xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 #include <linux/kvm_dirty_ring.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88 
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 
94 /*
95  * Ordering of locks:
96  *
97  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99 
100 DEFINE_MUTEX(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103 
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations stat_fops_per_vm;
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 /*
127  * For architectures that don't implement a compat infrastructure,
128  * adopt a double line of defense:
129  * - Prevent a compat task from opening /dev/kvm
130  * - If the open has been done by a 64bit task, and the KVM fd
131  *   passed to a compat task, let the ioctls fail.
132  */
133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134 				unsigned long arg) { return -EINVAL; }
135 
136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138 	return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
141 			.open		= kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145 
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164 	/*
165 	 * The metadata used by is_zone_device_page() to determine whether or
166 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
168 	 * page_count() is zero to help detect bad usage of this helper.
169 	 */
170 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 		return false;
172 
173 	return is_zone_device_page(pfn_to_page(pfn));
174 }
175 
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178 	/*
179 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 	 * perspective they are "normal" pages, albeit with slightly different
181 	 * usage rules.
182 	 */
183 	if (pfn_valid(pfn))
184 		return PageReserved(pfn_to_page(pfn)) &&
185 		       !is_zero_pfn(pfn) &&
186 		       !kvm_is_zone_device_pfn(pfn);
187 
188 	return true;
189 }
190 
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193 	struct page *page = pfn_to_page(pfn);
194 
195 	if (!PageTransCompoundMap(page))
196 		return false;
197 
198 	return is_transparent_hugepage(compound_head(page));
199 }
200 
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206 	int cpu = get_cpu();
207 
208 	__this_cpu_write(kvm_running_vcpu, vcpu);
209 	preempt_notifier_register(&vcpu->preempt_notifier);
210 	kvm_arch_vcpu_load(vcpu, cpu);
211 	put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214 
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217 	preempt_disable();
218 	kvm_arch_vcpu_put(vcpu);
219 	preempt_notifier_unregister(&vcpu->preempt_notifier);
220 	__this_cpu_write(kvm_running_vcpu, NULL);
221 	preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224 
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229 
230 	/*
231 	 * We need to wait for the VCPU to reenable interrupts and get out of
232 	 * READING_SHADOW_PAGE_TABLES mode.
233 	 */
234 	if (req & KVM_REQUEST_WAIT)
235 		return mode != OUTSIDE_GUEST_MODE;
236 
237 	/*
238 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 	 */
240 	return mode == IN_GUEST_MODE;
241 }
242 
243 static void ack_flush(void *_completed)
244 {
245 }
246 
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249 	if (unlikely(!cpus))
250 		cpus = cpu_online_mask;
251 
252 	if (cpumask_empty(cpus))
253 		return false;
254 
255 	smp_call_function_many(cpus, ack_flush, NULL, wait);
256 	return true;
257 }
258 
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 				 struct kvm_vcpu *except,
261 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263 	int i, cpu, me;
264 	struct kvm_vcpu *vcpu;
265 	bool called;
266 
267 	me = get_cpu();
268 
269 	kvm_for_each_vcpu(i, vcpu, kvm) {
270 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 		    vcpu == except)
272 			continue;
273 
274 		kvm_make_request(req, vcpu);
275 		cpu = vcpu->cpu;
276 
277 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 			continue;
279 
280 		if (tmp != NULL && cpu != -1 && cpu != me &&
281 		    kvm_request_needs_ipi(vcpu, req))
282 			__cpumask_set_cpu(cpu, tmp);
283 	}
284 
285 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 	put_cpu();
287 
288 	return called;
289 }
290 
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 				      struct kvm_vcpu *except)
293 {
294 	cpumask_var_t cpus;
295 	bool called;
296 
297 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298 
299 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300 
301 	free_cpumask_var(cpus);
302 	return called;
303 }
304 
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309 
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313 	/*
314 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 	 * kvm_make_all_cpus_request.
316 	 */
317 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318 
319 	/*
320 	 * We want to publish modifications to the page tables before reading
321 	 * mode. Pairs with a memory barrier in arch-specific code.
322 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 	 *
326 	 * There is already an smp_mb__after_atomic() before
327 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 	 * barrier here.
329 	 */
330 	if (!kvm_arch_flush_remote_tlb(kvm)
331 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 		++kvm->stat.remote_tlb_flush;
333 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337 
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342 
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345 					       gfp_t gfp_flags)
346 {
347 	gfp_flags |= mc->gfp_zero;
348 
349 	if (mc->kmem_cache)
350 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351 	else
352 		return (void *)__get_free_page(gfp_flags);
353 }
354 
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357 	void *obj;
358 
359 	if (mc->nobjs >= min)
360 		return 0;
361 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363 		if (!obj)
364 			return mc->nobjs >= min ? 0 : -ENOMEM;
365 		mc->objects[mc->nobjs++] = obj;
366 	}
367 	return 0;
368 }
369 
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372 	return mc->nobjs;
373 }
374 
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377 	while (mc->nobjs) {
378 		if (mc->kmem_cache)
379 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380 		else
381 			free_page((unsigned long)mc->objects[--mc->nobjs]);
382 	}
383 }
384 
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387 	void *p;
388 
389 	if (WARN_ON(!mc->nobjs))
390 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391 	else
392 		p = mc->objects[--mc->nobjs];
393 	BUG_ON(!p);
394 	return p;
395 }
396 #endif
397 
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400 	mutex_init(&vcpu->mutex);
401 	vcpu->cpu = -1;
402 	vcpu->kvm = kvm;
403 	vcpu->vcpu_id = id;
404 	vcpu->pid = NULL;
405 	rcuwait_init(&vcpu->wait);
406 	kvm_async_pf_vcpu_init(vcpu);
407 
408 	vcpu->pre_pcpu = -1;
409 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410 
411 	kvm_vcpu_set_in_spin_loop(vcpu, false);
412 	kvm_vcpu_set_dy_eligible(vcpu, false);
413 	vcpu->preempted = false;
414 	vcpu->ready = false;
415 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417 
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420 	kvm_dirty_ring_free(&vcpu->dirty_ring);
421 	kvm_arch_vcpu_destroy(vcpu);
422 
423 	/*
424 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
425 	 * the vcpu->pid pointer, and at destruction time all file descriptors
426 	 * are already gone.
427 	 */
428 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
429 
430 	free_page((unsigned long)vcpu->run);
431 	kmem_cache_free(kvm_vcpu_cache, vcpu);
432 }
433 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
434 
435 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
436 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
437 {
438 	return container_of(mn, struct kvm, mmu_notifier);
439 }
440 
441 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
442 					      struct mm_struct *mm,
443 					      unsigned long start, unsigned long end)
444 {
445 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
446 	int idx;
447 
448 	idx = srcu_read_lock(&kvm->srcu);
449 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
450 	srcu_read_unlock(&kvm->srcu, idx);
451 }
452 
453 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
454 					struct mm_struct *mm,
455 					unsigned long address,
456 					pte_t pte)
457 {
458 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
459 	int idx;
460 
461 	idx = srcu_read_lock(&kvm->srcu);
462 	spin_lock(&kvm->mmu_lock);
463 	kvm->mmu_notifier_seq++;
464 
465 	if (kvm_set_spte_hva(kvm, address, pte))
466 		kvm_flush_remote_tlbs(kvm);
467 
468 	spin_unlock(&kvm->mmu_lock);
469 	srcu_read_unlock(&kvm->srcu, idx);
470 }
471 
472 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
473 					const struct mmu_notifier_range *range)
474 {
475 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 	int need_tlb_flush = 0, idx;
477 
478 	idx = srcu_read_lock(&kvm->srcu);
479 	spin_lock(&kvm->mmu_lock);
480 	/*
481 	 * The count increase must become visible at unlock time as no
482 	 * spte can be established without taking the mmu_lock and
483 	 * count is also read inside the mmu_lock critical section.
484 	 */
485 	kvm->mmu_notifier_count++;
486 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
487 					     range->flags);
488 	/* we've to flush the tlb before the pages can be freed */
489 	if (need_tlb_flush || kvm->tlbs_dirty)
490 		kvm_flush_remote_tlbs(kvm);
491 
492 	spin_unlock(&kvm->mmu_lock);
493 	srcu_read_unlock(&kvm->srcu, idx);
494 
495 	return 0;
496 }
497 
498 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
499 					const struct mmu_notifier_range *range)
500 {
501 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
502 
503 	spin_lock(&kvm->mmu_lock);
504 	/*
505 	 * This sequence increase will notify the kvm page fault that
506 	 * the page that is going to be mapped in the spte could have
507 	 * been freed.
508 	 */
509 	kvm->mmu_notifier_seq++;
510 	smp_wmb();
511 	/*
512 	 * The above sequence increase must be visible before the
513 	 * below count decrease, which is ensured by the smp_wmb above
514 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
515 	 */
516 	kvm->mmu_notifier_count--;
517 	spin_unlock(&kvm->mmu_lock);
518 
519 	BUG_ON(kvm->mmu_notifier_count < 0);
520 }
521 
522 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
523 					      struct mm_struct *mm,
524 					      unsigned long start,
525 					      unsigned long end)
526 {
527 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
528 	int young, idx;
529 
530 	idx = srcu_read_lock(&kvm->srcu);
531 	spin_lock(&kvm->mmu_lock);
532 
533 	young = kvm_age_hva(kvm, start, end);
534 	if (young)
535 		kvm_flush_remote_tlbs(kvm);
536 
537 	spin_unlock(&kvm->mmu_lock);
538 	srcu_read_unlock(&kvm->srcu, idx);
539 
540 	return young;
541 }
542 
543 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
544 					struct mm_struct *mm,
545 					unsigned long start,
546 					unsigned long end)
547 {
548 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
549 	int young, idx;
550 
551 	idx = srcu_read_lock(&kvm->srcu);
552 	spin_lock(&kvm->mmu_lock);
553 	/*
554 	 * Even though we do not flush TLB, this will still adversely
555 	 * affect performance on pre-Haswell Intel EPT, where there is
556 	 * no EPT Access Bit to clear so that we have to tear down EPT
557 	 * tables instead. If we find this unacceptable, we can always
558 	 * add a parameter to kvm_age_hva so that it effectively doesn't
559 	 * do anything on clear_young.
560 	 *
561 	 * Also note that currently we never issue secondary TLB flushes
562 	 * from clear_young, leaving this job up to the regular system
563 	 * cadence. If we find this inaccurate, we might come up with a
564 	 * more sophisticated heuristic later.
565 	 */
566 	young = kvm_age_hva(kvm, start, end);
567 	spin_unlock(&kvm->mmu_lock);
568 	srcu_read_unlock(&kvm->srcu, idx);
569 
570 	return young;
571 }
572 
573 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
574 				       struct mm_struct *mm,
575 				       unsigned long address)
576 {
577 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
578 	int young, idx;
579 
580 	idx = srcu_read_lock(&kvm->srcu);
581 	spin_lock(&kvm->mmu_lock);
582 	young = kvm_test_age_hva(kvm, address);
583 	spin_unlock(&kvm->mmu_lock);
584 	srcu_read_unlock(&kvm->srcu, idx);
585 
586 	return young;
587 }
588 
589 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
590 				     struct mm_struct *mm)
591 {
592 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
593 	int idx;
594 
595 	idx = srcu_read_lock(&kvm->srcu);
596 	kvm_arch_flush_shadow_all(kvm);
597 	srcu_read_unlock(&kvm->srcu, idx);
598 }
599 
600 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
601 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
602 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
603 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
604 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
605 	.clear_young		= kvm_mmu_notifier_clear_young,
606 	.test_young		= kvm_mmu_notifier_test_young,
607 	.change_pte		= kvm_mmu_notifier_change_pte,
608 	.release		= kvm_mmu_notifier_release,
609 };
610 
611 static int kvm_init_mmu_notifier(struct kvm *kvm)
612 {
613 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
614 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
615 }
616 
617 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618 
619 static int kvm_init_mmu_notifier(struct kvm *kvm)
620 {
621 	return 0;
622 }
623 
624 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625 
626 static struct kvm_memslots *kvm_alloc_memslots(void)
627 {
628 	int i;
629 	struct kvm_memslots *slots;
630 
631 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
632 	if (!slots)
633 		return NULL;
634 
635 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
636 		slots->id_to_index[i] = -1;
637 
638 	return slots;
639 }
640 
641 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642 {
643 	if (!memslot->dirty_bitmap)
644 		return;
645 
646 	kvfree(memslot->dirty_bitmap);
647 	memslot->dirty_bitmap = NULL;
648 }
649 
650 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651 {
652 	kvm_destroy_dirty_bitmap(slot);
653 
654 	kvm_arch_free_memslot(kvm, slot);
655 
656 	slot->flags = 0;
657 	slot->npages = 0;
658 }
659 
660 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661 {
662 	struct kvm_memory_slot *memslot;
663 
664 	if (!slots)
665 		return;
666 
667 	kvm_for_each_memslot(memslot, slots)
668 		kvm_free_memslot(kvm, memslot);
669 
670 	kvfree(slots);
671 }
672 
673 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
674 {
675 	int i;
676 
677 	if (!kvm->debugfs_dentry)
678 		return;
679 
680 	debugfs_remove_recursive(kvm->debugfs_dentry);
681 
682 	if (kvm->debugfs_stat_data) {
683 		for (i = 0; i < kvm_debugfs_num_entries; i++)
684 			kfree(kvm->debugfs_stat_data[i]);
685 		kfree(kvm->debugfs_stat_data);
686 	}
687 }
688 
689 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690 {
691 	char dir_name[ITOA_MAX_LEN * 2];
692 	struct kvm_stat_data *stat_data;
693 	struct kvm_stats_debugfs_item *p;
694 
695 	if (!debugfs_initialized())
696 		return 0;
697 
698 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
699 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700 
701 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
702 					 sizeof(*kvm->debugfs_stat_data),
703 					 GFP_KERNEL_ACCOUNT);
704 	if (!kvm->debugfs_stat_data)
705 		return -ENOMEM;
706 
707 	for (p = debugfs_entries; p->name; p++) {
708 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
709 		if (!stat_data)
710 			return -ENOMEM;
711 
712 		stat_data->kvm = kvm;
713 		stat_data->dbgfs_item = p;
714 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
715 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
716 				    kvm->debugfs_dentry, stat_data,
717 				    &stat_fops_per_vm);
718 	}
719 	return 0;
720 }
721 
722 /*
723  * Called after the VM is otherwise initialized, but just before adding it to
724  * the vm_list.
725  */
726 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
727 {
728 	return 0;
729 }
730 
731 /*
732  * Called just after removing the VM from the vm_list, but before doing any
733  * other destruction.
734  */
735 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
736 {
737 }
738 
739 static struct kvm *kvm_create_vm(unsigned long type)
740 {
741 	struct kvm *kvm = kvm_arch_alloc_vm();
742 	int r = -ENOMEM;
743 	int i;
744 
745 	if (!kvm)
746 		return ERR_PTR(-ENOMEM);
747 
748 	spin_lock_init(&kvm->mmu_lock);
749 	mmgrab(current->mm);
750 	kvm->mm = current->mm;
751 	kvm_eventfd_init(kvm);
752 	mutex_init(&kvm->lock);
753 	mutex_init(&kvm->irq_lock);
754 	mutex_init(&kvm->slots_lock);
755 	INIT_LIST_HEAD(&kvm->devices);
756 
757 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758 
759 	if (init_srcu_struct(&kvm->srcu))
760 		goto out_err_no_srcu;
761 	if (init_srcu_struct(&kvm->irq_srcu))
762 		goto out_err_no_irq_srcu;
763 
764 	refcount_set(&kvm->users_count, 1);
765 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
766 		struct kvm_memslots *slots = kvm_alloc_memslots();
767 
768 		if (!slots)
769 			goto out_err_no_arch_destroy_vm;
770 		/* Generations must be different for each address space. */
771 		slots->generation = i;
772 		rcu_assign_pointer(kvm->memslots[i], slots);
773 	}
774 
775 	for (i = 0; i < KVM_NR_BUSES; i++) {
776 		rcu_assign_pointer(kvm->buses[i],
777 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778 		if (!kvm->buses[i])
779 			goto out_err_no_arch_destroy_vm;
780 	}
781 
782 	kvm->max_halt_poll_ns = halt_poll_ns;
783 
784 	r = kvm_arch_init_vm(kvm, type);
785 	if (r)
786 		goto out_err_no_arch_destroy_vm;
787 
788 	r = hardware_enable_all();
789 	if (r)
790 		goto out_err_no_disable;
791 
792 #ifdef CONFIG_HAVE_KVM_IRQFD
793 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
794 #endif
795 
796 	r = kvm_init_mmu_notifier(kvm);
797 	if (r)
798 		goto out_err_no_mmu_notifier;
799 
800 	r = kvm_arch_post_init_vm(kvm);
801 	if (r)
802 		goto out_err;
803 
804 	mutex_lock(&kvm_lock);
805 	list_add(&kvm->vm_list, &vm_list);
806 	mutex_unlock(&kvm_lock);
807 
808 	preempt_notifier_inc();
809 
810 	return kvm;
811 
812 out_err:
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 	if (kvm->mmu_notifier.ops)
815 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816 #endif
817 out_err_no_mmu_notifier:
818 	hardware_disable_all();
819 out_err_no_disable:
820 	kvm_arch_destroy_vm(kvm);
821 out_err_no_arch_destroy_vm:
822 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
823 	for (i = 0; i < KVM_NR_BUSES; i++)
824 		kfree(kvm_get_bus(kvm, i));
825 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827 	cleanup_srcu_struct(&kvm->irq_srcu);
828 out_err_no_irq_srcu:
829 	cleanup_srcu_struct(&kvm->srcu);
830 out_err_no_srcu:
831 	kvm_arch_free_vm(kvm);
832 	mmdrop(current->mm);
833 	return ERR_PTR(r);
834 }
835 
836 static void kvm_destroy_devices(struct kvm *kvm)
837 {
838 	struct kvm_device *dev, *tmp;
839 
840 	/*
841 	 * We do not need to take the kvm->lock here, because nobody else
842 	 * has a reference to the struct kvm at this point and therefore
843 	 * cannot access the devices list anyhow.
