
1437 
1438 	return kvm_pfn_to_page(pfn);
1439 }
1440 
1441 EXPORT_SYMBOL_GPL(gfn_to_page);
1442 
1443 void kvm_release_page_clean(struct page *page)
1444 {
1445 	WARN_ON(is_error_page(page));
1446 
1447 	kvm_release_pfn_clean(page_to_pfn(page));
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1450 
1451 void kvm_release_pfn_clean(pfn_t pfn)
1452 {
1453 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1454 		put_page(pfn_to_page(pfn));
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1457 
1458 void kvm_release_page_dirty(struct page *page)
1459 {
1460 	WARN_ON(is_error_page(page));
1461 
1462 	kvm_release_pfn_dirty(page_to_pfn(page));
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1465 
1466 static void kvm_release_pfn_dirty(pfn_t pfn)
1467 {
1468 	kvm_set_pfn_dirty(pfn);
1469 	kvm_release_pfn_clean(pfn);
1470 }
1471 
1472 void kvm_set_pfn_dirty(pfn_t pfn)
1473 {
1474 	if (!kvm_is_reserved_pfn(pfn)) {
1475 		struct page *page = pfn_to_page(pfn);
1476 		if (!PageReserved(page))
1477 			SetPageDirty(page);
1478 	}
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1481 
1482 void kvm_set_pfn_accessed(pfn_t pfn)
1483 {
1484 	if (!kvm_is_reserved_pfn(pfn))
1485 		mark_page_accessed(pfn_to_page(pfn));
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1488 
1489 void kvm_get_pfn(pfn_t pfn)
1490 {
1491 	if (!kvm_is_reserved_pfn(pfn))
1492 		get_page(pfn_to_page(pfn));
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1495 
1496 static int next_segment(unsigned long len, int offset)
1497 {
1498 	if (len > PAGE_SIZE - offset)
1499 		return PAGE_SIZE - offset;
1500 	else
1501 		return len;
1502 }
1503 
1504 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1505 			int len)
1506 {
1507 	int r;
1508 	unsigned long addr;
1509 
1510 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1511 	if (kvm_is_error_hva(addr))
1512 		return -EFAULT;
1513 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1514 	if (r)
1515 		return -EFAULT;
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1519 
1520 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1521 {
1522 	gfn_t gfn = gpa >> PAGE_SHIFT;
1523 	int seg;
1524 	int offset = offset_in_page(gpa);
1525 	int ret;
1526 
1527 	while ((seg = next_segment(len, offset)) != 0) {
1528 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1529 		if (ret < 0)
1530 			return ret;
1531 		offset = 0;
1532 		len -= seg;
1533 		data += seg;
1534 		++gfn;
1535 	}
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_read_guest);
1539 
1540 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1541 			  unsigned long len)
1542 {
1543 	int r;
1544 	unsigned long addr;
1545 	gfn_t gfn = gpa >> PAGE_SHIFT;
1546 	int offset = offset_in_page(gpa);
1547 
1548 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1549 	if (kvm_is_error_hva(addr))
1550 		return -EFAULT;
1551 	pagefault_disable();
1552 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1553 	pagefault_enable();
1554 	if (r)
1555 		return -EFAULT;
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(kvm_read_guest_atomic);
1559 
1560 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1561 			 int offset, int len)
1562 {
1563 	int r;
1564 	unsigned long addr;
1565 
1566 	addr = gfn_to_hva(kvm, gfn);
1567 	if (kvm_is_error_hva(addr))
1568 		return -EFAULT;
1569 	r = __copy_to_user((void __user *)addr + offset, data, len);
1570 	if (r)
1571 		return -EFAULT;
1572 	mark_page_dirty(kvm, gfn);
1573 	return 0;
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1576 
1577 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1578 		    unsigned long len)
1579 {
1580 	gfn_t gfn = gpa >> PAGE_SHIFT;
1581 	int seg;
1582 	int offset = offset_in_page(gpa);
1583 	int ret;
1584 
1585 	while ((seg = next_segment(len, offset)) != 0) {
1586 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1587 		if (ret < 0)
1588 			return ret;
1589 		offset = 0;
1590 		len -= seg;
1591 		data += seg;
1592 		++gfn;
1593 	}
1594 	return 0;
1595 }
1596 
1597 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1598 			      gpa_t gpa, unsigned long len)
1599 {
1600 	struct kvm_memslots *slots = kvm_memslots(kvm);
1601 	int offset = offset_in_page(gpa);
1602 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1603 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1604 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1605 	gfn_t nr_pages_avail;
1606 
1607 	ghc->gpa = gpa;
1608 	ghc->generation = slots->generation;
1609 	ghc->len = len;
1610 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1611 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1612 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1613 		ghc->hva += offset;
1614 	} else {
1615 		/*
1616 		 * If the requested region crosses two memslots, we still
1617 		 * verify that the entire region is valid here.
