xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 82003e04)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode. */
182 		smp_mb__after_atomic();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	/*
203 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 	 * kvm_make_all_cpus_request.
205 	 */
206 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207 
208 	/*
209 	 * We want to publish modifications to the page tables before reading
210 	 * mode. Pairs with a memory barrier in arch-specific code.
211 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 	 *
215 	 * There is already an smp_mb__after_atomic() before
216 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 	 * barrier here.
218 	 */
219 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 		++kvm->stat.remote_tlb_flush;
221 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225 
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230 
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 	struct page *page;
234 	int r;
235 
236 	mutex_init(&vcpu->mutex);
237 	vcpu->cpu = -1;
238 	vcpu->kvm = kvm;
239 	vcpu->vcpu_id = id;
240 	vcpu->pid = NULL;
241 	init_swait_queue_head(&vcpu->wq);
242 	kvm_async_pf_vcpu_init(vcpu);
243 
244 	vcpu->pre_pcpu = -1;
245 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246 
247 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 	if (!page) {
249 		r = -ENOMEM;
250 		goto fail;
251 	}
252 	vcpu->run = page_address(page);
253 
254 	kvm_vcpu_set_in_spin_loop(vcpu, false);
255 	kvm_vcpu_set_dy_eligible(vcpu, false);
256 	vcpu->preempted = false;
257 
258 	r = kvm_arch_vcpu_init(vcpu);
259 	if (r < 0)
260 		goto fail_free_run;
261 	return 0;
262 
263 fail_free_run:
264 	free_page((unsigned long)vcpu->run);
265 fail:
266 	return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 	put_pid(vcpu->pid);
273 	kvm_arch_vcpu_uninit(vcpu);
274 	free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277 
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 	return container_of(mn, struct kvm, mmu_notifier);
282 }
283 
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 					     struct mm_struct *mm,
286 					     unsigned long address)
287 {
288 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 	int need_tlb_flush, idx;
290 
291 	/*
292 	 * When ->invalidate_page runs, the linux pte has been zapped
293 	 * already but the page is still allocated until
294 	 * ->invalidate_page returns. So if we increase the sequence
295 	 * here the kvm page fault will notice if the spte can't be
296 	 * established because the page is going to be freed. If
297 	 * instead the kvm page fault establishes the spte before
298 	 * ->invalidate_page runs, kvm_unmap_hva will release it
299 	 * before returning.
300 	 *
301 	 * The sequence increase only need to be seen at spin_unlock
302 	 * time, and not at spin_lock time.
303 	 *
304 	 * Increasing the sequence after the spin_unlock would be
305 	 * unsafe because the kvm page fault could then establish the
306 	 * pte after kvm_unmap_hva returned, without noticing the page
307 	 * is going to be freed.
308 	 */
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 
312 	kvm->mmu_notifier_seq++;
313 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 	/* we've to flush the tlb before the pages can be freed */
315 	if (need_tlb_flush)
316 		kvm_flush_remote_tlbs(kvm);
317 
318 	spin_unlock(&kvm->mmu_lock);
319 
320 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321 
322 	srcu_read_unlock(&kvm->srcu, idx);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
473 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
474 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
475 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
476 	.clear_young		= kvm_mmu_notifier_clear_young,
477 	.test_young		= kvm_mmu_notifier_test_young,
478 	.change_pte		= kvm_mmu_notifier_change_pte,
479 	.release		= kvm_mmu_notifier_release,
480 };
481 
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487 
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 	return 0;
493 }
494 
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 	int i;
500 	struct kvm_memslots *slots;
501 
502 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 	if (!slots)
504 		return NULL;
505 
506 	/*
507 	 * Init kvm generation close to the maximum to easily test the
508 	 * code of handling generation number wrap-around.
509 	 */
510 	slots->generation = -150;
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	if (kvm->debugfs_stat_data) {
563 		for (i = 0; i < kvm_debugfs_num_entries; i++)
564 			kfree(kvm->debugfs_stat_data[i]);
565 		kfree(kvm->debugfs_stat_data);
566 	}
567 }
568 
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 	char dir_name[ITOA_MAX_LEN * 2];
572 	struct kvm_stat_data *stat_data;
573 	struct kvm_stats_debugfs_item *p;
574 
575 	if (!debugfs_initialized())
576 		return 0;
577 
578 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 						 kvm_debugfs_dir);
581 	if (!kvm->debugfs_dentry)
582 		return -ENOMEM;
583 
584 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 					 sizeof(*kvm->debugfs_stat_data),
586 					 GFP_KERNEL);
587 	if (!kvm->debugfs_stat_data)
588 		return -ENOMEM;
589 
590 	for (p = debugfs_entries; p->name; p++) {
591 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 		if (!stat_data)
593 			return -ENOMEM;
594 
595 		stat_data->kvm = kvm;
596 		stat_data->offset = p->offset;
597 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 		if (!debugfs_create_file(p->name, 0444,
599 					 kvm->debugfs_dentry,
600 					 stat_data,
601 					 stat_fops_per_vm[p->kind]))
602 			return -ENOMEM;
603 	}
604 	return 0;
605 }
606 
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 	int r, i;
610 	struct kvm *kvm = kvm_arch_alloc_vm();
611 
612 	if (!kvm)
613 		return ERR_PTR(-ENOMEM);
614 
615 	spin_lock_init(&kvm->mmu_lock);
616 	atomic_inc(&current->mm->mm_count);
617 	kvm->mm = current->mm;
618 	kvm_eventfd_init(kvm);
619 	mutex_init(&kvm->lock);
620 	mutex_init(&kvm->irq_lock);
621 	mutex_init(&kvm->slots_lock);
622 	atomic_set(&kvm->users_count, 1);
623 	INIT_LIST_HEAD(&kvm->devices);
624 
625 	r = kvm_arch_init_vm(kvm, type);
626 	if (r)
627 		goto out_err_no_disable;
628 
629 	r = hardware_enable_all();
630 	if (r)
631 		goto out_err_no_disable;
632 
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636 
637 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638 
639 	r = -ENOMEM;
640 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 		kvm->memslots[i] = kvm_alloc_memslots();
642 		if (!kvm->memslots[i])
643 			goto out_err_no_srcu;
644 	}
645 
646 	if (init_srcu_struct(&kvm->srcu))
647 		goto out_err_no_srcu;
648 	if (init_srcu_struct(&kvm->irq_srcu))
649 		goto out_err_no_irq_srcu;
650 	for (i = 0; i < KVM_NR_BUSES; i++) {
651 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652 					GFP_KERNEL);
653 		if (!kvm->buses[i])
654 			goto out_err;
655 	}
656 
657 	r = kvm_init_mmu_notifier(kvm);
658 	if (r)
659 		goto out_err;
660 
661 	spin_lock(&kvm_lock);
662 	list_add(&kvm->vm_list, &vm_list);
663 	spin_unlock(&kvm_lock);
664 
665 	preempt_notifier_inc();
666 
667 	return kvm;
668 
669 out_err:
670 	cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 	cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 	hardware_disable_all();
675 out_err_no_disable:
676 	for (i = 0; i < KVM_NR_BUSES; i++)
677 		kfree(kvm->buses[i]);
678 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679 		kvm_free_memslots(kvm, kvm->memslots[i]);
680 	kvm_arch_free_vm(kvm);
681 	mmdrop(current->mm);
682 	return ERR_PTR(r);
683 }
684 
685 /*
686  * Avoid using vmalloc for a small buffer.
687  * Should not be used when the size is statically known.
688  */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691 	if (size > PAGE_SIZE)
692 		return vzalloc(size);
693 	else
694 		return kzalloc(size, GFP_KERNEL);
695 }
696 
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699 	struct kvm_device *dev, *tmp;
700 
701 	/*
702 	 * We do not need to take the kvm->lock here, because nobody else
703 	 * has a reference to the struct kvm at this point and therefore
704 	 * cannot access the devices list anyhow.
705 	 */
706 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707 		list_del(&dev->vm_node);
708 		dev->ops->destroy(dev);
709 	}
710 }
711 
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714 	int i;
715 	struct mm_struct *mm = kvm->mm;
716 
717 	kvm_destroy_vm_debugfs(kvm);
718 	kvm_arch_sync_events(kvm);
719 	spin_lock(&kvm_lock);
720 	list_del(&kvm->vm_list);
721 	spin_unlock(&kvm_lock);
722 	kvm_free_irq_routing(kvm);
723 	for (i = 0; i < KVM_NR_BUSES; i++)
724 		kvm_io_bus_destroy(kvm->buses[i]);
725 	kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729 	kvm_arch_flush_shadow_all(kvm);
730 #endif
731 	kvm_arch_destroy_vm(kvm);
732 	kvm_destroy_devices(kvm);
733 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734 		kvm_free_memslots(kvm, kvm->memslots[i]);
735 	cleanup_srcu_struct(&kvm->irq_srcu);
736 	cleanup_srcu_struct(&kvm->srcu);
737 	kvm_arch_free_vm(kvm);
738 	preempt_notifier_dec();
739 	hardware_disable_all();
740 	mmdrop(mm);
741 }
742 
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745 	atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748 
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751 	if (atomic_dec_and_test(&kvm->users_count))
752 		kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755 
756 
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759 	struct kvm *kvm = filp->private_data;
760 
761 	kvm_irqfd_release(kvm);
762 
763 	kvm_put_kvm(kvm);
764 	return 0;
765 }
766 
767 /*
768  * Allocation size is twice as large as the actual dirty bitmap size.
769  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770  */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774 
775 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776 	if (!memslot->dirty_bitmap)
777 		return -ENOMEM;
778 
779 	return 0;
780 }
781 
782 /*
783  * Insert memslot and re-sort memslots based on their GFN,
784  * so binary search could be used to lookup GFN.
785  * Sorting algorithm takes advantage of having initially
786  * sorted array and known changed memslot position.
787  */
788 static void update_memslots(struct kvm_memslots *slots,
789 			    struct kvm_memory_slot *new)
790 {
791 	int id = new->id;
792 	int i = slots->id_to_index[id];
793 	struct kvm_memory_slot *mslots = slots->memslots;
794 
795 	WARN_ON(mslots[i].id != id);
796 	if (!new->npages) {
797 		WARN_ON(!mslots[i].npages);
798 		if (mslots[i].npages)
799 			slots->used_slots--;
800 	} else {
801 		if (!mslots[i].npages)
802 			slots->used_slots++;
803 	}
804 
805 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
806 	       new->base_gfn <= mslots[i + 1].base_gfn) {
807 		if (!mslots[i + 1].npages)
808 			break;
809 		mslots[i] = mslots[i + 1];
810 		slots->id_to_index[mslots[i].id] = i;
811 		i++;
812 	}
813 
814 	/*
815 	 * The ">=" is needed when creating a slot with base_gfn == 0,
816 	 * so that it moves before all those with base_gfn == npages == 0.
817 	 *
818 	 * On the other hand, if new->npages is zero, the above loop has
819 	 * already left i pointing to the beginning of the empty part of
820 	 * mslots, and the ">=" would move the hole backwards in this
821 	 * case---which is wrong.  So skip the loop when deleting a slot.
822 	 */
823 	if (new->npages) {
824 		while (i > 0 &&
825 		       new->base_gfn >= mslots[i - 1].base_gfn) {
826 			mslots[i] = mslots[i - 1];
827 			slots->id_to_index[mslots[i].id] = i;
828 			i--;
829 		}
830 	} else
831 		WARN_ON_ONCE(i != slots->used_slots);
832 
833 	mslots[i] = *new;
834 	slots->id_to_index[mslots[i].id] = i;
835 }
836 
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840 
841 #ifdef __KVM_HAVE_READONLY_MEM
842 	valid_flags |= KVM_MEM_READONLY;
843 #endif
844 
845 	if (mem->flags & ~valid_flags)
846 		return -EINVAL;
847 
848 	return 0;
849 }
850 
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852 		int as_id, struct kvm_memslots *slots)
853 {
854 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855 
856 	/*
857 	 * Set the low bit in the generation, which disables SPTE caching
858 	 * until the end of synchronize_srcu_expedited.
