xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 814137768b5a9504f758aa760e7b1ac355539783)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88 
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 
94 /*
95  * Ordering of locks:
96  *
97  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99 
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103 
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107 
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127 				unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132 
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134 
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136 
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139 
140 static bool largepages_enabled = true;
141 
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147 
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149 		unsigned long start, unsigned long end, bool blockable)
150 {
151 	return 0;
152 }
153 
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156 	if (pfn_valid(pfn))
157 		return PageReserved(pfn_to_page(pfn));
158 
159 	return true;
160 }
161 
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 	int cpu = get_cpu();
168 	preempt_notifier_register(&vcpu->preempt_notifier);
169 	kvm_arch_vcpu_load(vcpu, cpu);
170 	put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173 
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176 	preempt_disable();
177 	kvm_arch_vcpu_put(vcpu);
178 	preempt_notifier_unregister(&vcpu->preempt_notifier);
179 	preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182 
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187 
188 	/*
189 	 * We need to wait for the VCPU to reenable interrupts and get out of
190 	 * READING_SHADOW_PAGE_TABLES mode.
191 	 */
192 	if (req & KVM_REQUEST_WAIT)
193 		return mode != OUTSIDE_GUEST_MODE;
194 
195 	/*
196 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
197 	 */
198 	return mode == IN_GUEST_MODE;
199 }
200 
201 static void ack_flush(void *_completed)
202 {
203 }
204 
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207 	if (unlikely(!cpus))
208 		cpus = cpu_online_mask;
209 
210 	if (cpumask_empty(cpus))
211 		return false;
212 
213 	smp_call_function_many(cpus, ack_flush, NULL, wait);
214 	return true;
215 }
216 
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220 	int i, cpu, me;
221 	struct kvm_vcpu *vcpu;
222 	bool called;
223 
224 	me = get_cpu();
225 
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228 			continue;
229 
230 		kvm_make_request(req, vcpu);
231 		cpu = vcpu->cpu;
232 
233 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234 			continue;
235 
236 		if (tmp != NULL && cpu != -1 && cpu != me &&
237 		    kvm_request_needs_ipi(vcpu, req))
238 			__cpumask_set_cpu(cpu, tmp);
239 	}
240 
241 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242 	put_cpu();
243 
244 	return called;
245 }
246 
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249 	cpumask_var_t cpus;
250 	bool called;
251 
252 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253 
254 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255 
256 	free_cpumask_var(cpus);
257 	return called;
258 }
259 
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263 	/*
264 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 	 * kvm_make_all_cpus_request.
266 	 */
267 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268 
269 	/*
270 	 * We want to publish modifications to the page tables before reading
271 	 * mode. Pairs with a memory barrier in arch-specific code.
272 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 	 *
276 	 * There is already an smp_mb__after_atomic() before
277 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 	 * barrier here.
279 	 */
280 	if (!kvm_arch_flush_remote_tlb(kvm)
281 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282 		++kvm->stat.remote_tlb_flush;
283 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287 
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292 
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295 	struct page *page;
296 	int r;
297 
298 	mutex_init(&vcpu->mutex);
299 	vcpu->cpu = -1;
300 	vcpu->kvm = kvm;
301 	vcpu->vcpu_id = id;
302 	vcpu->pid = NULL;
303 	init_swait_queue_head(&vcpu->wq);
304 	kvm_async_pf_vcpu_init(vcpu);
305 
306 	vcpu->pre_pcpu = -1;
307 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308 
309 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310 	if (!page) {
311 		r = -ENOMEM;
312 		goto fail;
313 	}
314 	vcpu->run = page_address(page);
315 
316 	kvm_vcpu_set_in_spin_loop(vcpu, false);
317 	kvm_vcpu_set_dy_eligible(vcpu, false);
318 	vcpu->preempted = false;
319 
320 	r = kvm_arch_vcpu_init(vcpu);
321 	if (r < 0)
322 		goto fail_free_run;
323 	return 0;
324 
325 fail_free_run:
326 	free_page((unsigned long)vcpu->run);
327 fail:
328 	return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331 
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334 	/*
335 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 	 * will change the vcpu->pid pointer and on uninit all file
337 	 * descriptors are already gone.
338 	 */
339 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
340 	kvm_arch_vcpu_uninit(vcpu);
341 	free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344 
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348 	return container_of(mn, struct kvm, mmu_notifier);
349 }
350 
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 					struct mm_struct *mm,
353 					unsigned long address,
354 					pte_t pte)
355 {
356 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
357 	int idx;
358 
359 	idx = srcu_read_lock(&kvm->srcu);
360 	spin_lock(&kvm->mmu_lock);
361 	kvm->mmu_notifier_seq++;
362 
363 	if (kvm_set_spte_hva(kvm, address, pte))
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371 					const struct mmu_notifier_range *range)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int need_tlb_flush = 0, idx;
375 	int ret;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	/*
380 	 * The count increase must become visible at unlock time as no
381 	 * spte can be established without taking the mmu_lock and
382 	 * count is also read inside the mmu_lock critical section.
383 	 */
384 	kvm->mmu_notifier_count++;
385 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386 	need_tlb_flush |= kvm->tlbs_dirty;
387 	/* we've to flush the tlb before the pages can be freed */
388 	if (need_tlb_flush)
389 		kvm_flush_remote_tlbs(kvm);
390 
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 					range->end,
395 					mmu_notifier_range_blockable(range));
396 
397 	srcu_read_unlock(&kvm->srcu, idx);
398 
399 	return ret;
400 }
401 
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403 					const struct mmu_notifier_range *range)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 
407 	spin_lock(&kvm->mmu_lock);
408 	/*
409 	 * This sequence increase will notify the kvm page fault that
410 	 * the page that is going to be mapped in the spte could have
411 	 * been freed.
412 	 */
413 	kvm->mmu_notifier_seq++;
414 	smp_wmb();
415 	/*
416 	 * The above sequence increase must be visible before the
417 	 * below count decrease, which is ensured by the smp_wmb above
418 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
419 	 */
420 	kvm->mmu_notifier_count--;
421 	spin_unlock(&kvm->mmu_lock);
422 
423 	BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425 
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427 					      struct mm_struct *mm,
428 					      unsigned long start,
429 					      unsigned long end)
430 {
431 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
432 	int young, idx;
433 
434 	idx = srcu_read_lock(&kvm->srcu);
435 	spin_lock(&kvm->mmu_lock);
436 
437 	young = kvm_age_hva(kvm, start, end);
438 	if (young)
439 		kvm_flush_remote_tlbs(kvm);
440 
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448 					struct mm_struct *mm,
449 					unsigned long start,
450 					unsigned long end)
451 {
452 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 	int young, idx;
454 
455 	idx = srcu_read_lock(&kvm->srcu);
456 	spin_lock(&kvm->mmu_lock);
457 	/*
458 	 * Even though we do not flush TLB, this will still adversely
459 	 * affect performance on pre-Haswell Intel EPT, where there is
460 	 * no EPT Access Bit to clear so that we have to tear down EPT
461 	 * tables instead. If we find this unacceptable, we can always
462 	 * add a parameter to kvm_age_hva so that it effectively doesn't
463 	 * do anything on clear_young.
464 	 *
465 	 * Also note that currently we never issue secondary TLB flushes
466 	 * from clear_young, leaving this job up to the regular system
467 	 * cadence. If we find this inaccurate, we might come up with a
468 	 * more sophisticated heuristic later.
469 	 */
470 	young = kvm_age_hva(kvm, start, end);
471 	spin_unlock(&kvm->mmu_lock);
472 	srcu_read_unlock(&kvm->srcu, idx);
473 
474 	return young;
475 }
476 
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478 				       struct mm_struct *mm,
479 				       unsigned long address)
480 {
481 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
482 	int young, idx;
483 
484 	idx = srcu_read_lock(&kvm->srcu);
485 	spin_lock(&kvm->mmu_lock);
486 	young = kvm_test_age_hva(kvm, address);
487 	spin_unlock(&kvm->mmu_lock);
488 	srcu_read_unlock(&kvm->srcu, idx);
489 
490 	return young;
491 }
492 
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494 				     struct mm_struct *mm)
495 {
496 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
497 	int idx;
498 
499 	idx = srcu_read_lock(&kvm->srcu);
500 	kvm_arch_flush_shadow_all(kvm);
501 	srcu_read_unlock(&kvm->srcu, idx);
502 }
503 
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
506 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
507 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
508 	.clear_young		= kvm_mmu_notifier_clear_young,
509 	.test_young		= kvm_mmu_notifier_test_young,
510 	.change_pte		= kvm_mmu_notifier_change_pte,
511 	.release		= kvm_mmu_notifier_release,
512 };
513 
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519 
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521 
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524 	return 0;
525 }
526 
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528 
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531 	int i;
532 	struct kvm_memslots *slots;
533 
534 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535 	if (!slots)
536 		return NULL;
537 
538 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539 		slots->id_to_index[i] = slots->memslots[i].id = i;
540 
541 	return slots;
542 }
543 
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546 	if (!memslot->dirty_bitmap)
547 		return;
548 
549 	kvfree(memslot->dirty_bitmap);
550 	memslot->dirty_bitmap = NULL;
551 }
552 
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557 			      struct kvm_memory_slot *dont)
558 {
559 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560 		kvm_destroy_dirty_bitmap(free);
561 
562 	kvm_arch_free_memslot(kvm, free, dont);
563 
564 	free->npages = 0;
565 }
566 
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569 	struct kvm_memory_slot *memslot;
570 
571 	if (!slots)
572 		return;
573 
574 	kvm_for_each_memslot(memslot, slots)
575 		kvm_free_memslot(kvm, memslot, NULL);
576 
577 	kvfree(slots);
578 }
579 
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582 	int i;
583 
584 	if (!kvm->debugfs_dentry)
585 		return;
586 
587 	debugfs_remove_recursive(kvm->debugfs_dentry);
588 
589 	if (kvm->debugfs_stat_data) {
590 		for (i = 0; i < kvm_debugfs_num_entries; i++)
591 			kfree(kvm->debugfs_stat_data[i]);
592 		kfree(kvm->debugfs_stat_data);
593 	}
594 }
595 
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598 	char dir_name[ITOA_MAX_LEN * 2];
599 	struct kvm_stat_data *stat_data;
600 	struct kvm_stats_debugfs_item *p;
601 
602 	if (!debugfs_initialized())
603 		return 0;
604 
605 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607 
608 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609 					 sizeof(*kvm->debugfs_stat_data),
610 					 GFP_KERNEL_ACCOUNT);
611 	if (!kvm->debugfs_stat_data)
612 		return -ENOMEM;
613 
614 	for (p = debugfs_entries; p->name; p++) {
615 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616 		if (!stat_data)
617 			return -ENOMEM;
618 
619 		stat_data->kvm = kvm;
620 		stat_data->offset = p->offset;
621 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
623 				    stat_data, stat_fops_per_vm[p->kind]);
624 	}
625 	return 0;
626 }
627 
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630 	int r, i;
631 	struct kvm *kvm = kvm_arch_alloc_vm();
632 
633 	if (!kvm)
634 		return ERR_PTR(-ENOMEM);
635 
636 	spin_lock_init(&kvm->mmu_lock);
637 	mmgrab(current->mm);
638 	kvm->mm = current->mm;
639 	kvm_eventfd_init(kvm);
640 	mutex_init(&kvm->lock);
641 	mutex_init(&kvm->irq_lock);
642 	mutex_init(&kvm->slots_lock);
643 	refcount_set(&kvm->users_count, 1);
644 	INIT_LIST_HEAD(&kvm->devices);
645 
646 	r = kvm_arch_init_vm(kvm, type);
647 	if (r)
648 		goto out_err_no_disable;
649 
650 	r = hardware_enable_all();
651 	if (r)
652 		goto out_err_no_disable;
653 
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657 
658 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659 
660 	r = -ENOMEM;
661 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662 		struct kvm_memslots *slots = kvm_alloc_memslots();
663 		if (!slots)
664 			goto out_err_no_srcu;
665 		/* Generations must be different for each address space. */
666 		slots->generation = i;
667 		rcu_assign_pointer(kvm->memslots[i], slots);
668 	}
669 
670 	if (init_srcu_struct(&kvm->srcu))
671 		goto out_err_no_srcu;
672 	if (init_srcu_struct(&kvm->irq_srcu))
673 		goto out_err_no_irq_srcu;
674 	for (i = 0; i < KVM_NR_BUSES; i++) {
675 		rcu_assign_pointer(kvm->buses[i],
676 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677 		if (!kvm->buses[i])
678 			goto out_err;
679 	}
680 
681 	r = kvm_init_mmu_notifier(kvm);
682 	if (r)
683 		goto out_err;
684 
685 	spin_lock(&kvm_lock);
686 	list_add(&kvm->vm_list, &vm_list);
687 	spin_unlock(&kvm_lock);
688 
689 	preempt_notifier_inc();
690 
691 	return kvm;
692 
693 out_err:
694 	cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696 	cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698 	hardware_disable_all();
699 out_err_no_disable:
700 	refcount_set(&kvm->users_count, 0);
701 	for (i = 0; i < KVM_NR_BUSES; i++)
702 		kfree(kvm_get_bus(kvm, i));
703 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705 	kvm_arch_free_vm(kvm);
706 	mmdrop(current->mm);
707 	return ERR_PTR(r);
708 }
709 
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712 	struct kvm_device *dev, *tmp;
713 
714 	/*
715 	 * We do not need to take the kvm->lock here, because nobody else
716 	 * has a reference to the struct kvm at this point and therefore
717 	 * cannot access the devices list anyhow.