1618 		 */
1619 		while (start_gfn <= end_gfn) {
1620 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1621 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1622 						   &nr_pages_avail);
1623 			if (kvm_is_error_hva(ghc->hva))
1624 				return -EFAULT;
1625 			start_gfn += nr_pages_avail;
1626 		}
1627 		/* Use the slow path for cross page reads and writes. */
1628 		ghc->memslot = NULL;
1629 	}
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1633 
1634 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1635 			   void *data, unsigned long len)
1636 {
1637 	struct kvm_memslots *slots = kvm_memslots(kvm);
1638 	int r;
1639 
1640 	BUG_ON(len > ghc->len);
1641 
1642 	if (slots->generation != ghc->generation)
1643 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1644 
1645 	if (unlikely(!ghc->memslot))
1646 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1647 
1648 	if (kvm_is_error_hva(ghc->hva))
1649 		return -EFAULT;
1650 
1651 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1652 	if (r)
1653 		return -EFAULT;
1654 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1659 
1660 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1661 			   void *data, unsigned long len)
1662 {
1663 	struct kvm_memslots *slots = kvm_memslots(kvm);
1664 	int r;
1665 
1666 	BUG_ON(len > ghc->len);
1667 
1668 	if (slots->generation != ghc->generation)
1669 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1670 
1671 	if (unlikely(!ghc->memslot))
1672 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1673 
1674 	if (kvm_is_error_hva(ghc->hva))
1675 		return -EFAULT;
1676 
1677 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1678 	if (r)
1679 		return -EFAULT;
1680 
1681 	return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1684 
1685 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1686 {
1687 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1688 
1689 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1692 
1693 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1694 {
1695 	gfn_t gfn = gpa >> PAGE_SHIFT;
1696 	int seg;
1697 	int offset = offset_in_page(gpa);
1698 	int ret;
1699 
1700         while ((seg = next_segment(len, offset)) != 0) {
1701 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1702 		if (ret < 0)
1703 			return ret;
1704 		offset = 0;
1705 		len -= seg;
1706 		++gfn;
1707 	}
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1711 
1712 static void mark_page_dirty_in_slot(struct kvm *kvm,
1713 				    struct kvm_memory_slot *memslot,
1714 				    gfn_t gfn)
1715 {
1716 	if (memslot && memslot->dirty_bitmap) {
1717 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1718 
1719 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1720 	}
1721 }
1722 
1723 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1724 {
1725 	struct kvm_memory_slot *memslot;
1726 
1727 	memslot = gfn_to_memslot(kvm, gfn);
1728 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1729 }
1730 EXPORT_SYMBOL_GPL(mark_page_dirty);
1731 
1732 /*
1733  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1734  */
1735 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1736 {
1737 	DEFINE_WAIT(wait);
1738 
1739 	for (;;) {
1740 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1741 
1742 		if (kvm_arch_vcpu_runnable(vcpu)) {
1743 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1744 			break;
1745 		}
1746 		if (kvm_cpu_has_pending_timer(vcpu))
1747 			break;
1748 		if (signal_pending(current))
1749 			break;
1750 
1751 		schedule();
1752 	}
1753 
1754 	finish_wait(&vcpu->wq, &wait);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1757 
1758 #ifndef CONFIG_S390
1759 /*
1760  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1761  */
1762 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1763 {
1764 	int me;
1765 	int cpu = vcpu->cpu;
1766 	wait_queue_head_t *wqp;
1767 
1768 	wqp = kvm_arch_vcpu_wq(vcpu);
1769 	if (waitqueue_active(wqp)) {
1770 		wake_up_interruptible(wqp);
1771 		++vcpu->stat.halt_wakeup;
1772 	}
1773 
1774 	me = get_cpu();
1775 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1776 		if (kvm_arch_vcpu_should_kick(vcpu))
1777 			smp_send_reschedule(cpu);
1778 	put_cpu();
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1781 #endif /* !CONFIG_S390 */
1782 
1783 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1784 {
1785 	struct pid *pid;
1786 	struct task_struct *task = NULL;
1787 	int ret = 0;
1788 
1789 	rcu_read_lock();
1790 	pid = rcu_dereference(target->pid);
1791 	if (pid)
1792 		task = get_pid_task(pid, PIDTYPE_PID);
1793 	rcu_read_unlock();
1794 	if (!task)
1795 		return ret;
1796 	ret = yield_to(task, 1);
1797 	put_task_struct(task);
1798 
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1802 
1803 /*
1804  * Helper that checks whether a VCPU is eligible for directed yield.
1805  * Most eligible candidate to yield is decided by following heuristics:
1806  *
1807  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1808  *  (preempted lock holder), indicated by @in_spin_loop.
1809  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1810  *
1811  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1812  *  chance last time (mostly it has become eligible now since we have probably
1813  *  yielded to lockholder in last iteration. This is done by toggling
1814  *  @dy_eligible each time a VCPU checked for eligibility.)
1815  *
1816  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1817  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1818  *  burning. Giving priority for a potential lock-holder increases lock
1819  *  progress.
1820  *
1821  *  Since algorithm is based on heuristics, accessing another VCPU data without
1822  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1823  *  and continue with next VCPU and so on.
1824  */
1825 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1826 {
1827 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1828 	bool eligible;
1829 
1830 	eligible = !vcpu->spin_loop.in_spin_loop ||
1831 		    vcpu->spin_loop.dy_eligible;
1832 
1833 	if (vcpu->spin_loop.in_spin_loop)
1834 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1835 
1836 	return eligible;
1837 #else
1838 	return true;
1839 #endif
1840 }
1841 
1842 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1843 {
1844 	struct kvm *kvm = me->kvm;
1845 	struct kvm_vcpu *vcpu;
1846 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1847 	int yielded = 0;
1848 	int try = 3;
1849 	int pass;
1850 	int i;
1851 
1852 	kvm_vcpu_set_in_spin_loop(me, true);
1853 	/*
1854 	 * We boost the priority of a VCPU that is runnable but not
1855 	 * currently running, because it got preempted by something
1856 	 * else and called schedule in __vcpu_run.  Hopefully that
1857 	 * VCPU is holding the lock that we need and will release it.
1858 	 * We approximate round-robin by starting at the last boosted VCPU.
1859 	 */
1860 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1861 		kvm_for_each_vcpu(i, vcpu, kvm) {
1862 			if (!pass && i <= last_boosted_vcpu) {
1863 				i = last_boosted_vcpu;
1864 				continue;
1865 			} else if (pass && i > last_boosted_vcpu)
1866 				break;
1867 			if (!ACCESS_ONCE(vcpu->preempted))
1868 				continue;
1869 			if (vcpu == me)
1870 				continue;
1871 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1872 				continue;
1873 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1874 				continue;
1875 
1876 			yielded = kvm_vcpu_yield_to(vcpu);
1877 			if (yielded > 0) {
1878 				kvm->last_boosted_vcpu = i;
1879 				break;
1880 			} else if (yielded < 0) {
1881 				try--;
1882 				if (!try)
1883 					break;
1884 			}
1885 		}
1886 	}
1887 	kvm_vcpu_set_in_spin_loop(me, false);
1888 
1889 	/* Ensure vcpu is not eligible during next spinloop */
1890 	kvm_vcpu_set_dy_eligible(me, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1893 
1894 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895 {
1896 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1897 	struct page *page;
1898 
1899 	if (vmf->pgoff == 0)
1900 		page = virt_to_page(vcpu->run);
1901 #ifdef CONFIG_X86
1902 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1903 		page = virt_to_page(vcpu->arch.pio_data);
1904 #endif
1905 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1906 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1907 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1908 #endif
1909 	else
1910 		return kvm_arch_vcpu_fault(vcpu, vmf);
1911 	get_page(page);
1912 	vmf->page = page;
1913 	return 0;
1914 }
1915 
1916 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1917 	.fault = kvm_vcpu_fault,
1918 };
1919 
1920 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1921 {
1922 	vma->vm_ops = &kvm_vcpu_vm_ops;
1923 	return 0;
1924 }
1925 
1926 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1927 {
1928 	struct kvm_vcpu *vcpu = filp->private_data;
1929 
1930 	kvm_put_kvm(vcpu->kvm);
1931 	return 0;
1932 }
1933 
1934 static struct file_operations kvm_vcpu_fops = {
1935 	.release        = kvm_vcpu_release,
1936 	.unlocked_ioctl = kvm_vcpu_ioctl,
1937 #ifdef CONFIG_COMPAT
1938 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1939 #endif
1940 	.mmap           = kvm_vcpu_mmap,
1941 	.llseek		= noop_llseek,
1942 };
1943 
1944 /*
1945  * Allocates an inode for the vcpu.
1946  */
1947 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1948 {
1949 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1950 }
1951 
1952 /*
1953  * Creates some virtual cpus.  Good luck creating more than one.
