xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164 	/*
165 	 * The metadata used by is_zone_device_page() to determine whether or
166 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
168 	 * page_count() is zero to help detect bad usage of this helper.
169 	 */
170 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 		return false;
172 
173 	return is_zone_device_page(pfn_to_page(pfn));
174 }
175 
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178 	/*
179 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 	 * perspective they are "normal" pages, albeit with slightly different
181 	 * usage rules.
182 	 */
183 	if (pfn_valid(pfn))
184 		return PageReserved(pfn_to_page(pfn)) &&
185 		       !is_zero_pfn(pfn) &&
186 		       !kvm_is_zone_device_pfn(pfn);
187 
188 	return true;
189 }
190 
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193 	struct page *page = pfn_to_page(pfn);
194 
195 	if (!PageTransCompoundMap(page))
196 		return false;
197 
198 	return is_transparent_hugepage(compound_head(page));
199 }
200 
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206 	int cpu = get_cpu();
207 
208 	__this_cpu_write(kvm_running_vcpu, vcpu);
209 	preempt_notifier_register(&vcpu->preempt_notifier);
210 	kvm_arch_vcpu_load(vcpu, cpu);
211 	put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214 
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217 	preempt_disable();
218 	kvm_arch_vcpu_put(vcpu);
219 	preempt_notifier_unregister(&vcpu->preempt_notifier);
220 	__this_cpu_write(kvm_running_vcpu, NULL);
221 	preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224 
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229 
230 	/*
231 	 * We need to wait for the VCPU to reenable interrupts and get out of
232 	 * READING_SHADOW_PAGE_TABLES mode.
233 	 */
234 	if (req & KVM_REQUEST_WAIT)
235 		return mode != OUTSIDE_GUEST_MODE;
236 
237 	/*
238 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 	 */
240 	return mode == IN_GUEST_MODE;
241 }
242 
243 static void ack_flush(void *_completed)
244 {
245 }
246 
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249 	if (unlikely(!cpus))
250 		cpus = cpu_online_mask;
251 
252 	if (cpumask_empty(cpus))
253 		return false;
254 
255 	smp_call_function_many(cpus, ack_flush, NULL, wait);
256 	return true;
257 }
258 
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 				 struct kvm_vcpu *except,
261 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263 	int i, cpu, me;
264 	struct kvm_vcpu *vcpu;
265 	bool called;
266 
267 	me = get_cpu();
268 
269 	kvm_for_each_vcpu(i, vcpu, kvm) {
270 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 		    vcpu == except)
272 			continue;
273 
274 		kvm_make_request(req, vcpu);
275 		cpu = vcpu->cpu;
276 
277 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 			continue;
279 
280 		if (tmp != NULL && cpu != -1 && cpu != me &&
281 		    kvm_request_needs_ipi(vcpu, req))
282 			__cpumask_set_cpu(cpu, tmp);
283 	}
284 
285 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 	put_cpu();
287 
288 	return called;
289 }
290 
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 				      struct kvm_vcpu *except)
293 {
294 	cpumask_var_t cpus;
295 	bool called;
296 
297 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298 
299 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300 
301 	free_cpumask_var(cpus);
302 	return called;
303 }
304 
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309 
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313 	/*
314 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 	 * kvm_make_all_cpus_request.
316 	 */
317 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318 
319 	/*
320 	 * We want to publish modifications to the page tables before reading
321 	 * mode. Pairs with a memory barrier in arch-specific code.
322 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 	 *
326 	 * There is already an smp_mb__after_atomic() before
327 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 	 * barrier here.
329 	 */
330 	if (!kvm_arch_flush_remote_tlb(kvm)
331 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 		++kvm->stat.remote_tlb_flush;
333 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337 
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342 
343 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
344 {
345 	mutex_init(&vcpu->mutex);
346 	vcpu->cpu = -1;
347 	vcpu->kvm = kvm;
348 	vcpu->vcpu_id = id;
349 	vcpu->pid = NULL;
350 	rcuwait_init(&vcpu->wait);
351 	kvm_async_pf_vcpu_init(vcpu);
352 
353 	vcpu->pre_pcpu = -1;
354 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
355 
356 	kvm_vcpu_set_in_spin_loop(vcpu, false);
357 	kvm_vcpu_set_dy_eligible(vcpu, false);
358 	vcpu->preempted = false;
359 	vcpu->ready = false;
360 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
361 }
362 
363 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
364 {
365 	kvm_arch_vcpu_destroy(vcpu);
366 
367 	/*
368 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
369 	 * the vcpu->pid pointer, and at destruction time all file descriptors
370 	 * are already gone.
371 	 */
372 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
373 
374 	free_page((unsigned long)vcpu->run);
375 	kmem_cache_free(kvm_vcpu_cache, vcpu);
376 }
377 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
378 
379 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
380 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
381 {
382 	return container_of(mn, struct kvm, mmu_notifier);
383 }
384 
385 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
386 					      struct mm_struct *mm,
387 					      unsigned long start, unsigned long end)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
394 	srcu_read_unlock(&kvm->srcu, idx);
395 }
396 
397 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
398 					struct mm_struct *mm,
399 					unsigned long address,
400 					pte_t pte)
401 {
402 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 	int idx;
404 
405 	idx = srcu_read_lock(&kvm->srcu);
406 	spin_lock(&kvm->mmu_lock);
407 	kvm->mmu_notifier_seq++;
408 
409 	if (kvm_set_spte_hva(kvm, address, pte))
410 		kvm_flush_remote_tlbs(kvm);
411 
412 	spin_unlock(&kvm->mmu_lock);
413 	srcu_read_unlock(&kvm->srcu, idx);
414 }
415 
416 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
417 					const struct mmu_notifier_range *range)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int need_tlb_flush = 0, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * The count increase must become visible at unlock time as no
426 	 * spte can be established without taking the mmu_lock and
427 	 * count is also read inside the mmu_lock critical section.
428 	 */
429 	kvm->mmu_notifier_count++;
430 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
431 	need_tlb_flush |= kvm->tlbs_dirty;
432 	/* we've to flush the tlb before the pages can be freed */
433 	if (need_tlb_flush)
434 		kvm_flush_remote_tlbs(kvm);
435 
436 	spin_unlock(&kvm->mmu_lock);
437 	srcu_read_unlock(&kvm->srcu, idx);
438 
439 	return 0;
440 }
441 
442 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
443 					const struct mmu_notifier_range *range)
444 {
445 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
446 
447 	spin_lock(&kvm->mmu_lock);
448 	/*
449 	 * This sequence increase will notify the kvm page fault that
450 	 * the page that is going to be mapped in the spte could have
451 	 * been freed.
452 	 */
453 	kvm->mmu_notifier_seq++;
454 	smp_wmb();
455 	/*
456 	 * The above sequence increase must be visible before the
457 	 * below count decrease, which is ensured by the smp_wmb above
458 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
459 	 */
460 	kvm->mmu_notifier_count--;
461 	spin_unlock(&kvm->mmu_lock);
462 
463 	BUG_ON(kvm->mmu_notifier_count < 0);
464 }
465 
466 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
467 					      struct mm_struct *mm,
468 					      unsigned long start,
469 					      unsigned long end)
470 {
471 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
472 	int young, idx;
473 
474 	idx = srcu_read_lock(&kvm->srcu);
475 	spin_lock(&kvm->mmu_lock);
476 
477 	young = kvm_age_hva(kvm, start, end);
478 	if (young)
479 		kvm_flush_remote_tlbs(kvm);
480 
481 	spin_unlock(&kvm->mmu_lock);
482 	srcu_read_unlock(&kvm->srcu, idx);
483 
484 	return young;
485 }
486 
487 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
488 					struct mm_struct *mm,
489 					unsigned long start,
490 					unsigned long end)
491 {
492 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
493 	int young, idx;
494 
495 	idx = srcu_read_lock(&kvm->srcu);
496 	spin_lock(&kvm->mmu_lock);
497 	/*
498 	 * Even though we do not flush TLB, this will still adversely
499 	 * affect performance on pre-Haswell Intel EPT, where there is
500 	 * no EPT Access Bit to clear so that we have to tear down EPT
501 	 * tables instead. If we find this unacceptable, we can always
502 	 * add a parameter to kvm_age_hva so that it effectively doesn't
503 	 * do anything on clear_young.
504 	 *
505 	 * Also note that currently we never issue secondary TLB flushes
506 	 * from clear_young, leaving this job up to the regular system
507 	 * cadence. If we find this inaccurate, we might come up with a
508 	 * more sophisticated heuristic later.
509 	 */
510 	young = kvm_age_hva(kvm, start, end);
511 	spin_unlock(&kvm->mmu_lock);
512 	srcu_read_unlock(&kvm->srcu, idx);
513 
514 	return young;
515 }
516 
517 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
518 				       struct mm_struct *mm,
519 				       unsigned long address)
520 {
521 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
522 	int young, idx;
523 
524 	idx = srcu_read_lock(&kvm->srcu);
525 	spin_lock(&kvm->mmu_lock);
526 	young = kvm_test_age_hva(kvm, address);
527 	spin_unlock(&kvm->mmu_lock);
528 	srcu_read_unlock(&kvm->srcu, idx);
529 
530 	return young;
531 }
532 
533 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
534 				     struct mm_struct *mm)
535 {
536 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
537 	int idx;
538 
539 	idx = srcu_read_lock(&kvm->srcu);
540 	kvm_arch_flush_shadow_all(kvm);
541 	srcu_read_unlock(&kvm->srcu, idx);
542 }
543 
544 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
545 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
546 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
547 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
548 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
549 	.clear_young		= kvm_mmu_notifier_clear_young,
550 	.test_young		= kvm_mmu_notifier_test_young,
551 	.change_pte		= kvm_mmu_notifier_change_pte,
552 	.release		= kvm_mmu_notifier_release,
553 };
554 
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
558 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
559 }
560 
561 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
562 
563 static int kvm_init_mmu_notifier(struct kvm *kvm)
564 {
565 	return 0;
566 }
567 
568 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
569 
570 static struct kvm_memslots *kvm_alloc_memslots(void)
571 {
572 	int i;
573 	struct kvm_memslots *slots;
574 
575 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
576 	if (!slots)
577 		return NULL;
578 
579 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
580 		slots->id_to_index[i] = -1;
581 
582 	return slots;
583 }
584 
585 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
586 {
587 	if (!memslot->dirty_bitmap)
588 		return;
589 
590 	kvfree(memslot->dirty_bitmap);
591 	memslot->dirty_bitmap = NULL;
592 }
593 
594 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
595 {
596 	kvm_destroy_dirty_bitmap(slot);
597 
598 	kvm_arch_free_memslot(kvm, slot);
599 
600 	slot->flags = 0;
601 	slot->npages = 0;
602 }
603 
604 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
605 {
606 	struct kvm_memory_slot *memslot;
607 
608 	if (!slots)
609 		return;
610 
611 	kvm_for_each_memslot(memslot, slots)
612 		kvm_free_memslot(kvm, memslot);
613 
614 	kvfree(slots);
615 }
616 
617 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
618 {
619 	int i;
620 
621 	if (!kvm->debugfs_dentry)
622 		return;
623 
624 	debugfs_remove_recursive(kvm->debugfs_dentry);
625 
626 	if (kvm->debugfs_stat_data) {
627 		for (i = 0; i < kvm_debugfs_num_entries; i++)
628 			kfree(kvm->debugfs_stat_data[i]);
629 		kfree(kvm->debugfs_stat_data);
630 	}
631 }
632 
633 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
634 {
635 	char dir_name[ITOA_MAX_LEN * 2];
636 	struct kvm_stat_data *stat_data;
637 	struct kvm_stats_debugfs_item *p;
638 
639 	if (!debugfs_initialized())
640 		return 0;
641 
642 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
643 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
644 
645 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
646 					 sizeof(*kvm->debugfs_stat_data),
647 					 GFP_KERNEL_ACCOUNT);
648 	if (!kvm->debugfs_stat_data)
649 		return -ENOMEM;
650 
651 	for (p = debugfs_entries; p->name; p++) {
652 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
653 		if (!stat_data)
654 			return -ENOMEM;
655 
656 		stat_data->kvm = kvm;
657 		stat_data->dbgfs_item = p;
658 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
659 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
660 				    kvm->debugfs_dentry, stat_data,
661 				    &stat_fops_per_vm);
662 	}
663 	return 0;
664 }
665 
666 /*
667  * Called after the VM is otherwise initialized, but just before adding it to
668  * the vm_list.
669  */
670 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
671 {
672 	return 0;
673 }
674 
675 /*
676  * Called just after removing the VM from the vm_list, but before doing any
677  * other destruction.
678  */
679 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
680 {
681 }
682 
683 static struct kvm *kvm_create_vm(unsigned long type)
684 {
685 	struct kvm *kvm = kvm_arch_alloc_vm();
686 	int r = -ENOMEM;
687 	int i;
688 
689 	if (!kvm)
690 		return ERR_PTR(-ENOMEM);
691 
692 	spin_lock_init(&kvm->mmu_lock);
693 	mmgrab(current->mm);
694 	kvm->mm = current->mm;
695 	kvm_eventfd_init(kvm);
696 	mutex_init(&kvm->lock);
697 	mutex_init(&kvm->irq_lock);
698 	mutex_init(&kvm->slots_lock);
699 	INIT_LIST_HEAD(&kvm->devices);
700 
701 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
702 
703 	if (init_srcu_struct(&kvm->srcu))
704 		goto out_err_no_srcu;
705 	if (init_srcu_struct(&kvm->irq_srcu))
706 		goto out_err_no_irq_srcu;
707 
708 	refcount_set(&kvm->users_count, 1);
709 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
710 		struct kvm_memslots *slots = kvm_alloc_memslots();
711 
712 		if (!slots)
713 			goto out_err_no_arch_destroy_vm;
714 		/* Generations must be different for each address space. */
715 		slots->generation = i;
716 		rcu_assign_pointer(kvm->memslots[i], slots);
717 	}
718 
719 	for (i = 0; i < KVM_NR_BUSES; i++) {
720 		rcu_assign_pointer(kvm->buses[i],
721 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
722 		if (!kvm->buses[i])
723 			goto out_err_no_arch_destroy_vm;
724 	}
725 
726 	kvm->max_halt_poll_ns = halt_poll_ns;
727 
728 	r = kvm_arch_init_vm(kvm, type);
729 	if (r)
730 		goto out_err_no_arch_destroy_vm;
731 
732 	r = hardware_enable_all();
733 	if (r)
734 		goto out_err_no_disable;
735 
736 #ifdef CONFIG_HAVE_KVM_IRQFD
737 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
738 #endif
739 
740 	r = kvm_init_mmu_notifier(kvm);
741 	if (r)
742 		goto out_err_no_mmu_notifier;
743 
744 	r = kvm_arch_post_init_vm(kvm);
745 	if (r)
746 		goto out_err;
747 
748 	mutex_lock(&kvm_lock);
749 	list_add(&kvm->vm_list, &vm_list);
750 	mutex_unlock(&kvm_lock);
751 
752 	preempt_notifier_inc();
753 
754 	return kvm;
755 
756 out_err:
757 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
758 	if (kvm->mmu_notifier.ops)
759 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
760 #endif
761 out_err_no_mmu_notifier:
762 	hardware_disable_all();
763 out_err_no_disable:
764 	kvm_arch_destroy_vm(kvm);
765 out_err_no_arch_destroy_vm:
766 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
767 	for (i = 0; i < KVM_NR_BUSES; i++)
768 		kfree(kvm_get_bus(kvm, i));
769 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
770 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
771 	cleanup_srcu_struct(&kvm->irq_srcu);
772 out_err_no_irq_srcu:
773 	cleanup_srcu_struct(&kvm->srcu);
774 out_err_no_srcu:
775 	kvm_arch_free_vm(kvm);
776 	mmdrop(current->mm);
777 	return ERR_PTR(r);
778 }
779 
780 static void kvm_destroy_devices(struct kvm *kvm)
781 {
782 	struct kvm_device *dev, *tmp;
783 
784 	/*
785 	 * We do not need to take the kvm->lock here, because nobody else
786 	 * has a reference to the struct kvm at this point and therefore
787 	 * cannot access the devices list anyhow.
