1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* The start value to grow halt_poll_ns from */ 85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 86 module_param(halt_poll_ns_grow_start, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 88 89 /* Default resets per-vcpu halt_poll_ns . */ 90 unsigned int halt_poll_ns_shrink; 91 module_param(halt_poll_ns_shrink, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 93 94 /* 95 * Ordering of locks: 96 * 97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 98 */ 99 100 DEFINE_SPINLOCK(kvm_lock); 101 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 102 LIST_HEAD(vm_list); 103 104 static cpumask_var_t cpus_hardware_enabled; 105 static int kvm_usage_count; 106 static atomic_t hardware_enable_failed; 107 108 struct kmem_cache *kvm_vcpu_cache; 109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 110 111 static __read_mostly struct preempt_ops kvm_preempt_ops; 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static int kvm_debugfs_num_entries; 117 static const struct file_operations *stat_fops_per_vm[]; 118 119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 120 unsigned long arg); 121 #ifdef CONFIG_KVM_COMPAT 122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #define KVM_COMPAT(c) .compat_ioctl = (c) 125 #else 126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg) { return -EINVAL; } 128 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 129 #endif 130 static int hardware_enable_all(void); 131 static void hardware_disable_all(void); 132 133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 134 135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 136 137 __visible bool kvm_rebooting; 138 EXPORT_SYMBOL_GPL(kvm_rebooting); 139 140 static bool largepages_enabled = true; 141 142 #define KVM_EVENT_CREATE_VM 0 143 #define KVM_EVENT_DESTROY_VM 1 144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 145 static unsigned long long kvm_createvm_count; 146 static unsigned long long kvm_active_vms; 147 148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 149 unsigned long start, unsigned long end, bool blockable) 150 { 151 return 0; 152 } 153 154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 155 { 156 if (pfn_valid(pfn)) 157 return PageReserved(pfn_to_page(pfn)); 158 159 return true; 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 preempt_notifier_register(&vcpu->preempt_notifier); 169 kvm_arch_vcpu_load(vcpu, cpu); 170 put_cpu(); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_load); 173 174 void vcpu_put(struct kvm_vcpu *vcpu) 175 { 176 preempt_disable(); 177 kvm_arch_vcpu_put(vcpu); 178 preempt_notifier_unregister(&vcpu->preempt_notifier); 179 preempt_enable(); 180 } 181 EXPORT_SYMBOL_GPL(vcpu_put); 182 183 /* TODO: merge with kvm_arch_vcpu_should_kick */ 184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 185 { 186 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 187 188 /* 189 * We need to wait for the VCPU to reenable interrupts and get out of 190 * READING_SHADOW_PAGE_TABLES mode. 191 */ 192 if (req & KVM_REQUEST_WAIT) 193 return mode != OUTSIDE_GUEST_MODE; 194 195 /* 196 * Need to kick a running VCPU, but otherwise there is nothing to do. 197 */ 198 return mode == IN_GUEST_MODE; 199 } 200 201 static void ack_flush(void *_completed) 202 { 203 } 204 205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 206 { 207 if (unlikely(!cpus)) 208 cpus = cpu_online_mask; 209 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_flush, NULL, wait); 214 return true; 215 } 216 217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 218 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 219 { 220 int i, cpu, me; 221 struct kvm_vcpu *vcpu; 222 bool called; 223 224 me = get_cpu(); 225 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 228 continue; 229 230 kvm_make_request(req, vcpu); 231 cpu = vcpu->cpu; 232 233 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 234 continue; 235 236 if (tmp != NULL && cpu != -1 && cpu != me && 237 kvm_request_needs_ipi(vcpu, req)) 238 __cpumask_set_cpu(cpu, tmp); 239 } 240 241 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 242 put_cpu(); 243 244 return called; 245 } 246 247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 248 { 249 cpumask_var_t cpus; 250 bool called; 251 252 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 253 254 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 255 256 free_cpumask_var(cpus); 257 return called; 258 } 259 260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 261 void kvm_flush_remote_tlbs(struct kvm *kvm) 262 { 263 /* 264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 265 * kvm_make_all_cpus_request. 266 */ 267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 268 269 /* 270 * We want to publish modifications to the page tables before reading 271 * mode. Pairs with a memory barrier in arch-specific code. 272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 273 * and smp_mb in walk_shadow_page_lockless_begin/end. 274 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 275 * 276 * There is already an smp_mb__after_atomic() before 277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 278 * barrier here. 279 */ 280 if (!kvm_arch_flush_remote_tlb(kvm) 281 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 282 ++kvm->stat.remote_tlb_flush; 283 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 284 } 285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 286 #endif 287 288 void kvm_reload_remote_mmus(struct kvm *kvm) 289 { 290 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 291 } 292 293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 294 { 295 struct page *page; 296 int r; 297 298 mutex_init(&vcpu->mutex); 299 vcpu->cpu = -1; 300 vcpu->kvm = kvm; 301 vcpu->vcpu_id = id; 302 vcpu->pid = NULL; 303 init_swait_queue_head(&vcpu->wq); 304 kvm_async_pf_vcpu_init(vcpu); 305 306 vcpu->pre_pcpu = -1; 307 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 308 309 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 310 if (!page) { 311 r = -ENOMEM; 312 goto fail; 313 } 314 vcpu->run = page_address(page); 315 316 kvm_vcpu_set_in_spin_loop(vcpu, false); 317 kvm_vcpu_set_dy_eligible(vcpu, false); 318 vcpu->preempted = false; 319 320 r = kvm_arch_vcpu_init(vcpu); 321 if (r < 0) 322 goto fail_free_run; 323 return 0; 324 325 fail_free_run: 326 free_page((unsigned long)vcpu->run); 327 fail: 328 return r; 329 } 330 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 331 332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 333 { 334 /* 335 * no need for rcu_read_lock as VCPU_RUN is the only place that 336 * will change the vcpu->pid pointer and on uninit all file 337 * descriptors are already gone. 338 */ 339 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 340 kvm_arch_vcpu_uninit(vcpu); 341 free_page((unsigned long)vcpu->run); 342 } 343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 344 345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 347 { 348 return container_of(mn, struct kvm, mmu_notifier); 349 } 350 351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 352 struct mm_struct *mm, 353 unsigned long address, 354 pte_t pte) 355 { 356 struct kvm *kvm = mmu_notifier_to_kvm(mn); 357 int idx; 358 359 idx = srcu_read_lock(&kvm->srcu); 360 spin_lock(&kvm->mmu_lock); 361 kvm->mmu_notifier_seq++; 362 363 if (kvm_set_spte_hva(kvm, address, pte)) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 371 const struct mmu_notifier_range *range) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 int need_tlb_flush = 0, idx; 375 int ret; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 /* 380 * The count increase must become visible at unlock time as no 381 * spte can be established without taking the mmu_lock and 382 * count is also read inside the mmu_lock critical section. 383 */ 384 kvm->mmu_notifier_count++; 385 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 386 need_tlb_flush |= kvm->tlbs_dirty; 387 /* we've to flush the tlb before the pages can be freed */ 388 if (need_tlb_flush) 389 kvm_flush_remote_tlbs(kvm); 390 391 spin_unlock(&kvm->mmu_lock); 392 393 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 394 range->end, 395 mmu_notifier_range_blockable(range)); 396 397 srcu_read_unlock(&kvm->srcu, idx); 398 399 return ret; 400 } 401 402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 403 const struct mmu_notifier_range *range) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 407 spin_lock(&kvm->mmu_lock); 408 /* 409 * This sequence increase will notify the kvm page fault that 410 * the page that is going to be mapped in the spte could have 411 * been freed. 412 */ 413 kvm->mmu_notifier_seq++; 414 smp_wmb(); 415 /* 416 * The above sequence increase must be visible before the 417 * below count decrease, which is ensured by the smp_wmb above 418 * in conjunction with the smp_rmb in mmu_notifier_retry(). 419 */ 420 kvm->mmu_notifier_count--; 421 spin_unlock(&kvm->mmu_lock); 422 423 BUG_ON(kvm->mmu_notifier_count < 0); 424 } 425 426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 427 struct mm_struct *mm, 428 unsigned long start, 429 unsigned long end) 430 { 431 struct kvm *kvm = mmu_notifier_to_kvm(mn); 432 int young, idx; 433 434 idx = srcu_read_lock(&kvm->srcu); 435 spin_lock(&kvm->mmu_lock); 436 437 young = kvm_age_hva(kvm, start, end); 438 if (young) 439 kvm_flush_remote_tlbs(kvm); 440 441 spin_unlock(&kvm->mmu_lock); 442 srcu_read_unlock(&kvm->srcu, idx); 443 444 return young; 445 } 446 447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 448 struct mm_struct *mm, 449 unsigned long start, 450 unsigned long end) 451 { 452 struct kvm *kvm = mmu_notifier_to_kvm(mn); 453 int young, idx; 454 455 idx = srcu_read_lock(&kvm->srcu); 456 spin_lock(&kvm->mmu_lock); 457 /* 458 * Even though we do not flush TLB, this will still adversely 459 * affect performance on pre-Haswell Intel EPT, where there is 460 * no EPT Access Bit to clear so that we have to tear down EPT 461 * tables instead. If we find this unacceptable, we can always 462 * add a parameter to kvm_age_hva so that it effectively doesn't 463 * do anything on clear_young. 464 * 465 * Also note that currently we never issue secondary TLB flushes 466 * from clear_young, leaving this job up to the regular system 467 * cadence. If we find this inaccurate, we might come up with a 468 * more sophisticated heuristic later. 469 */ 470 young = kvm_age_hva(kvm, start, end); 471 spin_unlock(&kvm->mmu_lock); 472 srcu_read_unlock(&kvm->srcu, idx); 473 474 return young; 475 } 476 477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 478 struct mm_struct *mm, 479 unsigned long address) 480 { 481 struct kvm *kvm = mmu_notifier_to_kvm(mn); 482 int young, idx; 483 484 idx = srcu_read_lock(&kvm->srcu); 485 spin_lock(&kvm->mmu_lock); 486 young = kvm_test_age_hva(kvm, address); 487 spin_unlock(&kvm->mmu_lock); 488 srcu_read_unlock(&kvm->srcu, idx); 489 490 return young; 491 } 492 493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 494 struct mm_struct *mm) 495 { 496 struct kvm *kvm = mmu_notifier_to_kvm(mn); 497 int idx; 498 499 idx = srcu_read_lock(&kvm->srcu); 500 kvm_arch_flush_shadow_all(kvm); 501 srcu_read_unlock(&kvm->srcu, idx); 502 } 503 504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 505 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 506 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 507 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 508 .clear_young = kvm_mmu_notifier_clear_young, 509 .test_young = kvm_mmu_notifier_test_young, 510 .change_pte = kvm_mmu_notifier_change_pte, 511 .release = kvm_mmu_notifier_release, 512 }; 513 514 static int kvm_init_mmu_notifier(struct kvm *kvm) 515 { 516 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 517 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 518 } 519 520 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 521 522 static int kvm_init_mmu_notifier(struct kvm *kvm) 523 { 524 return 0; 525 } 526 527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 528 529 static struct kvm_memslots *kvm_alloc_memslots(void) 530 { 531 int i; 532 struct kvm_memslots *slots; 533 534 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 535 if (!slots) 536 return NULL; 537 538 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 539 slots->id_to_index[i] = slots->memslots[i].id = i; 540 541 return slots; 542 } 543 544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 545 { 546 if (!memslot->dirty_bitmap) 547 return; 548 549 kvfree(memslot->dirty_bitmap); 550 memslot->dirty_bitmap = NULL; 551 } 552 553 /* 554 * Free any memory in @free but not in @dont. 555 */ 556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 557 struct kvm_memory_slot *dont) 558 { 559 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 560 kvm_destroy_dirty_bitmap(free); 561 562 kvm_arch_free_memslot(kvm, free, dont); 563 564 free->npages = 0; 565 } 566 567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 568 { 569 struct kvm_memory_slot *memslot; 570 571 if (!slots) 572 return; 573 574 kvm_for_each_memslot(memslot, slots) 575 kvm_free_memslot(kvm, memslot, NULL); 576 577 kvfree(slots); 578 } 579 580 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 581 { 582 int i; 583 584 if (!kvm->debugfs_dentry) 585 return; 586 587 debugfs_remove_recursive(kvm->debugfs_dentry); 588 589 if (kvm->debugfs_stat_data) { 590 for (i = 0; i < kvm_debugfs_num_entries; i++) 591 kfree(kvm->debugfs_stat_data[i]); 592 kfree(kvm->debugfs_stat_data); 593 } 594 } 595 596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 597 { 598 char dir_name[ITOA_MAX_LEN * 2]; 599 struct kvm_stat_data *stat_data; 600 struct kvm_stats_debugfs_item *p; 601 602 if (!debugfs_initialized()) 603 return 0; 604 605 