859 	 */
860 	WARN_ON(old_memslots->generation & 1);
861 	slots->generation = old_memslots->generation + 1;
862 
863 	rcu_assign_pointer(kvm->memslots[as_id], slots);
864 	synchronize_srcu_expedited(&kvm->srcu);
865 
866 	/*
867 	 * Increment the new memslot generation a second time. This prevents
868 	 * vm exits that race with memslot updates from caching a memslot
869 	 * generation that will (potentially) be valid forever.
870 	 */
871 	slots->generation++;
872 
873 	kvm_arch_memslots_updated(kvm, slots);
874 
875 	return old_memslots;
876 }
877 
878 /*
879  * Allocate some memory and give it an address in the guest physical address
880  * space.
881  *
882  * Discontiguous memory is allowed, mostly for framebuffers.
883  *
884  * Must be called holding kvm->slots_lock for write.
885  */
886 int __kvm_set_memory_region(struct kvm *kvm,
887 			    const struct kvm_userspace_memory_region *mem)
888 {
889 	int r;
890 	gfn_t base_gfn;
891 	unsigned long npages;
892 	struct kvm_memory_slot *slot;
893 	struct kvm_memory_slot old, new;
894 	struct kvm_memslots *slots = NULL, *old_memslots;
895 	int as_id, id;
896 	enum kvm_mr_change change;
897 
898 	r = check_memory_region_flags(mem);
899 	if (r)
900 		goto out;
901 
902 	r = -EINVAL;
903 	as_id = mem->slot >> 16;
904 	id = (u16)mem->slot;
905 
906 	/* General sanity checks */
907 	if (mem->memory_size & (PAGE_SIZE - 1))
908 		goto out;
909 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910 		goto out;
911 	/* We can read the guest memory with __xxx_user() later on. */
912 	if ((id < KVM_USER_MEM_SLOTS) &&
913 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914 	     !access_ok(VERIFY_WRITE,
915 			(void __user *)(unsigned long)mem->userspace_addr,
916 			mem->memory_size)))
917 		goto out;
918 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919 		goto out;
920 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921 		goto out;
922 
923 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925 	npages = mem->memory_size >> PAGE_SHIFT;
926 
927 	if (npages > KVM_MEM_MAX_NR_PAGES)
928 		goto out;
929 
930 	new = old = *slot;
931 
932 	new.id = id;
933 	new.base_gfn = base_gfn;
934 	new.npages = npages;
935 	new.flags = mem->flags;
936 
937 	if (npages) {
938 		if (!old.npages)
939 			change = KVM_MR_CREATE;
940 		else { /* Modify an existing slot. */
941 			if ((mem->userspace_addr != old.userspace_addr) ||
942 			    (npages != old.npages) ||
943 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944 				goto out;
945 
946 			if (base_gfn != old.base_gfn)
947 				change = KVM_MR_MOVE;
948 			else if (new.flags != old.flags)
949 				change = KVM_MR_FLAGS_ONLY;
950 			else { /* Nothing to change. */
951 				r = 0;
952 				goto out;
953 			}
954 		}
955 	} else {
956 		if (!old.npages)
957 			goto out;
958 
959 		change = KVM_MR_DELETE;
960 		new.base_gfn = 0;
961 		new.flags = 0;
962 	}
963 
964 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965 		/* Check for overlaps */
966 		r = -EEXIST;
967 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969 			    (slot->id == id))
970 				continue;
971 			if (!((base_gfn + npages <= slot->base_gfn) ||
972 			      (base_gfn >= slot->base_gfn + slot->npages)))
973 				goto out;
974 		}
975 	}
976 
977 	/* Free page dirty bitmap if unneeded */
978 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979 		new.dirty_bitmap = NULL;
980 
981 	r = -ENOMEM;
982 	if (change == KVM_MR_CREATE) {
983 		new.userspace_addr = mem->userspace_addr;
984 
985 		if (kvm_arch_create_memslot(kvm, &new, npages))
986 			goto out_free;
987 	}
988 
989 	/* Allocate page dirty bitmap if needed */
990 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991 		if (kvm_create_dirty_bitmap(&new) < 0)
992 			goto out_free;
993 	}
994 
995 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996 	if (!slots)
997 		goto out_free;
998 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999 
1000 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001 		slot = id_to_memslot(slots, id);
1002 		slot->flags |= KVM_MEMSLOT_INVALID;
1003 
1004 		old_memslots = install_new_memslots(kvm, as_id, slots);
1005 
1006 		/* slot was deleted or moved, clear iommu mapping */
1007 		kvm_iommu_unmap_pages(kvm, &old);
1008 		/* From this point no new shadow pages pointing to a deleted,
1009 		 * or moved, memslot will be created.
1010 		 *
1011 		 * validation of sp->gfn happens in:
1012 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1014 		 */
1015 		kvm_arch_flush_shadow_memslot(kvm, slot);
1016 
1017 		/*
1018 		 * We can re-use the old_memslots from above, the only difference
1019 		 * from the currently installed memslots is the invalid flag.  This
1020 		 * will get overwritten by update_memslots anyway.
1021 		 */
1022 		slots = old_memslots;
1023 	}
1024 
1025 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 	if (r)
1027 		goto out_slots;
1028 
1029 	/* actual memory is freed via old in kvm_free_memslot below */
1030 	if (change == KVM_MR_DELETE) {
1031 		new.dirty_bitmap = NULL;
1032 		memset(&new.arch, 0, sizeof(new.arch));
1033 	}
1034 
1035 	update_memslots(slots, &new);
1036 	old_memslots = install_new_memslots(kvm, as_id, slots);
1037 
1038 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039 
1040 	kvm_free_memslot(kvm, &old, &new);
1041 	kvfree(old_memslots);
1042 
1043 	/*
1044 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045 	 * un-mapped and re-mapped if their base changes.  Since base change
1046 	 * unmapping is handled above with slot deletion, mapping alone is
1047 	 * needed here.  Anything else the iommu might care about for existing
1048 	 * slots (size changes, userspace addr changes and read-only flag
1049 	 * changes) is disallowed above, so any other attribute changes getting
1050 	 * here can be skipped.
1051 	 */
1052 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053 		r = kvm_iommu_map_pages(kvm, &new);
1054 		return r;
1055 	}
1056 
1057 	return 0;
1058 
1059 out_slots:
1060 	kvfree(slots);
1061 out_free:
1062 	kvm_free_memslot(kvm, &new, &old);
1063 out:
1064 	return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067 
1068 int kvm_set_memory_region(struct kvm *kvm,
1069 			  const struct kvm_userspace_memory_region *mem)
1070 {
1071 	int r;
1072 
1073 	mutex_lock(&kvm->slots_lock);
1074 	r = __kvm_set_memory_region(kvm, mem);
1075 	mutex_unlock(&kvm->slots_lock);
1076 	return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079 
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081 					  struct kvm_userspace_memory_region *mem)
1082 {
1083 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084 		return -EINVAL;
1085 
1086 	return kvm_set_memory_region(kvm, mem);
1087 }
1088 
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 			struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092 	struct kvm_memslots *slots;
1093 	struct kvm_memory_slot *memslot;
1094 	int r, i, as_id, id;
1095 	unsigned long n;
1096 	unsigned long any = 0;
1097 
1098 	r = -EINVAL;
1099 	as_id = log->slot >> 16;
1100 	id = (u16)log->slot;
1101 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102 		goto out;
1103 
1104 	slots = __kvm_memslots(kvm, as_id);
1105 	memslot = id_to_memslot(slots, id);
1106 	r = -ENOENT;
1107 	if (!memslot->dirty_bitmap)
1108 		goto out;
1109 
1110 	n = kvm_dirty_bitmap_bytes(memslot);
1111 
1112 	for (i = 0; !any && i < n/sizeof(long); ++i)
1113 		any = memslot->dirty_bitmap[i];
1114 
1115 	r = -EFAULT;
1116 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 		goto out;
1118 
1119 	if (any)
1120 		*is_dirty = 1;
1121 
1122 	r = 0;
1123 out:
1124 	return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127 
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *	are dirty write protect them for next write.
1132  * @kvm:	pointer to kvm instance
1133  * @log:	slot id and address to which we copy the log
1134  * @is_dirty:	flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 			struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 	struct kvm_memslots *slots;
1155 	struct kvm_memory_slot *memslot;
1156 	int r, i, as_id, id;
1157 	unsigned long n;
1158 	unsigned long *dirty_bitmap;
1159 	unsigned long *dirty_bitmap_buffer;
1160 
1161 	r = -EINVAL;
1162 	as_id = log->slot >> 16;
1163 	id = (u16)log->slot;
1164 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165 		goto out;
1166 
1167 	slots = __kvm_memslots(kvm, as_id);
1168 	memslot = id_to_memslot(slots, id);
1169 
1170 	dirty_bitmap = memslot->dirty_bitmap;
1171 	r = -ENOENT;
1172 	if (!dirty_bitmap)
1173 		goto out;
1174 
1175 	n = kvm_dirty_bitmap_bytes(memslot);
1176 
1177 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178 	memset(dirty_bitmap_buffer, 0, n);
1179 
1180 	spin_lock(&kvm->mmu_lock);
1181 	*is_dirty = false;
1182 	for (i = 0; i < n / sizeof(long); i++) {
1183 		unsigned long mask;
1184 		gfn_t offset;
1185 
1186 		if (!dirty_bitmap[i])
1187 			continue;
1188 
1189 		*is_dirty = true;
1190 
1191 		mask = xchg(&dirty_bitmap[i], 0);
1192 		dirty_bitmap_buffer[i] = mask;
1193 
1194 		if (mask) {
1195 			offset = i * BITS_PER_LONG;
1196 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197 								offset, mask);
1198 		}
1199 	}
1200 
1201 	spin_unlock(&kvm->mmu_lock);
1202 
1203 	r = -EFAULT;
1204 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205 		goto out;
1206 
1207 	r = 0;
1208 out:
1209 	return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213 
1214 bool kvm_largepages_enabled(void)
1215 {
1216 	return largepages_enabled;
1217 }
1218 
1219 void kvm_disable_largepages(void)
1220 {
1221 	largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224 
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230 
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235 
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239 
1240 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 	      memslot->flags & KVM_MEMSLOT_INVALID)
1242 		return false;
1243 
1244 	return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247 
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 	struct vm_area_struct *vma;
1251 	unsigned long addr, size;
1252 
1253 	size = PAGE_SIZE;
1254 
1255 	addr = gfn_to_hva(kvm, gfn);
1256 	if (kvm_is_error_hva(addr))
1257 		return PAGE_SIZE;
1258 
1259 	down_read(&current->mm->mmap_sem);
1260 	vma = find_vma(current->mm, addr);
1261 	if (!vma)
1262 		goto out;
1263 
1264 	size = vma_kernel_pagesize(vma);
1265 
1266 out:
1267 	up_read(&current->mm->mmap_sem);
1268 
1269 	return size;
1270 }
1271 
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 	return slot->flags & KVM_MEM_READONLY;
1275 }
1276 
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 				       gfn_t *nr_pages, bool write)
1279 {
1280 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 		return KVM_HVA_ERR_BAD;
1282 
1283 	if (memslot_is_readonly(slot) && write)
1284 		return KVM_HVA_ERR_RO_BAD;
1285 
1286 	if (nr_pages)
1287 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1288 
1289 	return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291 
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 				     gfn_t *nr_pages)
1294 {
1295 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297 
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 					gfn_t gfn)
1300 {
1301 	return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304 
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310 
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316 
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 				      gfn_t gfn, bool *writable)
1323 {
1324 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325 
1326 	if (!kvm_is_error_hva(hva) && writable)
1327 		*writable = !memslot_is_readonly(slot);
1328 
1329 	return hva;
1330 }
1331 
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342 
1343 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345 
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 		struct page **page)
1348 {
1349 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350 
1351 	if (write)
1352 		flags |= FOLL_WRITE;
1353 
1354 	return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356 
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360 
1361 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362 	return rc == -EHWPOISON;
1363 }
1364 
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372 	struct page *page[1];
1373 	int npages;
1374 
1375 	if (!(async || atomic))
1376 		return false;
1377 
1378 	/*
1379 	 * Fast pin a writable pfn only if it is a write fault request
1380 	 * or the caller allows to map a writable pfn for a read fault
1381 	 * request.