788 	 */
789 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
790 		list_del(&dev->vm_node);
791 		dev->ops->destroy(dev);
792 	}
793 }
794 
795 static void kvm_destroy_vm(struct kvm *kvm)
796 {
797 	int i;
798 	struct mm_struct *mm = kvm->mm;
799 
800 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
801 	kvm_destroy_vm_debugfs(kvm);
802 	kvm_arch_sync_events(kvm);
803 	mutex_lock(&kvm_lock);
804 	list_del(&kvm->vm_list);
805 	mutex_unlock(&kvm_lock);
806 	kvm_arch_pre_destroy_vm(kvm);
807 
808 	kvm_free_irq_routing(kvm);
809 	for (i = 0; i < KVM_NR_BUSES; i++) {
810 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
811 
812 		if (bus)
813 			kvm_io_bus_destroy(bus);
814 		kvm->buses[i] = NULL;
815 	}
816 	kvm_coalesced_mmio_free(kvm);
817 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
818 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
819 #else
820 	kvm_arch_flush_shadow_all(kvm);
821 #endif
822 	kvm_arch_destroy_vm(kvm);
823 	kvm_destroy_devices(kvm);
824 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826 	cleanup_srcu_struct(&kvm->irq_srcu);
827 	cleanup_srcu_struct(&kvm->srcu);
828 	kvm_arch_free_vm(kvm);
829 	preempt_notifier_dec();
830 	hardware_disable_all();
831 	mmdrop(mm);
832 }
833 
834 void kvm_get_kvm(struct kvm *kvm)
835 {
836 	refcount_inc(&kvm->users_count);
837 }
838 EXPORT_SYMBOL_GPL(kvm_get_kvm);
839 
840 void kvm_put_kvm(struct kvm *kvm)
841 {
842 	if (refcount_dec_and_test(&kvm->users_count))
843 		kvm_destroy_vm(kvm);
844 }
845 EXPORT_SYMBOL_GPL(kvm_put_kvm);
846 
847 /*
848  * Used to put a reference that was taken on behalf of an object associated
849  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
850  * of the new file descriptor fails and the reference cannot be transferred to
851  * its final owner.  In such cases, the caller is still actively using @kvm and
852  * will fail miserably if the refcount unexpectedly hits zero.
853  */
854 void kvm_put_kvm_no_destroy(struct kvm *kvm)
855 {
856 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
857 }
858 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
859 
860 static int kvm_vm_release(struct inode *inode, struct file *filp)
861 {
862 	struct kvm *kvm = filp->private_data;
863 
864 	kvm_irqfd_release(kvm);
865 
866 	kvm_put_kvm(kvm);
867 	return 0;
868 }
869 
870 /*
871  * Allocation size is twice as large as the actual dirty bitmap size.
872  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
873  */
874 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
875 {
876 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
877 
878 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
879 	if (!memslot->dirty_bitmap)
880 		return -ENOMEM;
881 
882 	return 0;
883 }
884 
885 /*
886  * Delete a memslot by decrementing the number of used slots and shifting all
887  * other entries in the array forward one spot.
888  */
889 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
890 				      struct kvm_memory_slot *memslot)
891 {
892 	struct kvm_memory_slot *mslots = slots->memslots;
893 	int i;
894 
895 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
896 		return;
897 
898 	slots->used_slots--;
899 
900 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
901 		atomic_set(&slots->lru_slot, 0);
902 
903 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
904 		mslots[i] = mslots[i + 1];
905 		slots->id_to_index[mslots[i].id] = i;
906 	}
907 	mslots[i] = *memslot;
908 	slots->id_to_index[memslot->id] = -1;
909 }
910 
911 /*
912  * "Insert" a new memslot by incrementing the number of used slots.  Returns
913  * the new slot's initial index into the memslots array.
914  */
915 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
916 {
917 	return slots->used_slots++;
918 }
919 
920 /*
921  * Move a changed memslot backwards in the array by shifting existing slots
922  * with a higher GFN toward the front of the array.  Note, the changed memslot
923  * itself is not preserved in the array, i.e. not swapped at this time, only
924  * its new index into the array is tracked.  Returns the changed memslot's
925  * current index into the memslots array.
926  */
927 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
928 					    struct kvm_memory_slot *memslot)
929 {
930 	struct kvm_memory_slot *mslots = slots->memslots;
931 	int i;
932 
933 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
934 	    WARN_ON_ONCE(!slots->used_slots))
935 		return -1;
936 
937 	/*
938 	 * Move the target memslot backward in the array by shifting existing
939 	 * memslots with a higher GFN (than the target memslot) towards the
940 	 * front of the array.
941 	 */
942 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
943 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
944 			break;
945 
946 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
947 
948 		/* Shift the next memslot forward one and update its index. */
949 		mslots[i] = mslots[i + 1];
950 		slots->id_to_index[mslots[i].id] = i;
951 	}
952 	return i;
953 }
954 
955 /*
956  * Move a changed memslot forwards in the array by shifting existing slots with
957  * a lower GFN toward the back of the array.  Note, the changed memslot itself
958  * is not preserved in the array, i.e. not swapped at this time, only its new
959  * index into the array is tracked.  Returns the changed memslot's final index
960  * into the memslots array.
961  */
962 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
963 					   struct kvm_memory_slot *memslot,
964 					   int start)
965 {
966 	struct kvm_memory_slot *mslots = slots->memslots;
967 	int i;
968 
969 	for (i = start; i > 0; i--) {
970 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
971 			break;
972 
973 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
974 
975 		/* Shift the next memslot back one and update its index. */
976 		mslots[i] = mslots[i - 1];
977 		slots->id_to_index[mslots[i].id] = i;
978 	}
979 	return i;
980 }
981 
982 /*
983  * Re-sort memslots based on their GFN to account for an added, deleted, or
984  * moved memslot.  Sorting memslots by GFN allows using a binary search during
985  * memslot lookup.
986  *
987  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
988  * at memslots[0] has the highest GFN.
989  *
990  * The sorting algorithm takes advantage of having initially sorted memslots
991  * and knowing the position of the changed memslot.  Sorting is also optimized
992  * by not swapping the updated memslot and instead only shifting other memslots
993  * and tracking the new index for the update memslot.  Only once its final
994  * index is known is the updated memslot copied into its position in the array.
995  *
996  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
997  *    the end of the array.
998  *
999  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1000  *    end of the array and then it forward to its correct location.
1001  *
1002  *  - When moving a memslot, the algorithm first moves the updated memslot
1003  *    backward to handle the scenario where the memslot's GFN was changed to a
1004  *    lower value.  update_memslots() then falls through and runs the same flow
1005  *    as creating a memslot to move the memslot forward to handle the scenario
1006  *    where its GFN was changed to a higher value.
1007  *
1008  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1009  * historical reasons.  Originally, invalid memslots where denoted by having
1010  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1011  * to the end of the array.  The current algorithm uses dedicated logic to
1012  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1013  *
1014  * The other historical motiviation for highest->lowest was to improve the
1015  * performance of memslot lookup.  KVM originally used a linear search starting
1016  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1017  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1018  * single memslot above the 4gb boundary.  As the largest memslot is also the
1019  * most likely to be referenced, sorting it to the front of the array was
1020  * advantageous.  The current binary search starts from the middle of the array
1021  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1022  */
1023 static void update_memslots(struct kvm_memslots *slots,
1024 			    struct kvm_memory_slot *memslot,
1025 			    enum kvm_mr_change change)
1026 {
1027 	int i;
1028 
1029 	if (change == KVM_MR_DELETE) {
1030 		kvm_memslot_delete(slots, memslot);
1031 	} else {
1032 		if (change == KVM_MR_CREATE)
1033 			i = kvm_memslot_insert_back(slots);
1034 		else
1035 			i = kvm_memslot_move_backward(slots, memslot);
1036 		i = kvm_memslot_move_forward(slots, memslot, i);
1037 
1038 		/*
1039 		 * Copy the memslot to its new position in memslots and update
1040 		 * its index accordingly.
1041 		 */
1042 		slots->memslots[i] = *memslot;
1043 		slots->id_to_index[memslot->id] = i;
1044 	}
1045 }
1046 
1047 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1048 {
1049 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1050 
1051 #ifdef __KVM_HAVE_READONLY_MEM
1052 	valid_flags |= KVM_MEM_READONLY;
1053 #endif
1054 
1055 	if (mem->flags & ~valid_flags)
1056 		return -EINVAL;
1057 
1058 	return 0;
1059 }
1060 
1061 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1062 		int as_id, struct kvm_memslots *slots)
1063 {
1064 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1065 	u64 gen = old_memslots->generation;
1066 
1067 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1068 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1069 
1070 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1071 	synchronize_srcu_expedited(&kvm->srcu);
1072 
1073 	/*
1074 	 * Increment the new memslot generation a second time, dropping the
1075 	 * update in-progress flag and incrementing the generation based on
1076 	 * the number of address spaces.  This provides a unique and easily
1077 	 * identifiable generation number while the memslots are in flux.
1078 	 */
1079 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1080 
1081 	/*
1082 	 * Generations must be unique even across address spaces.  We do not need
1083 	 * a global counter for that, instead the generation space is evenly split
1084 	 * across address spaces.  For example, with two address spaces, address
1085 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1086 	 * use generations 1, 3, 5, ...
1087 	 */
1088 	gen += KVM_ADDRESS_SPACE_NUM;
1089 
1090 	kvm_arch_memslots_updated(kvm, gen);
1091 
1092 	slots->generation = gen;
1093 
1094 	return old_memslots;
1095 }
1096 
1097 /*
1098  * Note, at a minimum, the current number of used slots must be allocated, even
1099  * when deleting a memslot, as we need a complete duplicate of the memslots for
1100  * use when invalidating a memslot prior to deleting/moving the memslot.
1101  */
1102 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1103 					     enum kvm_mr_change change)
1104 {
1105 	struct kvm_memslots *slots;
1106 	size_t old_size, new_size;
1107 
1108 	old_size = sizeof(struct kvm_memslots) +
1109 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1110 
1111 	if (change == KVM_MR_CREATE)
1112 		new_size = old_size + sizeof(struct kvm_memory_slot);
1113 	else
1114 		new_size = old_size;
1115 
1116 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1117 	if (likely(slots))
1118 		memcpy(slots, old, old_size);
1119 
1120 	return slots;
1121 }
1122 
1123 static int kvm_set_memslot(struct kvm *kvm,
1124 			   const struct kvm_userspace_memory_region *mem,
1125 			   struct kvm_memory_slot *old,
1126 			   struct kvm_memory_slot *new, int as_id,
1127 			   enum kvm_mr_change change)
1128 {
1129 	struct kvm_memory_slot *slot;
1130 	struct kvm_memslots *slots;
1131 	int r;
1132 
1133 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1134 	if (!slots)
1135 		return -ENOMEM;
1136 
1137 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1138 		/*
1139 		 * Note, the INVALID flag needs to be in the appropriate entry
1140 		 * in the freshly allocated memslots, not in @old or @new.
1141 		 */
1142 		slot = id_to_memslot(slots, old->id);
1143 		slot->flags |= KVM_MEMSLOT_INVALID;
1144 
1145 		/*
1146 		 * We can re-use the old memslots, the only difference from the
1147 		 * newly installed memslots is the invalid flag, which will get
1148 		 * dropped by update_memslots anyway.  We'll also revert to the
1149 		 * old memslots if preparing the new memory region fails.
1150 		 */
1151 		slots = install_new_memslots(kvm, as_id, slots);
1152 
1153 		/* From this point no new shadow pages pointing to a deleted,
1154 		 * or moved, memslot will be created.
1155 		 *
1156 		 * validation of sp->gfn happens in:
1157 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1158 		 *	- kvm_is_visible_gfn (mmu_check_root)
1159 		 */
1160 		kvm_arch_flush_shadow_memslot(kvm, slot);
1161 	}
1162 
1163 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1164 	if (r)
1165 		goto out_slots;
1166 
1167 	update_memslots(slots, new, change);
1168 	slots = install_new_memslots(kvm, as_id, slots);
1169 
1170 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1171 
1172 	kvfree(slots);
1173 	return 0;
1174 
1175 out_slots:
1176 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1177 		slots = install_new_memslots(kvm, as_id, slots);
1178 	kvfree(slots);
1179 	return r;
1180 }
1181 
1182 static int kvm_delete_memslot(struct kvm *kvm,
1183 			      const struct kvm_userspace_memory_region *mem,
1184 			      struct kvm_memory_slot *old, int as_id)
1185 {
1186 	struct kvm_memory_slot new;
1187 	int r;
1188 
1189 	if (!old->npages)
1190 		return -EINVAL;
1191 
1192 	memset(&new, 0, sizeof(new));
1193 	new.id = old->id;
1194 
1195 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1196 	if (r)
1197 		return r;
1198 
1199 	kvm_free_memslot(kvm, old);
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Allocate some memory and give it an address in the guest physical address
1205  * space.
1206  *
1207  * Discontiguous memory is allowed, mostly for framebuffers.
1208  *
1209  * Must be called holding kvm->slots_lock for write.
1210  */
1211 int __kvm_set_memory_region(struct kvm *kvm,
1212 			    const struct kvm_userspace_memory_region *mem)
1213 {
1214 	struct kvm_memory_slot old, new;
1215 	struct kvm_memory_slot *tmp;
1216 	enum kvm_mr_change change;
1217 	int as_id, id;
1218 	int r;
1219 
1220 	r = check_memory_region_flags(mem);
1221 	if (r)
1222 		return r;
1223 
1224 	as_id = mem->slot >> 16;
1225 	id = (u16)mem->slot;
1226 
1227 	/* General sanity checks */
1228 	if (mem->memory_size & (PAGE_SIZE - 1))
1229 		return -EINVAL;
1230 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1231 		return -EINVAL;
1232 	/* We can read the guest memory with __xxx_user() later on. */
1233 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1234 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1235 			mem->memory_size))
1236 		return -EINVAL;
1237 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1238 		return -EINVAL;
1239 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1240 		return -EINVAL;
1241 
1242 	/*
1243 	 * Make a full copy of the old memslot, the pointer will become stale
1244 	 * when the memslots are re-sorted by update_memslots(), and the old
1245 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1246 	 * to free its resources and for arch specific behavior.
1247 	 */
1248 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1249 	if (tmp) {
1250 		old = *tmp;
1251 		tmp = NULL;
1252 	} else {
1253 		memset(&old, 0, sizeof(old));
1254 		old.id = id;
1255 	}
1256 
1257 	if (!mem->memory_size)
1258 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1259 
1260 	new.id = id;
1261 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1262 	new.npages = mem->memory_size >> PAGE_SHIFT;
1263 	new.flags = mem->flags;
1264 	new.userspace_addr = mem->userspace_addr;
1265 
1266 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1267 		return -EINVAL;
1268 
1269 	if (!old.npages) {
1270 		change = KVM_MR_CREATE;
1271 		new.dirty_bitmap = NULL;
1272 		memset(&new.arch, 0, sizeof(new.arch));
1273 	} else { /* Modify an existing slot. */
1274 		if ((new.userspace_addr != old.userspace_addr) ||
1275 		    (new.npages != old.npages) ||
1276 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1277 			return -EINVAL;
1278 
1279 		if (new.base_gfn != old.base_gfn)
1280 			change = KVM_MR_MOVE;
1281 		else if (new.flags != old.flags)
1282 			change = KVM_MR_FLAGS_ONLY;
1283 		else /* Nothing to change. */
1284 			return 0;
1285 
1286 		/* Copy dirty_bitmap and arch from the current memslot. */
1287 		new.dirty_bitmap = old.dirty_bitmap;
1288 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1289 	}
1290 
1291 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1292 		/* Check for overlaps */
1293 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1294 			if (tmp->id == id)
1295 				continue;
1296 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1297 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1298 				return -EEXIST;
1299 		}
1300 	}
1301 
1302 	/* Allocate/free page dirty bitmap as needed */
1303 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1304 		new.dirty_bitmap = NULL;
1305 	else if (!new.dirty_bitmap) {
1306 		r = kvm_alloc_dirty_bitmap(&new);
1307 		if (r)
1308 			return r;
1309 
1310 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1311 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1312 	}
1313 
1314 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1315 	if (r)
1316 		goto out_bitmap;
1317 
1318 	if (old.dirty_bitmap && !new.dirty_bitmap)
1319 		kvm_destroy_dirty_bitmap(&old);
1320 	return 0;
1321 
1322 out_bitmap:
1323 	if (new.dirty_bitmap && !old.dirty_bitmap)
1324 		kvm_destroy_dirty_bitmap(&new);
1325 	return r;
1326 }
1327 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1328 
1329 int kvm_set_memory_region(struct kvm *kvm,
1330 			  const struct kvm_userspace_memory_region *mem)
1331 {
1332 	int r;
1333 
1334 	mutex_lock(&kvm->slots_lock);
1335 	r = __kvm_set_memory_region(kvm, mem);
1336 	mutex_unlock(&kvm->slots_lock);
1337 	return r;
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1340 
1341 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1342 					  struct kvm_userspace_memory_region *mem)
1343 {
1344 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1345 		return -EINVAL;
1346 
1347 	return kvm_set_memory_region(kvm, mem);
1348 }
1349 
1350 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1351 /**
1352  * kvm_get_dirty_log - get a snapshot of dirty pages
1353  * @kvm:	pointer to kvm instance
1354  * @log:	slot id and address to which we copy the log
1355  * @is_dirty:	set to '1' if any dirty pages were found
1356  * @memslot:	set to the associated memslot, always valid on success
1357  */
1358 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1359 		      int *is_dirty, struct kvm_memory_slot **memslot)
1360 {
1361 	struct kvm_memslots *slots;
1362 	int i, as_id, id;
1363 	unsigned long n;
1364 	unsigned long any = 0;
1365 
1366 	*memslot = NULL;
1367 	*is_dirty = 0;
1368 
1369 	as_id = log->slot >> 16;
1370 	id = (u16)log->slot;
1371 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1372 		return -EINVAL;
1373 
1374 	slots = __kvm_memslots(kvm, as_id);
1375 	*memslot = id_to_memslot(slots, id);
1376 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1377 		return -ENOENT;
1378 
1379 	kvm_arch_sync_dirty_log(kvm, *memslot);
1380 
1381 	n = kvm_dirty_bitmap_bytes(*memslot);
1382 
1383 	for (i = 0; !any && i < n/sizeof(long); ++i)
1384 		any = (*memslot)->dirty_bitmap[i];
1385 
1386 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1387 		return -EFAULT;
1388 
1389 	if (any)
1390 		*is_dirty = 1;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1394 
1395 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1396 /**
1397  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1398  *	and reenable dirty page tracking for the corresponding pages.