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 606 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 607 608 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 609 sizeof(*kvm->debugfs_stat_data), 610 GFP_KERNEL_ACCOUNT); 611 if (!kvm->debugfs_stat_data) 612 return -ENOMEM; 613 614 for (p = debugfs_entries; p->name; p++) { 615 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 616 if (!stat_data) 617 return -ENOMEM; 618 619 stat_data->kvm = kvm; 620 stat_data->offset = p->offset; 621 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 622 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 623 stat_data, stat_fops_per_vm[p->kind]); 624 } 625 return 0; 626 } 627 628 static struct kvm *kvm_create_vm(unsigned long type) 629 { 630 int r, i; 631 struct kvm *kvm = kvm_arch_alloc_vm(); 632 633 if (!kvm) 634 return ERR_PTR(-ENOMEM); 635 636 spin_lock_init(&kvm->mmu_lock); 637 mmgrab(current->mm); 638 kvm->mm = current->mm; 639 kvm_eventfd_init(kvm); 640 mutex_init(&kvm->lock); 641 mutex_init(&kvm->irq_lock); 642 mutex_init(&kvm->slots_lock); 643 refcount_set(&kvm->users_count, 1); 644 INIT_LIST_HEAD(&kvm->devices); 645 646 r = kvm_arch_init_vm(kvm, type); 647 if (r) 648 goto out_err_no_disable; 649 650 r = hardware_enable_all(); 651 if (r) 652 goto out_err_no_disable; 653 654 #ifdef CONFIG_HAVE_KVM_IRQFD 655 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 656 #endif 657 658 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 659 660 r = -ENOMEM; 661 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 662 struct kvm_memslots *slots = kvm_alloc_memslots(); 663 if (!slots) 664 goto out_err_no_srcu; 665 /* Generations must be different for each address space. */ 666 slots->generation = i; 667 rcu_assign_pointer(kvm->memslots[i], slots); 668 } 669 670 if (init_srcu_struct(&kvm->srcu)) 671 goto out_err_no_srcu; 672 if (init_srcu_struct(&kvm->irq_srcu)) 673 goto out_err_no_irq_srcu; 674 for (i = 0; i < KVM_NR_BUSES; i++) { 675 rcu_assign_pointer(kvm->buses[i], 676 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 677 if (!kvm->buses[i]) 678 goto out_err; 679 } 680 681 r = kvm_init_mmu_notifier(kvm); 682 if (r) 683 goto out_err; 684 685 spin_lock(&kvm_lock); 686 list_add(&kvm->vm_list, &vm_list); 687 spin_unlock(&kvm_lock); 688 689 preempt_notifier_inc(); 690 691 return kvm; 692 693 out_err: 694 cleanup_srcu_struct(&kvm->irq_srcu); 695 out_err_no_irq_srcu: 696 cleanup_srcu_struct(&kvm->srcu); 697 out_err_no_srcu: 698 hardware_disable_all(); 699 out_err_no_disable: 700 refcount_set(&kvm->users_count, 0); 701 for (i = 0; i < KVM_NR_BUSES; i++) 702 kfree(kvm_get_bus(kvm, i)); 703 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 704 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 705 kvm_arch_free_vm(kvm); 706 mmdrop(current->mm); 707 return ERR_PTR(r); 708 } 709 710 static void kvm_destroy_devices(struct kvm *kvm) 711 { 712 struct kvm_device *dev, *tmp; 713 714 /* 715 * We do not need to take the kvm->lock here, because nobody else 716 * has a reference to the struct kvm at this point and therefore 717 * cannot access the devices list anyhow. 718 */ 719 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 720 list_del(&dev->vm_node); 721 dev->ops->destroy(dev); 722 } 723 } 724 725 static void kvm_destroy_vm(struct kvm *kvm) 726 { 727 int i; 728 struct mm_struct *mm = kvm->mm; 729 730 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 731 kvm_destroy_vm_debugfs(kvm); 732 kvm_arch_sync_events(kvm); 733 spin_lock(&kvm_lock); 734 list_del(&kvm->vm_list); 735 spin_unlock(&kvm_lock); 736 kvm_free_irq_routing(kvm); 737 for (i = 0; i < KVM_NR_BUSES; i++) { 738 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 739 740 if (bus) 741 kvm_io_bus_destroy(bus); 742 kvm->buses[i] = NULL; 743 } 744 kvm_coalesced_mmio_free(kvm); 745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 746 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 747 #else 748 kvm_arch_flush_shadow_all(kvm); 749 #endif 750 kvm_arch_destroy_vm(kvm); 751 kvm_destroy_devices(kvm); 752 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 753 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 754 cleanup_srcu_struct(&kvm->irq_srcu); 755 cleanup_srcu_struct(&kvm->srcu); 756 kvm_arch_free_vm(kvm); 757 preempt_notifier_dec(); 758 hardware_disable_all(); 759 mmdrop(mm); 760 } 761 762 void kvm_get_kvm(struct kvm *kvm) 763 { 764 refcount_inc(&kvm->users_count); 765 } 766 EXPORT_SYMBOL_GPL(kvm_get_kvm); 767 768 void kvm_put_kvm(struct kvm *kvm) 769 { 770 if (refcount_dec_and_test(&kvm->users_count)) 771 kvm_destroy_vm(kvm); 772 } 773 EXPORT_SYMBOL_GPL(kvm_put_kvm); 774 775 776 static int kvm_vm_release(struct inode *inode, struct file *filp) 777 { 778 struct kvm *kvm = filp->private_data; 779 780 kvm_irqfd_release(kvm); 781 782 kvm_put_kvm(kvm); 783 return 0; 784 } 785 786 /* 787 * Allocation size is twice as large as the actual dirty bitmap size. 788 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 789 */ 790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 791 { 792 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 793 794 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 795 if (!memslot->dirty_bitmap) 796 return -ENOMEM; 797 798 return 0; 799 } 800 801 /* 802 * Insert memslot and re-sort memslots based on their GFN, 803 * so binary search could be used to lookup GFN. 804 * Sorting algorithm takes advantage of having initially 805 * sorted array and known changed memslot position. 806 */ 807 static void update_memslots(struct kvm_memslots *slots, 808 struct kvm_memory_slot *new, 809 enum kvm_mr_change change) 810 { 811 int id = new->id; 812 int i = slots->id_to_index[id]; 813 struct kvm_memory_slot *mslots = slots->memslots; 814 815 WARN_ON(mslots[i].id != id); 816 switch (change) { 817 case KVM_MR_CREATE: 818 slots->used_slots++; 819 WARN_ON(mslots[i].npages || !new->npages); 820 break; 821 case KVM_MR_DELETE: 822 slots->used_slots--; 823 WARN_ON(new->npages || !mslots[i].npages); 824 break; 825 default: 826 break; 827 } 828 829 while (i < KVM_MEM_SLOTS_NUM - 1 && 830 new->base_gfn <= mslots[i + 1].base_gfn) { 831 if (!mslots[i + 1].npages) 832 break; 833 mslots[i] = mslots[i + 1]; 834 slots->id_to_index[mslots[i].id] = i; 835 i++; 836 } 837 838 /* 839 * The ">=" is needed when creating a slot with base_gfn == 0, 840 * so that it moves before all those with base_gfn == npages == 0. 841 * 842 * On the other hand, if new->npages is zero, the above loop has 843 * already left i pointing to the beginning of the empty part of 844 * mslots, and the ">=" would move the hole backwards in this 845 * case---which is wrong. So skip the loop when deleting a slot. 846 */ 847 if (new->npages) { 848 while (i > 0 && 849 new->base_gfn >= mslots[i - 1].base_gfn) { 850 mslots[i] = mslots[i - 1]; 851 slots->id_to_index[mslots[i].id] = i; 852 i--; 853 } 854 } else 855 WARN_ON_ONCE(i != slots->used_slots); 856 857 mslots[i] = *new; 858 slots->id_to_index[mslots[i].id] = i; 859 } 860 861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 862 { 863 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 864 865 #ifdef __KVM_HAVE_READONLY_MEM 866 valid_flags |= KVM_MEM_READONLY; 867 #endif 868 869 if (mem->flags & ~valid_flags) 870 return -EINVAL; 871 872 return 0; 873 } 874 875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 876 int as_id, struct kvm_memslots *slots) 877 { 878 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 879 u64 gen = old_memslots->generation; 880 881 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 882 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 883 884 rcu_assign_pointer(kvm->memslots[as_id], slots); 885 synchronize_srcu_expedited(&kvm->srcu); 886 887 /* 888 * Increment the new memslot generation a second time, dropping the 889 * update in-progress flag and incrementing then generation based on 890 * the number of address spaces. This provides a unique and easily 891 * identifiable generation number while the memslots are in flux. 892 */ 893 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 894 895 /* 896 * Generations must be unique even across address spaces. We do not need 897 * a global counter for that, instead the generation space is evenly split 898 * across address spaces. For example, with two address spaces, address 899 * space 0 will use generations 0, 2, 4, ... while address space 1 will 900 * use generations 1, 3, 5, ... 901 */ 902 gen += KVM_ADDRESS_SPACE_NUM; 903 904 kvm_arch_memslots_updated(kvm, gen); 905 906 slots->generation = gen; 907 908 return old_memslots; 909 } 910 911 /* 912 * Allocate some memory and give it an address in the guest physical address 913 * space. 914 * 915 * Discontiguous memory is allowed, mostly for framebuffers. 916 * 917 * Must be called holding kvm->slots_lock for write. 918 */ 919 int __kvm_set_memory_region(struct kvm *kvm, 920 const struct kvm_userspace_memory_region *mem) 921 { 922 int r; 923 gfn_t base_gfn; 924 unsigned long npages; 925 struct kvm_memory_slot *slot; 926 struct kvm_memory_slot old, new; 927 struct kvm_memslots *slots = NULL, *old_memslots; 928 int as_id, id; 929 enum kvm_mr_change change; 930 931 r = check_memory_region_flags(mem); 932 if (r) 933 goto out; 934 935 r = -EINVAL; 936 as_id = mem->slot >> 16; 937 id = (u16)mem->slot; 938 939 /* General sanity checks */ 940 if (mem->memory_size & (PAGE_SIZE - 1)) 941 goto out; 942 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 943 goto out; 944 /* We can read the guest memory with __xxx_user() later on. */ 945 if ((id < KVM_USER_MEM_SLOTS) && 946 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 947 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 948 mem->memory_size))) 949 goto out; 950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 951 goto out; 952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 953 goto out; 954 955 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 956 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 957 npages = mem->memory_size >> PAGE_SHIFT; 958 959 if (npages > KVM_MEM_MAX_NR_PAGES) 960 goto out; 961 962 new = old = *slot; 963 964 new.id = id; 965 new.base_gfn = base_gfn; 966 new.npages = npages; 967 new.flags = mem->flags; 968 969 if (npages) { 970 if (!old.npages) 971 change = KVM_MR_CREATE; 972 else { /* Modify an existing slot. */ 973 if ((mem->userspace_addr != old.userspace_addr) || 974 (npages != old.npages) || 975 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 976 goto out; 977 978 if (base_gfn != old.base_gfn) 979 change = KVM_MR_MOVE; 980 else if (new.flags != old.flags) 981 change = KVM_MR_FLAGS_ONLY; 982 else { /* Nothing to change. */ 983 r = 0; 984 goto out; 985 } 986 } 987 } else { 988 if (!old.npages) 989 goto out; 990 991 change = KVM_MR_DELETE; 992 new.base_gfn = 0; 993 new.flags = 0; 994 } 995 996 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 997 /* Check for overlaps */ 998 r = -EEXIST; 999 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1000 if (slot->id == id) 1001 continue; 1002 if (!((base_gfn + npages <= slot->base_gfn) || 1003 (base_gfn >= slot->base_gfn + slot->npages))) 1004 goto out; 1005 } 1006 } 1007 1008 /* Free page dirty bitmap if unneeded */ 1009 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1010 new.dirty_bitmap = NULL; 1011 1012 r = -ENOMEM; 1013 if (change == KVM_MR_CREATE) { 1014 new.userspace_addr = mem->userspace_addr; 1015 1016 if (kvm_arch_create_memslot(kvm, &new, npages)) 1017 goto out_free; 1018 } 1019 1020 /* Allocate page dirty bitmap if needed */ 1021 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1022 if (kvm_create_dirty_bitmap(&new) < 0) 1023 goto out_free; 1024 } 1025 1026 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1027 if (!slots) 1028 goto out_free; 1029 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1030 1031 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1032 slot = id_to_memslot(slots, id); 1033 slot->flags |= KVM_MEMSLOT_INVALID; 1034 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 /* From this point no new shadow pages pointing to a deleted, 1038 * or moved, memslot will be created. 1039 * 1040 * validation of sp->gfn happens in: 1041 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1042 * - kvm_is_visible_gfn (mmu_check_roots) 1043 */ 1044 kvm_arch_flush_shadow_memslot(kvm, slot); 1045 1046 /* 1047 * We can re-use the old_memslots from above, the only difference 1048 * from the currently installed memslots is the invalid flag. This 1049 * will get overwritten by update_memslots anyway. 1050 */ 1051 slots = old_memslots; 1052 } 1053 1054 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1055 if (r) 1056 goto out_slots; 1057 1058 /* actual memory is freed via old in kvm_free_memslot below */ 1059 if (change == KVM_MR_DELETE) { 1060 new.dirty_bitmap = NULL; 1061 memset(&new.arch, 0, sizeof(new.arch)); 1062 } 1063 1064 update_memslots(slots, &new, change); 1065 old_memslots = install_new_memslots(kvm, as_id, slots); 1066 1067 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1068 1069 kvm_free_memslot(kvm, &old, &new); 1070 kvfree(old_memslots); 1071 return 0; 1072 1073 out_slots: 1074 kvfree(slots); 1075 out_free: 1076 kvm_free_memslot(kvm, &new, &old); 1077 out: 1078 return r; 1079 } 1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1081 1082 int kvm_set_memory_region(struct kvm *kvm, 1083 const struct kvm_userspace_memory_region *mem) 1084 { 1085 int r; 1086 1087 mutex_lock(&kvm->slots_lock); 1088 r = __kvm_set_memory_region(kvm, mem); 1089 mutex_unlock(&kvm->slots_lock); 1090 return r; 1091 } 1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1093 1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1095 struct kvm_userspace_memory_region *mem) 1096 { 1097 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1098 return -EINVAL; 1099 1100 return kvm_set_memory_region(kvm, mem); 1101 } 1102 1103 int kvm_get_dirty_log(struct kvm *kvm, 1104 struct kvm_dirty_log *log, int *is_dirty) 1105 { 1106 struct kvm_memslots *slots; 1107 struct kvm_memory_slot *memslot; 1108 int i, as_id, id; 1109 unsigned long n; 1110 unsigned long any = 0; 1111 1112 as_id = log->slot >> 16; 1113 id = (u16)log->slot; 1114 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1115 return -EINVAL; 1116 1117 slots = __kvm_memslots(kvm, as_id); 1118 memslot = id_to_memslot(slots, id); 1119 if (!memslot->dirty_bitmap) 1120 return -ENOENT; 1121 1122 n = kvm_dirty_bitmap_bytes(memslot); 1123 1124 for (i = 0; !any && i < n/sizeof(long); ++i) 1125 any = memslot->dirty_bitmap[i]; 1126 1127 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1128 return -EFAULT; 1129 1130 if (any) 1131 *is_dirty = 1; 1132 return 0; 1133 } 1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1135 1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1137 /** 1138 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1139 * and reenable dirty page tracking for the corresponding pages. 