xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 7f35e63d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126 
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129 
130 static bool largepages_enabled = true;
131 
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137 
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 		unsigned long start, unsigned long end)
140 {
141 }
142 
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 	if (pfn_valid(pfn))
146 		return PageReserved(pfn_to_page(pfn));
147 
148 	return true;
149 }
150 
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 void vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 	int cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162 
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165 	preempt_disable();
166 	kvm_arch_vcpu_put(vcpu);
167 	preempt_notifier_unregister(&vcpu->preempt_notifier);
168 	preempt_enable();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_put);
171 
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
174 {
175 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
176 
177 	/*
178 	 * We need to wait for the VCPU to reenable interrupts and get out of
179 	 * READING_SHADOW_PAGE_TABLES mode.
180 	 */
181 	if (req & KVM_REQUEST_WAIT)
182 		return mode != OUTSIDE_GUEST_MODE;
183 
184 	/*
185 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
186 	 */
187 	return mode == IN_GUEST_MODE;
188 }
189 
190 static void ack_flush(void *_completed)
191 {
192 }
193 
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
195 {
196 	if (unlikely(!cpus))
197 		cpus = cpu_online_mask;
198 
199 	if (cpumask_empty(cpus))
200 		return false;
201 
202 	smp_call_function_many(cpus, ack_flush, NULL, wait);
203 	return true;
204 }
205 
206 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
207 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
208 {
209 	int i, cpu, me;
210 	struct kvm_vcpu *vcpu;
211 	bool called;
212 
213 	me = get_cpu();
214 
215 	kvm_for_each_vcpu(i, vcpu, kvm) {
216 		if (!test_bit(i, vcpu_bitmap))
217 			continue;
218 
219 		kvm_make_request(req, vcpu);
220 		cpu = vcpu->cpu;
221 
222 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 			continue;
224 
225 		if (tmp != NULL && cpu != -1 && cpu != me &&
226 		    kvm_request_needs_ipi(vcpu, req))
227 			__cpumask_set_cpu(cpu, tmp);
228 	}
229 
230 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
231 	put_cpu();
232 
233 	return called;
234 }
235 
236 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
237 {
238 	cpumask_var_t cpus;
239 	bool called;
240 	static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
241 		= {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
242 
243 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
244 
245 	called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
246 
247 	free_cpumask_var(cpus);
248 	return called;
249 }
250 
251 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
252 void kvm_flush_remote_tlbs(struct kvm *kvm)
253 {
254 	/*
255 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
256 	 * kvm_make_all_cpus_request.
257 	 */
258 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
259 
260 	/*
261 	 * We want to publish modifications to the page tables before reading
262 	 * mode. Pairs with a memory barrier in arch-specific code.
263 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
264 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
265 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
266 	 *
267 	 * There is already an smp_mb__after_atomic() before
268 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
269 	 * barrier here.
270 	 */
271 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
272 		++kvm->stat.remote_tlb_flush;
273 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
274 }
275 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
276 #endif
277 
278 void kvm_reload_remote_mmus(struct kvm *kvm)
279 {
280 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
281 }
282 
283 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
284 {
285 	struct page *page;
286 	int r;
287 
288 	mutex_init(&vcpu->mutex);
289 	vcpu->cpu = -1;
290 	vcpu->kvm = kvm;
291 	vcpu->vcpu_id = id;
292 	vcpu->pid = NULL;
293 	init_swait_queue_head(&vcpu->wq);
294 	kvm_async_pf_vcpu_init(vcpu);
295 
296 	vcpu->pre_pcpu = -1;
297 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
298 
299 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
300 	if (!page) {
301 		r = -ENOMEM;
302 		goto fail;
303 	}
304 	vcpu->run = page_address(page);
305 
306 	kvm_vcpu_set_in_spin_loop(vcpu, false);
307 	kvm_vcpu_set_dy_eligible(vcpu, false);
308 	vcpu->preempted = false;
309 
310 	r = kvm_arch_vcpu_init(vcpu);
311 	if (r < 0)
312 		goto fail_free_run;
313 	return 0;
314 
315 fail_free_run:
316 	free_page((unsigned long)vcpu->run);
317 fail:
318 	return r;
319 }
320 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
321 
322 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
323 {
324 	/*
325 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
326 	 * will change the vcpu->pid pointer and on uninit all file
327 	 * descriptors are already gone.
328 	 */
329 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
330 	kvm_arch_vcpu_uninit(vcpu);
331 	free_page((unsigned long)vcpu->run);
332 }
333 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
334 
335 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
336 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
337 {
338 	return container_of(mn, struct kvm, mmu_notifier);
339 }
340 
341 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
342 					struct mm_struct *mm,
343 					unsigned long address,
344 					pte_t pte)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	kvm->mmu_notifier_seq++;
352 	kvm_set_spte_hva(kvm, address, pte);
353 	spin_unlock(&kvm->mmu_lock);
354 	srcu_read_unlock(&kvm->srcu, idx);
355 }
356 
357 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
358 						    struct mm_struct *mm,
359 						    unsigned long start,
360 						    unsigned long end)
361 {
362 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
363 	int need_tlb_flush = 0, idx;
364 
365 	idx = srcu_read_lock(&kvm->srcu);
366 	spin_lock(&kvm->mmu_lock);
367 	/*
368 	 * The count increase must become visible at unlock time as no
369 	 * spte can be established without taking the mmu_lock and
370 	 * count is also read inside the mmu_lock critical section.
371 	 */
372 	kvm->mmu_notifier_count++;
373 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
374 	need_tlb_flush |= kvm->tlbs_dirty;
375 	/* we've to flush the tlb before the pages can be freed */
376 	if (need_tlb_flush)
377 		kvm_flush_remote_tlbs(kvm);
378 
379 	spin_unlock(&kvm->mmu_lock);
380 
381 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
382 
383 	srcu_read_unlock(&kvm->srcu, idx);
384 }
385 
386 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
387 						  struct mm_struct *mm,
388 						  unsigned long start,
389 						  unsigned long end)
390 {
391 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
392 
393 	spin_lock(&kvm->mmu_lock);
394 	/*
395 	 * This sequence increase will notify the kvm page fault that
396 	 * the page that is going to be mapped in the spte could have
397 	 * been freed.
398 	 */
399 	kvm->mmu_notifier_seq++;
400 	smp_wmb();
401 	/*
402 	 * The above sequence increase must be visible before the
403 	 * below count decrease, which is ensured by the smp_wmb above
404 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
405 	 */
406 	kvm->mmu_notifier_count--;
407 	spin_unlock(&kvm->mmu_lock);
408 
409 	BUG_ON(kvm->mmu_notifier_count < 0);
410 }
411 
412 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
413 					      struct mm_struct *mm,
414 					      unsigned long start,
415 					      unsigned long end)
416 {
417 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
418 	int young, idx;
419 
420 	idx = srcu_read_lock(&kvm->srcu);
421 	spin_lock(&kvm->mmu_lock);
422 
423 	young = kvm_age_hva(kvm, start, end);
424 	if (young)
425 		kvm_flush_remote_tlbs(kvm);
426 
427 	spin_unlock(&kvm->mmu_lock);
428 	srcu_read_unlock(&kvm->srcu, idx);
429 
430 	return young;
431 }
432 
433 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
434 					struct mm_struct *mm,
435 					unsigned long start,
436 					unsigned long end)
437 {
438 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
439 	int young, idx;
440 
441 	idx = srcu_read_lock(&kvm->srcu);
442 	spin_lock(&kvm->mmu_lock);
443 	/*
444 	 * Even though we do not flush TLB, this will still adversely
445 	 * affect performance on pre-Haswell Intel EPT, where there is
446 	 * no EPT Access Bit to clear so that we have to tear down EPT
447 	 * tables instead. If we find this unacceptable, we can always
448 	 * add a parameter to kvm_age_hva so that it effectively doesn't
449 	 * do anything on clear_young.
450 	 *
451 	 * Also note that currently we never issue secondary TLB flushes
452 	 * from clear_young, leaving this job up to the regular system
453 	 * cadence. If we find this inaccurate, we might come up with a
454 	 * more sophisticated heuristic later.
455 	 */
456 	young = kvm_age_hva(kvm, start, end);
457 	spin_unlock(&kvm->mmu_lock);
458 	srcu_read_unlock(&kvm->srcu, idx);
459 
460 	return young;
461 }
462 
463 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
464 				       struct mm_struct *mm,
465 				       unsigned long address)
466 {
467 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 	int young, idx;
469 
470 	idx = srcu_read_lock(&kvm->srcu);
471 	spin_lock(&kvm->mmu_lock);
472 	young = kvm_test_age_hva(kvm, address);
473 	spin_unlock(&kvm->mmu_lock);
474 	srcu_read_unlock(&kvm->srcu, idx);
475 
476 	return young;
477 }
478 
479 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
480 				     struct mm_struct *mm)
481 {
482 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 	int idx;
484 
485 	idx = srcu_read_lock(&kvm->srcu);
486 	kvm_arch_flush_shadow_all(kvm);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 }
489 
490 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
491 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
492 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
493 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
494 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
495 	.clear_young		= kvm_mmu_notifier_clear_young,
496 	.test_young		= kvm_mmu_notifier_test_young,
497 	.change_pte		= kvm_mmu_notifier_change_pte,
498 	.release		= kvm_mmu_notifier_release,
499 };
500 
501 static int kvm_init_mmu_notifier(struct kvm *kvm)
502 {
503 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
504 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
505 }
506 
507 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
508 
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
510 {
511 	return 0;
512 }
513 
514 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
515 
516 static struct kvm_memslots *kvm_alloc_memslots(void)
517 {
518 	int i;
519 	struct kvm_memslots *slots;
520 
521 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
522 	if (!slots)
523 		return NULL;
524 
525 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
526 		slots->id_to_index[i] = slots->memslots[i].id = i;
527 
528 	return slots;
529 }
530 
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533 	if (!memslot->dirty_bitmap)
534 		return;
535 
536 	kvfree(memslot->dirty_bitmap);
537 	memslot->dirty_bitmap = NULL;
538 }
539 
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
544 			      struct kvm_memory_slot *dont)
545 {
546 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 		kvm_destroy_dirty_bitmap(free);
548 
549 	kvm_arch_free_memslot(kvm, free, dont);
550 
551 	free->npages = 0;
552 }
553 
554 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
555 {
556 	struct kvm_memory_slot *memslot;
557 
558 	if (!slots)
559 		return;
560 
561 	kvm_for_each_memslot(memslot, slots)
562 		kvm_free_memslot(kvm, memslot, NULL);
563 
564 	kvfree(slots);
565 }
566 
567 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
568 {
569 	int i;
570 
571 	if (!kvm->debugfs_dentry)
572 		return;
573 
574 	debugfs_remove_recursive(kvm->debugfs_dentry);
575 
576 	if (kvm->debugfs_stat_data) {
577 		for (i = 0; i < kvm_debugfs_num_entries; i++)
578 			kfree(kvm->debugfs_stat_data[i]);
579 		kfree(kvm->debugfs_stat_data);
580 	}
581 }
582 
583 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
584 {
585 	char dir_name[ITOA_MAX_LEN * 2];
586 	struct kvm_stat_data *stat_data;
587 	struct kvm_stats_debugfs_item *p;
588 
589 	if (!debugfs_initialized())
590 		return 0;
591 
592 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
593 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
594 
595 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
596 					 sizeof(*kvm->debugfs_stat_data),
597 					 GFP_KERNEL);
598 	if (!kvm->debugfs_stat_data)
599 		return -ENOMEM;
600 
601 	for (p = debugfs_entries; p->name; p++) {
602 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
603 		if (!stat_data)
604 			return -ENOMEM;
605 
606 		stat_data->kvm = kvm;
607 		stat_data->offset = p->offset;
608 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
609 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
610 				    stat_data, stat_fops_per_vm[p->kind]);
611 	}
612 	return 0;
613 }
614 
615 static struct kvm *kvm_create_vm(unsigned long type)
616 {
617 	int r, i;
618 	struct kvm *kvm = kvm_arch_alloc_vm();
619 
620 	if (!kvm)
621 		return ERR_PTR(-ENOMEM);
622 
623 	spin_lock_init(&kvm->mmu_lock);
624 	mmgrab(current->mm);
625 	kvm->mm = current->mm;
626 	kvm_eventfd_init(kvm);
627 	mutex_init(&kvm->lock);
628 	mutex_init(&kvm->irq_lock);
629 	mutex_init(&kvm->slots_lock);
630 	refcount_set(&kvm->users_count, 1);
631 	INIT_LIST_HEAD(&kvm->devices);
632 
633 	r = kvm_arch_init_vm(kvm, type);
634 	if (r)
635 		goto out_err_no_disable;
636 
637 	r = hardware_enable_all();
638 	if (r)
639 		goto out_err_no_disable;
640 
641 #ifdef CONFIG_HAVE_KVM_IRQFD
642 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
643 #endif
644 
645 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
646 
647 	r = -ENOMEM;
648 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649 		struct kvm_memslots *slots = kvm_alloc_memslots();
650 		if (!slots)
651 			goto out_err_no_srcu;
652 		/*
653 		 * Generations must be different for each address space.
654 		 * Init kvm generation close to the maximum to easily test the
655 		 * code of handling generation number wrap-around.