1399  * @kvm:	pointer to kvm instance
1400  * @log:	slot id and address to which we copy the log
1401  *
1402  * We need to keep it in mind that VCPU threads can write to the bitmap
1403  * concurrently. So, to avoid losing track of dirty pages we keep the
1404  * following order:
1405  *
1406  *    1. Take a snapshot of the bit and clear it if needed.
1407  *    2. Write protect the corresponding page.
1408  *    3. Copy the snapshot to the userspace.
1409  *    4. Upon return caller flushes TLB's if needed.
1410  *
1411  * Between 2 and 4, the guest may write to the page using the remaining TLB
1412  * entry.  This is not a problem because the page is reported dirty using
1413  * the snapshot taken before and step 4 ensures that writes done after
1414  * exiting to userspace will be logged for the next call.
1415  *
1416  */
1417 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1418 {
1419 	struct kvm_memslots *slots;
1420 	struct kvm_memory_slot *memslot;
1421 	int i, as_id, id;
1422 	unsigned long n;
1423 	unsigned long *dirty_bitmap;
1424 	unsigned long *dirty_bitmap_buffer;
1425 	bool flush;
1426 
1427 	as_id = log->slot >> 16;
1428 	id = (u16)log->slot;
1429 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1430 		return -EINVAL;
1431 
1432 	slots = __kvm_memslots(kvm, as_id);
1433 	memslot = id_to_memslot(slots, id);
1434 	if (!memslot || !memslot->dirty_bitmap)
1435 		return -ENOENT;
1436 
1437 	dirty_bitmap = memslot->dirty_bitmap;
1438 
1439 	kvm_arch_sync_dirty_log(kvm, memslot);
1440 
1441 	n = kvm_dirty_bitmap_bytes(memslot);
1442 	flush = false;
1443 	if (kvm->manual_dirty_log_protect) {
1444 		/*
1445 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1446 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1447 		 * is some code duplication between this function and
1448 		 * kvm_get_dirty_log, but hopefully all architecture
1449 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1450 		 * can be eliminated.
1451 		 */
1452 		dirty_bitmap_buffer = dirty_bitmap;
1453 	} else {
1454 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1455 		memset(dirty_bitmap_buffer, 0, n);
1456 
1457 		spin_lock(&kvm->mmu_lock);
1458 		for (i = 0; i < n / sizeof(long); i++) {
1459 			unsigned long mask;
1460 			gfn_t offset;
1461 
1462 			if (!dirty_bitmap[i])
1463 				continue;
1464 
1465 			flush = true;
1466 			mask = xchg(&dirty_bitmap[i], 0);
1467 			dirty_bitmap_buffer[i] = mask;
1468 
1469 			offset = i * BITS_PER_LONG;
1470 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1471 								offset, mask);
1472 		}
1473 		spin_unlock(&kvm->mmu_lock);
1474 	}
1475 
1476 	if (flush)
1477 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1478 
1479 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1480 		return -EFAULT;
1481 	return 0;
1482 }
1483 
1484 
1485 /**
1486  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1487  * @kvm: kvm instance
1488  * @log: slot id and address to which we copy the log
1489  *
1490  * Steps 1-4 below provide general overview of dirty page logging. See
1491  * kvm_get_dirty_log_protect() function description for additional details.
1492  *
1493  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1494  * always flush the TLB (step 4) even if previous step failed  and the dirty
1495  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1496  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1497  * writes will be marked dirty for next log read.
1498  *
1499  *   1. Take a snapshot of the bit and clear it if needed.
1500  *   2. Write protect the corresponding page.
1501  *   3. Copy the snapshot to the userspace.
1502  *   4. Flush TLB's if needed.
1503  */
1504 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1505 				      struct kvm_dirty_log *log)
1506 {
1507 	int r;
1508 
1509 	mutex_lock(&kvm->slots_lock);
1510 
1511 	r = kvm_get_dirty_log_protect(kvm, log);
1512 
1513 	mutex_unlock(&kvm->slots_lock);
1514 	return r;
1515 }
1516 
1517 /**
1518  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1519  *	and reenable dirty page tracking for the corresponding pages.
1520  * @kvm:	pointer to kvm instance
1521  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1522  */
1523 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1524 				       struct kvm_clear_dirty_log *log)
1525 {
1526 	struct kvm_memslots *slots;
1527 	struct kvm_memory_slot *memslot;
1528 	int as_id, id;
1529 	gfn_t offset;
1530 	unsigned long i, n;
1531 	unsigned long *dirty_bitmap;
1532 	unsigned long *dirty_bitmap_buffer;
1533 	bool flush;
1534 
1535 	as_id = log->slot >> 16;
1536 	id = (u16)log->slot;
1537 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1538 		return -EINVAL;
1539 
1540 	if (log->first_page & 63)
1541 		return -EINVAL;
1542 
1543 	slots = __kvm_memslots(kvm, as_id);
1544 	memslot = id_to_memslot(slots, id);
1545 	if (!memslot || !memslot->dirty_bitmap)
1546 		return -ENOENT;
1547 
1548 	dirty_bitmap = memslot->dirty_bitmap;
1549 
1550 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1551 
1552 	if (log->first_page > memslot->npages ||
1553 	    log->num_pages > memslot->npages - log->first_page ||
1554 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1555 	    return -EINVAL;
1556 
1557 	kvm_arch_sync_dirty_log(kvm, memslot);
1558 
1559 	flush = false;
1560 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1561 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1562 		return -EFAULT;
1563 
1564 	spin_lock(&kvm->mmu_lock);
1565 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1566 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1567 	     i++, offset += BITS_PER_LONG) {
1568 		unsigned long mask = *dirty_bitmap_buffer++;
1569 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1570 		if (!mask)
1571 			continue;
1572 
1573 		mask &= atomic_long_fetch_andnot(mask, p);
1574 
1575 		/*
1576 		 * mask contains the bits that really have been cleared.  This
1577 		 * never includes any bits beyond the length of the memslot (if
1578 		 * the length is not aligned to 64 pages), therefore it is not
1579 		 * a problem if userspace sets them in log->dirty_bitmap.
1580 		*/
1581 		if (mask) {
1582 			flush = true;
1583 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1584 								offset, mask);
1585 		}
1586 	}
1587 	spin_unlock(&kvm->mmu_lock);
1588 
1589 	if (flush)
1590 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1591 
1592 	return 0;
1593 }
1594 
1595 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1596 					struct kvm_clear_dirty_log *log)
1597 {
1598 	int r;
1599 
1600 	mutex_lock(&kvm->slots_lock);
1601 
1602 	r = kvm_clear_dirty_log_protect(kvm, log);
1603 
1604 	mutex_unlock(&kvm->slots_lock);
1605 	return r;
1606 }
1607 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1608 
1609 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1610 {
1611 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1614 
1615 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1620 
1621 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1622 {
1623 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1624 
1625 	return kvm_is_visible_memslot(memslot);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1628 
1629 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631 	struct vm_area_struct *vma;
1632 	unsigned long addr, size;
1633 
1634 	size = PAGE_SIZE;
1635 
1636 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1637 	if (kvm_is_error_hva(addr))
1638 		return PAGE_SIZE;
1639 
1640 	mmap_read_lock(current->mm);
1641 	vma = find_vma(current->mm, addr);
1642 	if (!vma)
1643 		goto out;
1644 
1645 	size = vma_kernel_pagesize(vma);
1646 
1647 out:
1648 	mmap_read_unlock(current->mm);
1649 
1650 	return size;
1651 }
1652 
1653 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1654 {
1655 	return slot->flags & KVM_MEM_READONLY;
1656 }
1657 
1658 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1659 				       gfn_t *nr_pages, bool write)
1660 {
1661 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1662 		return KVM_HVA_ERR_BAD;
1663 
1664 	if (memslot_is_readonly(slot) && write)
1665 		return KVM_HVA_ERR_RO_BAD;
1666 
1667 	if (nr_pages)
1668 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1669 
1670 	return __gfn_to_hva_memslot(slot, gfn);
1671 }
1672 
1673 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1674 				     gfn_t *nr_pages)
1675 {
1676 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1677 }
1678 
1679 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1680 					gfn_t gfn)
1681 {
1682 	return gfn_to_hva_many(slot, gfn, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1685 
1686 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1687 {
1688 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1689 }
1690 EXPORT_SYMBOL_GPL(gfn_to_hva);
1691 
1692 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1697 
1698 /*
1699  * Return the hva of a @gfn and the R/W attribute if possible.
1700  *
1701  * @slot: the kvm_memory_slot which contains @gfn
1702  * @gfn: the gfn to be translated
1703  * @writable: used to return the read/write attribute of the @slot if the hva
1704  * is valid and @writable is not NULL
1705  */
1706 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1707 				      gfn_t gfn, bool *writable)
1708 {
1709 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1710 
1711 	if (!kvm_is_error_hva(hva) && writable)
1712 		*writable = !memslot_is_readonly(slot);
1713 
1714 	return hva;
1715 }
1716 
1717 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1718 {
1719 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1720 
1721 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1722 }
1723 
1724 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1725 {
1726 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1727 
1728 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1729 }
1730 
1731 static inline int check_user_page_hwpoison(unsigned long addr)
1732 {
1733 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1734 
1735 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1736 	return rc == -EHWPOISON;
1737 }
1738 
1739 /*
1740  * The fast path to get the writable pfn which will be stored in @pfn,
1741  * true indicates success, otherwise false is returned.  It's also the
1742  * only part that runs if we can in atomic context.
1743  */
1744 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1745 			    bool *writable, kvm_pfn_t *pfn)
1746 {
1747 	struct page *page[1];
1748 
1749 	/*
1750 	 * Fast pin a writable pfn only if it is a write fault request
1751 	 * or the caller allows to map a writable pfn for a read fault
1752 	 * request.
1753 	 */
1754 	if (!(write_fault || writable))
1755 		return false;
1756 
1757 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1758 		*pfn = page_to_pfn(page[0]);
1759 
1760 		if (writable)
1761 			*writable = true;
1762 		return true;
1763 	}
1764 
1765 	return false;
1766 }
1767 
1768 /*
1769  * The slow path to get the pfn of the specified host virtual address,
1770  * 1 indicates success, -errno is returned if error is detected.
1771  */
1772 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1773 			   bool *writable, kvm_pfn_t *pfn)
1774 {
1775 	unsigned int flags = FOLL_HWPOISON;
1776 	struct page *page;
1777 	int npages = 0;
1778 
1779 	might_sleep();
1780 
1781 	if (writable)
1782 		*writable = write_fault;
1783 
1784 	if (write_fault)
1785 		flags |= FOLL_WRITE;
1786 	if (async)
1787 		flags |= FOLL_NOWAIT;
1788 
1789 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1790 	if (npages != 1)
1791 		return npages;
1792 
1793 	/* map read fault as writable if possible */
1794 	if (unlikely(!write_fault) && writable) {
1795 		struct page *wpage;
1796 
1797 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1798 			*writable = true;
1799 			put_page(page);
1800 			page = wpage;
1801 		}
1802 	}
1803 	*pfn = page_to_pfn(page);
1804 	return npages;
1805 }
1806 
1807 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1808 {
1809 	if (unlikely(!(vma->vm_flags & VM_READ)))
1810 		return false;
1811 
1812 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1819 			       unsigned long addr, bool *async,
1820 			       bool write_fault, bool *writable,
1821 			       kvm_pfn_t *p_pfn)
1822 {
1823 	unsigned long pfn;
1824 	int r;
1825 
1826 	r = follow_pfn(vma, addr, &pfn);
1827 	if (r) {
1828 		/*
1829 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1830 		 * not call the fault handler, so do it here.
1831 		 */
1832 		bool unlocked = false;
1833 		r = fixup_user_fault(current, current->mm, addr,
1834 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1835 				     &unlocked);
1836 		if (unlocked)
1837 			return -EAGAIN;
1838 		if (r)
1839 			return r;
1840 
1841 		r = follow_pfn(vma, addr, &pfn);
1842 		if (r)
1843 			return r;
1844 
1845 	}
1846 
1847 	if (writable)
1848 		*writable = true;
1849 
1850 	/*
1851 	 * Get a reference here because callers of *hva_to_pfn* and
1852 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1853 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1854 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1855 	 * simply do nothing for reserved pfns.
1856 	 *
1857 	 * Whoever called remap_pfn_range is also going to call e.g.
1858 	 * unmap_mapping_range before the underlying pages are freed,
1859 	 * causing a call to our MMU notifier.
1860 	 */
1861 	kvm_get_pfn(pfn);
1862 
1863 	*p_pfn = pfn;
1864 	return 0;
1865 }
1866 
1867 /*
1868  * Pin guest page in memory and return its pfn.
1869  * @addr: host virtual address which maps memory to the guest
1870  * @atomic: whether this function can sleep
1871  * @async: whether this function need to wait IO complete if the
1872  *         host page is not in the memory
1873  * @write_fault: whether we should get a writable host page
1874  * @writable: whether it allows to map a writable host page for !@write_fault
1875  *
1876  * The function will map a writable host page for these two cases:
1877  * 1): @write_fault = true
1878  * 2): @write_fault = false && @writable, @writable will tell the caller
1879  *     whether the mapping is writable.
