xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 81d67439)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61 
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64 
65 /*
66  * Ordering of locks:
67  *
68  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70 
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73 
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77 
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80 
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82 
83 struct dentry *kvm_debugfs_dir;
84 
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 			   unsigned long arg);
87 #ifdef CONFIG_COMPAT
88 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
89 				  unsigned long arg);
90 #endif
91 static int hardware_enable_all(void);
92 static void hardware_disable_all(void);
93 
94 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
95 
96 bool kvm_rebooting;
97 EXPORT_SYMBOL_GPL(kvm_rebooting);
98 
99 static bool largepages_enabled = true;
100 
101 static struct page *hwpoison_page;
102 static pfn_t hwpoison_pfn;
103 
104 struct page *fault_page;
105 pfn_t fault_pfn;
106 
107 inline int kvm_is_mmio_pfn(pfn_t pfn)
108 {
109 	if (pfn_valid(pfn)) {
110 		int reserved;
111 		struct page *tail = pfn_to_page(pfn);
112 		struct page *head = compound_trans_head(tail);
113 		reserved = PageReserved(head);
114 		if (head != tail) {
115 			/*
116 			 * "head" is not a dangling pointer
117 			 * (compound_trans_head takes care of that)
118 			 * but the hugepage may have been splitted
119 			 * from under us (and we may not hold a
120 			 * reference count on the head page so it can
121 			 * be reused before we run PageReferenced), so
122 			 * we've to check PageTail before returning
123 			 * what we just read.
124 			 */
125 			smp_rmb();
126 			if (PageTail(tail))
127 				return reserved;
128 		}
129 		return PageReserved(tail);
130 	}
131 
132 	return true;
133 }
134 
135 /*
136  * Switches to specified vcpu, until a matching vcpu_put()
137  */
138 void vcpu_load(struct kvm_vcpu *vcpu)
139 {
140 	int cpu;
141 
142 	mutex_lock(&vcpu->mutex);
143 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
144 		/* The thread running this VCPU changed. */
145 		struct pid *oldpid = vcpu->pid;
146 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
147 		rcu_assign_pointer(vcpu->pid, newpid);
148 		synchronize_rcu();
149 		put_pid(oldpid);
150 	}
151 	cpu = get_cpu();
152 	preempt_notifier_register(&vcpu->preempt_notifier);
153 	kvm_arch_vcpu_load(vcpu, cpu);
154 	put_cpu();
155 }
156 
157 void vcpu_put(struct kvm_vcpu *vcpu)
158 {
159 	preempt_disable();
160 	kvm_arch_vcpu_put(vcpu);
161 	preempt_notifier_unregister(&vcpu->preempt_notifier);
162 	preempt_enable();
163 	mutex_unlock(&vcpu->mutex);
164 }
165 
166 static void ack_flush(void *_completed)
167 {
168 }
169 
170 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 	int i, cpu, me;
173 	cpumask_var_t cpus;
174 	bool called = true;
175 	struct kvm_vcpu *vcpu;
176 
177 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178 
179 	me = get_cpu();
180 	kvm_for_each_vcpu(i, vcpu, kvm) {
181 		kvm_make_request(req, vcpu);
182 		cpu = vcpu->cpu;
183 
184 		/* Set ->requests bit before we read ->mode */
185 		smp_mb();
186 
187 		if (cpus != NULL && cpu != -1 && cpu != me &&
188 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 			cpumask_set_cpu(cpu, cpus);
190 	}
191 	if (unlikely(cpus == NULL))
192 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 	else if (!cpumask_empty(cpus))
194 		smp_call_function_many(cpus, ack_flush, NULL, 1);
195 	else
196 		called = false;
197 	put_cpu();
198 	free_cpumask_var(cpus);
199 	return called;
200 }
201 
202 void kvm_flush_remote_tlbs(struct kvm *kvm)
203 {
204 	int dirty_count = kvm->tlbs_dirty;
205 
206 	smp_mb();
207 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
208 		++kvm->stat.remote_tlb_flush;
209 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
210 }
211 
212 void kvm_reload_remote_mmus(struct kvm *kvm)
213 {
214 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
215 }
216 
217 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
218 {
219 	struct page *page;
220 	int r;
221 
222 	mutex_init(&vcpu->mutex);
223 	vcpu->cpu = -1;
224 	vcpu->kvm = kvm;
225 	vcpu->vcpu_id = id;
226 	vcpu->pid = NULL;
227 	init_waitqueue_head(&vcpu->wq);
228 	kvm_async_pf_vcpu_init(vcpu);
229 
230 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
231 	if (!page) {
232 		r = -ENOMEM;
233 		goto fail;
234 	}
235 	vcpu->run = page_address(page);
236 
237 	r = kvm_arch_vcpu_init(vcpu);
238 	if (r < 0)
239 		goto fail_free_run;
240 	return 0;
241 
242 fail_free_run:
243 	free_page((unsigned long)vcpu->run);
244 fail:
245 	return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248 
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 	put_pid(vcpu->pid);
252 	kvm_arch_vcpu_uninit(vcpu);
253 	free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256 
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 	return container_of(mn, struct kvm, mmu_notifier);
261 }
262 
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 					     struct mm_struct *mm,
265 					     unsigned long address)
266 {
267 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 	int need_tlb_flush, idx;
269 
270 	/*
271 	 * When ->invalidate_page runs, the linux pte has been zapped
272 	 * already but the page is still allocated until
273 	 * ->invalidate_page returns. So if we increase the sequence
274 	 * here the kvm page fault will notice if the spte can't be
275 	 * established because the page is going to be freed. If
276 	 * instead the kvm page fault establishes the spte before
277 	 * ->invalidate_page runs, kvm_unmap_hva will release it
278 	 * before returning.
279 	 *
280 	 * The sequence increase only need to be seen at spin_unlock
281 	 * time, and not at spin_lock time.
282 	 *
283 	 * Increasing the sequence after the spin_unlock would be
284 	 * unsafe because the kvm page fault could then establish the
285 	 * pte after kvm_unmap_hva returned, without noticing the page
286 	 * is going to be freed.
287 	 */
288 	idx = srcu_read_lock(&kvm->srcu);
289 	spin_lock(&kvm->mmu_lock);
290 	kvm->mmu_notifier_seq++;
291 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 	spin_unlock(&kvm->mmu_lock);
293 	srcu_read_unlock(&kvm->srcu, idx);
294 
295 	/* we've to flush the tlb before the pages can be freed */
296 	if (need_tlb_flush)
297 		kvm_flush_remote_tlbs(kvm);
298 
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	for (; start < end; start += PAGE_SIZE)
334 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
335 	need_tlb_flush |= kvm->tlbs_dirty;
336 	spin_unlock(&kvm->mmu_lock);
337 	srcu_read_unlock(&kvm->srcu, idx);
338 
339 	/* we've to flush the tlb before the pages can be freed */
340 	if (need_tlb_flush)
341 		kvm_flush_remote_tlbs(kvm);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 						  struct mm_struct *mm,
346 						  unsigned long start,
347 						  unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 
351 	spin_lock(&kvm->mmu_lock);
352 	/*
353 	 * This sequence increase will notify the kvm page fault that
354 	 * the page that is going to be mapped in the spte could have
355 	 * been freed.
356 	 */
357 	kvm->mmu_notifier_seq++;
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease but both values are read by the kvm
361 	 * page fault under mmu_lock spinlock so we don't need to add
362 	 * a smb_wmb() here in between the two.