1954  */
1955 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1956 {
1957 	int r;
1958 	struct kvm_vcpu *vcpu, *v;
1959 
1960 	if (id >= KVM_MAX_VCPUS)
1961 		return -EINVAL;
1962 
1963 	vcpu = kvm_arch_vcpu_create(kvm, id);
1964 	if (IS_ERR(vcpu))
1965 		return PTR_ERR(vcpu);
1966 
1967 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1968 
1969 	r = kvm_arch_vcpu_setup(vcpu);
1970 	if (r)
1971 		goto vcpu_destroy;
1972 
1973 	mutex_lock(&kvm->lock);
1974 	if (!kvm_vcpu_compatible(vcpu)) {
1975 		r = -EINVAL;
1976 		goto unlock_vcpu_destroy;
1977 	}
1978 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1979 		r = -EINVAL;
1980 		goto unlock_vcpu_destroy;
1981 	}
1982 
1983 	kvm_for_each_vcpu(r, v, kvm)
1984 		if (v->vcpu_id == id) {
1985 			r = -EEXIST;
1986 			goto unlock_vcpu_destroy;
1987 		}
1988 
1989 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1990 
1991 	/* Now it's all set up, let userspace reach it */
1992 	kvm_get_kvm(kvm);
1993 	r = create_vcpu_fd(vcpu);
1994 	if (r < 0) {
1995 		kvm_put_kvm(kvm);
1996 		goto unlock_vcpu_destroy;
1997 	}
1998 
1999 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2000 	smp_wmb();
2001 	atomic_inc(&kvm->online_vcpus);
2002 
2003 	mutex_unlock(&kvm->lock);
2004 	kvm_arch_vcpu_postcreate(vcpu);
2005 	return r;
2006 
2007 unlock_vcpu_destroy:
2008 	mutex_unlock(&kvm->lock);
2009 vcpu_destroy:
2010 	kvm_arch_vcpu_destroy(vcpu);
2011 	return r;
2012 }
2013 
2014 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2015 {
2016 	if (sigset) {
2017 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2018 		vcpu->sigset_active = 1;
2019 		vcpu->sigset = *sigset;
2020 	} else
2021 		vcpu->sigset_active = 0;
2022 	return 0;
2023 }
2024 
2025 static long kvm_vcpu_ioctl(struct file *filp,
2026 			   unsigned int ioctl, unsigned long arg)
2027 {
2028 	struct kvm_vcpu *vcpu = filp->private_data;
2029 	void __user *argp = (void __user *)arg;
2030 	int r;
2031 	struct kvm_fpu *fpu = NULL;
2032 	struct kvm_sregs *kvm_sregs = NULL;
2033 
2034 	if (vcpu->kvm->mm != current->mm)
2035 		return -EIO;
2036 
2037 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2038 		return -EINVAL;
2039 
2040 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2041 	/*
2042 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2043 	 * so vcpu_load() would break it.
2044 	 */
2045 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2046 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2047 #endif
2048 
2049 
2050 	r = vcpu_load(vcpu);
2051 	if (r)
2052 		return r;
2053 	switch (ioctl) {
2054 	case KVM_RUN:
2055 		r = -EINVAL;
2056 		if (arg)
2057 			goto out;
2058 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2059 			/* The thread running this VCPU changed. */
2060 			struct pid *oldpid = vcpu->pid;
2061 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2062 			rcu_assign_pointer(vcpu->pid, newpid);
2063 			if (oldpid)
2064 				synchronize_rcu();
2065 			put_pid(oldpid);
2066 		}
2067 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2068 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2069 		break;
2070 	case KVM_GET_REGS: {
2071 		struct kvm_regs *kvm_regs;
2072 
2073 		r = -ENOMEM;
2074 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2075 		if (!kvm_regs)
2076 			goto out;
2077 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2078 		if (r)
2079 			goto out_free1;
2080 		r = -EFAULT;
2081 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2082 			goto out_free1;
2083 		r = 0;
2084 out_free1:
2085 		kfree(kvm_regs);
2086 		break;
2087 	}
2088 	case KVM_SET_REGS: {
2089 		struct kvm_regs *kvm_regs;
2090 
2091 		r = -ENOMEM;
2092 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2093 		if (IS_ERR(kvm_regs)) {
2094 			r = PTR_ERR(kvm_regs);
2095 			goto out;
2096 		}
2097 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2098 		kfree(kvm_regs);
2099 		break;
2100 	}
2101 	case KVM_GET_SREGS: {
2102 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2103 		r = -ENOMEM;
2104 		if (!kvm_sregs)
2105 			goto out;
2106 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2107 		if (r)
2108 			goto out;
2109 		r = -EFAULT;
2110 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2111 			goto out;
2112 		r = 0;
2113 		break;
2114 	}
2115 	case KVM_SET_SREGS: {
2116 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2117 		if (IS_ERR(kvm_sregs)) {
2118 			r = PTR_ERR(kvm_sregs);
2119 			kvm_sregs = NULL;
2120 			goto out;
2121 		}
2122 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2123 		break;
2124 	}
2125 	case KVM_GET_MP_STATE: {
2126 		struct kvm_mp_state mp_state;
2127 
2128 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2129 		if (r)
2130 			goto out;
2131 		r = -EFAULT;
2132 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2133 			goto out;
2134 		r = 0;
2135 		break;
2136 	}
2137 	case KVM_SET_MP_STATE: {
2138 		struct kvm_mp_state mp_state;
2139 
2140 		r = -EFAULT;
2141 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2142 			goto out;
2143 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2144 		break;
2145 	}
2146 	case KVM_TRANSLATE: {
2147 		struct kvm_translation tr;
2148 
2149 		r = -EFAULT;
2150 		if (copy_from_user(&tr, argp, sizeof tr))
2151 			goto out;
2152 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2153 		if (r)
2154 			goto out;
2155 		r = -EFAULT;
2156 		if (copy_to_user(argp, &tr, sizeof tr))
2157 			goto out;
2158 		r = 0;
2159 		break;
2160 	}
2161 	case KVM_SET_GUEST_DEBUG: {
2162 		struct kvm_guest_debug dbg;
2163 
2164 		r = -EFAULT;
2165 		if (copy_from_user(&dbg, argp, sizeof dbg))
2166 			goto out;
2167 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2168 		break;
2169 	}
2170 	case KVM_SET_SIGNAL_MASK: {
2171 		struct kvm_signal_mask __user *sigmask_arg = argp;
2172 		struct kvm_signal_mask kvm_sigmask;