718 	 */
719 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720 		list_del(&dev->vm_node);
721 		dev->ops->destroy(dev);
722 	}
723 }
724 
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727 	int i;
728 	struct mm_struct *mm = kvm->mm;
729 
730 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731 	kvm_destroy_vm_debugfs(kvm);
732 	kvm_arch_sync_events(kvm);
733 	spin_lock(&kvm_lock);
734 	list_del(&kvm->vm_list);
735 	spin_unlock(&kvm_lock);
736 	kvm_free_irq_routing(kvm);
737 	for (i = 0; i < KVM_NR_BUSES; i++) {
738 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739 
740 		if (bus)
741 			kvm_io_bus_destroy(bus);
742 		kvm->buses[i] = NULL;
743 	}
744 	kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748 	kvm_arch_flush_shadow_all(kvm);
749 #endif
750 	kvm_arch_destroy_vm(kvm);
751 	kvm_destroy_devices(kvm);
752 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754 	cleanup_srcu_struct(&kvm->irq_srcu);
755 	cleanup_srcu_struct(&kvm->srcu);
756 	kvm_arch_free_vm(kvm);
757 	preempt_notifier_dec();
758 	hardware_disable_all();
759 	mmdrop(mm);
760 }
761 
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764 	refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767 
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770 	if (refcount_dec_and_test(&kvm->users_count))
771 		kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774 
775 
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778 	struct kvm *kvm = filp->private_data;
779 
780 	kvm_irqfd_release(kvm);
781 
782 	kvm_put_kvm(kvm);
783 	return 0;
784 }
785 
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793 
794 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795 	if (!memslot->dirty_bitmap)
796 		return -ENOMEM;
797 
798 	return 0;
799 }
800 
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808 			    struct kvm_memory_slot *new,
809 			    enum kvm_mr_change change)
810 {
811 	int id = new->id;
812 	int i = slots->id_to_index[id];
813 	struct kvm_memory_slot *mslots = slots->memslots;
814 
815 	WARN_ON(mslots[i].id != id);
816 	switch (change) {
817 	case KVM_MR_CREATE:
818 		slots->used_slots++;
819 		WARN_ON(mslots[i].npages || !new->npages);
820 		break;
821 	case KVM_MR_DELETE:
822 		slots->used_slots--;
823 		WARN_ON(new->npages || !mslots[i].npages);
824 		break;
825 	default:
826 		break;
827 	}
828 
829 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
830 	       new->base_gfn <= mslots[i + 1].base_gfn) {
831 		if (!mslots[i + 1].npages)
832 			break;
833 		mslots[i] = mslots[i + 1];
834 		slots->id_to_index[mslots[i].id] = i;
835 		i++;
836 	}
837 
838 	/*
839 	 * The ">=" is needed when creating a slot with base_gfn == 0,
840 	 * so that it moves before all those with base_gfn == npages == 0.
841 	 *
842 	 * On the other hand, if new->npages is zero, the above loop has
843 	 * already left i pointing to the beginning of the empty part of
844 	 * mslots, and the ">=" would move the hole backwards in this
845 	 * case---which is wrong.  So skip the loop when deleting a slot.
846 	 */
847 	if (new->npages) {
848 		while (i > 0 &&
849 		       new->base_gfn >= mslots[i - 1].base_gfn) {
850 			mslots[i] = mslots[i - 1];
851 			slots->id_to_index[mslots[i].id] = i;
852 			i--;
853 		}
854 	} else
855 		WARN_ON_ONCE(i != slots->used_slots);
856 
857 	mslots[i] = *new;
858 	slots->id_to_index[mslots[i].id] = i;
859 }
860 
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864 
865 #ifdef __KVM_HAVE_READONLY_MEM
866 	valid_flags |= KVM_MEM_READONLY;
867 #endif
868 
869 	if (mem->flags & ~valid_flags)
870 		return -EINVAL;
871 
872 	return 0;
873 }
874 
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876 		int as_id, struct kvm_memslots *slots)
877 {
878 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879 	u64 gen = old_memslots->generation;
880 
881 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883 
884 	rcu_assign_pointer(kvm->memslots[as_id], slots);
885 	synchronize_srcu_expedited(&kvm->srcu);
886 
887 	/*
888 	 * Increment the new memslot generation a second time, dropping the
889 	 * update in-progress flag and incrementing then generation based on
890 	 * the number of address spaces.  This provides a unique and easily
891 	 * identifiable generation number while the memslots are in flux.
892 	 */
893 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894 
895 	/*
896 	 * Generations must be unique even across address spaces.  We do not need
897 	 * a global counter for that, instead the generation space is evenly split
898 	 * across address spaces.  For example, with two address spaces, address
899 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
900 	 * use generations 1, 3, 5, ...
901 	 */
902 	gen += KVM_ADDRESS_SPACE_NUM;
903 
904 	kvm_arch_memslots_updated(kvm, gen);
905 
906 	slots->generation = gen;
907 
908 	return old_memslots;
909 }
910 
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920 			    const struct kvm_userspace_memory_region *mem)
921 {
922 	int r;
923 	gfn_t base_gfn;
924 	unsigned long npages;
925 	struct kvm_memory_slot *slot;
926 	struct kvm_memory_slot old, new;
927 	struct kvm_memslots *slots = NULL, *old_memslots;
928 	int as_id, id;
929 	enum kvm_mr_change change;
930 
931 	r = check_memory_region_flags(mem);
932 	if (r)
933 		goto out;
934 
935 	r = -EINVAL;
936 	as_id = mem->slot >> 16;
937 	id = (u16)mem->slot;
938 
939 	/* General sanity checks */
940 	if (mem->memory_size & (PAGE_SIZE - 1))
941 		goto out;
942 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943 		goto out;
944 	/* We can read the guest memory with __xxx_user() later on. */
945 	if ((id < KVM_USER_MEM_SLOTS) &&
946 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948 			mem->memory_size)))
949 		goto out;
950 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951 		goto out;
952 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953 		goto out;
954 
955 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957 	npages = mem->memory_size >> PAGE_SHIFT;
958 
959 	if (npages > KVM_MEM_MAX_NR_PAGES)
960 		goto out;
961 
962 	new = old = *slot;
963 
964 	new.id = id;
965 	new.base_gfn = base_gfn;
966 	new.npages = npages;
967 	new.flags = mem->flags;
968 
969 	if (npages) {
970 		if (!old.npages)
971 			change = KVM_MR_CREATE;
972 		else { /* Modify an existing slot. */
973 			if ((mem->userspace_addr != old.userspace_addr) ||
974 			    (npages != old.npages) ||
975 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976 				goto out;
977 
978 			if (base_gfn != old.base_gfn)
979 				change = KVM_MR_MOVE;
980 			else if (new.flags != old.flags)
981 				change = KVM_MR_FLAGS_ONLY;
982 			else { /* Nothing to change. */
983 				r = 0;
984 				goto out;
985 			}
986 		}
987 	} else {
988 		if (!old.npages)
989 			goto out;
990 
991 		change = KVM_MR_DELETE;
992 		new.base_gfn = 0;
993 		new.flags = 0;
994 	}
995 
996 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997 		/* Check for overlaps */
998 		r = -EEXIST;
999 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000 			if (slot->id == id)
1001 				continue;
1002 			if (!((base_gfn + npages <= slot->base_gfn) ||
1003 			      (base_gfn >= slot->base_gfn + slot->npages)))
1004 				goto out;
1005 		}
1006 	}
1007 
1008 	/* Free page dirty bitmap if unneeded */
1009 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010 		new.dirty_bitmap = NULL;
1011 
1012 	r = -ENOMEM;
1013 	if (change == KVM_MR_CREATE) {
1014 		new.userspace_addr = mem->userspace_addr;
1015 
1016 		if (kvm_arch_create_memslot(kvm, &new, npages))
1017 			goto out_free;
1018 	}
1019 
1020 	/* Allocate page dirty bitmap if needed */
1021 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022 		if (kvm_create_dirty_bitmap(&new) < 0)
1023 			goto out_free;
1024 	}
1025 
1026 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027 	if (!slots)
1028 		goto out_free;
1029 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030 
1031 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032 		slot = id_to_memslot(slots, id);
1033 		slot->flags |= KVM_MEMSLOT_INVALID;
1034 
1035 		old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037 		/* From this point no new shadow pages pointing to a deleted,
1038 		 * or moved, memslot will be created.
1039 		 *
1040 		 * validation of sp->gfn happens in:
1041 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1043 		 */
1044 		kvm_arch_flush_shadow_memslot(kvm, slot);
1045 
1046 		/*
1047 		 * We can re-use the old_memslots from above, the only difference
1048 		 * from the currently installed memslots is the invalid flag.  This
1049 		 * will get overwritten by update_memslots anyway.
1050 		 */
1051 		slots = old_memslots;
1052 	}
1053 
1054 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055 	if (r)
1056 		goto out_slots;
1057 
1058 	/* actual memory is freed via old in kvm_free_memslot below */
1059 	if (change == KVM_MR_DELETE) {
1060 		new.dirty_bitmap = NULL;
1061 		memset(&new.arch, 0, sizeof(new.arch));
1062 	}
1063 
1064 	update_memslots(slots, &new, change);
1065 	old_memslots = install_new_memslots(kvm, as_id, slots);
1066 
1067 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068 
1069 	kvm_free_memslot(kvm, &old, &new);
1070 	kvfree(old_memslots);
1071 	return 0;
1072 
1073 out_slots:
1074 	kvfree(slots);
1075 out_free:
1076 	kvm_free_memslot(kvm, &new, &old);
1077 out:
1078 	return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081 
1082 int kvm_set_memory_region(struct kvm *kvm,
1083 			  const struct kvm_userspace_memory_region *mem)
1084 {
1085 	int r;
1086 
1087 	mutex_lock(&kvm->slots_lock);
1088 	r = __kvm_set_memory_region(kvm, mem);
1089 	mutex_unlock(&kvm->slots_lock);
1090 	return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093 
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095 					  struct kvm_userspace_memory_region *mem)
1096 {
1097 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098 		return -EINVAL;
1099 
1100 	return kvm_set_memory_region(kvm, mem);
1101 }
1102 
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104 			struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106 	struct kvm_memslots *slots;
1107 	struct kvm_memory_slot *memslot;
1108 	int i, as_id, id;
1109 	unsigned long n;
1110 	unsigned long any = 0;
1111 
1112 	as_id = log->slot >> 16;
1113 	id = (u16)log->slot;
1114 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115 		return -EINVAL;
1116 
1117 	slots = __kvm_memslots(kvm, as_id);
1118 	memslot = id_to_memslot(slots, id);
1119 	if (!memslot->dirty_bitmap)
1120 		return -ENOENT;
1121 
1122 	n = kvm_dirty_bitmap_bytes(memslot);
1123 
1124 	for (i = 0; !any && i < n/sizeof(long); ++i)
1125 		any = memslot->dirty_bitmap[i];
1126 
1127 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128 		return -EFAULT;
1129 
1130 	if (any)
1131 		*is_dirty = 1;
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135 
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1139  *	and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:	pointer to kvm instance
1141  * @log:	slot id and address to which we copy the log
1142  * @is_dirty:	flag set if any page is dirty
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160 			struct kvm_dirty_log *log, bool *flush)
1161 {
1162 	struct kvm_memslots *slots;
1163 	struct kvm_memory_slot *memslot;
1164 	int i, as_id, id;
1165 	unsigned long n;
1166 	unsigned long *dirty_bitmap;
1167 	unsigned long *dirty_bitmap_buffer;
1168 
1169 	as_id = log->slot >> 16;
1170 	id = (u16)log->slot;
1171 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172 		return -EINVAL;
1173 
1174 	slots = __kvm_memslots(kvm, as_id);
1175 	memslot = id_to_memslot(slots, id);
1176 
1177 	dirty_bitmap = memslot->dirty_bitmap;
1178 	if (!dirty_bitmap)
1179 		return -ENOENT;
1180 
1181 	n = kvm_dirty_bitmap_bytes(memslot);
1182 	*flush = false;
1183 	if (kvm->manual_dirty_log_protect) {
1184 		/*
1185 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1186 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187 		 * is some code duplication between this function and
1188 		 * kvm_get_dirty_log, but hopefully all architecture
1189 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190 		 * can be eliminated.