363 	 */
364 	kvm->mmu_notifier_count--;
365 	spin_unlock(&kvm->mmu_lock);
366 
367 	BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369 
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 					      struct mm_struct *mm,
372 					      unsigned long address)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	young = kvm_age_hva(kvm, address);
380 	spin_unlock(&kvm->mmu_lock);
381 	srcu_read_unlock(&kvm->srcu, idx);
382 
383 	if (young)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	return young;
387 }
388 
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 				       struct mm_struct *mm,
391 				       unsigned long address)
392 {
393 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 	int young, idx;
395 
396 	idx = srcu_read_lock(&kvm->srcu);
397 	spin_lock(&kvm->mmu_lock);
398 	young = kvm_test_age_hva(kvm, address);
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 
402 	return young;
403 }
404 
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 				     struct mm_struct *mm)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	kvm_arch_flush_shadow(kvm);
413 	srcu_read_unlock(&kvm->srcu, idx);
414 }
415 
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
418 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
419 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
420 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
421 	.test_young		= kvm_mmu_notifier_test_young,
422 	.change_pte		= kvm_mmu_notifier_change_pte,
423 	.release		= kvm_mmu_notifier_release,
424 };
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431 
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433 
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 	return 0;
437 }
438 
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440 
441 static struct kvm *kvm_create_vm(void)
442 {
443 	int r, i;
444 	struct kvm *kvm = kvm_arch_alloc_vm();
445 
446 	if (!kvm)
447 		return ERR_PTR(-ENOMEM);
448 
449 	r = kvm_arch_init_vm(kvm);
450 	if (r)
451 		goto out_err_nodisable;
452 
453 	r = hardware_enable_all();
454 	if (r)
455 		goto out_err_nodisable;
456 
457 #ifdef CONFIG_HAVE_KVM_IRQCHIP
458 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
459 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
460 #endif
461 
462 	r = -ENOMEM;
463 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
464 	if (!kvm->memslots)
465 		goto out_err_nosrcu;
466 	if (init_srcu_struct(&kvm->srcu))
467 		goto out_err_nosrcu;
468 	for (i = 0; i < KVM_NR_BUSES; i++) {
469 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
470 					GFP_KERNEL);
471 		if (!kvm->buses[i])
472 			goto out_err;
473 	}
474 
475 	spin_lock_init(&kvm->mmu_lock);
476 	kvm->mm = current->mm;
477 	atomic_inc(&kvm->mm->mm_count);
478 	kvm_eventfd_init(kvm);
479 	mutex_init(&kvm->lock);
480 	mutex_init(&kvm->irq_lock);
481 	mutex_init(&kvm->slots_lock);
482 	atomic_set(&kvm->users_count, 1);
483 
484 	r = kvm_init_mmu_notifier(kvm);
485 	if (r)
486 		goto out_err;
487 
488 	raw_spin_lock(&kvm_lock);
489 	list_add(&kvm->vm_list, &vm_list);
490 	raw_spin_unlock(&kvm_lock);
491 
492 	return kvm;
493 
494 out_err:
495 	cleanup_srcu_struct(&kvm->srcu);
496 out_err_nosrcu:
497 	hardware_disable_all();
498 out_err_nodisable:
499 	for (i = 0; i < KVM_NR_BUSES; i++)
500 		kfree(kvm->buses[i]);
501 	kfree(kvm->memslots);
502 	kvm_arch_free_vm(kvm);
503 	return ERR_PTR(r);
504 }
505 
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508 	if (!memslot->dirty_bitmap)
509 		return;
510 
511 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
512 		vfree(memslot->dirty_bitmap_head);
513 	else
514 		kfree(memslot->dirty_bitmap_head);
515 
516 	memslot->dirty_bitmap = NULL;
517 	memslot->dirty_bitmap_head = NULL;
518 }
519 
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
524 				  struct kvm_memory_slot *dont)
525 {
526 	int i;
527 
528 	if (!dont || free->rmap != dont->rmap)
529 		vfree(free->rmap);
530 
531 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532 		kvm_destroy_dirty_bitmap(free);
533 
534 
535 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
536 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
537 			vfree(free->lpage_info[i]);
538 			free->lpage_info[i] = NULL;
539 		}
540 	}
541 
542 	free->npages = 0;
543 	free->rmap = NULL;
544 }
545 
546 void kvm_free_physmem(struct kvm *kvm)
547 {
548 	int i;
549 	struct kvm_memslots *slots = kvm->memslots;
550 
551 	for (i = 0; i < slots->nmemslots; ++i)
552 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
553 
554 	kfree(kvm->memslots);
555 }
556 
557 static void kvm_destroy_vm(struct kvm *kvm)
558 {
559 	int i;
560 	struct mm_struct *mm = kvm->mm;
561 
562 	kvm_arch_sync_events(kvm);
563 	raw_spin_lock(&kvm_lock);
564 	list_del(&kvm->vm_list);
565 	raw_spin_unlock(&kvm_lock);
566 	kvm_free_irq_routing(kvm);
567 	for (i = 0; i < KVM_NR_BUSES; i++)
568 		kvm_io_bus_destroy(kvm->buses[i]);
569 	kvm_coalesced_mmio_free(kvm);
570 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
571 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
572 #else
573 	kvm_arch_flush_shadow(kvm);
574 #endif
575 	kvm_arch_destroy_vm(kvm);
576 	kvm_free_physmem(kvm);
577 	cleanup_srcu_struct(&kvm->srcu);
578 	kvm_arch_free_vm(kvm);
579 	hardware_disable_all();
580 	mmdrop(mm);
581 }
582 
583 void kvm_get_kvm(struct kvm *kvm)
584 {
585 	atomic_inc(&kvm->users_count);
586 }
587 EXPORT_SYMBOL_GPL(kvm_get_kvm);
588 
589 void kvm_put_kvm(struct kvm *kvm)
590 {
591 	if (atomic_dec_and_test(&kvm->users_count))
592 		kvm_destroy_vm(kvm);
593 }
594 EXPORT_SYMBOL_GPL(kvm_put_kvm);
595 
596 
597 static int kvm_vm_release(struct inode *inode, struct file *filp)
598 {
599 	struct kvm *kvm = filp->private_data;
600 
601 	kvm_irqfd_release(kvm);
602 
603 	kvm_put_kvm(kvm);
604 	return 0;
605 }
606 
607 #ifndef CONFIG_S390
608 /*
609  * Allocation size is twice as large as the actual dirty bitmap size.
610  * This makes it possible to do double buffering: see x86's
611  * kvm_vm_ioctl_get_dirty_log().
612  */
613 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
614 {
615 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
616 
617 	if (dirty_bytes > PAGE_SIZE)
618 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
619 	else
620 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
621 
622 	if (!memslot->dirty_bitmap)
623 		return -ENOMEM;
624 
625 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
626 	return 0;
627 }
628 #endif /* !CONFIG_S390 */
629 
630 /*
631  * Allocate some memory and give it an address in the guest physical address
632  * space.
633  *
634  * Discontiguous memory is allowed, mostly for framebuffers.
635  *
636  * Must be called holding mmap_sem for write.
637  */
638 int __kvm_set_memory_region(struct kvm *kvm,
639 			    struct kvm_userspace_memory_region *mem,
640 			    int user_alloc)
641 {
642 	int r;
643 	gfn_t base_gfn;
644 	unsigned long npages;
645 	unsigned long i;
646 	struct kvm_memory_slot *memslot;
647 	struct kvm_memory_slot old, new;
648 	struct kvm_memslots *slots, *old_memslots;
649 
650 	r = -EINVAL;
651 	/* General sanity checks */
652 	if (mem->memory_size & (PAGE_SIZE - 1))
653 		goto out;
654 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
655 		goto out;
656 	/* We can read the guest memory with __xxx_user() later on. */
657 	if (user_alloc &&
658 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
659 	     !access_ok(VERIFY_WRITE,
660 			(void __user *)(unsigned long)mem->userspace_addr,
661 			mem->memory_size)))
662 		goto out;
663 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
664 		goto out;
665 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
666 		goto out;
667 
668 	memslot = &kvm->memslots->memslots[mem->slot];
669 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
670 	npages = mem->memory_size >> PAGE_SHIFT;
671 
672 	r = -EINVAL;
673 	if (npages > KVM_MEM_MAX_NR_PAGES)
674 		goto out;
675 
676 	if (!npages)
677 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
678 
679 	new = old = *memslot;
680 
681 	new.id = mem->slot;
682 	new.base_gfn = base_gfn;
683 	new.npages = npages;
684 	new.flags = mem->flags;
685 
686 	/* Disallow changing a memory slot's size. */
687 	r = -EINVAL;
688 	if (npages && old.npages && npages != old.npages)
689 		goto out_free;
690 
691 	/* Check for overlaps */
692 	r = -EEXIST;
693 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
694 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
695 
696 		if (s == memslot || !s->npages)
697 			continue;
698 		if (!((base_gfn + npages <= s->base_gfn) ||
699 		      (base_gfn >= s->base_gfn + s->npages)))
700 			goto out_free;
701 	}
702 
703 	/* Free page dirty bitmap if unneeded */
704 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705 		new.dirty_bitmap = NULL;
706 
707 	r = -ENOMEM;
708 
709 	/* Allocate if a slot is being created */
710 #ifndef CONFIG_S390
711 	if (npages && !new.rmap) {
712 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
713 
714 		if (!new.rmap)
715 			goto out_free;
716 
717 		new.user_alloc = user_alloc;
718 		new.userspace_addr = mem->userspace_addr;
719 	}
720 	if (!npages)
721 		goto skip_lpage;
722 
723 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
724 		unsigned long ugfn;
725 		unsigned long j;
726 		int lpages;
727 		int level = i + 2;
728 
729 		/* Avoid unused variable warning if no large pages */
730 		(void)level;
731 
732 		if (new.lpage_info[i])
733 			continue;
734 
735 		lpages = 1 + ((base_gfn + npages - 1)
736 			     >> KVM_HPAGE_GFN_SHIFT(level));
737 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
738 
739 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
740 
741 		if (!new.lpage_info[i])
742 			goto out_free;
743 
744 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
745 			new.lpage_info[i][0].write_count = 1;
746 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
747 			new.lpage_info[i][lpages - 1].write_count = 1;
748 		ugfn = new.userspace_addr >> PAGE_SHIFT;
749 		/*
750 		 * If the gfn and userspace address are not aligned wrt each
751 		 * other, or if explicitly asked to, disable large page
752 		 * support for this slot
753 		 */
754 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
755 		    !largepages_enabled)
756 			for (j = 0; j < lpages; ++j)
757 				new.lpage_info[i][j].write_count = 1;
758 	}
759 
760 skip_lpage:
761 
762 	/* Allocate page dirty bitmap if needed */
763 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
764 		if (kvm_create_dirty_bitmap(&new) < 0)
765 			goto out_free;
766 		/* destroy any largepage mappings for dirty tracking */
767 	}
768 #else  /* not defined CONFIG_S390 */
769 	new.user_alloc = user_alloc;
770 	if (user_alloc)
771 		new.userspace_addr = mem->userspace_addr;
772 #endif /* not defined CONFIG_S390 */
773 
774 	if (!npages) {
775 		r = -ENOMEM;
776 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
777 		if (!slots)
778 			goto out_free;
779 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
780 		if (mem->slot >= slots->nmemslots)
781 			slots->nmemslots = mem->slot + 1;
782 		slots->generation++;
783 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
784 
785 		old_memslots = kvm->memslots;
786 		rcu_assign_pointer(kvm->memslots, slots);
787 		synchronize_srcu_expedited(&kvm->srcu);
788 		/* From this point no new shadow pages pointing to a deleted
789 		 * memslot will be created.