1140 * @kvm: pointer to kvm instance 1141 * @log: slot id and address to which we copy the log 1142 * @is_dirty: flag set if any page is dirty 1143 * 1144 * We need to keep it in mind that VCPU threads can write to the bitmap 1145 * concurrently. So, to avoid losing track of dirty pages we keep the 1146 * following order: 1147 * 1148 * 1. Take a snapshot of the bit and clear it if needed. 1149 * 2. Write protect the corresponding page. 1150 * 3. Copy the snapshot to the userspace. 1151 * 4. Upon return caller flushes TLB's if needed. 1152 * 1153 * Between 2 and 4, the guest may write to the page using the remaining TLB 1154 * entry. This is not a problem because the page is reported dirty using 1155 * the snapshot taken before and step 4 ensures that writes done after 1156 * exiting to userspace will be logged for the next call. 1157 * 1158 */ 1159 int kvm_get_dirty_log_protect(struct kvm *kvm, 1160 struct kvm_dirty_log *log, bool *flush) 1161 { 1162 struct kvm_memslots *slots; 1163 struct kvm_memory_slot *memslot; 1164 int i, as_id, id; 1165 unsigned long n; 1166 unsigned long *dirty_bitmap; 1167 unsigned long *dirty_bitmap_buffer; 1168 1169 as_id = log->slot >> 16; 1170 id = (u16)log->slot; 1171 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1172 return -EINVAL; 1173 1174 slots = __kvm_memslots(kvm, as_id); 1175 memslot = id_to_memslot(slots, id); 1176 1177 dirty_bitmap = memslot->dirty_bitmap; 1178 if (!dirty_bitmap) 1179 return -ENOENT; 1180 1181 n = kvm_dirty_bitmap_bytes(memslot); 1182 *flush = false; 1183 if (kvm->manual_dirty_log_protect) { 1184 /* 1185 * Unlike kvm_get_dirty_log, we always return false in *flush, 1186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1187 * is some code duplication between this function and 1188 * kvm_get_dirty_log, but hopefully all architecture 1189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1190 * can be eliminated. 1191 */ 1192 dirty_bitmap_buffer = dirty_bitmap; 1193 } else { 1194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1195 memset(dirty_bitmap_buffer, 0, n); 1196 1197 spin_lock(&kvm->mmu_lock); 1198 for (i = 0; i < n / sizeof(long); i++) { 1199 unsigned long mask; 1200 gfn_t offset; 1201 1202 if (!dirty_bitmap[i]) 1203 continue; 1204 1205 *flush = true; 1206 mask = xchg(&dirty_bitmap[i], 0); 1207 dirty_bitmap_buffer[i] = mask; 1208 1209 offset = i * BITS_PER_LONG; 1210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1211 offset, mask); 1212 } 1213 spin_unlock(&kvm->mmu_lock); 1214 } 1215 1216 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1217 return -EFAULT; 1218 return 0; 1219 } 1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1221 1222 /** 1223 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1224 * and reenable dirty page tracking for the corresponding pages. 1225 * @kvm: pointer to kvm instance 1226 * @log: slot id and address from which to fetch the bitmap of dirty pages 1227 */ 1228 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1229 struct kvm_clear_dirty_log *log, bool *flush) 1230 { 1231 struct kvm_memslots *slots; 1232 struct kvm_memory_slot *memslot; 1233 int as_id, id; 1234 gfn_t offset; 1235 unsigned long i, n; 1236 unsigned long *dirty_bitmap; 1237 unsigned long *dirty_bitmap_buffer; 1238 1239 as_id = log->slot >> 16; 1240 id = (u16)log->slot; 1241 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1242 return -EINVAL; 1243 1244 if (log->first_page & 63) 1245 return -EINVAL; 1246 1247 slots = __kvm_memslots(kvm, as_id); 1248 memslot = id_to_memslot(slots, id); 1249 1250 dirty_bitmap = memslot->dirty_bitmap; 1251 if (!dirty_bitmap) 1252 return -ENOENT; 1253 1254 n = kvm_dirty_bitmap_bytes(memslot); 1255 1256 if (log->first_page > memslot->npages || 1257 log->num_pages > memslot->npages - log->first_page || 1258 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1259 return -EINVAL; 1260 1261 *flush = false; 1262 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1263 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1264 return -EFAULT; 1265 1266 spin_lock(&kvm->mmu_lock); 1267 for (offset = log->first_page, 1268 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1269 i++, offset += BITS_PER_LONG) { 1270 unsigned long mask = *dirty_bitmap_buffer++; 1271 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1272 if (!mask) 1273 continue; 1274 1275 mask &= atomic_long_fetch_andnot(mask, p); 1276 1277 /* 1278 * mask contains the bits that really have been cleared. This 1279 * never includes any bits beyond the length of the memslot (if 1280 * the length is not aligned to 64 pages), therefore it is not 1281 * a problem if userspace sets them in log->dirty_bitmap. 1282 */ 1283 if (mask) { 1284 *flush = true; 1285 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1286 offset, mask); 1287 } 1288 } 1289 spin_unlock(&kvm->mmu_lock); 1290 1291 return 0; 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1294 #endif 1295 1296 bool kvm_largepages_enabled(void) 1297 { 1298 return largepages_enabled; 1299 } 1300 1301 void kvm_disable_largepages(void) 1302 { 1303 largepages_enabled = false; 1304 } 1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1306 1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1308 { 1309 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1310 } 1311 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1312 1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1314 { 1315 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1316 } 1317 1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1319 { 1320 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1321 1322 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1323 memslot->flags & KVM_MEMSLOT_INVALID) 1324 return false; 1325 1326 return true; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1329 1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1331 { 1332 struct vm_area_struct *vma; 1333 unsigned long addr, size; 1334 1335 size = PAGE_SIZE; 1336 1337 addr = gfn_to_hva(kvm, gfn); 1338 if (kvm_is_error_hva(addr)) 1339 return PAGE_SIZE; 1340 1341 down_read(¤t->mm->mmap_sem); 1342 vma = find_vma(current->mm, addr); 1343 if (!vma) 1344 goto out; 1345 1346 size = vma_kernel_pagesize(vma); 1347 1348 out: 1349 up_read(¤t->mm->mmap_sem); 1350 1351 return size; 1352 } 1353 1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1355 { 1356 return slot->flags & KVM_MEM_READONLY; 1357 } 1358 1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1360 gfn_t *nr_pages, bool write) 1361 { 1362 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1363 return KVM_HVA_ERR_BAD; 1364 1365 if (memslot_is_readonly(slot) && write) 1366 return KVM_HVA_ERR_RO_BAD; 1367 1368 if (nr_pages) 1369 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1370 1371 return __gfn_to_hva_memslot(slot, gfn); 1372 } 1373 1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1375 gfn_t *nr_pages) 1376 { 1377 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1378 } 1379 1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1381 gfn_t gfn) 1382 { 1383 return gfn_to_hva_many(slot, gfn, NULL); 1384 } 1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1386 1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1388 { 1389 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1390 } 1391 EXPORT_SYMBOL_GPL(gfn_to_hva); 1392 1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1394 { 1395 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1398 1399 /* 1400 * Return the hva of a @gfn and the R/W attribute if possible. 1401 * 1402 * @slot: the kvm_memory_slot which contains @gfn 1403 * @gfn: the gfn to be translated 1404 * @writable: used to return the read/write attribute of the @slot if the hva 1405 * is valid and @writable is not NULL 1406 */ 1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1408 gfn_t gfn, bool *writable) 1409 { 1410 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1411 1412 if (!kvm_is_error_hva(hva) && writable) 1413 *writable = !memslot_is_readonly(slot); 1414 1415 return hva; 1416 } 1417 1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1419 { 1420 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1421 1422 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1423 } 1424 1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1426 { 1427 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1428 1429 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1430 } 1431 1432 static inline int check_user_page_hwpoison(unsigned long addr) 1433 { 1434 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1435 1436 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1437 return rc == -EHWPOISON; 1438 } 1439 1440 /* 1441 * The fast path to get the writable pfn which will be stored in @pfn, 1442 * true indicates success, otherwise false is returned. It's also the 1443 * only part that runs if we can are in atomic context. 1444 */ 1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1446 bool *writable, kvm_pfn_t *pfn) 1447 { 1448 struct page *page[1]; 1449 int npages; 1450 1451 /* 1452 * Fast pin a writable pfn only if it is a write fault request 1453 * or the caller allows to map a writable pfn for a read fault 1454 * request. 1455 */ 1456 if (!(write_fault || writable)) 1457 return false; 1458 1459 npages = __get_user_pages_fast(addr, 1, 1, page); 1460 if (npages == 1) { 1461 *pfn = page_to_pfn(page[0]); 1462 1463 if (writable) 1464 *writable = true; 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 /* 1472 * The slow path to get the pfn of the specified host virtual address, 1473 * 1 indicates success, -errno is returned if error is detected. 1474 */ 1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1476 bool *writable, kvm_pfn_t *pfn) 1477 { 1478 unsigned int flags = FOLL_HWPOISON; 1479 struct page *page; 1480 int npages = 0; 1481 1482 might_sleep(); 1483 1484 if (writable) 1485 *writable = write_fault; 1486 1487 if (write_fault) 1488 flags |= FOLL_WRITE; 1489 if (async) 1490 flags |= FOLL_NOWAIT; 1491 1492 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1493 if (npages != 1) 1494 return npages; 1495 1496 /* map read fault as writable if possible */ 1497 if (unlikely(!write_fault) && writable) { 1498 struct page *wpage; 1499 1500 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1501 *writable = true; 1502 put_page(page); 1503 page = wpage; 1504 } 1505 } 1506 *pfn = page_to_pfn(page); 1507 return npages; 1508 } 1509 1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1511 { 1512 if (unlikely(!(vma->vm_flags & VM_READ))) 1513 return false; 1514 1515 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1522 unsigned long addr, bool *async, 1523 bool write_fault, bool *writable, 1524 kvm_pfn_t *p_pfn) 1525 { 1526 unsigned long pfn; 1527 int r; 1528 1529 r = follow_pfn(vma, addr, &pfn); 1530 if (r) { 1531 /* 1532 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1533 * not call the fault handler, so do it here. 1534 */ 1535 bool unlocked = false; 1536 r = fixup_user_fault(current, current->mm, addr, 1537 (write_fault ? FAULT_FLAG_WRITE : 0), 1538 &unlocked); 1539 if (unlocked) 1540 return -EAGAIN; 1541 if (r) 1542 return r; 1543 1544 r = follow_pfn(vma, addr, &pfn); 1545 if (r) 1546 return r; 1547 1548 } 1549 1550 if (writable) 1551 *writable = true; 1552 1553 /* 1554 * Get a reference here because callers of *hva_to_pfn* and 1555 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1556 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1557 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1558 * simply do nothing for reserved pfns. 1559 * 1560 * Whoever called remap_pfn_range is also going to call e.g. 1561 * unmap_mapping_range before the underlying pages are freed, 1562 * causing a call to our MMU notifier. 1563 */ 1564 kvm_get_pfn(pfn); 1565 1566 *p_pfn = pfn; 1567 return 0; 1568 } 1569 1570 /* 1571 * Pin guest page in memory and return its pfn. 1572 * @addr: host virtual address which maps memory to the guest 1573 * @atomic: whether this function can sleep 1574 * @async: whether this function need to wait IO complete if the 1575 * host page is not in the memory 1576 * @write_fault: whether we should get a writable host page 1577 * @writable: whether it allows to map a writable host page for !@write_fault 1578 * 1579 * The function will map a writable host page for these two cases: 1580 * 1): @write_fault = true 1581 * 2): @write_fault = false && @writable, @writable will tell the caller 1582 * whether the mapping is writable. 