844 	 */
845 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
846 		list_del(&dev->vm_node);
847 		dev->ops->destroy(dev);
848 	}
849 }
850 
851 static void kvm_destroy_vm(struct kvm *kvm)
852 {
853 	int i;
854 	struct mm_struct *mm = kvm->mm;
855 
856 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
857 	kvm_destroy_vm_debugfs(kvm);
858 	kvm_arch_sync_events(kvm);
859 	mutex_lock(&kvm_lock);
860 	list_del(&kvm->vm_list);
861 	mutex_unlock(&kvm_lock);
862 	kvm_arch_pre_destroy_vm(kvm);
863 
864 	kvm_free_irq_routing(kvm);
865 	for (i = 0; i < KVM_NR_BUSES; i++) {
866 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
867 
868 		if (bus)
869 			kvm_io_bus_destroy(bus);
870 		kvm->buses[i] = NULL;
871 	}
872 	kvm_coalesced_mmio_free(kvm);
873 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
874 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875 #else
876 	kvm_arch_flush_shadow_all(kvm);
877 #endif
878 	kvm_arch_destroy_vm(kvm);
879 	kvm_destroy_devices(kvm);
880 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
881 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
882 	cleanup_srcu_struct(&kvm->irq_srcu);
883 	cleanup_srcu_struct(&kvm->srcu);
884 	kvm_arch_free_vm(kvm);
885 	preempt_notifier_dec();
886 	hardware_disable_all();
887 	mmdrop(mm);
888 }
889 
890 void kvm_get_kvm(struct kvm *kvm)
891 {
892 	refcount_inc(&kvm->users_count);
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_kvm);
895 
896 void kvm_put_kvm(struct kvm *kvm)
897 {
898 	if (refcount_dec_and_test(&kvm->users_count))
899 		kvm_destroy_vm(kvm);
900 }
901 EXPORT_SYMBOL_GPL(kvm_put_kvm);
902 
903 /*
904  * Used to put a reference that was taken on behalf of an object associated
905  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
906  * of the new file descriptor fails and the reference cannot be transferred to
907  * its final owner.  In such cases, the caller is still actively using @kvm and
908  * will fail miserably if the refcount unexpectedly hits zero.
909  */
910 void kvm_put_kvm_no_destroy(struct kvm *kvm)
911 {
912 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
913 }
914 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915 
916 static int kvm_vm_release(struct inode *inode, struct file *filp)
917 {
918 	struct kvm *kvm = filp->private_data;
919 
920 	kvm_irqfd_release(kvm);
921 
922 	kvm_put_kvm(kvm);
923 	return 0;
924 }
925 
926 /*
927  * Allocation size is twice as large as the actual dirty bitmap size.
928  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929  */
930 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931 {
932 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933 
934 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
935 	if (!memslot->dirty_bitmap)
936 		return -ENOMEM;
937 
938 	return 0;
939 }
940 
941 /*
942  * Delete a memslot by decrementing the number of used slots and shifting all
943  * other entries in the array forward one spot.
944  */
945 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
946 				      struct kvm_memory_slot *memslot)
947 {
948 	struct kvm_memory_slot *mslots = slots->memslots;
949 	int i;
950 
951 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
952 		return;
953 
954 	slots->used_slots--;
955 
956 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
957 		atomic_set(&slots->lru_slot, 0);
958 
959 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
960 		mslots[i] = mslots[i + 1];
961 		slots->id_to_index[mslots[i].id] = i;
962 	}
963 	mslots[i] = *memslot;
964 	slots->id_to_index[memslot->id] = -1;
965 }
966 
967 /*
968  * "Insert" a new memslot by incrementing the number of used slots.  Returns
969  * the new slot's initial index into the memslots array.
970  */
971 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972 {
973 	return slots->used_slots++;
974 }
975 
976 /*
977  * Move a changed memslot backwards in the array by shifting existing slots
978  * with a higher GFN toward the front of the array.  Note, the changed memslot
979  * itself is not preserved in the array, i.e. not swapped at this time, only
980  * its new index into the array is tracked.  Returns the changed memslot's
981  * current index into the memslots array.
982  */
983 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
984 					    struct kvm_memory_slot *memslot)
985 {
986 	struct kvm_memory_slot *mslots = slots->memslots;
987 	int i;
988 
989 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
990 	    WARN_ON_ONCE(!slots->used_slots))
991 		return -1;
992 
993 	/*
994 	 * Move the target memslot backward in the array by shifting existing
995 	 * memslots with a higher GFN (than the target memslot) towards the
996 	 * front of the array.
997 	 */
998 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
999 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000 			break;
1001 
1002 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003 
1004 		/* Shift the next memslot forward one and update its index. */
1005 		mslots[i] = mslots[i + 1];
1006 		slots->id_to_index[mslots[i].id] = i;
1007 	}
1008 	return i;
1009 }
1010 
1011 /*
1012  * Move a changed memslot forwards in the array by shifting existing slots with
1013  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014  * is not preserved in the array, i.e. not swapped at this time, only its new
1015  * index into the array is tracked.  Returns the changed memslot's final index
1016  * into the memslots array.
1017  */
1018 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019 					   struct kvm_memory_slot *memslot,
1020 					   int start)
1021 {
1022 	struct kvm_memory_slot *mslots = slots->memslots;
1023 	int i;
1024 
1025 	for (i = start; i > 0; i--) {
1026 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027 			break;
1028 
1029 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030 
1031 		/* Shift the next memslot back one and update its index. */
1032 		mslots[i] = mslots[i - 1];
1033 		slots->id_to_index[mslots[i].id] = i;
1034 	}
1035 	return i;
1036 }
1037 
1038 /*
1039  * Re-sort memslots based on their GFN to account for an added, deleted, or
1040  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041  * memslot lookup.
1042  *
1043  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044  * at memslots[0] has the highest GFN.
1045  *
1046  * The sorting algorithm takes advantage of having initially sorted memslots
1047  * and knowing the position of the changed memslot.  Sorting is also optimized
1048  * by not swapping the updated memslot and instead only shifting other memslots
1049  * and tracking the new index for the update memslot.  Only once its final
1050  * index is known is the updated memslot copied into its position in the array.
1051  *
1052  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053  *    the end of the array.
1054  *
1055  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056  *    end of the array and then it forward to its correct location.
1057  *
1058  *  - When moving a memslot, the algorithm first moves the updated memslot
1059  *    backward to handle the scenario where the memslot's GFN was changed to a
1060  *    lower value.  update_memslots() then falls through and runs the same flow
1061  *    as creating a memslot to move the memslot forward to handle the scenario
1062  *    where its GFN was changed to a higher value.
1063  *
1064  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065  * historical reasons.  Originally, invalid memslots where denoted by having
1066  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067  * to the end of the array.  The current algorithm uses dedicated logic to
1068  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069  *
1070  * The other historical motiviation for highest->lowest was to improve the
1071  * performance of memslot lookup.  KVM originally used a linear search starting
1072  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074  * single memslot above the 4gb boundary.  As the largest memslot is also the
1075  * most likely to be referenced, sorting it to the front of the array was
1076  * advantageous.  The current binary search starts from the middle of the array
1077  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078  */
1079 static void update_memslots(struct kvm_memslots *slots,
1080 			    struct kvm_memory_slot *memslot,
1081 			    enum kvm_mr_change change)
1082 {
1083 	int i;
1084 
1085 	if (change == KVM_MR_DELETE) {
1086 		kvm_memslot_delete(slots, memslot);
1087 	} else {
1088 		if (change == KVM_MR_CREATE)
1089 			i = kvm_memslot_insert_back(slots);
1090 		else
1091 			i = kvm_memslot_move_backward(slots, memslot);
1092 		i = kvm_memslot_move_forward(slots, memslot, i);
1093 
1094 		/*
1095 		 * Copy the memslot to its new position in memslots and update
1096 		 * its index accordingly.
1097 		 */
1098 		slots->memslots[i] = *memslot;
1099 		slots->id_to_index[memslot->id] = i;
1100 	}
1101 }
1102 
1103 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104 {
1105 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106 
1107 #ifdef __KVM_HAVE_READONLY_MEM
1108 	valid_flags |= KVM_MEM_READONLY;
1109 #endif
1110 
1111 	if (mem->flags & ~valid_flags)
1112 		return -EINVAL;
1113 
1114 	return 0;
1115 }
1116 
1117 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118 		int as_id, struct kvm_memslots *slots)
1119 {
1120 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121 	u64 gen = old_memslots->generation;
1122 
1123 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125 
1126 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1127 	synchronize_srcu_expedited(&kvm->srcu);
1128 
1129 	/*
1130 	 * Increment the new memslot generation a second time, dropping the
1131 	 * update in-progress flag and incrementing the generation based on
1132 	 * the number of address spaces.  This provides a unique and easily
1133 	 * identifiable generation number while the memslots are in flux.
1134 	 */
1135 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136 
1137 	/*
1138 	 * Generations must be unique even across address spaces.  We do not need
1139 	 * a global counter for that, instead the generation space is evenly split
1140 	 * across address spaces.  For example, with two address spaces, address
1141 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142 	 * use generations 1, 3, 5, ...
1143 	 */
1144 	gen += KVM_ADDRESS_SPACE_NUM;
1145 
1146 	kvm_arch_memslots_updated(kvm, gen);
1147 
1148 	slots->generation = gen;
1149 
1150 	return old_memslots;
1151 }
1152 
1153 /*
1154  * Note, at a minimum, the current number of used slots must be allocated, even
1155  * when deleting a memslot, as we need a complete duplicate of the memslots for
1156  * use when invalidating a memslot prior to deleting/moving the memslot.
1157  */
1158 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159 					     enum kvm_mr_change change)
1160 {
1161 	struct kvm_memslots *slots;
1162 	size_t old_size, new_size;
1163 
1164 	old_size = sizeof(struct kvm_memslots) +
1165 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1166 
1167 	if (change == KVM_MR_CREATE)
1168 		new_size = old_size + sizeof(struct kvm_memory_slot);
1169 	else
1170 		new_size = old_size;
1171 
1172 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173 	if (likely(slots))
1174 		memcpy(slots, old, old_size);
1175 
1176 	return slots;
1177 }
1178 
1179 static int kvm_set_memslot(struct kvm *kvm,
1180 			   const struct kvm_userspace_memory_region *mem,
1181 			   struct kvm_memory_slot *old,
1182 			   struct kvm_memory_slot *new, int as_id,
1183 			   enum kvm_mr_change change)
1184 {
1185 	struct kvm_memory_slot *slot;
1186 	struct kvm_memslots *slots;
1187 	int r;
1188 
1189 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190 	if (!slots)
1191 		return -ENOMEM;
1192 
1193 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194 		/*
1195 		 * Note, the INVALID flag needs to be in the appropriate entry
1196 		 * in the freshly allocated memslots, not in @old or @new.
1197 		 */
1198 		slot = id_to_memslot(slots, old->id);
1199 		slot->flags |= KVM_MEMSLOT_INVALID;
1200 
1201 		/*
1202 		 * We can re-use the old memslots, the only difference from the
1203 		 * newly installed memslots is the invalid flag, which will get
1204 		 * dropped by update_memslots anyway.  We'll also revert to the
1205 		 * old memslots if preparing the new memory region fails.
1206 		 */
1207 		slots = install_new_memslots(kvm, as_id, slots);
1208 
1209 		/* From this point no new shadow pages pointing to a deleted,
1210 		 * or moved, memslot will be created.
1211 		 *
1212 		 * validation of sp->gfn happens in:
1213 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214 		 *	- kvm_is_visible_gfn (mmu_check_root)
1215 		 */
1216 		kvm_arch_flush_shadow_memslot(kvm, slot);
1217 	}
1218 
1219 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220 	if (r)
1221 		goto out_slots;
1222 
1223 	update_memslots(slots, new, change);
1224 	slots = install_new_memslots(kvm, as_id, slots);
1225 
1226 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227 
1228 	kvfree(slots);
1229 	return 0;
1230 
1231 out_slots:
1232 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233 		slots = install_new_memslots(kvm, as_id, slots);
1234 	kvfree(slots);
1235 	return r;
1236 }
1237 
1238 static int kvm_delete_memslot(struct kvm *kvm,
1239 			      const struct kvm_userspace_memory_region *mem,
1240 			      struct kvm_memory_slot *old, int as_id)
1241 {
1242 	struct kvm_memory_slot new;
1243 	int r;
1244 
1245 	if (!old->npages)
1246 		return -EINVAL;
1247 
1248 	memset(&new, 0, sizeof(new));
1249 	new.id = old->id;
1250 	/*
1251 	 * This is only for debugging purpose; it should never be referenced
1252 	 * for a removed memslot.
1253 	 */
1254 	new.as_id = as_id;
1255 
1256 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1257 	if (r)
1258 		return r;
1259 
1260 	kvm_free_memslot(kvm, old);
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Allocate some memory and give it an address in the guest physical address
1266  * space.
1267  *
1268  * Discontiguous memory is allowed, mostly for framebuffers.
1269  *
1270  * Must be called holding kvm->slots_lock for write.
1271  */
1272 int __kvm_set_memory_region(struct kvm *kvm,
1273 			    const struct kvm_userspace_memory_region *mem)
1274 {
1275 	struct kvm_memory_slot old, new;
1276 	struct kvm_memory_slot *tmp;
1277 	enum kvm_mr_change change;
1278 	int as_id, id;
1279 	int r;
1280 
1281 	r = check_memory_region_flags(mem);
1282 	if (r)
1283 		return r;
1284 
1285 	as_id = mem->slot >> 16;
1286 	id = (u16)mem->slot;
1287 
1288 	/* General sanity checks */
1289 	if (mem->memory_size & (PAGE_SIZE - 1))
1290 		return -EINVAL;
1291 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1292 		return -EINVAL;
1293 	/* We can read the guest memory with __xxx_user() later on. */
1294 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1295 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1296 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1297 			mem->memory_size))
1298 		return -EINVAL;
1299 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1300 		return -EINVAL;
1301 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1302 		return -EINVAL;
1303 
1304 	/*
1305 	 * Make a full copy of the old memslot, the pointer will become stale
1306 	 * when the memslots are re-sorted by update_memslots(), and the old
1307 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1308 	 * to free its resources and for arch specific behavior.