790 		 *
791 		 * validation of sp->gfn happens in:
792 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
793 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
794 		 */
795 		kvm_arch_flush_shadow(kvm);
796 		kfree(old_memslots);
797 	}
798 
799 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
800 	if (r)
801 		goto out_free;
802 
803 	/* map the pages in iommu page table */
804 	if (npages) {
805 		r = kvm_iommu_map_pages(kvm, &new);
806 		if (r)
807 			goto out_free;
808 	}
809 
810 	r = -ENOMEM;
811 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
812 	if (!slots)
813 		goto out_free;
814 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
815 	if (mem->slot >= slots->nmemslots)
816 		slots->nmemslots = mem->slot + 1;
817 	slots->generation++;
818 
819 	/* actual memory is freed via old in kvm_free_physmem_slot below */
820 	if (!npages) {
821 		new.rmap = NULL;
822 		new.dirty_bitmap = NULL;
823 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
824 			new.lpage_info[i] = NULL;
825 	}
826 
827 	slots->memslots[mem->slot] = new;
828 	old_memslots = kvm->memslots;
829 	rcu_assign_pointer(kvm->memslots, slots);
830 	synchronize_srcu_expedited(&kvm->srcu);
831 
832 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
833 
834 	/*
835 	 * If the new memory slot is created, we need to clear all
836 	 * mmio sptes.
837 	 */
838 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
839 		kvm_arch_flush_shadow(kvm);
840 
841 	kvm_free_physmem_slot(&old, &new);
842 	kfree(old_memslots);
843 
844 	return 0;
845 
846 out_free:
847 	kvm_free_physmem_slot(&new, &old);
848 out:
849 	return r;
850 
851 }
852 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
853 
854 int kvm_set_memory_region(struct kvm *kvm,
855 			  struct kvm_userspace_memory_region *mem,
856 			  int user_alloc)
857 {
858 	int r;
859 
860 	mutex_lock(&kvm->slots_lock);
861 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
862 	mutex_unlock(&kvm->slots_lock);
863 	return r;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
866 
867 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
868 				   struct
869 				   kvm_userspace_memory_region *mem,
870 				   int user_alloc)
871 {
872 	if (mem->slot >= KVM_MEMORY_SLOTS)
873 		return -EINVAL;
874 	return kvm_set_memory_region(kvm, mem, user_alloc);
875 }
876 
877 int kvm_get_dirty_log(struct kvm *kvm,
878 			struct kvm_dirty_log *log, int *is_dirty)
879 {
880 	struct kvm_memory_slot *memslot;
881 	int r, i;
882 	unsigned long n;
883 	unsigned long any = 0;
884 
885 	r = -EINVAL;
886 	if (log->slot >= KVM_MEMORY_SLOTS)
887 		goto out;
888 
889 	memslot = &kvm->memslots->memslots[log->slot];
890 	r = -ENOENT;
891 	if (!memslot->dirty_bitmap)
892 		goto out;
893 
894 	n = kvm_dirty_bitmap_bytes(memslot);
895 
896 	for (i = 0; !any && i < n/sizeof(long); ++i)
897 		any = memslot->dirty_bitmap[i];
898 
899 	r = -EFAULT;
900 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
901 		goto out;
902 
903 	if (any)
904 		*is_dirty = 1;
905 
906 	r = 0;
907 out:
908 	return r;
909 }
910 
911 void kvm_disable_largepages(void)
912 {
913 	largepages_enabled = false;
914 }
915 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
916 
917 int is_error_page(struct page *page)
918 {
919 	return page == bad_page || page == hwpoison_page || page == fault_page;
920 }
921 EXPORT_SYMBOL_GPL(is_error_page);
922 
923 int is_error_pfn(pfn_t pfn)
924 {
925 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
926 }
927 EXPORT_SYMBOL_GPL(is_error_pfn);
928 
929 int is_hwpoison_pfn(pfn_t pfn)
930 {
931 	return pfn == hwpoison_pfn;
932 }
933 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
934 
935 int is_fault_pfn(pfn_t pfn)
936 {
937 	return pfn == fault_pfn;
938 }
939 EXPORT_SYMBOL_GPL(is_fault_pfn);
940 
941 int is_noslot_pfn(pfn_t pfn)
942 {
943 	return pfn == bad_pfn;
944 }
945 EXPORT_SYMBOL_GPL(is_noslot_pfn);
946 
947 int is_invalid_pfn(pfn_t pfn)
948 {
949 	return pfn == hwpoison_pfn || pfn == fault_pfn;
950 }
951 EXPORT_SYMBOL_GPL(is_invalid_pfn);
952 
953 static inline unsigned long bad_hva(void)
954 {
955 	return PAGE_OFFSET;
956 }
957 
958 int kvm_is_error_hva(unsigned long addr)
959 {
960 	return addr == bad_hva();
961 }
962 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
963 
964 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
965 						gfn_t gfn)
966 {
967 	int i;
968 
969 	for (i = 0; i < slots->nmemslots; ++i) {
970 		struct kvm_memory_slot *memslot = &slots->memslots[i];
971 
972 		if (gfn >= memslot->base_gfn
973 		    && gfn < memslot->base_gfn + memslot->npages)
974 			return memslot;
975 	}
976 	return NULL;
977 }
978 
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984 
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987 	int i;
988 	struct kvm_memslots *slots = kvm_memslots(kvm);
989 
990 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
991 		struct kvm_memory_slot *memslot = &slots->memslots[i];
992 
993 		if (memslot->flags & KVM_MEMSLOT_INVALID)
994 			continue;
995 
996 		if (gfn >= memslot->base_gfn
997 		    && gfn < memslot->base_gfn + memslot->npages)
998 			return 1;
999 	}
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1003 
1004 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1005 {
1006 	struct vm_area_struct *vma;
1007 	unsigned long addr, size;
1008 
1009 	size = PAGE_SIZE;
1010 
1011 	addr = gfn_to_hva(kvm, gfn);
1012 	if (kvm_is_error_hva(addr))
1013 		return PAGE_SIZE;
1014 
1015 	down_read(&current->mm->mmap_sem);
1016 	vma = find_vma(current->mm, addr);
1017 	if (!vma)
1018 		goto out;
1019 
1020 	size = vma_kernel_pagesize(vma);
1021 
1022 out:
1023 	up_read(&current->mm->mmap_sem);
1024 
1025 	return size;
1026 }
1027 
1028 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 				     gfn_t *nr_pages)
1030 {
1031 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 		return bad_hva();
1033 
1034 	if (nr_pages)
1035 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1036 
1037 	return gfn_to_hva_memslot(slot, gfn);
1038 }
1039 
1040 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1041 {
1042 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1043 }
1044 EXPORT_SYMBOL_GPL(gfn_to_hva);
1045 
1046 static pfn_t get_fault_pfn(void)
1047 {
1048 	get_page(fault_page);
1049 	return fault_pfn;
1050 }
1051 
1052 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1053 	unsigned long start, int write, struct page **page)
1054 {
1055 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1056 
1057 	if (write)
1058 		flags |= FOLL_WRITE;
1059 
1060 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1061 }
1062 
1063 static inline int check_user_page_hwpoison(unsigned long addr)
1064 {
1065 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1066 
1067 	rc = __get_user_pages(current, current->mm, addr, 1,
1068 			      flags, NULL, NULL, NULL);
1069 	return rc == -EHWPOISON;
1070 }
1071 
1072 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1073 			bool *async, bool write_fault, bool *writable)
1074 {
1075 	struct page *page[1];
1076 	int npages = 0;
1077 	pfn_t pfn;
1078 
1079 	/* we can do it either atomically or asynchronously, not both */
1080 	BUG_ON(atomic && async);
1081 
1082 	BUG_ON(!write_fault && !writable);
1083 
1084 	if (writable)
1085 		*writable = true;
1086 
1087 	if (atomic || async)
1088 		npages = __get_user_pages_fast(addr, 1, 1, page);
1089 
1090 	if (unlikely(npages != 1) && !atomic) {
1091 		might_sleep();
1092 
1093 		if (writable)
1094 			*writable = write_fault;
1095 
1096 		if (async) {
1097 			down_read(&current->mm->mmap_sem);
1098 			npages = get_user_page_nowait(current, current->mm,
1099 						     addr, write_fault, page);
1100 			up_read(&current->mm->mmap_sem);
1101 		} else
1102 			npages = get_user_pages_fast(addr, 1, write_fault,
1103 						     page);
1104 
1105 		/* map read fault as writable if possible */
1106 		if (unlikely(!write_fault) && npages == 1) {
1107 			struct page *wpage[1];
1108 
1109 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1110 			if (npages == 1) {
1111 				*writable = true;
1112 				put_page(page[0]);
1113 				page[0] = wpage[0];
1114 			}
1115 			npages = 1;
1116 		}
1117 	}
1118 
1119 	if (unlikely(npages != 1)) {
1120 		struct vm_area_struct *vma;
1121 
1122 		if (atomic)
1123 			return get_fault_pfn();
1124 
1125 		down_read(&current->mm->mmap_sem);
1126 		if (npages == -EHWPOISON ||
1127 			(!async && check_user_page_hwpoison(addr))) {
1128 			up_read(&current->mm->mmap_sem);
1129 			get_page(hwpoison_page);
1130 			return page_to_pfn(hwpoison_page);
1131 		}
1132 
1133 		vma = find_vma_intersection(current->mm, addr, addr+1);
1134 
1135 		if (vma == NULL)
1136 			pfn = get_fault_pfn();
1137 		else if ((vma->vm_flags & VM_PFNMAP)) {
1138 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1139 				vma->vm_pgoff;
1140 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1141 		} else {
1142 			if (async && (vma->vm_flags & VM_WRITE))
1143 				*async = true;
1144 			pfn = get_fault_pfn();
1145 		}
1146 		up_read(&current->mm->mmap_sem);
1147 	} else
1148 		pfn = page_to_pfn(page[0]);
1149 
1150 	return pfn;
1151 }
1152 
1153 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1154 {
1155 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1156 }
1157 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1158 
1159 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1160 			  bool write_fault, bool *writable)
1161 {
1162 	unsigned long addr;
1163 
1164 	if (async)
1165 		*async = false;
1166 
1167 	addr = gfn_to_hva(kvm, gfn);
1168 	if (kvm_is_error_hva(addr)) {
1169 		get_page(bad_page);
1170 		return page_to_pfn(bad_page);
1171 	}
1172 
1173 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1174 }
1175 
1176 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1177 {