1191 		 */
1192 		dirty_bitmap_buffer = dirty_bitmap;
1193 	} else {
1194 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195 		memset(dirty_bitmap_buffer, 0, n);
1196 
1197 		spin_lock(&kvm->mmu_lock);
1198 		for (i = 0; i < n / sizeof(long); i++) {
1199 			unsigned long mask;
1200 			gfn_t offset;
1201 
1202 			if (!dirty_bitmap[i])
1203 				continue;
1204 
1205 			*flush = true;
1206 			mask = xchg(&dirty_bitmap[i], 0);
1207 			dirty_bitmap_buffer[i] = mask;
1208 
1209 			offset = i * BITS_PER_LONG;
1210 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211 								offset, mask);
1212 		}
1213 		spin_unlock(&kvm->mmu_lock);
1214 	}
1215 
1216 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217 		return -EFAULT;
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *	and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:	pointer to kvm instance
1226  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229 				struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231 	struct kvm_memslots *slots;
1232 	struct kvm_memory_slot *memslot;
1233 	int as_id, id;
1234 	gfn_t offset;
1235 	unsigned long i, n;
1236 	unsigned long *dirty_bitmap;
1237 	unsigned long *dirty_bitmap_buffer;
1238 
1239 	as_id = log->slot >> 16;
1240 	id = (u16)log->slot;
1241 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242 		return -EINVAL;
1243 
1244 	if (log->first_page & 63)
1245 		return -EINVAL;
1246 
1247 	slots = __kvm_memslots(kvm, as_id);
1248 	memslot = id_to_memslot(slots, id);
1249 
1250 	dirty_bitmap = memslot->dirty_bitmap;
1251 	if (!dirty_bitmap)
1252 		return -ENOENT;
1253 
1254 	n = kvm_dirty_bitmap_bytes(memslot);
1255 
1256 	if (log->first_page > memslot->npages ||
1257 	    log->num_pages > memslot->npages - log->first_page ||
1258 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259 	    return -EINVAL;
1260 
1261 	*flush = false;
1262 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264 		return -EFAULT;
1265 
1266 	spin_lock(&kvm->mmu_lock);
1267 	for (offset = log->first_page,
1268 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1269 	     i++, offset += BITS_PER_LONG) {
1270 		unsigned long mask = *dirty_bitmap_buffer++;
1271 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272 		if (!mask)
1273 			continue;
1274 
1275 		mask &= atomic_long_fetch_andnot(mask, p);
1276 
1277 		/*
1278 		 * mask contains the bits that really have been cleared.  This
1279 		 * never includes any bits beyond the length of the memslot (if
1280 		 * the length is not aligned to 64 pages), therefore it is not
1281 		 * a problem if userspace sets them in log->dirty_bitmap.
1282 		*/
1283 		if (mask) {
1284 			*flush = true;
1285 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286 								offset, mask);
1287 		}
1288 	}
1289 	spin_unlock(&kvm->mmu_lock);
1290 
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295 
1296 bool kvm_largepages_enabled(void)
1297 {
1298 	return largepages_enabled;
1299 }
1300 
1301 void kvm_disable_largepages(void)
1302 {
1303 	largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306 
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312 
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317 
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321 
1322 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323 	      memslot->flags & KVM_MEMSLOT_INVALID)
1324 		return false;
1325 
1326 	return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329 
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332 	struct vm_area_struct *vma;
1333 	unsigned long addr, size;
1334 
1335 	size = PAGE_SIZE;
1336 
1337 	addr = gfn_to_hva(kvm, gfn);
1338 	if (kvm_is_error_hva(addr))
1339 		return PAGE_SIZE;
1340 
1341 	down_read(&current->mm->mmap_sem);
1342 	vma = find_vma(current->mm, addr);
1343 	if (!vma)
1344 		goto out;
1345 
1346 	size = vma_kernel_pagesize(vma);
1347 
1348 out:
1349 	up_read(&current->mm->mmap_sem);
1350 
1351 	return size;
1352 }
1353 
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356 	return slot->flags & KVM_MEM_READONLY;
1357 }
1358 
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360 				       gfn_t *nr_pages, bool write)
1361 {
1362 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363 		return KVM_HVA_ERR_BAD;
1364 
1365 	if (memslot_is_readonly(slot) && write)
1366 		return KVM_HVA_ERR_RO_BAD;
1367 
1368 	if (nr_pages)
1369 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1370 
1371 	return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373 
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375 				     gfn_t *nr_pages)
1376 {
1377 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379 
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381 					gfn_t gfn)
1382 {
1383 	return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386 
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392 
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398 
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408 				      gfn_t gfn, bool *writable)
1409 {
1410 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411 
1412 	if (!kvm_is_error_hva(hva) && writable)
1413 		*writable = !memslot_is_readonly(slot);
1414 
1415 	return hva;
1416 }
1417 
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421 
1422 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424 
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428 
1429 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431 
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435 
1436 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437 	return rc == -EHWPOISON;
1438 }
1439 
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446 			    bool *writable, kvm_pfn_t *pfn)
1447 {
1448 	struct page *page[1];
1449 	int npages;
1450 
1451 	/*
1452 	 * Fast pin a writable pfn only if it is a write fault request
1453 	 * or the caller allows to map a writable pfn for a read fault
1454 	 * request.
1455 	 */
1456 	if (!(write_fault || writable))
1457 		return false;
1458 
1459 	npages = __get_user_pages_fast(addr, 1, 1, page);
1460 	if (npages == 1) {
1461 		*pfn = page_to_pfn(page[0]);
1462 
1463 		if (writable)
1464 			*writable = true;
1465 		return true;
1466 	}
1467 
1468 	return false;
1469 }
1470 
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476 			   bool *writable, kvm_pfn_t *pfn)
1477 {
1478 	unsigned int flags = FOLL_HWPOISON;
1479 	struct page *page;
1480 	int npages = 0;
1481 
1482 	might_sleep();
1483 
1484 	if (writable)
1485 		*writable = write_fault;
1486 
1487 	if (write_fault)
1488 		flags |= FOLL_WRITE;
1489 	if (async)
1490 		flags |= FOLL_NOWAIT;
1491 
1492 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493 	if (npages != 1)
1494 		return npages;
1495 
1496 	/* map read fault as writable if possible */
1497 	if (unlikely(!write_fault) && writable) {
1498 		struct page *wpage;
1499 
1500 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501 			*writable = true;
1502 			put_page(page);
1503 			page = wpage;
1504 		}
1505 	}
1506 	*pfn = page_to_pfn(page);
1507 	return npages;
1508 }
1509 
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512 	if (unlikely(!(vma->vm_flags & VM_READ)))
1513 		return false;
1514 
1515 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516 		return false;
1517 
1518 	return true;
1519 }
1520 
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522 			       unsigned long addr, bool *async,
1523 			       bool write_fault, bool *writable,
1524 			       kvm_pfn_t *p_pfn)
1525 {
1526 	unsigned long pfn;
1527 	int r;
1528 
1529 	r = follow_pfn(vma, addr, &pfn);
1530 	if (r) {
1531 		/*
1532 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533 		 * not call the fault handler, so do it here.
1534 		 */
1535 		bool unlocked = false;
1536 		r = fixup_user_fault(current, current->mm, addr,
1537 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1538 				     &unlocked);
1539 		if (unlocked)
1540 			return -EAGAIN;
1541 		if (r)
1542 			return r;
1543 
1544 		r = follow_pfn(vma, addr, &pfn);
1545 		if (r)
1546 			return r;
1547 
1548 	}
1549 
1550 	if (writable)
1551 		*writable = true;
1552 
1553 	/*
1554 	 * Get a reference here because callers of *hva_to_pfn* and
1555 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558 	 * simply do nothing for reserved pfns.
1559 	 *
1560 	 * Whoever called remap_pfn_range is also going to call e.g.
1561 	 * unmap_mapping_range before the underlying pages are freed,
1562 	 * causing a call to our MMU notifier.
1563 	 */
1564 	kvm_get_pfn(pfn);
1565 
1566 	*p_pfn = pfn;
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585 			bool write_fault, bool *writable)
1586 {
1587 	struct vm_area_struct *vma;
1588 	kvm_pfn_t pfn = 0;
1589 	int npages, r;
1590 
1591 	/* we can do it either atomically or asynchronously, not both */
1592 	BUG_ON(atomic && async);
1593 
1594 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595 		return pfn;
1596 
1597 	if (atomic)
1598 		return KVM_PFN_ERR_FAULT;
1599 
1600 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601 	if (npages == 1)
1602 		return pfn;
1603 
1604 	down_read(&current->mm->mmap_sem);
1605 	if (npages == -EHWPOISON ||
1606 	      (!async && check_user_page_hwpoison(addr))) {
1607 		pfn = KVM_PFN_ERR_HWPOISON;
1608 		goto exit;
1609 	}
1610 
1611 retry:
1612 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1613 
1614 	if (vma == NULL)
1615 		pfn = KVM_PFN_ERR_FAULT;
1616 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618 		if (r == -EAGAIN)
1619 			goto retry;
1620 		if (r < 0)
1621 			pfn = KVM_PFN_ERR_FAULT;
1622 	} else {
1623 		if (async && vma_is_valid(vma, write_fault))
1624 			*async = true;
1625 		pfn = KVM_PFN_ERR_FAULT;
1626 	}
1627 exit:
1628 	up_read(&current->mm->mmap_sem);
1629 	return pfn;
1630 }
1631 
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633 			       bool atomic, bool *async, bool write_fault,
1634 			       bool *writable)
1635 {
1636 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637 
1638 	if (addr == KVM_HVA_ERR_RO_BAD) {
1639 		if (writable)
1640 			*writable = false;
1641 		return KVM_PFN_ERR_RO_FAULT;
1642 	}
1643 
1644 	if (kvm_is_error_hva(addr)) {
1645 		if (writable)
1646 			*writable = false;
1647 		return KVM_PFN_NOSLOT;
1648 	}
1649 
1650 	/* Do not map writable pfn in the readonly memslot. */
1651 	if (writable && memslot_is_readonly(slot)) {
1652 		*writable = false;
1653 		writable = NULL;
1654 	}
1655 
1656 	return hva_to_pfn(addr, atomic, async, write_fault,
1657 			  writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660 
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662 		      bool *writable)
1663 {
1664 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665 				    write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668 
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674 
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680 
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686 
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692 
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698 
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704 
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706 			    struct page **pages, int nr_pages)
1707 {
1708 	unsigned long addr;
1709 	gfn_t entry = 0;
1710 
1711 	addr = gfn_to_hva_many(slot, gfn, &entry);
1712 	if (kvm_is_error_hva(addr))
1713 		return -1;
1714 
1715 	if (entry < nr_pages)
1716 		return 0;
1717 
1718 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721 
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724 	if (is_error_noslot_pfn(pfn))
1725 		return KVM_ERR_PTR_BAD_PAGE;
1726 
1727 	if (kvm_is_reserved_pfn(pfn)) {
1728 		WARN_ON(1);
1729 		return KVM_ERR_PTR_BAD_PAGE;
1730 	}
1731 
1732 	return pfn_to_page(pfn);
1733 }
1734 
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737 	kvm_pfn_t pfn;
1738 
1739 	pfn = gfn_to_pfn(kvm, gfn);
1740 
1741 	return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744 
1745 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1746 {
1747 	kvm_pfn_t pfn;
1748 
1749 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1750 
1751 	return kvm_pfn_to_page(pfn);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1754 
1755 void kvm_release_page_clean(struct page *page)
1756 {
1757 	WARN_ON(is_error_page(page));
1758 
1759 	kvm_release_pfn_clean(page_to_pfn(page));
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1762 
1763 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1764 {
1765 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1766 		put_page(pfn_to_page(pfn));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1769 
1770 void kvm_release_page_dirty(struct page *page)
1771 {
1772 	WARN_ON(is_error_page(page));
1773 
1774 	kvm_release_pfn_dirty(page_to_pfn(page));
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1777 
1778 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1779 {
1780 	kvm_set_pfn_dirty(pfn);
1781 	kvm_release_pfn_clean(pfn);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1784 
1785 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1786 {
1787 	if (!kvm_is_reserved_pfn(pfn)) {
1788 		struct page *page = pfn_to_page(pfn);
1789 
1790 		if (!PageReserved(page))
1791 			SetPageDirty(page);
1792 	}
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1795 
1796 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1797 {
1798 	if (!kvm_is_reserved_pfn(pfn))
1799 		mark_page_accessed(pfn_to_page(pfn));
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1802 
1803 void kvm_get_pfn(kvm_pfn_t pfn)
1804 {
1805 	if (!kvm_is_reserved_pfn(pfn))
1806 		get_page(pfn_to_page(pfn));
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1809 
1810 static int next_segment(unsigned long len, int offset)
1811 {
1812 	if (len > PAGE_SIZE - offset)
1813 		return PAGE_SIZE - offset;
1814 	else
1815 		return len;
1816 }
1817 
1818 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1819 				 void *data, int offset, int len)
1820 {
1821 	int r;
1822 	unsigned long addr;
1823 
1824 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825 	if (kvm_is_error_hva(addr))
1826 		return -EFAULT;
1827 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1828 	if (r)
1829 		return -EFAULT;
1830 	return 0;
1831 }
1832 
1833 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1834 			int len)
1835 {
1836 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837 
1838 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1841 
1842 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1843 			     int offset, int len)
1844 {
1845 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846 
1847 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1850 
1851 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1852 {
1853 	gfn_t gfn = gpa >> PAGE_SHIFT;
1854 	int seg;
1855 	int offset = offset_in_page(gpa);
1856 	int ret;
1857 
1858 	while ((seg = next_segment(len, offset)) != 0) {
1859 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1860 		if (ret < 0)
1861 			return ret;
1862 		offset = 0;
1863 		len -= seg;
1864 		data += seg;
1865 		++gfn;
1866 	}
1867 	return 0;
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_read_guest);
1870 
1871 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1872 {
1873 	gfn_t gfn = gpa >> PAGE_SHIFT;
1874 	int seg;
1875 	int offset = offset_in_page(gpa);
1876 	int ret;
1877 
1878 	while ((seg = next_segment(len, offset)) != 0) {
1879 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1880 		if (ret < 0)
1881 			return ret;
1882 		offset = 0;
1883 		len -= seg;
1884 		data += seg;
1885 		++gfn;
1886 	}
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1890 
1891 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1892 			           void *data, int offset, unsigned long len)
1893 {
1894 	int r;
1895 	unsigned long addr;
1896 
1897 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1898 	if (kvm_is_error_hva(addr))
1899 		return -EFAULT;
1900 	pagefault_disable();
1901 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1902 	pagefault_enable();
1903 	if (r)
1904 		return -EFAULT;
1905 	return 0;
1906 }
1907 
1908 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1909 			  unsigned long len)
1910 {
1911 	gfn_t gfn = gpa >> PAGE_SHIFT;
1912 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1913 	int offset = offset_in_page(gpa);
1914 
1915 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1918 
1919 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1920 			       void *data, unsigned long len)
1921 {
1922 	gfn_t gfn = gpa >> PAGE_SHIFT;
1923 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1924 	int offset = offset_in_page(gpa);
1925 
1926 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1929 
1930 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1931 			          const void *data, int offset, int len)
1932 {
1933 	int r;
1934 	unsigned long addr;
1935 
1936 	addr = gfn_to_hva_memslot(memslot, gfn);
1937 	if (kvm_is_error_hva(addr))
1938 		return -EFAULT;
1939 	r = __copy_to_user((void __user *)addr + offset, data, len);
1940 	if (r)
1941 		return -EFAULT;
1942 	mark_page_dirty_in_slot(memslot, gfn);
1943 	return 0;
1944 }
1945 
1946 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1947 			 const void *data, int offset, int len)
1948 {
1949 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1950 
1951 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1954 
1955 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1956 			      const void *data, int offset, int len)
1957 {
1958 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1959 
1960 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1963 
1964 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1965 		    unsigned long len)
1966 {
1967 	gfn_t gfn = gpa >> PAGE_SHIFT;
1968 	int seg;
1969 	int offset = offset_in_page(gpa);
1970 	int ret;
1971 
1972 	while ((seg = next_segment(len, offset)) != 0) {
1973 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1974 		if (ret < 0)
1975 			return ret;
1976 		offset = 0;
1977 		len -= seg;
1978 		data += seg;
1979 		++gfn;
1980 	}
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_write_guest);
1984 
1985 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1986 		         unsigned long len)
1987 {
1988 	gfn_t gfn = gpa >> PAGE_SHIFT;
1989 	int seg;
1990 	int offset = offset_in_page(gpa);
1991 	int ret;
1992 
1993 	while ((seg = next_segment(len, offset)) != 0) {
1994 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1995 		if (ret < 0)
1996 			return ret;
1997 		offset = 0;
1998 		len -= seg;
1999 		data += seg;
2000 		++gfn;
2001 	}
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2005 
2006 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2007 				       struct gfn_to_hva_cache *ghc,
2008 				       gpa_t gpa, unsigned long len)
2009 {
2010 	int offset = offset_in_page(gpa);
2011 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2012 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2013 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2014 	gfn_t nr_pages_avail;
2015 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2016 
2017 	ghc->gpa = gpa;
2018 	ghc->generation = slots->generation;
2019 	ghc->len = len;
2020 	ghc->hva = KVM_HVA_ERR_BAD;
2021 
2022 	/*
2023 	 * If the requested region crosses two memslots, we still
2024 	 * verify that the entire region is valid here.