1309 	 */
1310 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1311 	if (tmp) {
1312 		old = *tmp;
1313 		tmp = NULL;
1314 	} else {
1315 		memset(&old, 0, sizeof(old));
1316 		old.id = id;
1317 	}
1318 
1319 	if (!mem->memory_size)
1320 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1321 
1322 	new.as_id = as_id;
1323 	new.id = id;
1324 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1325 	new.npages = mem->memory_size >> PAGE_SHIFT;
1326 	new.flags = mem->flags;
1327 	new.userspace_addr = mem->userspace_addr;
1328 
1329 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1330 		return -EINVAL;
1331 
1332 	if (!old.npages) {
1333 		change = KVM_MR_CREATE;
1334 		new.dirty_bitmap = NULL;
1335 		memset(&new.arch, 0, sizeof(new.arch));
1336 	} else { /* Modify an existing slot. */
1337 		if ((new.userspace_addr != old.userspace_addr) ||
1338 		    (new.npages != old.npages) ||
1339 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1340 			return -EINVAL;
1341 
1342 		if (new.base_gfn != old.base_gfn)
1343 			change = KVM_MR_MOVE;
1344 		else if (new.flags != old.flags)
1345 			change = KVM_MR_FLAGS_ONLY;
1346 		else /* Nothing to change. */
1347 			return 0;
1348 
1349 		/* Copy dirty_bitmap and arch from the current memslot. */
1350 		new.dirty_bitmap = old.dirty_bitmap;
1351 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1352 	}
1353 
1354 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1355 		/* Check for overlaps */
1356 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1357 			if (tmp->id == id)
1358 				continue;
1359 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1360 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1361 				return -EEXIST;
1362 		}
1363 	}
1364 
1365 	/* Allocate/free page dirty bitmap as needed */
1366 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1367 		new.dirty_bitmap = NULL;
1368 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1369 		r = kvm_alloc_dirty_bitmap(&new);
1370 		if (r)
1371 			return r;
1372 
1373 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1374 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1375 	}
1376 
1377 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1378 	if (r)
1379 		goto out_bitmap;
1380 
1381 	if (old.dirty_bitmap && !new.dirty_bitmap)
1382 		kvm_destroy_dirty_bitmap(&old);
1383 	return 0;
1384 
1385 out_bitmap:
1386 	if (new.dirty_bitmap && !old.dirty_bitmap)
1387 		kvm_destroy_dirty_bitmap(&new);
1388 	return r;
1389 }
1390 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1391 
1392 int kvm_set_memory_region(struct kvm *kvm,
1393 			  const struct kvm_userspace_memory_region *mem)
1394 {
1395 	int r;
1396 
1397 	mutex_lock(&kvm->slots_lock);
1398 	r = __kvm_set_memory_region(kvm, mem);
1399 	mutex_unlock(&kvm->slots_lock);
1400 	return r;
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1403 
1404 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1405 					  struct kvm_userspace_memory_region *mem)
1406 {
1407 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1408 		return -EINVAL;
1409 
1410 	return kvm_set_memory_region(kvm, mem);
1411 }
1412 
1413 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1414 /**
1415  * kvm_get_dirty_log - get a snapshot of dirty pages
1416  * @kvm:	pointer to kvm instance
1417  * @log:	slot id and address to which we copy the log
1418  * @is_dirty:	set to '1' if any dirty pages were found
1419  * @memslot:	set to the associated memslot, always valid on success
1420  */
1421 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1422 		      int *is_dirty, struct kvm_memory_slot **memslot)
1423 {
1424 	struct kvm_memslots *slots;
1425 	int i, as_id, id;
1426 	unsigned long n;
1427 	unsigned long any = 0;
1428 
1429 	/* Dirty ring tracking is exclusive to dirty log tracking */
1430 	if (kvm->dirty_ring_size)
1431 		return -ENXIO;
1432 
1433 	*memslot = NULL;
1434 	*is_dirty = 0;
1435 
1436 	as_id = log->slot >> 16;
1437 	id = (u16)log->slot;
1438 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1439 		return -EINVAL;
1440 
1441 	slots = __kvm_memslots(kvm, as_id);
1442 	*memslot = id_to_memslot(slots, id);
1443 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1444 		return -ENOENT;
1445 
1446 	kvm_arch_sync_dirty_log(kvm, *memslot);
1447 
1448 	n = kvm_dirty_bitmap_bytes(*memslot);
1449 
1450 	for (i = 0; !any && i < n/sizeof(long); ++i)
1451 		any = (*memslot)->dirty_bitmap[i];
1452 
1453 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1454 		return -EFAULT;
1455 
1456 	if (any)
1457 		*is_dirty = 1;
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1461 
1462 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1463 /**
1464  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1465  *	and reenable dirty page tracking for the corresponding pages.
1466  * @kvm:	pointer to kvm instance
1467  * @log:	slot id and address to which we copy the log
1468  *
1469  * We need to keep it in mind that VCPU threads can write to the bitmap
1470  * concurrently. So, to avoid losing track of dirty pages we keep the
1471  * following order:
1472  *
1473  *    1. Take a snapshot of the bit and clear it if needed.
1474  *    2. Write protect the corresponding page.
1475  *    3. Copy the snapshot to the userspace.
1476  *    4. Upon return caller flushes TLB's if needed.
1477  *
1478  * Between 2 and 4, the guest may write to the page using the remaining TLB
1479  * entry.  This is not a problem because the page is reported dirty using
1480  * the snapshot taken before and step 4 ensures that writes done after
1481  * exiting to userspace will be logged for the next call.
1482  *
1483  */
1484 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1485 {
1486 	struct kvm_memslots *slots;
1487 	struct kvm_memory_slot *memslot;
1488 	int i, as_id, id;
1489 	unsigned long n;
1490 	unsigned long *dirty_bitmap;
1491 	unsigned long *dirty_bitmap_buffer;
1492 	bool flush;
1493 
1494 	/* Dirty ring tracking is exclusive to dirty log tracking */
1495 	if (kvm->dirty_ring_size)
1496 		return -ENXIO;
1497 
1498 	as_id = log->slot >> 16;
1499 	id = (u16)log->slot;
1500 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1501 		return -EINVAL;
1502 
1503 	slots = __kvm_memslots(kvm, as_id);
1504 	memslot = id_to_memslot(slots, id);
1505 	if (!memslot || !memslot->dirty_bitmap)
1506 		return -ENOENT;
1507 
1508 	dirty_bitmap = memslot->dirty_bitmap;
1509 
1510 	kvm_arch_sync_dirty_log(kvm, memslot);
1511 
1512 	n = kvm_dirty_bitmap_bytes(memslot);
1513 	flush = false;
1514 	if (kvm->manual_dirty_log_protect) {
1515 		/*
1516 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1517 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1518 		 * is some code duplication between this function and
1519 		 * kvm_get_dirty_log, but hopefully all architecture
1520 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1521 		 * can be eliminated.
1522 		 */
1523 		dirty_bitmap_buffer = dirty_bitmap;
1524 	} else {
1525 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1526 		memset(dirty_bitmap_buffer, 0, n);
1527 
1528 		spin_lock(&kvm->mmu_lock);
1529 		for (i = 0; i < n / sizeof(long); i++) {
1530 			unsigned long mask;
1531 			gfn_t offset;
1532 
1533 			if (!dirty_bitmap[i])
1534 				continue;
1535 
1536 			flush = true;
1537 			mask = xchg(&dirty_bitmap[i], 0);
1538 			dirty_bitmap_buffer[i] = mask;
1539 
1540 			offset = i * BITS_PER_LONG;
1541 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1542 								offset, mask);
1543 		}
1544 		spin_unlock(&kvm->mmu_lock);
1545 	}
1546 
1547 	if (flush)
1548 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1549 
1550 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1551 		return -EFAULT;
1552 	return 0;
1553 }
1554 
1555 
1556 /**
1557  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1558  * @kvm: kvm instance
1559  * @log: slot id and address to which we copy the log
1560  *
1561  * Steps 1-4 below provide general overview of dirty page logging. See
1562  * kvm_get_dirty_log_protect() function description for additional details.
1563  *
1564  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1565  * always flush the TLB (step 4) even if previous step failed  and the dirty
1566  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1567  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1568  * writes will be marked dirty for next log read.
1569  *
1570  *   1. Take a snapshot of the bit and clear it if needed.
1571  *   2. Write protect the corresponding page.
1572  *   3. Copy the snapshot to the userspace.
1573  *   4. Flush TLB's if needed.
1574  */
1575 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1576 				      struct kvm_dirty_log *log)
1577 {
1578 	int r;
1579 
1580 	mutex_lock(&kvm->slots_lock);
1581 
1582 	r = kvm_get_dirty_log_protect(kvm, log);
1583 
1584 	mutex_unlock(&kvm->slots_lock);
1585 	return r;
1586 }
1587 
1588 /**
1589  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1590  *	and reenable dirty page tracking for the corresponding pages.
1591  * @kvm:	pointer to kvm instance
1592  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1593  */
1594 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1595 				       struct kvm_clear_dirty_log *log)
1596 {
1597 	struct kvm_memslots *slots;
1598 	struct kvm_memory_slot *memslot;
1599 	int as_id, id;
1600 	gfn_t offset;
1601 	unsigned long i, n;
1602 	unsigned long *dirty_bitmap;
1603 	unsigned long *dirty_bitmap_buffer;
1604 	bool flush;
1605 
1606 	/* Dirty ring tracking is exclusive to dirty log tracking */
1607 	if (kvm->dirty_ring_size)
1608 		return -ENXIO;
1609 
1610 	as_id = log->slot >> 16;
1611 	id = (u16)log->slot;
1612 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1613 		return -EINVAL;
1614 
1615 	if (log->first_page & 63)
1616 		return -EINVAL;
1617 
1618 	slots = __kvm_memslots(kvm, as_id);
1619 	memslot = id_to_memslot(slots, id);
1620 	if (!memslot || !memslot->dirty_bitmap)
1621 		return -ENOENT;
1622 
1623 	dirty_bitmap = memslot->dirty_bitmap;
1624 
1625 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1626 
1627 	if (log->first_page > memslot->npages ||
1628 	    log->num_pages > memslot->npages - log->first_page ||
1629 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1630 	    return -EINVAL;
1631 
1632 	kvm_arch_sync_dirty_log(kvm, memslot);
1633 
1634 	flush = false;
1635 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1636 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1637 		return -EFAULT;
1638 
1639 	spin_lock(&kvm->mmu_lock);
1640 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1641 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1642 	     i++, offset += BITS_PER_LONG) {
1643 		unsigned long mask = *dirty_bitmap_buffer++;
1644 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1645 		if (!mask)
1646 			continue;
1647 
1648 		mask &= atomic_long_fetch_andnot(mask, p);
1649 
1650 		/*
1651 		 * mask contains the bits that really have been cleared.  This
1652 		 * never includes any bits beyond the length of the memslot (if
1653 		 * the length is not aligned to 64 pages), therefore it is not
1654 		 * a problem if userspace sets them in log->dirty_bitmap.
1655 		*/
1656 		if (mask) {
1657 			flush = true;
1658 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1659 								offset, mask);
1660 		}
1661 	}
1662 	spin_unlock(&kvm->mmu_lock);
1663 
1664 	if (flush)
1665 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1666 
1667 	return 0;
1668 }
1669 
1670 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1671 					struct kvm_clear_dirty_log *log)
1672 {
1673 	int r;
1674 
1675 	mutex_lock(&kvm->slots_lock);
1676 
1677 	r = kvm_clear_dirty_log_protect(kvm, log);
1678 
1679 	mutex_unlock(&kvm->slots_lock);
1680 	return r;
1681 }
1682 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1683 
1684 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1685 {
1686 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1689 
1690 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1695 
1696 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1697 {
1698 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1699 
1700 	return kvm_is_visible_memslot(memslot);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1703 
1704 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1705 {
1706 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1707 
1708 	return kvm_is_visible_memslot(memslot);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1711 
1712 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1713 {
1714 	struct vm_area_struct *vma;
1715 	unsigned long addr, size;
1716 
1717 	size = PAGE_SIZE;
1718 
1719 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1720 	if (kvm_is_error_hva(addr))
1721 		return PAGE_SIZE;
1722 
1723 	mmap_read_lock(current->mm);
1724 	vma = find_vma(current->mm, addr);
1725 	if (!vma)
1726 		goto out;
1727 
1728 	size = vma_kernel_pagesize(vma);
1729 
1730 out:
1731 	mmap_read_unlock(current->mm);
1732 
1733 	return size;
1734 }
1735 
1736 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1737 {
1738 	return slot->flags & KVM_MEM_READONLY;
1739 }
1740 
1741 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742 				       gfn_t *nr_pages, bool write)
1743 {
1744 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1745 		return KVM_HVA_ERR_BAD;
1746 
1747 	if (memslot_is_readonly(slot) && write)
1748 		return KVM_HVA_ERR_RO_BAD;
1749 
1750 	if (nr_pages)
1751 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1752 
1753 	return __gfn_to_hva_memslot(slot, gfn);
1754 }
1755 
1756 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1757 				     gfn_t *nr_pages)
1758 {
1759 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1760 }
1761 
1762 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1763 					gfn_t gfn)
1764 {
1765 	return gfn_to_hva_many(slot, gfn, NULL);
1766 }
1767 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1768 
1769 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1770 {
1771 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1772 }
1773 EXPORT_SYMBOL_GPL(gfn_to_hva);
1774 
1775 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1776 {
1777 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1780 
1781 /*
1782  * Return the hva of a @gfn and the R/W attribute if possible.
1783  *
1784  * @slot: the kvm_memory_slot which contains @gfn
1785  * @gfn: the gfn to be translated
1786  * @writable: used to return the read/write attribute of the @slot if the hva
1787  * is valid and @writable is not NULL
1788  */
1789 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1790 				      gfn_t gfn, bool *writable)
1791 {
1792 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1793 
1794 	if (!kvm_is_error_hva(hva) && writable)
1795 		*writable = !memslot_is_readonly(slot);
1796 
1797 	return hva;
1798 }
1799 
1800 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1801 {
1802 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1803 
1804 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1805 }
1806 
1807 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1808 {
1809 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1810 
1811 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1812 }
1813 
1814 static inline int check_user_page_hwpoison(unsigned long addr)
1815 {
1816 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1817 
1818 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1819 	return rc == -EHWPOISON;
1820 }
1821 
1822 /*
1823  * The fast path to get the writable pfn which will be stored in @pfn,
1824  * true indicates success, otherwise false is returned.  It's also the
1825  * only part that runs if we can in atomic context.
1826  */
1827 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1828 			    bool *writable, kvm_pfn_t *pfn)
1829 {
1830 	struct page *page[1];
1831 
1832 	/*
1833 	 * Fast pin a writable pfn only if it is a write fault request
1834 	 * or the caller allows to map a writable pfn for a read fault
1835 	 * request.
1836 	 */
1837 	if (!(write_fault || writable))
1838 		return false;
1839 
1840 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1841 		*pfn = page_to_pfn(page[0]);
1842 
1843 		if (writable)
1844 			*writable = true;
1845 		return true;
1846 	}
1847 
1848 	return false;
1849 }
1850 
1851 /*
1852  * The slow path to get the pfn of the specified host virtual address,
1853  * 1 indicates success, -errno is returned if error is detected.
1854  */
1855 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1856 			   bool *writable, kvm_pfn_t *pfn)
1857 {
1858 	unsigned int flags = FOLL_HWPOISON;
1859 	struct page *page;
1860 	int npages = 0;
1861 
1862 	might_sleep();
1863 
1864 	if (writable)
1865 		*writable = write_fault;
1866 
1867 	if (write_fault)
1868 		flags |= FOLL_WRITE;
1869 	if (async)
1870 		flags |= FOLL_NOWAIT;
1871 
1872 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1873 	if (npages != 1)
1874 		return npages;
1875 
1876 	/* map read fault as writable if possible */
1877 	if (unlikely(!write_fault) && writable) {
1878 		struct page *wpage;
1879 
1880 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1881 			*writable = true;
1882 			put_page(page);
1883 			page = wpage;
1884 		}
1885 	}
1886 	*pfn = page_to_pfn(page);
1887 	return npages;
1888 }
1889 
1890 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1891 {
1892 	if (unlikely(!(vma->vm_flags & VM_READ)))
1893 		return false;
1894 
1895 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1896 		return false;
1897 
1898 	return true;
1899 }
1900 
1901 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1902 			       unsigned long addr, bool *async,
1903 			       bool write_fault, bool *writable,
1904 			       kvm_pfn_t *p_pfn)
1905 {
1906 	unsigned long pfn;
1907 	int r;
1908 
1909 	r = follow_pfn(vma, addr, &pfn);
1910 	if (r) {
1911 		/*
1912 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1913 		 * not call the fault handler, so do it here.
1914 		 */
1915 		bool unlocked = false;
1916 		r = fixup_user_fault(current->mm, addr,
1917 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1918 				     &unlocked);
1919 		if (unlocked)
1920 			return -EAGAIN;
1921 		if (r)
1922 			return r;
1923 
1924 		r = follow_pfn(vma, addr, &pfn);
1925 		if (r)
1926 			return r;
1927 
1928 	}
1929 
1930 	if (writable)
1931 		*writable = true;
1932 
1933 	/*
1934 	 * Get a reference here because callers of *hva_to_pfn* and
1935 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1936 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1937 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1938 	 * simply do nothing for reserved pfns.
1939 	 *
1940 	 * Whoever called remap_pfn_range is also going to call e.g.
1941 	 * unmap_mapping_range before the underlying pages are freed,
1942 	 * causing a call to our MMU notifier.
1943 	 */
1944 	kvm_get_pfn(pfn);
1945 
1946 	*p_pfn = pfn;
1947 	return 0;
1948 }
1949 
1950 /*
1951  * Pin guest page in memory and return its pfn.
1952  * @addr: host virtual address which maps memory to the guest
1953  * @atomic: whether this function can sleep
1954  * @async: whether this function need to wait IO complete if the
1955  *         host page is not in the memory
1956  * @write_fault: whether we should get a writable host page
1957  * @writable: whether it allows to map a writable host page for !@write_fault
1958  *
1959  * The function will map a writable host page for these two cases:
1960  * 1): @write_fault = true
1961  * 2): @write_fault = false && @writable, @writable will tell the caller
1962  *     whether the mapping is writable.