1880  */
1881 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1882 			bool write_fault, bool *writable)
1883 {
1884 	struct vm_area_struct *vma;
1885 	kvm_pfn_t pfn = 0;
1886 	int npages, r;
1887 
1888 	/* we can do it either atomically or asynchronously, not both */
1889 	BUG_ON(atomic && async);
1890 
1891 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1892 		return pfn;
1893 
1894 	if (atomic)
1895 		return KVM_PFN_ERR_FAULT;
1896 
1897 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1898 	if (npages == 1)
1899 		return pfn;
1900 
1901 	mmap_read_lock(current->mm);
1902 	if (npages == -EHWPOISON ||
1903 	      (!async && check_user_page_hwpoison(addr))) {
1904 		pfn = KVM_PFN_ERR_HWPOISON;
1905 		goto exit;
1906 	}
1907 
1908 retry:
1909 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1910 
1911 	if (vma == NULL)
1912 		pfn = KVM_PFN_ERR_FAULT;
1913 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1914 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1915 		if (r == -EAGAIN)
1916 			goto retry;
1917 		if (r < 0)
1918 			pfn = KVM_PFN_ERR_FAULT;
1919 	} else {
1920 		if (async && vma_is_valid(vma, write_fault))
1921 			*async = true;
1922 		pfn = KVM_PFN_ERR_FAULT;
1923 	}
1924 exit:
1925 	mmap_read_unlock(current->mm);
1926 	return pfn;
1927 }
1928 
1929 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1930 			       bool atomic, bool *async, bool write_fault,
1931 			       bool *writable)
1932 {
1933 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1934 
1935 	if (addr == KVM_HVA_ERR_RO_BAD) {
1936 		if (writable)
1937 			*writable = false;
1938 		return KVM_PFN_ERR_RO_FAULT;
1939 	}
1940 
1941 	if (kvm_is_error_hva(addr)) {
1942 		if (writable)
1943 			*writable = false;
1944 		return KVM_PFN_NOSLOT;
1945 	}
1946 
1947 	/* Do not map writable pfn in the readonly memslot. */
1948 	if (writable && memslot_is_readonly(slot)) {
1949 		*writable = false;
1950 		writable = NULL;
1951 	}
1952 
1953 	return hva_to_pfn(addr, atomic, async, write_fault,
1954 			  writable);
1955 }
1956 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1957 
1958 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1959 		      bool *writable)
1960 {
1961 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1962 				    write_fault, writable);
1963 }
1964 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1965 
1966 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1967 {
1968 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1969 }
1970 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1971 
1972 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1973 {
1974 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1975 }
1976 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1977 
1978 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1979 {
1980 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1983 
1984 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1985 {
1986 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1987 }
1988 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1989 
1990 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1991 {
1992 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1995 
1996 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1997 			    struct page **pages, int nr_pages)
1998 {
1999 	unsigned long addr;
2000 	gfn_t entry = 0;
2001 
2002 	addr = gfn_to_hva_many(slot, gfn, &entry);
2003 	if (kvm_is_error_hva(addr))
2004 		return -1;
2005 
2006 	if (entry < nr_pages)
2007 		return 0;
2008 
2009 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2010 }
2011 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2012 
2013 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2014 {
2015 	if (is_error_noslot_pfn(pfn))
2016 		return KVM_ERR_PTR_BAD_PAGE;
2017 
2018 	if (kvm_is_reserved_pfn(pfn)) {
2019 		WARN_ON(1);
2020 		return KVM_ERR_PTR_BAD_PAGE;
2021 	}
2022 
2023 	return pfn_to_page(pfn);
2024 }
2025 
2026 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2027 {
2028 	kvm_pfn_t pfn;
2029 
2030 	pfn = gfn_to_pfn(kvm, gfn);
2031 
2032 	return kvm_pfn_to_page(pfn);
2033 }
2034 EXPORT_SYMBOL_GPL(gfn_to_page);
2035 
2036 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2037 {
2038 	if (pfn == 0)
2039 		return;
2040 
2041 	if (cache)
2042 		cache->pfn = cache->gfn = 0;
2043 
2044 	if (dirty)
2045 		kvm_release_pfn_dirty(pfn);
2046 	else
2047 		kvm_release_pfn_clean(pfn);
2048 }
2049 
2050 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2051 				 struct gfn_to_pfn_cache *cache, u64 gen)
2052 {
2053 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2054 
2055 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2056 	cache->gfn = gfn;
2057 	cache->dirty = false;
2058 	cache->generation = gen;
2059 }
2060 
2061 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2062 			 struct kvm_host_map *map,
2063 			 struct gfn_to_pfn_cache *cache,
2064 			 bool atomic)
2065 {
2066 	kvm_pfn_t pfn;
2067 	void *hva = NULL;
2068 	struct page *page = KVM_UNMAPPED_PAGE;
2069 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2070 	u64 gen = slots->generation;
2071 
2072 	if (!map)
2073 		return -EINVAL;
2074 
2075 	if (cache) {
2076 		if (!cache->pfn || cache->gfn != gfn ||
2077 			cache->generation != gen) {
2078 			if (atomic)
2079 				return -EAGAIN;
2080 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2081 		}
2082 		pfn = cache->pfn;
2083 	} else {
2084 		if (atomic)
2085 			return -EAGAIN;
2086 		pfn = gfn_to_pfn_memslot(slot, gfn);
2087 	}
2088 	if (is_error_noslot_pfn(pfn))
2089 		return -EINVAL;
2090 
2091 	if (pfn_valid(pfn)) {
2092 		page = pfn_to_page(pfn);
2093 		if (atomic)
2094 			hva = kmap_atomic(page);
2095 		else
2096 			hva = kmap(page);
2097 #ifdef CONFIG_HAS_IOMEM
2098 	} else if (!atomic) {
2099 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2100 	} else {
2101 		return -EINVAL;
2102 #endif
2103 	}
2104 
2105 	if (!hva)
2106 		return -EFAULT;
2107 
2108 	map->page = page;
2109 	map->hva = hva;
2110 	map->pfn = pfn;
2111 	map->gfn = gfn;
2112 
2113 	return 0;
2114 }
2115 
2116 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2117 		struct gfn_to_pfn_cache *cache, bool atomic)
2118 {
2119 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2120 			cache, atomic);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2123 
2124 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2125 {
2126 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2127 		NULL, false);
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2130 
2131 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2132 			struct kvm_host_map *map,
2133 			struct gfn_to_pfn_cache *cache,
2134 			bool dirty, bool atomic)
2135 {
2136 	if (!map)
2137 		return;
2138 
2139 	if (!map->hva)
2140 		return;
2141 
2142 	if (map->page != KVM_UNMAPPED_PAGE) {
2143 		if (atomic)
2144 			kunmap_atomic(map->hva);
2145 		else
2146 			kunmap(map->page);
2147 	}
2148 #ifdef CONFIG_HAS_IOMEM
2149 	else if (!atomic)
2150 		memunmap(map->hva);
2151 	else
2152 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2153 #endif
2154 
2155 	if (dirty)
2156 		mark_page_dirty_in_slot(memslot, map->gfn);
2157 
2158 	if (cache)
2159 		cache->dirty |= dirty;
2160 	else
2161 		kvm_release_pfn(map->pfn, dirty, NULL);
2162 
2163 	map->hva = NULL;
2164 	map->page = NULL;
2165 }
2166 
2167 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2168 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2169 {
2170 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2171 			cache, dirty, atomic);
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2175 
2176 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2177 {
2178 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2179 			dirty, false);
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2182 
2183 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2184 {
2185 	kvm_pfn_t pfn;
2186 
2187 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2188 
2189 	return kvm_pfn_to_page(pfn);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2192 
2193 void kvm_release_page_clean(struct page *page)
2194 {
2195 	WARN_ON(is_error_page(page));
2196 
2197 	kvm_release_pfn_clean(page_to_pfn(page));
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2200 
2201 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2202 {
2203 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2204 		put_page(pfn_to_page(pfn));
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2207 
2208 void kvm_release_page_dirty(struct page *page)
2209 {
2210 	WARN_ON(is_error_page(page));
2211 
2212 	kvm_release_pfn_dirty(page_to_pfn(page));
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2215 
2216 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2217 {
2218 	kvm_set_pfn_dirty(pfn);
2219 	kvm_release_pfn_clean(pfn);
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2222 
2223 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2224 {
2225 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2226 		SetPageDirty(pfn_to_page(pfn));
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2229 
2230 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2231 {
2232 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2233 		mark_page_accessed(pfn_to_page(pfn));
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2236 
2237 void kvm_get_pfn(kvm_pfn_t pfn)
2238 {
2239 	if (!kvm_is_reserved_pfn(pfn))
2240 		get_page(pfn_to_page(pfn));
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2243 
2244 static int next_segment(unsigned long len, int offset)
2245 {
2246 	if (len > PAGE_SIZE - offset)
2247 		return PAGE_SIZE - offset;
2248 	else
2249 		return len;
2250 }
2251 
2252 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2253 				 void *data, int offset, int len)
2254 {
2255 	int r;
2256 	unsigned long addr;
2257 
2258 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2259 	if (kvm_is_error_hva(addr))
2260 		return -EFAULT;
2261 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2262 	if (r)
2263 		return -EFAULT;
2264 	return 0;
2265 }
2266 
2267 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2268 			int len)
2269 {
2270 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2271 
2272 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2275 
2276 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2277 			     int offset, int len)
2278 {
2279 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2280 
2281 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2284 
2285 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2286 {
2287 	gfn_t gfn = gpa >> PAGE_SHIFT;
2288 	int seg;
2289 	int offset = offset_in_page(gpa);
2290 	int ret;
2291 
2292 	while ((seg = next_segment(len, offset)) != 0) {
2293 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2294 		if (ret < 0)
2295 			return ret;
2296 		offset = 0;
2297 		len -= seg;
2298 		data += seg;
2299 		++gfn;
2300 	}
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_read_guest);
2304 
2305 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2306 {
2307 	gfn_t gfn = gpa >> PAGE_SHIFT;
2308 	int seg;
2309 	int offset = offset_in_page(gpa);
2310 	int ret;
2311 
2312 	while ((seg = next_segment(len, offset)) != 0) {
2313 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2314 		if (ret < 0)
2315 			return ret;
2316 		offset = 0;
2317 		len -= seg;
2318 		data += seg;
2319 		++gfn;
2320 	}
2321 	return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2324 
2325 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2326 			           void *data, int offset, unsigned long len)
2327 {
2328 	int r;
2329 	unsigned long addr;
2330 
2331 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2332 	if (kvm_is_error_hva(addr))
2333 		return -EFAULT;
2334 	pagefault_disable();
2335 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2336 	pagefault_enable();
2337 	if (r)
2338 		return -EFAULT;
2339 	return 0;
2340 }
2341 
2342 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2343 			       void *data, unsigned long len)
2344 {
2345 	gfn_t gfn = gpa >> PAGE_SHIFT;
2346 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2347 	int offset = offset_in_page(gpa);
2348 
2349 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2352 
2353 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2354 			          const void *data, int offset, int len)
2355 {
2356 	int r;
2357 	unsigned long addr;
2358 
2359 	addr = gfn_to_hva_memslot(memslot, gfn);
2360 	if (kvm_is_error_hva(addr))
2361 		return -EFAULT;
2362 	r = __copy_to_user((void __user *)addr + offset, data, len);
2363 	if (r)
2364 		return -EFAULT;
2365 	mark_page_dirty_in_slot(memslot, gfn);
2366 	return 0;
2367 }
2368 
2369 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2370 			 const void *data, int offset, int len)
2371 {
2372 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2373 
2374 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2377 
2378 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2379 			      const void *data, int offset, int len)
2380 {
2381 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2382 
2383 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2384 }
2385 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2386 
2387 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2388 		    unsigned long len)
2389 {
2390 	gfn_t gfn = gpa >> PAGE_SHIFT;
2391 	int seg;
2392 	int offset = offset_in_page(gpa);
2393 	int ret;
2394 
2395 	while ((seg = next_segment(len, offset)) != 0) {
2396 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2397 		if (ret < 0)
2398 			return ret;
2399 		offset = 0;
2400 		len -= seg;
2401 		data += seg;
2402 		++gfn;
2403 	}
2404 	return 0;
2405 }
2406 EXPORT_SYMBOL_GPL(kvm_write_guest);
2407 
2408 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2409 		         unsigned long len)
2410 {
2411 	gfn_t gfn = gpa >> PAGE_SHIFT;
2412 	int seg;
2413 	int offset = offset_in_page(gpa);
2414 	int ret;
2415 
2416 	while ((seg = next_segment(len, offset)) != 0) {
2417 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2418 		if (ret < 0)
2419 			return ret;
2420 		offset = 0;
2421 		len -= seg;
2422 		data += seg;
2423 		++gfn;
2424 	}
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2428 
2429 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2430 				       struct gfn_to_hva_cache *ghc,
2431 				       gpa_t gpa, unsigned long len)
2432 {
2433 	int offset = offset_in_page(gpa);
2434 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2435 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2436 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2437 	gfn_t nr_pages_avail;
2438 
2439 	/* Update ghc->generation before performing any error checks. */
2440 	ghc->generation = slots->generation;
2441 
2442 	if (start_gfn > end_gfn) {
2443 		ghc->hva = KVM_HVA_ERR_BAD;
2444 		return -EINVAL;
2445 	}
2446 
2447 	/*
2448 	 * If the requested region crosses two memslots, we still
2449 	 * verify that the entire region is valid here.
2450 	 */
2451 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2452 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2453 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2454 					   &nr_pages_avail);
2455 		if (kvm_is_error_hva(ghc->hva))
2456 			return -EFAULT;
2457 	}
2458 
2459 	/* Use the slow path for cross page reads and writes. */
2460 	if (nr_pages_needed == 1)
2461 		ghc->hva += offset;
2462 	else
2463 		ghc->memslot = NULL;
2464 
2465 	ghc->gpa = gpa;
2466 	ghc->len = len;
2467 	return 0;
2468 }
2469 
2470 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2471 			      gpa_t gpa, unsigned long len)
2472 {
2473 	struct kvm_memslots *slots = kvm_memslots(kvm);
2474 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2477 
2478 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2479 				  void *data, unsigned int offset,
2480 				  unsigned long len)
2481 {
2482 	struct kvm_memslots *slots = kvm_memslots(kvm);
2483 	int r;
2484 	gpa_t gpa = ghc->gpa + offset;
2485 
2486 	BUG_ON(len + offset > ghc->len);
2487 
2488 	if (slots->generation != ghc->generation) {
2489 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2490 			return -EFAULT;
2491 	}
2492 
2493 	if (kvm_is_error_hva(ghc->hva))
2494 		return -EFAULT;
2495 
2496 	if (unlikely(!ghc->memslot))
2497 		return kvm_write_guest(kvm, gpa, data, len);
2498 
2499 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2500 	if (r)
2501 		return -EFAULT;
2502 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2503 
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2507 
2508 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2509 			   void *data, unsigned long len)
2510 {
2511 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2514 
2515 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2516 				 void *data, unsigned int offset,
2517 				 unsigned long len)
2518 {
2519 	struct kvm_memslots *slots = kvm_memslots(kvm);
2520 	int r;
2521 	gpa_t gpa = ghc->gpa + offset;
2522 
2523 	BUG_ON(len + offset > ghc->len);
2524 
2525 	if (slots->generation != ghc->generation) {
2526 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2527 			return -EFAULT;
2528 	}
2529 
2530 	if (kvm_is_error_hva(ghc->hva))
2531 		return -EFAULT;
2532 
2533 	if (unlikely(!ghc->memslot))
2534 		return kvm_read_guest(kvm, gpa, data, len);
2535 
2536 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2537 	if (r)
2538 		return -EFAULT;
2539 
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2543 
2544 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2545 			  void *data, unsigned long len)
2546 {
2547 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2548 }
2549 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2550 
2551 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2552 {
2553 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2554 
2555 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2558 
2559 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2560 {
2561 	gfn_t gfn = gpa >> PAGE_SHIFT;
2562 	int seg;
2563 	int offset = offset_in_page(gpa);
2564 	int ret;
2565 
2566 	while ((seg = next_segment(len, offset)) != 0) {
2567 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2568 		if (ret < 0)
2569 			return ret;
2570 		offset = 0;
2571 		len -= seg;
2572 		++gfn;
2573 	}
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2577 
2578 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2579 				    gfn_t gfn)
2580 {
2581 	if (memslot && memslot->dirty_bitmap) {
2582 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2583 
2584 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2585 	}
2586 }
2587 
2588 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2589 {
2590 	struct kvm_memory_slot *memslot;
2591 
2592 	memslot = gfn_to_memslot(kvm, gfn);
2593 	mark_page_dirty_in_slot(memslot, gfn);
2594 }
2595 EXPORT_SYMBOL_GPL(mark_page_dirty);
2596 
2597 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2598 {
2599 	struct kvm_memory_slot *memslot;
2600 
2601 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2602 	mark_page_dirty_in_slot(memslot, gfn);
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2605 
2606 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2607 {
2608 	if (!vcpu->sigset_active)
2609 		return;
2610 
2611 	/*
2612 	 * This does a lockless modification of ->real_blocked, which is fine
2613 	 * because, only current can change ->real_blocked and all readers of
2614 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2615 	 * of ->blocked.