656 		 */
657 		slots->generation = i * 2 - 150;
658 		rcu_assign_pointer(kvm->memslots[i], slots);
659 	}
660 
661 	if (init_srcu_struct(&kvm->srcu))
662 		goto out_err_no_srcu;
663 	if (init_srcu_struct(&kvm->irq_srcu))
664 		goto out_err_no_irq_srcu;
665 	for (i = 0; i < KVM_NR_BUSES; i++) {
666 		rcu_assign_pointer(kvm->buses[i],
667 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
668 		if (!kvm->buses[i])
669 			goto out_err;
670 	}
671 
672 	r = kvm_init_mmu_notifier(kvm);
673 	if (r)
674 		goto out_err;
675 
676 	spin_lock(&kvm_lock);
677 	list_add(&kvm->vm_list, &vm_list);
678 	spin_unlock(&kvm_lock);
679 
680 	preempt_notifier_inc();
681 
682 	return kvm;
683 
684 out_err:
685 	cleanup_srcu_struct(&kvm->irq_srcu);
686 out_err_no_irq_srcu:
687 	cleanup_srcu_struct(&kvm->srcu);
688 out_err_no_srcu:
689 	hardware_disable_all();
690 out_err_no_disable:
691 	refcount_set(&kvm->users_count, 0);
692 	for (i = 0; i < KVM_NR_BUSES; i++)
693 		kfree(kvm_get_bus(kvm, i));
694 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
695 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
696 	kvm_arch_free_vm(kvm);
697 	mmdrop(current->mm);
698 	return ERR_PTR(r);
699 }
700 
701 static void kvm_destroy_devices(struct kvm *kvm)
702 {
703 	struct kvm_device *dev, *tmp;
704 
705 	/*
706 	 * We do not need to take the kvm->lock here, because nobody else
707 	 * has a reference to the struct kvm at this point and therefore
708 	 * cannot access the devices list anyhow.
709 	 */
710 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
711 		list_del(&dev->vm_node);
712 		dev->ops->destroy(dev);
713 	}
714 }
715 
716 static void kvm_destroy_vm(struct kvm *kvm)
717 {
718 	int i;
719 	struct mm_struct *mm = kvm->mm;
720 
721 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
722 	kvm_destroy_vm_debugfs(kvm);
723 	kvm_arch_sync_events(kvm);
724 	spin_lock(&kvm_lock);
725 	list_del(&kvm->vm_list);
726 	spin_unlock(&kvm_lock);
727 	kvm_free_irq_routing(kvm);
728 	for (i = 0; i < KVM_NR_BUSES; i++) {
729 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
730 
731 		if (bus)
732 			kvm_io_bus_destroy(bus);
733 		kvm->buses[i] = NULL;
734 	}
735 	kvm_coalesced_mmio_free(kvm);
736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
737 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
738 #else
739 	kvm_arch_flush_shadow_all(kvm);
740 #endif
741 	kvm_arch_destroy_vm(kvm);
742 	kvm_destroy_devices(kvm);
743 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
744 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
745 	cleanup_srcu_struct(&kvm->irq_srcu);
746 	cleanup_srcu_struct(&kvm->srcu);
747 	kvm_arch_free_vm(kvm);
748 	preempt_notifier_dec();
749 	hardware_disable_all();
750 	mmdrop(mm);
751 }
752 
753 void kvm_get_kvm(struct kvm *kvm)
754 {
755 	refcount_inc(&kvm->users_count);
756 }
757 EXPORT_SYMBOL_GPL(kvm_get_kvm);
758 
759 void kvm_put_kvm(struct kvm *kvm)
760 {
761 	if (refcount_dec_and_test(&kvm->users_count))
762 		kvm_destroy_vm(kvm);
763 }
764 EXPORT_SYMBOL_GPL(kvm_put_kvm);
765 
766 
767 static int kvm_vm_release(struct inode *inode, struct file *filp)
768 {
769 	struct kvm *kvm = filp->private_data;
770 
771 	kvm_irqfd_release(kvm);
772 
773 	kvm_put_kvm(kvm);
774 	return 0;
775 }
776 
777 /*
778  * Allocation size is twice as large as the actual dirty bitmap size.
779  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
780  */
781 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
782 {
783 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
784 
785 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
786 	if (!memslot->dirty_bitmap)
787 		return -ENOMEM;
788 
789 	return 0;
790 }
791 
792 /*
793  * Insert memslot and re-sort memslots based on their GFN,
794  * so binary search could be used to lookup GFN.
795  * Sorting algorithm takes advantage of having initially
796  * sorted array and known changed memslot position.
797  */
798 static void update_memslots(struct kvm_memslots *slots,
799 			    struct kvm_memory_slot *new)
800 {
801 	int id = new->id;
802 	int i = slots->id_to_index[id];
803 	struct kvm_memory_slot *mslots = slots->memslots;
804 
805 	WARN_ON(mslots[i].id != id);
806 	if (!new->npages) {
807 		WARN_ON(!mslots[i].npages);
808 		if (mslots[i].npages)
809 			slots->used_slots--;
810 	} else {
811 		if (!mslots[i].npages)
812 			slots->used_slots++;
813 	}
814 
815 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
816 	       new->base_gfn <= mslots[i + 1].base_gfn) {
817 		if (!mslots[i + 1].npages)
818 			break;
819 		mslots[i] = mslots[i + 1];
820 		slots->id_to_index[mslots[i].id] = i;
821 		i++;
822 	}
823 
824 	/*
825 	 * The ">=" is needed when creating a slot with base_gfn == 0,
826 	 * so that it moves before all those with base_gfn == npages == 0.
827 	 *
828 	 * On the other hand, if new->npages is zero, the above loop has
829 	 * already left i pointing to the beginning of the empty part of
830 	 * mslots, and the ">=" would move the hole backwards in this
831 	 * case---which is wrong.  So skip the loop when deleting a slot.
832 	 */
833 	if (new->npages) {
834 		while (i > 0 &&
835 		       new->base_gfn >= mslots[i - 1].base_gfn) {
836 			mslots[i] = mslots[i - 1];
837 			slots->id_to_index[mslots[i].id] = i;
838 			i--;
839 		}
840 	} else
841 		WARN_ON_ONCE(i != slots->used_slots);
842 
843 	mslots[i] = *new;
844 	slots->id_to_index[mslots[i].id] = i;
845 }
846 
847 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
848 {
849 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
850 
851 #ifdef __KVM_HAVE_READONLY_MEM
852 	valid_flags |= KVM_MEM_READONLY;
853 #endif
854 
855 	if (mem->flags & ~valid_flags)
856 		return -EINVAL;
857 
858 	return 0;
859 }
860 
861 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
862 		int as_id, struct kvm_memslots *slots)
863 {
864 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
865 
866 	/*
867 	 * Set the low bit in the generation, which disables SPTE caching
868 	 * until the end of synchronize_srcu_expedited.
869 	 */
870 	WARN_ON(old_memslots->generation & 1);
871 	slots->generation = old_memslots->generation + 1;
872 
873 	rcu_assign_pointer(kvm->memslots[as_id], slots);
874 	synchronize_srcu_expedited(&kvm->srcu);
875 
876 	/*
877 	 * Increment the new memslot generation a second time. This prevents
878 	 * vm exits that race with memslot updates from caching a memslot
879 	 * generation that will (potentially) be valid forever.
880 	 *
881 	 * Generations must be unique even across address spaces.  We do not need
882 	 * a global counter for that, instead the generation space is evenly split
883 	 * across address spaces.  For example, with two address spaces, address
884 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
885 	 * use generations 2, 6, 10, 14, ...
886 	 */
887 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
888 
889 	kvm_arch_memslots_updated(kvm, slots);
890 
891 	return old_memslots;
892 }
893 
894 /*
895  * Allocate some memory and give it an address in the guest physical address
896  * space.
897  *
898  * Discontiguous memory is allowed, mostly for framebuffers.
899  *
900  * Must be called holding kvm->slots_lock for write.
901  */
902 int __kvm_set_memory_region(struct kvm *kvm,
903 			    const struct kvm_userspace_memory_region *mem)
904 {
905 	int r;
906 	gfn_t base_gfn;
907 	unsigned long npages;
908 	struct kvm_memory_slot *slot;
909 	struct kvm_memory_slot old, new;
910 	struct kvm_memslots *slots = NULL, *old_memslots;
911 	int as_id, id;
912 	enum kvm_mr_change change;
913 
914 	r = check_memory_region_flags(mem);
915 	if (r)
916 		goto out;
917 
918 	r = -EINVAL;
919 	as_id = mem->slot >> 16;
920 	id = (u16)mem->slot;
921 
922 	/* General sanity checks */
923 	if (mem->memory_size & (PAGE_SIZE - 1))
924 		goto out;
925 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
926 		goto out;
927 	/* We can read the guest memory with __xxx_user() later on. */
928 	if ((id < KVM_USER_MEM_SLOTS) &&
929 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
930 	     !access_ok(VERIFY_WRITE,
931 			(void __user *)(unsigned long)mem->userspace_addr,
932 			mem->memory_size)))
933 		goto out;
934 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
935 		goto out;
936 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
937 		goto out;
938 
939 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
940 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
941 	npages = mem->memory_size >> PAGE_SHIFT;
942 
943 	if (npages > KVM_MEM_MAX_NR_PAGES)
944 		goto out;
945 
946 	new = old = *slot;
947 
948 	new.id = id;
949 	new.base_gfn = base_gfn;
950 	new.npages = npages;
951 	new.flags = mem->flags;
952 
953 	if (npages) {
954 		if (!old.npages)
955 			change = KVM_MR_CREATE;
956 		else { /* Modify an existing slot. */
957 			if ((mem->userspace_addr != old.userspace_addr) ||
958 			    (npages != old.npages) ||
959 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
960 				goto out;
961 
962 			if (base_gfn != old.base_gfn)
963 				change = KVM_MR_MOVE;
964 			else if (new.flags != old.flags)
965 				change = KVM_MR_FLAGS_ONLY;
966 			else { /* Nothing to change. */
967 				r = 0;
968 				goto out;
969 			}
970 		}
971 	} else {
972 		if (!old.npages)
973 			goto out;
974 
975 		change = KVM_MR_DELETE;
976 		new.base_gfn = 0;
977 		new.flags = 0;
978 	}
979 
980 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
981 		/* Check for overlaps */
982 		r = -EEXIST;
983 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
984 			if (slot->id == id)
985 				continue;
986 			if (!((base_gfn + npages <= slot->base_gfn) ||
987 			      (base_gfn >= slot->base_gfn + slot->npages)))
988 				goto out;
989 		}
990 	}
991 
992 	/* Free page dirty bitmap if unneeded */
993 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
994 		new.dirty_bitmap = NULL;
995 
996 	r = -ENOMEM;
997 	if (change == KVM_MR_CREATE) {
998 		new.userspace_addr = mem->userspace_addr;
999 
1000 		if (kvm_arch_create_memslot(kvm, &new, npages))
1001 			goto out_free;
1002 	}
1003 
1004 	/* Allocate page dirty bitmap if needed */
1005 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1006 		if (kvm_create_dirty_bitmap(&new) < 0)
1007 			goto out_free;
1008 	}
1009 
1010 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1011 	if (!slots)
1012 		goto out_free;
1013 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1014 
1015 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1016 		slot = id_to_memslot(slots, id);
1017 		slot->flags |= KVM_MEMSLOT_INVALID;
1018 
1019 		old_memslots = install_new_memslots(kvm, as_id, slots);
1020 
1021 		/* From this point no new shadow pages pointing to a deleted,
1022 		 * or moved, memslot will be created.
1023 		 *
1024 		 * validation of sp->gfn happens in:
1025 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1026 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1027 		 */
1028 		kvm_arch_flush_shadow_memslot(kvm, slot);
1029 
1030 		/*
1031 		 * We can re-use the old_memslots from above, the only difference
1032 		 * from the currently installed memslots is the invalid flag.  This
1033 		 * will get overwritten by update_memslots anyway.
1034 		 */
1035 		slots = old_memslots;
1036 	}
1037 
1038 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1039 	if (r)
1040 		goto out_slots;
1041 
1042 	/* actual memory is freed via old in kvm_free_memslot below */
1043 	if (change == KVM_MR_DELETE) {
1044 		new.dirty_bitmap = NULL;
1045 		memset(&new.arch, 0, sizeof(new.arch));
1046 	}
1047 
1048 	update_memslots(slots, &new);
1049 	old_memslots = install_new_memslots(kvm, as_id, slots);
1050 
1051 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1052 
1053 	kvm_free_memslot(kvm, &old, &new);
1054 	kvfree(old_memslots);
1055 	return 0;
1056 
1057 out_slots:
1058 	kvfree(slots);
1059 out_free:
1060 	kvm_free_memslot(kvm, &new, &old);
1061 out:
1062 	return r;
1063 }
1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1065 
1066 int kvm_set_memory_region(struct kvm *kvm,
1067 			  const struct kvm_userspace_memory_region *mem)
1068 {
1069 	int r;
1070 
1071 	mutex_lock(&kvm->slots_lock);
1072 	r = __kvm_set_memory_region(kvm, mem);
1073 	mutex_unlock(&kvm->slots_lock);
1074 	return r;
1075 }
1076 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1077 
1078 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1079 					  struct kvm_userspace_memory_region *mem)
1080 {
1081 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1082 		return -EINVAL;
1083 
1084 	return kvm_set_memory_region(kvm, mem);
1085 }
1086 
1087 int kvm_get_dirty_log(struct kvm *kvm,
1088 			struct kvm_dirty_log *log, int *is_dirty)
1089 {
1090 	struct kvm_memslots *slots;
1091 	struct kvm_memory_slot *memslot;
1092 	int i, as_id, id;
1093 	unsigned long n;
1094 	unsigned long any = 0;
1095 
1096 	as_id = log->slot >> 16;
1097 	id = (u16)log->slot;
1098 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1099 		return -EINVAL;
1100 
1101 	slots = __kvm_memslots(kvm, as_id);
1102 	memslot = id_to_memslot(slots, id);
1103 	if (!memslot->dirty_bitmap)
1104 		return -ENOENT;
1105 
1106 	n = kvm_dirty_bitmap_bytes(memslot);
1107 
1108 	for (i = 0; !any && i < n/sizeof(long); ++i)
1109 		any = memslot->dirty_bitmap[i];
1110 
1111 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1112 		return -EFAULT;
1113 
1114 	if (any)
1115 		*is_dirty = 1;
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1119 
1120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1121 /**
1122  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1123  *	are dirty write protect them for next write.