1963  */
1964 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1965 			bool write_fault, bool *writable)
1966 {
1967 	struct vm_area_struct *vma;
1968 	kvm_pfn_t pfn = 0;
1969 	int npages, r;
1970 
1971 	/* we can do it either atomically or asynchronously, not both */
1972 	BUG_ON(atomic && async);
1973 
1974 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1975 		return pfn;
1976 
1977 	if (atomic)
1978 		return KVM_PFN_ERR_FAULT;
1979 
1980 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1981 	if (npages == 1)
1982 		return pfn;
1983 
1984 	mmap_read_lock(current->mm);
1985 	if (npages == -EHWPOISON ||
1986 	      (!async && check_user_page_hwpoison(addr))) {
1987 		pfn = KVM_PFN_ERR_HWPOISON;
1988 		goto exit;
1989 	}
1990 
1991 retry:
1992 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1993 
1994 	if (vma == NULL)
1995 		pfn = KVM_PFN_ERR_FAULT;
1996 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1997 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1998 		if (r == -EAGAIN)
1999 			goto retry;
2000 		if (r < 0)
2001 			pfn = KVM_PFN_ERR_FAULT;
2002 	} else {
2003 		if (async && vma_is_valid(vma, write_fault))
2004 			*async = true;
2005 		pfn = KVM_PFN_ERR_FAULT;
2006 	}
2007 exit:
2008 	mmap_read_unlock(current->mm);
2009 	return pfn;
2010 }
2011 
2012 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2013 			       bool atomic, bool *async, bool write_fault,
2014 			       bool *writable)
2015 {
2016 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2017 
2018 	if (addr == KVM_HVA_ERR_RO_BAD) {
2019 		if (writable)
2020 			*writable = false;
2021 		return KVM_PFN_ERR_RO_FAULT;
2022 	}
2023 
2024 	if (kvm_is_error_hva(addr)) {
2025 		if (writable)
2026 			*writable = false;
2027 		return KVM_PFN_NOSLOT;
2028 	}
2029 
2030 	/* Do not map writable pfn in the readonly memslot. */
2031 	if (writable && memslot_is_readonly(slot)) {
2032 		*writable = false;
2033 		writable = NULL;
2034 	}
2035 
2036 	return hva_to_pfn(addr, atomic, async, write_fault,
2037 			  writable);
2038 }
2039 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2040 
2041 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2042 		      bool *writable)
2043 {
2044 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2045 				    write_fault, writable);
2046 }
2047 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2048 
2049 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2050 {
2051 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2052 }
2053 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2054 
2055 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2056 {
2057 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2058 }
2059 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2060 
2061 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2062 {
2063 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2066 
2067 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2068 {
2069 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2070 }
2071 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2072 
2073 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2078 
2079 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2080 			    struct page **pages, int nr_pages)
2081 {
2082 	unsigned long addr;
2083 	gfn_t entry = 0;
2084 
2085 	addr = gfn_to_hva_many(slot, gfn, &entry);
2086 	if (kvm_is_error_hva(addr))
2087 		return -1;
2088 
2089 	if (entry < nr_pages)
2090 		return 0;
2091 
2092 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2093 }
2094 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2095 
2096 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2097 {
2098 	if (is_error_noslot_pfn(pfn))
2099 		return KVM_ERR_PTR_BAD_PAGE;
2100 
2101 	if (kvm_is_reserved_pfn(pfn)) {
2102 		WARN_ON(1);
2103 		return KVM_ERR_PTR_BAD_PAGE;
2104 	}
2105 
2106 	return pfn_to_page(pfn);
2107 }
2108 
2109 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2110 {
2111 	kvm_pfn_t pfn;
2112 
2113 	pfn = gfn_to_pfn(kvm, gfn);
2114 
2115 	return kvm_pfn_to_page(pfn);
2116 }
2117 EXPORT_SYMBOL_GPL(gfn_to_page);
2118 
2119 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2120 {
2121 	if (pfn == 0)
2122 		return;
2123 
2124 	if (cache)
2125 		cache->pfn = cache->gfn = 0;
2126 
2127 	if (dirty)
2128 		kvm_release_pfn_dirty(pfn);
2129 	else
2130 		kvm_release_pfn_clean(pfn);
2131 }
2132 
2133 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2134 				 struct gfn_to_pfn_cache *cache, u64 gen)
2135 {
2136 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2137 
2138 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2139 	cache->gfn = gfn;
2140 	cache->dirty = false;
2141 	cache->generation = gen;
2142 }
2143 
2144 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2145 			 struct kvm_host_map *map,
2146 			 struct gfn_to_pfn_cache *cache,
2147 			 bool atomic)
2148 {
2149 	kvm_pfn_t pfn;
2150 	void *hva = NULL;
2151 	struct page *page = KVM_UNMAPPED_PAGE;
2152 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2153 	u64 gen = slots->generation;
2154 
2155 	if (!map)
2156 		return -EINVAL;
2157 
2158 	if (cache) {
2159 		if (!cache->pfn || cache->gfn != gfn ||
2160 			cache->generation != gen) {
2161 			if (atomic)
2162 				return -EAGAIN;
2163 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2164 		}
2165 		pfn = cache->pfn;
2166 	} else {
2167 		if (atomic)
2168 			return -EAGAIN;
2169 		pfn = gfn_to_pfn_memslot(slot, gfn);
2170 	}
2171 	if (is_error_noslot_pfn(pfn))
2172 		return -EINVAL;
2173 
2174 	if (pfn_valid(pfn)) {
2175 		page = pfn_to_page(pfn);
2176 		if (atomic)
2177 			hva = kmap_atomic(page);
2178 		else
2179 			hva = kmap(page);
2180 #ifdef CONFIG_HAS_IOMEM
2181 	} else if (!atomic) {
2182 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2183 	} else {
2184 		return -EINVAL;
2185 #endif
2186 	}
2187 
2188 	if (!hva)
2189 		return -EFAULT;
2190 
2191 	map->page = page;
2192 	map->hva = hva;
2193 	map->pfn = pfn;
2194 	map->gfn = gfn;
2195 
2196 	return 0;
2197 }
2198 
2199 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2200 		struct gfn_to_pfn_cache *cache, bool atomic)
2201 {
2202 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2203 			cache, atomic);
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2206 
2207 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2208 {
2209 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2210 		NULL, false);
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2213 
2214 static void __kvm_unmap_gfn(struct kvm *kvm,
2215 			struct kvm_memory_slot *memslot,
2216 			struct kvm_host_map *map,
2217 			struct gfn_to_pfn_cache *cache,
2218 			bool dirty, bool atomic)
2219 {
2220 	if (!map)
2221 		return;
2222 
2223 	if (!map->hva)
2224 		return;
2225 
2226 	if (map->page != KVM_UNMAPPED_PAGE) {
2227 		if (atomic)
2228 			kunmap_atomic(map->hva);
2229 		else
2230 			kunmap(map->page);
2231 	}
2232 #ifdef CONFIG_HAS_IOMEM
2233 	else if (!atomic)
2234 		memunmap(map->hva);
2235 	else
2236 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2237 #endif
2238 
2239 	if (dirty)
2240 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2241 
2242 	if (cache)
2243 		cache->dirty |= dirty;
2244 	else
2245 		kvm_release_pfn(map->pfn, dirty, NULL);
2246 
2247 	map->hva = NULL;
2248 	map->page = NULL;
2249 }
2250 
2251 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2252 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2253 {
2254 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2255 			cache, dirty, atomic);
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2259 
2260 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2261 {
2262 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2263 			map, NULL, dirty, false);
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2266 
2267 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2268 {
2269 	kvm_pfn_t pfn;
2270 
2271 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2272 
2273 	return kvm_pfn_to_page(pfn);
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2276 
2277 void kvm_release_page_clean(struct page *page)
2278 {
2279 	WARN_ON(is_error_page(page));
2280 
2281 	kvm_release_pfn_clean(page_to_pfn(page));
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2284 
2285 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2286 {
2287 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2288 		put_page(pfn_to_page(pfn));
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2291 
2292 void kvm_release_page_dirty(struct page *page)
2293 {
2294 	WARN_ON(is_error_page(page));
2295 
2296 	kvm_release_pfn_dirty(page_to_pfn(page));
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2299 
2300 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2301 {
2302 	kvm_set_pfn_dirty(pfn);
2303 	kvm_release_pfn_clean(pfn);
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2306 
2307 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2308 {
2309 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2310 		SetPageDirty(pfn_to_page(pfn));
2311 }
2312 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2313 
2314 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2315 {
2316 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2317 		mark_page_accessed(pfn_to_page(pfn));
2318 }
2319 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2320 
2321 void kvm_get_pfn(kvm_pfn_t pfn)
2322 {
2323 	if (!kvm_is_reserved_pfn(pfn))
2324 		get_page(pfn_to_page(pfn));
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2327 
2328 static int next_segment(unsigned long len, int offset)
2329 {
2330 	if (len > PAGE_SIZE - offset)
2331 		return PAGE_SIZE - offset;
2332 	else
2333 		return len;
2334 }
2335 
2336 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2337 				 void *data, int offset, int len)
2338 {
2339 	int r;
2340 	unsigned long addr;
2341 
2342 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2343 	if (kvm_is_error_hva(addr))
2344 		return -EFAULT;
2345 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2346 	if (r)
2347 		return -EFAULT;
2348 	return 0;
2349 }
2350 
2351 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2352 			int len)
2353 {
2354 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2355 
2356 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2359 
2360 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2361 			     int offset, int len)
2362 {
2363 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2364 
2365 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2368 
2369 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2370 {
2371 	gfn_t gfn = gpa >> PAGE_SHIFT;
2372 	int seg;
2373 	int offset = offset_in_page(gpa);
2374 	int ret;
2375 
2376 	while ((seg = next_segment(len, offset)) != 0) {
2377 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2378 		if (ret < 0)
2379 			return ret;
2380 		offset = 0;
2381 		len -= seg;
2382 		data += seg;
2383 		++gfn;
2384 	}
2385 	return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_read_guest);
2388 
2389 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2390 {
2391 	gfn_t gfn = gpa >> PAGE_SHIFT;
2392 	int seg;
2393 	int offset = offset_in_page(gpa);
2394 	int ret;
2395 
2396 	while ((seg = next_segment(len, offset)) != 0) {
2397 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2398 		if (ret < 0)
2399 			return ret;
2400 		offset = 0;
2401 		len -= seg;
2402 		data += seg;
2403 		++gfn;
2404 	}
2405 	return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2408 
2409 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2410 			           void *data, int offset, unsigned long len)
2411 {
2412 	int r;
2413 	unsigned long addr;
2414 
2415 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2416 	if (kvm_is_error_hva(addr))
2417 		return -EFAULT;
2418 	pagefault_disable();
2419 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2420 	pagefault_enable();
2421 	if (r)
2422 		return -EFAULT;
2423 	return 0;
2424 }
2425 
2426 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2427 			       void *data, unsigned long len)
2428 {
2429 	gfn_t gfn = gpa >> PAGE_SHIFT;
2430 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2431 	int offset = offset_in_page(gpa);
2432 
2433 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2436 
2437 static int __kvm_write_guest_page(struct kvm *kvm,
2438 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2439 			          const void *data, int offset, int len)
2440 {
2441 	int r;
2442 	unsigned long addr;
2443 
2444 	addr = gfn_to_hva_memslot(memslot, gfn);
2445 	if (kvm_is_error_hva(addr))
2446 		return -EFAULT;
2447 	r = __copy_to_user((void __user *)addr + offset, data, len);
2448 	if (r)
2449 		return -EFAULT;
2450 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2451 	return 0;
2452 }
2453 
2454 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2455 			 const void *data, int offset, int len)
2456 {
2457 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2458 
2459 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2462 
2463 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2464 			      const void *data, int offset, int len)
2465 {
2466 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2467 
2468 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2471 
2472 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2473 		    unsigned long len)
2474 {
2475 	gfn_t gfn = gpa >> PAGE_SHIFT;
2476 	int seg;
2477 	int offset = offset_in_page(gpa);
2478 	int ret;
2479 
2480 	while ((seg = next_segment(len, offset)) != 0) {
2481 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2482 		if (ret < 0)
2483 			return ret;
2484 		offset = 0;
2485 		len -= seg;
2486 		data += seg;
2487 		++gfn;
2488 	}
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_write_guest);
2492 
2493 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2494 		         unsigned long len)
2495 {
2496 	gfn_t gfn = gpa >> PAGE_SHIFT;
2497 	int seg;
2498 	int offset = offset_in_page(gpa);
2499 	int ret;
2500 
2501 	while ((seg = next_segment(len, offset)) != 0) {
2502 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2503 		if (ret < 0)
2504 			return ret;
2505 		offset = 0;
2506 		len -= seg;
2507 		data += seg;
2508 		++gfn;
2509 	}
2510 	return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2513 
2514 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2515 				       struct gfn_to_hva_cache *ghc,
2516 				       gpa_t gpa, unsigned long len)
2517 {
2518 	int offset = offset_in_page(gpa);
2519 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2520 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2521 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2522 	gfn_t nr_pages_avail;
2523 
2524 	/* Update ghc->generation before performing any error checks. */
2525 	ghc->generation = slots->generation;
2526 
2527 	if (start_gfn > end_gfn) {
2528 		ghc->hva = KVM_HVA_ERR_BAD;
2529 		return -EINVAL;
2530 	}
2531 
2532 	/*
2533 	 * If the requested region crosses two memslots, we still
2534 	 * verify that the entire region is valid here.
2535 	 */
2536 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2537 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2538 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2539 					   &nr_pages_avail);
2540 		if (kvm_is_error_hva(ghc->hva))
2541 			return -EFAULT;
2542 	}
2543 
2544 	/* Use the slow path for cross page reads and writes. */
2545 	if (nr_pages_needed == 1)
2546 		ghc->hva += offset;
2547 	else
2548 		ghc->memslot = NULL;
2549 
2550 	ghc->gpa = gpa;
2551 	ghc->len = len;
2552 	return 0;
2553 }
2554 
2555 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2556 			      gpa_t gpa, unsigned long len)
2557 {
2558 	struct kvm_memslots *slots = kvm_memslots(kvm);
2559 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2562 
2563 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2564 				  void *data, unsigned int offset,
2565 				  unsigned long len)
2566 {
2567 	struct kvm_memslots *slots = kvm_memslots(kvm);
2568 	int r;
2569 	gpa_t gpa = ghc->gpa + offset;
2570 
2571 	BUG_ON(len + offset > ghc->len);
2572 
2573 	if (slots->generation != ghc->generation) {
2574 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2575 			return -EFAULT;
2576 	}
2577 
2578 	if (kvm_is_error_hva(ghc->hva))
2579 		return -EFAULT;
2580 
2581 	if (unlikely(!ghc->memslot))
2582 		return kvm_write_guest(kvm, gpa, data, len);
2583 
2584 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2585 	if (r)
2586 		return -EFAULT;
2587 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2588 
2589 	return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2592 
2593 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2594 			   void *data, unsigned long len)
2595 {
2596 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2599 
2600 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2601 				 void *data, unsigned int offset,
2602 				 unsigned long len)
2603 {
2604 	struct kvm_memslots *slots = kvm_memslots(kvm);
2605 	int r;
2606 	gpa_t gpa = ghc->gpa + offset;
2607 
2608 	BUG_ON(len + offset > ghc->len);
2609 
2610 	if (slots->generation != ghc->generation) {
2611 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2612 			return -EFAULT;
2613 	}
2614 
2615 	if (kvm_is_error_hva(ghc->hva))
2616 		return -EFAULT;
2617 
2618 	if (unlikely(!ghc->memslot))
2619 		return kvm_read_guest(kvm, gpa, data, len);
2620 
2621 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2622 	if (r)
2623 		return -EFAULT;
2624 
2625 	return 0;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2628 
2629 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2630 			  void *data, unsigned long len)
2631 {
2632 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2633 }
2634 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2635 
2636 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2637 {
2638 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2639 	gfn_t gfn = gpa >> PAGE_SHIFT;
2640 	int seg;
2641 	int offset = offset_in_page(gpa);
2642 	int ret;
2643 
2644 	while ((seg = next_segment(len, offset)) != 0) {
2645 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2646 		if (ret < 0)
2647 			return ret;
2648 		offset = 0;
2649 		len -= seg;
2650 		++gfn;
2651 	}
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2655 
2656 void mark_page_dirty_in_slot(struct kvm *kvm,
2657 			     struct kvm_memory_slot *memslot,
2658 		 	     gfn_t gfn)
2659 {
2660 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2661 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2662 		u32 slot = (memslot->as_id << 16) | memslot->id;
2663 
2664 		if (kvm->dirty_ring_size)
2665 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2666 					    slot, rel_gfn);
2667 		else
2668 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2669 	}
2670 }
2671 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2672 
2673 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2674 {
2675 	struct kvm_memory_slot *memslot;
2676 
2677 	memslot = gfn_to_memslot(kvm, gfn);
2678 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2679 }
2680 EXPORT_SYMBOL_GPL(mark_page_dirty);
2681 
2682 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684 	struct kvm_memory_slot *memslot;
2685 
2686 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2687 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2690 
2691 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2692 {
2693 	if (!vcpu->sigset_active)
2694 		return;
2695 
2696 	/*
2697 	 * This does a lockless modification of ->real_blocked, which is fine
2698 	 * because, only current can change ->real_blocked and all readers of
2699 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2700 	 * of ->blocked.