2616 	 */
2617 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2618 }
2619 
2620 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2621 {
2622 	if (!vcpu->sigset_active)
2623 		return;
2624 
2625 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2626 	sigemptyset(&current->real_blocked);
2627 }
2628 
2629 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2630 {
2631 	unsigned int old, val, grow, grow_start;
2632 
2633 	old = val = vcpu->halt_poll_ns;
2634 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2635 	grow = READ_ONCE(halt_poll_ns_grow);
2636 	if (!grow)
2637 		goto out;
2638 
2639 	val *= grow;
2640 	if (val < grow_start)
2641 		val = grow_start;
2642 
2643 	if (val > halt_poll_ns)
2644 		val = halt_poll_ns;
2645 
2646 	vcpu->halt_poll_ns = val;
2647 out:
2648 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2649 }
2650 
2651 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2652 {
2653 	unsigned int old, val, shrink;
2654 
2655 	old = val = vcpu->halt_poll_ns;
2656 	shrink = READ_ONCE(halt_poll_ns_shrink);
2657 	if (shrink == 0)
2658 		val = 0;
2659 	else
2660 		val /= shrink;
2661 
2662 	vcpu->halt_poll_ns = val;
2663 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2664 }
2665 
2666 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2667 {
2668 	int ret = -EINTR;
2669 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2670 
2671 	if (kvm_arch_vcpu_runnable(vcpu)) {
2672 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2673 		goto out;
2674 	}
2675 	if (kvm_cpu_has_pending_timer(vcpu))
2676 		goto out;
2677 	if (signal_pending(current))
2678 		goto out;
2679 
2680 	ret = 0;
2681 out:
2682 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2683 	return ret;
2684 }
2685 
2686 static inline void
2687 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2688 {
2689 	if (waited)
2690 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2691 	else
2692 		vcpu->stat.halt_poll_success_ns += poll_ns;
2693 }
2694 
2695 /*
2696  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2697  */
2698 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2699 {
2700 	ktime_t start, cur, poll_end;
2701 	bool waited = false;
2702 	u64 block_ns;
2703 
2704 	kvm_arch_vcpu_blocking(vcpu);
2705 
2706 	start = cur = poll_end = ktime_get();
2707 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2708 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2709 
2710 		++vcpu->stat.halt_attempted_poll;
2711 		do {
2712 			/*
2713 			 * This sets KVM_REQ_UNHALT if an interrupt
2714 			 * arrives.
2715 			 */
2716 			if (kvm_vcpu_check_block(vcpu) < 0) {
2717 				++vcpu->stat.halt_successful_poll;
2718 				if (!vcpu_valid_wakeup(vcpu))
2719 					++vcpu->stat.halt_poll_invalid;
2720 				goto out;
2721 			}
2722 			poll_end = cur = ktime_get();
2723 		} while (single_task_running() && ktime_before(cur, stop));
2724 	}
2725 
2726 	prepare_to_rcuwait(&vcpu->wait);
2727 	for (;;) {
2728 		set_current_state(TASK_INTERRUPTIBLE);
2729 
2730 		if (kvm_vcpu_check_block(vcpu) < 0)
2731 			break;
2732 
2733 		waited = true;
2734 		schedule();
2735 	}
2736 	finish_rcuwait(&vcpu->wait);
2737 	cur = ktime_get();
2738 out:
2739 	kvm_arch_vcpu_unblocking(vcpu);
2740 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2741 
2742 	update_halt_poll_stats(
2743 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2744 
2745 	if (!kvm_arch_no_poll(vcpu)) {
2746 		if (!vcpu_valid_wakeup(vcpu)) {
2747 			shrink_halt_poll_ns(vcpu);
2748 		} else if (vcpu->kvm->max_halt_poll_ns) {
2749 			if (block_ns <= vcpu->halt_poll_ns)
2750 				;
2751 			/* we had a long block, shrink polling */
2752 			else if (vcpu->halt_poll_ns &&
2753 					block_ns > vcpu->kvm->max_halt_poll_ns)
2754 				shrink_halt_poll_ns(vcpu);
2755 			/* we had a short halt and our poll time is too small */
2756 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2757 					block_ns < vcpu->kvm->max_halt_poll_ns)
2758 				grow_halt_poll_ns(vcpu);
2759 		} else {
2760 			vcpu->halt_poll_ns = 0;
2761 		}
2762 	}
2763 
2764 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2765 	kvm_arch_vcpu_block_finish(vcpu);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2768 
2769 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2770 {
2771 	struct rcuwait *waitp;
2772 
2773 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2774 	if (rcuwait_wake_up(waitp)) {
2775 		WRITE_ONCE(vcpu->ready, true);
2776 		++vcpu->stat.halt_wakeup;
2777 		return true;
2778 	}
2779 
2780 	return false;
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2783 
2784 #ifndef CONFIG_S390
2785 /*
2786  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2787  */
2788 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2789 {
2790 	int me;
2791 	int cpu = vcpu->cpu;
2792 
2793 	if (kvm_vcpu_wake_up(vcpu))
2794 		return;
2795 
2796 	me = get_cpu();
2797 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2798 		if (kvm_arch_vcpu_should_kick(vcpu))
2799 			smp_send_reschedule(cpu);
2800 	put_cpu();
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2803 #endif /* !CONFIG_S390 */
2804 
2805 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2806 {
2807 	struct pid *pid;
2808 	struct task_struct *task = NULL;
2809 	int ret = 0;
2810 
2811 	rcu_read_lock();
2812 	pid = rcu_dereference(target->pid);
2813 	if (pid)
2814 		task = get_pid_task(pid, PIDTYPE_PID);
2815 	rcu_read_unlock();
2816 	if (!task)
2817 		return ret;
2818 	ret = yield_to(task, 1);
2819 	put_task_struct(task);
2820 
2821 	return ret;
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2824 
2825 /*
2826  * Helper that checks whether a VCPU is eligible for directed yield.
2827  * Most eligible candidate to yield is decided by following heuristics:
2828  *
2829  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2830  *  (preempted lock holder), indicated by @in_spin_loop.
2831  *  Set at the beginning and cleared at the end of interception/PLE handler.
2832  *
2833  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2834  *  chance last time (mostly it has become eligible now since we have probably
2835  *  yielded to lockholder in last iteration. This is done by toggling
2836  *  @dy_eligible each time a VCPU checked for eligibility.)
2837  *
2838  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2839  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2840  *  burning. Giving priority for a potential lock-holder increases lock
2841  *  progress.
2842  *
2843  *  Since algorithm is based on heuristics, accessing another VCPU data without
2844  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2845  *  and continue with next VCPU and so on.
2846  */
2847 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2848 {
2849 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2850 	bool eligible;
2851 
2852 	eligible = !vcpu->spin_loop.in_spin_loop ||
2853 		    vcpu->spin_loop.dy_eligible;
2854 
2855 	if (vcpu->spin_loop.in_spin_loop)
2856 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2857 
2858 	return eligible;
2859 #else
2860 	return true;
2861 #endif
2862 }
2863 
2864 /*
2865  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2866  * a vcpu_load/vcpu_put pair.  However, for most architectures
2867  * kvm_arch_vcpu_runnable does not require vcpu_load.
2868  */
2869 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2870 {
2871 	return kvm_arch_vcpu_runnable(vcpu);
2872 }
2873 
2874 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2875 {
2876 	if (kvm_arch_dy_runnable(vcpu))
2877 		return true;
2878 
2879 #ifdef CONFIG_KVM_ASYNC_PF
2880 	if (!list_empty_careful(&vcpu->async_pf.done))
2881 		return true;
2882 #endif
2883 
2884 	return false;
2885 }
2886 
2887 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2888 {
2889 	struct kvm *kvm = me->kvm;
2890 	struct kvm_vcpu *vcpu;
2891 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2892 	int yielded = 0;
2893 	int try = 3;
2894 	int pass;
2895 	int i;
2896 
2897 	kvm_vcpu_set_in_spin_loop(me, true);
2898 	/*
2899 	 * We boost the priority of a VCPU that is runnable but not
2900 	 * currently running, because it got preempted by something
2901 	 * else and called schedule in __vcpu_run.  Hopefully that
2902 	 * VCPU is holding the lock that we need and will release it.
2903 	 * We approximate round-robin by starting at the last boosted VCPU.
2904 	 */
2905 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2906 		kvm_for_each_vcpu(i, vcpu, kvm) {
2907 			if (!pass && i <= last_boosted_vcpu) {
2908 				i = last_boosted_vcpu;
2909 				continue;
2910 			} else if (pass && i > last_boosted_vcpu)
2911 				break;
2912 			if (!READ_ONCE(vcpu->ready))
2913 				continue;
2914 			if (vcpu == me)
2915 				continue;
2916 			if (rcuwait_active(&vcpu->wait) &&
2917 			    !vcpu_dy_runnable(vcpu))
2918 				continue;
2919 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2920 				!kvm_arch_vcpu_in_kernel(vcpu))
2921 				continue;
2922 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2923 				continue;
2924 
2925 			yielded = kvm_vcpu_yield_to(vcpu);
2926 			if (yielded > 0) {
2927 				kvm->last_boosted_vcpu = i;
2928 				break;
2929 			} else if (yielded < 0) {
2930 				try--;
2931 				if (!try)
2932 					break;
2933 			}
2934 		}
2935 	}
2936 	kvm_vcpu_set_in_spin_loop(me, false);
2937 
2938 	/* Ensure vcpu is not eligible during next spinloop */
2939 	kvm_vcpu_set_dy_eligible(me, false);
2940 }
2941 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2942 
2943 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2944 {
2945 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2946 	struct page *page;
2947 
2948 	if (vmf->pgoff == 0)
2949 		page = virt_to_page(vcpu->run);
2950 #ifdef CONFIG_X86
2951 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2952 		page = virt_to_page(vcpu->arch.pio_data);
2953 #endif
2954 #ifdef CONFIG_KVM_MMIO
2955 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2956 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2957 #endif
2958 	else
2959 		return kvm_arch_vcpu_fault(vcpu, vmf);
2960 	get_page(page);
2961 	vmf->page = page;
2962 	return 0;
2963 }
2964 
2965 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2966 	.fault = kvm_vcpu_fault,
2967 };
2968 
2969 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2970 {
2971 	vma->vm_ops = &kvm_vcpu_vm_ops;
2972 	return 0;
2973 }
2974 
2975 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2976 {
2977 	struct kvm_vcpu *vcpu = filp->private_data;
2978 
2979 	kvm_put_kvm(vcpu->kvm);
2980 	return 0;
2981 }
2982 
2983 static struct file_operations kvm_vcpu_fops = {
2984 	.release        = kvm_vcpu_release,
2985 	.unlocked_ioctl = kvm_vcpu_ioctl,
2986 	.mmap           = kvm_vcpu_mmap,
2987 	.llseek		= noop_llseek,
2988 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2989 };
2990 
2991 /*
2992  * Allocates an inode for the vcpu.
2993  */
2994 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2995 {
2996 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2997 
2998 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2999 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3000 }
3001 
3002 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3003 {
3004 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3005 	struct dentry *debugfs_dentry;
3006 	char dir_name[ITOA_MAX_LEN * 2];
3007 
3008 	if (!debugfs_initialized())
3009 		return;
3010 
3011 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3012 	debugfs_dentry = debugfs_create_dir(dir_name,
3013 					    vcpu->kvm->debugfs_dentry);
3014 
3015 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3016 #endif
3017 }
3018 
3019 /*
3020  * Creates some virtual cpus.  Good luck creating more than one.
3021  */
3022 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3023 {
3024 	int r;
3025 	struct kvm_vcpu *vcpu;
3026 	struct page *page;
3027 
3028 	if (id >= KVM_MAX_VCPU_ID)
3029 		return -EINVAL;
3030 
3031 	mutex_lock(&kvm->lock);
3032 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3033 		mutex_unlock(&kvm->lock);
3034 		return -EINVAL;
3035 	}
3036 
3037 	kvm->created_vcpus++;
3038 	mutex_unlock(&kvm->lock);
3039 
3040 	r = kvm_arch_vcpu_precreate(kvm, id);
3041 	if (r)
3042 		goto vcpu_decrement;
3043 
3044 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3045 	if (!vcpu) {
3046 		r = -ENOMEM;
3047 		goto vcpu_decrement;
3048 	}
3049 
3050 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3051 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3052 	if (!page) {
3053 		r = -ENOMEM;
3054 		goto vcpu_free;
3055 	}
3056 	vcpu->run = page_address(page);
3057 
3058 	kvm_vcpu_init(vcpu, kvm, id);
3059 
3060 	r = kvm_arch_vcpu_create(vcpu);
3061 	if (r)
3062 		goto vcpu_free_run_page;
3063 
3064 	mutex_lock(&kvm->lock);
3065 	if (kvm_get_vcpu_by_id(kvm, id)) {
3066 		r = -EEXIST;
3067 		goto unlock_vcpu_destroy;
3068 	}
3069 
3070 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3071 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3072 
3073 	/* Now it's all set up, let userspace reach it */
3074 	kvm_get_kvm(kvm);
3075 	r = create_vcpu_fd(vcpu);
3076 	if (r < 0) {
3077 		kvm_put_kvm_no_destroy(kvm);
3078 		goto unlock_vcpu_destroy;
3079 	}
3080 
3081 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3082 
3083 	/*
3084 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3085 	 * before kvm->online_vcpu's incremented value.
3086 	 */
3087 	smp_wmb();
3088 	atomic_inc(&kvm->online_vcpus);
3089 
3090 	mutex_unlock(&kvm->lock);
3091 	kvm_arch_vcpu_postcreate(vcpu);
3092 	kvm_create_vcpu_debugfs(vcpu);
3093 	return r;
3094 
3095 unlock_vcpu_destroy:
3096 	mutex_unlock(&kvm->lock);
3097 	kvm_arch_vcpu_destroy(vcpu);
3098 vcpu_free_run_page:
3099 	free_page((unsigned long)vcpu->run);
3100 vcpu_free:
3101 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3102 vcpu_decrement:
3103 	mutex_lock(&kvm->lock);
3104 	kvm->created_vcpus--;
3105 	mutex_unlock(&kvm->lock);
3106 	return r;
3107 }
3108 
3109 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3110 {
3111 	if (sigset) {
3112 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3113 		vcpu->sigset_active = 1;
3114 		vcpu->sigset = *sigset;
3115 	} else
3116 		vcpu->sigset_active = 0;
3117 	return 0;
3118 }
3119 
3120 static long kvm_vcpu_ioctl(struct file *filp,
3121 			   unsigned int ioctl, unsigned long arg)
3122 {
3123 	struct kvm_vcpu *vcpu = filp->private_data;
3124 	void __user *argp = (void __user *)arg;
3125 	int r;
3126 	struct kvm_fpu *fpu = NULL;
3127 	struct kvm_sregs *kvm_sregs = NULL;
3128 
3129 	if (vcpu->kvm->mm != current->mm)
3130 		return -EIO;
3131 
3132 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3133 		return -EINVAL;
3134 
3135 	/*
3136 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3137 	 * execution; mutex_lock() would break them.