1382 	 */
1383 	if (!(write_fault || writable))
1384 		return false;
1385 
1386 	npages = __get_user_pages_fast(addr, 1, 1, page);
1387 	if (npages == 1) {
1388 		*pfn = page_to_pfn(page[0]);
1389 
1390 		if (writable)
1391 			*writable = true;
1392 		return true;
1393 	}
1394 
1395 	return false;
1396 }
1397 
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403 			   bool *writable, kvm_pfn_t *pfn)
1404 {
1405 	struct page *page[1];
1406 	int npages = 0;
1407 
1408 	might_sleep();
1409 
1410 	if (writable)
1411 		*writable = write_fault;
1412 
1413 	if (async) {
1414 		down_read(&current->mm->mmap_sem);
1415 		npages = get_user_page_nowait(addr, write_fault, page);
1416 		up_read(&current->mm->mmap_sem);
1417 	} else {
1418 		unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1419 
1420 		if (write_fault)
1421 			flags |= FOLL_WRITE;
1422 
1423 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1424 						   page, flags);
1425 	}
1426 	if (npages != 1)
1427 		return npages;
1428 
1429 	/* map read fault as writable if possible */
1430 	if (unlikely(!write_fault) && writable) {
1431 		struct page *wpage[1];
1432 
1433 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1434 		if (npages == 1) {
1435 			*writable = true;
1436 			put_page(page[0]);
1437 			page[0] = wpage[0];
1438 		}
1439 
1440 		npages = 1;
1441 	}
1442 	*pfn = page_to_pfn(page[0]);
1443 	return npages;
1444 }
1445 
1446 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1447 {
1448 	if (unlikely(!(vma->vm_flags & VM_READ)))
1449 		return false;
1450 
1451 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1452 		return false;
1453 
1454 	return true;
1455 }
1456 
1457 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1458 			       unsigned long addr, bool *async,
1459 			       bool write_fault, kvm_pfn_t *p_pfn)
1460 {
1461 	unsigned long pfn;
1462 	int r;
1463 
1464 	r = follow_pfn(vma, addr, &pfn);
1465 	if (r) {
1466 		/*
1467 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1468 		 * not call the fault handler, so do it here.
1469 		 */
1470 		bool unlocked = false;
1471 		r = fixup_user_fault(current, current->mm, addr,
1472 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1473 				     &unlocked);
1474 		if (unlocked)
1475 			return -EAGAIN;
1476 		if (r)
1477 			return r;
1478 
1479 		r = follow_pfn(vma, addr, &pfn);
1480 		if (r)
1481 			return r;
1482 
1483 	}
1484 
1485 
1486 	/*
1487 	 * Get a reference here because callers of *hva_to_pfn* and
1488 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1489 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1490 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1491 	 * simply do nothing for reserved pfns.
1492 	 *
1493 	 * Whoever called remap_pfn_range is also going to call e.g.
1494 	 * unmap_mapping_range before the underlying pages are freed,
1495 	 * causing a call to our MMU notifier.
1496 	 */
1497 	kvm_get_pfn(pfn);
1498 
1499 	*p_pfn = pfn;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Pin guest page in memory and return its pfn.
1505  * @addr: host virtual address which maps memory to the guest
1506  * @atomic: whether this function can sleep
1507  * @async: whether this function need to wait IO complete if the
1508  *         host page is not in the memory
1509  * @write_fault: whether we should get a writable host page
1510  * @writable: whether it allows to map a writable host page for !@write_fault
1511  *
1512  * The function will map a writable host page for these two cases:
1513  * 1): @write_fault = true
1514  * 2): @write_fault = false && @writable, @writable will tell the caller
1515  *     whether the mapping is writable.
1516  */
1517 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1518 			bool write_fault, bool *writable)
1519 {
1520 	struct vm_area_struct *vma;
1521 	kvm_pfn_t pfn = 0;
1522 	int npages, r;
1523 
1524 	/* we can do it either atomically or asynchronously, not both */
1525 	BUG_ON(atomic && async);
1526 
1527 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1528 		return pfn;
1529 
1530 	if (atomic)
1531 		return KVM_PFN_ERR_FAULT;
1532 
1533 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1534 	if (npages == 1)
1535 		return pfn;
1536 
1537 	down_read(&current->mm->mmap_sem);
1538 	if (npages == -EHWPOISON ||
1539 	      (!async && check_user_page_hwpoison(addr))) {
1540 		pfn = KVM_PFN_ERR_HWPOISON;
1541 		goto exit;
1542 	}
1543 
1544 retry:
1545 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1546 
1547 	if (vma == NULL)
1548 		pfn = KVM_PFN_ERR_FAULT;
1549 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1550 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1551 		if (r == -EAGAIN)
1552 			goto retry;
1553 		if (r < 0)
1554 			pfn = KVM_PFN_ERR_FAULT;
1555 	} else {
1556 		if (async && vma_is_valid(vma, write_fault))
1557 			*async = true;
1558 		pfn = KVM_PFN_ERR_FAULT;
1559 	}
1560 exit:
1561 	up_read(&current->mm->mmap_sem);
1562 	return pfn;
1563 }
1564 
1565 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1566 			       bool atomic, bool *async, bool write_fault,
1567 			       bool *writable)
1568 {
1569 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1570 
1571 	if (addr == KVM_HVA_ERR_RO_BAD) {
1572 		if (writable)
1573 			*writable = false;
1574 		return KVM_PFN_ERR_RO_FAULT;
1575 	}
1576 
1577 	if (kvm_is_error_hva(addr)) {
1578 		if (writable)
1579 			*writable = false;
1580 		return KVM_PFN_NOSLOT;
1581 	}
1582 
1583 	/* Do not map writable pfn in the readonly memslot. */
1584 	if (writable && memslot_is_readonly(slot)) {
1585 		*writable = false;
1586 		writable = NULL;
1587 	}
1588 
1589 	return hva_to_pfn(addr, atomic, async, write_fault,
1590 			  writable);
1591 }
1592 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1593 
1594 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1595 		      bool *writable)
1596 {
1597 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1598 				    write_fault, writable);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1601 
1602 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1603 {
1604 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1605 }
1606 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1607 
1608 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1609 {
1610 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1613 
1614 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1615 {
1616 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1619 
1620 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1621 {
1622 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1625 
1626 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1627 {
1628 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1631 
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1637 
1638 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1639 			    struct page **pages, int nr_pages)
1640 {
1641 	unsigned long addr;
1642 	gfn_t entry;
1643 
1644 	addr = gfn_to_hva_many(slot, gfn, &entry);
1645 	if (kvm_is_error_hva(addr))
1646 		return -1;
1647 
1648 	if (entry < nr_pages)
1649 		return 0;
1650 
1651 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1652 }
1653 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1654 
1655 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1656 {
1657 	if (is_error_noslot_pfn(pfn))
1658 		return KVM_ERR_PTR_BAD_PAGE;
1659 
1660 	if (kvm_is_reserved_pfn(pfn)) {
1661 		WARN_ON(1);
1662 		return KVM_ERR_PTR_BAD_PAGE;
1663 	}
1664 
1665 	return pfn_to_page(pfn);
1666 }
1667 
1668 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1669 {
1670 	kvm_pfn_t pfn;
1671 
1672 	pfn = gfn_to_pfn(kvm, gfn);
1673 
1674 	return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(gfn_to_page);
1677 
1678 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1679 {
1680 	kvm_pfn_t pfn;
1681 
1682 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1683 
1684 	return kvm_pfn_to_page(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1687 
1688 void kvm_release_page_clean(struct page *page)
1689 {
1690 	WARN_ON(is_error_page(page));
1691 
1692 	kvm_release_pfn_clean(page_to_pfn(page));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1695 
1696 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1697 {
1698 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1699 		put_page(pfn_to_page(pfn));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1702 
1703 void kvm_release_page_dirty(struct page *page)
1704 {
1705 	WARN_ON(is_error_page(page));
1706 
1707 	kvm_release_pfn_dirty(page_to_pfn(page));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1710 
1711 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1712 {
1713 	kvm_set_pfn_dirty(pfn);
1714 	kvm_release_pfn_clean(pfn);
1715 }
1716 
1717 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1718 {
1719 	if (!kvm_is_reserved_pfn(pfn)) {
1720 		struct page *page = pfn_to_page(pfn);
1721 
1722 		if (!PageReserved(page))
1723 			SetPageDirty(page);
1724 	}
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1727 
1728 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1729 {
1730 	if (!kvm_is_reserved_pfn(pfn))
1731 		mark_page_accessed(pfn_to_page(pfn));
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1734 
1735 void kvm_get_pfn(kvm_pfn_t pfn)
1736 {
1737 	if (!kvm_is_reserved_pfn(pfn))
1738 		get_page(pfn_to_page(pfn));
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1741 
1742 static int next_segment(unsigned long len, int offset)
1743 {
1744 	if (len > PAGE_SIZE - offset)
1745 		return PAGE_SIZE - offset;
1746 	else
1747 		return len;
1748 }
1749 
1750 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1751 				 void *data, int offset, int len)
1752 {
1753 	int r;
1754 	unsigned long addr;
1755 
1756 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1757 	if (kvm_is_error_hva(addr))
1758 		return -EFAULT;
1759 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1760 	if (r)
1761 		return -EFAULT;
1762 	return 0;
1763 }
1764 
1765 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1766 			int len)
1767 {
1768 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1769 
1770 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1773 
1774 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1775 			     int offset, int len)
1776 {
1777 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1778 
1779 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1782 
1783 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1784 {
1785 	gfn_t gfn = gpa >> PAGE_SHIFT;
1786 	int seg;
1787 	int offset = offset_in_page(gpa);
1788 	int ret;
1789 
1790 	while ((seg = next_segment(len, offset)) != 0) {
1791 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1792 		if (ret < 0)
1793 			return ret;
1794 		offset = 0;
1795 		len -= seg;
1796 		data += seg;
1797 		++gfn;
1798 	}
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_read_guest);
1802 
1803 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1804 {
1805 	gfn_t gfn = gpa >> PAGE_SHIFT;
1806 	int seg;
1807 	int offset = offset_in_page(gpa);
1808 	int ret;
1809 
1810 	while ((seg = next_segment(len, offset)) != 0) {
1811 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1812 		if (ret < 0)
1813 			return ret;
1814 		offset = 0;
1815 		len -= seg;
1816 		data += seg;
1817 		++gfn;
1818 	}
1819 	return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1822 
1823 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1824 			           void *data, int offset, unsigned long len)
1825 {
1826 	int r;
1827 	unsigned long addr;
1828 
1829 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1830 	if (kvm_is_error_hva(addr))
1831 		return -EFAULT;
1832 	pagefault_disable();
1833 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1834 	pagefault_enable();
1835 	if (r)
1836 		return -EFAULT;
1837 	return 0;
1838 }
1839 
1840 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1841 			  unsigned long len)
1842 {
1843 	gfn_t gfn = gpa >> PAGE_SHIFT;
1844 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1845 	int offset = offset_in_page(gpa);
1846 
1847 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1850 
1851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1852 			       void *data, unsigned long len)
1853 {
1854 	gfn_t gfn = gpa >> PAGE_SHIFT;
1855 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1856 	int offset = offset_in_page(gpa);
1857 
1858 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1861 
1862 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1863 			          const void *data, int offset, int len)
1864 {
1865 	int r;
1866 	unsigned long addr;
1867 
1868 	addr = gfn_to_hva_memslot(memslot, gfn);
1869 	if (kvm_is_error_hva(addr))
1870 		return -EFAULT;
1871 	r = __copy_to_user((void __user *)addr + offset, data, len);
1872 	if (r)
1873 		return -EFAULT;
1874 	mark_page_dirty_in_slot(memslot, gfn);
1875 	return 0;
1876 }
1877 
1878 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1879 			 const void *data, int offset, int len)
1880 {
1881 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1882 
1883 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1886 
1887 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1888 			      const void *data, int offset, int len)
1889 {
1890 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1891 
1892 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1895 
1896 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1897 		    unsigned long len)
1898 {
1899 	gfn_t gfn = gpa >> PAGE_SHIFT;
1900 	int seg;
1901 	int offset = offset_in_page(gpa);
1902 	int ret;
1903 
1904 	while ((seg = next_segment(len, offset)) != 0) {
1905 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1906 		if (ret < 0)
1907 			return ret;
1908 		offset = 0;
1909 		len -= seg;
1910 		data += seg;
1911 		++gfn;
1912 	}
1913 	return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_write_guest);
1916 
1917 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1918 		         unsigned long len)
1919 {
1920 	gfn_t gfn = gpa >> PAGE_SHIFT;
1921 	int seg;
1922 	int offset = offset_in_page(gpa);
1923 	int ret;
1924 
1925 	while ((seg = next_segment(len, offset)) != 0) {
1926 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1927 		if (ret < 0)
1928 			return ret;
1929 		offset = 0;
1930 		len -= seg;
1931 		data += seg;
1932 		++gfn;
1933 	}
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1937 
1938 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1939 			      gpa_t gpa, unsigned long len)
1940 {
1941 	struct kvm_memslots *slots = kvm_memslots(kvm);
1942 	int offset = offset_in_page(gpa);
1943 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1944 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1945 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1946 	gfn_t nr_pages_avail;
1947 
1948 	ghc->gpa = gpa;
1949 	ghc->generation = slots->generation;
1950 	ghc->len = len;
1951 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1953 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1954 		ghc->hva += offset;
1955 	} else {
1956 		/*
1957 		 * If the requested region crosses two memslots, we still
1958 		 * verify that the entire region is valid here.