1124  * @kvm:	pointer to kvm instance
1125  * @log:	slot id and address to which we copy the log
1126  * @is_dirty:	flag set if any page is dirty
1127  *
1128  * We need to keep it in mind that VCPU threads can write to the bitmap
1129  * concurrently. So, to avoid losing track of dirty pages we keep the
1130  * following order:
1131  *
1132  *    1. Take a snapshot of the bit and clear it if needed.
1133  *    2. Write protect the corresponding page.
1134  *    3. Copy the snapshot to the userspace.
1135  *    4. Upon return caller flushes TLB's if needed.
1136  *
1137  * Between 2 and 4, the guest may write to the page using the remaining TLB
1138  * entry.  This is not a problem because the page is reported dirty using
1139  * the snapshot taken before and step 4 ensures that writes done after
1140  * exiting to userspace will be logged for the next call.
1141  *
1142  */
1143 int kvm_get_dirty_log_protect(struct kvm *kvm,
1144 			struct kvm_dirty_log *log, bool *is_dirty)
1145 {
1146 	struct kvm_memslots *slots;
1147 	struct kvm_memory_slot *memslot;
1148 	int i, as_id, id;
1149 	unsigned long n;
1150 	unsigned long *dirty_bitmap;
1151 	unsigned long *dirty_bitmap_buffer;
1152 
1153 	as_id = log->slot >> 16;
1154 	id = (u16)log->slot;
1155 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1156 		return -EINVAL;
1157 
1158 	slots = __kvm_memslots(kvm, as_id);
1159 	memslot = id_to_memslot(slots, id);
1160 
1161 	dirty_bitmap = memslot->dirty_bitmap;
1162 	if (!dirty_bitmap)
1163 		return -ENOENT;
1164 
1165 	n = kvm_dirty_bitmap_bytes(memslot);
1166 
1167 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1168 	memset(dirty_bitmap_buffer, 0, n);
1169 
1170 	spin_lock(&kvm->mmu_lock);
1171 	*is_dirty = false;
1172 	for (i = 0; i < n / sizeof(long); i++) {
1173 		unsigned long mask;
1174 		gfn_t offset;
1175 
1176 		if (!dirty_bitmap[i])
1177 			continue;
1178 
1179 		*is_dirty = true;
1180 
1181 		mask = xchg(&dirty_bitmap[i], 0);
1182 		dirty_bitmap_buffer[i] = mask;
1183 
1184 		if (mask) {
1185 			offset = i * BITS_PER_LONG;
1186 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1187 								offset, mask);
1188 		}
1189 	}
1190 
1191 	spin_unlock(&kvm->mmu_lock);
1192 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1193 		return -EFAULT;
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1197 #endif
1198 
1199 bool kvm_largepages_enabled(void)
1200 {
1201 	return largepages_enabled;
1202 }
1203 
1204 void kvm_disable_largepages(void)
1205 {
1206 	largepages_enabled = false;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1209 
1210 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1211 {
1212 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1213 }
1214 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1215 
1216 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1217 {
1218 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1219 }
1220 
1221 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1222 {
1223 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1224 
1225 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1226 	      memslot->flags & KVM_MEMSLOT_INVALID)
1227 		return false;
1228 
1229 	return true;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1232 
1233 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1234 {
1235 	struct vm_area_struct *vma;
1236 	unsigned long addr, size;
1237 
1238 	size = PAGE_SIZE;
1239 
1240 	addr = gfn_to_hva(kvm, gfn);
1241 	if (kvm_is_error_hva(addr))
1242 		return PAGE_SIZE;
1243 
1244 	down_read(&current->mm->mmap_sem);
1245 	vma = find_vma(current->mm, addr);
1246 	if (!vma)
1247 		goto out;
1248 
1249 	size = vma_kernel_pagesize(vma);
1250 
1251 out:
1252 	up_read(&current->mm->mmap_sem);
1253 
1254 	return size;
1255 }
1256 
1257 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1258 {
1259 	return slot->flags & KVM_MEM_READONLY;
1260 }
1261 
1262 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1263 				       gfn_t *nr_pages, bool write)
1264 {
1265 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1266 		return KVM_HVA_ERR_BAD;
1267 
1268 	if (memslot_is_readonly(slot) && write)
1269 		return KVM_HVA_ERR_RO_BAD;
1270 
1271 	if (nr_pages)
1272 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1273 
1274 	return __gfn_to_hva_memslot(slot, gfn);
1275 }
1276 
1277 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 				     gfn_t *nr_pages)
1279 {
1280 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1281 }
1282 
1283 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1284 					gfn_t gfn)
1285 {
1286 	return gfn_to_hva_many(slot, gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1289 
1290 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1291 {
1292 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva);
1295 
1296 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1297 {
1298 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1301 
1302 /*
1303  * If writable is set to false, the hva returned by this function is only
1304  * allowed to be read.
1305  */
1306 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1307 				      gfn_t gfn, bool *writable)
1308 {
1309 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1310 
1311 	if (!kvm_is_error_hva(hva) && writable)
1312 		*writable = !memslot_is_readonly(slot);
1313 
1314 	return hva;
1315 }
1316 
1317 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1318 {
1319 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1320 
1321 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1322 }
1323 
1324 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1325 {
1326 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1327 
1328 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1329 }
1330 
1331 static inline int check_user_page_hwpoison(unsigned long addr)
1332 {
1333 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1334 
1335 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1336 	return rc == -EHWPOISON;
1337 }
1338 
1339 /*
1340  * The atomic path to get the writable pfn which will be stored in @pfn,
1341  * true indicates success, otherwise false is returned.
1342  */
1343 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1344 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1345 {
1346 	struct page *page[1];
1347 	int npages;
1348 
1349 	if (!(async || atomic))
1350 		return false;
1351 
1352 	/*
1353 	 * Fast pin a writable pfn only if it is a write fault request
1354 	 * or the caller allows to map a writable pfn for a read fault
1355 	 * request.
1356 	 */
1357 	if (!(write_fault || writable))
1358 		return false;
1359 
1360 	npages = __get_user_pages_fast(addr, 1, 1, page);
1361 	if (npages == 1) {
1362 		*pfn = page_to_pfn(page[0]);
1363 
1364 		if (writable)
1365 			*writable = true;
1366 		return true;
1367 	}
1368 
1369 	return false;
1370 }
1371 
1372 /*
1373  * The slow path to get the pfn of the specified host virtual address,
1374  * 1 indicates success, -errno is returned if error is detected.
1375  */
1376 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1377 			   bool *writable, kvm_pfn_t *pfn)
1378 {
1379 	unsigned int flags = FOLL_HWPOISON;
1380 	struct page *page;
1381 	int npages = 0;
1382 
1383 	might_sleep();
1384 
1385 	if (writable)
1386 		*writable = write_fault;
1387 
1388 	if (write_fault)
1389 		flags |= FOLL_WRITE;
1390 	if (async)
1391 		flags |= FOLL_NOWAIT;
1392 
1393 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1394 	if (npages != 1)
1395 		return npages;
1396 
1397 	/* map read fault as writable if possible */
1398 	if (unlikely(!write_fault) && writable) {
1399 		struct page *wpage;
1400 
1401 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1402 			*writable = true;
1403 			put_page(page);
1404 			page = wpage;
1405 		}
1406 	}
1407 	*pfn = page_to_pfn(page);
1408 	return npages;
1409 }
1410 
1411 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1412 {
1413 	if (unlikely(!(vma->vm_flags & VM_READ)))
1414 		return false;
1415 
1416 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1417 		return false;
1418 
1419 	return true;
1420 }
1421 
1422 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1423 			       unsigned long addr, bool *async,
1424 			       bool write_fault, bool *writable,
1425 			       kvm_pfn_t *p_pfn)
1426 {
1427 	unsigned long pfn;
1428 	int r;
1429 
1430 	r = follow_pfn(vma, addr, &pfn);
1431 	if (r) {
1432 		/*
1433 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1434 		 * not call the fault handler, so do it here.
1435 		 */
1436 		bool unlocked = false;
1437 		r = fixup_user_fault(current, current->mm, addr,
1438 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1439 				     &unlocked);
1440 		if (unlocked)
1441 			return -EAGAIN;
1442 		if (r)
1443 			return r;
1444 
1445 		r = follow_pfn(vma, addr, &pfn);
1446 		if (r)
1447 			return r;
1448 
1449 	}
1450 
1451 	if (writable)
1452 		*writable = true;
1453 
1454 	/*
1455 	 * Get a reference here because callers of *hva_to_pfn* and
1456 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1457 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1458 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1459 	 * simply do nothing for reserved pfns.
1460 	 *
1461 	 * Whoever called remap_pfn_range is also going to call e.g.
1462 	 * unmap_mapping_range before the underlying pages are freed,
1463 	 * causing a call to our MMU notifier.
1464 	 */
1465 	kvm_get_pfn(pfn);
1466 
1467 	*p_pfn = pfn;
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Pin guest page in memory and return its pfn.
1473  * @addr: host virtual address which maps memory to the guest
1474  * @atomic: whether this function can sleep
1475  * @async: whether this function need to wait IO complete if the
1476  *         host page is not in the memory
1477  * @write_fault: whether we should get a writable host page
1478  * @writable: whether it allows to map a writable host page for !@write_fault
1479  *
1480  * The function will map a writable host page for these two cases:
1481  * 1): @write_fault = true
1482  * 2): @write_fault = false && @writable, @writable will tell the caller
1483  *     whether the mapping is writable.