1178 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1179 }
1180 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1181 
1182 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1183 		       bool write_fault, bool *writable)
1184 {
1185 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1186 }
1187 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1188 
1189 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1190 {
1191 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1192 }
1193 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1194 
1195 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1196 		      bool *writable)
1197 {
1198 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1201 
1202 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1203 			 struct kvm_memory_slot *slot, gfn_t gfn)
1204 {
1205 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1206 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1207 }
1208 
1209 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1210 								  int nr_pages)
1211 {
1212 	unsigned long addr;
1213 	gfn_t entry;
1214 
1215 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1216 	if (kvm_is_error_hva(addr))
1217 		return -1;
1218 
1219 	if (entry < nr_pages)
1220 		return 0;
1221 
1222 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1223 }
1224 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1225 
1226 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1227 {
1228 	pfn_t pfn;
1229 
1230 	pfn = gfn_to_pfn(kvm, gfn);
1231 	if (!kvm_is_mmio_pfn(pfn))
1232 		return pfn_to_page(pfn);
1233 
1234 	WARN_ON(kvm_is_mmio_pfn(pfn));
1235 
1236 	get_page(bad_page);
1237 	return bad_page;
1238 }
1239 
1240 EXPORT_SYMBOL_GPL(gfn_to_page);
1241 
1242 void kvm_release_page_clean(struct page *page)
1243 {
1244 	kvm_release_pfn_clean(page_to_pfn(page));
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1247 
1248 void kvm_release_pfn_clean(pfn_t pfn)
1249 {
1250 	if (!kvm_is_mmio_pfn(pfn))
1251 		put_page(pfn_to_page(pfn));
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1254 
1255 void kvm_release_page_dirty(struct page *page)
1256 {
1257 	kvm_release_pfn_dirty(page_to_pfn(page));
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1260 
1261 void kvm_release_pfn_dirty(pfn_t pfn)
1262 {
1263 	kvm_set_pfn_dirty(pfn);
1264 	kvm_release_pfn_clean(pfn);
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1267 
1268 void kvm_set_page_dirty(struct page *page)
1269 {
1270 	kvm_set_pfn_dirty(page_to_pfn(page));
1271 }
1272 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1273 
1274 void kvm_set_pfn_dirty(pfn_t pfn)
1275 {
1276 	if (!kvm_is_mmio_pfn(pfn)) {
1277 		struct page *page = pfn_to_page(pfn);
1278 		if (!PageReserved(page))
1279 			SetPageDirty(page);
1280 	}
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1283 
1284 void kvm_set_pfn_accessed(pfn_t pfn)
1285 {
1286 	if (!kvm_is_mmio_pfn(pfn))
1287 		mark_page_accessed(pfn_to_page(pfn));
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1290 
1291 void kvm_get_pfn(pfn_t pfn)
1292 {
1293 	if (!kvm_is_mmio_pfn(pfn))
1294 		get_page(pfn_to_page(pfn));
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1297 
1298 static int next_segment(unsigned long len, int offset)
1299 {
1300 	if (len > PAGE_SIZE - offset)
1301 		return PAGE_SIZE - offset;
1302 	else
1303 		return len;
1304 }
1305 
1306 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1307 			int len)
1308 {
1309 	int r;
1310 	unsigned long addr;
1311 
1312 	addr = gfn_to_hva(kvm, gfn);
1313 	if (kvm_is_error_hva(addr))
1314 		return -EFAULT;
1315 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1316 	if (r)
1317 		return -EFAULT;
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1321 
1322 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1323 {
1324 	gfn_t gfn = gpa >> PAGE_SHIFT;
1325 	int seg;
1326 	int offset = offset_in_page(gpa);
1327 	int ret;
1328 
1329 	while ((seg = next_segment(len, offset)) != 0) {
1330 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1331 		if (ret < 0)
1332 			return ret;
1333 		offset = 0;
1334 		len -= seg;
1335 		data += seg;
1336 		++gfn;
1337 	}
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(kvm_read_guest);
1341 
1342 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1343 			  unsigned long len)
1344 {
1345 	int r;
1346 	unsigned long addr;
1347 	gfn_t gfn = gpa >> PAGE_SHIFT;
1348 	int offset = offset_in_page(gpa);
1349 
1350 	addr = gfn_to_hva(kvm, gfn);
1351 	if (kvm_is_error_hva(addr))
1352 		return -EFAULT;
1353 	pagefault_disable();
1354 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1355 	pagefault_enable();
1356 	if (r)
1357 		return -EFAULT;
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL(kvm_read_guest_atomic);
1361 
1362 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1363 			 int offset, int len)
1364 {
1365 	int r;
1366 	unsigned long addr;
1367 
1368 	addr = gfn_to_hva(kvm, gfn);
1369 	if (kvm_is_error_hva(addr))
1370 		return -EFAULT;
1371 	r = __copy_to_user((void __user *)addr + offset, data, len);
1372 	if (r)
1373 		return -EFAULT;
1374 	mark_page_dirty(kvm, gfn);
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1378 
1379 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1380 		    unsigned long len)
1381 {
1382 	gfn_t gfn = gpa >> PAGE_SHIFT;
1383 	int seg;
1384 	int offset = offset_in_page(gpa);
1385 	int ret;
1386 
1387 	while ((seg = next_segment(len, offset)) != 0) {
1388 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1389 		if (ret < 0)
1390 			return ret;
1391 		offset = 0;
1392 		len -= seg;
1393 		data += seg;
1394 		++gfn;
1395 	}
1396 	return 0;
1397 }
1398 
1399 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1400 			      gpa_t gpa)
1401 {
1402 	struct kvm_memslots *slots = kvm_memslots(kvm);
1403 	int offset = offset_in_page(gpa);
1404 	gfn_t gfn = gpa >> PAGE_SHIFT;
1405 
1406 	ghc->gpa = gpa;
1407 	ghc->generation = slots->generation;
1408 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1409 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1410 	if (!kvm_is_error_hva(ghc->hva))
1411 		ghc->hva += offset;
1412 	else
1413 		return -EFAULT;
1414 
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1418 
1419 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1420 			   void *data, unsigned long len)
1421 {
1422 	struct kvm_memslots *slots = kvm_memslots(kvm);
1423 	int r;
1424 
1425 	if (slots->generation != ghc->generation)
1426 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1427 
1428 	if (kvm_is_error_hva(ghc->hva))
1429 		return -EFAULT;
1430 
1431 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1432 	if (r)
1433 		return -EFAULT;
1434 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1435 
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1439 
1440 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1441 			   void *data, unsigned long len)
1442 {
1443 	struct kvm_memslots *slots = kvm_memslots(kvm);
1444 	int r;
1445 
1446 	if (slots->generation != ghc->generation)
1447 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1448 
1449 	if (kvm_is_error_hva(ghc->hva))
1450 		return -EFAULT;
1451 
1452 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1453 	if (r)
1454 		return -EFAULT;
1455 
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1459 
1460 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1461 {
1462 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1463 				    offset, len);
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1466 
1467 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1468 {
1469 	gfn_t gfn = gpa >> PAGE_SHIFT;
1470 	int seg;
1471 	int offset = offset_in_page(gpa);
1472 	int ret;
1473 
1474         while ((seg = next_segment(len, offset)) != 0) {
1475 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1476 		if (ret < 0)
1477 			return ret;
1478 		offset = 0;
1479 		len -= seg;
1480 		++gfn;
1481 	}
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1485 
1486 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1487 			     gfn_t gfn)
1488 {
1489 	if (memslot && memslot->dirty_bitmap) {
1490 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1491 
1492 		__set_bit_le(rel_gfn, memslot->dirty_bitmap);
1493 	}
1494 }
1495 
1496 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1497 {
1498 	struct kvm_memory_slot *memslot;
1499 
1500 	memslot = gfn_to_memslot(kvm, gfn);
1501 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1502 }
1503 
1504 /*
1505  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1506  */
1507 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1508 {
1509 	DEFINE_WAIT(wait);
1510 
1511 	for (;;) {
1512 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1513 
1514 		if (kvm_arch_vcpu_runnable(vcpu)) {
1515 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1516 			break;
1517 		}
1518 		if (kvm_cpu_has_pending_timer(vcpu))
1519 			break;
1520 		if (signal_pending(current))
1521 			break;
1522 
1523 		schedule();
1524 	}
1525 
1526 	finish_wait(&vcpu->wq, &wait);
1527 }
1528 
1529 void kvm_resched(struct kvm_vcpu *vcpu)
1530 {
1531 	if (!need_resched())
1532 		return;
1533 	cond_resched();
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_resched);
1536 
1537 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1538 {
1539 	struct kvm *kvm = me->kvm;
1540 	struct kvm_vcpu *vcpu;
1541 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1542 	int yielded = 0;
1543 	int pass;
1544 	int i;
1545 
1546 	/*
1547 	 * We boost the priority of a VCPU that is runnable but not
1548 	 * currently running, because it got preempted by something
1549 	 * else and called schedule in __vcpu_run.  Hopefully that
1550 	 * VCPU is holding the lock that we need and will release it.
