xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126 
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129 
130 static bool largepages_enabled = true;
131 
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137 
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 		unsigned long start, unsigned long end)
140 {
141 }
142 
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 	if (pfn_valid(pfn))
146 		return PageReserved(pfn_to_page(pfn));
147 
148 	return true;
149 }
150 
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 void vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 	int cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162 
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165 	preempt_disable();
166 	kvm_arch_vcpu_put(vcpu);
167 	preempt_notifier_unregister(&vcpu->preempt_notifier);
168 	preempt_enable();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_put);
171 
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
174 {
175 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
176 
177 	/*
178 	 * We need to wait for the VCPU to reenable interrupts and get out of
179 	 * READING_SHADOW_PAGE_TABLES mode.
180 	 */
181 	if (req & KVM_REQUEST_WAIT)
182 		return mode != OUTSIDE_GUEST_MODE;
183 
184 	/*
185 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
186 	 */
187 	return mode == IN_GUEST_MODE;
188 }
189 
190 static void ack_flush(void *_completed)
191 {
192 }
193 
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
195 {
196 	if (unlikely(!cpus))
197 		cpus = cpu_online_mask;
198 
199 	if (cpumask_empty(cpus))
200 		return false;
201 
202 	smp_call_function_many(cpus, ack_flush, NULL, wait);
203 	return true;
204 }
205 
206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
207 {
208 	int i, cpu, me;
209 	cpumask_var_t cpus;
210 	bool called;
211 	struct kvm_vcpu *vcpu;
212 
213 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
214 
215 	me = get_cpu();
216 	kvm_for_each_vcpu(i, vcpu, kvm) {
217 		kvm_make_request(req, vcpu);
218 		cpu = vcpu->cpu;
219 
220 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
221 			continue;
222 
223 		if (cpus != NULL && cpu != -1 && cpu != me &&
224 		    kvm_request_needs_ipi(vcpu, req))
225 			__cpumask_set_cpu(cpu, cpus);
226 	}
227 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
228 	put_cpu();
229 	free_cpumask_var(cpus);
230 	return called;
231 }
232 
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm *kvm)
235 {
236 	/*
237 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238 	 * kvm_make_all_cpus_request.
239 	 */
240 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
241 
242 	/*
243 	 * We want to publish modifications to the page tables before reading
244 	 * mode. Pairs with a memory barrier in arch-specific code.
245 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
247 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
248 	 *
249 	 * There is already an smp_mb__after_atomic() before
250 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
251 	 * barrier here.
252 	 */
253 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
254 		++kvm->stat.remote_tlb_flush;
255 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
256 }
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
258 #endif
259 
260 void kvm_reload_remote_mmus(struct kvm *kvm)
261 {
262 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
263 }
264 
265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
266 {
267 	struct page *page;
268 	int r;
269 
270 	mutex_init(&vcpu->mutex);
271 	vcpu->cpu = -1;
272 	vcpu->kvm = kvm;
273 	vcpu->vcpu_id = id;
274 	vcpu->pid = NULL;
275 	init_swait_queue_head(&vcpu->wq);
276 	kvm_async_pf_vcpu_init(vcpu);
277 
278 	vcpu->pre_pcpu = -1;
279 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
280 
281 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282 	if (!page) {
283 		r = -ENOMEM;
284 		goto fail;
285 	}
286 	vcpu->run = page_address(page);
287 
288 	kvm_vcpu_set_in_spin_loop(vcpu, false);
289 	kvm_vcpu_set_dy_eligible(vcpu, false);
290 	vcpu->preempted = false;
291 
292 	r = kvm_arch_vcpu_init(vcpu);
293 	if (r < 0)
294 		goto fail_free_run;
295 	return 0;
296 
297 fail_free_run:
298 	free_page((unsigned long)vcpu->run);
299 fail:
300 	return r;
301 }
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
303 
304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
305 {
306 	/*
307 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
308 	 * will change the vcpu->pid pointer and on uninit all file
309 	 * descriptors are already gone.
310 	 */
311 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
312 	kvm_arch_vcpu_uninit(vcpu);
313 	free_page((unsigned long)vcpu->run);
314 }
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
316 
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
319 {
320 	return container_of(mn, struct kvm, mmu_notifier);
321 }
322 
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 					struct mm_struct *mm,
325 					unsigned long address,
326 					pte_t pte)
327 {
328 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 	int idx;
330 
331 	idx = srcu_read_lock(&kvm->srcu);
332 	spin_lock(&kvm->mmu_lock);
333 	kvm->mmu_notifier_seq++;
334 	kvm_set_spte_hva(kvm, address, pte);
335 	spin_unlock(&kvm->mmu_lock);
336 	srcu_read_unlock(&kvm->srcu, idx);
337 }
338 
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 						    struct mm_struct *mm,
341 						    unsigned long start,
342 						    unsigned long end)
343 {
344 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 	int need_tlb_flush = 0, idx;
346 
347 	idx = srcu_read_lock(&kvm->srcu);
348 	spin_lock(&kvm->mmu_lock);
349 	/*
350 	 * The count increase must become visible at unlock time as no
351 	 * spte can be established without taking the mmu_lock and
352 	 * count is also read inside the mmu_lock critical section.