1484  */
1485 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1486 			bool write_fault, bool *writable)
1487 {
1488 	struct vm_area_struct *vma;
1489 	kvm_pfn_t pfn = 0;
1490 	int npages, r;
1491 
1492 	/* we can do it either atomically or asynchronously, not both */
1493 	BUG_ON(atomic && async);
1494 
1495 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1496 		return pfn;
1497 
1498 	if (atomic)
1499 		return KVM_PFN_ERR_FAULT;
1500 
1501 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1502 	if (npages == 1)
1503 		return pfn;
1504 
1505 	down_read(&current->mm->mmap_sem);
1506 	if (npages == -EHWPOISON ||
1507 	      (!async && check_user_page_hwpoison(addr))) {
1508 		pfn = KVM_PFN_ERR_HWPOISON;
1509 		goto exit;
1510 	}
1511 
1512 retry:
1513 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1514 
1515 	if (vma == NULL)
1516 		pfn = KVM_PFN_ERR_FAULT;
1517 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1518 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1519 		if (r == -EAGAIN)
1520 			goto retry;
1521 		if (r < 0)
1522 			pfn = KVM_PFN_ERR_FAULT;
1523 	} else {
1524 		if (async && vma_is_valid(vma, write_fault))
1525 			*async = true;
1526 		pfn = KVM_PFN_ERR_FAULT;
1527 	}
1528 exit:
1529 	up_read(&current->mm->mmap_sem);
1530 	return pfn;
1531 }
1532 
1533 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1534 			       bool atomic, bool *async, bool write_fault,
1535 			       bool *writable)
1536 {
1537 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1538 
1539 	if (addr == KVM_HVA_ERR_RO_BAD) {
1540 		if (writable)
1541 			*writable = false;
1542 		return KVM_PFN_ERR_RO_FAULT;
1543 	}
1544 
1545 	if (kvm_is_error_hva(addr)) {
1546 		if (writable)
1547 			*writable = false;
1548 		return KVM_PFN_NOSLOT;
1549 	}
1550 
1551 	/* Do not map writable pfn in the readonly memslot. */
1552 	if (writable && memslot_is_readonly(slot)) {
1553 		*writable = false;
1554 		writable = NULL;
1555 	}
1556 
1557 	return hva_to_pfn(addr, atomic, async, write_fault,
1558 			  writable);
1559 }
1560 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1561 
1562 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1563 		      bool *writable)
1564 {
1565 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1566 				    write_fault, writable);
1567 }
1568 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1569 
1570 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1571 {
1572 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1573 }
1574 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1575 
1576 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1577 {
1578 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1579 }
1580 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1581 
1582 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1583 {
1584 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1585 }
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1587 
1588 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1589 {
1590 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1593 
1594 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1595 {
1596 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1599 
1600 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1601 {
1602 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1605 
1606 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1607 			    struct page **pages, int nr_pages)
1608 {
1609 	unsigned long addr;
1610 	gfn_t entry = 0;
1611 
1612 	addr = gfn_to_hva_many(slot, gfn, &entry);
1613 	if (kvm_is_error_hva(addr))
1614 		return -1;
1615 
1616 	if (entry < nr_pages)
1617 		return 0;
1618 
1619 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1622 
1623 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1624 {
1625 	if (is_error_noslot_pfn(pfn))
1626 		return KVM_ERR_PTR_BAD_PAGE;
1627 
1628 	if (kvm_is_reserved_pfn(pfn)) {
1629 		WARN_ON(1);
1630 		return KVM_ERR_PTR_BAD_PAGE;
1631 	}
1632 
1633 	return pfn_to_page(pfn);
1634 }
1635 
1636 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1637 {
1638 	kvm_pfn_t pfn;
1639 
1640 	pfn = gfn_to_pfn(kvm, gfn);
1641 
1642 	return kvm_pfn_to_page(pfn);
1643 }
1644 EXPORT_SYMBOL_GPL(gfn_to_page);
1645 
1646 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1647 {
1648 	kvm_pfn_t pfn;
1649 
1650 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1651 
1652 	return kvm_pfn_to_page(pfn);
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1655 
1656 void kvm_release_page_clean(struct page *page)
1657 {
1658 	WARN_ON(is_error_page(page));
1659 
1660 	kvm_release_pfn_clean(page_to_pfn(page));
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1663 
1664 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1665 {
1666 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1667 		put_page(pfn_to_page(pfn));
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1670 
1671 void kvm_release_page_dirty(struct page *page)
1672 {
1673 	WARN_ON(is_error_page(page));
1674 
1675 	kvm_release_pfn_dirty(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1678 
1679 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1680 {
1681 	kvm_set_pfn_dirty(pfn);
1682 	kvm_release_pfn_clean(pfn);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1685 
1686 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1687 {
1688 	if (!kvm_is_reserved_pfn(pfn)) {
1689 		struct page *page = pfn_to_page(pfn);
1690 
1691 		if (!PageReserved(page))
1692 			SetPageDirty(page);
1693 	}
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1696 
1697 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1698 {
1699 	if (!kvm_is_reserved_pfn(pfn))
1700 		mark_page_accessed(pfn_to_page(pfn));
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1703 
1704 void kvm_get_pfn(kvm_pfn_t pfn)
1705 {
1706 	if (!kvm_is_reserved_pfn(pfn))
1707 		get_page(pfn_to_page(pfn));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1710 
1711 static int next_segment(unsigned long len, int offset)
1712 {
1713 	if (len > PAGE_SIZE - offset)
1714 		return PAGE_SIZE - offset;
1715 	else
1716 		return len;
1717 }
1718 
1719 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1720 				 void *data, int offset, int len)
1721 {
1722 	int r;
1723 	unsigned long addr;
1724 
1725 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1726 	if (kvm_is_error_hva(addr))
1727 		return -EFAULT;
1728 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1729 	if (r)
1730 		return -EFAULT;
1731 	return 0;
1732 }
1733 
1734 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1735 			int len)
1736 {
1737 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1738 
1739 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1742 
1743 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1744 			     int offset, int len)
1745 {
1746 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1747 
1748 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1751 
1752 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1753 {
1754 	gfn_t gfn = gpa >> PAGE_SHIFT;
1755 	int seg;
1756 	int offset = offset_in_page(gpa);
1757 	int ret;
1758 
1759 	while ((seg = next_segment(len, offset)) != 0) {
1760 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1761 		if (ret < 0)
1762 			return ret;
1763 		offset = 0;
1764 		len -= seg;
1765 		data += seg;
1766 		++gfn;
1767 	}
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_read_guest);
1771 
1772 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1773 {
1774 	gfn_t gfn = gpa >> PAGE_SHIFT;
1775 	int seg;
1776 	int offset = offset_in_page(gpa);
1777 	int ret;
1778 
1779 	while ((seg = next_segment(len, offset)) != 0) {
1780 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1781 		if (ret < 0)
1782 			return ret;
1783 		offset = 0;
1784 		len -= seg;
1785 		data += seg;
1786 		++gfn;
1787 	}
1788 	return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1791 
1792 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1793 			           void *data, int offset, unsigned long len)
1794 {
1795 	int r;
1796 	unsigned long addr;
1797 
1798 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1799 	if (kvm_is_error_hva(addr))
1800 		return -EFAULT;
1801 	pagefault_disable();
1802 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1803 	pagefault_enable();
1804 	if (r)
1805 		return -EFAULT;
1806 	return 0;
1807 }
1808 
1809 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1810 			  unsigned long len)
1811 {
1812 	gfn_t gfn = gpa >> PAGE_SHIFT;
1813 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1814 	int offset = offset_in_page(gpa);
1815 
1816 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1819 
1820 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1821 			       void *data, unsigned long len)
1822 {
1823 	gfn_t gfn = gpa >> PAGE_SHIFT;
1824 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1825 	int offset = offset_in_page(gpa);
1826 
1827 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1830 
1831 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1832 			          const void *data, int offset, int len)
1833 {
1834 	int r;
1835 	unsigned long addr;
1836 
1837 	addr = gfn_to_hva_memslot(memslot, gfn);
1838 	if (kvm_is_error_hva(addr))
1839 		return -EFAULT;
1840 	r = __copy_to_user((void __user *)addr + offset, data, len);
1841 	if (r)
1842 		return -EFAULT;
1843 	mark_page_dirty_in_slot(memslot, gfn);
1844 	return 0;
1845 }
1846 
1847 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1848 			 const void *data, int offset, int len)
1849 {
1850 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1851 
1852 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1855 
1856 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1857 			      const void *data, int offset, int len)
1858 {
1859 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1860 
1861 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1864 
1865 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1866 		    unsigned long len)
1867 {
1868 	gfn_t gfn = gpa >> PAGE_SHIFT;
1869 	int seg;
1870 	int offset = offset_in_page(gpa);
1871 	int ret;
1872 
1873 	while ((seg = next_segment(len, offset)) != 0) {
1874 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1875 		if (ret < 0)
1876 			return ret;
1877 		offset = 0;
1878 		len -= seg;
1879 		data += seg;
1880 		++gfn;
1881 	}
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_write_guest);
1885 
1886 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1887 		         unsigned long len)
1888 {
1889 	gfn_t gfn = gpa >> PAGE_SHIFT;
1890 	int seg;
1891 	int offset = offset_in_page(gpa);
1892 	int ret;
1893 
1894 	while ((seg = next_segment(len, offset)) != 0) {
1895 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1896 		if (ret < 0)
1897 			return ret;
1898 		offset = 0;
1899 		len -= seg;
1900 		data += seg;
1901 		++gfn;
1902 	}
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1906 
1907 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1908 				       struct gfn_to_hva_cache *ghc,
1909 				       gpa_t gpa, unsigned long len)
1910 {
1911 	int offset = offset_in_page(gpa);
1912 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1913 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1914 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1915 	gfn_t nr_pages_avail;
1916 
1917 	ghc->gpa = gpa;
1918 	ghc->generation = slots->generation;
1919 	ghc->len = len;
1920 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1921 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1922 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1923 		ghc->hva += offset;
1924 	} else {
1925 		/*
1926 		 * If the requested region crosses two memslots, we still
1927 		 * verify that the entire region is valid here.
1928 		 */
1929 		while (start_gfn <= end_gfn) {
1930 			nr_pages_avail = 0;
1931 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1932 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1933 						   &nr_pages_avail);
1934 			if (kvm_is_error_hva(ghc->hva))
1935 				return -EFAULT;
1936 			start_gfn += nr_pages_avail;
1937 		}
1938 		/* Use the slow path for cross page reads and writes. */
1939 		ghc->memslot = NULL;
1940 	}
1941 	return 0;
1942 }
1943 
1944 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945 			      gpa_t gpa, unsigned long len)
1946 {
1947 	struct kvm_memslots *slots = kvm_memslots(kvm);
1948 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1951 
1952 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1953 			   void *data, int offset, unsigned long len)
1954 {
1955 	struct kvm_memslots *slots = kvm_memslots(kvm);
1956 	int r;
1957 	gpa_t gpa = ghc->gpa + offset;
1958 
1959 	BUG_ON(len + offset > ghc->len);
1960 
1961 	if (slots->generation != ghc->generation)
1962 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1963 
1964 	if (unlikely(!ghc->memslot))
1965 		return kvm_write_guest(kvm, gpa, data, len);
1966 
1967 	if (kvm_is_error_hva(ghc->hva))
1968 		return -EFAULT;
1969 
1970 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1971 	if (r)
1972 		return -EFAULT;
1973 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1974 
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1978 
1979 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1980 			   void *data, unsigned long len)
1981 {
1982 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1985 
1986 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987 			   void *data, unsigned long len)
1988 {
1989 	struct kvm_memslots *slots = kvm_memslots(kvm);
1990 	int r;
1991 
1992 	BUG_ON(len > ghc->len);
1993 
1994 	if (slots->generation != ghc->generation)
1995 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1996 
1997 	if (unlikely(!ghc->memslot))
1998 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1999 
2000 	if (kvm_is_error_hva(ghc->hva))
2001 		return -EFAULT;
2002 
2003 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2004 	if (r)
2005 		return -EFAULT;
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2010 
2011 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2012 {
2013 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2014 
2015 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2016 }
2017 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2018 
2019 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2020 {
2021 	gfn_t gfn = gpa >> PAGE_SHIFT;
2022 	int seg;
2023 	int offset = offset_in_page(gpa);
2024 	int ret;
2025 
2026 	while ((seg = next_segment(len, offset)) != 0) {
2027 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2028 		if (ret < 0)
2029 			return ret;
2030 		offset = 0;
2031 		len -= seg;
2032 		++gfn;
2033 	}
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2037 
2038 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2039 				    gfn_t gfn)
2040 {
2041 	if (memslot && memslot->dirty_bitmap) {
2042 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2043 
2044 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2045 	}
2046 }
2047 
2048 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2049 {
2050 	struct kvm_memory_slot *memslot;
2051 
2052 	memslot = gfn_to_memslot(kvm, gfn);
2053 	mark_page_dirty_in_slot(memslot, gfn);
2054 }
2055 EXPORT_SYMBOL_GPL(mark_page_dirty);
2056 
2057 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2058 {
2059 	struct kvm_memory_slot *memslot;
2060 
2061 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2062 	mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2065 
2066 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2067 {
2068 	if (!vcpu->sigset_active)
2069 		return;
2070 
2071 	/*
2072 	 * This does a lockless modification of ->real_blocked, which is fine
2073 	 * because, only current can change ->real_blocked and all readers of
2074 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2075 	 * of ->blocked.
2076 	 */
2077 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2078 }
2079 
2080 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2081 {
2082 	if (!vcpu->sigset_active)
2083 		return;
2084 
2085 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2086 	sigemptyset(&current->real_blocked);
2087 }
2088 
2089 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2090 {
2091 	unsigned int old, val, grow;
2092 
2093 	old = val = vcpu->halt_poll_ns;
2094 	grow = READ_ONCE(halt_poll_ns_grow);
2095 	/* 10us base */
2096 	if (val == 0 && grow)
2097 		val = 10000;
2098 	else
2099 		val *= grow;
2100 
2101 	if (val > halt_poll_ns)
2102 		val = halt_poll_ns;
2103 
2104 	vcpu->halt_poll_ns = val;
2105 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2106 }
2107 
2108 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110 	unsigned int old, val, shrink;
2111 
2112 	old = val = vcpu->halt_poll_ns;
2113 	shrink = READ_ONCE(halt_poll_ns_shrink);
2114 	if (shrink == 0)
2115 		val = 0;
2116 	else
2117 		val /= shrink;
2118 
2119 	vcpu->halt_poll_ns = val;
2120 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2121 }
2122 
2123 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2124 {
2125 	if (kvm_arch_vcpu_runnable(vcpu)) {
2126 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2127 		return -EINTR;
2128 	}
2129 	if (kvm_cpu_has_pending_timer(vcpu))
2130 		return -EINTR;
2131 	if (signal_pending(current))
2132 		return -EINTR;
2133 
2134 	return 0;
2135 }
2136 
2137 /*
2138  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2139  */
2140 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2141 {
2142 	ktime_t start, cur;
2143 	DECLARE_SWAITQUEUE(wait);
2144 	bool waited = false;
2145 	u64 block_ns;
2146 
2147 	start = cur = ktime_get();
2148 	if (vcpu->halt_poll_ns) {
2149 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2150 
2151 		++vcpu->stat.halt_attempted_poll;
2152 		do {
2153 			/*
2154 			 * This sets KVM_REQ_UNHALT if an interrupt
2155 			 * arrives.