1551 	 * We approximate round-robin by starting at the last boosted VCPU.
1552 	 */
1553 	for (pass = 0; pass < 2 && !yielded; pass++) {
1554 		kvm_for_each_vcpu(i, vcpu, kvm) {
1555 			struct task_struct *task = NULL;
1556 			struct pid *pid;
1557 			if (!pass && i < last_boosted_vcpu) {
1558 				i = last_boosted_vcpu;
1559 				continue;
1560 			} else if (pass && i > last_boosted_vcpu)
1561 				break;
1562 			if (vcpu == me)
1563 				continue;
1564 			if (waitqueue_active(&vcpu->wq))
1565 				continue;
1566 			rcu_read_lock();
1567 			pid = rcu_dereference(vcpu->pid);
1568 			if (pid)
1569 				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1570 			rcu_read_unlock();
1571 			if (!task)
1572 				continue;
1573 			if (task->flags & PF_VCPU) {
1574 				put_task_struct(task);
1575 				continue;
1576 			}
1577 			if (yield_to(task, 1)) {
1578 				put_task_struct(task);
1579 				kvm->last_boosted_vcpu = i;
1580 				yielded = 1;
1581 				break;
1582 			}
1583 			put_task_struct(task);
1584 		}
1585 	}
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1588 
1589 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1590 {
1591 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1592 	struct page *page;
1593 
1594 	if (vmf->pgoff == 0)
1595 		page = virt_to_page(vcpu->run);
1596 #ifdef CONFIG_X86
1597 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1598 		page = virt_to_page(vcpu->arch.pio_data);
1599 #endif
1600 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1601 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1602 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1603 #endif
1604 	else
1605 		return VM_FAULT_SIGBUS;
1606 	get_page(page);
1607 	vmf->page = page;
1608 	return 0;
1609 }
1610 
1611 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1612 	.fault = kvm_vcpu_fault,
1613 };
1614 
1615 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1616 {
1617 	vma->vm_ops = &kvm_vcpu_vm_ops;
1618 	return 0;
1619 }
1620 
1621 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1622 {
1623 	struct kvm_vcpu *vcpu = filp->private_data;
1624 
1625 	kvm_put_kvm(vcpu->kvm);
1626 	return 0;
1627 }
1628 
1629 static struct file_operations kvm_vcpu_fops = {
1630 	.release        = kvm_vcpu_release,
1631 	.unlocked_ioctl = kvm_vcpu_ioctl,
1632 #ifdef CONFIG_COMPAT
1633 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1634 #endif
1635 	.mmap           = kvm_vcpu_mmap,
1636 	.llseek		= noop_llseek,
1637 };
1638 
1639 /*
1640  * Allocates an inode for the vcpu.
1641  */
1642 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1643 {
1644 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1645 }
1646 
1647 /*
1648  * Creates some virtual cpus.  Good luck creating more than one.
1649  */
1650 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1651 {
1652 	int r;
1653 	struct kvm_vcpu *vcpu, *v;
1654 
1655 	vcpu = kvm_arch_vcpu_create(kvm, id);
1656 	if (IS_ERR(vcpu))
1657 		return PTR_ERR(vcpu);
1658 
1659 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1660 
1661 	r = kvm_arch_vcpu_setup(vcpu);
1662 	if (r)
1663 		goto vcpu_destroy;
1664 
1665 	mutex_lock(&kvm->lock);
1666 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1667 		r = -EINVAL;
1668 		goto unlock_vcpu_destroy;
1669 	}
1670 
1671 	kvm_for_each_vcpu(r, v, kvm)
1672 		if (v->vcpu_id == id) {
1673 			r = -EEXIST;
1674 			goto unlock_vcpu_destroy;
1675 		}
1676 
1677 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1678 
1679 	/* Now it's all set up, let userspace reach it */
1680 	kvm_get_kvm(kvm);
1681 	r = create_vcpu_fd(vcpu);
1682 	if (r < 0) {
1683 		kvm_put_kvm(kvm);
1684 		goto unlock_vcpu_destroy;
1685 	}
1686 
1687 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1688 	smp_wmb();
1689 	atomic_inc(&kvm->online_vcpus);
1690 
1691 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1692 	if (kvm->bsp_vcpu_id == id)
1693 		kvm->bsp_vcpu = vcpu;
1694 #endif
1695 	mutex_unlock(&kvm->lock);
1696 	return r;
1697 
1698 unlock_vcpu_destroy:
1699 	mutex_unlock(&kvm->lock);
1700 vcpu_destroy:
1701 	kvm_arch_vcpu_destroy(vcpu);
1702 	return r;
1703 }
1704 
1705 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1706 {
1707 	if (sigset) {
1708 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1709 		vcpu->sigset_active = 1;
1710 		vcpu->sigset = *sigset;
1711 	} else
1712 		vcpu->sigset_active = 0;
1713 	return 0;
1714 }
1715 
1716 static long kvm_vcpu_ioctl(struct file *filp,
1717 			   unsigned int ioctl, unsigned long arg)
1718 {
1719 	struct kvm_vcpu *vcpu = filp->private_data;
1720 	void __user *argp = (void __user *)arg;
1721 	int r;
1722 	struct kvm_fpu *fpu = NULL;
1723 	struct kvm_sregs *kvm_sregs = NULL;
1724 
1725 	if (vcpu->kvm->mm != current->mm)
1726 		return -EIO;
1727 
1728 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1729 	/*
1730 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1731 	 * so vcpu_load() would break it.