2025 	 */
2026 	while (!r && start_gfn <= end_gfn) {
2027 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2028 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2029 					   &nr_pages_avail);
2030 		if (kvm_is_error_hva(ghc->hva))
2031 			r = -EFAULT;
2032 		start_gfn += nr_pages_avail;
2033 	}
2034 
2035 	/* Use the slow path for cross page reads and writes. */
2036 	if (!r && nr_pages_needed == 1)
2037 		ghc->hva += offset;
2038 	else
2039 		ghc->memslot = NULL;
2040 
2041 	return r;
2042 }
2043 
2044 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045 			      gpa_t gpa, unsigned long len)
2046 {
2047 	struct kvm_memslots *slots = kvm_memslots(kvm);
2048 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2051 
2052 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2053 				  void *data, unsigned int offset,
2054 				  unsigned long len)
2055 {
2056 	struct kvm_memslots *slots = kvm_memslots(kvm);
2057 	int r;
2058 	gpa_t gpa = ghc->gpa + offset;
2059 
2060 	BUG_ON(len + offset > ghc->len);
2061 
2062 	if (slots->generation != ghc->generation)
2063 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2064 
2065 	if (unlikely(!ghc->memslot))
2066 		return kvm_write_guest(kvm, gpa, data, len);
2067 
2068 	if (kvm_is_error_hva(ghc->hva))
2069 		return -EFAULT;
2070 
2071 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2072 	if (r)
2073 		return -EFAULT;
2074 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2075 
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2079 
2080 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2081 			   void *data, unsigned long len)
2082 {
2083 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2086 
2087 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2088 			   void *data, unsigned long len)
2089 {
2090 	struct kvm_memslots *slots = kvm_memslots(kvm);
2091 	int r;
2092 
2093 	BUG_ON(len > ghc->len);
2094 
2095 	if (slots->generation != ghc->generation)
2096 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2097 
2098 	if (unlikely(!ghc->memslot))
2099 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2100 
2101 	if (kvm_is_error_hva(ghc->hva))
2102 		return -EFAULT;
2103 
2104 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2105 	if (r)
2106 		return -EFAULT;
2107 
2108 	return 0;
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2111 
2112 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2113 {
2114 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2115 
2116 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2119 
2120 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2121 {
2122 	gfn_t gfn = gpa >> PAGE_SHIFT;
2123 	int seg;
2124 	int offset = offset_in_page(gpa);
2125 	int ret;
2126 
2127 	while ((seg = next_segment(len, offset)) != 0) {
2128 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2129 		if (ret < 0)
2130 			return ret;
2131 		offset = 0;
2132 		len -= seg;
2133 		++gfn;
2134 	}
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2138 
2139 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2140 				    gfn_t gfn)
2141 {
2142 	if (memslot && memslot->dirty_bitmap) {
2143 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2144 
2145 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2146 	}
2147 }
2148 
2149 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2150 {
2151 	struct kvm_memory_slot *memslot;
2152 
2153 	memslot = gfn_to_memslot(kvm, gfn);
2154 	mark_page_dirty_in_slot(memslot, gfn);
2155 }
2156 EXPORT_SYMBOL_GPL(mark_page_dirty);
2157 
2158 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2159 {
2160 	struct kvm_memory_slot *memslot;
2161 
2162 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2163 	mark_page_dirty_in_slot(memslot, gfn);
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2166 
2167 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2168 {
2169 	if (!vcpu->sigset_active)
2170 		return;
2171 
2172 	/*
2173 	 * This does a lockless modification of ->real_blocked, which is fine
2174 	 * because, only current can change ->real_blocked and all readers of
2175 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2176 	 * of ->blocked.
2177 	 */
2178 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2179 }
2180 
2181 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2182 {
2183 	if (!vcpu->sigset_active)
2184 		return;
2185 
2186 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2187 	sigemptyset(&current->real_blocked);
2188 }
2189 
2190 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2191 {
2192 	unsigned int old, val, grow, grow_start;
2193 
2194 	old = val = vcpu->halt_poll_ns;
2195 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2196 	grow = READ_ONCE(halt_poll_ns_grow);
2197 	if (!grow)
2198 		goto out;
2199 
2200 	val *= grow;
2201 	if (val < grow_start)
2202 		val = grow_start;
2203 
2204 	if (val > halt_poll_ns)
2205 		val = halt_poll_ns;
2206 
2207 	vcpu->halt_poll_ns = val;
2208 out:
2209 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2210 }
2211 
2212 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2213 {
2214 	unsigned int old, val, shrink;
2215 
2216 	old = val = vcpu->halt_poll_ns;
2217 	shrink = READ_ONCE(halt_poll_ns_shrink);
2218 	if (shrink == 0)
2219 		val = 0;
2220 	else
2221 		val /= shrink;
2222 
2223 	vcpu->halt_poll_ns = val;
2224 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2225 }
2226 
2227 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2228 {
2229 	int ret = -EINTR;
2230 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2231 
2232 	if (kvm_arch_vcpu_runnable(vcpu)) {
2233 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2234 		goto out;
2235 	}
2236 	if (kvm_cpu_has_pending_timer(vcpu))
2237 		goto out;
2238 	if (signal_pending(current))
2239 		goto out;
2240 
2241 	ret = 0;
2242 out:
2243 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2244 	return ret;
2245 }
2246 
2247 /*
2248  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2249  */
2250 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2251 {
2252 	ktime_t start, cur;
2253 	DECLARE_SWAITQUEUE(wait);
2254 	bool waited = false;
2255 	u64 block_ns;
2256 
2257 	start = cur = ktime_get();
2258 	if (vcpu->halt_poll_ns) {
2259 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2260 
2261 		++vcpu->stat.halt_attempted_poll;
2262 		do {
2263 			/*
2264 			 * This sets KVM_REQ_UNHALT if an interrupt
2265 			 * arrives.
2266 			 */
2267 			if (kvm_vcpu_check_block(vcpu) < 0) {
2268 				++vcpu->stat.halt_successful_poll;
2269 				if (!vcpu_valid_wakeup(vcpu))
2270 					++vcpu->stat.halt_poll_invalid;
2271 				goto out;
2272 			}
2273 			cur = ktime_get();
2274 		} while (single_task_running() && ktime_before(cur, stop));
2275 	}
2276 
2277 	kvm_arch_vcpu_blocking(vcpu);
2278 
2279 	for (;;) {
2280 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2281 
2282 		if (kvm_vcpu_check_block(vcpu) < 0)
2283 			break;
2284 
2285 		waited = true;
2286 		schedule();
2287 	}
2288 
2289 	finish_swait(&vcpu->wq, &wait);
2290 	cur = ktime_get();
2291 
2292 	kvm_arch_vcpu_unblocking(vcpu);
2293 out:
2294 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2295 
2296 	if (!vcpu_valid_wakeup(vcpu))
2297 		shrink_halt_poll_ns(vcpu);
2298 	else if (halt_poll_ns) {
2299 		if (block_ns <= vcpu->halt_poll_ns)
2300 			;
2301 		/* we had a long block, shrink polling */
2302 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2303 			shrink_halt_poll_ns(vcpu);
2304 		/* we had a short halt and our poll time is too small */
2305 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2306 			block_ns < halt_poll_ns)
2307 			grow_halt_poll_ns(vcpu);
2308 	} else
2309 		vcpu->halt_poll_ns = 0;
2310 
2311 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2312 	kvm_arch_vcpu_block_finish(vcpu);
2313 }
2314 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2315 
2316 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2317 {
2318 	struct swait_queue_head *wqp;
2319 
2320 	wqp = kvm_arch_vcpu_wq(vcpu);
2321 	if (swq_has_sleeper(wqp)) {
2322 		swake_up_one(wqp);
2323 		++vcpu->stat.halt_wakeup;
2324 		return true;
2325 	}
2326 
2327 	return false;
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2330 
2331 #ifndef CONFIG_S390
2332 /*
2333  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2334  */
2335 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2336 {
2337 	int me;
2338 	int cpu = vcpu->cpu;
2339 
2340 	if (kvm_vcpu_wake_up(vcpu))
2341 		return;
2342 
2343 	me = get_cpu();
2344 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2345 		if (kvm_arch_vcpu_should_kick(vcpu))
2346 			smp_send_reschedule(cpu);
2347 	put_cpu();
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2350 #endif /* !CONFIG_S390 */
2351 
2352 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2353 {
2354 	struct pid *pid;
2355 	struct task_struct *task = NULL;
2356 	int ret = 0;
2357 
2358 	rcu_read_lock();
2359 	pid = rcu_dereference(target->pid);
2360 	if (pid)
2361 		task = get_pid_task(pid, PIDTYPE_PID);
2362 	rcu_read_unlock();
2363 	if (!task)
2364 		return ret;
2365 	ret = yield_to(task, 1);
2366 	put_task_struct(task);
2367 
2368 	return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2371 
2372 /*
2373  * Helper that checks whether a VCPU is eligible for directed yield.
2374  * Most eligible candidate to yield is decided by following heuristics:
2375  *
2376  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2377  *  (preempted lock holder), indicated by @in_spin_loop.
2378  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2379  *
2380  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2381  *  chance last time (mostly it has become eligible now since we have probably
2382  *  yielded to lockholder in last iteration. This is done by toggling
2383  *  @dy_eligible each time a VCPU checked for eligibility.)
2384  *
2385  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2386  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2387  *  burning. Giving priority for a potential lock-holder increases lock
2388  *  progress.
2389  *
2390  *  Since algorithm is based on heuristics, accessing another VCPU data without
2391  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2392  *  and continue with next VCPU and so on.