2156 			 */
2157 			if (kvm_vcpu_check_block(vcpu) < 0) {
2158 				++vcpu->stat.halt_successful_poll;
2159 				if (!vcpu_valid_wakeup(vcpu))
2160 					++vcpu->stat.halt_poll_invalid;
2161 				goto out;
2162 			}
2163 			cur = ktime_get();
2164 		} while (single_task_running() && ktime_before(cur, stop));
2165 	}
2166 
2167 	kvm_arch_vcpu_blocking(vcpu);
2168 
2169 	for (;;) {
2170 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2171 
2172 		if (kvm_vcpu_check_block(vcpu) < 0)
2173 			break;
2174 
2175 		waited = true;
2176 		schedule();
2177 	}
2178 
2179 	finish_swait(&vcpu->wq, &wait);
2180 	cur = ktime_get();
2181 
2182 	kvm_arch_vcpu_unblocking(vcpu);
2183 out:
2184 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2185 
2186 	if (!vcpu_valid_wakeup(vcpu))
2187 		shrink_halt_poll_ns(vcpu);
2188 	else if (halt_poll_ns) {
2189 		if (block_ns <= vcpu->halt_poll_ns)
2190 			;
2191 		/* we had a long block, shrink polling */
2192 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2193 			shrink_halt_poll_ns(vcpu);
2194 		/* we had a short halt and our poll time is too small */
2195 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2196 			block_ns < halt_poll_ns)
2197 			grow_halt_poll_ns(vcpu);
2198 	} else
2199 		vcpu->halt_poll_ns = 0;
2200 
2201 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2202 	kvm_arch_vcpu_block_finish(vcpu);
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2205 
2206 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2207 {
2208 	struct swait_queue_head *wqp;
2209 
2210 	wqp = kvm_arch_vcpu_wq(vcpu);
2211 	if (swq_has_sleeper(wqp)) {
2212 		swake_up(wqp);
2213 		++vcpu->stat.halt_wakeup;
2214 		return true;
2215 	}
2216 
2217 	return false;
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2220 
2221 #ifndef CONFIG_S390
2222 /*
2223  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224  */
2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227 	int me;
2228 	int cpu = vcpu->cpu;
2229 
2230 	if (kvm_vcpu_wake_up(vcpu))
2231 		return;
2232 
2233 	me = get_cpu();
2234 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2235 		if (kvm_arch_vcpu_should_kick(vcpu))
2236 			smp_send_reschedule(cpu);
2237 	put_cpu();
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2240 #endif /* !CONFIG_S390 */
2241 
2242 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2243 {
2244 	struct pid *pid;
2245 	struct task_struct *task = NULL;
2246 	int ret = 0;
2247 
2248 	rcu_read_lock();
2249 	pid = rcu_dereference(target->pid);
2250 	if (pid)
2251 		task = get_pid_task(pid, PIDTYPE_PID);
2252 	rcu_read_unlock();
2253 	if (!task)
2254 		return ret;
2255 	ret = yield_to(task, 1);
2256 	put_task_struct(task);
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2261 
2262 /*
2263  * Helper that checks whether a VCPU is eligible for directed yield.
2264  * Most eligible candidate to yield is decided by following heuristics:
2265  *
2266  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2267  *  (preempted lock holder), indicated by @in_spin_loop.
2268  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2269  *
2270  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2271  *  chance last time (mostly it has become eligible now since we have probably
2272  *  yielded to lockholder in last iteration. This is done by toggling
2273  *  @dy_eligible each time a VCPU checked for eligibility.)
2274  *
2275  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2276  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2277  *  burning. Giving priority for a potential lock-holder increases lock
2278  *  progress.
2279  *
2280  *  Since algorithm is based on heuristics, accessing another VCPU data without
2281  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2282  *  and continue with next VCPU and so on.
2283  */
2284 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2285 {
2286 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2287 	bool eligible;
2288 
2289 	eligible = !vcpu->spin_loop.in_spin_loop ||
2290 		    vcpu->spin_loop.dy_eligible;
2291 
2292 	if (vcpu->spin_loop.in_spin_loop)
2293 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2294 
2295 	return eligible;
2296 #else
2297 	return true;
2298 #endif
2299 }
2300 
2301 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2302 {
2303 	struct kvm *kvm = me->kvm;
2304 	struct kvm_vcpu *vcpu;
2305 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2306 	int yielded = 0;
2307 	int try = 3;
2308 	int pass;
2309 	int i;
2310 
2311 	kvm_vcpu_set_in_spin_loop(me, true);
2312 	/*
2313 	 * We boost the priority of a VCPU that is runnable but not
2314 	 * currently running, because it got preempted by something
2315 	 * else and called schedule in __vcpu_run.  Hopefully that
2316 	 * VCPU is holding the lock that we need and will release it.
2317 	 * We approximate round-robin by starting at the last boosted VCPU.
2318 	 */
2319 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2320 		kvm_for_each_vcpu(i, vcpu, kvm) {
2321 			if (!pass && i <= last_boosted_vcpu) {
2322 				i = last_boosted_vcpu;
2323 				continue;
2324 			} else if (pass && i > last_boosted_vcpu)
2325 				break;
2326 			if (!READ_ONCE(vcpu->preempted))
2327 				continue;
2328 			if (vcpu == me)
2329 				continue;
2330 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2331 				continue;
2332 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2333 				continue;
2334 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2335 				continue;
2336 
2337 			yielded = kvm_vcpu_yield_to(vcpu);
2338 			if (yielded > 0) {
2339 				kvm->last_boosted_vcpu = i;
2340 				break;
2341 			} else if (yielded < 0) {
2342 				try--;
2343 				if (!try)
2344 					break;
2345 			}
2346 		}
2347 	}
2348 	kvm_vcpu_set_in_spin_loop(me, false);
2349 
2350 	/* Ensure vcpu is not eligible during next spinloop */
2351 	kvm_vcpu_set_dy_eligible(me, false);
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354 
2355 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2356 {
2357 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2358 	struct page *page;
2359 
2360 	if (vmf->pgoff == 0)
2361 		page = virt_to_page(vcpu->run);
2362 #ifdef CONFIG_X86
2363 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2364 		page = virt_to_page(vcpu->arch.pio_data);
2365 #endif
2366 #ifdef CONFIG_KVM_MMIO
2367 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2368 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2369 #endif
2370 	else
2371 		return kvm_arch_vcpu_fault(vcpu, vmf);
2372 	get_page(page);
2373 	vmf->page = page;
2374 	return 0;
2375 }
2376 
2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2378 	.fault = kvm_vcpu_fault,
2379 };
2380 
2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383 	vma->vm_ops = &kvm_vcpu_vm_ops;
2384 	return 0;
2385 }
2386 
2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 {
2389 	struct kvm_vcpu *vcpu = filp->private_data;
2390 
2391 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2392 	kvm_put_kvm(vcpu->kvm);
2393 	return 0;
2394 }
2395 
2396 static struct file_operations kvm_vcpu_fops = {
2397 	.release        = kvm_vcpu_release,
2398 	.unlocked_ioctl = kvm_vcpu_ioctl,
2399 #ifdef CONFIG_KVM_COMPAT
2400 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2401 #endif
2402 	.mmap           = kvm_vcpu_mmap,
2403 	.llseek		= noop_llseek,
2404 };
2405 
2406 /*
2407  * Allocates an inode for the vcpu.
2408  */
2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 {
2411 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2412 
2413 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2414 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2415 }
2416 
2417 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2418 {
2419 	char dir_name[ITOA_MAX_LEN * 2];
2420 	int ret;
2421 
2422 	if (!kvm_arch_has_vcpu_debugfs())
2423 		return 0;
2424 
2425 	if (!debugfs_initialized())
2426 		return 0;
2427 
2428 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2429 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2430 								vcpu->kvm->debugfs_dentry);
2431 	if (!vcpu->debugfs_dentry)
2432 		return -ENOMEM;
2433 
2434 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2435 	if (ret < 0) {
2436 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2437 		return ret;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Creates some virtual cpus.  Good luck creating more than one.
2445  */
2446 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2447 {
2448 	int r;
2449 	struct kvm_vcpu *vcpu;
2450 
2451 	if (id >= KVM_MAX_VCPU_ID)
2452 		return -EINVAL;
2453 
2454 	mutex_lock(&kvm->lock);
2455 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2456 		mutex_unlock(&kvm->lock);
2457 		return -EINVAL;
2458 	}
2459 
2460 	kvm->created_vcpus++;
2461 	mutex_unlock(&kvm->lock);
2462 
2463 	vcpu = kvm_arch_vcpu_create(kvm, id);
2464 	if (IS_ERR(vcpu)) {
2465 		r = PTR_ERR(vcpu);
2466 		goto vcpu_decrement;
2467 	}
2468 
2469 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2470 
2471 	r = kvm_arch_vcpu_setup(vcpu);
2472 	if (r)
2473 		goto vcpu_destroy;
2474 
2475 	r = kvm_create_vcpu_debugfs(vcpu);
2476 	if (r)
2477 		goto vcpu_destroy;
2478 
2479 	mutex_lock(&kvm->lock);
2480 	if (kvm_get_vcpu_by_id(kvm, id)) {
2481 		r = -EEXIST;
2482 		goto unlock_vcpu_destroy;
2483 	}
2484 
2485 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2486 
2487 	/* Now it's all set up, let userspace reach it */
2488 	kvm_get_kvm(kvm);
2489 	r = create_vcpu_fd(vcpu);
2490 	if (r < 0) {
2491 		kvm_put_kvm(kvm);
2492 		goto unlock_vcpu_destroy;
2493 	}
2494 
2495 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2496 
2497 	/*
2498 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2499 	 * before kvm->online_vcpu's incremented value.
2500 	 */
2501 	smp_wmb();
2502 	atomic_inc(&kvm->online_vcpus);
2503 
2504 	mutex_unlock(&kvm->lock);
2505 	kvm_arch_vcpu_postcreate(vcpu);
2506 	return r;
2507 
2508 unlock_vcpu_destroy:
2509 	mutex_unlock(&kvm->lock);
2510 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2511 vcpu_destroy:
2512 	kvm_arch_vcpu_destroy(vcpu);
2513 vcpu_decrement:
2514 	mutex_lock(&kvm->lock);
2515 	kvm->created_vcpus--;
2516 	mutex_unlock(&kvm->lock);
2517 	return r;
2518 }
2519 
2520 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2521 {
2522 	if (sigset) {
2523 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2524 		vcpu->sigset_active = 1;
2525 		vcpu->sigset = *sigset;
2526 	} else
2527 		vcpu->sigset_active = 0;
2528 	return 0;
2529 }
2530 
2531 static long kvm_vcpu_ioctl(struct file *filp,
2532 			   unsigned int ioctl, unsigned long arg)
2533 {
2534 	struct kvm_vcpu *vcpu = filp->private_data;
2535 	void __user *argp = (void __user *)arg;
2536 	int r;
2537 	struct kvm_fpu *fpu = NULL;
2538 	struct kvm_sregs *kvm_sregs = NULL;
2539 
2540 	if (vcpu->kvm->mm != current->mm)
2541 		return -EIO;
2542 
2543 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2544 		return -EINVAL;
2545 
2546 	/*
2547 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2548 	 * execution; mutex_lock() would break them.