2173 		sigset_t sigset, *p;
2174 
2175 		p = NULL;
2176 		if (argp) {
2177 			r = -EFAULT;
2178 			if (copy_from_user(&kvm_sigmask, argp,
2179 					   sizeof kvm_sigmask))
2180 				goto out;
2181 			r = -EINVAL;
2182 			if (kvm_sigmask.len != sizeof sigset)
2183 				goto out;
2184 			r = -EFAULT;
2185 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2186 					   sizeof sigset))
2187 				goto out;
2188 			p = &sigset;
2189 		}
2190 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2191 		break;
2192 	}
2193 	case KVM_GET_FPU: {
2194 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2195 		r = -ENOMEM;
2196 		if (!fpu)
2197 			goto out;
2198 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2199 		if (r)
2200 			goto out;
2201 		r = -EFAULT;
2202 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2203 			goto out;
2204 		r = 0;
2205 		break;
2206 	}
2207 	case KVM_SET_FPU: {
2208 		fpu = memdup_user(argp, sizeof(*fpu));
2209 		if (IS_ERR(fpu)) {
2210 			r = PTR_ERR(fpu);
2211 			fpu = NULL;
2212 			goto out;
2213 		}
2214 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2215 		break;
2216 	}
2217 	default:
2218 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2219 	}
2220 out:
2221 	vcpu_put(vcpu);
2222 	kfree(fpu);
2223 	kfree(kvm_sregs);
2224 	return r;
2225 }
2226 
2227 #ifdef CONFIG_COMPAT
2228 static long kvm_vcpu_compat_ioctl(struct file *filp,
2229 				  unsigned int ioctl, unsigned long arg)
2230 {
2231 	struct kvm_vcpu *vcpu = filp->private_data;
2232 	void __user *argp = compat_ptr(arg);
2233 	int r;
2234 
2235 	if (vcpu->kvm->mm != current->mm)
2236 		return -EIO;
2237 
2238 	switch (ioctl) {
2239 	case KVM_SET_SIGNAL_MASK: {
2240 		struct kvm_signal_mask __user *sigmask_arg = argp;
2241 		struct kvm_signal_mask kvm_sigmask;
2242 		compat_sigset_t csigset;
2243 		sigset_t sigset;
2244 
2245 		if (argp) {
2246 			r = -EFAULT;
2247 			if (copy_from_user(&kvm_sigmask, argp,
2248 					   sizeof kvm_sigmask))
2249 				goto out;
2250 			r = -EINVAL;
2251 			if (kvm_sigmask.len != sizeof csigset)
2252 				goto out;
2253 			r = -EFAULT;
2254 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2255 					   sizeof csigset))
2256 				goto out;
2257 			sigset_from_compat(&sigset, &csigset);
2258 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2259 		} else
2260 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2261 		break;
2262 	}
2263 	default:
2264 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2265 	}
2266 
2267 out:
2268 	return r;
2269 }
2270 #endif
2271 
2272 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2273 				 int (*accessor)(struct kvm_device *dev,
2274 						 struct kvm_device_attr *attr),
2275 				 unsigned long arg)
2276 {
2277 	struct kvm_device_attr attr;
2278 
2279 	if (!accessor)
2280 		return -EPERM;
2281 
2282 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2283 		return -EFAULT;
2284 
2285 	return accessor(dev, &attr);
2286 }
2287 
2288 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2289 			     unsigned long arg)
2290 {
2291 	struct kvm_device *dev = filp->private_data;
2292 
2293 	switch (ioctl) {
2294 	case KVM_SET_DEVICE_ATTR:
2295 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2296 	case KVM_GET_DEVICE_ATTR:
2297 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2298 	case KVM_HAS_DEVICE_ATTR:
2299 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2300 	default:
2301 		if (dev->ops->ioctl)
2302 			return dev->ops->ioctl(dev, ioctl, arg);
2303 
2304 		return -ENOTTY;
2305 	}
2306 }
2307 
2308 static int kvm_device_release(struct inode *inode, struct file *filp)
2309 {
2310 	struct kvm_device *dev = filp->private_data;
2311 	struct kvm *kvm = dev->kvm;
2312 
2313 	kvm_put_kvm(kvm);
2314 	return 0;
2315 }
2316 
2317 static const struct file_operations kvm_device_fops = {
2318 	.unlocked_ioctl = kvm_device_ioctl,
2319 #ifdef CONFIG_COMPAT
2320 	.compat_ioctl = kvm_device_ioctl,
2321 #endif
2322 	.release = kvm_device_release,
2323 };
2324 
2325 struct kvm_device *kvm_device_from_filp(struct file *filp)
2326 {
2327 	if (filp->f_op != &kvm_device_fops)
2328 		return NULL;
2329 
2330 	return filp->private_data;
2331 }
2332 
2333 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2334 #ifdef CONFIG_KVM_MPIC
2335 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2336 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2337 #endif
2338 
2339 #ifdef CONFIG_KVM_XICS
2340 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2341 #endif
2342 };
2343 
2344 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2345 {
2346 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2347 		return -ENOSPC;
2348 
2349 	if (kvm_device_ops_table[type] != NULL)
2350 		return -EEXIST;
2351 
2352 	kvm_device_ops_table[type] = ops;
2353 	return 0;
2354 }
2355 
2356 void kvm_unregister_device_ops(u32 type)
2357 {
2358 	if (kvm_device_ops_table[type] != NULL)
2359 		kvm_device_ops_table[type] = NULL;
2360 }
2361 
2362 static int kvm_ioctl_create_device(struct kvm *kvm,
2363 				   struct kvm_create_device *cd)
2364 {
2365 	struct kvm_device_ops *ops = NULL;
2366 	struct kvm_device *dev;
2367 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2368 	int ret;
2369 
2370 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2371 		return -ENODEV;
2372 
2373 	ops = kvm_device_ops_table[cd->type];
2374 	if (ops == NULL)
2375 		return -ENODEV;
2376 
2377 	if (test)
2378 		return 0;
2379 
2380 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2381 	if (!dev)
2382 		return -ENOMEM;
2383 
2384 	dev->ops = ops;
2385 	dev->kvm = kvm;
2386 
2387 	ret = ops->create(dev, cd->type);
2388 	if (ret < 0) {
2389 		kfree(dev);
2390 		return ret;
2391 	}
2392 
2393 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2394 	if (ret < 0) {
2395 		ops->destroy(dev);
2396 		return ret;