1583 */ 1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1585 bool write_fault, bool *writable) 1586 { 1587 struct vm_area_struct *vma; 1588 kvm_pfn_t pfn = 0; 1589 int npages, r; 1590 1591 /* we can do it either atomically or asynchronously, not both */ 1592 BUG_ON(atomic && async); 1593 1594 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1595 return pfn; 1596 1597 if (atomic) 1598 return KVM_PFN_ERR_FAULT; 1599 1600 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1601 if (npages == 1) 1602 return pfn; 1603 1604 down_read(¤t->mm->mmap_sem); 1605 if (npages == -EHWPOISON || 1606 (!async && check_user_page_hwpoison(addr))) { 1607 pfn = KVM_PFN_ERR_HWPOISON; 1608 goto exit; 1609 } 1610 1611 retry: 1612 vma = find_vma_intersection(current->mm, addr, addr + 1); 1613 1614 if (vma == NULL) 1615 pfn = KVM_PFN_ERR_FAULT; 1616 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1617 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1618 if (r == -EAGAIN) 1619 goto retry; 1620 if (r < 0) 1621 pfn = KVM_PFN_ERR_FAULT; 1622 } else { 1623 if (async && vma_is_valid(vma, write_fault)) 1624 *async = true; 1625 pfn = KVM_PFN_ERR_FAULT; 1626 } 1627 exit: 1628 up_read(¤t->mm->mmap_sem); 1629 return pfn; 1630 } 1631 1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1633 bool atomic, bool *async, bool write_fault, 1634 bool *writable) 1635 { 1636 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1637 1638 if (addr == KVM_HVA_ERR_RO_BAD) { 1639 if (writable) 1640 *writable = false; 1641 return KVM_PFN_ERR_RO_FAULT; 1642 } 1643 1644 if (kvm_is_error_hva(addr)) { 1645 if (writable) 1646 *writable = false; 1647 return KVM_PFN_NOSLOT; 1648 } 1649 1650 /* Do not map writable pfn in the readonly memslot. */ 1651 if (writable && memslot_is_readonly(slot)) { 1652 *writable = false; 1653 writable = NULL; 1654 } 1655 1656 return hva_to_pfn(addr, atomic, async, write_fault, 1657 writable); 1658 } 1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1660 1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1662 bool *writable) 1663 { 1664 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1665 write_fault, writable); 1666 } 1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1668 1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1670 { 1671 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1674 1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1676 { 1677 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1680 1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1682 { 1683 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1684 } 1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1686 1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1688 { 1689 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1692 1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1694 { 1695 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1696 } 1697 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1698 1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1700 { 1701 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1704 1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1706 struct page **pages, int nr_pages) 1707 { 1708 unsigned long addr; 1709 gfn_t entry = 0; 1710 1711 addr = gfn_to_hva_many(slot, gfn, &entry); 1712 if (kvm_is_error_hva(addr)) 1713 return -1; 1714 1715 if (entry < nr_pages) 1716 return 0; 1717 1718 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1719 } 1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1721 1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1723 { 1724 if (is_error_noslot_pfn(pfn)) 1725 return KVM_ERR_PTR_BAD_PAGE; 1726 1727 if (kvm_is_reserved_pfn(pfn)) { 1728 WARN_ON(1); 1729 return KVM_ERR_PTR_BAD_PAGE; 1730 } 1731 1732 return pfn_to_page(pfn); 1733 } 1734 1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1736 { 1737 kvm_pfn_t pfn; 1738 1739 pfn = gfn_to_pfn(kvm, gfn); 1740 1741 return kvm_pfn_to_page(pfn); 1742 } 1743 EXPORT_SYMBOL_GPL(gfn_to_page); 1744 1745 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1746 { 1747 kvm_pfn_t pfn; 1748 1749 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1750 1751 return kvm_pfn_to_page(pfn); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1754 1755 void kvm_release_page_clean(struct page *page) 1756 { 1757 WARN_ON(is_error_page(page)); 1758 1759 kvm_release_pfn_clean(page_to_pfn(page)); 1760 } 1761 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1762 1763 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1764 { 1765 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1766 put_page(pfn_to_page(pfn)); 1767 } 1768 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1769 1770 void kvm_release_page_dirty(struct page *page) 1771 { 1772 WARN_ON(is_error_page(page)); 1773 1774 kvm_release_pfn_dirty(page_to_pfn(page)); 1775 } 1776 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1777 1778 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1779 { 1780 kvm_set_pfn_dirty(pfn); 1781 kvm_release_pfn_clean(pfn); 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1784 1785 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1786 { 1787 if (!kvm_is_reserved_pfn(pfn)) { 1788 struct page *page = pfn_to_page(pfn); 1789 1790 if (!PageReserved(page)) 1791 SetPageDirty(page); 1792 } 1793 } 1794 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1795 1796 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1797 { 1798 if (!kvm_is_reserved_pfn(pfn)) 1799 mark_page_accessed(pfn_to_page(pfn)); 1800 } 1801 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1802 1803 void kvm_get_pfn(kvm_pfn_t pfn) 1804 { 1805 if (!kvm_is_reserved_pfn(pfn)) 1806 get_page(pfn_to_page(pfn)); 1807 } 1808 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1809 1810 static int next_segment(unsigned long len, int offset) 1811 { 1812 if (len > PAGE_SIZE - offset) 1813 return PAGE_SIZE - offset; 1814 else 1815 return len; 1816 } 1817 1818 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1819 void *data, int offset, int len) 1820 { 1821 int r; 1822 unsigned long addr; 1823 1824 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1825 if (kvm_is_error_hva(addr)) 1826 return -EFAULT; 1827 r = __copy_from_user(data, (void __user *)addr + offset, len); 1828 if (r) 1829 return -EFAULT; 1830 return 0; 1831 } 1832 1833 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1834 int len) 1835 { 1836 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1837 1838 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1839 } 1840 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1841 1842 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1843 int offset, int len) 1844 { 1845 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1846 1847 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1848 } 1849 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1850 1851 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1852 { 1853 gfn_t gfn = gpa >> PAGE_SHIFT; 1854 int seg; 1855 int offset = offset_in_page(gpa); 1856 int ret; 1857 1858 while ((seg = next_segment(len, offset)) != 0) { 1859 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1860 if (ret < 0) 1861 return ret; 1862 offset = 0; 1863 len -= seg; 1864 data += seg; 1865 ++gfn; 1866 } 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(kvm_read_guest); 1870 1871 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1872 { 1873 gfn_t gfn = gpa >> PAGE_SHIFT; 1874 int seg; 1875 int offset = offset_in_page(gpa); 1876 int ret; 1877 1878 while ((seg = next_segment(len, offset)) != 0) { 1879 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1880 if (ret < 0) 1881 return ret; 1882 offset = 0; 1883 len -= seg; 1884 data += seg; 1885 ++gfn; 1886 } 1887 return 0; 1888 } 1889 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1890 1891 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1892 void *data, int offset, unsigned long len) 1893 { 1894 int r; 1895 unsigned long addr; 1896 1897 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1898 if (kvm_is_error_hva(addr)) 1899 return -EFAULT; 1900 pagefault_disable(); 1901 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1902 pagefault_enable(); 1903 if (r) 1904 return -EFAULT; 1905 return 0; 1906 } 1907 1908 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1909 unsigned long len) 1910 { 1911 gfn_t gfn = gpa >> PAGE_SHIFT; 1912 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1913 int offset = offset_in_page(gpa); 1914 1915 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1918 1919 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1920 void *data, unsigned long len) 1921 { 1922 gfn_t gfn = gpa >> PAGE_SHIFT; 1923 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1924 int offset = offset_in_page(gpa); 1925 1926 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1927 } 1928 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1929 1930 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1931 const void *data, int offset, int len) 1932 { 1933 int r; 1934 unsigned long addr; 1935 1936 addr = gfn_to_hva_memslot(memslot, gfn); 1937 if (kvm_is_error_hva(addr)) 1938 return -EFAULT; 1939 r = __copy_to_user((void __user *)addr + offset, data, len); 1940 if (r) 1941 return -EFAULT; 1942 mark_page_dirty_in_slot(memslot, gfn); 1943 return 0; 1944 } 1945 1946 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1947 const void *data, int offset, int len) 1948 { 1949 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1950 1951 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1954 1955 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1956 const void *data, int offset, int len) 1957 { 1958 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1959 1960 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1961 } 1962 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1963 1964 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1965 unsigned long len) 1966 { 1967 gfn_t gfn = gpa >> PAGE_SHIFT; 1968 int seg; 1969 int offset = offset_in_page(gpa); 1970 int ret; 1971 1972 while ((seg = next_segment(len, offset)) != 0) { 1973 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1974 if (ret < 0) 1975 return ret; 1976 offset = 0; 1977 len -= seg; 1978 data += seg; 1979 ++gfn; 1980 } 1981 return 0; 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_write_guest); 1984 1985 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1986 unsigned long len) 1987 { 1988 gfn_t gfn = gpa >> PAGE_SHIFT; 1989 int seg; 1990 int offset = offset_in_page(gpa); 1991 int ret; 1992 1993 while ((seg = next_segment(len, offset)) != 0) { 1994 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1995 if (ret < 0) 1996 return ret; 1997 offset = 0; 1998 len -= seg; 1999 data += seg; 2000 ++gfn; 2001 } 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2005 2006 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2007 struct gfn_to_hva_cache *ghc, 2008 gpa_t gpa, unsigned long len) 2009 { 2010 int offset = offset_in_page(gpa); 2011 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2012 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2013 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2014 gfn_t nr_pages_avail; 2015 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2016 2017 ghc->gpa = gpa; 2018 ghc->generation = slots->generation; 2019 ghc->len = len; 2020 ghc->hva = KVM_HVA_ERR_BAD; 2021 2022 /* 2023 * If the requested region crosses two memslots, we still 2024 * verify that the entire region is valid here. 2025 */ 2026 while (!r && start_gfn <= end_gfn) { 2027 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2028 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2029 &nr_pages_avail); 2030 if (kvm_is_error_hva(ghc->hva)) 2031 r = -EFAULT; 2032 start_gfn += nr_pages_avail; 2033 } 2034 2035 /* Use the slow path for cross page reads and writes. */ 2036 if (!r && nr_pages_needed == 1) 2037 ghc->hva += offset; 2038 else 2039 ghc->memslot = NULL; 2040 2041 return r; 2042 } 2043 2044 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2045 gpa_t gpa, unsigned long len) 2046 { 2047 struct kvm_memslots *slots = kvm_memslots(kvm); 2048 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2051 2052 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2053 void *data, unsigned int offset, 2054 unsigned long len) 2055 { 2056 struct kvm_memslots *slots = kvm_memslots(kvm); 2057 int r; 2058 gpa_t gpa = ghc->gpa + offset; 2059 2060 BUG_ON(len + offset > ghc->len); 2061 2062 if (slots->generation != ghc->generation) 2063 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2064 2065 if (unlikely(!ghc->memslot)) 2066 return kvm_write_guest(kvm, gpa, data, len); 2067 2068 if (kvm_is_error_hva(ghc->hva)) 2069 return -EFAULT; 2070 2071 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2072 if (r) 2073 return -EFAULT; 2074 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2075 2076 return 0; 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2079 2080 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2081 void *data, unsigned long len) 2082 { 2083 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2086 2087 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2088 void *data, unsigned long len) 2089 { 2090 struct kvm_memslots *slots = kvm_memslots(kvm); 2091 int r; 2092 2093 BUG_ON(len > ghc->len); 2094 2095 if (slots->generation != ghc->generation) 2096 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2097 2098 if (unlikely(!ghc->memslot)) 2099 return kvm_read_guest(kvm, ghc->gpa, data, len); 2100 2101 if (kvm_is_error_hva(ghc->hva)) 2102 return -EFAULT; 2103 2104 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2105 if (r) 2106 return -EFAULT; 2107 2108 return 0; 2109 } 2110 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2111 2112 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2113 { 2114 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2115 2116 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2119 2120 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2121 { 2122 gfn_t gfn = gpa >> PAGE_SHIFT; 2123 int seg; 2124 int offset = offset_in_page(gpa); 2125 int ret; 2126 2127 while ((seg = next_segment(len, offset)) != 0) { 2128 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2129 if (ret < 0) 2130 return ret; 2131 offset = 0; 2132 len -= seg; 2133 ++gfn; 2134 } 2135 return 0; 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2138 2139 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2140 gfn_t gfn) 2141 { 2142 if (memslot && memslot->dirty_bitmap) { 2143 unsigned long rel_gfn = gfn - memslot->base_gfn; 2144 2145 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2146 } 2147 } 2148 2149 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2150 { 2151 struct kvm_memory_slot *memslot; 2152 2153 memslot = gfn_to_memslot(kvm, gfn); 2154 mark_page_dirty_in_slot(memslot, gfn); 2155 } 2156 EXPORT_SYMBOL_GPL(mark_page_dirty); 2157 2158 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2159 { 2160 struct kvm_memory_slot *memslot; 2161 2162 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2163 mark_page_dirty_in_slot(memslot, gfn); 2164 } 2165 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2166 2167 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2168 { 2169 if (!vcpu->sigset_active) 2170 return; 2171 2172 /* 2173 * This does a lockless modification of ->real_blocked, which is fine 2174 * because, only current can change ->real_blocked and all readers of 2175 * ->real_blocked don't care as long ->real_blocked is always a subset 2176 * of ->blocked. 