1959 		 */
1960 		while (start_gfn <= end_gfn) {
1961 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1962 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1963 						   &nr_pages_avail);
1964 			if (kvm_is_error_hva(ghc->hva))
1965 				return -EFAULT;
1966 			start_gfn += nr_pages_avail;
1967 		}
1968 		/* Use the slow path for cross page reads and writes. */
1969 		ghc->memslot = NULL;
1970 	}
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1974 
1975 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976 			   void *data, unsigned long len)
1977 {
1978 	struct kvm_memslots *slots = kvm_memslots(kvm);
1979 	int r;
1980 
1981 	BUG_ON(len > ghc->len);
1982 
1983 	if (slots->generation != ghc->generation)
1984 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1985 
1986 	if (unlikely(!ghc->memslot))
1987 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1988 
1989 	if (kvm_is_error_hva(ghc->hva))
1990 		return -EFAULT;
1991 
1992 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1993 	if (r)
1994 		return -EFAULT;
1995 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2000 
2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 			   void *data, unsigned long len)
2003 {
2004 	struct kvm_memslots *slots = kvm_memslots(kvm);
2005 	int r;
2006 
2007 	BUG_ON(len > ghc->len);
2008 
2009 	if (slots->generation != ghc->generation)
2010 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2011 
2012 	if (unlikely(!ghc->memslot))
2013 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2014 
2015 	if (kvm_is_error_hva(ghc->hva))
2016 		return -EFAULT;
2017 
2018 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2019 	if (r)
2020 		return -EFAULT;
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2025 
2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2027 {
2028 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2029 
2030 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2033 
2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2035 {
2036 	gfn_t gfn = gpa >> PAGE_SHIFT;
2037 	int seg;
2038 	int offset = offset_in_page(gpa);
2039 	int ret;
2040 
2041 	while ((seg = next_segment(len, offset)) != 0) {
2042 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2043 		if (ret < 0)
2044 			return ret;
2045 		offset = 0;
2046 		len -= seg;
2047 		++gfn;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2052 
2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2054 				    gfn_t gfn)
2055 {
2056 	if (memslot && memslot->dirty_bitmap) {
2057 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2058 
2059 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060 	}
2061 }
2062 
2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2064 {
2065 	struct kvm_memory_slot *memslot;
2066 
2067 	memslot = gfn_to_memslot(kvm, gfn);
2068 	mark_page_dirty_in_slot(memslot, gfn);
2069 }
2070 EXPORT_SYMBOL_GPL(mark_page_dirty);
2071 
2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2073 {
2074 	struct kvm_memory_slot *memslot;
2075 
2076 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077 	mark_page_dirty_in_slot(memslot, gfn);
2078 }
2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2080 
2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2082 {
2083 	unsigned int old, val, grow;
2084 
2085 	old = val = vcpu->halt_poll_ns;
2086 	grow = READ_ONCE(halt_poll_ns_grow);
2087 	/* 10us base */
2088 	if (val == 0 && grow)
2089 		val = 10000;
2090 	else
2091 		val *= grow;
2092 
2093 	if (val > halt_poll_ns)
2094 		val = halt_poll_ns;
2095 
2096 	vcpu->halt_poll_ns = val;
2097 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2098 }
2099 
2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102 	unsigned int old, val, shrink;
2103 
2104 	old = val = vcpu->halt_poll_ns;
2105 	shrink = READ_ONCE(halt_poll_ns_shrink);
2106 	if (shrink == 0)
2107 		val = 0;
2108 	else
2109 		val /= shrink;
2110 
2111 	vcpu->halt_poll_ns = val;
2112 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2113 }
2114 
2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2116 {
2117 	if (kvm_arch_vcpu_runnable(vcpu)) {
2118 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2119 		return -EINTR;
2120 	}
2121 	if (kvm_cpu_has_pending_timer(vcpu))
2122 		return -EINTR;
2123 	if (signal_pending(current))
2124 		return -EINTR;
2125 
2126 	return 0;
2127 }
2128 
2129 /*
2130  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2131  */
2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2133 {
2134 	ktime_t start, cur;
2135 	DECLARE_SWAITQUEUE(wait);
2136 	bool waited = false;
2137 	u64 block_ns;
2138 
2139 	start = cur = ktime_get();
2140 	if (vcpu->halt_poll_ns) {
2141 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2142 
2143 		++vcpu->stat.halt_attempted_poll;
2144 		do {
2145 			/*
2146 			 * This sets KVM_REQ_UNHALT if an interrupt
2147 			 * arrives.
2148 			 */
2149 			if (kvm_vcpu_check_block(vcpu) < 0) {
2150 				++vcpu->stat.halt_successful_poll;
2151 				if (!vcpu_valid_wakeup(vcpu))
2152 					++vcpu->stat.halt_poll_invalid;
2153 				goto out;
2154 			}
2155 			cur = ktime_get();
2156 		} while (single_task_running() && ktime_before(cur, stop));
2157 	}
2158 
2159 	kvm_arch_vcpu_blocking(vcpu);
2160 
2161 	for (;;) {
2162 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2163 
2164 		if (kvm_vcpu_check_block(vcpu) < 0)
2165 			break;
2166 
2167 		waited = true;
2168 		schedule();
2169 	}
2170 
2171 	finish_swait(&vcpu->wq, &wait);
2172 	cur = ktime_get();
2173 
2174 	kvm_arch_vcpu_unblocking(vcpu);
2175 out:
2176 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2177 
2178 	if (!vcpu_valid_wakeup(vcpu))
2179 		shrink_halt_poll_ns(vcpu);
2180 	else if (halt_poll_ns) {
2181 		if (block_ns <= vcpu->halt_poll_ns)
2182 			;
2183 		/* we had a long block, shrink polling */
2184 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2185 			shrink_halt_poll_ns(vcpu);
2186 		/* we had a short halt and our poll time is too small */
2187 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2188 			block_ns < halt_poll_ns)
2189 			grow_halt_poll_ns(vcpu);
2190 	} else
2191 		vcpu->halt_poll_ns = 0;
2192 
2193 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2194 	kvm_arch_vcpu_block_finish(vcpu);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2197 
2198 #ifndef CONFIG_S390
2199 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2200 {
2201 	struct swait_queue_head *wqp;
2202 
2203 	wqp = kvm_arch_vcpu_wq(vcpu);
2204 	if (swait_active(wqp)) {
2205 		swake_up(wqp);
2206 		++vcpu->stat.halt_wakeup;
2207 	}
2208 
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2211 
2212 /*
2213  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2214  */
2215 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2216 {
2217 	int me;
2218 	int cpu = vcpu->cpu;
2219 
2220 	kvm_vcpu_wake_up(vcpu);
2221 	me = get_cpu();
2222 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223 		if (kvm_arch_vcpu_should_kick(vcpu))
2224 			smp_send_reschedule(cpu);
2225 	put_cpu();
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228 #endif /* !CONFIG_S390 */
2229 
2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2231 {
2232 	struct pid *pid;
2233 	struct task_struct *task = NULL;
2234 	int ret = 0;
2235 
2236 	rcu_read_lock();
2237 	pid = rcu_dereference(target->pid);
2238 	if (pid)
2239 		task = get_pid_task(pid, PIDTYPE_PID);
2240 	rcu_read_unlock();
2241 	if (!task)
2242 		return ret;
2243 	ret = yield_to(task, 1);
2244 	put_task_struct(task);
2245 
2246 	return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2249 
2250 /*
2251  * Helper that checks whether a VCPU is eligible for directed yield.
2252  * Most eligible candidate to yield is decided by following heuristics:
2253  *
2254  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255  *  (preempted lock holder), indicated by @in_spin_loop.
2256  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2257  *
2258  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259  *  chance last time (mostly it has become eligible now since we have probably
2260  *  yielded to lockholder in last iteration. This is done by toggling
2261  *  @dy_eligible each time a VCPU checked for eligibility.)
2262  *
2263  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2265  *  burning. Giving priority for a potential lock-holder increases lock
2266  *  progress.
2267  *
2268  *  Since algorithm is based on heuristics, accessing another VCPU data without
2269  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2270  *  and continue with next VCPU and so on.
2271  */
2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2273 {
2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275 	bool eligible;
2276 
2277 	eligible = !vcpu->spin_loop.in_spin_loop ||
2278 		    vcpu->spin_loop.dy_eligible;
2279 
2280 	if (vcpu->spin_loop.in_spin_loop)
2281 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2282 
2283 	return eligible;
2284 #else
2285 	return true;
2286 #endif
2287 }
2288 
2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2290 {
2291 	struct kvm *kvm = me->kvm;
2292 	struct kvm_vcpu *vcpu;
2293 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294 	int yielded = 0;
2295 	int try = 3;
2296 	int pass;
2297 	int i;
2298 
2299 	kvm_vcpu_set_in_spin_loop(me, true);
2300 	/*
2301 	 * We boost the priority of a VCPU that is runnable but not
2302 	 * currently running, because it got preempted by something
2303 	 * else and called schedule in __vcpu_run.  Hopefully that
2304 	 * VCPU is holding the lock that we need and will release it.
2305 	 * We approximate round-robin by starting at the last boosted VCPU.