1732 	 */
1733 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1734 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1735 #endif
1736 
1737 
1738 	vcpu_load(vcpu);
1739 	switch (ioctl) {
1740 	case KVM_RUN:
1741 		r = -EINVAL;
1742 		if (arg)
1743 			goto out;
1744 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1745 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1746 		break;
1747 	case KVM_GET_REGS: {
1748 		struct kvm_regs *kvm_regs;
1749 
1750 		r = -ENOMEM;
1751 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1752 		if (!kvm_regs)
1753 			goto out;
1754 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1755 		if (r)
1756 			goto out_free1;
1757 		r = -EFAULT;
1758 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1759 			goto out_free1;
1760 		r = 0;
1761 out_free1:
1762 		kfree(kvm_regs);
1763 		break;
1764 	}
1765 	case KVM_SET_REGS: {
1766 		struct kvm_regs *kvm_regs;
1767 
1768 		r = -ENOMEM;
1769 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1770 		if (!kvm_regs)
1771 			goto out;
1772 		r = -EFAULT;
1773 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1774 			goto out_free2;
1775 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1776 		if (r)
1777 			goto out_free2;
1778 		r = 0;
1779 out_free2:
1780 		kfree(kvm_regs);
1781 		break;
1782 	}
1783 	case KVM_GET_SREGS: {
1784 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1785 		r = -ENOMEM;
1786 		if (!kvm_sregs)
1787 			goto out;
1788 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1789 		if (r)
1790 			goto out;
1791 		r = -EFAULT;
1792 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1793 			goto out;
1794 		r = 0;
1795 		break;
1796 	}
1797 	case KVM_SET_SREGS: {
1798 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1799 		r = -ENOMEM;
1800 		if (!kvm_sregs)
1801 			goto out;
1802 		r = -EFAULT;
1803 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1804 			goto out;
1805 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1806 		if (r)
1807 			goto out;
1808 		r = 0;
1809 		break;
1810 	}
1811 	case KVM_GET_MP_STATE: {
1812 		struct kvm_mp_state mp_state;
1813 
1814 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1815 		if (r)
1816 			goto out;
1817 		r = -EFAULT;
1818 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1819 			goto out;
1820 		r = 0;
1821 		break;
1822 	}
1823 	case KVM_SET_MP_STATE: {
1824 		struct kvm_mp_state mp_state;
1825 
1826 		r = -EFAULT;
1827 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1828 			goto out;
1829 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1830 		if (r)
1831 			goto out;
1832 		r = 0;
1833 		break;
1834 	}
1835 	case KVM_TRANSLATE: {
1836 		struct kvm_translation tr;
1837 
1838 		r = -EFAULT;
1839 		if (copy_from_user(&tr, argp, sizeof tr))
1840 			goto out;
1841 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1842 		if (r)
1843 			goto out;
1844 		r = -EFAULT;
1845 		if (copy_to_user(argp, &tr, sizeof tr))
1846 			goto out;
1847 		r = 0;
1848 		break;
1849 	}
1850 	case KVM_SET_GUEST_DEBUG: {
1851 		struct kvm_guest_debug dbg;
1852 
1853 		r = -EFAULT;
1854 		if (copy_from_user(&dbg, argp, sizeof dbg))
1855 			goto out;
1856 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1857 		if (r)
1858 			goto out;
1859 		r = 0;
1860 		break;
1861 	}
1862 	case KVM_SET_SIGNAL_MASK: {
1863 		struct kvm_signal_mask __user *sigmask_arg = argp;
1864 		struct kvm_signal_mask kvm_sigmask;
1865 		sigset_t sigset, *p;
1866 
1867 		p = NULL;
1868 		if (argp) {
1869 			r = -EFAULT;
1870 			if (copy_from_user(&kvm_sigmask, argp,
1871 					   sizeof kvm_sigmask))
1872 				goto out;
1873 			r = -EINVAL;
1874 			if (kvm_sigmask.len != sizeof sigset)
1875 				goto out;
1876 			r = -EFAULT;
1877 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1878 					   sizeof sigset))
1879 				goto out;
1880 			p = &sigset;
1881 		}
1882 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1883 		break;
1884 	}
1885 	case KVM_GET_FPU: {
1886 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1887 		r = -ENOMEM;
1888 		if (!fpu)
1889 			goto out;
1890 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1891 		if (r)
1892 			goto out;
1893 		r = -EFAULT;
1894 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1895 			goto out;
1896 		r = 0;
1897 		break;
1898 	}
1899 	case KVM_SET_FPU: {
1900 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1901 		r = -ENOMEM;
1902 		if (!fpu)
1903 			goto out;
1904 		r = -EFAULT;
1905 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1906 			goto out;
1907 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1908 		if (r)
1909 			goto out;
1910 		r = 0;
1911 		break;
1912 	}
1913 	default:
1914 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1915 	}
1916 out:
1917 	vcpu_put(vcpu);
1918 	kfree(fpu);
1919 	kfree(kvm_sregs);
1920 	return r;
1921 }
1922 
1923 #ifdef CONFIG_COMPAT
1924 static long kvm_vcpu_compat_ioctl(struct file *filp,
1925 				  unsigned int ioctl, unsigned long arg)
1926 {
1927 	struct kvm_vcpu *vcpu = filp->private_data;
1928 	void __user *argp = compat_ptr(arg);
1929 	int r;
1930 
1931 	if (vcpu->kvm->mm != current->mm)
1932 		return -EIO;
1933 
1934 	switch (ioctl) {
1935 	case KVM_SET_SIGNAL_MASK: {
1936 		struct kvm_signal_mask __user *sigmask_arg = argp;
1937 		struct kvm_signal_mask kvm_sigmask;
1938 		compat_sigset_t csigset;
1939 		sigset_t sigset;
1940 
1941 		if (argp) {
1942 			r = -EFAULT;
1943 			if (copy_from_user(&kvm_sigmask, argp,
1944 					   sizeof kvm_sigmask))
1945 				goto out;
1946 			r = -EINVAL;
1947 			if (kvm_sigmask.len != sizeof csigset)
1948 				goto out;
1949 			r = -EFAULT;
1950 			if (copy_from_user(&csigset, sigmask_arg->sigset,
1951 					   sizeof csigset))
1952 				goto out;
1953 		}
1954 		sigset_from_compat(&sigset, &csigset);
1955 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1956 		break;
1957 	}
1958 	default:
1959 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1960 	}
1961 
1962 out:
1963 	return r;
1964 }
1965 #endif
1966 
1967 static long kvm_vm_ioctl(struct file *filp,
1968 			   unsigned int ioctl, unsigned long arg)
1969 {
1970 	struct kvm *kvm = filp->private_data;
1971 	void __user *argp = (void __user *)arg;
1972 	int r;
1973 
1974 	if (kvm->mm != current->mm)
1975 		return -EIO;
1976 	switch (ioctl) {
1977 	case KVM_CREATE_VCPU:
1978 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1979 		if (r < 0)
1980 			goto out;
1981 		break;
1982 	case KVM_SET_USER_MEMORY_REGION: {
1983 		struct kvm_userspace_memory_region kvm_userspace_mem;
1984 
1985 		r = -EFAULT;
1986 		if (copy_from_user(&kvm_userspace_mem, argp,
1987 						sizeof kvm_userspace_mem))
1988 			goto out;
1989 
1990 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1991 		if (r)
1992 			goto out;
1993 		break;
1994 	}
1995 	case KVM_GET_DIRTY_LOG: {
1996 		struct kvm_dirty_log log;
1997 
1998 		r = -EFAULT;
1999 		if (copy_from_user(&log, argp, sizeof log))
2000 			goto out;
2001 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2002 		if (r)
2003 			goto out;
2004 		break;
2005 	}
2006 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2007 	case KVM_REGISTER_COALESCED_MMIO: {
2008 		struct kvm_coalesced_mmio_zone zone;
2009 		r = -EFAULT;
2010 		if (copy_from_user(&zone, argp, sizeof zone))
2011 			goto out;
2012 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2013 		if (r)
2014 			goto out;
2015 		r = 0;
2016 		break;
2017 	}
2018 	case KVM_UNREGISTER_COALESCED_MMIO: {
2019 		struct kvm_coalesced_mmio_zone zone;
2020 		r = -EFAULT;
2021 		if (copy_from_user(&zone, argp, sizeof zone))
2022 			goto out;
2023 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2024 		if (r)
2025 			goto out;
2026 		r = 0;
2027 		break;
2028 	}
2029 #endif
2030 	case KVM_IRQFD: {
2031 		struct kvm_irqfd data;
2032 
2033 		r = -EFAULT;
2034 		if (copy_from_user(&data, argp, sizeof data))
2035 			goto out;
2036 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2037 		break;
2038 	}
2039 	case KVM_IOEVENTFD: {
2040 		struct kvm_ioeventfd data;
2041 
2042 		r = -EFAULT;
2043 		if (copy_from_user(&data, argp, sizeof data))
2044 			goto out;
2045 		r = kvm_ioeventfd(kvm, &data);
2046 		break;
2047 	}