2397 	}
2398 
2399 	list_add(&dev->vm_node, &kvm->devices);
2400 	kvm_get_kvm(kvm);
2401 	cd->fd = ret;
2402 	return 0;
2403 }
2404 
2405 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2406 {
2407 	switch (arg) {
2408 	case KVM_CAP_USER_MEMORY:
2409 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2410 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2411 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2412 	case KVM_CAP_SET_BOOT_CPU_ID:
2413 #endif
2414 	case KVM_CAP_INTERNAL_ERROR_DATA:
2415 #ifdef CONFIG_HAVE_KVM_MSI
2416 	case KVM_CAP_SIGNAL_MSI:
2417 #endif
2418 #ifdef CONFIG_HAVE_KVM_IRQFD
2419 	case KVM_CAP_IRQFD_RESAMPLE:
2420 #endif
2421 	case KVM_CAP_CHECK_EXTENSION_VM:
2422 		return 1;
2423 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2424 	case KVM_CAP_IRQ_ROUTING:
2425 		return KVM_MAX_IRQ_ROUTES;
2426 #endif
2427 	default:
2428 		break;
2429 	}
2430 	return kvm_vm_ioctl_check_extension(kvm, arg);
2431 }
2432 
2433 static long kvm_vm_ioctl(struct file *filp,
2434 			   unsigned int ioctl, unsigned long arg)
2435 {
2436 	struct kvm *kvm = filp->private_data;
2437 	void __user *argp = (void __user *)arg;
2438 	int r;
2439 
2440 	if (kvm->mm != current->mm)
2441 		return -EIO;
2442 	switch (ioctl) {
2443 	case KVM_CREATE_VCPU:
2444 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2445 		break;
2446 	case KVM_SET_USER_MEMORY_REGION: {
2447 		struct kvm_userspace_memory_region kvm_userspace_mem;
2448 
2449 		r = -EFAULT;
2450 		if (copy_from_user(&kvm_userspace_mem, argp,
2451 						sizeof kvm_userspace_mem))
2452 			goto out;
2453 
2454 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2455 		break;
2456 	}
2457 	case KVM_GET_DIRTY_LOG: {
2458 		struct kvm_dirty_log log;
2459 
2460 		r = -EFAULT;
2461 		if (copy_from_user(&log, argp, sizeof log))
2462 			goto out;
2463 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2464 		break;
2465 	}
2466 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2467 	case KVM_REGISTER_COALESCED_MMIO: {
2468 		struct kvm_coalesced_mmio_zone zone;
2469 		r = -EFAULT;
2470 		if (copy_from_user(&zone, argp, sizeof zone))
2471 			goto out;
2472 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2473 		break;
2474 	}
2475 	case KVM_UNREGISTER_COALESCED_MMIO: {
2476 		struct kvm_coalesced_mmio_zone zone;
2477 		r = -EFAULT;
2478 		if (copy_from_user(&zone, argp, sizeof zone))
2479 			goto out;
2480 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2481 		break;
2482 	}
2483 #endif
2484 	case KVM_IRQFD: {
2485 		struct kvm_irqfd data;
2486 
2487 		r = -EFAULT;
2488 		if (copy_from_user(&data, argp, sizeof data))
2489 			goto out;
2490 		r = kvm_irqfd(kvm, &data);
2491 		break;
2492 	}
2493 	case KVM_IOEVENTFD: {
2494 		struct kvm_ioeventfd data;
2495 
2496 		r = -EFAULT;
2497 		if (copy_from_user(&data, argp, sizeof data))
2498 			goto out;
2499 		r = kvm_ioeventfd(kvm, &data);
2500 		break;
2501 	}
2502 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2503 	case KVM_SET_BOOT_CPU_ID:
2504 		r = 0;
2505 		mutex_lock(&kvm->lock);
2506 		if (atomic_read(&kvm->online_vcpus) != 0)
2507 			r = -EBUSY;
2508 		else
2509 			kvm->bsp_vcpu_id = arg;
2510 		mutex_unlock(&kvm->lock);
2511 		break;
2512 #endif
2513 #ifdef CONFIG_HAVE_KVM_MSI
2514 	case KVM_SIGNAL_MSI: {
2515 		struct kvm_msi msi;
2516 
2517 		r = -EFAULT;
2518 		if (copy_from_user(&msi, argp, sizeof msi))
2519 			goto out;
2520 		r = kvm_send_userspace_msi(kvm, &msi);
2521 		break;
2522 	}
2523 #endif
2524 #ifdef __KVM_HAVE_IRQ_LINE
2525 	case KVM_IRQ_LINE_STATUS:
2526 	case KVM_IRQ_LINE: {
2527 		struct kvm_irq_level irq_event;
2528 
2529 		r = -EFAULT;
2530 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2531 			goto out;
2532 
2533 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2534 					ioctl == KVM_IRQ_LINE_STATUS);
2535 		if (r)
2536 			goto out;
2537 
2538 		r = -EFAULT;
2539 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2540 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2541 				goto out;
2542 		}
2543 
2544 		r = 0;
2545 		break;
2546 	}
2547 #endif
2548 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2549 	case KVM_SET_GSI_ROUTING: {
2550 		struct kvm_irq_routing routing;
2551 		struct kvm_irq_routing __user *urouting;
2552 		struct kvm_irq_routing_entry *entries;
2553 
2554 		r = -EFAULT;
2555 		if (copy_from_user(&routing, argp, sizeof(routing)))
2556 			goto out;
2557 		r = -EINVAL;
2558 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2559 			goto out;
2560 		if (routing.flags)
2561 			goto out;
2562 		r = -ENOMEM;
2563 		entries = vmalloc(routing.nr * sizeof(*entries));
2564 		if (!entries)
2565 			goto out;
2566 		r = -EFAULT;
2567 		urouting = argp;
2568 		if (copy_from_user(entries, urouting->entries,
2569 				   routing.nr * sizeof(*entries)))
2570 			goto out_free_irq_routing;
2571 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2572 					routing.flags);
2573 	out_free_irq_routing:
2574 		vfree(entries);
2575 		break;
2576 	}
2577 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2578 	case KVM_CREATE_DEVICE: {
2579 		struct kvm_create_device cd;
2580 
2581 		r = -EFAULT;
2582 		if (copy_from_user(&cd, argp, sizeof(cd)))
2583 			goto out;
2584 
2585 		r = kvm_ioctl_create_device(kvm, &cd);
2586 		if (r)
2587 			goto out;
2588 
2589 		r = -EFAULT;
2590 		if (copy_to_user(argp, &cd, sizeof(cd)))
2591 			goto out;
2592 
2593 		r = 0;
2594 		break;
2595 	}
2596 	case KVM_CHECK_EXTENSION:
2597 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2598 		break;
2599 	default:
2600 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2601 	}
2602 out:
2603 	return r;
2604 }
2605 
2606 #ifdef CONFIG_COMPAT
2607 struct compat_kvm_dirty_log {
2608 	__u32 slot;
2609 	__u32 padding1;
2610 	union {
2611 		compat_uptr_t dirty_bitmap; /* one bit per page */