2393  */
2394 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2395 {
2396 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2397 	bool eligible;
2398 
2399 	eligible = !vcpu->spin_loop.in_spin_loop ||
2400 		    vcpu->spin_loop.dy_eligible;
2401 
2402 	if (vcpu->spin_loop.in_spin_loop)
2403 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2404 
2405 	return eligible;
2406 #else
2407 	return true;
2408 #endif
2409 }
2410 
2411 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2412 {
2413 	struct kvm *kvm = me->kvm;
2414 	struct kvm_vcpu *vcpu;
2415 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2416 	int yielded = 0;
2417 	int try = 3;
2418 	int pass;
2419 	int i;
2420 
2421 	kvm_vcpu_set_in_spin_loop(me, true);
2422 	/*
2423 	 * We boost the priority of a VCPU that is runnable but not
2424 	 * currently running, because it got preempted by something
2425 	 * else and called schedule in __vcpu_run.  Hopefully that
2426 	 * VCPU is holding the lock that we need and will release it.
2427 	 * We approximate round-robin by starting at the last boosted VCPU.
2428 	 */
2429 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2430 		kvm_for_each_vcpu(i, vcpu, kvm) {
2431 			if (!pass && i <= last_boosted_vcpu) {
2432 				i = last_boosted_vcpu;
2433 				continue;
2434 			} else if (pass && i > last_boosted_vcpu)
2435 				break;
2436 			if (!READ_ONCE(vcpu->preempted))
2437 				continue;
2438 			if (vcpu == me)
2439 				continue;
2440 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2441 				continue;
2442 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2443 				continue;
2444 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2445 				continue;
2446 
2447 			yielded = kvm_vcpu_yield_to(vcpu);
2448 			if (yielded > 0) {
2449 				kvm->last_boosted_vcpu = i;
2450 				break;
2451 			} else if (yielded < 0) {
2452 				try--;
2453 				if (!try)
2454 					break;
2455 			}
2456 		}
2457 	}
2458 	kvm_vcpu_set_in_spin_loop(me, false);
2459 
2460 	/* Ensure vcpu is not eligible during next spinloop */
2461 	kvm_vcpu_set_dy_eligible(me, false);
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2464 
2465 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2466 {
2467 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2468 	struct page *page;
2469 
2470 	if (vmf->pgoff == 0)
2471 		page = virt_to_page(vcpu->run);
2472 #ifdef CONFIG_X86
2473 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2474 		page = virt_to_page(vcpu->arch.pio_data);
2475 #endif
2476 #ifdef CONFIG_KVM_MMIO
2477 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2478 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2479 #endif
2480 	else
2481 		return kvm_arch_vcpu_fault(vcpu, vmf);
2482 	get_page(page);
2483 	vmf->page = page;
2484 	return 0;
2485 }
2486 
2487 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2488 	.fault = kvm_vcpu_fault,
2489 };
2490 
2491 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2492 {
2493 	vma->vm_ops = &kvm_vcpu_vm_ops;
2494 	return 0;
2495 }
2496 
2497 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2498 {
2499 	struct kvm_vcpu *vcpu = filp->private_data;
2500 
2501 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2502 	kvm_put_kvm(vcpu->kvm);
2503 	return 0;
2504 }
2505 
2506 static struct file_operations kvm_vcpu_fops = {
2507 	.release        = kvm_vcpu_release,
2508 	.unlocked_ioctl = kvm_vcpu_ioctl,
2509 	.mmap           = kvm_vcpu_mmap,
2510 	.llseek		= noop_llseek,
2511 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2512 };
2513 
2514 /*
2515  * Allocates an inode for the vcpu.
2516  */
2517 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2518 {
2519 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2520 
2521 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2522 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2523 }
2524 
2525 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2526 {
2527 	char dir_name[ITOA_MAX_LEN * 2];
2528 	int ret;
2529 
2530 	if (!kvm_arch_has_vcpu_debugfs())
2531 		return 0;
2532 
2533 	if (!debugfs_initialized())
2534 		return 0;
2535 
2536 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2537 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2538 								vcpu->kvm->debugfs_dentry);
2539 	if (!vcpu->debugfs_dentry)
2540 		return -ENOMEM;
2541 
2542 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2543 	if (ret < 0) {
2544 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2545 		return ret;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 /*
2552  * Creates some virtual cpus.  Good luck creating more than one.
2553  */
2554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2555 {
2556 	int r;
2557 	struct kvm_vcpu *vcpu;
2558 
2559 	if (id >= KVM_MAX_VCPU_ID)
2560 		return -EINVAL;
2561 
2562 	mutex_lock(&kvm->lock);
2563 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2564 		mutex_unlock(&kvm->lock);
2565 		return -EINVAL;
2566 	}
2567 
2568 	kvm->created_vcpus++;
2569 	mutex_unlock(&kvm->lock);
2570 
2571 	vcpu = kvm_arch_vcpu_create(kvm, id);
2572 	if (IS_ERR(vcpu)) {
2573 		r = PTR_ERR(vcpu);
2574 		goto vcpu_decrement;
2575 	}
2576 
2577 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2578 
2579 	r = kvm_arch_vcpu_setup(vcpu);
2580 	if (r)
2581 		goto vcpu_destroy;
2582 
2583 	r = kvm_create_vcpu_debugfs(vcpu);
2584 	if (r)
2585 		goto vcpu_destroy;
2586 
2587 	mutex_lock(&kvm->lock);
2588 	if (kvm_get_vcpu_by_id(kvm, id)) {
2589 		r = -EEXIST;
2590 		goto unlock_vcpu_destroy;
2591 	}
2592 
2593 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2594 
2595 	/* Now it's all set up, let userspace reach it */
2596 	kvm_get_kvm(kvm);
2597 	r = create_vcpu_fd(vcpu);
2598 	if (r < 0) {
2599 		kvm_put_kvm(kvm);
2600 		goto unlock_vcpu_destroy;
2601 	}
2602 
2603 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2604 
2605 	/*
2606 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2607 	 * before kvm->online_vcpu's incremented value.
2608 	 */
2609 	smp_wmb();
2610 	atomic_inc(&kvm->online_vcpus);
2611 
2612 	mutex_unlock(&kvm->lock);
2613 	kvm_arch_vcpu_postcreate(vcpu);
2614 	return r;
2615 
2616 unlock_vcpu_destroy:
2617 	mutex_unlock(&kvm->lock);
2618 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2619 vcpu_destroy:
2620 	kvm_arch_vcpu_destroy(vcpu);
2621 vcpu_decrement:
2622 	mutex_lock(&kvm->lock);
2623 	kvm->created_vcpus--;
2624 	mutex_unlock(&kvm->lock);
2625 	return r;
2626 }
2627 
2628 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2629 {
2630 	if (sigset) {
2631 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2632 		vcpu->sigset_active = 1;
2633 		vcpu->sigset = *sigset;
2634 	} else
2635 		vcpu->sigset_active = 0;
2636 	return 0;
2637 }
2638 
2639 static long kvm_vcpu_ioctl(struct file *filp,
2640 			   unsigned int ioctl, unsigned long arg)
2641 {
2642 	struct kvm_vcpu *vcpu = filp->private_data;
2643 	void __user *argp = (void __user *)arg;
2644 	int r;
2645 	struct kvm_fpu *fpu = NULL;
2646 	struct kvm_sregs *kvm_sregs = NULL;
2647 
2648 	if (vcpu->kvm->mm != current->mm)
2649 		return -EIO;
2650 
2651 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2652 		return -EINVAL;
2653 
2654 	/*
2655 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2656 	 * execution; mutex_lock() would break them.
2657 	 */
2658 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2659 	if (r != -ENOIOCTLCMD)
2660 		return r;
2661 
2662 	if (mutex_lock_killable(&vcpu->mutex))
2663 		return -EINTR;
2664 	switch (ioctl) {
2665 	case KVM_RUN: {
2666 		struct pid *oldpid;
2667 		r = -EINVAL;
2668 		if (arg)
2669 			goto out;
2670 		oldpid = rcu_access_pointer(vcpu->pid);
2671 		if (unlikely(oldpid != task_pid(current))) {
2672 			/* The thread running this VCPU changed. */
2673 			struct pid *newpid;
2674 
2675 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2676 			if (r)
2677 				break;
2678 
2679 			newpid = get_task_pid(current, PIDTYPE_PID);
2680 			rcu_assign_pointer(vcpu->pid, newpid);
2681 			if (oldpid)
2682 				synchronize_rcu();
2683 			put_pid(oldpid);
2684 		}
2685 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2686 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2687 		break;
2688 	}
2689 	case KVM_GET_REGS: {
2690 		struct kvm_regs *kvm_regs;
2691 
2692 		r = -ENOMEM;
2693 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2694 		if (!kvm_regs)
2695 			goto out;
2696 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2697 		if (r)
2698 			goto out_free1;
2699 		r = -EFAULT;
2700 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2701 			goto out_free1;
2702 		r = 0;
2703 out_free1:
2704 		kfree(kvm_regs);
2705 		break;
2706 	}
2707 	case KVM_SET_REGS: {
2708 		struct kvm_regs *kvm_regs;
2709 
2710 		r = -ENOMEM;
2711 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2712 		if (IS_ERR(kvm_regs)) {
2713 			r = PTR_ERR(kvm_regs);
2714 			goto out;
2715 		}
2716 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2717 		kfree(kvm_regs);
2718 		break;
2719 	}
2720 	case KVM_GET_SREGS: {
2721 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2722 				    GFP_KERNEL_ACCOUNT);
2723 		r = -ENOMEM;
2724 		if (!kvm_sregs)
2725 			goto out;
2726 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2727 		if (r)
2728 			goto out;
2729 		r = -EFAULT;
2730 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2731 			goto out;
2732 		r = 0;
2733 		break;
2734 	}
2735 	case KVM_SET_SREGS: {
2736 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2737 		if (IS_ERR(kvm_sregs)) {
2738 			r = PTR_ERR(kvm_sregs);
2739 			kvm_sregs = NULL;
2740 			goto out;
2741 		}
2742 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2743 		break;
2744 	}
2745 	case KVM_GET_MP_STATE: {
2746 		struct kvm_mp_state mp_state;
2747 
2748 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2749 		if (r)
2750 			goto out;
2751 		r = -EFAULT;
2752 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2753 			goto out;
2754 		r = 0;
2755 		break;
2756 	}
2757 	case KVM_SET_MP_STATE: {
2758 		struct kvm_mp_state mp_state;
2759 
2760 		r = -EFAULT;
2761 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2762 			goto out;
2763 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2764 		break;
2765 	}
2766 	case KVM_TRANSLATE: {
2767 		struct kvm_translation tr;
2768 
2769 		r = -EFAULT;
2770 		if (copy_from_user(&tr, argp, sizeof(tr)))
2771 			goto out;
2772 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2773 		if (r)
2774 			goto out;
2775 		r = -EFAULT;
2776 		if (copy_to_user(argp, &tr, sizeof(tr)))
2777 			goto out;
2778 		r = 0;
2779 		break;
2780 	}
2781 	case KVM_SET_GUEST_DEBUG: {
2782 		struct kvm_guest_debug dbg;
2783 
2784 		r = -EFAULT;
2785 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2786 			goto out;
2787 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2788 		break;
2789 	}
2790 	case KVM_SET_SIGNAL_MASK: {
2791 		struct kvm_signal_mask __user *sigmask_arg = argp;
2792 		struct kvm_signal_mask kvm_sigmask;
2793 		sigset_t sigset, *p;
2794 
2795 		p = NULL;
2796 		if (argp) {
2797 			r = -EFAULT;
2798 			if (copy_from_user(&kvm_sigmask, argp,
2799 					   sizeof(kvm_sigmask)))
2800 				goto out;
2801 			r = -EINVAL;
2802 			if (kvm_sigmask.len != sizeof(sigset))
2803 				goto out;
2804 			r = -EFAULT;
2805 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2806 					   sizeof(sigset)))
2807 				goto out;
2808 			p = &sigset;
2809 		}
2810 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2811 		break;
2812 	}
2813 	case KVM_GET_FPU: {
2814 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2815 		r = -ENOMEM;
2816 		if (!fpu)
2817 			goto out;
2818 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2819 		if (r)
2820 			goto out;
2821 		r = -EFAULT;
2822 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2823 			goto out;
2824 		r = 0;
2825 		break;
2826 	}
2827 	case KVM_SET_FPU: {
2828 		fpu = memdup_user(argp, sizeof(*fpu));
2829 		if (IS_ERR(fpu)) {
2830 			r = PTR_ERR(fpu);
2831 			fpu = NULL;
2832 			goto out;
2833 		}
2834 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2835 		break;
2836 	}
2837 	default:
2838 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2839 	}
2840 out:
2841 	mutex_unlock(&vcpu->mutex);
2842 	kfree(fpu);
2843 	kfree(kvm_sregs);
2844 	return r;
2845 }
2846 
2847 #ifdef CONFIG_KVM_COMPAT
2848 static long kvm_vcpu_compat_ioctl(struct file *filp,
2849 				  unsigned int ioctl, unsigned long arg)
2850 {
2851 	struct kvm_vcpu *vcpu = filp->private_data;
2852 	void __user *argp = compat_ptr(arg);
2853 	int r;
2854 
2855 	if (vcpu->kvm->mm != current->mm)
2856 		return -EIO;
2857 
2858 	switch (ioctl) {
2859 	case KVM_SET_SIGNAL_MASK: {
2860 		struct kvm_signal_mask __user *sigmask_arg = argp;
2861 		struct kvm_signal_mask kvm_sigmask;
2862 		sigset_t sigset;
2863 
2864 		if (argp) {
2865 			r = -EFAULT;
2866 			if (copy_from_user(&kvm_sigmask, argp,
2867 					   sizeof(kvm_sigmask)))
2868 				goto out;
2869 			r = -EINVAL;
2870 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2871 				goto out;
2872 			r = -EFAULT;
2873 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2874 				goto out;