2306 	 */
2307 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308 		kvm_for_each_vcpu(i, vcpu, kvm) {
2309 			if (!pass && i <= last_boosted_vcpu) {
2310 				i = last_boosted_vcpu;
2311 				continue;
2312 			} else if (pass && i > last_boosted_vcpu)
2313 				break;
2314 			if (!ACCESS_ONCE(vcpu->preempted))
2315 				continue;
2316 			if (vcpu == me)
2317 				continue;
2318 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319 				continue;
2320 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2321 				continue;
2322 
2323 			yielded = kvm_vcpu_yield_to(vcpu);
2324 			if (yielded > 0) {
2325 				kvm->last_boosted_vcpu = i;
2326 				break;
2327 			} else if (yielded < 0) {
2328 				try--;
2329 				if (!try)
2330 					break;
2331 			}
2332 		}
2333 	}
2334 	kvm_vcpu_set_in_spin_loop(me, false);
2335 
2336 	/* Ensure vcpu is not eligible during next spinloop */
2337 	kvm_vcpu_set_dy_eligible(me, false);
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2340 
2341 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2342 {
2343 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2344 	struct page *page;
2345 
2346 	if (vmf->pgoff == 0)
2347 		page = virt_to_page(vcpu->run);
2348 #ifdef CONFIG_X86
2349 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2350 		page = virt_to_page(vcpu->arch.pio_data);
2351 #endif
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2354 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2355 #endif
2356 	else
2357 		return kvm_arch_vcpu_fault(vcpu, vmf);
2358 	get_page(page);
2359 	vmf->page = page;
2360 	return 0;
2361 }
2362 
2363 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2364 	.fault = kvm_vcpu_fault,
2365 };
2366 
2367 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2368 {
2369 	vma->vm_ops = &kvm_vcpu_vm_ops;
2370 	return 0;
2371 }
2372 
2373 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2374 {
2375 	struct kvm_vcpu *vcpu = filp->private_data;
2376 
2377 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2378 	kvm_put_kvm(vcpu->kvm);
2379 	return 0;
2380 }
2381 
2382 static struct file_operations kvm_vcpu_fops = {
2383 	.release        = kvm_vcpu_release,
2384 	.unlocked_ioctl = kvm_vcpu_ioctl,
2385 #ifdef CONFIG_KVM_COMPAT
2386 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2387 #endif
2388 	.mmap           = kvm_vcpu_mmap,
2389 	.llseek		= noop_llseek,
2390 };
2391 
2392 /*
2393  * Allocates an inode for the vcpu.
2394  */
2395 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2396 {
2397 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2398 }
2399 
2400 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2401 {
2402 	char dir_name[ITOA_MAX_LEN * 2];
2403 	int ret;
2404 
2405 	if (!kvm_arch_has_vcpu_debugfs())
2406 		return 0;
2407 
2408 	if (!debugfs_initialized())
2409 		return 0;
2410 
2411 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2412 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2413 								vcpu->kvm->debugfs_dentry);
2414 	if (!vcpu->debugfs_dentry)
2415 		return -ENOMEM;
2416 
2417 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2418 	if (ret < 0) {
2419 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2420 		return ret;
2421 	}
2422 
2423 	return 0;
2424 }
2425 
2426 /*
2427  * Creates some virtual cpus.  Good luck creating more than one.
2428  */
2429 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2430 {
2431 	int r;
2432 	struct kvm_vcpu *vcpu;
2433 
2434 	if (id >= KVM_MAX_VCPU_ID)
2435 		return -EINVAL;
2436 
2437 	mutex_lock(&kvm->lock);
2438 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2439 		mutex_unlock(&kvm->lock);
2440 		return -EINVAL;
2441 	}
2442 
2443 	kvm->created_vcpus++;
2444 	mutex_unlock(&kvm->lock);
2445 
2446 	vcpu = kvm_arch_vcpu_create(kvm, id);
2447 	if (IS_ERR(vcpu)) {
2448 		r = PTR_ERR(vcpu);
2449 		goto vcpu_decrement;
2450 	}
2451 
2452 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2453 
2454 	r = kvm_arch_vcpu_setup(vcpu);
2455 	if (r)
2456 		goto vcpu_destroy;
2457 
2458 	r = kvm_create_vcpu_debugfs(vcpu);
2459 	if (r)
2460 		goto vcpu_destroy;
2461 
2462 	mutex_lock(&kvm->lock);
2463 	if (kvm_get_vcpu_by_id(kvm, id)) {
2464 		r = -EEXIST;
2465 		goto unlock_vcpu_destroy;
2466 	}
2467 
2468 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2469 
2470 	/* Now it's all set up, let userspace reach it */
2471 	kvm_get_kvm(kvm);
2472 	r = create_vcpu_fd(vcpu);
2473 	if (r < 0) {
2474 		kvm_put_kvm(kvm);
2475 		goto unlock_vcpu_destroy;
2476 	}
2477 
2478 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2479 
2480 	/*
2481 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2482 	 * before kvm->online_vcpu's incremented value.
2483 	 */
2484 	smp_wmb();
2485 	atomic_inc(&kvm->online_vcpus);
2486 
2487 	mutex_unlock(&kvm->lock);
2488 	kvm_arch_vcpu_postcreate(vcpu);
2489 	return r;
2490 
2491 unlock_vcpu_destroy:
2492 	mutex_unlock(&kvm->lock);
2493 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2494 vcpu_destroy:
2495 	kvm_arch_vcpu_destroy(vcpu);
2496 vcpu_decrement:
2497 	mutex_lock(&kvm->lock);
2498 	kvm->created_vcpus--;
2499 	mutex_unlock(&kvm->lock);
2500 	return r;
2501 }
2502 
2503 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2504 {
2505 	if (sigset) {
2506 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2507 		vcpu->sigset_active = 1;
2508 		vcpu->sigset = *sigset;
2509 	} else
2510 		vcpu->sigset_active = 0;
2511 	return 0;
2512 }
2513 
2514 static long kvm_vcpu_ioctl(struct file *filp,
2515 			   unsigned int ioctl, unsigned long arg)
2516 {
2517 	struct kvm_vcpu *vcpu = filp->private_data;
2518 	void __user *argp = (void __user *)arg;
2519 	int r;
2520 	struct kvm_fpu *fpu = NULL;
2521 	struct kvm_sregs *kvm_sregs = NULL;
2522 
2523 	if (vcpu->kvm->mm != current->mm)
2524 		return -EIO;
2525 
2526 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2527 		return -EINVAL;
2528 
2529 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2530 	/*
2531 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2532 	 * so vcpu_load() would break it.
2533 	 */
2534 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2535 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2536 #endif
2537 
2538 
2539 	r = vcpu_load(vcpu);
2540 	if (r)
2541 		return r;
2542 	switch (ioctl) {
2543 	case KVM_RUN:
2544 		r = -EINVAL;
2545 		if (arg)
2546 			goto out;
2547 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2548 			/* The thread running this VCPU changed. */
2549 			struct pid *oldpid = vcpu->pid;
2550 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2551 
2552 			rcu_assign_pointer(vcpu->pid, newpid);
2553 			if (oldpid)
2554 				synchronize_rcu();
2555 			put_pid(oldpid);
2556 		}
2557 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2558 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2559 		break;
2560 	case KVM_GET_REGS: {
2561 		struct kvm_regs *kvm_regs;
2562 
2563 		r = -ENOMEM;
2564 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2565 		if (!kvm_regs)
2566 			goto out;
2567 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2568 		if (r)
2569 			goto out_free1;
2570 		r = -EFAULT;
2571 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2572 			goto out_free1;
2573 		r = 0;
2574 out_free1:
2575 		kfree(kvm_regs);
2576 		break;
2577 	}
2578 	case KVM_SET_REGS: {
2579 		struct kvm_regs *kvm_regs;
2580 
2581 		r = -ENOMEM;
2582 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2583 		if (IS_ERR(kvm_regs)) {
2584 			r = PTR_ERR(kvm_regs);
2585 			goto out;
2586 		}
2587 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2588 		kfree(kvm_regs);
2589 		break;
2590 	}
2591 	case KVM_GET_SREGS: {
2592 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2593 		r = -ENOMEM;
2594 		if (!kvm_sregs)
2595 			goto out;
2596 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2597 		if (r)
2598 			goto out;
2599 		r = -EFAULT;
2600 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2601 			goto out;
2602 		r = 0;
2603 		break;
2604 	}
2605 	case KVM_SET_SREGS: {
2606 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2607 		if (IS_ERR(kvm_sregs)) {
2608 			r = PTR_ERR(kvm_sregs);
2609 			kvm_sregs = NULL;
2610 			goto out;
2611 		}
2612 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2613 		break;
2614 	}
2615 	case KVM_GET_MP_STATE: {
2616 		struct kvm_mp_state mp_state;
2617 
2618 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2619 		if (r)
2620 			goto out;
2621 		r = -EFAULT;
2622 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2623 			goto out;
2624 		r = 0;
2625 		break;
2626 	}
2627 	case KVM_SET_MP_STATE: {
2628 		struct kvm_mp_state mp_state;
2629 
2630 		r = -EFAULT;
2631 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2632 			goto out;
2633 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2634 		break;
2635 	}
2636 	case KVM_TRANSLATE: {
2637 		struct kvm_translation tr;
2638 
2639 		r = -EFAULT;
2640 		if (copy_from_user(&tr, argp, sizeof(tr)))
2641 			goto out;
2642 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2643 		if (r)
2644 			goto out;
2645 		r = -EFAULT;
2646 		if (copy_to_user(argp, &tr, sizeof(tr)))
2647 			goto out;
2648 		r = 0;
2649 		break;
2650 	}
2651 	case KVM_SET_GUEST_DEBUG: {
2652 		struct kvm_guest_debug dbg;
2653 
2654 		r = -EFAULT;
2655 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2656 			goto out;
2657 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2658 		break;
2659 	}
2660 	case KVM_SET_SIGNAL_MASK: {
2661 		struct kvm_signal_mask __user *sigmask_arg = argp;
2662 		struct kvm_signal_mask kvm_sigmask;
2663 		sigset_t sigset, *p;
2664 
2665 		p = NULL;
2666 		if (argp) {
2667 			r = -EFAULT;
2668 			if (copy_from_user(&kvm_sigmask, argp,
2669 					   sizeof(kvm_sigmask)))
2670 				goto out;
2671 			r = -EINVAL;
2672 			if (kvm_sigmask.len != sizeof(sigset))
2673 				goto out;
2674 			r = -EFAULT;
2675 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2676 					   sizeof(sigset)))
2677 				goto out;
2678 			p = &sigset;
2679 		}
2680 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2681 		break;
2682 	}
2683 	case KVM_GET_FPU: {
2684 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2685 		r = -ENOMEM;
2686 		if (!fpu)
2687 			goto out;
2688 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2689 		if (r)
2690 			goto out;
2691 		r = -EFAULT;
2692 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2693 			goto out;