2612 		__u64 padding2;
2613 	};
2614 };
2615 
2616 static long kvm_vm_compat_ioctl(struct file *filp,
2617 			   unsigned int ioctl, unsigned long arg)
2618 {
2619 	struct kvm *kvm = filp->private_data;
2620 	int r;
2621 
2622 	if (kvm->mm != current->mm)
2623 		return -EIO;
2624 	switch (ioctl) {
2625 	case KVM_GET_DIRTY_LOG: {
2626 		struct compat_kvm_dirty_log compat_log;
2627 		struct kvm_dirty_log log;
2628 
2629 		r = -EFAULT;
2630 		if (copy_from_user(&compat_log, (void __user *)arg,
2631 				   sizeof(compat_log)))
2632 			goto out;
2633 		log.slot	 = compat_log.slot;
2634 		log.padding1	 = compat_log.padding1;
2635 		log.padding2	 = compat_log.padding2;
2636 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2637 
2638 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2639 		break;
2640 	}
2641 	default:
2642 		r = kvm_vm_ioctl(filp, ioctl, arg);
2643 	}
2644 
2645 out:
2646 	return r;
2647 }
2648 #endif
2649 
2650 static struct file_operations kvm_vm_fops = {
2651 	.release        = kvm_vm_release,
2652 	.unlocked_ioctl = kvm_vm_ioctl,
2653 #ifdef CONFIG_COMPAT
2654 	.compat_ioctl   = kvm_vm_compat_ioctl,
2655 #endif
2656 	.llseek		= noop_llseek,
2657 };
2658 
2659 static int kvm_dev_ioctl_create_vm(unsigned long type)
2660 {
2661 	int r;
2662 	struct kvm *kvm;
2663 
2664 	kvm = kvm_create_vm(type);
2665 	if (IS_ERR(kvm))
2666 		return PTR_ERR(kvm);
2667 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2668 	r = kvm_coalesced_mmio_init(kvm);
2669 	if (r < 0) {
2670 		kvm_put_kvm(kvm);
2671 		return r;
2672 	}
2673 #endif
2674 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2675 	if (r < 0)
2676 		kvm_put_kvm(kvm);
2677 
2678 	return r;
2679 }
2680 
2681 static long kvm_dev_ioctl(struct file *filp,
2682 			  unsigned int ioctl, unsigned long arg)
2683 {
2684 	long r = -EINVAL;
2685 
2686 	switch (ioctl) {
2687 	case KVM_GET_API_VERSION:
2688 		if (arg)
2689 			goto out;
2690 		r = KVM_API_VERSION;
2691 		break;
2692 	case KVM_CREATE_VM:
2693 		r = kvm_dev_ioctl_create_vm(arg);
2694 		break;
2695 	case KVM_CHECK_EXTENSION:
2696 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2697 		break;
2698 	case KVM_GET_VCPU_MMAP_SIZE:
2699 		if (arg)
2700 			goto out;
2701 		r = PAGE_SIZE;     /* struct kvm_run */
2702 #ifdef CONFIG_X86
2703 		r += PAGE_SIZE;    /* pio data page */
2704 #endif
2705 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2706 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2707 #endif
2708 		break;
2709 	case KVM_TRACE_ENABLE:
2710 	case KVM_TRACE_PAUSE:
2711 	case KVM_TRACE_DISABLE:
2712 		r = -EOPNOTSUPP;
2713 		break;
2714 	default:
2715 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2716 	}
2717 out:
2718 	return r;
2719 }
2720 
2721 static struct file_operations kvm_chardev_ops = {
2722 	.unlocked_ioctl = kvm_dev_ioctl,
2723 	.compat_ioctl   = kvm_dev_ioctl,
2724 	.llseek		= noop_llseek,
2725 };
2726 
2727 static struct miscdevice kvm_dev = {
2728 	KVM_MINOR,
2729 	"kvm",
2730 	&kvm_chardev_ops,
2731 };
2732 
2733 static void hardware_enable_nolock(void *junk)
2734 {
2735 	int cpu = raw_smp_processor_id();
2736 	int r;
2737 
2738 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2739 		return;
2740 
2741 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2742 
2743 	r = kvm_arch_hardware_enable();
2744 
2745 	if (r) {
2746 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2747 		atomic_inc(&hardware_enable_failed);
2748 		printk(KERN_INFO "kvm: enabling virtualization on "
2749 				 "CPU%d failed\n", cpu);
2750 	}
2751 }
2752 
2753 static void hardware_enable(void)
2754 {
2755 	raw_spin_lock(&kvm_count_lock);
2756 	if (kvm_usage_count)
2757 		hardware_enable_nolock(NULL);
2758 	raw_spin_unlock(&kvm_count_lock);
2759 }
2760 
2761 static void hardware_disable_nolock(void *junk)
2762 {
2763 	int cpu = raw_smp_processor_id();
2764 
2765 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2766 		return;
2767 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2768 	kvm_arch_hardware_disable();
2769 }
2770 
2771 static void hardware_disable(void)
2772 {
2773 	raw_spin_lock(&kvm_count_lock);
2774 	if (kvm_usage_count)
2775 		hardware_disable_nolock(NULL);
2776 	raw_spin_unlock(&kvm_count_lock);
2777 }
2778 
2779 static void hardware_disable_all_nolock(void)
2780 {
2781 	BUG_ON(!kvm_usage_count);
2782 
2783 	kvm_usage_count--;
2784 	if (!kvm_usage_count)
2785 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2786 }
2787 
2788 static void hardware_disable_all(void)
2789 {
2790 	raw_spin_lock(&kvm_count_lock);
2791 	hardware_disable_all_nolock();
2792 	raw_spin_unlock(&kvm_count_lock);
2793 }
2794 
2795 static int hardware_enable_all(void)
2796 {
2797 	int r = 0;
2798 
2799 	raw_spin_lock(&kvm_count_lock);
2800 
2801 	kvm_usage_count++;
2802 	if (kvm_usage_count == 1) {
2803 		atomic_set(&hardware_enable_failed, 0);
2804 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2805 
2806 		if (atomic_read(&hardware_enable_failed)) {
2807 			hardware_disable_all_nolock();
2808 			r = -EBUSY;
2809 		}
2810 	}
2811 
2812 	raw_spin_unlock(&kvm_count_lock);
2813 
2814 	return r;
2815 }
2816 
2817 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2818 			   void *v)
2819 {
2820 	int cpu = (long)v;
2821 
2822 	val &= ~CPU_TASKS_FROZEN;
2823 	switch (val) {
2824 	case CPU_DYING:
2825 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2826 		       cpu);
2827 		hardware_disable();
2828 		break;
2829 	case CPU_STARTING:
2830 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2831 		       cpu);
2832 		hardware_enable();
2833 		break;
2834 	}
2835 	return NOTIFY_OK;
2836 }
2837 
2838 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2839 		      void *v)
2840 {
2841 	/*
2842 	 * Some (well, at least mine) BIOSes hang on reboot if
2843 	 * in vmx root mode.