2701 	 */
2702 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2703 }
2704 
2705 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2706 {
2707 	if (!vcpu->sigset_active)
2708 		return;
2709 
2710 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2711 	sigemptyset(&current->real_blocked);
2712 }
2713 
2714 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2715 {
2716 	unsigned int old, val, grow, grow_start;
2717 
2718 	old = val = vcpu->halt_poll_ns;
2719 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2720 	grow = READ_ONCE(halt_poll_ns_grow);
2721 	if (!grow)
2722 		goto out;
2723 
2724 	val *= grow;
2725 	if (val < grow_start)
2726 		val = grow_start;
2727 
2728 	if (val > halt_poll_ns)
2729 		val = halt_poll_ns;
2730 
2731 	vcpu->halt_poll_ns = val;
2732 out:
2733 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2734 }
2735 
2736 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2737 {
2738 	unsigned int old, val, shrink;
2739 
2740 	old = val = vcpu->halt_poll_ns;
2741 	shrink = READ_ONCE(halt_poll_ns_shrink);
2742 	if (shrink == 0)
2743 		val = 0;
2744 	else
2745 		val /= shrink;
2746 
2747 	vcpu->halt_poll_ns = val;
2748 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2749 }
2750 
2751 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2752 {
2753 	int ret = -EINTR;
2754 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2755 
2756 	if (kvm_arch_vcpu_runnable(vcpu)) {
2757 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2758 		goto out;
2759 	}
2760 	if (kvm_cpu_has_pending_timer(vcpu))
2761 		goto out;
2762 	if (signal_pending(current))
2763 		goto out;
2764 
2765 	ret = 0;
2766 out:
2767 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2768 	return ret;
2769 }
2770 
2771 static inline void
2772 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2773 {
2774 	if (waited)
2775 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2776 	else
2777 		vcpu->stat.halt_poll_success_ns += poll_ns;
2778 }
2779 
2780 /*
2781  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2782  */
2783 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2784 {
2785 	ktime_t start, cur, poll_end;
2786 	bool waited = false;
2787 	u64 block_ns;
2788 
2789 	kvm_arch_vcpu_blocking(vcpu);
2790 
2791 	start = cur = poll_end = ktime_get();
2792 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2793 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2794 
2795 		++vcpu->stat.halt_attempted_poll;
2796 		do {
2797 			/*
2798 			 * This sets KVM_REQ_UNHALT if an interrupt
2799 			 * arrives.
2800 			 */
2801 			if (kvm_vcpu_check_block(vcpu) < 0) {
2802 				++vcpu->stat.halt_successful_poll;
2803 				if (!vcpu_valid_wakeup(vcpu))
2804 					++vcpu->stat.halt_poll_invalid;
2805 				goto out;
2806 			}
2807 			poll_end = cur = ktime_get();
2808 		} while (single_task_running() && ktime_before(cur, stop));
2809 	}
2810 
2811 	prepare_to_rcuwait(&vcpu->wait);
2812 	for (;;) {
2813 		set_current_state(TASK_INTERRUPTIBLE);
2814 
2815 		if (kvm_vcpu_check_block(vcpu) < 0)
2816 			break;
2817 
2818 		waited = true;
2819 		schedule();
2820 	}
2821 	finish_rcuwait(&vcpu->wait);
2822 	cur = ktime_get();
2823 out:
2824 	kvm_arch_vcpu_unblocking(vcpu);
2825 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2826 
2827 	update_halt_poll_stats(
2828 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2829 
2830 	if (!kvm_arch_no_poll(vcpu)) {
2831 		if (!vcpu_valid_wakeup(vcpu)) {
2832 			shrink_halt_poll_ns(vcpu);
2833 		} else if (vcpu->kvm->max_halt_poll_ns) {
2834 			if (block_ns <= vcpu->halt_poll_ns)
2835 				;
2836 			/* we had a long block, shrink polling */
2837 			else if (vcpu->halt_poll_ns &&
2838 					block_ns > vcpu->kvm->max_halt_poll_ns)
2839 				shrink_halt_poll_ns(vcpu);
2840 			/* we had a short halt and our poll time is too small */
2841 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2842 					block_ns < vcpu->kvm->max_halt_poll_ns)
2843 				grow_halt_poll_ns(vcpu);
2844 		} else {
2845 			vcpu->halt_poll_ns = 0;
2846 		}
2847 	}
2848 
2849 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2850 	kvm_arch_vcpu_block_finish(vcpu);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2853 
2854 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2855 {
2856 	struct rcuwait *waitp;
2857 
2858 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2859 	if (rcuwait_wake_up(waitp)) {
2860 		WRITE_ONCE(vcpu->ready, true);
2861 		++vcpu->stat.halt_wakeup;
2862 		return true;
2863 	}
2864 
2865 	return false;
2866 }
2867 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2868 
2869 #ifndef CONFIG_S390
2870 /*
2871  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2872  */
2873 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2874 {
2875 	int me;
2876 	int cpu = vcpu->cpu;
2877 
2878 	if (kvm_vcpu_wake_up(vcpu))
2879 		return;
2880 
2881 	me = get_cpu();
2882 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2883 		if (kvm_arch_vcpu_should_kick(vcpu))
2884 			smp_send_reschedule(cpu);
2885 	put_cpu();
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2888 #endif /* !CONFIG_S390 */
2889 
2890 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2891 {
2892 	struct pid *pid;
2893 	struct task_struct *task = NULL;
2894 	int ret = 0;
2895 
2896 	rcu_read_lock();
2897 	pid = rcu_dereference(target->pid);
2898 	if (pid)
2899 		task = get_pid_task(pid, PIDTYPE_PID);
2900 	rcu_read_unlock();
2901 	if (!task)
2902 		return ret;
2903 	ret = yield_to(task, 1);
2904 	put_task_struct(task);
2905 
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2909 
2910 /*
2911  * Helper that checks whether a VCPU is eligible for directed yield.
2912  * Most eligible candidate to yield is decided by following heuristics:
2913  *
2914  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2915  *  (preempted lock holder), indicated by @in_spin_loop.
2916  *  Set at the beginning and cleared at the end of interception/PLE handler.
2917  *
2918  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2919  *  chance last time (mostly it has become eligible now since we have probably
2920  *  yielded to lockholder in last iteration. This is done by toggling
2921  *  @dy_eligible each time a VCPU checked for eligibility.)
2922  *
2923  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2924  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2925  *  burning. Giving priority for a potential lock-holder increases lock
2926  *  progress.
2927  *
2928  *  Since algorithm is based on heuristics, accessing another VCPU data without
2929  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2930  *  and continue with next VCPU and so on.
2931  */
2932 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2933 {
2934 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2935 	bool eligible;
2936 
2937 	eligible = !vcpu->spin_loop.in_spin_loop ||
2938 		    vcpu->spin_loop.dy_eligible;
2939 
2940 	if (vcpu->spin_loop.in_spin_loop)
2941 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2942 
2943 	return eligible;
2944 #else
2945 	return true;
2946 #endif
2947 }
2948 
2949 /*
2950  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2951  * a vcpu_load/vcpu_put pair.  However, for most architectures
2952  * kvm_arch_vcpu_runnable does not require vcpu_load.
2953  */
2954 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2955 {
2956 	return kvm_arch_vcpu_runnable(vcpu);
2957 }
2958 
2959 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2960 {
2961 	if (kvm_arch_dy_runnable(vcpu))
2962 		return true;
2963 
2964 #ifdef CONFIG_KVM_ASYNC_PF
2965 	if (!list_empty_careful(&vcpu->async_pf.done))
2966 		return true;
2967 #endif
2968 
2969 	return false;
2970 }
2971 
2972 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2973 {
2974 	struct kvm *kvm = me->kvm;
2975 	struct kvm_vcpu *vcpu;
2976 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2977 	int yielded = 0;
2978 	int try = 3;
2979 	int pass;
2980 	int i;
2981 
2982 	kvm_vcpu_set_in_spin_loop(me, true);
2983 	/*
2984 	 * We boost the priority of a VCPU that is runnable but not
2985 	 * currently running, because it got preempted by something
2986 	 * else and called schedule in __vcpu_run.  Hopefully that
2987 	 * VCPU is holding the lock that we need and will release it.
2988 	 * We approximate round-robin by starting at the last boosted VCPU.
2989 	 */
2990 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2991 		kvm_for_each_vcpu(i, vcpu, kvm) {
2992 			if (!pass && i <= last_boosted_vcpu) {
2993 				i = last_boosted_vcpu;
2994 				continue;
2995 			} else if (pass && i > last_boosted_vcpu)
2996 				break;
2997 			if (!READ_ONCE(vcpu->ready))
2998 				continue;
2999 			if (vcpu == me)
3000 				continue;
3001 			if (rcuwait_active(&vcpu->wait) &&
3002 			    !vcpu_dy_runnable(vcpu))
3003 				continue;
3004 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3005 				!kvm_arch_vcpu_in_kernel(vcpu))
3006 				continue;
3007 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3008 				continue;
3009 
3010 			yielded = kvm_vcpu_yield_to(vcpu);
3011 			if (yielded > 0) {
3012 				kvm->last_boosted_vcpu = i;
3013 				break;
3014 			} else if (yielded < 0) {
3015 				try--;
3016 				if (!try)
3017 					break;
3018 			}
3019 		}
3020 	}
3021 	kvm_vcpu_set_in_spin_loop(me, false);
3022 
3023 	/* Ensure vcpu is not eligible during next spinloop */
3024 	kvm_vcpu_set_dy_eligible(me, false);
3025 }
3026 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3027 
3028 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3029 {
3030 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3031 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3032 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3033 	     kvm->dirty_ring_size / PAGE_SIZE);
3034 #else
3035 	return false;
3036 #endif
3037 }
3038 
3039 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3040 {
3041 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3042 	struct page *page;
3043 
3044 	if (vmf->pgoff == 0)
3045 		page = virt_to_page(vcpu->run);
3046 #ifdef CONFIG_X86
3047 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3048 		page = virt_to_page(vcpu->arch.pio_data);
3049 #endif
3050 #ifdef CONFIG_KVM_MMIO
3051 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3052 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3053 #endif
3054 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3055 		page = kvm_dirty_ring_get_page(
3056 		    &vcpu->dirty_ring,
3057 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3058 	else
3059 		return kvm_arch_vcpu_fault(vcpu, vmf);
3060 	get_page(page);
3061 	vmf->page = page;
3062 	return 0;
3063 }
3064 
3065 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3066 	.fault = kvm_vcpu_fault,
3067 };
3068 
3069 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3070 {
3071 	struct kvm_vcpu *vcpu = file->private_data;
3072 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3073 
3074 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3075 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3076 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3077 		return -EINVAL;
3078 
3079 	vma->vm_ops = &kvm_vcpu_vm_ops;
3080 	return 0;
3081 }
3082 
3083 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3084 {
3085 	struct kvm_vcpu *vcpu = filp->private_data;
3086 
3087 	kvm_put_kvm(vcpu->kvm);
3088 	return 0;
3089 }
3090 
3091 static struct file_operations kvm_vcpu_fops = {
3092 	.release        = kvm_vcpu_release,
3093 	.unlocked_ioctl = kvm_vcpu_ioctl,
3094 	.mmap           = kvm_vcpu_mmap,
3095 	.llseek		= noop_llseek,
3096 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3097 };
3098 
3099 /*
3100  * Allocates an inode for the vcpu.
3101  */
3102 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3103 {
3104 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3105 
3106 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3107 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3108 }
3109 
3110 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3111 {
3112 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3113 	struct dentry *debugfs_dentry;
3114 	char dir_name[ITOA_MAX_LEN * 2];
3115 
3116 	if (!debugfs_initialized())
3117 		return;
3118 
3119 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3120 	debugfs_dentry = debugfs_create_dir(dir_name,
3121 					    vcpu->kvm->debugfs_dentry);
3122 
3123 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3124 #endif
3125 }
3126 
3127 /*
3128  * Creates some virtual cpus.  Good luck creating more than one.
3129  */
3130 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3131 {
3132 	int r;
3133 	struct kvm_vcpu *vcpu;
3134 	struct page *page;
3135 
3136 	if (id >= KVM_MAX_VCPU_ID)
3137 		return -EINVAL;
3138 
3139 	mutex_lock(&kvm->lock);
3140 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3141 		mutex_unlock(&kvm->lock);
3142 		return -EINVAL;
3143 	}
3144 
3145 	kvm->created_vcpus++;
3146 	mutex_unlock(&kvm->lock);
3147 
3148 	r = kvm_arch_vcpu_precreate(kvm, id);
3149 	if (r)
3150 		goto vcpu_decrement;
3151 
3152 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3153 	if (!vcpu) {
3154 		r = -ENOMEM;
3155 		goto vcpu_decrement;
3156 	}
3157 
3158 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3159 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3160 	if (!page) {
3161 		r = -ENOMEM;
3162 		goto vcpu_free;
3163 	}
3164 	vcpu->run = page_address(page);
3165 
3166 	kvm_vcpu_init(vcpu, kvm, id);
3167 
3168 	r = kvm_arch_vcpu_create(vcpu);
3169 	if (r)
3170 		goto vcpu_free_run_page;
3171 
3172 	if (kvm->dirty_ring_size) {
3173 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3174 					 id, kvm->dirty_ring_size);
3175 		if (r)
3176 			goto arch_vcpu_destroy;
3177 	}
3178 
3179 	mutex_lock(&kvm->lock);
3180 	if (kvm_get_vcpu_by_id(kvm, id)) {
3181 		r = -EEXIST;
3182 		goto unlock_vcpu_destroy;
3183 	}
3184 
3185 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3186 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3187 
3188 	/* Now it's all set up, let userspace reach it */
3189 	kvm_get_kvm(kvm);
3190 	r = create_vcpu_fd(vcpu);
3191 	if (r < 0) {
3192 		kvm_put_kvm_no_destroy(kvm);
3193 		goto unlock_vcpu_destroy;
3194 	}
3195 
3196 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3197 
3198 	/*
3199 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3200 	 * before kvm->online_vcpu's incremented value.
3201 	 */
3202 	smp_wmb();
3203 	atomic_inc(&kvm->online_vcpus);
3204 
3205 	mutex_unlock(&kvm->lock);
3206 	kvm_arch_vcpu_postcreate(vcpu);
3207 	kvm_create_vcpu_debugfs(vcpu);
3208 	return r;
3209 
3210 unlock_vcpu_destroy:
3211 	mutex_unlock(&kvm->lock);
3212 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3213 arch_vcpu_destroy:
3214 	kvm_arch_vcpu_destroy(vcpu);
3215 vcpu_free_run_page:
3216 	free_page((unsigned long)vcpu->run);
3217 vcpu_free:
3218 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3219 vcpu_decrement:
3220 	mutex_lock(&kvm->lock);
3221 	kvm->created_vcpus--;
3222 	mutex_unlock(&kvm->lock);
3223 	return r;
3224 }
3225 
3226 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3227 {
3228 	if (sigset) {
3229 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3230 		vcpu->sigset_active = 1;
3231 		vcpu->sigset = *sigset;
3232 	} else
3233 		vcpu->sigset_active = 0;
3234 	return 0;
3235 }
3236 
3237 static long kvm_vcpu_ioctl(struct file *filp,
3238 			   unsigned int ioctl, unsigned long arg)
3239 {
3240 	struct kvm_vcpu *vcpu = filp->private_data;
3241 	void __user *argp = (void __user *)arg;
3242 	int r;
3243 	struct kvm_fpu *fpu = NULL;
3244 	struct kvm_sregs *kvm_sregs = NULL;
3245 
3246 	if (vcpu->kvm->mm != current->mm)
3247 		return -EIO;
3248 
3249 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3250 		return -EINVAL;
3251 
3252 	/*
3253 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3254 	 * execution; mutex_lock() would break them.