2694 		r = 0;
2695 		break;
2696 	}
2697 	case KVM_SET_FPU: {
2698 		fpu = memdup_user(argp, sizeof(*fpu));
2699 		if (IS_ERR(fpu)) {
2700 			r = PTR_ERR(fpu);
2701 			fpu = NULL;
2702 			goto out;
2703 		}
2704 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2705 		break;
2706 	}
2707 	default:
2708 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2709 	}
2710 out:
2711 	vcpu_put(vcpu);
2712 	kfree(fpu);
2713 	kfree(kvm_sregs);
2714 	return r;
2715 }
2716 
2717 #ifdef CONFIG_KVM_COMPAT
2718 static long kvm_vcpu_compat_ioctl(struct file *filp,
2719 				  unsigned int ioctl, unsigned long arg)
2720 {
2721 	struct kvm_vcpu *vcpu = filp->private_data;
2722 	void __user *argp = compat_ptr(arg);
2723 	int r;
2724 
2725 	if (vcpu->kvm->mm != current->mm)
2726 		return -EIO;
2727 
2728 	switch (ioctl) {
2729 	case KVM_SET_SIGNAL_MASK: {
2730 		struct kvm_signal_mask __user *sigmask_arg = argp;
2731 		struct kvm_signal_mask kvm_sigmask;
2732 		compat_sigset_t csigset;
2733 		sigset_t sigset;
2734 
2735 		if (argp) {
2736 			r = -EFAULT;
2737 			if (copy_from_user(&kvm_sigmask, argp,
2738 					   sizeof(kvm_sigmask)))
2739 				goto out;
2740 			r = -EINVAL;
2741 			if (kvm_sigmask.len != sizeof(csigset))
2742 				goto out;
2743 			r = -EFAULT;
2744 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2745 					   sizeof(csigset)))
2746 				goto out;
2747 			sigset_from_compat(&sigset, &csigset);
2748 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2749 		} else
2750 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2751 		break;
2752 	}
2753 	default:
2754 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2755 	}
2756 
2757 out:
2758 	return r;
2759 }
2760 #endif
2761 
2762 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2763 				 int (*accessor)(struct kvm_device *dev,
2764 						 struct kvm_device_attr *attr),
2765 				 unsigned long arg)
2766 {
2767 	struct kvm_device_attr attr;
2768 
2769 	if (!accessor)
2770 		return -EPERM;
2771 
2772 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2773 		return -EFAULT;
2774 
2775 	return accessor(dev, &attr);
2776 }
2777 
2778 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2779 			     unsigned long arg)
2780 {
2781 	struct kvm_device *dev = filp->private_data;
2782 
2783 	switch (ioctl) {
2784 	case KVM_SET_DEVICE_ATTR:
2785 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2786 	case KVM_GET_DEVICE_ATTR:
2787 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2788 	case KVM_HAS_DEVICE_ATTR:
2789 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2790 	default:
2791 		if (dev->ops->ioctl)
2792 			return dev->ops->ioctl(dev, ioctl, arg);
2793 
2794 		return -ENOTTY;
2795 	}
2796 }
2797 
2798 static int kvm_device_release(struct inode *inode, struct file *filp)
2799 {
2800 	struct kvm_device *dev = filp->private_data;
2801 	struct kvm *kvm = dev->kvm;
2802 
2803 	kvm_put_kvm(kvm);
2804 	return 0;
2805 }
2806 
2807 static const struct file_operations kvm_device_fops = {
2808 	.unlocked_ioctl = kvm_device_ioctl,
2809 #ifdef CONFIG_KVM_COMPAT
2810 	.compat_ioctl = kvm_device_ioctl,
2811 #endif
2812 	.release = kvm_device_release,
2813 };
2814 
2815 struct kvm_device *kvm_device_from_filp(struct file *filp)
2816 {
2817 	if (filp->f_op != &kvm_device_fops)
2818 		return NULL;
2819 
2820 	return filp->private_data;
2821 }
2822 
2823 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2824 #ifdef CONFIG_KVM_MPIC
2825 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2826 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2827 #endif
2828 
2829 #ifdef CONFIG_KVM_XICS
2830 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2831 #endif
2832 };
2833 
2834 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2835 {
2836 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2837 		return -ENOSPC;
2838 
2839 	if (kvm_device_ops_table[type] != NULL)
2840 		return -EEXIST;
2841 
2842 	kvm_device_ops_table[type] = ops;
2843 	return 0;
2844 }
2845 
2846 void kvm_unregister_device_ops(u32 type)
2847 {
2848 	if (kvm_device_ops_table[type] != NULL)
2849 		kvm_device_ops_table[type] = NULL;
2850 }
2851 
2852 static int kvm_ioctl_create_device(struct kvm *kvm,
2853 				   struct kvm_create_device *cd)
2854 {
2855 	struct kvm_device_ops *ops = NULL;
2856 	struct kvm_device *dev;
2857 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2858 	int ret;
2859 
2860 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2861 		return -ENODEV;
2862 
2863 	ops = kvm_device_ops_table[cd->type];
2864 	if (ops == NULL)
2865 		return -ENODEV;
2866 
2867 	if (test)
2868 		return 0;
2869 
2870 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2871 	if (!dev)
2872 		return -ENOMEM;
2873 
2874 	dev->ops = ops;
2875 	dev->kvm = kvm;
2876 
2877 	mutex_lock(&kvm->lock);
2878 	ret = ops->create(dev, cd->type);
2879 	if (ret < 0) {
2880 		mutex_unlock(&kvm->lock);
2881 		kfree(dev);
2882 		return ret;
2883 	}
2884 	list_add(&dev->vm_node, &kvm->devices);
2885 	mutex_unlock(&kvm->lock);
2886 
2887 	if (ops->init)
2888 		ops->init(dev);
2889 
2890 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2891 	if (ret < 0) {
2892 		ops->destroy(dev);
2893 		mutex_lock(&kvm->lock);
2894 		list_del(&dev->vm_node);
2895 		mutex_unlock(&kvm->lock);
2896 		return ret;
2897 	}
2898 
2899 	kvm_get_kvm(kvm);
2900 	cd->fd = ret;
2901 	return 0;
2902 }
2903 
2904 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2905 {
2906 	switch (arg) {
2907 	case KVM_CAP_USER_MEMORY:
2908 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2909 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2910 	case KVM_CAP_INTERNAL_ERROR_DATA:
2911 #ifdef CONFIG_HAVE_KVM_MSI
2912 	case KVM_CAP_SIGNAL_MSI:
2913 #endif
2914 #ifdef CONFIG_HAVE_KVM_IRQFD
2915 	case KVM_CAP_IRQFD:
2916 	case KVM_CAP_IRQFD_RESAMPLE:
2917 #endif
2918 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2919 	case KVM_CAP_CHECK_EXTENSION_VM:
2920 		return 1;
2921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2922 	case KVM_CAP_IRQ_ROUTING:
2923 		return KVM_MAX_IRQ_ROUTES;
2924 #endif
2925 #if KVM_ADDRESS_SPACE_NUM > 1
2926 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2927 		return KVM_ADDRESS_SPACE_NUM;
2928 #endif
2929 	case KVM_CAP_MAX_VCPU_ID:
2930 		return KVM_MAX_VCPU_ID;
2931 	default:
2932 		break;
2933 	}
2934 	return kvm_vm_ioctl_check_extension(kvm, arg);
2935 }
2936 
2937 static long kvm_vm_ioctl(struct file *filp,
2938 			   unsigned int ioctl, unsigned long arg)
2939 {
2940 	struct kvm *kvm = filp->private_data;
2941 	void __user *argp = (void __user *)arg;
2942 	int r;
2943 
2944 	if (kvm->mm != current->mm)
2945 		return -EIO;
2946 	switch (ioctl) {
2947 	case KVM_CREATE_VCPU:
2948 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2949 		break;
2950 	case KVM_SET_USER_MEMORY_REGION: {
2951 		struct kvm_userspace_memory_region kvm_userspace_mem;
2952 
2953 		r = -EFAULT;
2954 		if (copy_from_user(&kvm_userspace_mem, argp,
2955 						sizeof(kvm_userspace_mem)))
2956 			goto out;
2957 
2958 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2959 		break;
2960 	}
2961 	case KVM_GET_DIRTY_LOG: {
2962 		struct kvm_dirty_log log;
2963 
2964 		r = -EFAULT;
2965 		if (copy_from_user(&log, argp, sizeof(log)))
2966 			goto out;
2967 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2968 		break;
2969 	}
2970 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2971 	case KVM_REGISTER_COALESCED_MMIO: {
2972 		struct kvm_coalesced_mmio_zone zone;
2973 
2974 		r = -EFAULT;
2975 		if (copy_from_user(&zone, argp, sizeof(zone)))
2976 			goto out;
2977 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2978 		break;
2979 	}
2980 	case KVM_UNREGISTER_COALESCED_MMIO: {
2981 		struct kvm_coalesced_mmio_zone zone;
2982 
2983 		r = -EFAULT;
2984 		if (copy_from_user(&zone, argp, sizeof(zone)))
2985 			goto out;
2986 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2987 		break;
2988 	}
2989 #endif
2990 	case KVM_IRQFD: {
2991 		struct kvm_irqfd data;
2992 
2993 		r = -EFAULT;
2994 		if (copy_from_user(&data, argp, sizeof(data)))
2995 			goto out;
2996 		r = kvm_irqfd(kvm, &data);
2997 		break;
2998 	}
2999 	case KVM_IOEVENTFD: {
3000 		struct kvm_ioeventfd data;
3001 
3002 		r = -EFAULT;
3003 		if (copy_from_user(&data, argp, sizeof(data)))
3004 			goto out;
3005 		r = kvm_ioeventfd(kvm, &data);
3006 		break;
3007 	}
3008 #ifdef CONFIG_HAVE_KVM_MSI
3009 	case KVM_SIGNAL_MSI: {
3010 		struct kvm_msi msi;
3011 
3012 		r = -EFAULT;
3013 		if (copy_from_user(&msi, argp, sizeof(msi)))
3014 			goto out;
3015 		r = kvm_send_userspace_msi(kvm, &msi);
3016 		break;
3017 	}
3018 #endif
3019 #ifdef __KVM_HAVE_IRQ_LINE
3020 	case KVM_IRQ_LINE_STATUS:
3021 	case KVM_IRQ_LINE: {
3022 		struct kvm_irq_level irq_event;
3023 
3024 		r = -EFAULT;
3025 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3026 			goto out;
3027 
3028 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3029 					ioctl == KVM_IRQ_LINE_STATUS);
3030 		if (r)
3031 			goto out;
3032 
3033 		r = -EFAULT;
3034 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3035 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3036 				goto out;
3037 		}
3038 
3039 		r = 0;
3040 		break;
3041 	}
3042 #endif
3043 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3044 	case KVM_SET_GSI_ROUTING: {
3045 		struct kvm_irq_routing routing;
3046 		struct kvm_irq_routing __user *urouting;
3047 		struct kvm_irq_routing_entry *entries = NULL;
3048 
3049 		r = -EFAULT;
3050 		if (copy_from_user(&routing, argp, sizeof(routing)))
3051 			goto out;
3052 		r = -EINVAL;
3053 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3054 			goto out;
3055 		if (routing.flags)
3056 			goto out;
3057 		if (routing.nr) {
3058 			r = -ENOMEM;
3059 			entries = vmalloc(routing.nr * sizeof(*entries));
3060 			if (!entries)
3061 				goto out;
3062 			r = -EFAULT;
3063 			urouting = argp;
3064 			if (copy_from_user(entries, urouting->entries,
3065 					   routing.nr * sizeof(*entries)))
3066 				goto out_free_irq_routing;
3067 		}
3068 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3069 					routing.flags);
3070 out_free_irq_routing:
3071 		vfree(entries);
3072 		break;
3073 	}
3074 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3075 	case KVM_CREATE_DEVICE: {
3076 		struct kvm_create_device cd;
3077 
3078 		r = -EFAULT;
3079 		if (copy_from_user(&cd, argp, sizeof(cd)))