2844 	 *
2845 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2846 	 */
2847 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2848 	kvm_rebooting = true;
2849 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2850 	return NOTIFY_OK;
2851 }
2852 
2853 static struct notifier_block kvm_reboot_notifier = {
2854 	.notifier_call = kvm_reboot,
2855 	.priority = 0,
2856 };
2857 
2858 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2859 {
2860 	int i;
2861 
2862 	for (i = 0; i < bus->dev_count; i++) {
2863 		struct kvm_io_device *pos = bus->range[i].dev;
2864 
2865 		kvm_iodevice_destructor(pos);
2866 	}
2867 	kfree(bus);
2868 }
2869 
2870 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2871                                  const struct kvm_io_range *r2)
2872 {
2873 	if (r1->addr < r2->addr)
2874 		return -1;
2875 	if (r1->addr + r1->len > r2->addr + r2->len)
2876 		return 1;
2877 	return 0;
2878 }
2879 
2880 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2881 {
2882 	return kvm_io_bus_cmp(p1, p2);
2883 }
2884 
2885 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2886 			  gpa_t addr, int len)
2887 {
2888 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2889 		.addr = addr,
2890 		.len = len,
2891 		.dev = dev,
2892 	};
2893 
2894 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2895 		kvm_io_bus_sort_cmp, NULL);
2896 
2897 	return 0;
2898 }
2899 
2900 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2901 			     gpa_t addr, int len)
2902 {
2903 	struct kvm_io_range *range, key;
2904 	int off;
2905 
2906 	key = (struct kvm_io_range) {
2907 		.addr = addr,
2908 		.len = len,
2909 	};
2910 
2911 	range = bsearch(&key, bus->range, bus->dev_count,
2912 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2913 	if (range == NULL)
2914 		return -ENOENT;
2915 
2916 	off = range - bus->range;
2917 
2918 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2919 		off--;
2920 
2921 	return off;
2922 }
2923 
2924 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2925 			      struct kvm_io_range *range, const void *val)
2926 {
2927 	int idx;
2928 
2929 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930 	if (idx < 0)
2931 		return -EOPNOTSUPP;
2932 
2933 	while (idx < bus->dev_count &&
2934 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2936 					range->len, val))
2937 			return idx;
2938 		idx++;
2939 	}
2940 
2941 	return -EOPNOTSUPP;
2942 }
2943 
2944 /* kvm_io_bus_write - called under kvm->slots_lock */
2945 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946 		     int len, const void *val)
2947 {
2948 	struct kvm_io_bus *bus;
2949 	struct kvm_io_range range;
2950 	int r;
2951 
2952 	range = (struct kvm_io_range) {
2953 		.addr = addr,
2954 		.len = len,
2955 	};
2956 
2957 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958 	r = __kvm_io_bus_write(bus, &range, val);
2959 	return r < 0 ? r : 0;
2960 }
2961 
2962 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2963 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964 			    int len, const void *val, long cookie)
2965 {
2966 	struct kvm_io_bus *bus;
2967 	struct kvm_io_range range;
2968 
2969 	range = (struct kvm_io_range) {
2970 		.addr = addr,
2971 		.len = len,
2972 	};
2973 
2974 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975 
2976 	/* First try the device referenced by cookie. */
2977 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2980 					val))
2981 			return cookie;
2982 
2983 	/*
2984 	 * cookie contained garbage; fall back to search and return the
2985 	 * correct cookie value.
2986 	 */
2987 	return __kvm_io_bus_write(bus, &range, val);
2988 }
2989 
2990 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2991 			     void *val)
2992 {
2993 	int idx;
2994 
2995 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2996 	if (idx < 0)
2997 		return -EOPNOTSUPP;
2998 
2999 	while (idx < bus->dev_count &&
3000 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3001 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3002 				       range->len, val))
3003 			return idx;
3004 		idx++;
3005 	}
3006 
3007 	return -EOPNOTSUPP;
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3010 
3011 /* kvm_io_bus_read - called under kvm->slots_lock */
3012 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3013 		    int len, void *val)
3014 {
3015 	struct kvm_io_bus *bus;
3016 	struct kvm_io_range range;
3017 	int r;
3018 
3019 	range = (struct kvm_io_range) {
3020 		.addr = addr,
3021 		.len = len,
3022 	};
3023 
3024 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3025 	r = __kvm_io_bus_read(bus, &range, val);
3026 	return r < 0 ? r : 0;
3027 }
3028 
3029 
3030 /* Caller must hold slots_lock. */
3031 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3032 			    int len, struct kvm_io_device *dev)
3033 {
3034 	struct kvm_io_bus *new_bus, *bus;
3035 
3036 	bus = kvm->buses[bus_idx];
3037 	/* exclude ioeventfd which is limited by maximum fd */
3038 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3039 		return -ENOSPC;
3040 
3041 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3042 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3043 	if (!new_bus)
3044 		return -ENOMEM;
3045 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3046 	       sizeof(struct kvm_io_range)));
3047 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3048 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3049 	synchronize_srcu_expedited(&kvm->srcu);
3050 	kfree(bus);
3051 
3052 	return 0;
3053 }
3054 
3055 /* Caller must hold slots_lock. */
3056 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3057 			      struct kvm_io_device *dev)
3058 {
3059 	int i, r;
3060 	struct kvm_io_bus *new_bus, *bus;
3061 
3062 	bus = kvm->buses[bus_idx];
3063 	r = -ENOENT;
3064 	for (i = 0; i < bus->dev_count; i++)
3065 		if (bus->range[i].dev == dev) {
3066 			r = 0;
3067 			break;
3068 		}
3069 
3070 	if (r)
3071 		return r;
3072 
3073 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3074 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3075 	if (!new_bus)
3076 		return -ENOMEM;
3077 
3078 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3079 	new_bus->dev_count--;
3080 	memcpy(new_bus->range + i, bus->range + i + 1,
3081 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3082 
3083 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3084 	synchronize_srcu_expedited(&kvm->srcu);
3085 	kfree(bus);
3086 	return r;
3087 }