3255 	 */
3256 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3257 	if (r != -ENOIOCTLCMD)
3258 		return r;
3259 
3260 	if (mutex_lock_killable(&vcpu->mutex))
3261 		return -EINTR;
3262 	switch (ioctl) {
3263 	case KVM_RUN: {
3264 		struct pid *oldpid;
3265 		r = -EINVAL;
3266 		if (arg)
3267 			goto out;
3268 		oldpid = rcu_access_pointer(vcpu->pid);
3269 		if (unlikely(oldpid != task_pid(current))) {
3270 			/* The thread running this VCPU changed. */
3271 			struct pid *newpid;
3272 
3273 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3274 			if (r)
3275 				break;
3276 
3277 			newpid = get_task_pid(current, PIDTYPE_PID);
3278 			rcu_assign_pointer(vcpu->pid, newpid);
3279 			if (oldpid)
3280 				synchronize_rcu();
3281 			put_pid(oldpid);
3282 		}
3283 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3284 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3285 		break;
3286 	}
3287 	case KVM_GET_REGS: {
3288 		struct kvm_regs *kvm_regs;
3289 
3290 		r = -ENOMEM;
3291 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3292 		if (!kvm_regs)
3293 			goto out;
3294 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3295 		if (r)
3296 			goto out_free1;
3297 		r = -EFAULT;
3298 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3299 			goto out_free1;
3300 		r = 0;
3301 out_free1:
3302 		kfree(kvm_regs);
3303 		break;
3304 	}
3305 	case KVM_SET_REGS: {
3306 		struct kvm_regs *kvm_regs;
3307 
3308 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3309 		if (IS_ERR(kvm_regs)) {
3310 			r = PTR_ERR(kvm_regs);
3311 			goto out;
3312 		}
3313 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3314 		kfree(kvm_regs);
3315 		break;
3316 	}
3317 	case KVM_GET_SREGS: {
3318 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3319 				    GFP_KERNEL_ACCOUNT);
3320 		r = -ENOMEM;
3321 		if (!kvm_sregs)
3322 			goto out;
3323 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3324 		if (r)
3325 			goto out;
3326 		r = -EFAULT;
3327 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3328 			goto out;
3329 		r = 0;
3330 		break;
3331 	}
3332 	case KVM_SET_SREGS: {
3333 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3334 		if (IS_ERR(kvm_sregs)) {
3335 			r = PTR_ERR(kvm_sregs);
3336 			kvm_sregs = NULL;
3337 			goto out;
3338 		}
3339 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3340 		break;
3341 	}
3342 	case KVM_GET_MP_STATE: {
3343 		struct kvm_mp_state mp_state;
3344 
3345 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3346 		if (r)
3347 			goto out;
3348 		r = -EFAULT;
3349 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3350 			goto out;
3351 		r = 0;
3352 		break;
3353 	}
3354 	case KVM_SET_MP_STATE: {
3355 		struct kvm_mp_state mp_state;
3356 
3357 		r = -EFAULT;
3358 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3359 			goto out;
3360 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3361 		break;
3362 	}
3363 	case KVM_TRANSLATE: {
3364 		struct kvm_translation tr;
3365 
3366 		r = -EFAULT;
3367 		if (copy_from_user(&tr, argp, sizeof(tr)))
3368 			goto out;
3369 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3370 		if (r)
3371 			goto out;
3372 		r = -EFAULT;
3373 		if (copy_to_user(argp, &tr, sizeof(tr)))
3374 			goto out;
3375 		r = 0;
3376 		break;
3377 	}
3378 	case KVM_SET_GUEST_DEBUG: {
3379 		struct kvm_guest_debug dbg;
3380 
3381 		r = -EFAULT;
3382 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3383 			goto out;
3384 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3385 		break;
3386 	}
3387 	case KVM_SET_SIGNAL_MASK: {
3388 		struct kvm_signal_mask __user *sigmask_arg = argp;
3389 		struct kvm_signal_mask kvm_sigmask;
3390 		sigset_t sigset, *p;
3391 
3392 		p = NULL;
3393 		if (argp) {
3394 			r = -EFAULT;
3395 			if (copy_from_user(&kvm_sigmask, argp,
3396 					   sizeof(kvm_sigmask)))
3397 				goto out;
3398 			r = -EINVAL;
3399 			if (kvm_sigmask.len != sizeof(sigset))
3400 				goto out;
3401 			r = -EFAULT;
3402 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3403 					   sizeof(sigset)))
3404 				goto out;
3405 			p = &sigset;
3406 		}
3407 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3408 		break;
3409 	}
3410 	case KVM_GET_FPU: {
3411 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3412 		r = -ENOMEM;
3413 		if (!fpu)
3414 			goto out;
3415 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3416 		if (r)
3417 			goto out;
3418 		r = -EFAULT;
3419 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3420 			goto out;
3421 		r = 0;
3422 		break;
3423 	}
3424 	case KVM_SET_FPU: {
3425 		fpu = memdup_user(argp, sizeof(*fpu));
3426 		if (IS_ERR(fpu)) {
3427 			r = PTR_ERR(fpu);
3428 			fpu = NULL;
3429 			goto out;
3430 		}
3431 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3432 		break;
3433 	}
3434 	default:
3435 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3436 	}
3437 out:
3438 	mutex_unlock(&vcpu->mutex);
3439 	kfree(fpu);
3440 	kfree(kvm_sregs);
3441 	return r;
3442 }
3443 
3444 #ifdef CONFIG_KVM_COMPAT
3445 static long kvm_vcpu_compat_ioctl(struct file *filp,
3446 				  unsigned int ioctl, unsigned long arg)
3447 {
3448 	struct kvm_vcpu *vcpu = filp->private_data;
3449 	void __user *argp = compat_ptr(arg);
3450 	int r;
3451 
3452 	if (vcpu->kvm->mm != current->mm)
3453 		return -EIO;
3454 
3455 	switch (ioctl) {
3456 	case KVM_SET_SIGNAL_MASK: {
3457 		struct kvm_signal_mask __user *sigmask_arg = argp;
3458 		struct kvm_signal_mask kvm_sigmask;
3459 		sigset_t sigset;
3460 
3461 		if (argp) {
3462 			r = -EFAULT;
3463 			if (copy_from_user(&kvm_sigmask, argp,
3464 					   sizeof(kvm_sigmask)))
3465 				goto out;
3466 			r = -EINVAL;
3467 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3468 				goto out;
3469 			r = -EFAULT;
3470 			if (get_compat_sigset(&sigset,
3471 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3472 				goto out;
3473 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3474 		} else
3475 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3476 		break;
3477 	}
3478 	default:
3479 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3480 	}
3481 
3482 out:
3483 	return r;
3484 }
3485 #endif
3486 
3487 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3488 {
3489 	struct kvm_device *dev = filp->private_data;
3490 
3491 	if (dev->ops->mmap)
3492 		return dev->ops->mmap(dev, vma);
3493 
3494 	return -ENODEV;
3495 }
3496 
3497 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3498 				 int (*accessor)(struct kvm_device *dev,
3499 						 struct kvm_device_attr *attr),
3500 				 unsigned long arg)
3501 {
3502 	struct kvm_device_attr attr;
3503 
3504 	if (!accessor)
3505 		return -EPERM;
3506 
3507 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3508 		return -EFAULT;
3509 
3510 	return accessor(dev, &attr);
3511 }
3512 
3513 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3514 			     unsigned long arg)
3515 {
3516 	struct kvm_device *dev = filp->private_data;
3517 
3518 	if (dev->kvm->mm != current->mm)
3519 		return -EIO;
3520 
3521 	switch (ioctl) {
3522 	case KVM_SET_DEVICE_ATTR:
3523 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3524 	case KVM_GET_DEVICE_ATTR:
3525 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3526 	case KVM_HAS_DEVICE_ATTR:
3527 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3528 	default:
3529 		if (dev->ops->ioctl)
3530 			return dev->ops->ioctl(dev, ioctl, arg);
3531 
3532 		return -ENOTTY;
3533 	}
3534 }
3535 
3536 static int kvm_device_release(struct inode *inode, struct file *filp)
3537 {
3538 	struct kvm_device *dev = filp->private_data;
3539 	struct kvm *kvm = dev->kvm;
3540 
3541 	if (dev->ops->release) {
3542 		mutex_lock(&kvm->lock);
3543 		list_del(&dev->vm_node);
3544 		dev->ops->release(dev);
3545 		mutex_unlock(&kvm->lock);
3546 	}
3547 
3548 	kvm_put_kvm(kvm);
3549 	return 0;
3550 }
3551 
3552 static const struct file_operations kvm_device_fops = {
3553 	.unlocked_ioctl = kvm_device_ioctl,
3554 	.release = kvm_device_release,
3555 	KVM_COMPAT(kvm_device_ioctl),
3556 	.mmap = kvm_device_mmap,
3557 };
3558 
3559 struct kvm_device *kvm_device_from_filp(struct file *filp)
3560 {
3561 	if (filp->f_op != &kvm_device_fops)
3562 		return NULL;
3563 
3564 	return filp->private_data;
3565 }
3566 
3567 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3568 #ifdef CONFIG_KVM_MPIC
3569 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3570 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3571 #endif
3572 };
3573 
3574 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3575 {
3576 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3577 		return -ENOSPC;
3578 
3579 	if (kvm_device_ops_table[type] != NULL)
3580 		return -EEXIST;
3581 
3582 	kvm_device_ops_table[type] = ops;
3583 	return 0;
3584 }
3585 
3586 void kvm_unregister_device_ops(u32 type)
3587 {
3588 	if (kvm_device_ops_table[type] != NULL)
3589 		kvm_device_ops_table[type] = NULL;
3590 }
3591 
3592 static int kvm_ioctl_create_device(struct kvm *kvm,
3593 				   struct kvm_create_device *cd)
3594 {
3595 	const struct kvm_device_ops *ops = NULL;
3596 	struct kvm_device *dev;
3597 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3598 	int type;
3599 	int ret;
3600 
3601 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3602 		return -ENODEV;
3603 
3604 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3605 	ops = kvm_device_ops_table[type];
3606 	if (ops == NULL)
3607 		return -ENODEV;
3608 
3609 	if (test)
3610 		return 0;
3611 
3612 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3613 	if (!dev)
3614 		return -ENOMEM;
3615 
3616 	dev->ops = ops;
3617 	dev->kvm = kvm;
3618 
3619 	mutex_lock(&kvm->lock);
3620 	ret = ops->create(dev, type);
3621 	if (ret < 0) {
3622 		mutex_unlock(&kvm->lock);
3623 		kfree(dev);
3624 		return ret;
3625 	}
3626 	list_add(&dev->vm_node, &kvm->devices);
3627 	mutex_unlock(&kvm->lock);
3628 
3629 	if (ops->init)
3630 		ops->init(dev);
3631 
3632 	kvm_get_kvm(kvm);
3633 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3634 	if (ret < 0) {
3635 		kvm_put_kvm_no_destroy(kvm);
3636 		mutex_lock(&kvm->lock);
3637 		list_del(&dev->vm_node);
3638 		mutex_unlock(&kvm->lock);
3639 		ops->destroy(dev);
3640 		return ret;
3641 	}
3642 
3643 	cd->fd = ret;
3644 	return 0;
3645 }
3646 
3647 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3648 {
3649 	switch (arg) {
3650 	case KVM_CAP_USER_MEMORY:
3651 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3652 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3653 	case KVM_CAP_INTERNAL_ERROR_DATA:
3654 #ifdef CONFIG_HAVE_KVM_MSI
3655 	case KVM_CAP_SIGNAL_MSI:
3656 #endif
3657 #ifdef CONFIG_HAVE_KVM_IRQFD
3658 	case KVM_CAP_IRQFD:
3659 	case KVM_CAP_IRQFD_RESAMPLE:
3660 #endif
3661 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3662 	case KVM_CAP_CHECK_EXTENSION_VM:
3663 	case KVM_CAP_ENABLE_CAP_VM:
3664 	case KVM_CAP_HALT_POLL:
3665 		return 1;
3666 #ifdef CONFIG_KVM_MMIO
3667 	case KVM_CAP_COALESCED_MMIO:
3668 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3669 	case KVM_CAP_COALESCED_PIO:
3670 		return 1;
3671 #endif
3672 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3673 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3674 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3675 #endif
3676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3677 	case KVM_CAP_IRQ_ROUTING:
3678 		return KVM_MAX_IRQ_ROUTES;
3679 #endif
3680 #if KVM_ADDRESS_SPACE_NUM > 1
3681 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3682 		return KVM_ADDRESS_SPACE_NUM;
3683 #endif
3684 	case KVM_CAP_NR_MEMSLOTS:
3685 		return KVM_USER_MEM_SLOTS;
3686 	case KVM_CAP_DIRTY_LOG_RING:
3687 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3688 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3689 #else
3690 		return 0;
3691 #endif
3692 	default:
3693 		break;
3694 	}
3695 	return kvm_vm_ioctl_check_extension(kvm, arg);
3696 }
3697 
3698 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3699 {
3700 	int r;
3701 
3702 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3703 		return -EINVAL;
3704 
3705 	/* the size should be power of 2 */
3706 	if (!size || (size & (size - 1)))
3707 		return -EINVAL;
3708 
3709 	/* Should be bigger to keep the reserved entries, or a page */
3710 	if (size < kvm_dirty_ring_get_rsvd_entries() *
3711 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3712 		return -EINVAL;
3713 
3714 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3715 	    sizeof(struct kvm_dirty_gfn))
3716 		return -E2BIG;
3717 
3718 	/* We only allow it to set once */
3719 	if (kvm->dirty_ring_size)
3720 		return -EINVAL;
3721 
3722 	mutex_lock(&kvm->lock);
3723 
3724 	if (kvm->created_vcpus) {
3725 		/* We don't allow to change this value after vcpu created */
3726 		r = -EINVAL;
3727 	} else {
3728 		kvm->dirty_ring_size = size;
3729 		r = 0;
3730 	}
3731 
3732 	mutex_unlock(&kvm->lock);
3733 	return r;
3734 }
3735 
3736 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3737 {
3738 	int i;
3739 	struct kvm_vcpu *vcpu;
3740 	int cleared = 0;
3741 
3742 	if (!kvm->dirty_ring_size)
3743 		return -EINVAL;
3744 
3745 	mutex_lock(&kvm->slots_lock);
3746 
3747 	kvm_for_each_vcpu(i, vcpu, kvm)
3748 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3749 
3750 	mutex_unlock(&kvm->slots_lock);
3751 
3752 	if (cleared)
3753 		kvm_flush_remote_tlbs(kvm);
3754 
3755 	return cleared;
3756 }
3757 
3758 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3759 						  struct kvm_enable_cap *cap)
3760 {
3761 	return -EINVAL;
3762 }
3763 
3764 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3765 					   struct kvm_enable_cap *cap)
3766 {
3767 	switch (cap->cap) {
3768 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3769 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3770 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3771 
3772 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3773 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3774 
3775 		if (cap->flags || (cap->args[0] & ~allowed_options))
3776 			return -EINVAL;
3777 		kvm->manual_dirty_log_protect = cap->args[0];
3778 		return 0;
3779 	}
3780 #endif
3781 	case KVM_CAP_HALT_POLL: {
3782 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3783 			return -EINVAL;
3784 
3785 		kvm->max_halt_poll_ns = cap->args[0];
3786 		return 0;
3787 	}
3788 	case KVM_CAP_DIRTY_LOG_RING:
3789 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3790 	default:
3791 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3792 	}
3793 }
3794 
3795 static long kvm_vm_ioctl(struct file *filp,
3796 			   unsigned int ioctl, unsigned long arg)
3797 {
3798 	struct kvm *kvm = filp->private_data;
3799 	void __user *argp = (void __user *)arg;
3800 	int r;
3801 
3802 	if (kvm->mm != current->mm)
3803 		return -EIO;
3804 	switch (ioctl) {
3805 	case KVM_CREATE_VCPU:
3806 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3807 		break;
3808 	case KVM_ENABLE_CAP: {
3809 		struct kvm_enable_cap cap;
3810 
3811 		r = -EFAULT;
3812 		if (copy_from_user(&cap, argp, sizeof(cap)))
3813 			goto out;
3814 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3815 		break;
3816 	}
3817 	case KVM_SET_USER_MEMORY_REGION: {
3818 		struct kvm_userspace_memory_region kvm_userspace_mem;
3819 
3820 		r = -EFAULT;
3821 		if (copy_from_user(&kvm_userspace_mem, argp,
3822 						sizeof(kvm_userspace_mem)))
3823 			goto out;
3824 
3825 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3826 		break;
3827 	}
3828 	case KVM_GET_DIRTY_LOG: {
3829 		struct kvm_dirty_log log;
3830 
3831 		r = -EFAULT;
3832 		if (copy_from_user(&log, argp, sizeof(log)))
3833 			goto out;
3834 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3835 		break;
3836 	}
3837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3838 	case KVM_CLEAR_DIRTY_LOG: {
3839 		struct kvm_clear_dirty_log log;
3840 
3841 		r = -EFAULT;
3842 		if (copy_from_user(&log, argp, sizeof(log)))
3843 			goto out;
3844 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3845 		break;
3846 	}
3847 #endif
3848 #ifdef CONFIG_KVM_MMIO
3849 	case KVM_REGISTER_COALESCED_MMIO: {
3850 		struct kvm_coalesced_mmio_zone zone;
3851 
3852 		r = -EFAULT;
3853 		if (copy_from_user(&zone, argp, sizeof(zone)))
3854 			goto out;
3855 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3856 		break;
3857 	}
3858 	case KVM_UNREGISTER_COALESCED_MMIO: {
3859 		struct kvm_coalesced_mmio_zone zone;
3860 
3861 		r = -EFAULT;
3862 		if (copy_from_user(&zone, argp, sizeof(zone)))
3863 			goto out;
3864 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3865 		break;
3866 	}
3867 #endif
3868 	case KVM_IRQFD: {
3869 		struct kvm_irqfd data;
3870 
3871 		r = -EFAULT;
3872 		if (copy_from_user(&data, argp, sizeof(data)))
3873 			goto out;
3874 		r = kvm_irqfd(kvm, &data);
3875 		break;
3876 	}
3877 	case KVM_IOEVENTFD: {
3878 		struct kvm_ioeventfd data;
3879 
3880 		r = -EFAULT;
3881 		if (copy_from_user(&data, argp, sizeof(data)))
3882 			goto out;
3883 		r = kvm_ioeventfd(kvm, &data);
3884 		break;
3885 	}
3886 #ifdef CONFIG_HAVE_KVM_MSI
3887 	case KVM_SIGNAL_MSI: {
3888 		struct kvm_msi msi;
3889 
3890 		r = -EFAULT;
3891 		if (copy_from_user(&msi, argp, sizeof(msi)))
3892 			goto out;
3893 		r = kvm_send_userspace_msi(kvm, &msi);
3894 		break;
3895 	}
3896 #endif
3897 #ifdef __KVM_HAVE_IRQ_LINE
3898 	case KVM_IRQ_LINE_STATUS:
3899 	case KVM_IRQ_LINE: {
3900 		struct kvm_irq_level irq_event;
3901 
3902 		r = -EFAULT;
3903 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3904 			goto out;
3905 
3906 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3907 					ioctl == KVM_IRQ_LINE_STATUS);
3908 		if (r)
3909 			goto out;
3910 
3911 		r = -EFAULT;
3912 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3913 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3914 				goto out;
3915 		}
3916 
3917 		r = 0;
3918 		break;
3919 	}
3920 #endif
3921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3922 	case KVM_SET_GSI_ROUTING: {
3923 		struct kvm_irq_routing routing;
3924 		struct kvm_irq_routing __user *urouting;
3925 		struct kvm_irq_routing_entry *entries = NULL;
3926 
3927 		r = -EFAULT;
3928 		if (copy_from_user(&routing, argp, sizeof(routing)))
3929 			goto out;
3930 		r = -EINVAL;
3931 		if (!kvm_arch_can_set_irq_routing(kvm))
3932 			goto out;
3933 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3934 			goto out;
3935 		if (routing.flags)
3936 			goto out;
3937 		if (routing.nr) {
3938 			urouting = argp;
3939 			entries = vmemdup_user(urouting->entries,
3940 					       array_size(sizeof(*entries),
3941 							  routing.nr));
3942 			if (IS_ERR(entries)) {
3943 				r = PTR_ERR(entries);
3944 				goto out;
3945 			}
3946 		}
3947 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3948 					routing.flags);
3949 		kvfree(entries);
3950 		break;
3951 	}
3952 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3953 	case KVM_CREATE_DEVICE: {
3954 		struct kvm_create_device cd;
3955 
3956 		r = -EFAULT;
3957 		if (copy_from_user(&cd, argp, sizeof(cd)))
3958 			goto out;
3959 
3960 		r = kvm_ioctl_create_device(kvm, &cd);
3961 		if (r)
3962 			goto out;
3963 
3964 		r = -EFAULT;
3965 		if (copy_to_user(argp, &cd, sizeof(cd)))
3966 			goto out;
3967 
3968 		r = 0;
3969 		break;
3970 	}
3971 	case KVM_CHECK_EXTENSION:
3972 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3973 		break;
3974 	case KVM_RESET_DIRTY_RINGS:
3975 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3976 		break;
3977 	default:
3978 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3979 	}
3980 out:
3981 	return r;
3982 }
3983 
3984 #ifdef CONFIG_KVM_COMPAT
3985 struct compat_kvm_dirty_log {
3986 	__u32 slot;
3987 	__u32 padding1;
3988 	union {
3989 		compat_uptr_t dirty_bitmap; /* one bit per page */
3990 		__u64 padding2;
3991 	};
3992 };
3993 
3994 static long kvm_vm_compat_ioctl(struct file *filp,
3995 			   unsigned int ioctl, unsigned long arg)
3996 {
3997 	struct kvm *kvm = filp->private_data;
3998 	int r;
3999 
4000 	if (kvm->mm != current->mm)
4001 		return -EIO;
4002 	switch (ioctl) {
4003 	case KVM_GET_DIRTY_LOG: {
4004 		struct compat_kvm_dirty_log compat_log;
4005 		struct kvm_dirty_log log;
4006 
4007 		if (copy_from_user(&compat_log, (void __user *)arg,
4008 				   sizeof(compat_log)))
4009 			return -EFAULT;
4010 		log.slot	 = compat_log.slot;
4011 		log.padding1	 = compat_log.padding1;
4012 		log.padding2	 = compat_log.padding2;
4013 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4014 
4015 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4016 		break;
4017 	}
4018 	default:
4019 		r = kvm_vm_ioctl(filp, ioctl, arg);
4020 	}
4021 	return r;
4022 }
4023 #endif
4024 
4025 static struct file_operations kvm_vm_fops = {
4026 	.release        = kvm_vm_release,
4027 	.unlocked_ioctl = kvm_vm_ioctl,
4028 	.llseek		= noop_llseek,
4029 	KVM_COMPAT(kvm_vm_compat_ioctl),
4030 };
4031 
4032 static int kvm_dev_ioctl_create_vm(unsigned long type)
4033 {
4034 	int r;
4035 	struct kvm *kvm;
4036 	struct file *file;
4037 
4038 	kvm = kvm_create_vm(type);
4039 	if (IS_ERR(kvm))
4040 		return PTR_ERR(kvm);
4041 #ifdef CONFIG_KVM_MMIO
4042 	r = kvm_coalesced_mmio_init(kvm);
4043 	if (r < 0)
4044 		goto put_kvm;
4045 #endif
4046 	r = get_unused_fd_flags(O_CLOEXEC);
4047 	if (r < 0)
4048 		goto put_kvm;
4049 
4050 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4051 	if (IS_ERR(file)) {
4052 		put_unused_fd(r);
4053 		r = PTR_ERR(file);
4054 		goto put_kvm;
4055 	}
4056 
4057 	/*
4058 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4059 	 * already set, with ->release() being kvm_vm_release().  In error
4060 	 * cases it will be called by the final fput(file) and will take
4061 	 * care of doing kvm_put_kvm(kvm).