3080 			goto out;
3081 
3082 		r = kvm_ioctl_create_device(kvm, &cd);
3083 		if (r)
3084 			goto out;
3085 
3086 		r = -EFAULT;
3087 		if (copy_to_user(argp, &cd, sizeof(cd)))
3088 			goto out;
3089 
3090 		r = 0;
3091 		break;
3092 	}
3093 	case KVM_CHECK_EXTENSION:
3094 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3095 		break;
3096 	default:
3097 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3098 	}
3099 out:
3100 	return r;
3101 }
3102 
3103 #ifdef CONFIG_KVM_COMPAT
3104 struct compat_kvm_dirty_log {
3105 	__u32 slot;
3106 	__u32 padding1;
3107 	union {
3108 		compat_uptr_t dirty_bitmap; /* one bit per page */
3109 		__u64 padding2;
3110 	};
3111 };
3112 
3113 static long kvm_vm_compat_ioctl(struct file *filp,
3114 			   unsigned int ioctl, unsigned long arg)
3115 {
3116 	struct kvm *kvm = filp->private_data;
3117 	int r;
3118 
3119 	if (kvm->mm != current->mm)
3120 		return -EIO;
3121 	switch (ioctl) {
3122 	case KVM_GET_DIRTY_LOG: {
3123 		struct compat_kvm_dirty_log compat_log;
3124 		struct kvm_dirty_log log;
3125 
3126 		r = -EFAULT;
3127 		if (copy_from_user(&compat_log, (void __user *)arg,
3128 				   sizeof(compat_log)))
3129 			goto out;
3130 		log.slot	 = compat_log.slot;
3131 		log.padding1	 = compat_log.padding1;
3132 		log.padding2	 = compat_log.padding2;
3133 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3134 
3135 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3136 		break;
3137 	}
3138 	default:
3139 		r = kvm_vm_ioctl(filp, ioctl, arg);
3140 	}
3141 
3142 out:
3143 	return r;
3144 }
3145 #endif
3146 
3147 static struct file_operations kvm_vm_fops = {
3148 	.release        = kvm_vm_release,
3149 	.unlocked_ioctl = kvm_vm_ioctl,
3150 #ifdef CONFIG_KVM_COMPAT
3151 	.compat_ioctl   = kvm_vm_compat_ioctl,
3152 #endif
3153 	.llseek		= noop_llseek,
3154 };
3155 
3156 static int kvm_dev_ioctl_create_vm(unsigned long type)
3157 {
3158 	int r;
3159 	struct kvm *kvm;
3160 	struct file *file;
3161 
3162 	kvm = kvm_create_vm(type);
3163 	if (IS_ERR(kvm))
3164 		return PTR_ERR(kvm);
3165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3166 	r = kvm_coalesced_mmio_init(kvm);
3167 	if (r < 0) {
3168 		kvm_put_kvm(kvm);
3169 		return r;
3170 	}
3171 #endif
3172 	r = get_unused_fd_flags(O_CLOEXEC);
3173 	if (r < 0) {
3174 		kvm_put_kvm(kvm);
3175 		return r;
3176 	}
3177 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3178 	if (IS_ERR(file)) {
3179 		put_unused_fd(r);
3180 		kvm_put_kvm(kvm);
3181 		return PTR_ERR(file);
3182 	}
3183 
3184 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185 		put_unused_fd(r);
3186 		fput(file);
3187 		return -ENOMEM;
3188 	}
3189 
3190 	fd_install(r, file);
3191 	return r;
3192 }
3193 
3194 static long kvm_dev_ioctl(struct file *filp,
3195 			  unsigned int ioctl, unsigned long arg)
3196 {
3197 	long r = -EINVAL;
3198 
3199 	switch (ioctl) {
3200 	case KVM_GET_API_VERSION:
3201 		if (arg)
3202 			goto out;
3203 		r = KVM_API_VERSION;
3204 		break;
3205 	case KVM_CREATE_VM:
3206 		r = kvm_dev_ioctl_create_vm(arg);
3207 		break;
3208 	case KVM_CHECK_EXTENSION:
3209 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3210 		break;
3211 	case KVM_GET_VCPU_MMAP_SIZE:
3212 		if (arg)
3213 			goto out;
3214 		r = PAGE_SIZE;     /* struct kvm_run */
3215 #ifdef CONFIG_X86
3216 		r += PAGE_SIZE;    /* pio data page */
3217 #endif
3218 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3219 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3220 #endif
3221 		break;
3222 	case KVM_TRACE_ENABLE:
3223 	case KVM_TRACE_PAUSE:
3224 	case KVM_TRACE_DISABLE:
3225 		r = -EOPNOTSUPP;
3226 		break;
3227 	default:
3228 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3229 	}
3230 out:
3231 	return r;
3232 }
3233 
3234 static struct file_operations kvm_chardev_ops = {
3235 	.unlocked_ioctl = kvm_dev_ioctl,
3236 	.compat_ioctl   = kvm_dev_ioctl,
3237 	.llseek		= noop_llseek,
3238 };
3239 
3240 static struct miscdevice kvm_dev = {
3241 	KVM_MINOR,
3242 	"kvm",
3243 	&kvm_chardev_ops,
3244 };
3245 
3246 static void hardware_enable_nolock(void *junk)
3247 {
3248 	int cpu = raw_smp_processor_id();
3249 	int r;
3250 
3251 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3252 		return;
3253 
3254 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3255 
3256 	r = kvm_arch_hardware_enable();
3257 
3258 	if (r) {
3259 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3260 		atomic_inc(&hardware_enable_failed);
3261 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3262 	}
3263 }
3264 
3265 static int kvm_starting_cpu(unsigned int cpu)
3266 {
3267 	raw_spin_lock(&kvm_count_lock);
3268 	if (kvm_usage_count)
3269 		hardware_enable_nolock(NULL);
3270 	raw_spin_unlock(&kvm_count_lock);
3271 	return 0;
3272 }
3273 
3274 static void hardware_disable_nolock(void *junk)
3275 {
3276 	int cpu = raw_smp_processor_id();
3277 
3278 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3279 		return;
3280 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3281 	kvm_arch_hardware_disable();
3282 }
3283 
3284 static int kvm_dying_cpu(unsigned int cpu)
3285 {
3286 	raw_spin_lock(&kvm_count_lock);
3287 	if (kvm_usage_count)
3288 		hardware_disable_nolock(NULL);
3289 	raw_spin_unlock(&kvm_count_lock);
3290 	return 0;
3291 }
3292 
3293 static void hardware_disable_all_nolock(void)
3294 {
3295 	BUG_ON(!kvm_usage_count);
3296 
3297 	kvm_usage_count--;
3298 	if (!kvm_usage_count)
3299 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3300 }
3301 
3302 static void hardware_disable_all(void)
3303 {
3304 	raw_spin_lock(&kvm_count_lock);
3305 	hardware_disable_all_nolock();
3306 	raw_spin_unlock(&kvm_count_lock);
3307 }
3308 
3309 static int hardware_enable_all(void)
3310 {
3311 	int r = 0;
3312 
3313 	raw_spin_lock(&kvm_count_lock);
3314 
3315 	kvm_usage_count++;
3316 	if (kvm_usage_count == 1) {
3317 		atomic_set(&hardware_enable_failed, 0);
3318 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3319 
3320 		if (atomic_read(&hardware_enable_failed)) {
3321 			hardware_disable_all_nolock();
3322 			r = -EBUSY;
3323 		}
3324 	}
3325 
3326 	raw_spin_unlock(&kvm_count_lock);
3327 
3328 	return r;
3329 }
3330 
3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3332 		      void *v)
3333 {
3334 	/*
3335 	 * Some (well, at least mine) BIOSes hang on reboot if
3336 	 * in vmx root mode.
3337 	 *
3338 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3339 	 */
3340 	pr_info("kvm: exiting hardware virtualization\n");
3341 	kvm_rebooting = true;
3342 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3343 	return NOTIFY_OK;
3344 }
3345 
3346 static struct notifier_block kvm_reboot_notifier = {
3347 	.notifier_call = kvm_reboot,
3348 	.priority = 0,
3349 };
3350 
3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3352 {
3353 	int i;
3354 
3355 	for (i = 0; i < bus->dev_count; i++) {
3356 		struct kvm_io_device *pos = bus->range[i].dev;
3357 
3358 		kvm_iodevice_destructor(pos);
3359 	}
3360 	kfree(bus);
3361 }
3362 
3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3364 				 const struct kvm_io_range *r2)
3365 {
3366 	gpa_t addr1 = r1->addr;
3367 	gpa_t addr2 = r2->addr;
3368 
3369 	if (addr1 < addr2)
3370 		return -1;
3371 
3372 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3373 	 * accept any overlapping write.  Any order is acceptable for
3374 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3375 	 * we process all of them.
3376 	 */
3377 	if (r2->len) {
3378 		addr1 += r1->len;
3379 		addr2 += r2->len;
3380 	}
3381 
3382 	if (addr1 > addr2)
3383 		return 1;
3384 
3385 	return 0;
3386 }
3387 
3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3389 {
3390 	return kvm_io_bus_cmp(p1, p2);
3391 }
3392 
3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3394 			  gpa_t addr, int len)
3395 {
3396 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3397 		.addr = addr,
3398 		.len = len,
3399 		.dev = dev,
3400 	};
3401 
3402 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3403 		kvm_io_bus_sort_cmp, NULL);
3404 
3405 	return 0;
3406 }
3407 
3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3409 			     gpa_t addr, int len)
3410 {
3411 	struct kvm_io_range *range, key;
3412 	int off;
3413 
3414 	key = (struct kvm_io_range) {
3415 		.addr = addr,
3416 		.len = len,
3417 	};
3418 
3419 	range = bsearch(&key, bus->range, bus->dev_count,
3420 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3421 	if (range == NULL)
3422 		return -ENOENT;
3423 
3424 	off = range - bus->range;
3425 
3426 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3427 		off--;
3428 
3429 	return off;
3430 }
3431 
3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3433 			      struct kvm_io_range *range, const void *val)
3434 {
3435 	int idx;
3436 
3437 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3438 	if (idx < 0)
3439 		return -EOPNOTSUPP;
3440 
3441 	while (idx < bus->dev_count &&
3442 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3443 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3444 					range->len, val))
3445 			return idx;
3446 		idx++;
3447 	}
3448 
3449 	return -EOPNOTSUPP;
3450 }
3451 
3452 /* kvm_io_bus_write - called under kvm->slots_lock */
3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3454 		     int len, const void *val)
3455 {
3456 	struct kvm_io_bus *bus;
3457 	struct kvm_io_range range;
3458 	int r;
3459 
3460 	range = (struct kvm_io_range) {
3461 		.addr = addr,
3462 		.len = len,
3463 	};
3464 
3465 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3466 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3467 	return r < 0 ? r : 0;
3468 }
3469 
3470 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3471 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3472 			    gpa_t addr, int len, const void *val, long cookie)
3473 {
3474 	struct kvm_io_bus *bus;
3475 	struct kvm_io_range range;
3476 
3477 	range = (struct kvm_io_range) {
3478 		.addr = addr,
3479 		.len = len,
3480 	};
3481 
3482 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483 
3484 	/* First try the device referenced by cookie. */
3485 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3486 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3487 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3488 					val))
3489 			return cookie;
3490 
3491 	/*
3492 	 * cookie contained garbage; fall back to search and return the
3493 	 * correct cookie value.