3088 
3089 static struct notifier_block kvm_cpu_notifier = {
3090 	.notifier_call = kvm_cpu_hotplug,
3091 };
3092 
3093 static int vm_stat_get(void *_offset, u64 *val)
3094 {
3095 	unsigned offset = (long)_offset;
3096 	struct kvm *kvm;
3097 
3098 	*val = 0;
3099 	spin_lock(&kvm_lock);
3100 	list_for_each_entry(kvm, &vm_list, vm_list)
3101 		*val += *(u32 *)((void *)kvm + offset);
3102 	spin_unlock(&kvm_lock);
3103 	return 0;
3104 }
3105 
3106 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3107 
3108 static int vcpu_stat_get(void *_offset, u64 *val)
3109 {
3110 	unsigned offset = (long)_offset;
3111 	struct kvm *kvm;
3112 	struct kvm_vcpu *vcpu;
3113 	int i;
3114 
3115 	*val = 0;
3116 	spin_lock(&kvm_lock);
3117 	list_for_each_entry(kvm, &vm_list, vm_list)
3118 		kvm_for_each_vcpu(i, vcpu, kvm)
3119 			*val += *(u32 *)((void *)vcpu + offset);
3120 
3121 	spin_unlock(&kvm_lock);
3122 	return 0;
3123 }
3124 
3125 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3126 
3127 static const struct file_operations *stat_fops[] = {
3128 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3129 	[KVM_STAT_VM]   = &vm_stat_fops,
3130 };
3131 
3132 static int kvm_init_debug(void)
3133 {
3134 	int r = -EEXIST;
3135 	struct kvm_stats_debugfs_item *p;
3136 
3137 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3138 	if (kvm_debugfs_dir == NULL)
3139 		goto out;
3140 
3141 	for (p = debugfs_entries; p->name; ++p) {
3142 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3143 						(void *)(long)p->offset,
3144 						stat_fops[p->kind]);
3145 		if (p->dentry == NULL)
3146 			goto out_dir;
3147 	}
3148 
3149 	return 0;
3150 
3151 out_dir:
3152 	debugfs_remove_recursive(kvm_debugfs_dir);
3153 out:
3154 	return r;
3155 }
3156 
3157 static void kvm_exit_debug(void)
3158 {
3159 	struct kvm_stats_debugfs_item *p;
3160 
3161 	for (p = debugfs_entries; p->name; ++p)
3162 		debugfs_remove(p->dentry);
3163 	debugfs_remove(kvm_debugfs_dir);
3164 }
3165 
3166 static int kvm_suspend(void)
3167 {
3168 	if (kvm_usage_count)
3169 		hardware_disable_nolock(NULL);
3170 	return 0;
3171 }
3172 
3173 static void kvm_resume(void)
3174 {
3175 	if (kvm_usage_count) {
3176 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3177 		hardware_enable_nolock(NULL);
3178 	}
3179 }
3180 
3181 static struct syscore_ops kvm_syscore_ops = {
3182 	.suspend = kvm_suspend,
3183 	.resume = kvm_resume,
3184 };
3185 
3186 static inline
3187 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3188 {
3189 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3190 }
3191 
3192 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3193 {
3194 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3195 	if (vcpu->preempted)
3196 		vcpu->preempted = false;
3197 
3198 	kvm_arch_sched_in(vcpu, cpu);
3199 
3200 	kvm_arch_vcpu_load(vcpu, cpu);
3201 }
3202 
3203 static void kvm_sched_out(struct preempt_notifier *pn,
3204 			  struct task_struct *next)
3205 {
3206 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3207 
3208 	if (current->state == TASK_RUNNING)
3209 		vcpu->preempted = true;
3210 	kvm_arch_vcpu_put(vcpu);
3211 }
3212 
3213 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3214 		  struct module *module)
3215 {
3216 	int r;
3217 	int cpu;
3218 
3219 	r = kvm_arch_init(opaque);
3220 	if (r)
3221 		goto out_fail;
3222 
3223 	/*
3224 	 * kvm_arch_init makes sure there's at most one caller
3225 	 * for architectures that support multiple implementations,
3226 	 * like intel and amd on x86.
3227 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3228 	 * conflicts in case kvm is already setup for another implementation.
3229 	 */
3230 	r = kvm_irqfd_init();
3231 	if (r)
3232 		goto out_irqfd;
3233 
3234 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3235 		r = -ENOMEM;
3236 		goto out_free_0;
3237 	}
3238 
3239 	r = kvm_arch_hardware_setup();
3240 	if (r < 0)
3241 		goto out_free_0a;
3242 
3243 	for_each_online_cpu(cpu) {
3244 		smp_call_function_single(cpu,
3245 				kvm_arch_check_processor_compat,
3246 				&r, 1);
3247 		if (r < 0)
3248 			goto out_free_1;
3249 	}
3250 
3251 	r = register_cpu_notifier(&kvm_cpu_notifier);
3252 	if (r)
3253 		goto out_free_2;
3254 	register_reboot_notifier(&kvm_reboot_notifier);
3255 
3256 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3257 	if (!vcpu_align)
3258 		vcpu_align = __alignof__(struct kvm_vcpu);
3259 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3260 					   0, NULL);
3261 	if (!kvm_vcpu_cache) {
3262 		r = -ENOMEM;
3263 		goto out_free_3;
3264 	}
3265 
3266 	r = kvm_async_pf_init();
3267 	if (r)
3268 		goto out_free;
3269 
3270 	kvm_chardev_ops.owner = module;
3271 	kvm_vm_fops.owner = module;
3272 	kvm_vcpu_fops.owner = module;
3273 
3274 	r = misc_register(&kvm_dev);
3275 	if (r) {
3276 		printk(KERN_ERR "kvm: misc device register failed\n");
3277 		goto out_unreg;
3278 	}
3279 
3280 	register_syscore_ops(&kvm_syscore_ops);
3281 
3282 	kvm_preempt_ops.sched_in = kvm_sched_in;
3283 	kvm_preempt_ops.sched_out = kvm_sched_out;
3284 
3285 	r = kvm_init_debug();
3286 	if (r) {
3287 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3288 		goto out_undebugfs;
3289 	}
3290 
3291 	r = kvm_vfio_ops_init();
3292 	WARN_ON(r);
3293 
3294 	return 0;
3295 
3296 out_undebugfs:
3297 	unregister_syscore_ops(&kvm_syscore_ops);
3298 	misc_deregister(&kvm_dev);
3299 out_unreg:
3300 	kvm_async_pf_deinit();
3301 out_free:
3302 	kmem_cache_destroy(kvm_vcpu_cache);
3303 out_free_3:
3304 	unregister_reboot_notifier(&kvm_reboot_notifier);
3305 	unregister_cpu_notifier(&kvm_cpu_notifier);
3306 out_free_2:
3307 out_free_1:
3308 	kvm_arch_hardware_unsetup();
3309 out_free_0a:
3310 	free_cpumask_var(cpus_hardware_enabled);
3311 out_free_0:
3312 	kvm_irqfd_exit();
3313 out_irqfd:
3314 	kvm_arch_exit();
3315 out_fail:
3316 	return r;
3317 }
3318 EXPORT_SYMBOL_GPL(kvm_init);
3319 
3320 void kvm_exit(void)
3321 {
3322 	kvm_exit_debug();
3323 	misc_deregister(&kvm_dev);
3324 	kmem_cache_destroy(kvm_vcpu_cache);
3325 	kvm_async_pf_deinit();
3326 	unregister_syscore_ops(&kvm_syscore_ops);
3327 	unregister_reboot_notifier(&kvm_reboot_notifier);
3328 	unregister_cpu_notifier(&kvm_cpu_notifier);
3329 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3330 	kvm_arch_hardware_unsetup();
3331 	kvm_arch_exit();
3332 	kvm_irqfd_exit();
3333 	free_cpumask_var(cpus_hardware_enabled);
3334 	kvm_vfio_ops_exit();
3335 }
3336 EXPORT_SYMBOL_GPL(kvm_exit);
3337