4062 	 */
4063 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4064 		put_unused_fd(r);
4065 		fput(file);
4066 		return -ENOMEM;
4067 	}
4068 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4069 
4070 	fd_install(r, file);
4071 	return r;
4072 
4073 put_kvm:
4074 	kvm_put_kvm(kvm);
4075 	return r;
4076 }
4077 
4078 static long kvm_dev_ioctl(struct file *filp,
4079 			  unsigned int ioctl, unsigned long arg)
4080 {
4081 	long r = -EINVAL;
4082 
4083 	switch (ioctl) {
4084 	case KVM_GET_API_VERSION:
4085 		if (arg)
4086 			goto out;
4087 		r = KVM_API_VERSION;
4088 		break;
4089 	case KVM_CREATE_VM:
4090 		r = kvm_dev_ioctl_create_vm(arg);
4091 		break;
4092 	case KVM_CHECK_EXTENSION:
4093 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4094 		break;
4095 	case KVM_GET_VCPU_MMAP_SIZE:
4096 		if (arg)
4097 			goto out;
4098 		r = PAGE_SIZE;     /* struct kvm_run */
4099 #ifdef CONFIG_X86
4100 		r += PAGE_SIZE;    /* pio data page */
4101 #endif
4102 #ifdef CONFIG_KVM_MMIO
4103 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4104 #endif
4105 		break;
4106 	case KVM_TRACE_ENABLE:
4107 	case KVM_TRACE_PAUSE:
4108 	case KVM_TRACE_DISABLE:
4109 		r = -EOPNOTSUPP;
4110 		break;
4111 	default:
4112 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4113 	}
4114 out:
4115 	return r;
4116 }
4117 
4118 static struct file_operations kvm_chardev_ops = {
4119 	.unlocked_ioctl = kvm_dev_ioctl,
4120 	.llseek		= noop_llseek,
4121 	KVM_COMPAT(kvm_dev_ioctl),
4122 };
4123 
4124 static struct miscdevice kvm_dev = {
4125 	KVM_MINOR,
4126 	"kvm",
4127 	&kvm_chardev_ops,
4128 };
4129 
4130 static void hardware_enable_nolock(void *junk)
4131 {
4132 	int cpu = raw_smp_processor_id();
4133 	int r;
4134 
4135 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4136 		return;
4137 
4138 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4139 
4140 	r = kvm_arch_hardware_enable();
4141 
4142 	if (r) {
4143 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4144 		atomic_inc(&hardware_enable_failed);
4145 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4146 	}
4147 }
4148 
4149 static int kvm_starting_cpu(unsigned int cpu)
4150 {
4151 	raw_spin_lock(&kvm_count_lock);
4152 	if (kvm_usage_count)
4153 		hardware_enable_nolock(NULL);
4154 	raw_spin_unlock(&kvm_count_lock);
4155 	return 0;
4156 }
4157 
4158 static void hardware_disable_nolock(void *junk)
4159 {
4160 	int cpu = raw_smp_processor_id();
4161 
4162 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4163 		return;
4164 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4165 	kvm_arch_hardware_disable();
4166 }
4167 
4168 static int kvm_dying_cpu(unsigned int cpu)
4169 {
4170 	raw_spin_lock(&kvm_count_lock);
4171 	if (kvm_usage_count)
4172 		hardware_disable_nolock(NULL);
4173 	raw_spin_unlock(&kvm_count_lock);
4174 	return 0;
4175 }
4176 
4177 static void hardware_disable_all_nolock(void)
4178 {
4179 	BUG_ON(!kvm_usage_count);
4180 
4181 	kvm_usage_count--;
4182 	if (!kvm_usage_count)
4183 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4184 }
4185 
4186 static void hardware_disable_all(void)
4187 {
4188 	raw_spin_lock(&kvm_count_lock);
4189 	hardware_disable_all_nolock();
4190 	raw_spin_unlock(&kvm_count_lock);
4191 }
4192 
4193 static int hardware_enable_all(void)
4194 {
4195 	int r = 0;
4196 
4197 	raw_spin_lock(&kvm_count_lock);
4198 
4199 	kvm_usage_count++;
4200 	if (kvm_usage_count == 1) {
4201 		atomic_set(&hardware_enable_failed, 0);
4202 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4203 
4204 		if (atomic_read(&hardware_enable_failed)) {
4205 			hardware_disable_all_nolock();
4206 			r = -EBUSY;
4207 		}
4208 	}
4209 
4210 	raw_spin_unlock(&kvm_count_lock);
4211 
4212 	return r;
4213 }
4214 
4215 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4216 		      void *v)
4217 {
4218 	/*
4219 	 * Some (well, at least mine) BIOSes hang on reboot if
4220 	 * in vmx root mode.
4221 	 *
4222 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4223 	 */
4224 	pr_info("kvm: exiting hardware virtualization\n");
4225 	kvm_rebooting = true;
4226 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4227 	return NOTIFY_OK;
4228 }
4229 
4230 static struct notifier_block kvm_reboot_notifier = {
4231 	.notifier_call = kvm_reboot,
4232 	.priority = 0,
4233 };
4234 
4235 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4236 {
4237 	int i;
4238 
4239 	for (i = 0; i < bus->dev_count; i++) {
4240 		struct kvm_io_device *pos = bus->range[i].dev;
4241 
4242 		kvm_iodevice_destructor(pos);
4243 	}
4244 	kfree(bus);
4245 }
4246 
4247 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4248 				 const struct kvm_io_range *r2)
4249 {
4250 	gpa_t addr1 = r1->addr;
4251 	gpa_t addr2 = r2->addr;
4252 
4253 	if (addr1 < addr2)
4254 		return -1;
4255 
4256 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4257 	 * accept any overlapping write.  Any order is acceptable for
4258 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4259 	 * we process all of them.
4260 	 */
4261 	if (r2->len) {
4262 		addr1 += r1->len;
4263 		addr2 += r2->len;
4264 	}
4265 
4266 	if (addr1 > addr2)
4267 		return 1;
4268 
4269 	return 0;
4270 }
4271 
4272 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4273 {
4274 	return kvm_io_bus_cmp(p1, p2);
4275 }
4276 
4277 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4278 			     gpa_t addr, int len)
4279 {
4280 	struct kvm_io_range *range, key;
4281 	int off;
4282 
4283 	key = (struct kvm_io_range) {
4284 		.addr = addr,
4285 		.len = len,
4286 	};
4287 
4288 	range = bsearch(&key, bus->range, bus->dev_count,
4289 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4290 	if (range == NULL)
4291 		return -ENOENT;
4292 
4293 	off = range - bus->range;
4294 
4295 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4296 		off--;
4297 
4298 	return off;
4299 }
4300 
4301 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4302 			      struct kvm_io_range *range, const void *val)
4303 {
4304 	int idx;
4305 
4306 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4307 	if (idx < 0)
4308 		return -EOPNOTSUPP;
4309 
4310 	while (idx < bus->dev_count &&
4311 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4312 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4313 					range->len, val))
4314 			return idx;
4315 		idx++;
4316 	}
4317 
4318 	return -EOPNOTSUPP;
4319 }
4320 
4321 /* kvm_io_bus_write - called under kvm->slots_lock */
4322 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4323 		     int len, const void *val)
4324 {
4325 	struct kvm_io_bus *bus;
4326 	struct kvm_io_range range;
4327 	int r;
4328 
4329 	range = (struct kvm_io_range) {
4330 		.addr = addr,
4331 		.len = len,
4332 	};
4333 
4334 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4335 	if (!bus)
4336 		return -ENOMEM;
4337 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4338 	return r < 0 ? r : 0;
4339 }
4340 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4341 
4342 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4343 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4344 			    gpa_t addr, int len, const void *val, long cookie)
4345 {
4346 	struct kvm_io_bus *bus;
4347 	struct kvm_io_range range;
4348 
4349 	range = (struct kvm_io_range) {
4350 		.addr = addr,
4351 		.len = len,
4352 	};
4353 
4354 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4355 	if (!bus)
4356 		return -ENOMEM;
4357 
4358 	/* First try the device referenced by cookie. */
4359 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4360 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4361 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4362 					val))
4363 			return cookie;
4364 
4365 	/*
4366 	 * cookie contained garbage; fall back to search and return the
4367 	 * correct cookie value.
4368 	 */
4369 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4370 }
4371 
4372 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4373 			     struct kvm_io_range *range, void *val)
4374 {
4375 	int idx;
4376 
4377 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4378 	if (idx < 0)
4379 		return -EOPNOTSUPP;
4380 
4381 	while (idx < bus->dev_count &&
4382 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4383 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4384 				       range->len, val))
4385 			return idx;
4386 		idx++;
4387 	}
4388 
4389 	return -EOPNOTSUPP;
4390 }
4391 
4392 /* kvm_io_bus_read - called under kvm->slots_lock */
4393 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4394 		    int len, void *val)
4395 {
4396 	struct kvm_io_bus *bus;
4397 	struct kvm_io_range range;
4398 	int r;
4399 
4400 	range = (struct kvm_io_range) {
4401 		.addr = addr,
4402 		.len = len,
4403 	};
4404 
4405 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4406 	if (!bus)
4407 		return -ENOMEM;
4408 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4409 	return r < 0 ? r : 0;
4410 }
4411 
4412 /* Caller must hold slots_lock. */
4413 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4414 			    int len, struct kvm_io_device *dev)
4415 {
4416 	int i;
4417 	struct kvm_io_bus *new_bus, *bus;
4418 	struct kvm_io_range range;
4419 
4420 	bus = kvm_get_bus(kvm, bus_idx);
4421 	if (!bus)
4422 		return -ENOMEM;
4423 
4424 	/* exclude ioeventfd which is limited by maximum fd */
4425 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4426 		return -ENOSPC;
4427 
4428 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4429 			  GFP_KERNEL_ACCOUNT);
4430 	if (!new_bus)
4431 		return -ENOMEM;
4432 
4433 	range = (struct kvm_io_range) {
4434 		.addr = addr,
4435 		.len = len,
4436 		.dev = dev,
4437 	};
4438 
4439 	for (i = 0; i < bus->dev_count; i++)
4440 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4441 			break;
4442 
4443 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4444 	new_bus->dev_count++;
4445 	new_bus->range[i] = range;
4446 	memcpy(new_bus->range + i + 1, bus->range + i,
4447 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4448 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4449 	synchronize_srcu_expedited(&kvm->srcu);
4450 	kfree(bus);
4451 
4452 	return 0;
4453 }
4454 
4455 /* Caller must hold slots_lock. */
4456 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4457 			       struct kvm_io_device *dev)
4458 {
4459 	int i, j;
4460 	struct kvm_io_bus *new_bus, *bus;
4461 
4462 	bus = kvm_get_bus(kvm, bus_idx);
4463 	if (!bus)
4464 		return;
4465 
4466 	for (i = 0; i < bus->dev_count; i++)
4467 		if (bus->range[i].dev == dev) {
4468 			break;
4469 		}
4470 
4471 	if (i == bus->dev_count)
4472 		return;
4473 
4474 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4475 			  GFP_KERNEL_ACCOUNT);
4476 	if (new_bus) {
4477 		memcpy(new_bus, bus, struct_size(bus, range, i));
4478 		new_bus->dev_count--;
4479 		memcpy(new_bus->range + i, bus->range + i + 1,
4480 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4481 	} else {
4482 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4483 		for (j = 0; j < bus->dev_count; j++) {
4484 			if (j == i)
4485 				continue;
4486 			kvm_iodevice_destructor(bus->range[j].dev);
4487 		}
4488 	}
4489 
4490 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4491 	synchronize_srcu_expedited(&kvm->srcu);
4492 	kfree(bus);
4493 	return;
4494 }
4495 
4496 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4497 					 gpa_t addr)
4498 {
4499 	struct kvm_io_bus *bus;
4500 	int dev_idx, srcu_idx;
4501 	struct kvm_io_device *iodev = NULL;
4502 
4503 	srcu_idx = srcu_read_lock(&kvm->srcu);
4504 
4505 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4506 	if (!bus)
4507 		goto out_unlock;
4508 
4509 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4510 	if (dev_idx < 0)
4511 		goto out_unlock;
4512 
4513 	iodev = bus->range[dev_idx].dev;
4514 
4515 out_unlock:
4516 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4517 
4518 	return iodev;
4519 }
4520 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4521 
4522 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4523 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4524 			   const char *fmt)
4525 {
4526 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4527 					  inode->i_private;
4528 
4529 	/* The debugfs files are a reference to the kvm struct which
4530 	 * is still valid when kvm_destroy_vm is called.