3494 	 */
3495 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3496 }
3497 
3498 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3499 			     struct kvm_io_range *range, void *val)
3500 {
3501 	int idx;
3502 
3503 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3504 	if (idx < 0)
3505 		return -EOPNOTSUPP;
3506 
3507 	while (idx < bus->dev_count &&
3508 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3509 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3510 				       range->len, val))
3511 			return idx;
3512 		idx++;
3513 	}
3514 
3515 	return -EOPNOTSUPP;
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3518 
3519 /* kvm_io_bus_read - called under kvm->slots_lock */
3520 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3521 		    int len, void *val)
3522 {
3523 	struct kvm_io_bus *bus;
3524 	struct kvm_io_range range;
3525 	int r;
3526 
3527 	range = (struct kvm_io_range) {
3528 		.addr = addr,
3529 		.len = len,
3530 	};
3531 
3532 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3533 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3534 	return r < 0 ? r : 0;
3535 }
3536 
3537 
3538 /* Caller must hold slots_lock. */
3539 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3540 			    int len, struct kvm_io_device *dev)
3541 {
3542 	struct kvm_io_bus *new_bus, *bus;
3543 
3544 	bus = kvm->buses[bus_idx];
3545 	/* exclude ioeventfd which is limited by maximum fd */
3546 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3547 		return -ENOSPC;
3548 
3549 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3550 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3551 	if (!new_bus)
3552 		return -ENOMEM;
3553 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3554 	       sizeof(struct kvm_io_range)));
3555 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3556 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3557 	synchronize_srcu_expedited(&kvm->srcu);
3558 	kfree(bus);
3559 
3560 	return 0;
3561 }
3562 
3563 /* Caller must hold slots_lock. */
3564 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3565 			      struct kvm_io_device *dev)
3566 {
3567 	int i, r;
3568 	struct kvm_io_bus *new_bus, *bus;
3569 
3570 	bus = kvm->buses[bus_idx];
3571 	r = -ENOENT;
3572 	for (i = 0; i < bus->dev_count; i++)
3573 		if (bus->range[i].dev == dev) {
3574 			r = 0;
3575 			break;
3576 		}
3577 
3578 	if (r)
3579 		return r;
3580 
3581 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3582 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3583 	if (!new_bus)
3584 		return -ENOMEM;
3585 
3586 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3587 	new_bus->dev_count--;
3588 	memcpy(new_bus->range + i, bus->range + i + 1,
3589 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3590 
3591 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3592 	synchronize_srcu_expedited(&kvm->srcu);
3593 	kfree(bus);
3594 	return r;
3595 }
3596 
3597 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3598 					 gpa_t addr)
3599 {
3600 	struct kvm_io_bus *bus;
3601 	int dev_idx, srcu_idx;
3602 	struct kvm_io_device *iodev = NULL;
3603 
3604 	srcu_idx = srcu_read_lock(&kvm->srcu);
3605 
3606 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3607 
3608 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3609 	if (dev_idx < 0)
3610 		goto out_unlock;
3611 
3612 	iodev = bus->range[dev_idx].dev;
3613 
3614 out_unlock:
3615 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3616 
3617 	return iodev;
3618 }
3619 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3620 
3621 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3622 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3623 			   const char *fmt)
3624 {
3625 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3626 					  inode->i_private;
3627 
3628 	/* The debugfs files are a reference to the kvm struct which
3629 	 * is still valid when kvm_destroy_vm is called.
3630 	 * To avoid the race between open and the removal of the debugfs
3631 	 * directory we test against the users count.
3632 	 */
3633 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3634 		return -ENOENT;
3635 
3636 	if (simple_attr_open(inode, file, get, set, fmt)) {
3637 		kvm_put_kvm(stat_data->kvm);
3638 		return -ENOMEM;
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3645 {
3646 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3647 					  inode->i_private;
3648 
3649 	simple_attr_release(inode, file);
3650 	kvm_put_kvm(stat_data->kvm);
3651 
3652 	return 0;
3653 }
3654 
3655 static int vm_stat_get_per_vm(void *data, u64 *val)
3656 {
3657 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3658 
3659 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3660 
3661 	return 0;
3662 }
3663 
3664 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3665 {
3666 	__simple_attr_check_format("%llu\n", 0ull);
3667 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3668 				NULL, "%llu\n");
3669 }
3670 
3671 static const struct file_operations vm_stat_get_per_vm_fops = {
3672 	.owner   = THIS_MODULE,
3673 	.open    = vm_stat_get_per_vm_open,
3674 	.release = kvm_debugfs_release,
3675 	.read    = simple_attr_read,
3676 	.write   = simple_attr_write,
3677 	.llseek  = generic_file_llseek,
3678 };
3679 
3680 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3681 {
3682 	int i;
3683 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684 	struct kvm_vcpu *vcpu;
3685 
3686 	*val = 0;
3687 
3688 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3689 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3690 
3691 	return 0;
3692 }
3693 
3694 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3695 {
3696 	__simple_attr_check_format("%llu\n", 0ull);
3697 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3698 				 NULL, "%llu\n");
3699 }
3700 
3701 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3702 	.owner   = THIS_MODULE,
3703 	.open    = vcpu_stat_get_per_vm_open,
3704 	.release = kvm_debugfs_release,
3705 	.read    = simple_attr_read,
3706 	.write   = simple_attr_write,
3707 	.llseek  = generic_file_llseek,
3708 };
3709 
3710 static const struct file_operations *stat_fops_per_vm[] = {
3711 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3712 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3713 };
3714 
3715 static int vm_stat_get(void *_offset, u64 *val)
3716 {
3717 	unsigned offset = (long)_offset;
3718 	struct kvm *kvm;
3719 	struct kvm_stat_data stat_tmp = {.offset = offset};
3720 	u64 tmp_val;
3721 
3722 	*val = 0;
3723 	spin_lock(&kvm_lock);
3724 	list_for_each_entry(kvm, &vm_list, vm_list) {
3725 		stat_tmp.kvm = kvm;
3726 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3727 		*val += tmp_val;
3728 	}
3729 	spin_unlock(&kvm_lock);
3730 	return 0;
3731 }
3732 
3733 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3734 
3735 static int vcpu_stat_get(void *_offset, u64 *val)
3736 {
3737 	unsigned offset = (long)_offset;
3738 	struct kvm *kvm;
3739 	struct kvm_stat_data stat_tmp = {.offset = offset};
3740 	u64 tmp_val;
3741 
3742 	*val = 0;
3743 	spin_lock(&kvm_lock);
3744 	list_for_each_entry(kvm, &vm_list, vm_list) {
3745 		stat_tmp.kvm = kvm;
3746 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3747 		*val += tmp_val;
3748 	}
3749 	spin_unlock(&kvm_lock);
3750 	return 0;
3751 }
3752 
3753 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3754 
3755 static const struct file_operations *stat_fops[] = {
3756 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3757 	[KVM_STAT_VM]   = &vm_stat_fops,
3758 };
3759 
3760 static int kvm_init_debug(void)
3761 {
3762 	int r = -EEXIST;
3763 	struct kvm_stats_debugfs_item *p;
3764 
3765 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3766 	if (kvm_debugfs_dir == NULL)
3767 		goto out;
3768 
3769 	kvm_debugfs_num_entries = 0;
3770 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3771 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3772 					 (void *)(long)p->offset,
3773 					 stat_fops[p->kind]))
3774 			goto out_dir;
3775 	}
3776 
3777 	return 0;
3778 
3779 out_dir:
3780 	debugfs_remove_recursive(kvm_debugfs_dir);
3781 out:
3782 	return r;
3783 }
3784 
3785 static int kvm_suspend(void)
3786 {
3787 	if (kvm_usage_count)
3788 		hardware_disable_nolock(NULL);
3789 	return 0;
3790 }
3791 
3792 static void kvm_resume(void)
3793 {
3794 	if (kvm_usage_count) {
3795 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3796 		hardware_enable_nolock(NULL);
3797 	}
3798 }
3799 
3800 static struct syscore_ops kvm_syscore_ops = {
3801 	.suspend = kvm_suspend,
3802 	.resume = kvm_resume,
3803 };
3804 
3805 static inline
3806 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3807 {
3808 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3809 }
3810 
3811 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3812 {
3813 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3814 
3815 	if (vcpu->preempted)
3816 		vcpu->preempted = false;
3817 
3818 	kvm_arch_sched_in(vcpu, cpu);
3819 
3820 	kvm_arch_vcpu_load(vcpu, cpu);
3821 }
3822 
3823 static void kvm_sched_out(struct preempt_notifier *pn,
3824 			  struct task_struct *next)
3825 {
3826 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3827 
3828 	if (current->state == TASK_RUNNING)
3829 		vcpu->preempted = true;
3830 	kvm_arch_vcpu_put(vcpu);
3831 }
3832 
3833 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3834 		  struct module *module)
3835 {
3836 	int r;
3837 	int cpu;
3838 
3839 	r = kvm_arch_init(opaque);
3840 	if (r)
3841 		goto out_fail;
3842 
3843 	/*
3844 	 * kvm_arch_init makes sure there's at most one caller
3845 	 * for architectures that support multiple implementations,
3846 	 * like intel and amd on x86.
3847 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3848 	 * conflicts in case kvm is already setup for another implementation.
3849 	 */
3850 	r = kvm_irqfd_init();
3851 	if (r)
3852 		goto out_irqfd;
3853 
3854 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3855 		r = -ENOMEM;
3856 		goto out_free_0;
3857 	}
3858 
3859 	r = kvm_arch_hardware_setup();
3860 	if (r < 0)
3861 		goto out_free_0a;
3862 
3863 	for_each_online_cpu(cpu) {
3864 		smp_call_function_single(cpu,
3865 				kvm_arch_check_processor_compat,
3866 				&r, 1);
3867 		if (r < 0)
3868 			goto out_free_1;
3869 	}
3870 
3871 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3872 				      kvm_starting_cpu, kvm_dying_cpu);
3873 	if (r)
3874 		goto out_free_2;
3875 	register_reboot_notifier(&kvm_reboot_notifier);
3876 
3877 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3878 	if (!vcpu_align)
3879 		vcpu_align = __alignof__(struct kvm_vcpu);
3880 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3881 					   0, NULL);
3882 	if (!kvm_vcpu_cache) {
3883 		r = -ENOMEM;
3884 		goto out_free_3;
3885 	}
3886 
3887 	r = kvm_async_pf_init();
3888 	if (r)
3889 		goto out_free;
3890 
3891 	kvm_chardev_ops.owner = module;
3892 	kvm_vm_fops.owner = module;
3893 	kvm_vcpu_fops.owner = module;
3894 
3895 	r = misc_register(&kvm_dev);
3896 	if (r) {
3897 		pr_err("kvm: misc device register failed\n");
3898 		goto out_unreg;
3899 	}
3900 
3901 	register_syscore_ops(&kvm_syscore_ops);
3902 
3903 	kvm_preempt_ops.sched_in = kvm_sched_in;
3904 	kvm_preempt_ops.sched_out = kvm_sched_out;
3905 
3906 	r = kvm_init_debug();
3907 	if (r) {
3908 		pr_err("kvm: create debugfs files failed\n");
3909 		goto out_undebugfs;
3910 	}
3911 
3912 	r = kvm_vfio_ops_init();
3913 	WARN_ON(r);
3914 
3915 	return 0;
3916 
3917 out_undebugfs:
3918 	unregister_syscore_ops(&kvm_syscore_ops);
3919 	misc_deregister(&kvm_dev);
3920 out_unreg:
3921 	kvm_async_pf_deinit();
3922 out_free:
3923 	kmem_cache_destroy(kvm_vcpu_cache);
3924 out_free_3:
3925 	unregister_reboot_notifier(&kvm_reboot_notifier);
3926 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3927 out_free_2:
3928 out_free_1:
3929 	kvm_arch_hardware_unsetup();
3930 out_free_0a:
3931 	free_cpumask_var(cpus_hardware_enabled);
3932 out_free_0:
3933 	kvm_irqfd_exit();
3934 out_irqfd:
3935 	kvm_arch_exit();
3936 out_fail:
3937 	return r;
3938 }
3939 EXPORT_SYMBOL_GPL(kvm_init);
3940 
3941 void kvm_exit(void)
3942 {
3943 	debugfs_remove_recursive(kvm_debugfs_dir);
3944 	misc_deregister(&kvm_dev);
3945 	kmem_cache_destroy(kvm_vcpu_cache);
3946 	kvm_async_pf_deinit();
3947 	unregister_syscore_ops(&kvm_syscore_ops);
3948 	unregister_reboot_notifier(&kvm_reboot_notifier);
3949 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3950 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3951 	kvm_arch_hardware_unsetup();
3952 	kvm_arch_exit();
3953 	kvm_irqfd_exit();
3954 	free_cpumask_var(cpus_hardware_enabled);
3955 	kvm_vfio_ops_exit();
3956 }
3957 EXPORT_SYMBOL_GPL(kvm_exit);
3958