2549 	 */
2550 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2551 	if (r != -ENOIOCTLCMD)
2552 		return r;
2553 
2554 	if (mutex_lock_killable(&vcpu->mutex))
2555 		return -EINTR;
2556 	switch (ioctl) {
2557 	case KVM_RUN: {
2558 		struct pid *oldpid;
2559 		r = -EINVAL;
2560 		if (arg)
2561 			goto out;
2562 		oldpid = rcu_access_pointer(vcpu->pid);
2563 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2564 			/* The thread running this VCPU changed. */
2565 			struct pid *newpid;
2566 
2567 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2568 			if (r)
2569 				break;
2570 
2571 			newpid = get_task_pid(current, PIDTYPE_PID);
2572 			rcu_assign_pointer(vcpu->pid, newpid);
2573 			if (oldpid)
2574 				synchronize_rcu();
2575 			put_pid(oldpid);
2576 		}
2577 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2578 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2579 		break;
2580 	}
2581 	case KVM_GET_REGS: {
2582 		struct kvm_regs *kvm_regs;
2583 
2584 		r = -ENOMEM;
2585 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2586 		if (!kvm_regs)
2587 			goto out;
2588 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2589 		if (r)
2590 			goto out_free1;
2591 		r = -EFAULT;
2592 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2593 			goto out_free1;
2594 		r = 0;
2595 out_free1:
2596 		kfree(kvm_regs);
2597 		break;
2598 	}
2599 	case KVM_SET_REGS: {
2600 		struct kvm_regs *kvm_regs;
2601 
2602 		r = -ENOMEM;
2603 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2604 		if (IS_ERR(kvm_regs)) {
2605 			r = PTR_ERR(kvm_regs);
2606 			goto out;
2607 		}
2608 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2609 		kfree(kvm_regs);
2610 		break;
2611 	}
2612 	case KVM_GET_SREGS: {
2613 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2614 		r = -ENOMEM;
2615 		if (!kvm_sregs)
2616 			goto out;
2617 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2618 		if (r)
2619 			goto out;
2620 		r = -EFAULT;
2621 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2622 			goto out;
2623 		r = 0;
2624 		break;
2625 	}
2626 	case KVM_SET_SREGS: {
2627 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2628 		if (IS_ERR(kvm_sregs)) {
2629 			r = PTR_ERR(kvm_sregs);
2630 			kvm_sregs = NULL;
2631 			goto out;
2632 		}
2633 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2634 		break;
2635 	}
2636 	case KVM_GET_MP_STATE: {
2637 		struct kvm_mp_state mp_state;
2638 
2639 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2640 		if (r)
2641 			goto out;
2642 		r = -EFAULT;
2643 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2644 			goto out;
2645 		r = 0;
2646 		break;
2647 	}
2648 	case KVM_SET_MP_STATE: {
2649 		struct kvm_mp_state mp_state;
2650 
2651 		r = -EFAULT;
2652 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2653 			goto out;
2654 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2655 		break;
2656 	}
2657 	case KVM_TRANSLATE: {
2658 		struct kvm_translation tr;
2659 
2660 		r = -EFAULT;
2661 		if (copy_from_user(&tr, argp, sizeof(tr)))
2662 			goto out;
2663 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2664 		if (r)
2665 			goto out;
2666 		r = -EFAULT;
2667 		if (copy_to_user(argp, &tr, sizeof(tr)))
2668 			goto out;
2669 		r = 0;
2670 		break;
2671 	}
2672 	case KVM_SET_GUEST_DEBUG: {
2673 		struct kvm_guest_debug dbg;
2674 
2675 		r = -EFAULT;
2676 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2677 			goto out;
2678 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2679 		break;
2680 	}
2681 	case KVM_SET_SIGNAL_MASK: {
2682 		struct kvm_signal_mask __user *sigmask_arg = argp;
2683 		struct kvm_signal_mask kvm_sigmask;
2684 		sigset_t sigset, *p;
2685 
2686 		p = NULL;
2687 		if (argp) {
2688 			r = -EFAULT;
2689 			if (copy_from_user(&kvm_sigmask, argp,
2690 					   sizeof(kvm_sigmask)))
2691 				goto out;
2692 			r = -EINVAL;
2693 			if (kvm_sigmask.len != sizeof(sigset))
2694 				goto out;
2695 			r = -EFAULT;
2696 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2697 					   sizeof(sigset)))
2698 				goto out;
2699 			p = &sigset;
2700 		}
2701 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2702 		break;
2703 	}
2704 	case KVM_GET_FPU: {
2705 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2706 		r = -ENOMEM;
2707 		if (!fpu)
2708 			goto out;
2709 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2710 		if (r)
2711 			goto out;
2712 		r = -EFAULT;
2713 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2714 			goto out;
2715 		r = 0;
2716 		break;
2717 	}
2718 	case KVM_SET_FPU: {
2719 		fpu = memdup_user(argp, sizeof(*fpu));
2720 		if (IS_ERR(fpu)) {
2721 			r = PTR_ERR(fpu);
2722 			fpu = NULL;
2723 			goto out;
2724 		}
2725 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2726 		break;
2727 	}
2728 	default:
2729 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2730 	}
2731 out:
2732 	mutex_unlock(&vcpu->mutex);
2733 	kfree(fpu);
2734 	kfree(kvm_sregs);
2735 	return r;
2736 }
2737 
2738 #ifdef CONFIG_KVM_COMPAT
2739 static long kvm_vcpu_compat_ioctl(struct file *filp,
2740 				  unsigned int ioctl, unsigned long arg)
2741 {
2742 	struct kvm_vcpu *vcpu = filp->private_data;
2743 	void __user *argp = compat_ptr(arg);
2744 	int r;
2745 
2746 	if (vcpu->kvm->mm != current->mm)
2747 		return -EIO;
2748 
2749 	switch (ioctl) {
2750 	case KVM_SET_SIGNAL_MASK: {
2751 		struct kvm_signal_mask __user *sigmask_arg = argp;
2752 		struct kvm_signal_mask kvm_sigmask;
2753 		sigset_t sigset;
2754 
2755 		if (argp) {
2756 			r = -EFAULT;
2757 			if (copy_from_user(&kvm_sigmask, argp,
2758 					   sizeof(kvm_sigmask)))
2759 				goto out;
2760 			r = -EINVAL;
2761 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2762 				goto out;
2763 			r = -EFAULT;
2764 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2765 				goto out;
2766 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2767 		} else
2768 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2769 		break;
2770 	}
2771 	default:
2772 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2773 	}
2774 
2775 out:
2776 	return r;
2777 }
2778 #endif
2779 
2780 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2781 				 int (*accessor)(struct kvm_device *dev,
2782 						 struct kvm_device_attr *attr),
2783 				 unsigned long arg)
2784 {
2785 	struct kvm_device_attr attr;
2786 
2787 	if (!accessor)
2788 		return -EPERM;
2789 
2790 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2791 		return -EFAULT;
2792 
2793 	return accessor(dev, &attr);
2794 }
2795 
2796 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2797 			     unsigned long arg)
2798 {
2799 	struct kvm_device *dev = filp->private_data;
2800 
2801 	switch (ioctl) {
2802 	case KVM_SET_DEVICE_ATTR:
2803 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2804 	case KVM_GET_DEVICE_ATTR:
2805 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2806 	case KVM_HAS_DEVICE_ATTR:
2807 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2808 	default:
2809 		if (dev->ops->ioctl)
2810 			return dev->ops->ioctl(dev, ioctl, arg);
2811 
2812 		return -ENOTTY;
2813 	}
2814 }
2815 
2816 static int kvm_device_release(struct inode *inode, struct file *filp)
2817 {
2818 	struct kvm_device *dev = filp->private_data;
2819 	struct kvm *kvm = dev->kvm;
2820 
2821 	kvm_put_kvm(kvm);
2822 	return 0;
2823 }
2824 
2825 static const struct file_operations kvm_device_fops = {
2826 	.unlocked_ioctl = kvm_device_ioctl,
2827 #ifdef CONFIG_KVM_COMPAT
2828 	.compat_ioctl = kvm_device_ioctl,
2829 #endif
2830 	.release = kvm_device_release,
2831 };
2832 
2833 struct kvm_device *kvm_device_from_filp(struct file *filp)
2834 {
2835 	if (filp->f_op != &kvm_device_fops)
2836 		return NULL;
2837 
2838 	return filp->private_data;
2839 }
2840 
2841 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2842 #ifdef CONFIG_KVM_MPIC
2843 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2844 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2845 #endif
2846 };
2847 
2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2849 {
2850 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2851 		return -ENOSPC;
2852 
2853 	if (kvm_device_ops_table[type] != NULL)
2854 		return -EEXIST;
2855 
2856 	kvm_device_ops_table[type] = ops;
2857 	return 0;
2858 }
2859 
2860 void kvm_unregister_device_ops(u32 type)
2861 {
2862 	if (kvm_device_ops_table[type] != NULL)
2863 		kvm_device_ops_table[type] = NULL;
2864 }
2865 
2866 static int kvm_ioctl_create_device(struct kvm *kvm,
2867 				   struct kvm_create_device *cd)
2868 {
2869 	struct kvm_device_ops *ops = NULL;
2870 	struct kvm_device *dev;
2871 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2872 	int ret;
2873 
2874 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2875 		return -ENODEV;
2876 
2877 	ops = kvm_device_ops_table[cd->type];
2878 	if (ops == NULL)
2879 		return -ENODEV;
2880 
2881 	if (test)
2882 		return 0;
2883 
2884 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2885 	if (!dev)
2886 		return -ENOMEM;
2887 
2888 	dev->ops = ops;
2889 	dev->kvm = kvm;
2890 
2891 	mutex_lock(&kvm->lock);
2892 	ret = ops->create(dev, cd->type);
2893 	if (ret < 0) {
2894 		mutex_unlock(&kvm->lock);
2895 		kfree(dev);
2896 		return ret;
2897 	}
2898 	list_add(&dev->vm_node, &kvm->devices);
2899 	mutex_unlock(&kvm->lock);
2900 
2901 	if (ops->init)
2902 		ops->init(dev);
2903 
2904 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2905 	if (ret < 0) {
2906 		mutex_lock(&kvm->lock);
2907 		list_del(&dev->vm_node);
2908 		mutex_unlock(&kvm->lock);
2909 		ops->destroy(dev);
2910 		return ret;
2911 	}
2912 
2913 	kvm_get_kvm(kvm);
2914 	cd->fd = ret;
2915 	return 0;
2916 }
2917 
2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2919 {
2920 	switch (arg) {
2921 	case KVM_CAP_USER_MEMORY:
2922 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2923 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2924 	case KVM_CAP_INTERNAL_ERROR_DATA:
2925 #ifdef CONFIG_HAVE_KVM_MSI
2926 	case KVM_CAP_SIGNAL_MSI:
2927 #endif
2928 #ifdef CONFIG_HAVE_KVM_IRQFD
2929 	case KVM_CAP_IRQFD:
2930 	case KVM_CAP_IRQFD_RESAMPLE:
2931 #endif
2932 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2933 	case KVM_CAP_CHECK_EXTENSION_VM:
2934 		return 1;
2935 #ifdef CONFIG_KVM_MMIO
2936 	case KVM_CAP_COALESCED_MMIO:
2937 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2938 #endif
2939 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2940 	case KVM_CAP_IRQ_ROUTING:
2941 		return KVM_MAX_IRQ_ROUTES;
2942 #endif
2943 #if KVM_ADDRESS_SPACE_NUM > 1
2944 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2945 		return KVM_ADDRESS_SPACE_NUM;
2946 #endif
2947 	case KVM_CAP_MAX_VCPU_ID:
2948 		return KVM_MAX_VCPU_ID;
2949 	default:
2950 		break;
2951 	}
2952 	return kvm_vm_ioctl_check_extension(kvm, arg);
2953 }
2954 
2955 static long kvm_vm_ioctl(struct file *filp,
2956 			   unsigned int ioctl, unsigned long arg)
2957 {
2958 	struct kvm *kvm = filp->private_data;
2959 	void __user *argp = (void __user *)arg;
2960 	int r;
2961 
2962 	if (kvm->mm != current->mm)
2963 		return -EIO;
2964 	switch (ioctl) {
2965 	case KVM_CREATE_VCPU:
2966 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2967 		break;
2968 	case KVM_SET_USER_MEMORY_REGION: {
2969 		struct kvm_userspace_memory_region kvm_userspace_mem;
2970 
2971 		r = -EFAULT;
2972 		if (copy_from_user(&kvm_userspace_mem, argp,
2973 						sizeof(kvm_userspace_mem)))
2974 			goto out;
2975 
2976 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2977 		break;
2978 	}
2979 	case KVM_GET_DIRTY_LOG: {
2980 		struct kvm_dirty_log log;
2981 
2982 		r = -EFAULT;
2983 		if (copy_from_user(&log, argp, sizeof(log)))
2984 			goto out;
2985 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2986 		break;
2987 	}
2988 #ifdef CONFIG_KVM_MMIO
2989 	case KVM_REGISTER_COALESCED_MMIO: {
2990 		struct kvm_coalesced_mmio_zone zone;
2991 
2992 		r = -EFAULT;
2993 		if (copy_from_user(&zone, argp, sizeof(zone)))
2994 			goto out;
2995 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2996 		break;
2997 	}
2998 	case KVM_UNREGISTER_COALESCED_MMIO: {
2999 		struct kvm_coalesced_mmio_zone zone;
3000 
3001 		r = -EFAULT;
3002 		if (copy_from_user(&zone, argp, sizeof(zone)))
3003 			goto out;
3004 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3005 		break;
3006 	}
3007 #endif
3008 	case KVM_IRQFD: {
3009 		struct kvm_irqfd data;
3010 
3011 		r = -EFAULT;
3012 		if (copy_from_user(&data, argp, sizeof(data)))
3013 			goto out;
3014 		r = kvm_irqfd(kvm, &data);
3015 		break;
3016 	}
3017 	case KVM_IOEVENTFD: {
3018 		struct kvm_ioeventfd data;
3019 
3020 		r = -EFAULT;
3021 		if (copy_from_user(&data, argp, sizeof(data)))
3022 			goto out;
3023 		r = kvm_ioeventfd(kvm, &data);
3024 		break;
3025 	}
3026 #ifdef CONFIG_HAVE_KVM_MSI
3027 	case KVM_SIGNAL_MSI: {
3028 		struct kvm_msi msi;
3029 
3030 		r = -EFAULT;
3031 		if (copy_from_user(&msi, argp, sizeof(msi)))
3032 			goto out;
3033 		r = kvm_send_userspace_msi(kvm, &msi);
3034 		break;
3035 	}
3036 #endif
3037 #ifdef __KVM_HAVE_IRQ_LINE
3038 	case KVM_IRQ_LINE_STATUS:
3039 	case KVM_IRQ_LINE: {
3040 		struct kvm_irq_level irq_event;
3041 
3042 		r = -EFAULT;
3043 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3044 			goto out;
3045 
3046 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3047 					ioctl == KVM_IRQ_LINE_STATUS);
3048 		if (r)
3049 			goto out;
3050 
3051 		r = -EFAULT;
3052 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3053 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3054 				goto out;
3055 		}
3056 
3057 		r = 0;
3058 		break;
3059 	}
3060 #endif
3061 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3062 	case KVM_SET_GSI_ROUTING: {
3063 		struct kvm_irq_routing routing;
3064 		struct kvm_irq_routing __user *urouting;
3065 		struct kvm_irq_routing_entry *entries = NULL;
3066 
3067 		r = -EFAULT;
3068 		if (copy_from_user(&routing, argp, sizeof(routing)))
3069 			goto out;
3070 		r = -EINVAL;
3071 		if (!kvm_arch_can_set_irq_routing(kvm))
3072 			goto out;
3073 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3074 			goto out;
3075 		if (routing.flags)
3076 			goto out;
3077 		if (routing.nr) {
3078 			r = -ENOMEM;
3079 			entries = vmalloc(array_size(sizeof(*entries),
3080 						     routing.nr));
3081 			if (!entries)
3082 				goto out;
3083 			r = -EFAULT;
3084 			urouting = argp;
3085 			if (copy_from_user(entries, urouting->entries,
3086 					   routing.nr * sizeof(*entries)))
3087 				goto out_free_irq_routing;
3088 		}
3089 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3090 					routing.flags);
3091 out_free_irq_routing:
3092 		vfree(entries);
3093 		break;
3094 	}
3095 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3096 	case KVM_CREATE_DEVICE: {
3097 		struct kvm_create_device cd;
3098 
3099 		r = -EFAULT;
3100 		if (copy_from_user(&cd, argp, sizeof(cd)))
3101 			goto out;
3102 
3103 		r = kvm_ioctl_create_device(kvm, &cd);
3104 		if (r)
3105 			goto out;
3106 
3107 		r = -EFAULT;
3108 		if (copy_to_user(argp, &cd, sizeof(cd)))
3109 			goto out;
3110 
3111 		r = 0;
3112 		break;
3113 	}
3114 	case KVM_CHECK_EXTENSION:
3115 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3116 		break;
3117 	default:
3118 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3119 	}
3120 out:
3121 	return r;
3122 }
3123 
3124 #ifdef CONFIG_KVM_COMPAT
3125 struct compat_kvm_dirty_log {
3126 	__u32 slot;
3127 	__u32 padding1;
3128 	union {
3129 		compat_uptr_t dirty_bitmap; /* one bit per page */
3130 		__u64 padding2;
3131 	};
3132 };
3133 
3134 static long kvm_vm_compat_ioctl(struct file *filp,
3135 			   unsigned int ioctl, unsigned long arg)
3136 {
3137 	struct kvm *kvm = filp->private_data;
3138 	int r;
3139 
3140 	if (kvm->mm != current->mm)
3141 		return -EIO;
3142 	switch (ioctl) {
3143 	case KVM_GET_DIRTY_LOG: {
3144 		struct compat_kvm_dirty_log compat_log;
3145 		struct kvm_dirty_log log;
3146 
3147 		if (copy_from_user(&compat_log, (void __user *)arg,
3148 				   sizeof(compat_log)))
3149 			return -EFAULT;
3150 		log.slot	 = compat_log.slot;
3151 		log.padding1	 = compat_log.padding1;
3152 		log.padding2	 = compat_log.padding2;
3153 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3154 
3155 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3156 		break;
3157 	}
3158 	default:
3159 		r = kvm_vm_ioctl(filp, ioctl, arg);
3160 	}
3161 	return r;
3162 }
3163 #endif
3164 
3165 static struct file_operations kvm_vm_fops = {
3166 	.release        = kvm_vm_release,
3167 	.unlocked_ioctl = kvm_vm_ioctl,
3168 #ifdef CONFIG_KVM_COMPAT
3169 	.compat_ioctl   = kvm_vm_compat_ioctl,
3170 #endif
3171 	.llseek		= noop_llseek,
3172 };
3173 
3174 static int kvm_dev_ioctl_create_vm(unsigned long type)
3175 {
3176 	int r;
3177 	struct kvm *kvm;
3178 	struct file *file;
3179 
3180 	kvm = kvm_create_vm(type);
3181 	if (IS_ERR(kvm))
3182 		return PTR_ERR(kvm);
3183 #ifdef CONFIG_KVM_MMIO
3184 	r = kvm_coalesced_mmio_init(kvm);
3185 	if (r < 0)
3186 		goto put_kvm;
3187 #endif
3188 	r = get_unused_fd_flags(O_CLOEXEC);
3189 	if (r < 0)
3190 		goto put_kvm;
3191 
3192 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3193 	if (IS_ERR(file)) {
3194 		put_unused_fd(r);
3195 		r = PTR_ERR(file);
3196 		goto put_kvm;
3197 	}
3198 
3199 	/*
3200 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3201 	 * already set, with ->release() being kvm_vm_release().  In error
3202 	 * cases it will be called by the final fput(file) and will take
3203 	 * care of doing kvm_put_kvm(kvm).