2875 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2876 		} else
2877 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2878 		break;
2879 	}
2880 	default:
2881 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2882 	}
2883 
2884 out:
2885 	return r;
2886 }
2887 #endif
2888 
2889 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2890 				 int (*accessor)(struct kvm_device *dev,
2891 						 struct kvm_device_attr *attr),
2892 				 unsigned long arg)
2893 {
2894 	struct kvm_device_attr attr;
2895 
2896 	if (!accessor)
2897 		return -EPERM;
2898 
2899 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2900 		return -EFAULT;
2901 
2902 	return accessor(dev, &attr);
2903 }
2904 
2905 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2906 			     unsigned long arg)
2907 {
2908 	struct kvm_device *dev = filp->private_data;
2909 
2910 	if (dev->kvm->mm != current->mm)
2911 		return -EIO;
2912 
2913 	switch (ioctl) {
2914 	case KVM_SET_DEVICE_ATTR:
2915 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2916 	case KVM_GET_DEVICE_ATTR:
2917 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2918 	case KVM_HAS_DEVICE_ATTR:
2919 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2920 	default:
2921 		if (dev->ops->ioctl)
2922 			return dev->ops->ioctl(dev, ioctl, arg);
2923 
2924 		return -ENOTTY;
2925 	}
2926 }
2927 
2928 static int kvm_device_release(struct inode *inode, struct file *filp)
2929 {
2930 	struct kvm_device *dev = filp->private_data;
2931 	struct kvm *kvm = dev->kvm;
2932 
2933 	kvm_put_kvm(kvm);
2934 	return 0;
2935 }
2936 
2937 static const struct file_operations kvm_device_fops = {
2938 	.unlocked_ioctl = kvm_device_ioctl,
2939 	.release = kvm_device_release,
2940 	KVM_COMPAT(kvm_device_ioctl),
2941 };
2942 
2943 struct kvm_device *kvm_device_from_filp(struct file *filp)
2944 {
2945 	if (filp->f_op != &kvm_device_fops)
2946 		return NULL;
2947 
2948 	return filp->private_data;
2949 }
2950 
2951 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2952 #ifdef CONFIG_KVM_MPIC
2953 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2954 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2955 #endif
2956 };
2957 
2958 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2959 {
2960 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2961 		return -ENOSPC;
2962 
2963 	if (kvm_device_ops_table[type] != NULL)
2964 		return -EEXIST;
2965 
2966 	kvm_device_ops_table[type] = ops;
2967 	return 0;
2968 }
2969 
2970 void kvm_unregister_device_ops(u32 type)
2971 {
2972 	if (kvm_device_ops_table[type] != NULL)
2973 		kvm_device_ops_table[type] = NULL;
2974 }
2975 
2976 static int kvm_ioctl_create_device(struct kvm *kvm,
2977 				   struct kvm_create_device *cd)
2978 {
2979 	struct kvm_device_ops *ops = NULL;
2980 	struct kvm_device *dev;
2981 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2982 	int type;
2983 	int ret;
2984 
2985 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2986 		return -ENODEV;
2987 
2988 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2989 	ops = kvm_device_ops_table[type];
2990 	if (ops == NULL)
2991 		return -ENODEV;
2992 
2993 	if (test)
2994 		return 0;
2995 
2996 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
2997 	if (!dev)
2998 		return -ENOMEM;
2999 
3000 	dev->ops = ops;
3001 	dev->kvm = kvm;
3002 
3003 	mutex_lock(&kvm->lock);
3004 	ret = ops->create(dev, type);
3005 	if (ret < 0) {
3006 		mutex_unlock(&kvm->lock);
3007 		kfree(dev);
3008 		return ret;
3009 	}
3010 	list_add(&dev->vm_node, &kvm->devices);
3011 	mutex_unlock(&kvm->lock);
3012 
3013 	if (ops->init)
3014 		ops->init(dev);
3015 
3016 	kvm_get_kvm(kvm);
3017 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3018 	if (ret < 0) {
3019 		kvm_put_kvm(kvm);
3020 		mutex_lock(&kvm->lock);
3021 		list_del(&dev->vm_node);
3022 		mutex_unlock(&kvm->lock);
3023 		ops->destroy(dev);
3024 		return ret;
3025 	}
3026 
3027 	cd->fd = ret;
3028 	return 0;
3029 }
3030 
3031 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3032 {
3033 	switch (arg) {
3034 	case KVM_CAP_USER_MEMORY:
3035 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3036 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3037 	case KVM_CAP_INTERNAL_ERROR_DATA:
3038 #ifdef CONFIG_HAVE_KVM_MSI
3039 	case KVM_CAP_SIGNAL_MSI:
3040 #endif
3041 #ifdef CONFIG_HAVE_KVM_IRQFD
3042 	case KVM_CAP_IRQFD:
3043 	case KVM_CAP_IRQFD_RESAMPLE:
3044 #endif
3045 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3046 	case KVM_CAP_CHECK_EXTENSION_VM:
3047 	case KVM_CAP_ENABLE_CAP_VM:
3048 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3049 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3050 #endif
3051 		return 1;
3052 #ifdef CONFIG_KVM_MMIO
3053 	case KVM_CAP_COALESCED_MMIO:
3054 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3055 	case KVM_CAP_COALESCED_PIO:
3056 		return 1;
3057 #endif
3058 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3059 	case KVM_CAP_IRQ_ROUTING:
3060 		return KVM_MAX_IRQ_ROUTES;
3061 #endif
3062 #if KVM_ADDRESS_SPACE_NUM > 1
3063 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3064 		return KVM_ADDRESS_SPACE_NUM;
3065 #endif
3066 	case KVM_CAP_MAX_VCPU_ID:
3067 		return KVM_MAX_VCPU_ID;
3068 	default:
3069 		break;
3070 	}
3071 	return kvm_vm_ioctl_check_extension(kvm, arg);
3072 }
3073 
3074 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3075 						  struct kvm_enable_cap *cap)
3076 {
3077 	return -EINVAL;
3078 }
3079 
3080 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3081 					   struct kvm_enable_cap *cap)
3082 {
3083 	switch (cap->cap) {
3084 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3085 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3086 		if (cap->flags || (cap->args[0] & ~1))
3087 			return -EINVAL;
3088 		kvm->manual_dirty_log_protect = cap->args[0];
3089 		return 0;
3090 #endif
3091 	default:
3092 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3093 	}
3094 }
3095 
3096 static long kvm_vm_ioctl(struct file *filp,
3097 			   unsigned int ioctl, unsigned long arg)
3098 {
3099 	struct kvm *kvm = filp->private_data;
3100 	void __user *argp = (void __user *)arg;
3101 	int r;
3102 
3103 	if (kvm->mm != current->mm)
3104 		return -EIO;
3105 	switch (ioctl) {
3106 	case KVM_CREATE_VCPU:
3107 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3108 		break;
3109 	case KVM_ENABLE_CAP: {
3110 		struct kvm_enable_cap cap;
3111 
3112 		r = -EFAULT;
3113 		if (copy_from_user(&cap, argp, sizeof(cap)))
3114 			goto out;
3115 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3116 		break;
3117 	}
3118 	case KVM_SET_USER_MEMORY_REGION: {
3119 		struct kvm_userspace_memory_region kvm_userspace_mem;
3120 
3121 		r = -EFAULT;
3122 		if (copy_from_user(&kvm_userspace_mem, argp,
3123 						sizeof(kvm_userspace_mem)))
3124 			goto out;
3125 
3126 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3127 		break;
3128 	}
3129 	case KVM_GET_DIRTY_LOG: {
3130 		struct kvm_dirty_log log;
3131 
3132 		r = -EFAULT;
3133 		if (copy_from_user(&log, argp, sizeof(log)))
3134 			goto out;
3135 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3136 		break;
3137 	}
3138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3139 	case KVM_CLEAR_DIRTY_LOG: {
3140 		struct kvm_clear_dirty_log log;
3141 
3142 		r = -EFAULT;
3143 		if (copy_from_user(&log, argp, sizeof(log)))
3144 			goto out;
3145 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3146 		break;
3147 	}
3148 #endif
3149 #ifdef CONFIG_KVM_MMIO
3150 	case KVM_REGISTER_COALESCED_MMIO: {
3151 		struct kvm_coalesced_mmio_zone zone;
3152 
3153 		r = -EFAULT;
3154 		if (copy_from_user(&zone, argp, sizeof(zone)))
3155 			goto out;
3156 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3157 		break;
3158 	}
3159 	case KVM_UNREGISTER_COALESCED_MMIO: {
3160 		struct kvm_coalesced_mmio_zone zone;
3161 
3162 		r = -EFAULT;
3163 		if (copy_from_user(&zone, argp, sizeof(zone)))
3164 			goto out;
3165 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3166 		break;
3167 	}
3168 #endif
3169 	case KVM_IRQFD: {
3170 		struct kvm_irqfd data;
3171 
3172 		r = -EFAULT;
3173 		if (copy_from_user(&data, argp, sizeof(data)))
3174 			goto out;
3175 		r = kvm_irqfd(kvm, &data);
3176 		break;
3177 	}
3178 	case KVM_IOEVENTFD: {
3179 		struct kvm_ioeventfd data;
3180 
3181 		r = -EFAULT;
3182 		if (copy_from_user(&data, argp, sizeof(data)))
3183 			goto out;
3184 		r = kvm_ioeventfd(kvm, &data);
3185 		break;
3186 	}
3187 #ifdef CONFIG_HAVE_KVM_MSI
3188 	case KVM_SIGNAL_MSI: {
3189 		struct kvm_msi msi;
3190 
3191 		r = -EFAULT;
3192 		if (copy_from_user(&msi, argp, sizeof(msi)))
3193 			goto out;
3194 		r = kvm_send_userspace_msi(kvm, &msi);
3195 		break;
3196 	}
3197 #endif
3198 #ifdef __KVM_HAVE_IRQ_LINE
3199 	case KVM_IRQ_LINE_STATUS:
3200 	case KVM_IRQ_LINE: {
3201 		struct kvm_irq_level irq_event;
3202 
3203 		r = -EFAULT;
3204 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3205 			goto out;
3206 
3207 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3208 					ioctl == KVM_IRQ_LINE_STATUS);
3209 		if (r)
3210 			goto out;
3211 
3212 		r = -EFAULT;
3213 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3214 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3215 				goto out;
3216 		}
3217 
3218 		r = 0;
3219 		break;
3220 	}
3221 #endif
3222 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3223 	case KVM_SET_GSI_ROUTING: {
3224 		struct kvm_irq_routing routing;
3225 		struct kvm_irq_routing __user *urouting;
3226 		struct kvm_irq_routing_entry *entries = NULL;
3227 
3228 		r = -EFAULT;
3229 		if (copy_from_user(&routing, argp, sizeof(routing)))
3230 			goto out;
3231 		r = -EINVAL;
3232 		if (!kvm_arch_can_set_irq_routing(kvm))
3233 			goto out;
3234 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3235 			goto out;
3236 		if (routing.flags)
3237 			goto out;
3238 		if (routing.nr) {
3239 			r = -ENOMEM;
3240 			entries = vmalloc(array_size(sizeof(*entries),
3241 						     routing.nr));
3242 			if (!entries)
3243 				goto out;
3244 			r = -EFAULT;
3245 			urouting = argp;
3246 			if (copy_from_user(entries, urouting->entries,
3247 					   routing.nr * sizeof(*entries)))
3248 				goto out_free_irq_routing;
3249 		}
3250 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3251 					routing.flags);
3252 out_free_irq_routing:
3253 		vfree(entries);
3254 		break;
3255 	}
3256 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3257 	case KVM_CREATE_DEVICE: {
3258 		struct kvm_create_device cd;
3259 
3260 		r = -EFAULT;
3261 		if (copy_from_user(&cd, argp, sizeof(cd)))
3262 			goto out;
3263 
3264 		r = kvm_ioctl_create_device(kvm, &cd);
3265 		if (r)
3266 			goto out;
3267 
3268 		r = -EFAULT;
3269 		if (copy_to_user(argp, &cd, sizeof(cd)))
3270 			goto out;
3271 
3272 		r = 0;
3273 		break;
3274 	}
3275 	case KVM_CHECK_EXTENSION:
3276 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3277 		break;
3278 	default:
3279 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3280 	}
3281 out:
3282 	return r;
3283 }
3284 
3285 #ifdef CONFIG_KVM_COMPAT
3286 struct compat_kvm_dirty_log {
3287 	__u32 slot;
3288 	__u32 padding1;
3289 	union {
3290 		compat_uptr_t dirty_bitmap; /* one bit per page */
3291 		__u64 padding2;
3292 	};
3293 };
3294 
3295 static long kvm_vm_compat_ioctl(struct file *filp,
3296 			   unsigned int ioctl, unsigned long arg)
3297 {
3298 	struct kvm *kvm = filp->private_data;
3299 	int r;
3300 
3301 	if (kvm->mm != current->mm)
3302 		return -EIO;
3303 	switch (ioctl) {
3304 	case KVM_GET_DIRTY_LOG: {
3305 		struct compat_kvm_dirty_log compat_log;
3306 		struct kvm_dirty_log log;
3307 
3308 		if (copy_from_user(&compat_log, (void __user *)arg,
3309 				   sizeof(compat_log)))
3310 			return -EFAULT;
3311 		log.slot	 = compat_log.slot;
3312 		log.padding1	 = compat_log.padding1;
3313 		log.padding2	 = compat_log.padding2;
3314 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3315 
3316 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3317 		break;
3318 	}
3319 	default:
3320 		r = kvm_vm_ioctl(filp, ioctl, arg);
3321 	}
3322 	return r;
3323 }
3324 #endif
3325 
3326 static struct file_operations kvm_vm_fops = {
3327 	.release        = kvm_vm_release,
3328 	.unlocked_ioctl = kvm_vm_ioctl,
3329 	.llseek		= noop_llseek,
3330 	KVM_COMPAT(kvm_vm_compat_ioctl),
3331 };
3332 
3333 static int kvm_dev_ioctl_create_vm(unsigned long type)
3334 {
3335 	int r;
3336 	struct kvm *kvm;
3337 	struct file *file;
3338 
3339 	kvm = kvm_create_vm(type);
3340 	if (IS_ERR(kvm))
3341 		return PTR_ERR(kvm);
3342 #ifdef CONFIG_KVM_MMIO
3343 	r = kvm_coalesced_mmio_init(kvm);
3344 	if (r < 0)
3345 		goto put_kvm;
3346 #endif
3347 	r = get_unused_fd_flags(O_CLOEXEC);
3348 	if (r < 0)
3349 		goto put_kvm;
3350 
3351 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3352 	if (IS_ERR(file)) {
3353 		put_unused_fd(r);
3354 		r = PTR_ERR(file);
3355 		goto put_kvm;
3356 	}
3357 
3358 	/*
3359 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3360 	 * already set, with ->release() being kvm_vm_release().  In error
3361 	 * cases it will be called by the final fput(file) and will take
3362 	 * care of doing kvm_put_kvm(kvm).