3138 	 */
3139 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3140 	if (r != -ENOIOCTLCMD)
3141 		return r;
3142 
3143 	if (mutex_lock_killable(&vcpu->mutex))
3144 		return -EINTR;
3145 	switch (ioctl) {
3146 	case KVM_RUN: {
3147 		struct pid *oldpid;
3148 		r = -EINVAL;
3149 		if (arg)
3150 			goto out;
3151 		oldpid = rcu_access_pointer(vcpu->pid);
3152 		if (unlikely(oldpid != task_pid(current))) {
3153 			/* The thread running this VCPU changed. */
3154 			struct pid *newpid;
3155 
3156 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3157 			if (r)
3158 				break;
3159 
3160 			newpid = get_task_pid(current, PIDTYPE_PID);
3161 			rcu_assign_pointer(vcpu->pid, newpid);
3162 			if (oldpid)
3163 				synchronize_rcu();
3164 			put_pid(oldpid);
3165 		}
3166 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3167 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3168 		break;
3169 	}
3170 	case KVM_GET_REGS: {
3171 		struct kvm_regs *kvm_regs;
3172 
3173 		r = -ENOMEM;
3174 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3175 		if (!kvm_regs)
3176 			goto out;
3177 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3178 		if (r)
3179 			goto out_free1;
3180 		r = -EFAULT;
3181 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3182 			goto out_free1;
3183 		r = 0;
3184 out_free1:
3185 		kfree(kvm_regs);
3186 		break;
3187 	}
3188 	case KVM_SET_REGS: {
3189 		struct kvm_regs *kvm_regs;
3190 
3191 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3192 		if (IS_ERR(kvm_regs)) {
3193 			r = PTR_ERR(kvm_regs);
3194 			goto out;
3195 		}
3196 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3197 		kfree(kvm_regs);
3198 		break;
3199 	}
3200 	case KVM_GET_SREGS: {
3201 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3202 				    GFP_KERNEL_ACCOUNT);
3203 		r = -ENOMEM;
3204 		if (!kvm_sregs)
3205 			goto out;
3206 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3207 		if (r)
3208 			goto out;
3209 		r = -EFAULT;
3210 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3211 			goto out;
3212 		r = 0;
3213 		break;
3214 	}
3215 	case KVM_SET_SREGS: {
3216 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3217 		if (IS_ERR(kvm_sregs)) {
3218 			r = PTR_ERR(kvm_sregs);
3219 			kvm_sregs = NULL;
3220 			goto out;
3221 		}
3222 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3223 		break;
3224 	}
3225 	case KVM_GET_MP_STATE: {
3226 		struct kvm_mp_state mp_state;
3227 
3228 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3229 		if (r)
3230 			goto out;
3231 		r = -EFAULT;
3232 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3233 			goto out;
3234 		r = 0;
3235 		break;
3236 	}
3237 	case KVM_SET_MP_STATE: {
3238 		struct kvm_mp_state mp_state;
3239 
3240 		r = -EFAULT;
3241 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3242 			goto out;
3243 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3244 		break;
3245 	}
3246 	case KVM_TRANSLATE: {
3247 		struct kvm_translation tr;
3248 
3249 		r = -EFAULT;
3250 		if (copy_from_user(&tr, argp, sizeof(tr)))
3251 			goto out;
3252 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3253 		if (r)
3254 			goto out;
3255 		r = -EFAULT;
3256 		if (copy_to_user(argp, &tr, sizeof(tr)))
3257 			goto out;
3258 		r = 0;
3259 		break;
3260 	}
3261 	case KVM_SET_GUEST_DEBUG: {
3262 		struct kvm_guest_debug dbg;
3263 
3264 		r = -EFAULT;
3265 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3266 			goto out;
3267 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3268 		break;
3269 	}
3270 	case KVM_SET_SIGNAL_MASK: {
3271 		struct kvm_signal_mask __user *sigmask_arg = argp;
3272 		struct kvm_signal_mask kvm_sigmask;
3273 		sigset_t sigset, *p;
3274 
3275 		p = NULL;
3276 		if (argp) {
3277 			r = -EFAULT;
3278 			if (copy_from_user(&kvm_sigmask, argp,
3279 					   sizeof(kvm_sigmask)))
3280 				goto out;
3281 			r = -EINVAL;
3282 			if (kvm_sigmask.len != sizeof(sigset))
3283 				goto out;
3284 			r = -EFAULT;
3285 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3286 					   sizeof(sigset)))
3287 				goto out;
3288 			p = &sigset;
3289 		}
3290 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3291 		break;
3292 	}
3293 	case KVM_GET_FPU: {
3294 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3295 		r = -ENOMEM;
3296 		if (!fpu)
3297 			goto out;
3298 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3299 		if (r)
3300 			goto out;
3301 		r = -EFAULT;
3302 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3303 			goto out;
3304 		r = 0;
3305 		break;
3306 	}
3307 	case KVM_SET_FPU: {
3308 		fpu = memdup_user(argp, sizeof(*fpu));
3309 		if (IS_ERR(fpu)) {
3310 			r = PTR_ERR(fpu);
3311 			fpu = NULL;
3312 			goto out;
3313 		}
3314 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3315 		break;
3316 	}
3317 	default:
3318 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3319 	}
3320 out:
3321 	mutex_unlock(&vcpu->mutex);
3322 	kfree(fpu);
3323 	kfree(kvm_sregs);
3324 	return r;
3325 }
3326 
3327 #ifdef CONFIG_KVM_COMPAT
3328 static long kvm_vcpu_compat_ioctl(struct file *filp,
3329 				  unsigned int ioctl, unsigned long arg)
3330 {
3331 	struct kvm_vcpu *vcpu = filp->private_data;
3332 	void __user *argp = compat_ptr(arg);
3333 	int r;
3334 
3335 	if (vcpu->kvm->mm != current->mm)
3336 		return -EIO;
3337 
3338 	switch (ioctl) {
3339 	case KVM_SET_SIGNAL_MASK: {
3340 		struct kvm_signal_mask __user *sigmask_arg = argp;
3341 		struct kvm_signal_mask kvm_sigmask;
3342 		sigset_t sigset;
3343 
3344 		if (argp) {
3345 			r = -EFAULT;
3346 			if (copy_from_user(&kvm_sigmask, argp,
3347 					   sizeof(kvm_sigmask)))
3348 				goto out;
3349 			r = -EINVAL;
3350 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3351 				goto out;
3352 			r = -EFAULT;
3353 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3354 				goto out;
3355 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3356 		} else
3357 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3358 		break;
3359 	}
3360 	default:
3361 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3362 	}
3363 
3364 out:
3365 	return r;
3366 }
3367 #endif
3368 
3369 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3370 {
3371 	struct kvm_device *dev = filp->private_data;
3372 
3373 	if (dev->ops->mmap)
3374 		return dev->ops->mmap(dev, vma);
3375 
3376 	return -ENODEV;
3377 }
3378 
3379 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3380 				 int (*accessor)(struct kvm_device *dev,
3381 						 struct kvm_device_attr *attr),
3382 				 unsigned long arg)
3383 {
3384 	struct kvm_device_attr attr;
3385 
3386 	if (!accessor)
3387 		return -EPERM;
3388 
3389 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3390 		return -EFAULT;
3391 
3392 	return accessor(dev, &attr);
3393 }
3394 
3395 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3396 			     unsigned long arg)
3397 {
3398 	struct kvm_device *dev = filp->private_data;
3399 
3400 	if (dev->kvm->mm != current->mm)
3401 		return -EIO;
3402 
3403 	switch (ioctl) {
3404 	case KVM_SET_DEVICE_ATTR:
3405 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3406 	case KVM_GET_DEVICE_ATTR:
3407 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3408 	case KVM_HAS_DEVICE_ATTR:
3409 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3410 	default:
3411 		if (dev->ops->ioctl)
3412 			return dev->ops->ioctl(dev, ioctl, arg);
3413 
3414 		return -ENOTTY;
3415 	}
3416 }
3417 
3418 static int kvm_device_release(struct inode *inode, struct file *filp)
3419 {
3420 	struct kvm_device *dev = filp->private_data;
3421 	struct kvm *kvm = dev->kvm;
3422 
3423 	if (dev->ops->release) {
3424 		mutex_lock(&kvm->lock);
3425 		list_del(&dev->vm_node);
3426 		dev->ops->release(dev);
3427 		mutex_unlock(&kvm->lock);
3428 	}
3429 
3430 	kvm_put_kvm(kvm);
3431 	return 0;
3432 }
3433 
3434 static const struct file_operations kvm_device_fops = {
3435 	.unlocked_ioctl = kvm_device_ioctl,
3436 	.release = kvm_device_release,
3437 	KVM_COMPAT(kvm_device_ioctl),
3438 	.mmap = kvm_device_mmap,
3439 };
3440 
3441 struct kvm_device *kvm_device_from_filp(struct file *filp)
3442 {
3443 	if (filp->f_op != &kvm_device_fops)
3444 		return NULL;
3445 
3446 	return filp->private_data;
3447 }
3448 
3449 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3450 #ifdef CONFIG_KVM_MPIC
3451 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3452 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3453 #endif
3454 };
3455 
3456 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3457 {
3458 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3459 		return -ENOSPC;
3460 
3461 	if (kvm_device_ops_table[type] != NULL)
3462 		return -EEXIST;
3463 
3464 	kvm_device_ops_table[type] = ops;
3465 	return 0;
3466 }
3467 
3468 void kvm_unregister_device_ops(u32 type)
3469 {
3470 	if (kvm_device_ops_table[type] != NULL)
3471 		kvm_device_ops_table[type] = NULL;
3472 }
3473 
3474 static int kvm_ioctl_create_device(struct kvm *kvm,
3475 				   struct kvm_create_device *cd)
3476 {
3477 	const struct kvm_device_ops *ops = NULL;
3478 	struct kvm_device *dev;
3479 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3480 	int type;
3481 	int ret;
3482 
3483 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3484 		return -ENODEV;
3485 
3486 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3487 	ops = kvm_device_ops_table[type];
3488 	if (ops == NULL)
3489 		return -ENODEV;
3490 
3491 	if (test)
3492 		return 0;
3493 
3494 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3495 	if (!dev)
3496 		return -ENOMEM;
3497 
3498 	dev->ops = ops;
3499 	dev->kvm = kvm;
3500 
3501 	mutex_lock(&kvm->lock);
3502 	ret = ops->create(dev, type);
3503 	if (ret < 0) {
3504 		mutex_unlock(&kvm->lock);
3505 		kfree(dev);
3506 		return ret;
3507 	}
3508 	list_add(&dev->vm_node, &kvm->devices);
3509 	mutex_unlock(&kvm->lock);
3510 
3511 	if (ops->init)
3512 		ops->init(dev);
3513 
3514 	kvm_get_kvm(kvm);
3515 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3516 	if (ret < 0) {
3517 		kvm_put_kvm_no_destroy(kvm);
3518 		mutex_lock(&kvm->lock);
3519 		list_del(&dev->vm_node);
3520 		mutex_unlock(&kvm->lock);
3521 		ops->destroy(dev);
3522 		return ret;
3523 	}
3524 
3525 	cd->fd = ret;
3526 	return 0;
3527 }
3528 
3529 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3530 {
3531 	switch (arg) {
3532 	case KVM_CAP_USER_MEMORY:
3533 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3534 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3535 	case KVM_CAP_INTERNAL_ERROR_DATA:
3536 #ifdef CONFIG_HAVE_KVM_MSI
3537 	case KVM_CAP_SIGNAL_MSI:
3538 #endif
3539 #ifdef CONFIG_HAVE_KVM_IRQFD
3540 	case KVM_CAP_IRQFD:
3541 	case KVM_CAP_IRQFD_RESAMPLE:
3542 #endif
3543 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3544 	case KVM_CAP_CHECK_EXTENSION_VM:
3545 	case KVM_CAP_ENABLE_CAP_VM:
3546 	case KVM_CAP_HALT_POLL:
3547 		return 1;
3548 #ifdef CONFIG_KVM_MMIO
3549 	case KVM_CAP_COALESCED_MMIO:
3550 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3551 	case KVM_CAP_COALESCED_PIO:
3552 		return 1;
3553 #endif
3554 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3555 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3556 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3557 #endif
3558 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3559 	case KVM_CAP_IRQ_ROUTING:
3560 		return KVM_MAX_IRQ_ROUTES;
3561 #endif
3562 #if KVM_ADDRESS_SPACE_NUM > 1
3563 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3564 		return KVM_ADDRESS_SPACE_NUM;
3565 #endif
3566 	case KVM_CAP_NR_MEMSLOTS:
3567 		return KVM_USER_MEM_SLOTS;
3568 	default:
3569 		break;
3570 	}
3571 	return kvm_vm_ioctl_check_extension(kvm, arg);
3572 }
3573 
3574 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3575 						  struct kvm_enable_cap *cap)
3576 {
3577 	return -EINVAL;
3578 }
3579 
3580 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3581 					   struct kvm_enable_cap *cap)
3582 {
3583 	switch (cap->cap) {
3584 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3585 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3586 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3587 
3588 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3589 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3590 
3591 		if (cap->flags || (cap->args[0] & ~allowed_options))
3592 			return -EINVAL;
3593 		kvm->manual_dirty_log_protect = cap->args[0];
3594 		return 0;
3595 	}
3596 #endif
3597 	case KVM_CAP_HALT_POLL: {
3598 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3599 			return -EINVAL;
3600 
3601 		kvm->max_halt_poll_ns = cap->args[0];
3602 		return 0;
3603 	}
3604 	default:
3605 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3606 	}
3607 }
3608 
3609 static long kvm_vm_ioctl(struct file *filp,
3610 			   unsigned int ioctl, unsigned long arg)
3611 {
3612 	struct kvm *kvm = filp->private_data;
3613 	void __user *argp = (void __user *)arg;
3614 	int r;
3615 
3616 	if (kvm->mm != current->mm)
3617 		return -EIO;
3618 	switch (ioctl) {
3619 	case KVM_CREATE_VCPU:
3620 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3621 		break;
3622 	case KVM_ENABLE_CAP: {
3623 		struct kvm_enable_cap cap;
3624 
3625 		r = -EFAULT;
3626 		if (copy_from_user(&cap, argp, sizeof(cap)))
3627 			goto out;
3628 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3629 		break;
3630 	}
3631 	case KVM_SET_USER_MEMORY_REGION: {
3632 		struct kvm_userspace_memory_region kvm_userspace_mem;
3633 
3634 		r = -EFAULT;
3635 		if (copy_from_user(&kvm_userspace_mem, argp,
3636 						sizeof(kvm_userspace_mem)))
3637 			goto out;
3638 
3639 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3640 		break;
3641 	}
3642 	case KVM_GET_DIRTY_LOG: {
3643 		struct kvm_dirty_log log;
3644 
3645 		r = -EFAULT;
3646 		if (copy_from_user(&log, argp, sizeof(log)))
3647 			goto out;
3648 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3649 		break;
3650 	}
3651 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3652 	case KVM_CLEAR_DIRTY_LOG: {
3653 		struct kvm_clear_dirty_log log;
3654 
3655 		r = -EFAULT;
3656 		if (copy_from_user(&log, argp, sizeof(log)))
3657 			goto out;
3658 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3659 		break;
3660 	}
3661 #endif
3662 #ifdef CONFIG_KVM_MMIO
3663 	case KVM_REGISTER_COALESCED_MMIO: {
3664 		struct kvm_coalesced_mmio_zone zone;
3665 
3666 		r = -EFAULT;
3667 		if (copy_from_user(&zone, argp, sizeof(zone)))
3668 			goto out;
3669 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3670 		break;
3671 	}
3672 	case KVM_UNREGISTER_COALESCED_MMIO: {
3673 		struct kvm_coalesced_mmio_zone zone;
3674 
3675 		r = -EFAULT;
3676 		if (copy_from_user(&zone, argp, sizeof(zone)))
3677 			goto out;
3678 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3679 		break;
3680 	}
3681 #endif
3682 	case KVM_IRQFD: {
3683 		struct kvm_irqfd data;
3684 
3685 		r = -EFAULT;
3686 		if (copy_from_user(&data, argp, sizeof(data)))
3687 			goto out;
3688 		r = kvm_irqfd(kvm, &data);
3689 		break;
3690 	}
3691 	case KVM_IOEVENTFD: {
3692 		struct kvm_ioeventfd data;
3693 
3694 		r = -EFAULT;
3695 		if (copy_from_user(&data, argp, sizeof(data)))
3696 			goto out;
3697 		r = kvm_ioeventfd(kvm, &data);
3698 		break;
3699 	}
3700 #ifdef CONFIG_HAVE_KVM_MSI
3701 	case KVM_SIGNAL_MSI: {
3702 		struct kvm_msi msi;
3703 
3704 		r = -EFAULT;
3705 		if (copy_from_user(&msi, argp, sizeof(msi)))
3706 			goto out;
3707 		r = kvm_send_userspace_msi(kvm, &msi);
3708 		break;
3709 	}
3710 #endif
3711 #ifdef __KVM_HAVE_IRQ_LINE
3712 	case KVM_IRQ_LINE_STATUS:
3713 	case KVM_IRQ_LINE: {
3714 		struct kvm_irq_level irq_event;
3715 
3716 		r = -EFAULT;
3717 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3718 			goto out;
3719 
3720 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3721 					ioctl == KVM_IRQ_LINE_STATUS);
3722 		if (r)
3723 			goto out;
3724 
3725 		r = -EFAULT;
3726 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3727 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3728 				goto out;
3729 		}
3730 
3731 		r = 0;
3732 		break;
3733 	}
3734 #endif
3735 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3736 	case KVM_SET_GSI_ROUTING: {
3737 		struct kvm_irq_routing routing;
3738 		struct kvm_irq_routing __user *urouting;
3739 		struct kvm_irq_routing_entry *entries = NULL;
3740 
3741 		r = -EFAULT;
3742 		if (copy_from_user(&routing, argp, sizeof(routing)))
3743 			goto out;
3744 		r = -EINVAL;
3745 		if (!kvm_arch_can_set_irq_routing(kvm))
3746 			goto out;
3747 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3748 			goto out;
3749 		if (routing.flags)
3750 			goto out;
3751 		if (routing.nr) {
3752 			urouting = argp;
3753 			entries = vmemdup_user(urouting->entries,
3754 					       array_size(sizeof(*entries),
3755 							  routing.nr));
3756 			if (IS_ERR(entries)) {
3757 				r = PTR_ERR(entries);
3758 				goto out;
3759 			}
3760 		}
3761 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3762 					routing.flags);
3763 		kvfree(entries);
3764 		break;
3765 	}
3766 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3767 	case KVM_CREATE_DEVICE: {
3768 		struct kvm_create_device cd;
3769 
3770 		r = -EFAULT;
3771 		if (copy_from_user(&cd, argp, sizeof(cd)))
3772 			goto out;
3773 
3774 		r = kvm_ioctl_create_device(kvm, &cd);
3775 		if (r)
3776 			goto out;
3777 
3778 		r = -EFAULT;
3779 		if (copy_to_user(argp, &cd, sizeof(cd)))
3780 			goto out;
3781 
3782 		r = 0;
3783 		break;
3784 	}
3785 	case KVM_CHECK_EXTENSION:
3786 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3787 		break;
3788 	default:
3789 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3790 	}
3791 out:
3792 	return r;
3793 }
3794 
3795 #ifdef CONFIG_KVM_COMPAT
3796 struct compat_kvm_dirty_log {
3797 	__u32 slot;
3798 	__u32 padding1;
3799 	union {
3800 		compat_uptr_t dirty_bitmap; /* one bit per page */
3801 		__u64 padding2;
3802 	};
3803 };
3804 
3805 static long kvm_vm_compat_ioctl(struct file *filp,
3806 			   unsigned int ioctl, unsigned long arg)
3807 {
3808 	struct kvm *kvm = filp->private_data;
3809 	int r;
3810 
3811 	if (kvm->mm != current->mm)
3812 		return -EIO;
3813 	switch (ioctl) {
3814 	case KVM_GET_DIRTY_LOG: {
3815 		struct compat_kvm_dirty_log compat_log;
3816 		struct kvm_dirty_log log;
3817 
3818 		if (copy_from_user(&compat_log, (void __user *)arg,
3819 				   sizeof(compat_log)))
3820 			return -EFAULT;
3821 		log.slot	 = compat_log.slot;
3822 		log.padding1	 = compat_log.padding1;
3823 		log.padding2	 = compat_log.padding2;
3824 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3825 
3826 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3827 		break;
3828 	}
3829 	default:
3830 		r = kvm_vm_ioctl(filp, ioctl, arg);
3831 	}
3832 	return r;
3833 }
3834 #endif
3835 
3836 static struct file_operations kvm_vm_fops = {
3837 	.release        = kvm_vm_release,
3838 	.unlocked_ioctl = kvm_vm_ioctl,
3839 	.llseek		= noop_llseek,
3840 	KVM_COMPAT(kvm_vm_compat_ioctl),
3841 };
3842 
3843 static int kvm_dev_ioctl_create_vm(unsigned long type)
3844 {
3845 	int r;
3846 	struct kvm *kvm;
3847 	struct file *file;
3848 
3849 	kvm = kvm_create_vm(type);
3850 	if (IS_ERR(kvm))
3851 		return PTR_ERR(kvm);
3852 #ifdef CONFIG_KVM_MMIO
3853 	r = kvm_coalesced_mmio_init(kvm);
3854 	if (r < 0)
3855 		goto put_kvm;
3856 #endif
3857 	r = get_unused_fd_flags(O_CLOEXEC);
3858 	if (r < 0)
3859 		goto put_kvm;
3860 
3861 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3862 	if (IS_ERR(file)) {
3863 		put_unused_fd(r);
3864 		r = PTR_ERR(file);
3865 		goto put_kvm;
3866 	}
3867 
3868 	/*
3869 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3870 	 * already set, with ->release() being kvm_vm_release().  In error
3871 	 * cases it will be called by the final fput(file) and will take
3872 	 * care of doing kvm_put_kvm(kvm).