2048 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2049 	case KVM_SET_BOOT_CPU_ID:
2050 		r = 0;
2051 		mutex_lock(&kvm->lock);
2052 		if (atomic_read(&kvm->online_vcpus) != 0)
2053 			r = -EBUSY;
2054 		else
2055 			kvm->bsp_vcpu_id = arg;
2056 		mutex_unlock(&kvm->lock);
2057 		break;
2058 #endif
2059 	default:
2060 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2061 		if (r == -ENOTTY)
2062 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2063 	}
2064 out:
2065 	return r;
2066 }
2067 
2068 #ifdef CONFIG_COMPAT
2069 struct compat_kvm_dirty_log {
2070 	__u32 slot;
2071 	__u32 padding1;
2072 	union {
2073 		compat_uptr_t dirty_bitmap; /* one bit per page */
2074 		__u64 padding2;
2075 	};
2076 };
2077 
2078 static long kvm_vm_compat_ioctl(struct file *filp,
2079 			   unsigned int ioctl, unsigned long arg)
2080 {
2081 	struct kvm *kvm = filp->private_data;
2082 	int r;
2083 
2084 	if (kvm->mm != current->mm)
2085 		return -EIO;
2086 	switch (ioctl) {
2087 	case KVM_GET_DIRTY_LOG: {
2088 		struct compat_kvm_dirty_log compat_log;
2089 		struct kvm_dirty_log log;
2090 
2091 		r = -EFAULT;
2092 		if (copy_from_user(&compat_log, (void __user *)arg,
2093 				   sizeof(compat_log)))
2094 			goto out;
2095 		log.slot	 = compat_log.slot;
2096 		log.padding1	 = compat_log.padding1;
2097 		log.padding2	 = compat_log.padding2;
2098 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2099 
2100 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2101 		if (r)
2102 			goto out;
2103 		break;
2104 	}
2105 	default:
2106 		r = kvm_vm_ioctl(filp, ioctl, arg);
2107 	}
2108 
2109 out:
2110 	return r;
2111 }
2112 #endif
2113 
2114 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2115 {
2116 	struct page *page[1];
2117 	unsigned long addr;
2118 	int npages;
2119 	gfn_t gfn = vmf->pgoff;
2120 	struct kvm *kvm = vma->vm_file->private_data;
2121 
2122 	addr = gfn_to_hva(kvm, gfn);
2123 	if (kvm_is_error_hva(addr))
2124 		return VM_FAULT_SIGBUS;
2125 
2126 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2127 				NULL);
2128 	if (unlikely(npages != 1))
2129 		return VM_FAULT_SIGBUS;
2130 
2131 	vmf->page = page[0];
2132 	return 0;
2133 }
2134 
2135 static const struct vm_operations_struct kvm_vm_vm_ops = {
2136 	.fault = kvm_vm_fault,
2137 };
2138 
2139 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2140 {
2141 	vma->vm_ops = &kvm_vm_vm_ops;
2142 	return 0;
2143 }
2144 
2145 static struct file_operations kvm_vm_fops = {
2146 	.release        = kvm_vm_release,
2147 	.unlocked_ioctl = kvm_vm_ioctl,
2148 #ifdef CONFIG_COMPAT
2149 	.compat_ioctl   = kvm_vm_compat_ioctl,
2150 #endif
2151 	.mmap           = kvm_vm_mmap,
2152 	.llseek		= noop_llseek,
2153 };
2154 
2155 static int kvm_dev_ioctl_create_vm(void)
2156 {
2157 	int r;
2158 	struct kvm *kvm;
2159 
2160 	kvm = kvm_create_vm();
2161 	if (IS_ERR(kvm))
2162 		return PTR_ERR(kvm);
2163 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2164 	r = kvm_coalesced_mmio_init(kvm);
2165 	if (r < 0) {
2166 		kvm_put_kvm(kvm);
2167 		return r;
2168 	}
2169 #endif
2170 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2171 	if (r < 0)
2172 		kvm_put_kvm(kvm);
2173 
2174 	return r;
2175 }
2176 
2177 static long kvm_dev_ioctl_check_extension_generic(long arg)
2178 {
2179 	switch (arg) {
2180 	case KVM_CAP_USER_MEMORY:
2181 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2182 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2183 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2184 	case KVM_CAP_SET_BOOT_CPU_ID:
2185 #endif
2186 	case KVM_CAP_INTERNAL_ERROR_DATA:
2187 		return 1;
2188 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2189 	case KVM_CAP_IRQ_ROUTING:
2190 		return KVM_MAX_IRQ_ROUTES;
2191 #endif
2192 	default:
2193 		break;
2194 	}
2195 	return kvm_dev_ioctl_check_extension(arg);
2196 }
2197 
2198 static long kvm_dev_ioctl(struct file *filp,
2199 			  unsigned int ioctl, unsigned long arg)
2200 {
2201 	long r = -EINVAL;
2202 
2203 	switch (ioctl) {
2204 	case KVM_GET_API_VERSION:
2205 		r = -EINVAL;
2206 		if (arg)
2207 			goto out;
2208 		r = KVM_API_VERSION;
2209 		break;
2210 	case KVM_CREATE_VM:
2211 		r = -EINVAL;
2212 		if (arg)
2213 			goto out;
2214 		r = kvm_dev_ioctl_create_vm();
2215 		break;
2216 	case KVM_CHECK_EXTENSION:
2217 		r = kvm_dev_ioctl_check_extension_generic(arg);
2218 		break;
2219 	case KVM_GET_VCPU_MMAP_SIZE:
2220 		r = -EINVAL;
2221 		if (arg)
2222 			goto out;
2223 		r = PAGE_SIZE;     /* struct kvm_run */
2224 #ifdef CONFIG_X86
2225 		r += PAGE_SIZE;    /* pio data page */
2226 #endif
2227 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2228 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2229 #endif
2230 		break;
2231 	case KVM_TRACE_ENABLE:
2232 	case KVM_TRACE_PAUSE:
2233 	case KVM_TRACE_DISABLE:
2234 		r = -EOPNOTSUPP;
2235 		break;
2236 	default:
2237 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2238 	}
2239 out:
2240 	return r;
2241 }
2242 
2243 static struct file_operations kvm_chardev_ops = {
2244 	.unlocked_ioctl = kvm_dev_ioctl,
2245 	.compat_ioctl   = kvm_dev_ioctl,
2246 	.llseek		= noop_llseek,
2247 };
2248 
2249 static struct miscdevice kvm_dev = {
2250 	KVM_MINOR,
2251 	"kvm",
2252 	&kvm_chardev_ops,
2253 };
2254 
2255 static void hardware_enable_nolock(void *junk)
2256 {
2257 	int cpu = raw_smp_processor_id();
2258 	int r;
2259 
2260 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2261 		return;
2262 
2263 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2264 
2265 	r = kvm_arch_hardware_enable(NULL);
2266 
2267 	if (r) {
2268 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2269 		atomic_inc(&hardware_enable_failed);
2270 		printk(KERN_INFO "kvm: enabling virtualization on "
2271 				 "CPU%d failed\n", cpu);
2272 	}
2273 }
2274 
2275 static void hardware_enable(void *junk)
2276 {
2277 	raw_spin_lock(&kvm_lock);
2278 	hardware_enable_nolock(junk);
2279 	raw_spin_unlock(&kvm_lock);
2280 }
2281 
2282 static void hardware_disable_nolock(void *junk)
2283 {
2284 	int cpu = raw_smp_processor_id();
2285 
2286 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2287 		return;
2288 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2289 	kvm_arch_hardware_disable(NULL);
2290 }
2291 
2292 static void hardware_disable(void *junk)
2293 {
2294 	raw_spin_lock(&kvm_lock);
2295 	hardware_disable_nolock(junk);
2296 	raw_spin_unlock(&kvm_lock);
2297 }
2298 
2299 static void hardware_disable_all_nolock(void)
2300 {
2301 	BUG_ON(!kvm_usage_count);
2302 
2303 	kvm_usage_count--;
2304 	if (!kvm_usage_count)
2305 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2306 }
2307 
2308 static void hardware_disable_all(void)
2309 {
2310 	raw_spin_lock(&kvm_lock);
2311 	hardware_disable_all_nolock();
2312 	raw_spin_unlock(&kvm_lock);
2313 }
2314 
2315 static int hardware_enable_all(void)
2316 {
2317 	int r = 0;
2318 
2319 	raw_spin_lock(&kvm_lock);
2320 
2321 	kvm_usage_count++;
2322 	if (kvm_usage_count == 1) {
2323 		atomic_set(&hardware_enable_failed, 0);
2324 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2325 
2326 		if (atomic_read(&hardware_enable_failed)) {
2327 			hardware_disable_all_nolock();
2328 			r = -EBUSY;
2329 		}
2330 	}
2331 
2332 	raw_spin_unlock(&kvm_lock);
2333 
2334 	return r;
2335 }
2336 
2337 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2338 			   void *v)
2339 {
2340 	int cpu = (long)v;
2341 
2342 	if (!kvm_usage_count)
2343 		return NOTIFY_OK;
2344 
2345 	val &= ~CPU_TASKS_FROZEN;
2346 	switch (val) {
2347 	case CPU_DYING:
2348 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2349 		       cpu);
2350 		hardware_disable(NULL);
2351 		break;
2352 	case CPU_STARTING:
2353 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2354 		       cpu);
2355 		hardware_enable(NULL);
2356 		break;
2357 	}
2358 	return NOTIFY_OK;
2359 }
2360 
2361 
2362 asmlinkage void kvm_spurious_fault(void)
2363 {
2364 	/* Fault while not rebooting.  We want the trace. */
2365 	BUG();
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2368 
2369 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2370 		      void *v)
2371 {
2372 	/*
2373 	 * Some (well, at least mine) BIOSes hang on reboot if
2374 	 * in vmx root mode.