3363 	 */
3364 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3365 		put_unused_fd(r);
3366 		fput(file);
3367 		return -ENOMEM;
3368 	}
3369 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3370 
3371 	fd_install(r, file);
3372 	return r;
3373 
3374 put_kvm:
3375 	kvm_put_kvm(kvm);
3376 	return r;
3377 }
3378 
3379 static long kvm_dev_ioctl(struct file *filp,
3380 			  unsigned int ioctl, unsigned long arg)
3381 {
3382 	long r = -EINVAL;
3383 
3384 	switch (ioctl) {
3385 	case KVM_GET_API_VERSION:
3386 		if (arg)
3387 			goto out;
3388 		r = KVM_API_VERSION;
3389 		break;
3390 	case KVM_CREATE_VM:
3391 		r = kvm_dev_ioctl_create_vm(arg);
3392 		break;
3393 	case KVM_CHECK_EXTENSION:
3394 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3395 		break;
3396 	case KVM_GET_VCPU_MMAP_SIZE:
3397 		if (arg)
3398 			goto out;
3399 		r = PAGE_SIZE;     /* struct kvm_run */
3400 #ifdef CONFIG_X86
3401 		r += PAGE_SIZE;    /* pio data page */
3402 #endif
3403 #ifdef CONFIG_KVM_MMIO
3404 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3405 #endif
3406 		break;
3407 	case KVM_TRACE_ENABLE:
3408 	case KVM_TRACE_PAUSE:
3409 	case KVM_TRACE_DISABLE:
3410 		r = -EOPNOTSUPP;
3411 		break;
3412 	default:
3413 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3414 	}
3415 out:
3416 	return r;
3417 }
3418 
3419 static struct file_operations kvm_chardev_ops = {
3420 	.unlocked_ioctl = kvm_dev_ioctl,
3421 	.llseek		= noop_llseek,
3422 	KVM_COMPAT(kvm_dev_ioctl),
3423 };
3424 
3425 static struct miscdevice kvm_dev = {
3426 	KVM_MINOR,
3427 	"kvm",
3428 	&kvm_chardev_ops,
3429 };
3430 
3431 static void hardware_enable_nolock(void *junk)
3432 {
3433 	int cpu = raw_smp_processor_id();
3434 	int r;
3435 
3436 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3437 		return;
3438 
3439 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3440 
3441 	r = kvm_arch_hardware_enable();
3442 
3443 	if (r) {
3444 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3445 		atomic_inc(&hardware_enable_failed);
3446 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3447 	}
3448 }
3449 
3450 static int kvm_starting_cpu(unsigned int cpu)
3451 {
3452 	raw_spin_lock(&kvm_count_lock);
3453 	if (kvm_usage_count)
3454 		hardware_enable_nolock(NULL);
3455 	raw_spin_unlock(&kvm_count_lock);
3456 	return 0;
3457 }
3458 
3459 static void hardware_disable_nolock(void *junk)
3460 {
3461 	int cpu = raw_smp_processor_id();
3462 
3463 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3464 		return;
3465 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3466 	kvm_arch_hardware_disable();
3467 }
3468 
3469 static int kvm_dying_cpu(unsigned int cpu)
3470 {
3471 	raw_spin_lock(&kvm_count_lock);
3472 	if (kvm_usage_count)
3473 		hardware_disable_nolock(NULL);
3474 	raw_spin_unlock(&kvm_count_lock);
3475 	return 0;
3476 }
3477 
3478 static void hardware_disable_all_nolock(void)
3479 {
3480 	BUG_ON(!kvm_usage_count);
3481 
3482 	kvm_usage_count--;
3483 	if (!kvm_usage_count)
3484 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3485 }
3486 
3487 static void hardware_disable_all(void)
3488 {
3489 	raw_spin_lock(&kvm_count_lock);
3490 	hardware_disable_all_nolock();
3491 	raw_spin_unlock(&kvm_count_lock);
3492 }
3493 
3494 static int hardware_enable_all(void)
3495 {
3496 	int r = 0;
3497 
3498 	raw_spin_lock(&kvm_count_lock);
3499 
3500 	kvm_usage_count++;
3501 	if (kvm_usage_count == 1) {
3502 		atomic_set(&hardware_enable_failed, 0);
3503 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3504 
3505 		if (atomic_read(&hardware_enable_failed)) {
3506 			hardware_disable_all_nolock();
3507 			r = -EBUSY;
3508 		}
3509 	}
3510 
3511 	raw_spin_unlock(&kvm_count_lock);
3512 
3513 	return r;
3514 }
3515 
3516 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3517 		      void *v)
3518 {
3519 	/*
3520 	 * Some (well, at least mine) BIOSes hang on reboot if
3521 	 * in vmx root mode.
3522 	 *
3523 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3524 	 */
3525 	pr_info("kvm: exiting hardware virtualization\n");
3526 	kvm_rebooting = true;
3527 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3528 	return NOTIFY_OK;
3529 }
3530 
3531 static struct notifier_block kvm_reboot_notifier = {
3532 	.notifier_call = kvm_reboot,
3533 	.priority = 0,
3534 };
3535 
3536 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3537 {
3538 	int i;
3539 
3540 	for (i = 0; i < bus->dev_count; i++) {
3541 		struct kvm_io_device *pos = bus->range[i].dev;
3542 
3543 		kvm_iodevice_destructor(pos);
3544 	}
3545 	kfree(bus);
3546 }
3547 
3548 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3549 				 const struct kvm_io_range *r2)
3550 {
3551 	gpa_t addr1 = r1->addr;
3552 	gpa_t addr2 = r2->addr;
3553 
3554 	if (addr1 < addr2)
3555 		return -1;
3556 
3557 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3558 	 * accept any overlapping write.  Any order is acceptable for
3559 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3560 	 * we process all of them.
3561 	 */
3562 	if (r2->len) {
3563 		addr1 += r1->len;
3564 		addr2 += r2->len;
3565 	}
3566 
3567 	if (addr1 > addr2)
3568 		return 1;
3569 
3570 	return 0;
3571 }
3572 
3573 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3574 {
3575 	return kvm_io_bus_cmp(p1, p2);
3576 }
3577 
3578 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3579 			     gpa_t addr, int len)
3580 {
3581 	struct kvm_io_range *range, key;
3582 	int off;
3583 
3584 	key = (struct kvm_io_range) {
3585 		.addr = addr,
3586 		.len = len,
3587 	};
3588 
3589 	range = bsearch(&key, bus->range, bus->dev_count,
3590 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3591 	if (range == NULL)
3592 		return -ENOENT;
3593 
3594 	off = range - bus->range;
3595 
3596 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3597 		off--;
3598 
3599 	return off;
3600 }
3601 
3602 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3603 			      struct kvm_io_range *range, const void *val)
3604 {
3605 	int idx;
3606 
3607 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3608 	if (idx < 0)
3609 		return -EOPNOTSUPP;
3610 
3611 	while (idx < bus->dev_count &&
3612 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3613 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3614 					range->len, val))
3615 			return idx;
3616 		idx++;
3617 	}
3618 
3619 	return -EOPNOTSUPP;
3620 }
3621 
3622 /* kvm_io_bus_write - called under kvm->slots_lock */
3623 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3624 		     int len, const void *val)
3625 {
3626 	struct kvm_io_bus *bus;
3627 	struct kvm_io_range range;
3628 	int r;
3629 
3630 	range = (struct kvm_io_range) {
3631 		.addr = addr,
3632 		.len = len,
3633 	};
3634 
3635 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3636 	if (!bus)
3637 		return -ENOMEM;
3638 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3639 	return r < 0 ? r : 0;
3640 }
3641 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3642 
3643 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3644 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3645 			    gpa_t addr, int len, const void *val, long cookie)
3646 {
3647 	struct kvm_io_bus *bus;
3648 	struct kvm_io_range range;
3649 
3650 	range = (struct kvm_io_range) {
3651 		.addr = addr,
3652 		.len = len,
3653 	};
3654 
3655 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3656 	if (!bus)
3657 		return -ENOMEM;
3658 
3659 	/* First try the device referenced by cookie. */
3660 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3661 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3662 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3663 					val))
3664 			return cookie;
3665 
3666 	/*
3667 	 * cookie contained garbage; fall back to search and return the
3668 	 * correct cookie value.
3669 	 */
3670 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3671 }
3672 
3673 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3674 			     struct kvm_io_range *range, void *val)
3675 {
3676 	int idx;
3677 
3678 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3679 	if (idx < 0)
3680 		return -EOPNOTSUPP;
3681 
3682 	while (idx < bus->dev_count &&
3683 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3684 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3685 				       range->len, val))
3686 			return idx;
3687 		idx++;
3688 	}
3689 
3690 	return -EOPNOTSUPP;
3691 }
3692 
3693 /* kvm_io_bus_read - called under kvm->slots_lock */
3694 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3695 		    int len, void *val)
3696 {
3697 	struct kvm_io_bus *bus;
3698 	struct kvm_io_range range;
3699 	int r;
3700 
3701 	range = (struct kvm_io_range) {
3702 		.addr = addr,
3703 		.len = len,
3704 	};
3705 
3706 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3707 	if (!bus)
3708 		return -ENOMEM;
3709 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3710 	return r < 0 ? r : 0;
3711 }
3712 
3713 /* Caller must hold slots_lock. */
3714 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3715 			    int len, struct kvm_io_device *dev)
3716 {
3717 	int i;
3718 	struct kvm_io_bus *new_bus, *bus;
3719 	struct kvm_io_range range;
3720 
3721 	bus = kvm_get_bus(kvm, bus_idx);
3722 	if (!bus)
3723 		return -ENOMEM;
3724 
3725 	/* exclude ioeventfd which is limited by maximum fd */
3726 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3727 		return -ENOSPC;
3728 
3729 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3730 			  GFP_KERNEL_ACCOUNT);
3731 	if (!new_bus)
3732 		return -ENOMEM;
3733 
3734 	range = (struct kvm_io_range) {
3735 		.addr = addr,
3736 		.len = len,
3737 		.dev = dev,
3738 	};
3739 
3740 	for (i = 0; i < bus->dev_count; i++)
3741 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3742 			break;
3743 
3744 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3745 	new_bus->dev_count++;
3746 	new_bus->range[i] = range;
3747 	memcpy(new_bus->range + i + 1, bus->range + i,
3748 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3749 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3750 	synchronize_srcu_expedited(&kvm->srcu);
3751 	kfree(bus);
3752 
3753 	return 0;
3754 }
3755 
3756 /* Caller must hold slots_lock. */
3757 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3758 			       struct kvm_io_device *dev)
3759 {
3760 	int i;
3761 	struct kvm_io_bus *new_bus, *bus;
3762 
3763 	bus = kvm_get_bus(kvm, bus_idx);
3764 	if (!bus)
3765 		return;
3766 
3767 	for (i = 0; i < bus->dev_count; i++)
3768 		if (bus->range[i].dev == dev) {
3769 			break;
3770 		}
3771 
3772 	if (i == bus->dev_count)
3773 		return;
3774 
3775 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3776 			  GFP_KERNEL_ACCOUNT);
3777 	if (!new_bus)  {
3778 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3779 		goto broken;
3780 	}
3781 
3782 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3783 	new_bus->dev_count--;
3784 	memcpy(new_bus->range + i, bus->range + i + 1,
3785 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3786 
3787 broken:
3788 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3789 	synchronize_srcu_expedited(&kvm->srcu);
3790 	kfree(bus);
3791 	return;
3792 }
3793 
3794 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3795 					 gpa_t addr)
3796 {
3797 	struct kvm_io_bus *bus;
3798 	int dev_idx, srcu_idx;
3799 	struct kvm_io_device *iodev = NULL;
3800 
3801 	srcu_idx = srcu_read_lock(&kvm->srcu);
3802 
3803 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3804 	if (!bus)
3805 		goto out_unlock;
3806 
3807 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3808 	if (dev_idx < 0)
3809 		goto out_unlock;
3810 
3811 	iodev = bus->range[dev_idx].dev;
3812 
3813 out_unlock:
3814 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3815 
3816 	return iodev;
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3819 
3820 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3821 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3822 			   const char *fmt)
3823 {
3824 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3825 					  inode->i_private;
3826 
3827 	/* The debugfs files are a reference to the kvm struct which
3828 	 * is still valid when kvm_destroy_vm is called.