3873 	 */
3874 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3875 		put_unused_fd(r);
3876 		fput(file);
3877 		return -ENOMEM;
3878 	}
3879 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3880 
3881 	fd_install(r, file);
3882 	return r;
3883 
3884 put_kvm:
3885 	kvm_put_kvm(kvm);
3886 	return r;
3887 }
3888 
3889 static long kvm_dev_ioctl(struct file *filp,
3890 			  unsigned int ioctl, unsigned long arg)
3891 {
3892 	long r = -EINVAL;
3893 
3894 	switch (ioctl) {
3895 	case KVM_GET_API_VERSION:
3896 		if (arg)
3897 			goto out;
3898 		r = KVM_API_VERSION;
3899 		break;
3900 	case KVM_CREATE_VM:
3901 		r = kvm_dev_ioctl_create_vm(arg);
3902 		break;
3903 	case KVM_CHECK_EXTENSION:
3904 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3905 		break;
3906 	case KVM_GET_VCPU_MMAP_SIZE:
3907 		if (arg)
3908 			goto out;
3909 		r = PAGE_SIZE;     /* struct kvm_run */
3910 #ifdef CONFIG_X86
3911 		r += PAGE_SIZE;    /* pio data page */
3912 #endif
3913 #ifdef CONFIG_KVM_MMIO
3914 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3915 #endif
3916 		break;
3917 	case KVM_TRACE_ENABLE:
3918 	case KVM_TRACE_PAUSE:
3919 	case KVM_TRACE_DISABLE:
3920 		r = -EOPNOTSUPP;
3921 		break;
3922 	default:
3923 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3924 	}
3925 out:
3926 	return r;
3927 }
3928 
3929 static struct file_operations kvm_chardev_ops = {
3930 	.unlocked_ioctl = kvm_dev_ioctl,
3931 	.llseek		= noop_llseek,
3932 	KVM_COMPAT(kvm_dev_ioctl),
3933 };
3934 
3935 static struct miscdevice kvm_dev = {
3936 	KVM_MINOR,
3937 	"kvm",
3938 	&kvm_chardev_ops,
3939 };
3940 
3941 static void hardware_enable_nolock(void *junk)
3942 {
3943 	int cpu = raw_smp_processor_id();
3944 	int r;
3945 
3946 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3947 		return;
3948 
3949 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3950 
3951 	r = kvm_arch_hardware_enable();
3952 
3953 	if (r) {
3954 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3955 		atomic_inc(&hardware_enable_failed);
3956 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3957 	}
3958 }
3959 
3960 static int kvm_starting_cpu(unsigned int cpu)
3961 {
3962 	raw_spin_lock(&kvm_count_lock);
3963 	if (kvm_usage_count)
3964 		hardware_enable_nolock(NULL);
3965 	raw_spin_unlock(&kvm_count_lock);
3966 	return 0;
3967 }
3968 
3969 static void hardware_disable_nolock(void *junk)
3970 {
3971 	int cpu = raw_smp_processor_id();
3972 
3973 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3974 		return;
3975 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3976 	kvm_arch_hardware_disable();
3977 }
3978 
3979 static int kvm_dying_cpu(unsigned int cpu)
3980 {
3981 	raw_spin_lock(&kvm_count_lock);
3982 	if (kvm_usage_count)
3983 		hardware_disable_nolock(NULL);
3984 	raw_spin_unlock(&kvm_count_lock);
3985 	return 0;
3986 }
3987 
3988 static void hardware_disable_all_nolock(void)
3989 {
3990 	BUG_ON(!kvm_usage_count);
3991 
3992 	kvm_usage_count--;
3993 	if (!kvm_usage_count)
3994 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3995 }
3996 
3997 static void hardware_disable_all(void)
3998 {
3999 	raw_spin_lock(&kvm_count_lock);
4000 	hardware_disable_all_nolock();
4001 	raw_spin_unlock(&kvm_count_lock);
4002 }
4003 
4004 static int hardware_enable_all(void)
4005 {
4006 	int r = 0;
4007 
4008 	raw_spin_lock(&kvm_count_lock);
4009 
4010 	kvm_usage_count++;
4011 	if (kvm_usage_count == 1) {
4012 		atomic_set(&hardware_enable_failed, 0);
4013 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4014 
4015 		if (atomic_read(&hardware_enable_failed)) {
4016 			hardware_disable_all_nolock();
4017 			r = -EBUSY;
4018 		}
4019 	}
4020 
4021 	raw_spin_unlock(&kvm_count_lock);
4022 
4023 	return r;
4024 }
4025 
4026 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4027 		      void *v)
4028 {
4029 	/*
4030 	 * Some (well, at least mine) BIOSes hang on reboot if
4031 	 * in vmx root mode.
4032 	 *
4033 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4034 	 */
4035 	pr_info("kvm: exiting hardware virtualization\n");
4036 	kvm_rebooting = true;
4037 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4038 	return NOTIFY_OK;
4039 }
4040 
4041 static struct notifier_block kvm_reboot_notifier = {
4042 	.notifier_call = kvm_reboot,
4043 	.priority = 0,
4044 };
4045 
4046 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4047 {
4048 	int i;
4049 
4050 	for (i = 0; i < bus->dev_count; i++) {
4051 		struct kvm_io_device *pos = bus->range[i].dev;
4052 
4053 		kvm_iodevice_destructor(pos);
4054 	}
4055 	kfree(bus);
4056 }
4057 
4058 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4059 				 const struct kvm_io_range *r2)
4060 {
4061 	gpa_t addr1 = r1->addr;
4062 	gpa_t addr2 = r2->addr;
4063 
4064 	if (addr1 < addr2)
4065 		return -1;
4066 
4067 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4068 	 * accept any overlapping write.  Any order is acceptable for
4069 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4070 	 * we process all of them.
4071 	 */
4072 	if (r2->len) {
4073 		addr1 += r1->len;
4074 		addr2 += r2->len;
4075 	}
4076 
4077 	if (addr1 > addr2)
4078 		return 1;
4079 
4080 	return 0;
4081 }
4082 
4083 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4084 {
4085 	return kvm_io_bus_cmp(p1, p2);
4086 }
4087 
4088 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4089 			     gpa_t addr, int len)
4090 {
4091 	struct kvm_io_range *range, key;
4092 	int off;
4093 
4094 	key = (struct kvm_io_range) {
4095 		.addr = addr,
4096 		.len = len,
4097 	};
4098 
4099 	range = bsearch(&key, bus->range, bus->dev_count,
4100 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4101 	if (range == NULL)
4102 		return -ENOENT;
4103 
4104 	off = range - bus->range;
4105 
4106 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4107 		off--;
4108 
4109 	return off;
4110 }
4111 
4112 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4113 			      struct kvm_io_range *range, const void *val)
4114 {
4115 	int idx;
4116 
4117 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4118 	if (idx < 0)
4119 		return -EOPNOTSUPP;
4120 
4121 	while (idx < bus->dev_count &&
4122 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4123 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4124 					range->len, val))
4125 			return idx;
4126 		idx++;
4127 	}
4128 
4129 	return -EOPNOTSUPP;
4130 }
4131 
4132 /* kvm_io_bus_write - called under kvm->slots_lock */
4133 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4134 		     int len, const void *val)
4135 {
4136 	struct kvm_io_bus *bus;
4137 	struct kvm_io_range range;
4138 	int r;
4139 
4140 	range = (struct kvm_io_range) {
4141 		.addr = addr,
4142 		.len = len,
4143 	};
4144 
4145 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4146 	if (!bus)
4147 		return -ENOMEM;
4148 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4149 	return r < 0 ? r : 0;
4150 }
4151 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4152 
4153 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4154 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4155 			    gpa_t addr, int len, const void *val, long cookie)
4156 {
4157 	struct kvm_io_bus *bus;
4158 	struct kvm_io_range range;
4159 
4160 	range = (struct kvm_io_range) {
4161 		.addr = addr,
4162 		.len = len,
4163 	};
4164 
4165 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4166 	if (!bus)
4167 		return -ENOMEM;
4168 
4169 	/* First try the device referenced by cookie. */
4170 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4171 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4172 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4173 					val))
4174 			return cookie;
4175 
4176 	/*
4177 	 * cookie contained garbage; fall back to search and return the
4178 	 * correct cookie value.
4179 	 */
4180 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4181 }
4182 
4183 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4184 			     struct kvm_io_range *range, void *val)
4185 {
4186 	int idx;
4187 
4188 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4189 	if (idx < 0)
4190 		return -EOPNOTSUPP;
4191 
4192 	while (idx < bus->dev_count &&
4193 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4194 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4195 				       range->len, val))
4196 			return idx;
4197 		idx++;
4198 	}
4199 
4200 	return -EOPNOTSUPP;
4201 }
4202 
4203 /* kvm_io_bus_read - called under kvm->slots_lock */
4204 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4205 		    int len, void *val)
4206 {
4207 	struct kvm_io_bus *bus;
4208 	struct kvm_io_range range;
4209 	int r;
4210 
4211 	range = (struct kvm_io_range) {
4212 		.addr = addr,
4213 		.len = len,
4214 	};
4215 
4216 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4217 	if (!bus)
4218 		return -ENOMEM;
4219 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4220 	return r < 0 ? r : 0;
4221 }
4222 
4223 /* Caller must hold slots_lock. */
4224 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4225 			    int len, struct kvm_io_device *dev)
4226 {
4227 	int i;
4228 	struct kvm_io_bus *new_bus, *bus;
4229 	struct kvm_io_range range;
4230 
4231 	bus = kvm_get_bus(kvm, bus_idx);
4232 	if (!bus)
4233 		return -ENOMEM;
4234 
4235 	/* exclude ioeventfd which is limited by maximum fd */
4236 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4237 		return -ENOSPC;
4238 
4239 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4240 			  GFP_KERNEL_ACCOUNT);
4241 	if (!new_bus)
4242 		return -ENOMEM;
4243 
4244 	range = (struct kvm_io_range) {
4245 		.addr = addr,
4246 		.len = len,
4247 		.dev = dev,
4248 	};
4249 
4250 	for (i = 0; i < bus->dev_count; i++)
4251 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4252 			break;
4253 
4254 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4255 	new_bus->dev_count++;
4256 	new_bus->range[i] = range;
4257 	memcpy(new_bus->range + i + 1, bus->range + i,
4258 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4259 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4260 	synchronize_srcu_expedited(&kvm->srcu);
4261 	kfree(bus);
4262 
4263 	return 0;
4264 }
4265 
4266 /* Caller must hold slots_lock. */
4267 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4268 			       struct kvm_io_device *dev)
4269 {
4270 	int i;
4271 	struct kvm_io_bus *new_bus, *bus;
4272 
4273 	bus = kvm_get_bus(kvm, bus_idx);
4274 	if (!bus)
4275 		return;
4276 
4277 	for (i = 0; i < bus->dev_count; i++)
4278 		if (bus->range[i].dev == dev) {
4279 			break;
4280 		}
4281 
4282 	if (i == bus->dev_count)
4283 		return;
4284 
4285 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4286 			  GFP_KERNEL_ACCOUNT);
4287 	if (!new_bus)  {
4288 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4289 		goto broken;
4290 	}
4291 
4292 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4293 	new_bus->dev_count--;
4294 	memcpy(new_bus->range + i, bus->range + i + 1,
4295 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4296 
4297 broken:
4298 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4299 	synchronize_srcu_expedited(&kvm->srcu);
4300 	kfree(bus);
4301 	return;
4302 }
4303 
4304 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4305 					 gpa_t addr)
4306 {
4307 	struct kvm_io_bus *bus;
4308 	int dev_idx, srcu_idx;
4309 	struct kvm_io_device *iodev = NULL;
4310 
4311 	srcu_idx = srcu_read_lock(&kvm->srcu);
4312 
4313 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4314 	if (!bus)
4315 		goto out_unlock;
4316 
4317 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4318 	if (dev_idx < 0)
4319 		goto out_unlock;
4320 
4321 	iodev = bus->range[dev_idx].dev;
4322 
4323 out_unlock:
4324 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4325 
4326 	return iodev;
4327 }
4328 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4329 
4330 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4331 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4332 			   const char *fmt)
4333 {
4334 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4335 					  inode->i_private;
4336 
4337 	/* The debugfs files are a reference to the kvm struct which
4338 	 * is still valid when kvm_destroy_vm is called.
4339 	 * To avoid the race between open and the removal of the debugfs
4340 	 * directory we test against the users count.