2177 */ 2178 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2179 } 2180 2181 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2182 { 2183 if (!vcpu->sigset_active) 2184 return; 2185 2186 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2187 sigemptyset(¤t->real_blocked); 2188 } 2189 2190 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2191 { 2192 unsigned int old, val, grow, grow_start; 2193 2194 old = val = vcpu->halt_poll_ns; 2195 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2196 grow = READ_ONCE(halt_poll_ns_grow); 2197 if (!grow) 2198 goto out; 2199 2200 val *= grow; 2201 if (val < grow_start) 2202 val = grow_start; 2203 2204 if (val > halt_poll_ns) 2205 val = halt_poll_ns; 2206 2207 vcpu->halt_poll_ns = val; 2208 out: 2209 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2210 } 2211 2212 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2213 { 2214 unsigned int old, val, shrink; 2215 2216 old = val = vcpu->halt_poll_ns; 2217 shrink = READ_ONCE(halt_poll_ns_shrink); 2218 if (shrink == 0) 2219 val = 0; 2220 else 2221 val /= shrink; 2222 2223 vcpu->halt_poll_ns = val; 2224 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2225 } 2226 2227 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2228 { 2229 int ret = -EINTR; 2230 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2231 2232 if (kvm_arch_vcpu_runnable(vcpu)) { 2233 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2234 goto out; 2235 } 2236 if (kvm_cpu_has_pending_timer(vcpu)) 2237 goto out; 2238 if (signal_pending(current)) 2239 goto out; 2240 2241 ret = 0; 2242 out: 2243 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2244 return ret; 2245 } 2246 2247 /* 2248 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2249 */ 2250 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2251 { 2252 ktime_t start, cur; 2253 DECLARE_SWAITQUEUE(wait); 2254 bool waited = false; 2255 u64 block_ns; 2256 2257 start = cur = ktime_get(); 2258 if (vcpu->halt_poll_ns) { 2259 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2260 2261 ++vcpu->stat.halt_attempted_poll; 2262 do { 2263 /* 2264 * This sets KVM_REQ_UNHALT if an interrupt 2265 * arrives. 2266 */ 2267 if (kvm_vcpu_check_block(vcpu) < 0) { 2268 ++vcpu->stat.halt_successful_poll; 2269 if (!vcpu_valid_wakeup(vcpu)) 2270 ++vcpu->stat.halt_poll_invalid; 2271 goto out; 2272 } 2273 cur = ktime_get(); 2274 } while (single_task_running() && ktime_before(cur, stop)); 2275 } 2276 2277 kvm_arch_vcpu_blocking(vcpu); 2278 2279 for (;;) { 2280 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2281 2282 if (kvm_vcpu_check_block(vcpu) < 0) 2283 break; 2284 2285 waited = true; 2286 schedule(); 2287 } 2288 2289 finish_swait(&vcpu->wq, &wait); 2290 cur = ktime_get(); 2291 2292 kvm_arch_vcpu_unblocking(vcpu); 2293 out: 2294 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2295 2296 if (!vcpu_valid_wakeup(vcpu)) 2297 shrink_halt_poll_ns(vcpu); 2298 else if (halt_poll_ns) { 2299 if (block_ns <= vcpu->halt_poll_ns) 2300 ; 2301 /* we had a long block, shrink polling */ 2302 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2303 shrink_halt_poll_ns(vcpu); 2304 /* we had a short halt and our poll time is too small */ 2305 else if (vcpu->halt_poll_ns < halt_poll_ns && 2306 block_ns < halt_poll_ns) 2307 grow_halt_poll_ns(vcpu); 2308 } else 2309 vcpu->halt_poll_ns = 0; 2310 2311 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2312 kvm_arch_vcpu_block_finish(vcpu); 2313 } 2314 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2315 2316 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2317 { 2318 struct swait_queue_head *wqp; 2319 2320 wqp = kvm_arch_vcpu_wq(vcpu); 2321 if (swq_has_sleeper(wqp)) { 2322 swake_up_one(wqp); 2323 ++vcpu->stat.halt_wakeup; 2324 return true; 2325 } 2326 2327 return false; 2328 } 2329 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2330 2331 #ifndef CONFIG_S390 2332 /* 2333 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2334 */ 2335 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2336 { 2337 int me; 2338 int cpu = vcpu->cpu; 2339 2340 if (kvm_vcpu_wake_up(vcpu)) 2341 return; 2342 2343 me = get_cpu(); 2344 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2345 if (kvm_arch_vcpu_should_kick(vcpu)) 2346 smp_send_reschedule(cpu); 2347 put_cpu(); 2348 } 2349 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2350 #endif /* !CONFIG_S390 */ 2351 2352 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2353 { 2354 struct pid *pid; 2355 struct task_struct *task = NULL; 2356 int ret = 0; 2357 2358 rcu_read_lock(); 2359 pid = rcu_dereference(target->pid); 2360 if (pid) 2361 task = get_pid_task(pid, PIDTYPE_PID); 2362 rcu_read_unlock(); 2363 if (!task) 2364 return ret; 2365 ret = yield_to(task, 1); 2366 put_task_struct(task); 2367 2368 return ret; 2369 } 2370 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2371 2372 /* 2373 * Helper that checks whether a VCPU is eligible for directed yield. 2374 * Most eligible candidate to yield is decided by following heuristics: 2375 * 2376 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2377 * (preempted lock holder), indicated by @in_spin_loop. 2378 * Set at the beiginning and cleared at the end of interception/PLE handler. 2379 * 2380 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2381 * chance last time (mostly it has become eligible now since we have probably 2382 * yielded to lockholder in last iteration. This is done by toggling 2383 * @dy_eligible each time a VCPU checked for eligibility.) 2384 * 2385 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2386 * to preempted lock-holder could result in wrong VCPU selection and CPU 2387 * burning. Giving priority for a potential lock-holder increases lock 2388 * progress. 2389 * 2390 * Since algorithm is based on heuristics, accessing another VCPU data without 2391 * locking does not harm. It may result in trying to yield to same VCPU, fail 2392 * and continue with next VCPU and so on. 2393 */ 2394 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2395 { 2396 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2397 bool eligible; 2398 2399 eligible = !vcpu->spin_loop.in_spin_loop || 2400 vcpu->spin_loop.dy_eligible; 2401 2402 if (vcpu->spin_loop.in_spin_loop) 2403 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2404 2405 return eligible; 2406 #else 2407 return true; 2408 #endif 2409 } 2410 2411 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2412 { 2413 struct kvm *kvm = me->kvm; 2414 struct kvm_vcpu *vcpu; 2415 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2416 int yielded = 0; 2417 int try = 3; 2418 int pass; 2419 int i; 2420 2421 kvm_vcpu_set_in_spin_loop(me, true); 2422 /* 2423 * We boost the priority of a VCPU that is runnable but not 2424 * currently running, because it got preempted by something 2425 * else and called schedule in __vcpu_run. Hopefully that 2426 * VCPU is holding the lock that we need and will release it. 2427 * We approximate round-robin by starting at the last boosted VCPU. 2428 */ 2429 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2430 kvm_for_each_vcpu(i, vcpu, kvm) { 2431 if (!pass && i <= last_boosted_vcpu) { 2432 i = last_boosted_vcpu; 2433 continue; 2434 } else if (pass && i > last_boosted_vcpu) 2435 break; 2436 if (!READ_ONCE(vcpu->preempted)) 2437 continue; 2438 if (vcpu == me) 2439 continue; 2440 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2441 continue; 2442 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2443 continue; 2444 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2445 continue; 2446 2447 yielded = kvm_vcpu_yield_to(vcpu); 2448 if (yielded > 0) { 2449 kvm->last_boosted_vcpu = i; 2450 break; 2451 } else if (yielded < 0) { 2452 try--; 2453 if (!try) 2454 break; 2455 } 2456 } 2457 } 2458 kvm_vcpu_set_in_spin_loop(me, false); 2459 2460 /* Ensure vcpu is not eligible during next spinloop */ 2461 kvm_vcpu_set_dy_eligible(me, false); 2462 } 2463 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2464 2465 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2466 { 2467 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2468 struct page *page; 2469 2470 if (vmf->pgoff == 0) 2471 page = virt_to_page(vcpu->run); 2472 #ifdef CONFIG_X86 2473 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2474 page = virt_to_page(vcpu->arch.pio_data); 2475 #endif 2476 #ifdef CONFIG_KVM_MMIO 2477 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2478 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2479 #endif 2480 else 2481 return kvm_arch_vcpu_fault(vcpu, vmf); 2482 get_page(page); 2483 vmf->page = page; 2484 return 0; 2485 } 2486 2487 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2488 .fault = kvm_vcpu_fault, 2489 }; 2490 2491 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2492 { 2493 vma->vm_ops = &kvm_vcpu_vm_ops; 2494 return 0; 2495 } 2496 2497 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2498 { 2499 struct kvm_vcpu *vcpu = filp->private_data; 2500 2501 debugfs_remove_recursive(vcpu->debugfs_dentry); 2502 kvm_put_kvm(vcpu->kvm); 2503 return 0; 2504 } 2505 2506 static struct file_operations kvm_vcpu_fops = { 2507 .release = kvm_vcpu_release, 2508 .unlocked_ioctl = kvm_vcpu_ioctl, 2509 .mmap = kvm_vcpu_mmap, 2510 .llseek = noop_llseek, 2511 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2512 }; 2513 2514 /* 2515 * Allocates an inode for the vcpu. 2516 */ 2517 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2518 { 2519 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2520 2521 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2522 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2523 } 2524 2525 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2526 { 2527 char dir_name[ITOA_MAX_LEN * 2]; 2528 int ret; 2529 2530 if (!kvm_arch_has_vcpu_debugfs()) 2531 return 0; 2532 2533 if (!debugfs_initialized()) 2534 return 0; 2535 2536 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2537 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2538 vcpu->kvm->debugfs_dentry); 2539 if (!vcpu->debugfs_dentry) 2540 return -ENOMEM; 2541 2542 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2543 if (ret < 0) { 2544 debugfs_remove_recursive(vcpu->debugfs_dentry); 2545 return ret; 2546 } 2547 2548 return 0; 2549 } 2550 2551 /* 2552 * Creates some virtual cpus. Good luck creating more than one. 2553 */ 2554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2555 { 2556 int r; 2557 struct kvm_vcpu *vcpu; 2558 2559 if (id >= KVM_MAX_VCPU_ID) 2560 return -EINVAL; 2561 2562 mutex_lock(&kvm->lock); 2563 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2564 mutex_unlock(&kvm->lock); 2565 return -EINVAL; 2566 } 2567 2568 kvm->created_vcpus++; 2569 mutex_unlock(&kvm->lock); 2570 2571 vcpu = kvm_arch_vcpu_create(kvm, id); 2572 if (IS_ERR(vcpu)) { 2573 r = PTR_ERR(vcpu); 2574 goto vcpu_decrement; 2575 } 2576 2577 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2578 2579 r = kvm_arch_vcpu_setup(vcpu); 2580 if (r) 2581 goto vcpu_destroy; 2582 2583 r = kvm_create_vcpu_debugfs(vcpu); 2584 if (r) 2585 goto vcpu_destroy; 2586 2587 mutex_lock(&kvm->lock); 2588 if (kvm_get_vcpu_by_id(kvm, id)) { 2589 r = -EEXIST; 2590 goto unlock_vcpu_destroy; 2591 } 2592 2593 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2594 2595 /* Now it's all set up, let userspace reach it */ 2596 kvm_get_kvm(kvm); 2597 r = create_vcpu_fd(vcpu); 2598 if (r < 0) { 2599 kvm_put_kvm(kvm); 2600 goto unlock_vcpu_destroy; 2601 } 2602 2603 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2604 2605 /* 2606 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2607 * before kvm->online_vcpu's incremented value. 