2375 	 *
2376 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2377 	 */
2378 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2379 	kvm_rebooting = true;
2380 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2381 	return NOTIFY_OK;
2382 }
2383 
2384 static struct notifier_block kvm_reboot_notifier = {
2385 	.notifier_call = kvm_reboot,
2386 	.priority = 0,
2387 };
2388 
2389 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2390 {
2391 	int i;
2392 
2393 	for (i = 0; i < bus->dev_count; i++) {
2394 		struct kvm_io_device *pos = bus->devs[i];
2395 
2396 		kvm_iodevice_destructor(pos);
2397 	}
2398 	kfree(bus);
2399 }
2400 
2401 /* kvm_io_bus_write - called under kvm->slots_lock */
2402 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2403 		     int len, const void *val)
2404 {
2405 	int i;
2406 	struct kvm_io_bus *bus;
2407 
2408 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2409 	for (i = 0; i < bus->dev_count; i++)
2410 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2411 			return 0;
2412 	return -EOPNOTSUPP;
2413 }
2414 
2415 /* kvm_io_bus_read - called under kvm->slots_lock */
2416 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2417 		    int len, void *val)
2418 {
2419 	int i;
2420 	struct kvm_io_bus *bus;
2421 
2422 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2423 	for (i = 0; i < bus->dev_count; i++)
2424 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2425 			return 0;
2426 	return -EOPNOTSUPP;
2427 }
2428 
2429 /* Caller must hold slots_lock. */
2430 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2431 			    struct kvm_io_device *dev)
2432 {
2433 	struct kvm_io_bus *new_bus, *bus;
2434 
2435 	bus = kvm->buses[bus_idx];
2436 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2437 		return -ENOSPC;
2438 
2439 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2440 	if (!new_bus)
2441 		return -ENOMEM;
2442 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2443 	new_bus->devs[new_bus->dev_count++] = dev;
2444 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2445 	synchronize_srcu_expedited(&kvm->srcu);
2446 	kfree(bus);
2447 
2448 	return 0;
2449 }
2450 
2451 /* Caller must hold slots_lock. */
2452 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2453 			      struct kvm_io_device *dev)
2454 {
2455 	int i, r;
2456 	struct kvm_io_bus *new_bus, *bus;
2457 
2458 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2459 	if (!new_bus)
2460 		return -ENOMEM;
2461 
2462 	bus = kvm->buses[bus_idx];
2463 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2464 
2465 	r = -ENOENT;
2466 	for (i = 0; i < new_bus->dev_count; i++)
2467 		if (new_bus->devs[i] == dev) {
2468 			r = 0;
2469 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2470 			break;
2471 		}
2472 
2473 	if (r) {
2474 		kfree(new_bus);
2475 		return r;
2476 	}
2477 
2478 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2479 	synchronize_srcu_expedited(&kvm->srcu);
2480 	kfree(bus);
2481 	return r;
2482 }
2483 
2484 static struct notifier_block kvm_cpu_notifier = {
2485 	.notifier_call = kvm_cpu_hotplug,
2486 };
2487 
2488 static int vm_stat_get(void *_offset, u64 *val)
2489 {
2490 	unsigned offset = (long)_offset;
2491 	struct kvm *kvm;
2492 
2493 	*val = 0;
2494 	raw_spin_lock(&kvm_lock);
2495 	list_for_each_entry(kvm, &vm_list, vm_list)
2496 		*val += *(u32 *)((void *)kvm + offset);
2497 	raw_spin_unlock(&kvm_lock);
2498 	return 0;
2499 }
2500 
2501 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2502 
2503 static int vcpu_stat_get(void *_offset, u64 *val)
2504 {
2505 	unsigned offset = (long)_offset;
2506 	struct kvm *kvm;
2507 	struct kvm_vcpu *vcpu;
2508 	int i;
2509 
2510 	*val = 0;
2511 	raw_spin_lock(&kvm_lock);
2512 	list_for_each_entry(kvm, &vm_list, vm_list)
2513 		kvm_for_each_vcpu(i, vcpu, kvm)
2514 			*val += *(u32 *)((void *)vcpu + offset);
2515 
2516 	raw_spin_unlock(&kvm_lock);
2517 	return 0;
2518 }
2519 
2520 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2521 
2522 static const struct file_operations *stat_fops[] = {
2523 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2524 	[KVM_STAT_VM]   = &vm_stat_fops,
2525 };
2526 
2527 static void kvm_init_debug(void)
2528 {
2529 	struct kvm_stats_debugfs_item *p;
2530 
2531 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2532 	for (p = debugfs_entries; p->name; ++p)
2533 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2534 						(void *)(long)p->offset,
2535 						stat_fops[p->kind]);
2536 }
2537 
2538 static void kvm_exit_debug(void)
2539 {
2540 	struct kvm_stats_debugfs_item *p;
2541 
2542 	for (p = debugfs_entries; p->name; ++p)
2543 		debugfs_remove(p->dentry);
2544 	debugfs_remove(kvm_debugfs_dir);
2545 }
2546 
2547 static int kvm_suspend(void)
2548 {
2549 	if (kvm_usage_count)
2550 		hardware_disable_nolock(NULL);
2551 	return 0;
2552 }
2553 
2554 static void kvm_resume(void)
2555 {
2556 	if (kvm_usage_count) {
2557 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2558 		hardware_enable_nolock(NULL);
2559 	}
2560 }
2561 
2562 static struct syscore_ops kvm_syscore_ops = {
2563 	.suspend = kvm_suspend,
2564 	.resume = kvm_resume,
2565 };
2566 
2567 struct page *bad_page;
2568 pfn_t bad_pfn;
2569 
2570 static inline
2571 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2572 {
2573 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2574 }
2575 
2576 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2577 {
2578 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2579 
2580 	kvm_arch_vcpu_load(vcpu, cpu);
2581 }
2582 
2583 static void kvm_sched_out(struct preempt_notifier *pn,
2584 			  struct task_struct *next)
2585 {
2586 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2587 
2588 	kvm_arch_vcpu_put(vcpu);
2589 }
2590 
2591 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2592 		  struct module *module)
2593 {
2594 	int r;
2595 	int cpu;
2596 
2597 	r = kvm_arch_init(opaque);
2598 	if (r)
2599 		goto out_fail;
2600 
2601 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2602 
2603 	if (bad_page == NULL) {
2604 		r = -ENOMEM;
2605 		goto out;
2606 	}
2607 
2608 	bad_pfn = page_to_pfn(bad_page);
2609 
2610 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2611 
2612 	if (hwpoison_page == NULL) {
2613 		r = -ENOMEM;
2614 		goto out_free_0;
2615 	}
2616 
2617 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2618 
2619 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2620 
2621 	if (fault_page == NULL) {
2622 		r = -ENOMEM;
2623 		goto out_free_0;
2624 	}
2625 
2626 	fault_pfn = page_to_pfn(fault_page);
2627 
2628 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2629 		r = -ENOMEM;
2630 		goto out_free_0;
2631 	}
2632 
2633 	r = kvm_arch_hardware_setup();
2634 	if (r < 0)
2635 		goto out_free_0a;
2636 
2637 	for_each_online_cpu(cpu) {
2638 		smp_call_function_single(cpu,
2639 				kvm_arch_check_processor_compat,
2640 				&r, 1);
2641 		if (r < 0)
2642 			goto out_free_1;
2643 	}
2644 
2645 	r = register_cpu_notifier(&kvm_cpu_notifier);
2646 	if (r)
2647 		goto out_free_2;
2648 	register_reboot_notifier(&kvm_reboot_notifier);
2649 
2650 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2651 	if (!vcpu_align)
2652 		vcpu_align = __alignof__(struct kvm_vcpu);
2653 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2654 					   0, NULL);
2655 	if (!kvm_vcpu_cache) {
2656 		r = -ENOMEM;
2657 		goto out_free_3;
2658 	}
2659 
2660 	r = kvm_async_pf_init();
2661 	if (r)
2662 		goto out_free;
2663 
2664 	kvm_chardev_ops.owner = module;
2665 	kvm_vm_fops.owner = module;
2666 	kvm_vcpu_fops.owner = module;
2667 
2668 	r = misc_register(&kvm_dev);
2669 	if (r) {
2670 		printk(KERN_ERR "kvm: misc device register failed\n");
2671 		goto out_unreg;
2672 	}
2673 
2674 	register_syscore_ops(&kvm_syscore_ops);
2675 
2676 	kvm_preempt_ops.sched_in = kvm_sched_in;
2677 	kvm_preempt_ops.sched_out = kvm_sched_out;
2678 
2679 	kvm_init_debug();
2680 
2681 	return 0;
2682 
2683 out_unreg:
2684 	kvm_async_pf_deinit();
2685 out_free:
2686 	kmem_cache_destroy(kvm_vcpu_cache);
2687 out_free_3:
2688 	unregister_reboot_notifier(&kvm_reboot_notifier);
2689 	unregister_cpu_notifier(&kvm_cpu_notifier);
2690 out_free_2:
2691 out_free_1:
2692 	kvm_arch_hardware_unsetup();
2693 out_free_0a:
2694 	free_cpumask_var(cpus_hardware_enabled);
2695 out_free_0:
2696 	if (fault_page)
2697 		__free_page(fault_page);
2698 	if (hwpoison_page)
2699 		__free_page(hwpoison_page);
2700 	__free_page(bad_page);
2701 out:
2702 	kvm_arch_exit();
2703 out_fail:
2704 	return r;
2705 }
2706 EXPORT_SYMBOL_GPL(kvm_init);
2707 
2708 void kvm_exit(void)
2709 {
2710 	kvm_exit_debug();
2711 	misc_deregister(&kvm_dev);
2712 	kmem_cache_destroy(kvm_vcpu_cache);
2713 	kvm_async_pf_deinit();
2714 	unregister_syscore_ops(&kvm_syscore_ops);
2715 	unregister_reboot_notifier(&kvm_reboot_notifier);
2716 	unregister_cpu_notifier(&kvm_cpu_notifier);
2717 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2718 	kvm_arch_hardware_unsetup();
2719 	kvm_arch_exit();
2720 	free_cpumask_var(cpus_hardware_enabled);
2721 	__free_page(hwpoison_page);
2722 	__free_page(bad_page);
2723 }
2724 EXPORT_SYMBOL_GPL(kvm_exit);
2725