4341 	 */
4342 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4343 		return -ENOENT;
4344 
4345 	if (simple_attr_open(inode, file, get,
4346 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4347 		    ? set : NULL,
4348 		    fmt)) {
4349 		kvm_put_kvm(stat_data->kvm);
4350 		return -ENOMEM;
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4357 {
4358 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4359 					  inode->i_private;
4360 
4361 	simple_attr_release(inode, file);
4362 	kvm_put_kvm(stat_data->kvm);
4363 
4364 	return 0;
4365 }
4366 
4367 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4368 {
4369 	*val = *(ulong *)((void *)kvm + offset);
4370 
4371 	return 0;
4372 }
4373 
4374 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4375 {
4376 	*(ulong *)((void *)kvm + offset) = 0;
4377 
4378 	return 0;
4379 }
4380 
4381 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4382 {
4383 	int i;
4384 	struct kvm_vcpu *vcpu;
4385 
4386 	*val = 0;
4387 
4388 	kvm_for_each_vcpu(i, vcpu, kvm)
4389 		*val += *(u64 *)((void *)vcpu + offset);
4390 
4391 	return 0;
4392 }
4393 
4394 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4395 {
4396 	int i;
4397 	struct kvm_vcpu *vcpu;
4398 
4399 	kvm_for_each_vcpu(i, vcpu, kvm)
4400 		*(u64 *)((void *)vcpu + offset) = 0;
4401 
4402 	return 0;
4403 }
4404 
4405 static int kvm_stat_data_get(void *data, u64 *val)
4406 {
4407 	int r = -EFAULT;
4408 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4409 
4410 	switch (stat_data->dbgfs_item->kind) {
4411 	case KVM_STAT_VM:
4412 		r = kvm_get_stat_per_vm(stat_data->kvm,
4413 					stat_data->dbgfs_item->offset, val);
4414 		break;
4415 	case KVM_STAT_VCPU:
4416 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4417 					  stat_data->dbgfs_item->offset, val);
4418 		break;
4419 	}
4420 
4421 	return r;
4422 }
4423 
4424 static int kvm_stat_data_clear(void *data, u64 val)
4425 {
4426 	int r = -EFAULT;
4427 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4428 
4429 	if (val)
4430 		return -EINVAL;
4431 
4432 	switch (stat_data->dbgfs_item->kind) {
4433 	case KVM_STAT_VM:
4434 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4435 					  stat_data->dbgfs_item->offset);
4436 		break;
4437 	case KVM_STAT_VCPU:
4438 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4439 					    stat_data->dbgfs_item->offset);
4440 		break;
4441 	}
4442 
4443 	return r;
4444 }
4445 
4446 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4447 {
4448 	__simple_attr_check_format("%llu\n", 0ull);
4449 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4450 				kvm_stat_data_clear, "%llu\n");
4451 }
4452 
4453 static const struct file_operations stat_fops_per_vm = {
4454 	.owner = THIS_MODULE,
4455 	.open = kvm_stat_data_open,
4456 	.release = kvm_debugfs_release,
4457 	.read = simple_attr_read,
4458 	.write = simple_attr_write,
4459 	.llseek = no_llseek,
4460 };
4461 
4462 static int vm_stat_get(void *_offset, u64 *val)
4463 {
4464 	unsigned offset = (long)_offset;
4465 	struct kvm *kvm;
4466 	u64 tmp_val;
4467 
4468 	*val = 0;
4469 	mutex_lock(&kvm_lock);
4470 	list_for_each_entry(kvm, &vm_list, vm_list) {
4471 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4472 		*val += tmp_val;
4473 	}
4474 	mutex_unlock(&kvm_lock);
4475 	return 0;
4476 }
4477 
4478 static int vm_stat_clear(void *_offset, u64 val)
4479 {
4480 	unsigned offset = (long)_offset;
4481 	struct kvm *kvm;
4482 
4483 	if (val)
4484 		return -EINVAL;
4485 
4486 	mutex_lock(&kvm_lock);
4487 	list_for_each_entry(kvm, &vm_list, vm_list) {
4488 		kvm_clear_stat_per_vm(kvm, offset);
4489 	}
4490 	mutex_unlock(&kvm_lock);
4491 
4492 	return 0;
4493 }
4494 
4495 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4496 
4497 static int vcpu_stat_get(void *_offset, u64 *val)
4498 {
4499 	unsigned offset = (long)_offset;
4500 	struct kvm *kvm;
4501 	u64 tmp_val;
4502 
4503 	*val = 0;
4504 	mutex_lock(&kvm_lock);
4505 	list_for_each_entry(kvm, &vm_list, vm_list) {
4506 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4507 		*val += tmp_val;
4508 	}
4509 	mutex_unlock(&kvm_lock);
4510 	return 0;
4511 }
4512 
4513 static int vcpu_stat_clear(void *_offset, u64 val)
4514 {
4515 	unsigned offset = (long)_offset;
4516 	struct kvm *kvm;
4517 
4518 	if (val)
4519 		return -EINVAL;
4520 
4521 	mutex_lock(&kvm_lock);
4522 	list_for_each_entry(kvm, &vm_list, vm_list) {
4523 		kvm_clear_stat_per_vcpu(kvm, offset);
4524 	}
4525 	mutex_unlock(&kvm_lock);
4526 
4527 	return 0;
4528 }
4529 
4530 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4531 			"%llu\n");
4532 
4533 static const struct file_operations *stat_fops[] = {
4534 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4535 	[KVM_STAT_VM]   = &vm_stat_fops,
4536 };
4537 
4538 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4539 {
4540 	struct kobj_uevent_env *env;
4541 	unsigned long long created, active;
4542 
4543 	if (!kvm_dev.this_device || !kvm)
4544 		return;
4545 
4546 	mutex_lock(&kvm_lock);
4547 	if (type == KVM_EVENT_CREATE_VM) {
4548 		kvm_createvm_count++;
4549 		kvm_active_vms++;
4550 	} else if (type == KVM_EVENT_DESTROY_VM) {
4551 		kvm_active_vms--;
4552 	}
4553 	created = kvm_createvm_count;
4554 	active = kvm_active_vms;
4555 	mutex_unlock(&kvm_lock);
4556 
4557 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4558 	if (!env)
4559 		return;
4560 
4561 	add_uevent_var(env, "CREATED=%llu", created);
4562 	add_uevent_var(env, "COUNT=%llu", active);
4563 
4564 	if (type == KVM_EVENT_CREATE_VM) {
4565 		add_uevent_var(env, "EVENT=create");
4566 		kvm->userspace_pid = task_pid_nr(current);
4567 	} else if (type == KVM_EVENT_DESTROY_VM) {
4568 		add_uevent_var(env, "EVENT=destroy");
4569 	}
4570 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4571 
4572 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4573 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4574 
4575 		if (p) {
4576 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4577 			if (!IS_ERR(tmp))
4578 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4579 			kfree(p);
4580 		}
4581 	}
4582 	/* no need for checks, since we are adding at most only 5 keys */
4583 	env->envp[env->envp_idx++] = NULL;
4584 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4585 	kfree(env);
4586 }
4587 
4588 static void kvm_init_debug(void)
4589 {
4590 	struct kvm_stats_debugfs_item *p;
4591 
4592 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4593 
4594 	kvm_debugfs_num_entries = 0;
4595 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4596 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4597 				    kvm_debugfs_dir, (void *)(long)p->offset,
4598 				    stat_fops[p->kind]);
4599 	}
4600 }
4601 
4602 static int kvm_suspend(void)
4603 {
4604 	if (kvm_usage_count)
4605 		hardware_disable_nolock(NULL);
4606 	return 0;
4607 }
4608 
4609 static void kvm_resume(void)
4610 {
4611 	if (kvm_usage_count) {
4612 #ifdef CONFIG_LOCKDEP
4613 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4614 #endif
4615 		hardware_enable_nolock(NULL);
4616 	}
4617 }
4618 
4619 static struct syscore_ops kvm_syscore_ops = {
4620 	.suspend = kvm_suspend,
4621 	.resume = kvm_resume,
4622 };
4623 
4624 static inline
4625 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4626 {
4627 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4628 }
4629 
4630 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4631 {
4632 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4633 
4634 	WRITE_ONCE(vcpu->preempted, false);
4635 	WRITE_ONCE(vcpu->ready, false);
4636 
4637 	__this_cpu_write(kvm_running_vcpu, vcpu);
4638 	kvm_arch_sched_in(vcpu, cpu);
4639 	kvm_arch_vcpu_load(vcpu, cpu);
4640 }
4641 
4642 static void kvm_sched_out(struct preempt_notifier *pn,
4643 			  struct task_struct *next)
4644 {
4645 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4646 
4647 	if (current->state == TASK_RUNNING) {
4648 		WRITE_ONCE(vcpu->preempted, true);
4649 		WRITE_ONCE(vcpu->ready, true);
4650 	}
4651 	kvm_arch_vcpu_put(vcpu);
4652 	__this_cpu_write(kvm_running_vcpu, NULL);
4653 }
4654 
4655 /**
4656  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4657  *
4658  * We can disable preemption locally around accessing the per-CPU variable,
4659  * and use the resolved vcpu pointer after enabling preemption again,
4660  * because even if the current thread is migrated to another CPU, reading
4661  * the per-CPU value later will give us the same value as we update the
4662  * per-CPU variable in the preempt notifier handlers.
4663  */
4664 struct kvm_vcpu *kvm_get_running_vcpu(void)
4665 {
4666 	struct kvm_vcpu *vcpu;
4667 
4668 	preempt_disable();
4669 	vcpu = __this_cpu_read(kvm_running_vcpu);
4670 	preempt_enable();
4671 
4672 	return vcpu;
4673 }
4674 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4675 
4676 /**
4677  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4678  */
4679 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4680 {
4681         return &kvm_running_vcpu;
4682 }
4683 
4684 struct kvm_cpu_compat_check {
4685 	void *opaque;
4686 	int *ret;
4687 };
4688 
4689 static void check_processor_compat(void *data)
4690 {
4691 	struct kvm_cpu_compat_check *c = data;
4692 
4693 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4694 }
4695 
4696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4697 		  struct module *module)
4698 {
4699 	struct kvm_cpu_compat_check c;
4700 	int r;
4701 	int cpu;
4702 
4703 	r = kvm_arch_init(opaque);
4704 	if (r)
4705 		goto out_fail;
4706 
4707 	/*
4708 	 * kvm_arch_init makes sure there's at most one caller
4709 	 * for architectures that support multiple implementations,
4710 	 * like intel and amd on x86.
4711 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4712 	 * conflicts in case kvm is already setup for another implementation.
4713 	 */
4714 	r = kvm_irqfd_init();
4715 	if (r)
4716 		goto out_irqfd;
4717 
4718 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4719 		r = -ENOMEM;
4720 		goto out_free_0;
4721 	}
4722 
4723 	r = kvm_arch_hardware_setup(opaque);
4724 	if (r < 0)
4725 		goto out_free_1;
4726 
4727 	c.ret = &r;
4728 	c.opaque = opaque;
4729 	for_each_online_cpu(cpu) {
4730 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4731 		if (r < 0)
4732 			goto out_free_2;
4733 	}
4734 
4735 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4736 				      kvm_starting_cpu, kvm_dying_cpu);
4737 	if (r)
4738 		goto out_free_2;
4739 	register_reboot_notifier(&kvm_reboot_notifier);
4740 
4741 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4742 	if (!vcpu_align)
4743 		vcpu_align = __alignof__(struct kvm_vcpu);
4744 	kvm_vcpu_cache =
4745 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4746 					   SLAB_ACCOUNT,
4747 					   offsetof(struct kvm_vcpu, arch),
4748 					   sizeof_field(struct kvm_vcpu, arch),
4749 					   NULL);
4750 	if (!kvm_vcpu_cache) {
4751 		r = -ENOMEM;
4752 		goto out_free_3;
4753 	}
4754 
4755 	r = kvm_async_pf_init();
4756 	if (r)
4757 		goto out_free;
4758 
4759 	kvm_chardev_ops.owner = module;
4760 	kvm_vm_fops.owner = module;
4761 	kvm_vcpu_fops.owner = module;
4762 
4763 	r = misc_register(&kvm_dev);
4764 	if (r) {
4765 		pr_err("kvm: misc device register failed\n");
4766 		goto out_unreg;
4767 	}
4768 
4769 	register_syscore_ops(&kvm_syscore_ops);
4770 
4771 	kvm_preempt_ops.sched_in = kvm_sched_in;
4772 	kvm_preempt_ops.sched_out = kvm_sched_out;
4773 
4774 	kvm_init_debug();
4775 
4776 	r = kvm_vfio_ops_init();
4777 	WARN_ON(r);
4778 
4779 	return 0;
4780 
4781 out_unreg:
4782 	kvm_async_pf_deinit();
4783 out_free:
4784 	kmem_cache_destroy(kvm_vcpu_cache);
4785 out_free_3:
4786 	unregister_reboot_notifier(&kvm_reboot_notifier);
4787 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4788 out_free_2:
4789 	kvm_arch_hardware_unsetup();
4790 out_free_1:
4791 	free_cpumask_var(cpus_hardware_enabled);
4792 out_free_0:
4793 	kvm_irqfd_exit();
4794 out_irqfd:
4795 	kvm_arch_exit();
4796 out_fail:
4797 	return r;
4798 }
4799 EXPORT_SYMBOL_GPL(kvm_init);
4800 
4801 void kvm_exit(void)
4802 {
4803 	debugfs_remove_recursive(kvm_debugfs_dir);
4804 	misc_deregister(&kvm_dev);
4805 	kmem_cache_destroy(kvm_vcpu_cache);
4806 	kvm_async_pf_deinit();
4807 	unregister_syscore_ops(&kvm_syscore_ops);
4808 	unregister_reboot_notifier(&kvm_reboot_notifier);
4809 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4810 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4811 	kvm_arch_hardware_unsetup();
4812 	kvm_arch_exit();
4813 	kvm_irqfd_exit();
4814 	free_cpumask_var(cpus_hardware_enabled);
4815 	kvm_vfio_ops_exit();
4816 }
4817 EXPORT_SYMBOL_GPL(kvm_exit);
4818 
4819 struct kvm_vm_worker_thread_context {
4820 	struct kvm *kvm;
4821 	struct task_struct *parent;
4822 	struct completion init_done;
4823 	kvm_vm_thread_fn_t thread_fn;
4824 	uintptr_t data;
4825 	int err;
4826 };
4827 
4828 static int kvm_vm_worker_thread(void *context)
4829 {
4830 	/*
4831 	 * The init_context is allocated on the stack of the parent thread, so
4832 	 * we have to locally copy anything that is needed beyond initialization
4833 	 */
4834 	struct kvm_vm_worker_thread_context *init_context = context;
4835 	struct kvm *kvm = init_context->kvm;
4836 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4837 	uintptr_t data = init_context->data;
4838 	int err;
4839 
4840 	err = kthread_park(current);
4841 	/* kthread_park(current) is never supposed to return an error */
4842 	WARN_ON(err != 0);
4843 	if (err)
4844 		goto init_complete;
4845 
4846 	err = cgroup_attach_task_all(init_context->parent, current);
4847 	if (err) {
4848 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4849 			__func__, err);
4850 		goto init_complete;
4851 	}
4852 
4853 	set_user_nice(current, task_nice(init_context->parent));
4854 
4855 init_complete:
4856 	init_context->err = err;
4857 	complete(&init_context->init_done);
4858 	init_context = NULL;
4859 
4860 	if (err)
4861 		return err;
4862 
4863 	/* Wait to be woken up by the spawner before proceeding. */
4864 	kthread_parkme();
4865 
4866 	if (!kthread_should_stop())
4867 		err = thread_fn(kvm, data);
4868 
4869 	return err;
4870 }
4871 
4872 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4873 				uintptr_t data, const char *name,
4874 				struct task_struct **thread_ptr)
4875 {
4876 	struct kvm_vm_worker_thread_context init_context = {};
4877 	struct task_struct *thread;
4878 
4879 	*thread_ptr = NULL;
4880 	init_context.kvm = kvm;
4881 	init_context.parent = current;
4882 	init_context.thread_fn = thread_fn;
4883 	init_context.data = data;
4884 	init_completion(&init_context.init_done);
4885 
4886 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4887 			     "%s-%d", name, task_pid_nr(current));
4888 	if (IS_ERR(thread))
4889 		return PTR_ERR(thread);
4890 
4891 	/* kthread_run is never supposed to return NULL */
4892 	WARN_ON(thread == NULL);
4893 
4894 	wait_for_completion(&init_context.init_done);
4895 
4896 	if (!init_context.err)
4897 		*thread_ptr = thread;
4898 
4899 	return init_context.err;
4900 }
4901