4531 	 * To avoid the race between open and the removal of the debugfs
4532 	 * directory we test against the users count.
4533 	 */
4534 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4535 		return -ENOENT;
4536 
4537 	if (simple_attr_open(inode, file, get,
4538 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4539 		    ? set : NULL,
4540 		    fmt)) {
4541 		kvm_put_kvm(stat_data->kvm);
4542 		return -ENOMEM;
4543 	}
4544 
4545 	return 0;
4546 }
4547 
4548 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4549 {
4550 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4551 					  inode->i_private;
4552 
4553 	simple_attr_release(inode, file);
4554 	kvm_put_kvm(stat_data->kvm);
4555 
4556 	return 0;
4557 }
4558 
4559 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4560 {
4561 	*val = *(ulong *)((void *)kvm + offset);
4562 
4563 	return 0;
4564 }
4565 
4566 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4567 {
4568 	*(ulong *)((void *)kvm + offset) = 0;
4569 
4570 	return 0;
4571 }
4572 
4573 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4574 {
4575 	int i;
4576 	struct kvm_vcpu *vcpu;
4577 
4578 	*val = 0;
4579 
4580 	kvm_for_each_vcpu(i, vcpu, kvm)
4581 		*val += *(u64 *)((void *)vcpu + offset);
4582 
4583 	return 0;
4584 }
4585 
4586 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4587 {
4588 	int i;
4589 	struct kvm_vcpu *vcpu;
4590 
4591 	kvm_for_each_vcpu(i, vcpu, kvm)
4592 		*(u64 *)((void *)vcpu + offset) = 0;
4593 
4594 	return 0;
4595 }
4596 
4597 static int kvm_stat_data_get(void *data, u64 *val)
4598 {
4599 	int r = -EFAULT;
4600 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4601 
4602 	switch (stat_data->dbgfs_item->kind) {
4603 	case KVM_STAT_VM:
4604 		r = kvm_get_stat_per_vm(stat_data->kvm,
4605 					stat_data->dbgfs_item->offset, val);
4606 		break;
4607 	case KVM_STAT_VCPU:
4608 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4609 					  stat_data->dbgfs_item->offset, val);
4610 		break;
4611 	}
4612 
4613 	return r;
4614 }
4615 
4616 static int kvm_stat_data_clear(void *data, u64 val)
4617 {
4618 	int r = -EFAULT;
4619 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4620 
4621 	if (val)
4622 		return -EINVAL;
4623 
4624 	switch (stat_data->dbgfs_item->kind) {
4625 	case KVM_STAT_VM:
4626 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4627 					  stat_data->dbgfs_item->offset);
4628 		break;
4629 	case KVM_STAT_VCPU:
4630 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4631 					    stat_data->dbgfs_item->offset);
4632 		break;
4633 	}
4634 
4635 	return r;
4636 }
4637 
4638 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4639 {
4640 	__simple_attr_check_format("%llu\n", 0ull);
4641 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4642 				kvm_stat_data_clear, "%llu\n");
4643 }
4644 
4645 static const struct file_operations stat_fops_per_vm = {
4646 	.owner = THIS_MODULE,
4647 	.open = kvm_stat_data_open,
4648 	.release = kvm_debugfs_release,
4649 	.read = simple_attr_read,
4650 	.write = simple_attr_write,
4651 	.llseek = no_llseek,
4652 };
4653 
4654 static int vm_stat_get(void *_offset, u64 *val)
4655 {
4656 	unsigned offset = (long)_offset;
4657 	struct kvm *kvm;
4658 	u64 tmp_val;
4659 
4660 	*val = 0;
4661 	mutex_lock(&kvm_lock);
4662 	list_for_each_entry(kvm, &vm_list, vm_list) {
4663 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4664 		*val += tmp_val;
4665 	}
4666 	mutex_unlock(&kvm_lock);
4667 	return 0;
4668 }
4669 
4670 static int vm_stat_clear(void *_offset, u64 val)
4671 {
4672 	unsigned offset = (long)_offset;
4673 	struct kvm *kvm;
4674 
4675 	if (val)
4676 		return -EINVAL;
4677 
4678 	mutex_lock(&kvm_lock);
4679 	list_for_each_entry(kvm, &vm_list, vm_list) {
4680 		kvm_clear_stat_per_vm(kvm, offset);
4681 	}
4682 	mutex_unlock(&kvm_lock);
4683 
4684 	return 0;
4685 }
4686 
4687 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4688 
4689 static int vcpu_stat_get(void *_offset, u64 *val)
4690 {
4691 	unsigned offset = (long)_offset;
4692 	struct kvm *kvm;
4693 	u64 tmp_val;
4694 
4695 	*val = 0;
4696 	mutex_lock(&kvm_lock);
4697 	list_for_each_entry(kvm, &vm_list, vm_list) {
4698 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4699 		*val += tmp_val;
4700 	}
4701 	mutex_unlock(&kvm_lock);
4702 	return 0;
4703 }
4704 
4705 static int vcpu_stat_clear(void *_offset, u64 val)
4706 {
4707 	unsigned offset = (long)_offset;
4708 	struct kvm *kvm;
4709 
4710 	if (val)
4711 		return -EINVAL;
4712 
4713 	mutex_lock(&kvm_lock);
4714 	list_for_each_entry(kvm, &vm_list, vm_list) {
4715 		kvm_clear_stat_per_vcpu(kvm, offset);
4716 	}
4717 	mutex_unlock(&kvm_lock);
4718 
4719 	return 0;
4720 }
4721 
4722 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4723 			"%llu\n");
4724 
4725 static const struct file_operations *stat_fops[] = {
4726 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4727 	[KVM_STAT_VM]   = &vm_stat_fops,
4728 };
4729 
4730 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4731 {
4732 	struct kobj_uevent_env *env;
4733 	unsigned long long created, active;
4734 
4735 	if (!kvm_dev.this_device || !kvm)
4736 		return;
4737 
4738 	mutex_lock(&kvm_lock);
4739 	if (type == KVM_EVENT_CREATE_VM) {
4740 		kvm_createvm_count++;
4741 		kvm_active_vms++;
4742 	} else if (type == KVM_EVENT_DESTROY_VM) {
4743 		kvm_active_vms--;
4744 	}
4745 	created = kvm_createvm_count;
4746 	active = kvm_active_vms;
4747 	mutex_unlock(&kvm_lock);
4748 
4749 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4750 	if (!env)
4751 		return;
4752 
4753 	add_uevent_var(env, "CREATED=%llu", created);
4754 	add_uevent_var(env, "COUNT=%llu", active);
4755 
4756 	if (type == KVM_EVENT_CREATE_VM) {
4757 		add_uevent_var(env, "EVENT=create");
4758 		kvm->userspace_pid = task_pid_nr(current);
4759 	} else if (type == KVM_EVENT_DESTROY_VM) {
4760 		add_uevent_var(env, "EVENT=destroy");
4761 	}
4762 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4763 
4764 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4765 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4766 
4767 		if (p) {
4768 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4769 			if (!IS_ERR(tmp))
4770 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4771 			kfree(p);
4772 		}
4773 	}
4774 	/* no need for checks, since we are adding at most only 5 keys */
4775 	env->envp[env->envp_idx++] = NULL;
4776 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4777 	kfree(env);
4778 }
4779 
4780 static void kvm_init_debug(void)
4781 {
4782 	struct kvm_stats_debugfs_item *p;
4783 
4784 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4785 
4786 	kvm_debugfs_num_entries = 0;
4787 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4788 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4789 				    kvm_debugfs_dir, (void *)(long)p->offset,
4790 				    stat_fops[p->kind]);
4791 	}
4792 }
4793 
4794 static int kvm_suspend(void)
4795 {
4796 	if (kvm_usage_count)
4797 		hardware_disable_nolock(NULL);
4798 	return 0;
4799 }
4800 
4801 static void kvm_resume(void)
4802 {
4803 	if (kvm_usage_count) {
4804 #ifdef CONFIG_LOCKDEP
4805 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4806 #endif
4807 		hardware_enable_nolock(NULL);
4808 	}
4809 }
4810 
4811 static struct syscore_ops kvm_syscore_ops = {
4812 	.suspend = kvm_suspend,
4813 	.resume = kvm_resume,
4814 };
4815 
4816 static inline
4817 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4818 {
4819 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4820 }
4821 
4822 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4823 {
4824 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4825 
4826 	WRITE_ONCE(vcpu->preempted, false);
4827 	WRITE_ONCE(vcpu->ready, false);
4828 
4829 	__this_cpu_write(kvm_running_vcpu, vcpu);
4830 	kvm_arch_sched_in(vcpu, cpu);
4831 	kvm_arch_vcpu_load(vcpu, cpu);
4832 }
4833 
4834 static void kvm_sched_out(struct preempt_notifier *pn,
4835 			  struct task_struct *next)
4836 {
4837 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4838 
4839 	if (current->state == TASK_RUNNING) {
4840 		WRITE_ONCE(vcpu->preempted, true);
4841 		WRITE_ONCE(vcpu->ready, true);
4842 	}
4843 	kvm_arch_vcpu_put(vcpu);
4844 	__this_cpu_write(kvm_running_vcpu, NULL);
4845 }
4846 
4847 /**
4848  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4849  *
4850  * We can disable preemption locally around accessing the per-CPU variable,
4851  * and use the resolved vcpu pointer after enabling preemption again,
4852  * because even if the current thread is migrated to another CPU, reading
4853  * the per-CPU value later will give us the same value as we update the
4854  * per-CPU variable in the preempt notifier handlers.
4855  */
4856 struct kvm_vcpu *kvm_get_running_vcpu(void)
4857 {
4858 	struct kvm_vcpu *vcpu;
4859 
4860 	preempt_disable();
4861 	vcpu = __this_cpu_read(kvm_running_vcpu);
4862 	preempt_enable();
4863 
4864 	return vcpu;
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4867 
4868 /**
4869  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4870  */
4871 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4872 {
4873         return &kvm_running_vcpu;
4874 }
4875 
4876 struct kvm_cpu_compat_check {
4877 	void *opaque;
4878 	int *ret;
4879 };
4880 
4881 static void check_processor_compat(void *data)
4882 {
4883 	struct kvm_cpu_compat_check *c = data;
4884 
4885 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4886 }
4887 
4888 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4889 		  struct module *module)
4890 {
4891 	struct kvm_cpu_compat_check c;
4892 	int r;
4893 	int cpu;
4894 
4895 	r = kvm_arch_init(opaque);
4896 	if (r)
4897 		goto out_fail;
4898 
4899 	/*
4900 	 * kvm_arch_init makes sure there's at most one caller
4901 	 * for architectures that support multiple implementations,
4902 	 * like intel and amd on x86.
4903 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4904 	 * conflicts in case kvm is already setup for another implementation.
4905 	 */
4906 	r = kvm_irqfd_init();
4907 	if (r)
4908 		goto out_irqfd;
4909 
4910 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4911 		r = -ENOMEM;
4912 		goto out_free_0;
4913 	}
4914 
4915 	r = kvm_arch_hardware_setup(opaque);
4916 	if (r < 0)
4917 		goto out_free_1;
4918 
4919 	c.ret = &r;
4920 	c.opaque = opaque;
4921 	for_each_online_cpu(cpu) {
4922 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4923 		if (r < 0)
4924 			goto out_free_2;
4925 	}
4926 
4927 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4928 				      kvm_starting_cpu, kvm_dying_cpu);
4929 	if (r)
4930 		goto out_free_2;
4931 	register_reboot_notifier(&kvm_reboot_notifier);
4932 
4933 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4934 	if (!vcpu_align)
4935 		vcpu_align = __alignof__(struct kvm_vcpu);
4936 	kvm_vcpu_cache =
4937 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4938 					   SLAB_ACCOUNT,
4939 					   offsetof(struct kvm_vcpu, arch),
4940 					   sizeof_field(struct kvm_vcpu, arch),
4941 					   NULL);
4942 	if (!kvm_vcpu_cache) {
4943 		r = -ENOMEM;
4944 		goto out_free_3;
4945 	}
4946 
4947 	r = kvm_async_pf_init();
4948 	if (r)
4949 		goto out_free;
4950 
4951 	kvm_chardev_ops.owner = module;
4952 	kvm_vm_fops.owner = module;
4953 	kvm_vcpu_fops.owner = module;
4954 
4955 	r = misc_register(&kvm_dev);
4956 	if (r) {
4957 		pr_err("kvm: misc device register failed\n");
4958 		goto out_unreg;
4959 	}
4960 
4961 	register_syscore_ops(&kvm_syscore_ops);
4962 
4963 	kvm_preempt_ops.sched_in = kvm_sched_in;
4964 	kvm_preempt_ops.sched_out = kvm_sched_out;
4965 
4966 	kvm_init_debug();
4967 
4968 	r = kvm_vfio_ops_init();
4969 	WARN_ON(r);
4970 
4971 	return 0;
4972 
4973 out_unreg:
4974 	kvm_async_pf_deinit();
4975 out_free:
4976 	kmem_cache_destroy(kvm_vcpu_cache);
4977 out_free_3:
4978 	unregister_reboot_notifier(&kvm_reboot_notifier);
4979 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4980 out_free_2:
4981 	kvm_arch_hardware_unsetup();
4982 out_free_1:
4983 	free_cpumask_var(cpus_hardware_enabled);
4984 out_free_0:
4985 	kvm_irqfd_exit();
4986 out_irqfd:
4987 	kvm_arch_exit();
4988 out_fail:
4989 	return r;
4990 }
4991 EXPORT_SYMBOL_GPL(kvm_init);
4992 
4993 void kvm_exit(void)
4994 {
4995 	debugfs_remove_recursive(kvm_debugfs_dir);
4996 	misc_deregister(&kvm_dev);
4997 	kmem_cache_destroy(kvm_vcpu_cache);
4998 	kvm_async_pf_deinit();
4999 	unregister_syscore_ops(&kvm_syscore_ops);
5000 	unregister_reboot_notifier(&kvm_reboot_notifier);
5001 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5002 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5003 	kvm_arch_hardware_unsetup();
5004 	kvm_arch_exit();
5005 	kvm_irqfd_exit();
5006 	free_cpumask_var(cpus_hardware_enabled);
5007 	kvm_vfio_ops_exit();
5008 }
5009 EXPORT_SYMBOL_GPL(kvm_exit);
5010 
5011 struct kvm_vm_worker_thread_context {
5012 	struct kvm *kvm;
5013 	struct task_struct *parent;
5014 	struct completion init_done;
5015 	kvm_vm_thread_fn_t thread_fn;
5016 	uintptr_t data;
5017 	int err;
5018 };
5019 
5020 static int kvm_vm_worker_thread(void *context)
5021 {
5022 	/*
5023 	 * The init_context is allocated on the stack of the parent thread, so
5024 	 * we have to locally copy anything that is needed beyond initialization
5025 	 */
5026 	struct kvm_vm_worker_thread_context *init_context = context;
5027 	struct kvm *kvm = init_context->kvm;
5028 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5029 	uintptr_t data = init_context->data;
5030 	int err;
5031 
5032 	err = kthread_park(current);
5033 	/* kthread_park(current) is never supposed to return an error */
5034 	WARN_ON(err != 0);
5035 	if (err)
5036 		goto init_complete;
5037 
5038 	err = cgroup_attach_task_all(init_context->parent, current);
5039 	if (err) {
5040 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5041 			__func__, err);
5042 		goto init_complete;
5043 	}
5044 
5045 	set_user_nice(current, task_nice(init_context->parent));
5046 
5047 init_complete:
5048 	init_context->err = err;
5049 	complete(&init_context->init_done);
5050 	init_context = NULL;
5051 
5052 	if (err)
5053 		return err;
5054 
5055 	/* Wait to be woken up by the spawner before proceeding. */
5056 	kthread_parkme();
5057 
5058 	if (!kthread_should_stop())
5059 		err = thread_fn(kvm, data);
5060 
5061 	return err;
5062 }
5063 
5064 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5065 				uintptr_t data, const char *name,
5066 				struct task_struct **thread_ptr)
5067 {
5068 	struct kvm_vm_worker_thread_context init_context = {};
5069 	struct task_struct *thread;
5070 
5071 	*thread_ptr = NULL;
5072 	init_context.kvm = kvm;
5073 	init_context.parent = current;
5074 	init_context.thread_fn = thread_fn;
5075 	init_context.data = data;
5076 	init_completion(&init_context.init_done);
5077 
5078 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5079 			     "%s-%d", name, task_pid_nr(current));
5080 	if (IS_ERR(thread))
5081 		return PTR_ERR(thread);
5082 
5083 	/* kthread_run is never supposed to return NULL */
5084 	WARN_ON(thread == NULL);
5085 
5086 	wait_for_completion(&init_context.init_done);
5087 
5088 	if (!init_context.err)
5089 		*thread_ptr = thread;
5090 
5091 	return init_context.err;
5092 }
5093