2608 */ 2609 smp_wmb(); 2610 atomic_inc(&kvm->online_vcpus); 2611 2612 mutex_unlock(&kvm->lock); 2613 kvm_arch_vcpu_postcreate(vcpu); 2614 return r; 2615 2616 unlock_vcpu_destroy: 2617 mutex_unlock(&kvm->lock); 2618 debugfs_remove_recursive(vcpu->debugfs_dentry); 2619 vcpu_destroy: 2620 kvm_arch_vcpu_destroy(vcpu); 2621 vcpu_decrement: 2622 mutex_lock(&kvm->lock); 2623 kvm->created_vcpus--; 2624 mutex_unlock(&kvm->lock); 2625 return r; 2626 } 2627 2628 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2629 { 2630 if (sigset) { 2631 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2632 vcpu->sigset_active = 1; 2633 vcpu->sigset = *sigset; 2634 } else 2635 vcpu->sigset_active = 0; 2636 return 0; 2637 } 2638 2639 static long kvm_vcpu_ioctl(struct file *filp, 2640 unsigned int ioctl, unsigned long arg) 2641 { 2642 struct kvm_vcpu *vcpu = filp->private_data; 2643 void __user *argp = (void __user *)arg; 2644 int r; 2645 struct kvm_fpu *fpu = NULL; 2646 struct kvm_sregs *kvm_sregs = NULL; 2647 2648 if (vcpu->kvm->mm != current->mm) 2649 return -EIO; 2650 2651 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2652 return -EINVAL; 2653 2654 /* 2655 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2656 * execution; mutex_lock() would break them. 2657 */ 2658 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2659 if (r != -ENOIOCTLCMD) 2660 return r; 2661 2662 if (mutex_lock_killable(&vcpu->mutex)) 2663 return -EINTR; 2664 switch (ioctl) { 2665 case KVM_RUN: { 2666 struct pid *oldpid; 2667 r = -EINVAL; 2668 if (arg) 2669 goto out; 2670 oldpid = rcu_access_pointer(vcpu->pid); 2671 if (unlikely(oldpid != task_pid(current))) { 2672 /* The thread running this VCPU changed. */ 2673 struct pid *newpid; 2674 2675 r = kvm_arch_vcpu_run_pid_change(vcpu); 2676 if (r) 2677 break; 2678 2679 newpid = get_task_pid(current, PIDTYPE_PID); 2680 rcu_assign_pointer(vcpu->pid, newpid); 2681 if (oldpid) 2682 synchronize_rcu(); 2683 put_pid(oldpid); 2684 } 2685 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2686 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2687 break; 2688 } 2689 case KVM_GET_REGS: { 2690 struct kvm_regs *kvm_regs; 2691 2692 r = -ENOMEM; 2693 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2694 if (!kvm_regs) 2695 goto out; 2696 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2697 if (r) 2698 goto out_free1; 2699 r = -EFAULT; 2700 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2701 goto out_free1; 2702 r = 0; 2703 out_free1: 2704 kfree(kvm_regs); 2705 break; 2706 } 2707 case KVM_SET_REGS: { 2708 struct kvm_regs *kvm_regs; 2709 2710 r = -ENOMEM; 2711 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2712 if (IS_ERR(kvm_regs)) { 2713 r = PTR_ERR(kvm_regs); 2714 goto out; 2715 } 2716 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2717 kfree(kvm_regs); 2718 break; 2719 } 2720 case KVM_GET_SREGS: { 2721 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2722 GFP_KERNEL_ACCOUNT); 2723 r = -ENOMEM; 2724 if (!kvm_sregs) 2725 goto out; 2726 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2727 if (r) 2728 goto out; 2729 r = -EFAULT; 2730 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2731 goto out; 2732 r = 0; 2733 break; 2734 } 2735 case KVM_SET_SREGS: { 2736 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2737 if (IS_ERR(kvm_sregs)) { 2738 r = PTR_ERR(kvm_sregs); 2739 kvm_sregs = NULL; 2740 goto out; 2741 } 2742 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2743 break; 2744 } 2745 case KVM_GET_MP_STATE: { 2746 struct kvm_mp_state mp_state; 2747 2748 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2749 if (r) 2750 goto out; 2751 r = -EFAULT; 2752 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2753 goto out; 2754 r = 0; 2755 break; 2756 } 2757 case KVM_SET_MP_STATE: { 2758 struct kvm_mp_state mp_state; 2759 2760 r = -EFAULT; 2761 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2762 goto out; 2763 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2764 break; 2765 } 2766 case KVM_TRANSLATE: { 2767 struct kvm_translation tr; 2768 2769 r = -EFAULT; 2770 if (copy_from_user(&tr, argp, sizeof(tr))) 2771 goto out; 2772 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2773 if (r) 2774 goto out; 2775 r = -EFAULT; 2776 if (copy_to_user(argp, &tr, sizeof(tr))) 2777 goto out; 2778 r = 0; 2779 break; 2780 } 2781 case KVM_SET_GUEST_DEBUG: { 2782 struct kvm_guest_debug dbg; 2783 2784 r = -EFAULT; 2785 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2786 goto out; 2787 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2788 break; 2789 } 2790 case KVM_SET_SIGNAL_MASK: { 2791 struct kvm_signal_mask __user *sigmask_arg = argp; 2792 struct kvm_signal_mask kvm_sigmask; 2793 sigset_t sigset, *p; 2794 2795 p = NULL; 2796 if (argp) { 2797 r = -EFAULT; 2798 if (copy_from_user(&kvm_sigmask, argp, 2799 sizeof(kvm_sigmask))) 2800 goto out; 2801 r = -EINVAL; 2802 if (kvm_sigmask.len != sizeof(sigset)) 2803 goto out; 2804 r = -EFAULT; 2805 if (copy_from_user(&sigset, sigmask_arg->sigset, 2806 sizeof(sigset))) 2807 goto out; 2808 p = &sigset; 2809 } 2810 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2811 break; 2812 } 2813 case KVM_GET_FPU: { 2814 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2815 r = -ENOMEM; 2816 if (!fpu) 2817 goto out; 2818 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2819 if (r) 2820 goto out; 2821 r = -EFAULT; 2822 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2823 goto out; 2824 r = 0; 2825 break; 2826 } 2827 case KVM_SET_FPU: { 2828 fpu = memdup_user(argp, sizeof(*fpu)); 2829 if (IS_ERR(fpu)) { 2830 r = PTR_ERR(fpu); 2831 fpu = NULL; 2832 goto out; 2833 } 2834 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2835 break; 2836 } 2837 default: 2838 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2839 } 2840 out: 2841 mutex_unlock(&vcpu->mutex); 2842 kfree(fpu); 2843 kfree(kvm_sregs); 2844 return r; 2845 } 2846 2847 #ifdef CONFIG_KVM_COMPAT 2848 static long kvm_vcpu_compat_ioctl(struct file *filp, 2849 unsigned int ioctl, unsigned long arg) 2850 { 2851 struct kvm_vcpu *vcpu = filp->private_data; 2852 void __user *argp = compat_ptr(arg); 2853 int r; 2854 2855 if (vcpu->kvm->mm != current->mm) 2856 return -EIO; 2857 2858 switch (ioctl) { 2859 case KVM_SET_SIGNAL_MASK: { 2860 struct kvm_signal_mask __user *sigmask_arg = argp; 2861 struct kvm_signal_mask kvm_sigmask; 2862 sigset_t sigset; 2863 2864 if (argp) { 2865 r = -EFAULT; 2866 if (copy_from_user(&kvm_sigmask, argp, 2867 sizeof(kvm_sigmask))) 2868 goto out; 2869 r = -EINVAL; 2870 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2871 goto out; 2872 r = -EFAULT; 2873 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2874 goto out; 2875 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2876 } else 2877 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2878 break; 2879 } 2880 default: 2881 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2882 } 2883 2884 out: 2885 return r; 2886 } 2887 #endif 2888 2889 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2890 int (*accessor)(struct kvm_device *dev, 2891 struct kvm_device_attr *attr), 2892 unsigned long arg) 2893 { 2894 struct kvm_device_attr attr; 2895 2896 if (!accessor) 2897 return -EPERM; 2898 2899 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2900 return -EFAULT; 2901 2902 return accessor(dev, &attr); 2903 } 2904 2905 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2906 unsigned long arg) 2907 { 2908 struct kvm_device *dev = filp->private_data; 2909 2910 if (dev->kvm->mm != current->mm) 2911 return -EIO; 2912 2913 switch (ioctl) { 2914 case KVM_SET_DEVICE_ATTR: 2915 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2916 case KVM_GET_DEVICE_ATTR: 2917 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2918 case KVM_HAS_DEVICE_ATTR: 2919 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2920 default: 2921 if (dev->ops->ioctl) 2922 return dev->ops->ioctl(dev, ioctl, arg); 2923 2924 return -ENOTTY; 2925 } 2926 } 2927 2928 static int kvm_device_release(struct inode *inode, struct file *filp) 2929 { 2930 struct kvm_device *dev = filp->private_data; 2931 struct kvm *kvm = dev->kvm; 2932 2933 kvm_put_kvm(kvm); 2934 return 0; 2935 } 2936 2937 static const struct file_operations kvm_device_fops = { 2938 .unlocked_ioctl = kvm_device_ioctl, 2939 .release = kvm_device_release, 2940 KVM_COMPAT(kvm_device_ioctl), 2941 }; 2942 2943 struct kvm_device *kvm_device_from_filp(struct file *filp) 2944 { 2945 if (filp->f_op != &kvm_device_fops) 2946 return NULL; 2947 2948 return filp->private_data; 2949 } 2950 2951 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2952 #ifdef CONFIG_KVM_MPIC 2953 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2954 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2955 #endif 2956 }; 2957 2958 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2959 { 2960 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2961 return -ENOSPC; 2962 2963 if (kvm_device_ops_table[type] != NULL) 2964 return -EEXIST; 2965 2966 kvm_device_ops_table[type] = ops; 2967 return 0; 2968 } 2969 2970 void kvm_unregister_device_ops(u32 type) 2971 { 2972 if (kvm_device_ops_table[type] != NULL) 2973 kvm_device_ops_table[type] = NULL; 2974 } 2975 2976 static int kvm_ioctl_create_device(struct kvm *kvm, 2977 struct kvm_create_device *cd) 2978 { 2979 struct kvm_device_ops *ops = NULL; 2980 struct kvm_device *dev; 2981 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2982 int type; 2983 int ret; 2984 2985 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2986 return -ENODEV; 2987 2988 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 2989 ops = kvm_device_ops_table[type]; 2990 if (ops == NULL) 2991 return -ENODEV; 2992 2993 if (test) 2994 return 0; 2995 2996 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 2997 if (!dev) 2998 return -ENOMEM; 2999 3000 dev->ops = ops; 3001 dev->kvm = kvm; 3002 3003 mutex_lock(&kvm->lock); 3004 ret = ops->create(dev, type); 3005 if (ret < 0) { 3006 mutex_unlock(&kvm->lock); 3007 kfree(dev); 3008 return ret; 3009 } 3010 list_add(&dev->vm_node, &kvm->devices); 3011 mutex_unlock(&kvm->lock); 3012 3013 if (ops->init) 3014 ops->init(dev); 3015 3016 kvm_get_kvm(kvm); 3017 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3018 if (ret < 0) { 3019 kvm_put_kvm(kvm); 3020 mutex_lock(&kvm->lock); 3021 list_del(&dev->vm_node); 3022 mutex_unlock(&kvm->lock); 3023 ops->destroy(dev); 3024 return ret; 3025 } 3026 3027 cd->fd = ret; 3028 return 0; 3029 } 3030 3031 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3032 { 3033 switch (arg) { 3034 case KVM_CAP_USER_MEMORY: 3035 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3036 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3037 case KVM_CAP_INTERNAL_ERROR_DATA: 3038 #ifdef CONFIG_HAVE_KVM_MSI 3039 case KVM_CAP_SIGNAL_MSI: 3040 #endif 3041 #ifdef CONFIG_HAVE_KVM_IRQFD 3042 case KVM_CAP_IRQFD: 3043 case KVM_CAP_IRQFD_RESAMPLE: 3044 #endif 3045 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3046 case KVM_CAP_CHECK_EXTENSION_VM: 3047 case KVM_CAP_ENABLE_CAP_VM: 3048 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3049 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3050 #endif 3051 return 1; 3052 #ifdef CONFIG_KVM_MMIO 3053 case KVM_CAP_COALESCED_MMIO: 3054 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3055 case KVM_CAP_COALESCED_PIO: 3056 return 1; 3057 #endif 3058 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3059 case KVM_CAP_IRQ_ROUTING: 3060 return KVM_MAX_IRQ_ROUTES; 3061 #endif 3062 #if KVM_ADDRESS_SPACE_NUM > 1 3063 case KVM_CAP_MULTI_ADDRESS_SPACE: 3064 return KVM_ADDRESS_SPACE_NUM; 3065 #endif 3066 case KVM_CAP_MAX_VCPU_ID: 3067 return KVM_MAX_VCPU_ID; 3068 default: 3069 break; 3070 } 3071 return kvm_vm_ioctl_check_extension(kvm, arg); 3072 } 3073 3074 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3075 struct kvm_enable_cap *cap) 3076 { 3077 return -EINVAL; 3078 } 3079 3080 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3081 struct kvm_enable_cap *cap) 3082 { 3083 switch (cap->cap) { 3084 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3085 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3086 if (cap->flags || (cap->args[0] & ~1)) 3087 return -EINVAL; 3088 kvm->manual_dirty_log_protect = cap->args[0]; 3089 return 0; 3090 #endif 3091 default: 3092 return kvm_vm_ioctl_enable_cap(kvm, cap); 3093 } 3094 } 3095 3096 static long kvm_vm_ioctl(struct file *filp, 3097 unsigned int ioctl, unsigned long arg) 3098 { 3099 struct kvm *kvm = filp->private_data; 3100 void __user *argp = (void __user *)arg; 3101 int r; 3102 3103 if (kvm->mm != current->mm) 3104 return -EIO; 3105 switch (ioctl) { 3106 case KVM_CREATE_VCPU: 3107 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3108 break; 3109 case KVM_ENABLE_CAP: { 3110 struct kvm_enable_cap cap; 3111 3112 r = -EFAULT; 3113 if (copy_from_user(&cap, argp, sizeof(cap))) 3114 goto out; 3115 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3116 break; 3117 } 3118 case KVM_SET_USER_MEMORY_REGION: { 3119 struct kvm_userspace_memory_region kvm_userspace_mem; 3120 3121 r = -EFAULT; 3122 if (copy_from_user(&kvm_userspace_mem, argp, 3123 sizeof(kvm_userspace_mem))) 3124 goto out; 3125 3126 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3127 break; 3128 } 3129 case KVM_GET_DIRTY_LOG: { 3130 struct kvm_dirty_log log; 3131 3132 r = -EFAULT; 3133 if (copy_from_user(&log, argp, sizeof(log))) 3134 goto out; 3135 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3136 break; 3137 } 3138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3139 case KVM_CLEAR_DIRTY_LOG: { 3140 struct kvm_clear_dirty_log log; 3141 3142 r = -EFAULT; 3143 if (copy_from_user(&log, argp, sizeof(log))) 3144 goto out; 3145 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3146 break; 3147 } 3148 #endif 3149 #ifdef CONFIG_KVM_MMIO 3150 case KVM_REGISTER_COALESCED_MMIO: { 3151 struct kvm_coalesced_mmio_zone zone; 3152 3153 r = -EFAULT; 3154 if (copy_from_user(&zone, argp, sizeof(zone))) 3155 goto out; 3156 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3157 break; 3158 } 3159 case KVM_UNREGISTER_COALESCED_MMIO: { 3160 struct kvm_coalesced_mmio_zone zone; 3161 3162 r = -EFAULT; 3163 if (copy_from_user(&zone, argp, sizeof(zone))) 3164 goto out; 3165 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3166 break; 3167 } 3168 #endif 3169 case KVM_IRQFD: { 3170 struct kvm_irqfd data; 3171 3172 r = -EFAULT; 3173 if (copy_from_user(&data, argp, sizeof(data))) 3174 goto out; 3175 r = kvm_irqfd(kvm, &data); 3176 break; 3177 } 3178 case KVM_IOEVENTFD: { 3179 struct kvm_ioeventfd data; 3180 3181 r = -EFAULT; 3182 if (copy_from_user(&data, argp, sizeof(data))) 3183 goto out; 3184 r = kvm_ioeventfd(kvm, &data); 3185 break; 3186 } 3187 #ifdef CONFIG_HAVE_KVM_MSI 3188 case KVM_SIGNAL_MSI: { 3189 struct kvm_msi msi; 3190 3191 r = -EFAULT; 3192 if (copy_from_user(&msi, argp, sizeof(msi))) 3193 goto out; 3194 r = kvm_send_userspace_msi(kvm, &msi); 3195 break; 3196 } 3197 #endif 3198 #ifdef __KVM_HAVE_IRQ_LINE 3199 case KVM_IRQ_LINE_STATUS: 3200 case KVM_IRQ_LINE: { 3201 struct kvm_irq_level irq_event; 3202 3203 r = -EFAULT; 3204 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3205 goto out; 3206 3207 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3208 ioctl == KVM_IRQ_LINE_STATUS); 3209 if (r) 3210 goto out; 3211 3212 r = -EFAULT; 3213 if (ioctl == KVM_IRQ_LINE_STATUS) { 3214 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3215 goto out; 3216 } 3217 3218 r = 0; 3219 break; 3220 } 3221 #endif 3222 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3223 case KVM_SET_GSI_ROUTING: { 3224 struct kvm_irq_routing routing; 3225 struct kvm_irq_routing __user *urouting; 3226 struct kvm_irq_routing_entry *entries = NULL; 3227 3228 r = -EFAULT; 3229 if (copy_from_user(&routing, argp, sizeof(routing))) 3230 goto out; 3231 r = -EINVAL; 3232 if (!kvm_arch_can_set_irq_routing(kvm)) 3233 goto out; 3234 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3235 goto out; 3236 if (routing.flags) 3237 goto out; 3238 if (routing.nr) { 3239 r = -ENOMEM; 3240 entries = vmalloc(array_size(sizeof(*entries), 3241 routing.nr)); 3242 if (!entries) 3243 goto out; 3244 r = -EFAULT; 3245 urouting = argp; 3246 if (copy_from_user(entries, urouting->entries, 3247 routing.nr * sizeof(*entries))) 3248 goto out_free_irq_routing; 3249 } 3250 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3251 routing.flags); 3252 out_free_irq_routing: 3253 vfree(entries); 3254 break; 3255 } 3256 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3257 case KVM_CREATE_DEVICE: { 3258 struct kvm_create_device cd; 3259 3260 r = -EFAULT; 3261 if (copy_from_user(&cd, argp, sizeof(cd))) 3262 goto out; 3263 3264 r = kvm_ioctl_create_device(kvm, &cd); 3265 if (r) 3266 goto out; 3267 3268 r = -EFAULT; 3269 if (copy_to_user(argp, &cd, sizeof(cd))) 3270 goto out; 3271 3272 r = 0; 3273 break; 3274 } 3275 case KVM_CHECK_EXTENSION: 3276 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3277 break; 3278 default: 3279 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3280 } 3281 out: 3282 return r; 3283 } 3284 3285 #ifdef CONFIG_KVM_COMPAT 3286 struct compat_kvm_dirty_log { 3287 __u32 slot; 3288 __u32 padding1; 3289 union { 3290 compat_uptr_t dirty_bitmap; /* one bit per page */ 3291 __u64 padding2; 3292 }; 3293 }; 3294 3295 static long kvm_vm_compat_ioctl(struct file *filp, 3296 unsigned int ioctl, unsigned long arg) 3297 { 3298 struct kvm *kvm = filp->private_data; 3299 int r; 3300 3301 if (kvm->mm != current->mm) 3302 return -EIO; 3303 switch (ioctl) { 3304 case KVM_GET_DIRTY_LOG: { 3305 struct compat_kvm_dirty_log compat_log; 3306 struct kvm_dirty_log log; 3307 3308 if (copy_from_user(&compat_log, (void __user *)arg, 3309 sizeof(compat_log))) 3310 return -EFAULT; 3311 log.slot = compat_log.slot; 3312 log.padding1 = compat_log.padding1; 3313 log.padding2 = compat_log.padding2; 3314 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3315 3316 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3317 break; 3318 } 3319 default: 3320 r = kvm_vm_ioctl(filp, ioctl, arg); 3321 } 3322 return r; 3323 } 3324 #endif 3325 3326 static struct file_operations kvm_vm_fops = { 3327 .release = kvm_vm_release, 3328 .unlocked_ioctl = kvm_vm_ioctl, 3329 .llseek = noop_llseek, 3330 KVM_COMPAT(kvm_vm_compat_ioctl), 3331 }; 3332 3333 static int kvm_dev_ioctl_create_vm(unsigned long type) 3334 { 3335 int r; 3336 struct kvm *kvm; 3337 struct file *file; 3338 3339 kvm = kvm_create_vm(type); 3340 if (IS_ERR(kvm)) 3341 return PTR_ERR(kvm); 3342 #ifdef CONFIG_KVM_MMIO 3343 r = kvm_coalesced_mmio_init(kvm); 3344 if (r < 0) 3345 goto put_kvm; 3346 #endif 3347 r = get_unused_fd_flags(O_CLOEXEC); 3348 if (r < 0) 3349 goto put_kvm; 3350 3351 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3352 if (IS_ERR(file)) { 3353 put_unused_fd(r); 3354 r = PTR_ERR(file); 3355 goto put_kvm; 3356 } 3357 3358 /* 3359 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3360 * already set, with ->release() being kvm_vm_release(). In error 3361 * cases it will be called by the final fput(file) and will take 3362 * care of doing kvm_put_kvm(kvm). 3363 */ 3364 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3365 put_unused_fd(r); 3366 fput(file); 3367 return -ENOMEM; 3368 } 3369 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3370 3371 fd_install(r, file); 3372 return r; 3373 3374 put_kvm: 3375 kvm_put_kvm(kvm); 3376 return r; 3377 } 3378 3379 static long kvm_dev_ioctl(struct file *filp, 3380 unsigned int ioctl, unsigned long arg) 3381 { 3382 long r = -EINVAL; 3383 3384 switch (ioctl) { 3385 case KVM_GET_API_VERSION: 3386 if (arg) 3387 goto out; 3388 r = KVM_API_VERSION; 3389 break; 3390 case KVM_CREATE_VM: 3391 r = kvm_dev_ioctl_create_vm(arg); 3392 break; 3393 case KVM_CHECK_EXTENSION: 3394 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3395 break; 3396 case KVM_GET_VCPU_MMAP_SIZE: 3397 if (arg) 3398 goto out; 3399 r = PAGE_SIZE; /* struct kvm_run */ 3400 #ifdef CONFIG_X86 3401 r += PAGE_SIZE; /* pio data page */ 3402 #endif 3403 #ifdef CONFIG_KVM_MMIO 3404 r += PAGE_SIZE; /* coalesced mmio ring page */ 3405 #endif 3406 break; 3407 case KVM_TRACE_ENABLE: 3408 case KVM_TRACE_PAUSE: 3409 case KVM_TRACE_DISABLE: 3410 r = -EOPNOTSUPP; 3411 break; 3412 default: 3413 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3414 } 3415 out: 3416 return r; 3417 } 3418 3419 static struct file_operations kvm_chardev_ops = { 3420 .unlocked_ioctl = kvm_dev_ioctl, 3421 .llseek = noop_llseek, 3422 KVM_COMPAT(kvm_dev_ioctl), 3423 }; 3424 3425 static struct miscdevice kvm_dev = { 3426 KVM_MINOR, 3427 "kvm", 3428 &kvm_chardev_ops, 3429 }; 3430 3431 static void hardware_enable_nolock(void *junk) 3432 { 3433 int cpu = raw_smp_processor_id(); 3434 int r; 3435 3436 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3437 return; 3438 3439 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3440 3441 r = kvm_arch_hardware_enable(); 3442 3443 if (r) { 3444 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3445 atomic_inc(&hardware_enable_failed); 3446 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3447 } 3448 } 3449 3450 static int kvm_starting_cpu(unsigned int cpu) 3451 { 3452 raw_spin_lock(&kvm_count_lock); 3453 if (kvm_usage_count) 3454 hardware_enable_nolock(NULL); 3455 raw_spin_unlock(&kvm_count_lock); 3456 return 0; 3457 } 3458 3459 static void hardware_disable_nolock(void *junk) 3460 { 3461 int cpu = raw_smp_processor_id(); 3462 3463 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3464 return; 3465 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3466 kvm_arch_hardware_disable(); 3467 } 3468 3469 static int kvm_dying_cpu(unsigned int cpu) 3470 { 3471 raw_spin_lock(&kvm_count_lock); 3472 if (kvm_usage_count) 3473 hardware_disable_nolock(NULL); 3474 raw_spin_unlock(&kvm_count_lock); 3475 return 0; 3476 } 3477 3478 static void hardware_disable_all_nolock(void) 3479 { 3480 BUG_ON(!kvm_usage_count); 3481 3482 kvm_usage_count--; 3483 if (!kvm_usage_count) 3484 on_each_cpu(hardware_disable_nolock, NULL, 1); 3485 } 3486 3487 static void hardware_disable_all(void) 3488 { 3489 raw_spin_lock(&kvm_count_lock); 3490 hardware_disable_all_nolock(); 3491 raw_spin_unlock(&kvm_count_lock); 3492 } 3493 3494 static int hardware_enable_all(void) 3495 { 3496 int r = 0; 3497 3498 raw_spin_lock(&kvm_count_lock); 3499 3500 kvm_usage_count++; 3501 if (kvm_usage_count == 1) { 3502 atomic_set(&hardware_enable_failed, 0); 3503 on_each_cpu(hardware_enable_nolock, NULL, 1); 3504 3505 if (atomic_read(&hardware_enable_failed)) { 3506 hardware_disable_all_nolock(); 3507 r = -EBUSY; 3508 } 3509 } 3510 3511 raw_spin_unlock(&kvm_count_lock); 3512 3513 return r; 3514 } 3515 3516 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3517 void *v) 3518 { 3519 /* 3520 * Some (well, at least mine) BIOSes hang on reboot if 3521 * in vmx root mode. 3522 * 3523 * And Intel TXT required VMX off for all cpu when system shutdown. 3524 */ 3525 pr_info("kvm: exiting hardware virtualization\n"); 3526 kvm_rebooting = true; 3527 on_each_cpu(hardware_disable_nolock, NULL, 1); 3528 return NOTIFY_OK; 3529 } 3530 3531 static struct notifier_block kvm_reboot_notifier = { 3532 .notifier_call = kvm_reboot, 3533 .priority = 0, 3534 }; 3535 3536 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3537 { 3538 int i; 3539 3540 for (i = 0; i < bus->dev_count; i++) { 3541 struct kvm_io_device *pos = bus->range[i].dev; 3542 3543 kvm_iodevice_destructor(pos); 3544 } 3545 kfree(bus); 3546 } 3547 3548 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3549 const struct kvm_io_range *r2) 3550 { 3551 gpa_t addr1 = r1->addr; 3552 gpa_t addr2 = r2->addr; 3553 3554 if (addr1 < addr2) 3555 return -1; 3556 3557 /* If r2->len == 0, match the exact address. If r2->len != 0, 3558 * accept any overlapping write. Any order is acceptable for 3559 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3560 * we process all of them. 3561 */ 3562 if (r2->len) { 3563 addr1 += r1->len; 3564 addr2 += r2->len; 3565 } 3566 3567 if (addr1 > addr2) 3568 return 1; 3569 3570 return 0; 3571 } 3572 3573 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3574 { 3575 return kvm_io_bus_cmp(p1, p2); 3576 } 3577 3578 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3579 gpa_t addr, int len) 3580 { 3581 struct kvm_io_range *range, key; 3582 int off; 3583 3584 key = (struct kvm_io_range) { 3585 .addr = addr, 3586 .len = len, 3587 }; 3588 3589 range = bsearch(&key, bus->range, bus->dev_count, 3590 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3591 if (range == NULL) 3592 return -ENOENT; 3593 3594 off = range - bus->range; 3595 3596 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3597 off--; 3598 3599 return off; 3600 } 3601 3602 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3603 struct kvm_io_range *range, const void *val) 3604 { 3605 int idx; 3606 3607 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3608 if (idx < 0) 3609 return -EOPNOTSUPP; 3610 3611 while (idx < bus->dev_count && 3612 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3613 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3614 range->len, val)) 3615 return idx; 3616 idx++; 3617 } 3618 3619 return -EOPNOTSUPP; 3620 } 3621 3622 /* kvm_io_bus_write - called under kvm->slots_lock */ 3623 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3624 int len, const void *val) 3625 { 3626 struct kvm_io_bus *bus; 3627 struct kvm_io_range range; 3628 int r; 3629 3630 range = (struct kvm_io_range) { 3631 .addr = addr, 3632 .len = len, 3633 }; 3634 3635 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3636 if (!bus) 3637 return -ENOMEM; 3638 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3639 return r < 0 ? r : 0; 3640 } 3641 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3642 3643 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3644 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3645 gpa_t addr, int len, const void *val, long cookie) 3646 { 3647 struct kvm_io_bus *bus; 3648 struct kvm_io_range range; 3649 3650 range = (struct kvm_io_range) { 3651 .addr = addr, 3652 .len = len, 3653 }; 3654 3655 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3656 if (!bus) 3657 return -ENOMEM; 3658 3659 /* First try the device referenced by cookie. */ 3660 if ((cookie >= 0) && (cookie < bus->dev_count) && 3661 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3662 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3663 val)) 3664 return cookie; 3665 3666 /* 3667 * cookie contained garbage; fall back to search and return the 3668 * correct cookie value. 