3204 	 */
3205 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3206 		put_unused_fd(r);
3207 		fput(file);
3208 		return -ENOMEM;
3209 	}
3210 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3211 
3212 	fd_install(r, file);
3213 	return r;
3214 
3215 put_kvm:
3216 	kvm_put_kvm(kvm);
3217 	return r;
3218 }
3219 
3220 static long kvm_dev_ioctl(struct file *filp,
3221 			  unsigned int ioctl, unsigned long arg)
3222 {
3223 	long r = -EINVAL;
3224 
3225 	switch (ioctl) {
3226 	case KVM_GET_API_VERSION:
3227 		if (arg)
3228 			goto out;
3229 		r = KVM_API_VERSION;
3230 		break;
3231 	case KVM_CREATE_VM:
3232 		r = kvm_dev_ioctl_create_vm(arg);
3233 		break;
3234 	case KVM_CHECK_EXTENSION:
3235 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3236 		break;
3237 	case KVM_GET_VCPU_MMAP_SIZE:
3238 		if (arg)
3239 			goto out;
3240 		r = PAGE_SIZE;     /* struct kvm_run */
3241 #ifdef CONFIG_X86
3242 		r += PAGE_SIZE;    /* pio data page */
3243 #endif
3244 #ifdef CONFIG_KVM_MMIO
3245 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3246 #endif
3247 		break;
3248 	case KVM_TRACE_ENABLE:
3249 	case KVM_TRACE_PAUSE:
3250 	case KVM_TRACE_DISABLE:
3251 		r = -EOPNOTSUPP;
3252 		break;
3253 	default:
3254 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3255 	}
3256 out:
3257 	return r;
3258 }
3259 
3260 static struct file_operations kvm_chardev_ops = {
3261 	.unlocked_ioctl = kvm_dev_ioctl,
3262 	.compat_ioctl   = kvm_dev_ioctl,
3263 	.llseek		= noop_llseek,
3264 };
3265 
3266 static struct miscdevice kvm_dev = {
3267 	KVM_MINOR,
3268 	"kvm",
3269 	&kvm_chardev_ops,
3270 };
3271 
3272 static void hardware_enable_nolock(void *junk)
3273 {
3274 	int cpu = raw_smp_processor_id();
3275 	int r;
3276 
3277 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3278 		return;
3279 
3280 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3281 
3282 	r = kvm_arch_hardware_enable();
3283 
3284 	if (r) {
3285 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3286 		atomic_inc(&hardware_enable_failed);
3287 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3288 	}
3289 }
3290 
3291 static int kvm_starting_cpu(unsigned int cpu)
3292 {
3293 	raw_spin_lock(&kvm_count_lock);
3294 	if (kvm_usage_count)
3295 		hardware_enable_nolock(NULL);
3296 	raw_spin_unlock(&kvm_count_lock);
3297 	return 0;
3298 }
3299 
3300 static void hardware_disable_nolock(void *junk)
3301 {
3302 	int cpu = raw_smp_processor_id();
3303 
3304 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3305 		return;
3306 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3307 	kvm_arch_hardware_disable();
3308 }
3309 
3310 static int kvm_dying_cpu(unsigned int cpu)
3311 {
3312 	raw_spin_lock(&kvm_count_lock);
3313 	if (kvm_usage_count)
3314 		hardware_disable_nolock(NULL);
3315 	raw_spin_unlock(&kvm_count_lock);
3316 	return 0;
3317 }
3318 
3319 static void hardware_disable_all_nolock(void)
3320 {
3321 	BUG_ON(!kvm_usage_count);
3322 
3323 	kvm_usage_count--;
3324 	if (!kvm_usage_count)
3325 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3326 }
3327 
3328 static void hardware_disable_all(void)
3329 {
3330 	raw_spin_lock(&kvm_count_lock);
3331 	hardware_disable_all_nolock();
3332 	raw_spin_unlock(&kvm_count_lock);
3333 }
3334 
3335 static int hardware_enable_all(void)
3336 {
3337 	int r = 0;
3338 
3339 	raw_spin_lock(&kvm_count_lock);
3340 
3341 	kvm_usage_count++;
3342 	if (kvm_usage_count == 1) {
3343 		atomic_set(&hardware_enable_failed, 0);
3344 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3345 
3346 		if (atomic_read(&hardware_enable_failed)) {
3347 			hardware_disable_all_nolock();
3348 			r = -EBUSY;
3349 		}
3350 	}
3351 
3352 	raw_spin_unlock(&kvm_count_lock);
3353 
3354 	return r;
3355 }
3356 
3357 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3358 		      void *v)
3359 {
3360 	/*
3361 	 * Some (well, at least mine) BIOSes hang on reboot if
3362 	 * in vmx root mode.
3363 	 *
3364 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3365 	 */
3366 	pr_info("kvm: exiting hardware virtualization\n");
3367 	kvm_rebooting = true;
3368 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3369 	return NOTIFY_OK;
3370 }
3371 
3372 static struct notifier_block kvm_reboot_notifier = {
3373 	.notifier_call = kvm_reboot,
3374 	.priority = 0,
3375 };
3376 
3377 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3378 {
3379 	int i;
3380 
3381 	for (i = 0; i < bus->dev_count; i++) {
3382 		struct kvm_io_device *pos = bus->range[i].dev;
3383 
3384 		kvm_iodevice_destructor(pos);
3385 	}
3386 	kfree(bus);
3387 }
3388 
3389 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3390 				 const struct kvm_io_range *r2)
3391 {
3392 	gpa_t addr1 = r1->addr;
3393 	gpa_t addr2 = r2->addr;
3394 
3395 	if (addr1 < addr2)
3396 		return -1;
3397 
3398 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3399 	 * accept any overlapping write.  Any order is acceptable for
3400 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3401 	 * we process all of them.
3402 	 */
3403 	if (r2->len) {
3404 		addr1 += r1->len;
3405 		addr2 += r2->len;
3406 	}
3407 
3408 	if (addr1 > addr2)
3409 		return 1;
3410 
3411 	return 0;
3412 }
3413 
3414 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3415 {
3416 	return kvm_io_bus_cmp(p1, p2);
3417 }
3418 
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 			     gpa_t addr, int len)
3421 {
3422 	struct kvm_io_range *range, key;
3423 	int off;
3424 
3425 	key = (struct kvm_io_range) {
3426 		.addr = addr,
3427 		.len = len,
3428 	};
3429 
3430 	range = bsearch(&key, bus->range, bus->dev_count,
3431 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 	if (range == NULL)
3433 		return -ENOENT;
3434 
3435 	off = range - bus->range;
3436 
3437 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 		off--;
3439 
3440 	return off;
3441 }
3442 
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 			      struct kvm_io_range *range, const void *val)
3445 {
3446 	int idx;
3447 
3448 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 	if (idx < 0)
3450 		return -EOPNOTSUPP;
3451 
3452 	while (idx < bus->dev_count &&
3453 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 					range->len, val))
3456 			return idx;
3457 		idx++;
3458 	}
3459 
3460 	return -EOPNOTSUPP;
3461 }
3462 
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 		     int len, const void *val)
3466 {
3467 	struct kvm_io_bus *bus;
3468 	struct kvm_io_range range;
3469 	int r;
3470 
3471 	range = (struct kvm_io_range) {
3472 		.addr = addr,
3473 		.len = len,
3474 	};
3475 
3476 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 	if (!bus)
3478 		return -ENOMEM;
3479 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3480 	return r < 0 ? r : 0;
3481 }
3482 
3483 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3484 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3485 			    gpa_t addr, int len, const void *val, long cookie)
3486 {
3487 	struct kvm_io_bus *bus;
3488 	struct kvm_io_range range;
3489 
3490 	range = (struct kvm_io_range) {
3491 		.addr = addr,
3492 		.len = len,
3493 	};
3494 
3495 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496 	if (!bus)
3497 		return -ENOMEM;
3498 
3499 	/* First try the device referenced by cookie. */
3500 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3501 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3502 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3503 					val))
3504 			return cookie;
3505 
3506 	/*
3507 	 * cookie contained garbage; fall back to search and return the
3508 	 * correct cookie value.
3509 	 */
3510 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3511 }
3512 
3513 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3514 			     struct kvm_io_range *range, void *val)
3515 {
3516 	int idx;
3517 
3518 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3519 	if (idx < 0)
3520 		return -EOPNOTSUPP;
3521 
3522 	while (idx < bus->dev_count &&
3523 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3524 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3525 				       range->len, val))
3526 			return idx;
3527 		idx++;
3528 	}
3529 
3530 	return -EOPNOTSUPP;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3533 
3534 /* kvm_io_bus_read - called under kvm->slots_lock */
3535 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3536 		    int len, void *val)
3537 {
3538 	struct kvm_io_bus *bus;
3539 	struct kvm_io_range range;
3540 	int r;
3541 
3542 	range = (struct kvm_io_range) {
3543 		.addr = addr,
3544 		.len = len,
3545 	};
3546 
3547 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3548 	if (!bus)
3549 		return -ENOMEM;
3550 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3551 	return r < 0 ? r : 0;
3552 }
3553 
3554 
3555 /* Caller must hold slots_lock. */
3556 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3557 			    int len, struct kvm_io_device *dev)
3558 {
3559 	int i;
3560 	struct kvm_io_bus *new_bus, *bus;
3561 	struct kvm_io_range range;
3562 
3563 	bus = kvm_get_bus(kvm, bus_idx);
3564 	if (!bus)
3565 		return -ENOMEM;
3566 
3567 	/* exclude ioeventfd which is limited by maximum fd */
3568 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3569 		return -ENOSPC;
3570 
3571 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3572 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3573 	if (!new_bus)
3574 		return -ENOMEM;
3575 
3576 	range = (struct kvm_io_range) {
3577 		.addr = addr,
3578 		.len = len,
3579 		.dev = dev,
3580 	};
3581 
3582 	for (i = 0; i < bus->dev_count; i++)
3583 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3584 			break;
3585 
3586 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3587 	new_bus->dev_count++;
3588 	new_bus->range[i] = range;
3589 	memcpy(new_bus->range + i + 1, bus->range + i,
3590 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3591 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3592 	synchronize_srcu_expedited(&kvm->srcu);
3593 	kfree(bus);
3594 
3595 	return 0;
3596 }
3597 
3598 /* Caller must hold slots_lock. */
3599 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3600 			       struct kvm_io_device *dev)
3601 {
3602 	int i;
3603 	struct kvm_io_bus *new_bus, *bus;
3604 
3605 	bus = kvm_get_bus(kvm, bus_idx);
3606 	if (!bus)
3607 		return;
3608 
3609 	for (i = 0; i < bus->dev_count; i++)
3610 		if (bus->range[i].dev == dev) {
3611 			break;
3612 		}
3613 
3614 	if (i == bus->dev_count)
3615 		return;
3616 
3617 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3618 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3619 	if (!new_bus)  {
3620 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3621 		goto broken;
3622 	}
3623 
3624 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3625 	new_bus->dev_count--;
3626 	memcpy(new_bus->range + i, bus->range + i + 1,
3627 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3628 
3629 broken:
3630 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3631 	synchronize_srcu_expedited(&kvm->srcu);
3632 	kfree(bus);
3633 	return;
3634 }
3635 
3636 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3637 					 gpa_t addr)
3638 {
3639 	struct kvm_io_bus *bus;
3640 	int dev_idx, srcu_idx;
3641 	struct kvm_io_device *iodev = NULL;
3642 
3643 	srcu_idx = srcu_read_lock(&kvm->srcu);
3644 
3645 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3646 	if (!bus)
3647 		goto out_unlock;
3648 
3649 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3650 	if (dev_idx < 0)
3651 		goto out_unlock;
3652 
3653 	iodev = bus->range[dev_idx].dev;
3654 
3655 out_unlock:
3656 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3657 
3658 	return iodev;
3659 }
3660 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3661 
3662 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3663 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3664 			   const char *fmt)
3665 {
3666 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3667 					  inode->i_private;
3668 
3669 	/* The debugfs files are a reference to the kvm struct which
3670 	 * is still valid when kvm_destroy_vm is called.