3829 	 * To avoid the race between open and the removal of the debugfs
3830 	 * directory we test against the users count.
3831 	 */
3832 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3833 		return -ENOENT;
3834 
3835 	if (simple_attr_open(inode, file, get, set, fmt)) {
3836 		kvm_put_kvm(stat_data->kvm);
3837 		return -ENOMEM;
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3844 {
3845 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3846 					  inode->i_private;
3847 
3848 	simple_attr_release(inode, file);
3849 	kvm_put_kvm(stat_data->kvm);
3850 
3851 	return 0;
3852 }
3853 
3854 static int vm_stat_get_per_vm(void *data, u64 *val)
3855 {
3856 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3857 
3858 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3859 
3860 	return 0;
3861 }
3862 
3863 static int vm_stat_clear_per_vm(void *data, u64 val)
3864 {
3865 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3866 
3867 	if (val)
3868 		return -EINVAL;
3869 
3870 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3871 
3872 	return 0;
3873 }
3874 
3875 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3876 {
3877 	__simple_attr_check_format("%llu\n", 0ull);
3878 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3879 				vm_stat_clear_per_vm, "%llu\n");
3880 }
3881 
3882 static const struct file_operations vm_stat_get_per_vm_fops = {
3883 	.owner   = THIS_MODULE,
3884 	.open    = vm_stat_get_per_vm_open,
3885 	.release = kvm_debugfs_release,
3886 	.read    = simple_attr_read,
3887 	.write   = simple_attr_write,
3888 	.llseek  = no_llseek,
3889 };
3890 
3891 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3892 {
3893 	int i;
3894 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3895 	struct kvm_vcpu *vcpu;
3896 
3897 	*val = 0;
3898 
3899 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3900 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3901 
3902 	return 0;
3903 }
3904 
3905 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3906 {
3907 	int i;
3908 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3909 	struct kvm_vcpu *vcpu;
3910 
3911 	if (val)
3912 		return -EINVAL;
3913 
3914 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3915 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3916 
3917 	return 0;
3918 }
3919 
3920 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3921 {
3922 	__simple_attr_check_format("%llu\n", 0ull);
3923 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3924 				 vcpu_stat_clear_per_vm, "%llu\n");
3925 }
3926 
3927 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3928 	.owner   = THIS_MODULE,
3929 	.open    = vcpu_stat_get_per_vm_open,
3930 	.release = kvm_debugfs_release,
3931 	.read    = simple_attr_read,
3932 	.write   = simple_attr_write,
3933 	.llseek  = no_llseek,
3934 };
3935 
3936 static const struct file_operations *stat_fops_per_vm[] = {
3937 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3938 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3939 };
3940 
3941 static int vm_stat_get(void *_offset, u64 *val)
3942 {
3943 	unsigned offset = (long)_offset;
3944 	struct kvm *kvm;
3945 	struct kvm_stat_data stat_tmp = {.offset = offset};
3946 	u64 tmp_val;
3947 
3948 	*val = 0;
3949 	spin_lock(&kvm_lock);
3950 	list_for_each_entry(kvm, &vm_list, vm_list) {
3951 		stat_tmp.kvm = kvm;
3952 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3953 		*val += tmp_val;
3954 	}
3955 	spin_unlock(&kvm_lock);
3956 	return 0;
3957 }
3958 
3959 static int vm_stat_clear(void *_offset, u64 val)
3960 {
3961 	unsigned offset = (long)_offset;
3962 	struct kvm *kvm;
3963 	struct kvm_stat_data stat_tmp = {.offset = offset};
3964 
3965 	if (val)
3966 		return -EINVAL;
3967 
3968 	spin_lock(&kvm_lock);
3969 	list_for_each_entry(kvm, &vm_list, vm_list) {
3970 		stat_tmp.kvm = kvm;
3971 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3972 	}
3973 	spin_unlock(&kvm_lock);
3974 
3975 	return 0;
3976 }
3977 
3978 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3979 
3980 static int vcpu_stat_get(void *_offset, u64 *val)
3981 {
3982 	unsigned offset = (long)_offset;
3983 	struct kvm *kvm;
3984 	struct kvm_stat_data stat_tmp = {.offset = offset};
3985 	u64 tmp_val;
3986 
3987 	*val = 0;
3988 	spin_lock(&kvm_lock);
3989 	list_for_each_entry(kvm, &vm_list, vm_list) {
3990 		stat_tmp.kvm = kvm;
3991 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3992 		*val += tmp_val;
3993 	}
3994 	spin_unlock(&kvm_lock);
3995 	return 0;
3996 }
3997 
3998 static int vcpu_stat_clear(void *_offset, u64 val)
3999 {
4000 	unsigned offset = (long)_offset;
4001 	struct kvm *kvm;
4002 	struct kvm_stat_data stat_tmp = {.offset = offset};
4003 
4004 	if (val)
4005 		return -EINVAL;
4006 
4007 	spin_lock(&kvm_lock);
4008 	list_for_each_entry(kvm, &vm_list, vm_list) {
4009 		stat_tmp.kvm = kvm;
4010 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4011 	}
4012 	spin_unlock(&kvm_lock);
4013 
4014 	return 0;
4015 }
4016 
4017 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4018 			"%llu\n");
4019 
4020 static const struct file_operations *stat_fops[] = {
4021 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4022 	[KVM_STAT_VM]   = &vm_stat_fops,
4023 };
4024 
4025 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4026 {
4027 	struct kobj_uevent_env *env;
4028 	unsigned long long created, active;
4029 
4030 	if (!kvm_dev.this_device || !kvm)
4031 		return;
4032 
4033 	spin_lock(&kvm_lock);
4034 	if (type == KVM_EVENT_CREATE_VM) {
4035 		kvm_createvm_count++;
4036 		kvm_active_vms++;
4037 	} else if (type == KVM_EVENT_DESTROY_VM) {
4038 		kvm_active_vms--;
4039 	}
4040 	created = kvm_createvm_count;
4041 	active = kvm_active_vms;
4042 	spin_unlock(&kvm_lock);
4043 
4044 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4045 	if (!env)
4046 		return;
4047 
4048 	add_uevent_var(env, "CREATED=%llu", created);
4049 	add_uevent_var(env, "COUNT=%llu", active);
4050 
4051 	if (type == KVM_EVENT_CREATE_VM) {
4052 		add_uevent_var(env, "EVENT=create");
4053 		kvm->userspace_pid = task_pid_nr(current);
4054 	} else if (type == KVM_EVENT_DESTROY_VM) {
4055 		add_uevent_var(env, "EVENT=destroy");
4056 	}
4057 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4058 
4059 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4060 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4061 
4062 		if (p) {
4063 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4064 			if (!IS_ERR(tmp))
4065 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4066 			kfree(p);
4067 		}
4068 	}
4069 	/* no need for checks, since we are adding at most only 5 keys */
4070 	env->envp[env->envp_idx++] = NULL;
4071 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4072 	kfree(env);
4073 }
4074 
4075 static void kvm_init_debug(void)
4076 {
4077 	struct kvm_stats_debugfs_item *p;
4078 
4079 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4080 
4081 	kvm_debugfs_num_entries = 0;
4082 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4083 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4084 				    (void *)(long)p->offset,
4085 				    stat_fops[p->kind]);
4086 	}
4087 }
4088 
4089 static int kvm_suspend(void)
4090 {
4091 	if (kvm_usage_count)
4092 		hardware_disable_nolock(NULL);
4093 	return 0;
4094 }
4095 
4096 static void kvm_resume(void)
4097 {
4098 	if (kvm_usage_count) {
4099 		lockdep_assert_held(&kvm_count_lock);
4100 		hardware_enable_nolock(NULL);
4101 	}
4102 }
4103 
4104 static struct syscore_ops kvm_syscore_ops = {
4105 	.suspend = kvm_suspend,
4106 	.resume = kvm_resume,
4107 };
4108 
4109 static inline
4110 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4111 {
4112 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4113 }
4114 
4115 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4116 {
4117 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4118 
4119 	if (vcpu->preempted)
4120 		vcpu->preempted = false;
4121 
4122 	kvm_arch_sched_in(vcpu, cpu);
4123 
4124 	kvm_arch_vcpu_load(vcpu, cpu);
4125 }
4126 
4127 static void kvm_sched_out(struct preempt_notifier *pn,
4128 			  struct task_struct *next)
4129 {
4130 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4131 
4132 	if (current->state == TASK_RUNNING)
4133 		vcpu->preempted = true;
4134 	kvm_arch_vcpu_put(vcpu);
4135 }
4136 
4137 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4138 		  struct module *module)
4139 {
4140 	int r;
4141 	int cpu;
4142 
4143 	r = kvm_arch_init(opaque);
4144 	if (r)
4145 		goto out_fail;
4146 
4147 	/*
4148 	 * kvm_arch_init makes sure there's at most one caller
4149 	 * for architectures that support multiple implementations,
4150 	 * like intel and amd on x86.
4151 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4152 	 * conflicts in case kvm is already setup for another implementation.
4153 	 */
4154 	r = kvm_irqfd_init();
4155 	if (r)
4156 		goto out_irqfd;
4157 
4158 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4159 		r = -ENOMEM;
4160 		goto out_free_0;
4161 	}
4162 
4163 	r = kvm_arch_hardware_setup();
4164 	if (r < 0)
4165 		goto out_free_0a;
4166 
4167 	for_each_online_cpu(cpu) {
4168 		smp_call_function_single(cpu,
4169 				kvm_arch_check_processor_compat,
4170 				&r, 1);
4171 		if (r < 0)
4172 			goto out_free_1;
4173 	}
4174 
4175 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4176 				      kvm_starting_cpu, kvm_dying_cpu);
4177 	if (r)
4178 		goto out_free_2;
4179 	register_reboot_notifier(&kvm_reboot_notifier);
4180 
4181 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4182 	if (!vcpu_align)
4183 		vcpu_align = __alignof__(struct kvm_vcpu);
4184 	kvm_vcpu_cache =
4185 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4186 					   SLAB_ACCOUNT,
4187 					   offsetof(struct kvm_vcpu, arch),
4188 					   sizeof_field(struct kvm_vcpu, arch),
4189 					   NULL);
4190 	if (!kvm_vcpu_cache) {
4191 		r = -ENOMEM;
4192 		goto out_free_3;
4193 	}
4194 
4195 	r = kvm_async_pf_init();
4196 	if (r)
4197 		goto out_free;
4198 
4199 	kvm_chardev_ops.owner = module;
4200 	kvm_vm_fops.owner = module;
4201 	kvm_vcpu_fops.owner = module;
4202 
4203 	r = misc_register(&kvm_dev);
4204 	if (r) {
4205 		pr_err("kvm: misc device register failed\n");
4206 		goto out_unreg;
4207 	}
4208 
4209 	register_syscore_ops(&kvm_syscore_ops);
4210 
4211 	kvm_preempt_ops.sched_in = kvm_sched_in;
4212 	kvm_preempt_ops.sched_out = kvm_sched_out;
4213 
4214 	kvm_init_debug();
4215 
4216 	r = kvm_vfio_ops_init();
4217 	WARN_ON(r);
4218 
4219 	return 0;
4220 
4221 out_unreg:
4222 	kvm_async_pf_deinit();
4223 out_free:
4224 	kmem_cache_destroy(kvm_vcpu_cache);
4225 out_free_3:
4226 	unregister_reboot_notifier(&kvm_reboot_notifier);
4227 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4228 out_free_2:
4229 out_free_1:
4230 	kvm_arch_hardware_unsetup();
4231 out_free_0a:
4232 	free_cpumask_var(cpus_hardware_enabled);
4233 out_free_0:
4234 	kvm_irqfd_exit();
4235 out_irqfd:
4236 	kvm_arch_exit();
4237 out_fail:
4238 	return r;
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_init);
4241 
4242 void kvm_exit(void)
4243 {
4244 	debugfs_remove_recursive(kvm_debugfs_dir);
4245 	misc_deregister(&kvm_dev);
4246 	kmem_cache_destroy(kvm_vcpu_cache);
4247 	kvm_async_pf_deinit();
4248 	unregister_syscore_ops(&kvm_syscore_ops);
4249 	unregister_reboot_notifier(&kvm_reboot_notifier);
4250 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4251 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4252 	kvm_arch_hardware_unsetup();
4253 	kvm_arch_exit();
4254 	kvm_irqfd_exit();
4255 	free_cpumask_var(cpus_hardware_enabled);
4256 	kvm_vfio_ops_exit();
4257 }
4258 EXPORT_SYMBOL_GPL(kvm_exit);
4259