3669 */ 3670 return __kvm_io_bus_write(vcpu, bus, &range, val); 3671 } 3672 3673 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3674 struct kvm_io_range *range, void *val) 3675 { 3676 int idx; 3677 3678 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3679 if (idx < 0) 3680 return -EOPNOTSUPP; 3681 3682 while (idx < bus->dev_count && 3683 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3684 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3685 range->len, val)) 3686 return idx; 3687 idx++; 3688 } 3689 3690 return -EOPNOTSUPP; 3691 } 3692 3693 /* kvm_io_bus_read - called under kvm->slots_lock */ 3694 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3695 int len, void *val) 3696 { 3697 struct kvm_io_bus *bus; 3698 struct kvm_io_range range; 3699 int r; 3700 3701 range = (struct kvm_io_range) { 3702 .addr = addr, 3703 .len = len, 3704 }; 3705 3706 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3707 if (!bus) 3708 return -ENOMEM; 3709 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3710 return r < 0 ? r : 0; 3711 } 3712 3713 /* Caller must hold slots_lock. */ 3714 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3715 int len, struct kvm_io_device *dev) 3716 { 3717 int i; 3718 struct kvm_io_bus *new_bus, *bus; 3719 struct kvm_io_range range; 3720 3721 bus = kvm_get_bus(kvm, bus_idx); 3722 if (!bus) 3723 return -ENOMEM; 3724 3725 /* exclude ioeventfd which is limited by maximum fd */ 3726 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3727 return -ENOSPC; 3728 3729 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3730 GFP_KERNEL_ACCOUNT); 3731 if (!new_bus) 3732 return -ENOMEM; 3733 3734 range = (struct kvm_io_range) { 3735 .addr = addr, 3736 .len = len, 3737 .dev = dev, 3738 }; 3739 3740 for (i = 0; i < bus->dev_count; i++) 3741 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3742 break; 3743 3744 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3745 new_bus->dev_count++; 3746 new_bus->range[i] = range; 3747 memcpy(new_bus->range + i + 1, bus->range + i, 3748 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3749 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3750 synchronize_srcu_expedited(&kvm->srcu); 3751 kfree(bus); 3752 3753 return 0; 3754 } 3755 3756 /* Caller must hold slots_lock. */ 3757 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3758 struct kvm_io_device *dev) 3759 { 3760 int i; 3761 struct kvm_io_bus *new_bus, *bus; 3762 3763 bus = kvm_get_bus(kvm, bus_idx); 3764 if (!bus) 3765 return; 3766 3767 for (i = 0; i < bus->dev_count; i++) 3768 if (bus->range[i].dev == dev) { 3769 break; 3770 } 3771 3772 if (i == bus->dev_count) 3773 return; 3774 3775 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3776 GFP_KERNEL_ACCOUNT); 3777 if (!new_bus) { 3778 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3779 goto broken; 3780 } 3781 3782 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3783 new_bus->dev_count--; 3784 memcpy(new_bus->range + i, bus->range + i + 1, 3785 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3786 3787 broken: 3788 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3789 synchronize_srcu_expedited(&kvm->srcu); 3790 kfree(bus); 3791 return; 3792 } 3793 3794 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3795 gpa_t addr) 3796 { 3797 struct kvm_io_bus *bus; 3798 int dev_idx, srcu_idx; 3799 struct kvm_io_device *iodev = NULL; 3800 3801 srcu_idx = srcu_read_lock(&kvm->srcu); 3802 3803 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3804 if (!bus) 3805 goto out_unlock; 3806 3807 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3808 if (dev_idx < 0) 3809 goto out_unlock; 3810 3811 iodev = bus->range[dev_idx].dev; 3812 3813 out_unlock: 3814 srcu_read_unlock(&kvm->srcu, srcu_idx); 3815 3816 return iodev; 3817 } 3818 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3819 3820 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3821 int (*get)(void *, u64 *), int (*set)(void *, u64), 3822 const char *fmt) 3823 { 3824 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3825 inode->i_private; 3826 3827 /* The debugfs files are a reference to the kvm struct which 3828 * is still valid when kvm_destroy_vm is called. 3829 * To avoid the race between open and the removal of the debugfs 3830 * directory we test against the users count. 3831 */ 3832 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3833 return -ENOENT; 3834 3835 if (simple_attr_open(inode, file, get, set, fmt)) { 3836 kvm_put_kvm(stat_data->kvm); 3837 return -ENOMEM; 3838 } 3839 3840 return 0; 3841 } 3842 3843 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3844 { 3845 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3846 inode->i_private; 3847 3848 simple_attr_release(inode, file); 3849 kvm_put_kvm(stat_data->kvm); 3850 3851 return 0; 3852 } 3853 3854 static int vm_stat_get_per_vm(void *data, u64 *val) 3855 { 3856 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3857 3858 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3859 3860 return 0; 3861 } 3862 3863 static int vm_stat_clear_per_vm(void *data, u64 val) 3864 { 3865 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3866 3867 if (val) 3868 return -EINVAL; 3869 3870 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3871 3872 return 0; 3873 } 3874 3875 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3876 { 3877 __simple_attr_check_format("%llu\n", 0ull); 3878 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3879 vm_stat_clear_per_vm, "%llu\n"); 3880 } 3881 3882 static const struct file_operations vm_stat_get_per_vm_fops = { 3883 .owner = THIS_MODULE, 3884 .open = vm_stat_get_per_vm_open, 3885 .release = kvm_debugfs_release, 3886 .read = simple_attr_read, 3887 .write = simple_attr_write, 3888 .llseek = no_llseek, 3889 }; 3890 3891 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3892 { 3893 int i; 3894 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3895 struct kvm_vcpu *vcpu; 3896 3897 *val = 0; 3898 3899 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3900 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3901 3902 return 0; 3903 } 3904 3905 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3906 { 3907 int i; 3908 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3909 struct kvm_vcpu *vcpu; 3910 3911 if (val) 3912 return -EINVAL; 3913 3914 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3915 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3916 3917 return 0; 3918 } 3919 3920 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3921 { 3922 __simple_attr_check_format("%llu\n", 0ull); 3923 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3924 vcpu_stat_clear_per_vm, "%llu\n"); 3925 } 3926 3927 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3928 .owner = THIS_MODULE, 3929 .open = vcpu_stat_get_per_vm_open, 3930 .release = kvm_debugfs_release, 3931 .read = simple_attr_read, 3932 .write = simple_attr_write, 3933 .llseek = no_llseek, 3934 }; 3935 3936 static const struct file_operations *stat_fops_per_vm[] = { 3937 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3938 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3939 }; 3940 3941 static int vm_stat_get(void *_offset, u64 *val) 3942 { 3943 unsigned offset = (long)_offset; 3944 struct kvm *kvm; 3945 struct kvm_stat_data stat_tmp = {.offset = offset}; 3946 u64 tmp_val; 3947 3948 *val = 0; 3949 spin_lock(&kvm_lock); 3950 list_for_each_entry(kvm, &vm_list, vm_list) { 3951 stat_tmp.kvm = kvm; 3952 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3953 *val += tmp_val; 3954 } 3955 spin_unlock(&kvm_lock); 3956 return 0; 3957 } 3958 3959 static int vm_stat_clear(void *_offset, u64 val) 3960 { 3961 unsigned offset = (long)_offset; 3962 struct kvm *kvm; 3963 struct kvm_stat_data stat_tmp = {.offset = offset}; 3964 3965 if (val) 3966 return -EINVAL; 3967 3968 spin_lock(&kvm_lock); 3969 list_for_each_entry(kvm, &vm_list, vm_list) { 3970 stat_tmp.kvm = kvm; 3971 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3972 } 3973 spin_unlock(&kvm_lock); 3974 3975 return 0; 3976 } 3977 3978 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3979 3980 static int vcpu_stat_get(void *_offset, u64 *val) 3981 { 3982 unsigned offset = (long)_offset; 3983 struct kvm *kvm; 3984 struct kvm_stat_data stat_tmp = {.offset = offset}; 3985 u64 tmp_val; 3986 3987 *val = 0; 3988 spin_lock(&kvm_lock); 3989 list_for_each_entry(kvm, &vm_list, vm_list) { 3990 stat_tmp.kvm = kvm; 3991 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3992 *val += tmp_val; 3993 } 3994 spin_unlock(&kvm_lock); 3995 return 0; 3996 } 3997 3998 static int vcpu_stat_clear(void *_offset, u64 val) 3999 { 4000 unsigned offset = (long)_offset; 4001 struct kvm *kvm; 4002 struct kvm_stat_data stat_tmp = {.offset = offset}; 4003 4004 if (val) 4005 return -EINVAL; 4006 4007 spin_lock(&kvm_lock); 4008 list_for_each_entry(kvm, &vm_list, vm_list) { 4009 stat_tmp.kvm = kvm; 4010 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4011 } 4012 spin_unlock(&kvm_lock); 4013 4014 return 0; 4015 } 4016 4017 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4018 "%llu\n"); 4019 4020 static const struct file_operations *stat_fops[] = { 4021 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4022 [KVM_STAT_VM] = &vm_stat_fops, 4023 }; 4024 4025 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4026 { 4027 struct kobj_uevent_env *env; 4028 unsigned long long created, active; 4029 4030 if (!kvm_dev.this_device || !kvm) 4031 return; 4032 4033 spin_lock(&kvm_lock); 4034 if (type == KVM_EVENT_CREATE_VM) { 4035 kvm_createvm_count++; 4036 kvm_active_vms++; 4037 } else if (type == KVM_EVENT_DESTROY_VM) { 4038 kvm_active_vms--; 4039 } 4040 created = kvm_createvm_count; 4041 active = kvm_active_vms; 4042 spin_unlock(&kvm_lock); 4043 4044 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4045 if (!env) 4046 return; 4047 4048 add_uevent_var(env, "CREATED=%llu", created); 4049 add_uevent_var(env, "COUNT=%llu", active); 4050 4051 if (type == KVM_EVENT_CREATE_VM) { 4052 add_uevent_var(env, "EVENT=create"); 4053 kvm->userspace_pid = task_pid_nr(current); 4054 } else if (type == KVM_EVENT_DESTROY_VM) { 4055 add_uevent_var(env, "EVENT=destroy"); 4056 } 4057 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4058 4059 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4060 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4061 4062 if (p) { 4063 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4064 if (!IS_ERR(tmp)) 4065 add_uevent_var(env, "STATS_PATH=%s", tmp); 4066 kfree(p); 4067 } 4068 } 4069 /* no need for checks, since we are adding at most only 5 keys */ 4070 env->envp[env->envp_idx++] = NULL; 4071 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4072 kfree(env); 4073 } 4074 4075 static void kvm_init_debug(void) 4076 { 4077 struct kvm_stats_debugfs_item *p; 4078 4079 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4080 4081 kvm_debugfs_num_entries = 0; 4082 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4083 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4084 (void *)(long)p->offset, 4085 stat_fops[p->kind]); 4086 } 4087 } 4088 4089 static int kvm_suspend(void) 4090 { 4091 if (kvm_usage_count) 4092 hardware_disable_nolock(NULL); 4093 return 0; 4094 } 4095 4096 static void kvm_resume(void) 4097 { 4098 if (kvm_usage_count) { 4099 lockdep_assert_held(&kvm_count_lock); 4100 hardware_enable_nolock(NULL); 4101 } 4102 } 4103 4104 static struct syscore_ops kvm_syscore_ops = { 4105 .suspend = kvm_suspend, 4106 .resume = kvm_resume, 4107 }; 4108 4109 static inline 4110 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4111 { 4112 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4113 } 4114 4115 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4116 { 4117 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4118 4119 if (vcpu->preempted) 4120 vcpu->preempted = false; 4121 4122 kvm_arch_sched_in(vcpu, cpu); 4123 4124 kvm_arch_vcpu_load(vcpu, cpu); 4125 } 4126 4127 static void kvm_sched_out(struct preempt_notifier *pn, 4128 struct task_struct *next) 4129 { 4130 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4131 4132 if (current->state == TASK_RUNNING) 4133 vcpu->preempted = true; 4134 kvm_arch_vcpu_put(vcpu); 4135 } 4136 4137 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4138 struct module *module) 4139 { 4140 int r; 4141 int cpu; 4142 4143 r = kvm_arch_init(opaque); 4144 if (r) 4145 goto out_fail; 4146 4147 /* 4148 * kvm_arch_init makes sure there's at most one caller 4149 * for architectures that support multiple implementations, 4150 * like intel and amd on x86. 4151 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4152 * conflicts in case kvm is already setup for another implementation. 4153 */ 4154 r = kvm_irqfd_init(); 4155 if (r) 4156 goto out_irqfd; 4157 4158 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4159 r = -ENOMEM; 4160 goto out_free_0; 4161 } 4162 4163 r = kvm_arch_hardware_setup(); 4164 if (r < 0) 4165 goto out_free_0a; 4166 4167 for_each_online_cpu(cpu) { 4168 smp_call_function_single(cpu, 4169 kvm_arch_check_processor_compat, 4170 &r, 1); 4171 if (r < 0) 4172 goto out_free_1; 4173 } 4174 4175 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4176 kvm_starting_cpu, kvm_dying_cpu); 4177 if (r) 4178 goto out_free_2; 4179 register_reboot_notifier(&kvm_reboot_notifier); 4180 4181 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4182 if (!vcpu_align) 4183 vcpu_align = __alignof__(struct kvm_vcpu); 4184 kvm_vcpu_cache = 4185 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4186 SLAB_ACCOUNT, 4187 offsetof(struct kvm_vcpu, arch), 4188 sizeof_field(struct kvm_vcpu, arch), 4189 NULL); 4190 if (!kvm_vcpu_cache) { 4191 r = -ENOMEM; 4192 goto out_free_3; 4193 } 4194 4195 r = kvm_async_pf_init(); 4196 if (r) 4197 goto out_free; 4198 4199 kvm_chardev_ops.owner = module; 4200 kvm_vm_fops.owner = module; 4201 kvm_vcpu_fops.owner = module; 4202 4203 r = misc_register(&kvm_dev); 4204 if (r) { 4205 pr_err("kvm: misc device register failed\n"); 4206 goto out_unreg; 4207 } 4208 4209 register_syscore_ops(&kvm_syscore_ops); 4210 4211 kvm_preempt_ops.sched_in = kvm_sched_in; 4212 kvm_preempt_ops.sched_out = kvm_sched_out; 4213 4214 kvm_init_debug(); 4215 4216 r = kvm_vfio_ops_init(); 4217 WARN_ON(r); 4218 4219 return 0; 4220 4221 out_unreg: 4222 kvm_async_pf_deinit(); 4223 out_free: 4224 kmem_cache_destroy(kvm_vcpu_cache); 4225 out_free_3: 4226 unregister_reboot_notifier(&kvm_reboot_notifier); 4227 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4228 out_free_2: 4229 out_free_1: 4230 kvm_arch_hardware_unsetup(); 4231 out_free_0a: 4232 free_cpumask_var(cpus_hardware_enabled); 4233 out_free_0: 4234 kvm_irqfd_exit(); 4235 out_irqfd: 4236 kvm_arch_exit(); 4237 out_fail: 4238 return r; 4239 } 4240 EXPORT_SYMBOL_GPL(kvm_init); 4241 4242 void kvm_exit(void) 4243 { 4244 debugfs_remove_recursive(kvm_debugfs_dir); 4245 misc_deregister(&kvm_dev); 4246 kmem_cache_destroy(kvm_vcpu_cache); 4247 kvm_async_pf_deinit(); 4248 unregister_syscore_ops(&kvm_syscore_ops); 4249 unregister_reboot_notifier(&kvm_reboot_notifier); 4250 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4251 on_each_cpu(hardware_disable_nolock, NULL, 1); 4252 kvm_arch_hardware_unsetup(); 4253 kvm_arch_exit(); 4254 kvm_irqfd_exit(); 4255 free_cpumask_var(cpus_hardware_enabled); 4256 kvm_vfio_ops_exit(); 4257 } 4258 EXPORT_SYMBOL_GPL(kvm_exit); 4259