3671 	 * To avoid the race between open and the removal of the debugfs
3672 	 * directory we test against the users count.
3673 	 */
3674 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3675 		return -ENOENT;
3676 
3677 	if (simple_attr_open(inode, file, get, set, fmt)) {
3678 		kvm_put_kvm(stat_data->kvm);
3679 		return -ENOMEM;
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3686 {
3687 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3688 					  inode->i_private;
3689 
3690 	simple_attr_release(inode, file);
3691 	kvm_put_kvm(stat_data->kvm);
3692 
3693 	return 0;
3694 }
3695 
3696 static int vm_stat_get_per_vm(void *data, u64 *val)
3697 {
3698 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3699 
3700 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3701 
3702 	return 0;
3703 }
3704 
3705 static int vm_stat_clear_per_vm(void *data, u64 val)
3706 {
3707 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708 
3709 	if (val)
3710 		return -EINVAL;
3711 
3712 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3713 
3714 	return 0;
3715 }
3716 
3717 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3718 {
3719 	__simple_attr_check_format("%llu\n", 0ull);
3720 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3721 				vm_stat_clear_per_vm, "%llu\n");
3722 }
3723 
3724 static const struct file_operations vm_stat_get_per_vm_fops = {
3725 	.owner   = THIS_MODULE,
3726 	.open    = vm_stat_get_per_vm_open,
3727 	.release = kvm_debugfs_release,
3728 	.read    = simple_attr_read,
3729 	.write   = simple_attr_write,
3730 	.llseek  = no_llseek,
3731 };
3732 
3733 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3734 {
3735 	int i;
3736 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3737 	struct kvm_vcpu *vcpu;
3738 
3739 	*val = 0;
3740 
3741 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3742 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3743 
3744 	return 0;
3745 }
3746 
3747 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3748 {
3749 	int i;
3750 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3751 	struct kvm_vcpu *vcpu;
3752 
3753 	if (val)
3754 		return -EINVAL;
3755 
3756 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3757 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3758 
3759 	return 0;
3760 }
3761 
3762 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3763 {
3764 	__simple_attr_check_format("%llu\n", 0ull);
3765 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3766 				 vcpu_stat_clear_per_vm, "%llu\n");
3767 }
3768 
3769 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3770 	.owner   = THIS_MODULE,
3771 	.open    = vcpu_stat_get_per_vm_open,
3772 	.release = kvm_debugfs_release,
3773 	.read    = simple_attr_read,
3774 	.write   = simple_attr_write,
3775 	.llseek  = no_llseek,
3776 };
3777 
3778 static const struct file_operations *stat_fops_per_vm[] = {
3779 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3780 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3781 };
3782 
3783 static int vm_stat_get(void *_offset, u64 *val)
3784 {
3785 	unsigned offset = (long)_offset;
3786 	struct kvm *kvm;
3787 	struct kvm_stat_data stat_tmp = {.offset = offset};
3788 	u64 tmp_val;
3789 
3790 	*val = 0;
3791 	spin_lock(&kvm_lock);
3792 	list_for_each_entry(kvm, &vm_list, vm_list) {
3793 		stat_tmp.kvm = kvm;
3794 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3795 		*val += tmp_val;
3796 	}
3797 	spin_unlock(&kvm_lock);
3798 	return 0;
3799 }
3800 
3801 static int vm_stat_clear(void *_offset, u64 val)
3802 {
3803 	unsigned offset = (long)_offset;
3804 	struct kvm *kvm;
3805 	struct kvm_stat_data stat_tmp = {.offset = offset};
3806 
3807 	if (val)
3808 		return -EINVAL;
3809 
3810 	spin_lock(&kvm_lock);
3811 	list_for_each_entry(kvm, &vm_list, vm_list) {
3812 		stat_tmp.kvm = kvm;
3813 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3814 	}
3815 	spin_unlock(&kvm_lock);
3816 
3817 	return 0;
3818 }
3819 
3820 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3821 
3822 static int vcpu_stat_get(void *_offset, u64 *val)
3823 {
3824 	unsigned offset = (long)_offset;
3825 	struct kvm *kvm;
3826 	struct kvm_stat_data stat_tmp = {.offset = offset};
3827 	u64 tmp_val;
3828 
3829 	*val = 0;
3830 	spin_lock(&kvm_lock);
3831 	list_for_each_entry(kvm, &vm_list, vm_list) {
3832 		stat_tmp.kvm = kvm;
3833 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3834 		*val += tmp_val;
3835 	}
3836 	spin_unlock(&kvm_lock);
3837 	return 0;
3838 }
3839 
3840 static int vcpu_stat_clear(void *_offset, u64 val)
3841 {
3842 	unsigned offset = (long)_offset;
3843 	struct kvm *kvm;
3844 	struct kvm_stat_data stat_tmp = {.offset = offset};
3845 
3846 	if (val)
3847 		return -EINVAL;
3848 
3849 	spin_lock(&kvm_lock);
3850 	list_for_each_entry(kvm, &vm_list, vm_list) {
3851 		stat_tmp.kvm = kvm;
3852 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3853 	}
3854 	spin_unlock(&kvm_lock);
3855 
3856 	return 0;
3857 }
3858 
3859 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3860 			"%llu\n");
3861 
3862 static const struct file_operations *stat_fops[] = {
3863 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3864 	[KVM_STAT_VM]   = &vm_stat_fops,
3865 };
3866 
3867 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3868 {
3869 	struct kobj_uevent_env *env;
3870 	unsigned long long created, active;
3871 
3872 	if (!kvm_dev.this_device || !kvm)
3873 		return;
3874 
3875 	spin_lock(&kvm_lock);
3876 	if (type == KVM_EVENT_CREATE_VM) {
3877 		kvm_createvm_count++;
3878 		kvm_active_vms++;
3879 	} else if (type == KVM_EVENT_DESTROY_VM) {
3880 		kvm_active_vms--;
3881 	}
3882 	created = kvm_createvm_count;
3883 	active = kvm_active_vms;
3884 	spin_unlock(&kvm_lock);
3885 
3886 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3887 	if (!env)
3888 		return;
3889 
3890 	add_uevent_var(env, "CREATED=%llu", created);
3891 	add_uevent_var(env, "COUNT=%llu", active);
3892 
3893 	if (type == KVM_EVENT_CREATE_VM) {
3894 		add_uevent_var(env, "EVENT=create");
3895 		kvm->userspace_pid = task_pid_nr(current);
3896 	} else if (type == KVM_EVENT_DESTROY_VM) {
3897 		add_uevent_var(env, "EVENT=destroy");
3898 	}
3899 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3900 
3901 	if (kvm->debugfs_dentry) {
3902 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3903 
3904 		if (p) {
3905 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3906 			if (!IS_ERR(tmp))
3907 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3908 			kfree(p);
3909 		}
3910 	}
3911 	/* no need for checks, since we are adding at most only 5 keys */
3912 	env->envp[env->envp_idx++] = NULL;
3913 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3914 	kfree(env);
3915 }
3916 
3917 static void kvm_init_debug(void)
3918 {
3919 	struct kvm_stats_debugfs_item *p;
3920 
3921 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3922 
3923 	kvm_debugfs_num_entries = 0;
3924 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3925 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3926 				    (void *)(long)p->offset,
3927 				    stat_fops[p->kind]);
3928 	}
3929 }
3930 
3931 static int kvm_suspend(void)
3932 {
3933 	if (kvm_usage_count)
3934 		hardware_disable_nolock(NULL);
3935 	return 0;
3936 }
3937 
3938 static void kvm_resume(void)
3939 {
3940 	if (kvm_usage_count) {
3941 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3942 		hardware_enable_nolock(NULL);
3943 	}
3944 }
3945 
3946 static struct syscore_ops kvm_syscore_ops = {
3947 	.suspend = kvm_suspend,
3948 	.resume = kvm_resume,
3949 };
3950 
3951 static inline
3952 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3953 {
3954 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3955 }
3956 
3957 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3958 {
3959 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3960 
3961 	if (vcpu->preempted)
3962 		vcpu->preempted = false;
3963 
3964 	kvm_arch_sched_in(vcpu, cpu);
3965 
3966 	kvm_arch_vcpu_load(vcpu, cpu);
3967 }
3968 
3969 static void kvm_sched_out(struct preempt_notifier *pn,
3970 			  struct task_struct *next)
3971 {
3972 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3973 
3974 	if (current->state == TASK_RUNNING)
3975 		vcpu->preempted = true;
3976 	kvm_arch_vcpu_put(vcpu);
3977 }
3978 
3979 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3980 		  struct module *module)
3981 {
3982 	int r;
3983 	int cpu;
3984 
3985 	r = kvm_arch_init(opaque);
3986 	if (r)
3987 		goto out_fail;
3988 
3989 	/*
3990 	 * kvm_arch_init makes sure there's at most one caller
3991 	 * for architectures that support multiple implementations,
3992 	 * like intel and amd on x86.
3993 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3994 	 * conflicts in case kvm is already setup for another implementation.
3995 	 */
3996 	r = kvm_irqfd_init();
3997 	if (r)
3998 		goto out_irqfd;
3999 
4000 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4001 		r = -ENOMEM;
4002 		goto out_free_0;
4003 	}
4004 
4005 	r = kvm_arch_hardware_setup();
4006 	if (r < 0)
4007 		goto out_free_0a;
4008 
4009 	for_each_online_cpu(cpu) {
4010 		smp_call_function_single(cpu,
4011 				kvm_arch_check_processor_compat,
4012 				&r, 1);
4013 		if (r < 0)
4014 			goto out_free_1;
4015 	}
4016 
4017 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4018 				      kvm_starting_cpu, kvm_dying_cpu);
4019 	if (r)
4020 		goto out_free_2;
4021 	register_reboot_notifier(&kvm_reboot_notifier);
4022 
4023 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4024 	if (!vcpu_align)
4025 		vcpu_align = __alignof__(struct kvm_vcpu);
4026 	kvm_vcpu_cache =
4027 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4028 					   SLAB_ACCOUNT,
4029 					   offsetof(struct kvm_vcpu, arch),
4030 					   sizeof_field(struct kvm_vcpu, arch),
4031 					   NULL);
4032 	if (!kvm_vcpu_cache) {
4033 		r = -ENOMEM;
4034 		goto out_free_3;
4035 	}
4036 
4037 	r = kvm_async_pf_init();
4038 	if (r)
4039 		goto out_free;
4040 
4041 	kvm_chardev_ops.owner = module;
4042 	kvm_vm_fops.owner = module;
4043 	kvm_vcpu_fops.owner = module;
4044 
4045 	r = misc_register(&kvm_dev);
4046 	if (r) {
4047 		pr_err("kvm: misc device register failed\n");
4048 		goto out_unreg;
4049 	}
4050 
4051 	register_syscore_ops(&kvm_syscore_ops);
4052 
4053 	kvm_preempt_ops.sched_in = kvm_sched_in;
4054 	kvm_preempt_ops.sched_out = kvm_sched_out;
4055 
4056 	kvm_init_debug();
4057 
4058 	r = kvm_vfio_ops_init();
4059 	WARN_ON(r);
4060 
4061 	return 0;
4062 
4063 out_unreg:
4064 	kvm_async_pf_deinit();
4065 out_free:
4066 	kmem_cache_destroy(kvm_vcpu_cache);
4067 out_free_3:
4068 	unregister_reboot_notifier(&kvm_reboot_notifier);
4069 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4070 out_free_2:
4071 out_free_1:
4072 	kvm_arch_hardware_unsetup();
4073 out_free_0a:
4074 	free_cpumask_var(cpus_hardware_enabled);
4075 out_free_0:
4076 	kvm_irqfd_exit();
4077 out_irqfd:
4078 	kvm_arch_exit();
4079 out_fail:
4080 	return r;
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_init);
4083 
4084 void kvm_exit(void)
4085 {
4086 	debugfs_remove_recursive(kvm_debugfs_dir);
4087 	misc_deregister(&kvm_dev);
4088 	kmem_cache_destroy(kvm_vcpu_cache);
4089 	kvm_async_pf_deinit();
4090 	unregister_syscore_ops(&kvm_syscore_ops);
4091 	unregister_reboot_notifier(&kvm_reboot_notifier);
4092 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4093 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4094 	kvm_arch_hardware_unsetup();
4095 	kvm_arch_exit();
4096 	kvm_irqfd_exit();
4097 	free_cpumask_var(cpus_hardware_enabled);
4098 	kvm_vfio_ops_exit();
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_exit);
4101