353 	 */
354 	kvm->mmu_notifier_count++;
355 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 	need_tlb_flush |= kvm->tlbs_dirty;
357 	/* we've to flush the tlb before the pages can be freed */
358 	if (need_tlb_flush)
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 
363 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
364 
365 	srcu_read_unlock(&kvm->srcu, idx);
366 }
367 
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
369 						  struct mm_struct *mm,
370 						  unsigned long start,
371 						  unsigned long end)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 
375 	spin_lock(&kvm->mmu_lock);
376 	/*
377 	 * This sequence increase will notify the kvm page fault that
378 	 * the page that is going to be mapped in the spte could have
379 	 * been freed.
380 	 */
381 	kvm->mmu_notifier_seq++;
382 	smp_wmb();
383 	/*
384 	 * The above sequence increase must be visible before the
385 	 * below count decrease, which is ensured by the smp_wmb above
386 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
387 	 */
388 	kvm->mmu_notifier_count--;
389 	spin_unlock(&kvm->mmu_lock);
390 
391 	BUG_ON(kvm->mmu_notifier_count < 0);
392 }
393 
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
395 					      struct mm_struct *mm,
396 					      unsigned long start,
397 					      unsigned long end)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 	int young, idx;
401 
402 	idx = srcu_read_lock(&kvm->srcu);
403 	spin_lock(&kvm->mmu_lock);
404 
405 	young = kvm_age_hva(kvm, start, end);
406 	if (young)
407 		kvm_flush_remote_tlbs(kvm);
408 
409 	spin_unlock(&kvm->mmu_lock);
410 	srcu_read_unlock(&kvm->srcu, idx);
411 
412 	return young;
413 }
414 
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
416 					struct mm_struct *mm,
417 					unsigned long start,
418 					unsigned long end)
419 {
420 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 	int young, idx;
422 
423 	idx = srcu_read_lock(&kvm->srcu);
424 	spin_lock(&kvm->mmu_lock);
425 	/*
426 	 * Even though we do not flush TLB, this will still adversely
427 	 * affect performance on pre-Haswell Intel EPT, where there is
428 	 * no EPT Access Bit to clear so that we have to tear down EPT
429 	 * tables instead. If we find this unacceptable, we can always
430 	 * add a parameter to kvm_age_hva so that it effectively doesn't
431 	 * do anything on clear_young.
432 	 *
433 	 * Also note that currently we never issue secondary TLB flushes
434 	 * from clear_young, leaving this job up to the regular system
435 	 * cadence. If we find this inaccurate, we might come up with a
436 	 * more sophisticated heuristic later.
437 	 */
438 	young = kvm_age_hva(kvm, start, end);
439 	spin_unlock(&kvm->mmu_lock);
440 	srcu_read_unlock(&kvm->srcu, idx);
441 
442 	return young;
443 }
444 
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
446 				       struct mm_struct *mm,
447 				       unsigned long address)
448 {
449 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 	int young, idx;
451 
452 	idx = srcu_read_lock(&kvm->srcu);
453 	spin_lock(&kvm->mmu_lock);
454 	young = kvm_test_age_hva(kvm, address);
455 	spin_unlock(&kvm->mmu_lock);
456 	srcu_read_unlock(&kvm->srcu, idx);
457 
458 	return young;
459 }
460 
461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
462 				     struct mm_struct *mm)
463 {
464 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 	int idx;
466 
467 	idx = srcu_read_lock(&kvm->srcu);
468 	kvm_arch_flush_shadow_all(kvm);
469 	srcu_read_unlock(&kvm->srcu, idx);
470 }
471 
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
473 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
474 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
475 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
476 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
477 	.clear_young		= kvm_mmu_notifier_clear_young,
478 	.test_young		= kvm_mmu_notifier_test_young,
479 	.change_pte		= kvm_mmu_notifier_change_pte,
480 	.release		= kvm_mmu_notifier_release,
481 };
482 
483 static int kvm_init_mmu_notifier(struct kvm *kvm)
484 {
485 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
486 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
487 }
488 
489 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
490 
491 static int kvm_init_mmu_notifier(struct kvm *kvm)
492 {
493 	return 0;
494 }
495 
496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
497 
498 static struct kvm_memslots *kvm_alloc_memslots(void)
499 {
500 	int i;
501 	struct kvm_memslots *slots;
502 
503 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
504 	if (!slots)
505 		return NULL;
506 
507 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
508 		slots->id_to_index[i] = slots->memslots[i].id = i;
509 
510 	return slots;
511 }
512 
513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
514 {
515 	if (!memslot->dirty_bitmap)
516 		return;
517 
518 	kvfree(memslot->dirty_bitmap);
519 	memslot->dirty_bitmap = NULL;
520 }
521 
522 /*
523  * Free any memory in @free but not in @dont.
524  */
525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
526 			      struct kvm_memory_slot *dont)
527 {
528 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
529 		kvm_destroy_dirty_bitmap(free);
530 
531 	kvm_arch_free_memslot(kvm, free, dont);
532 
533 	free->npages = 0;
534 }
535 
536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
537 {
538 	struct kvm_memory_slot *memslot;
539 
540 	if (!slots)
541 		return;
542 
543 	kvm_for_each_memslot(memslot, slots)
544 		kvm_free_memslot(kvm, memslot, NULL);
545 
546 	kvfree(slots);
547 }
548 
549 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
550 {
551 	int i;
552 
553 	if (!kvm->debugfs_dentry)
554 		return;
555 
556 	debugfs_remove_recursive(kvm->debugfs_dentry);
557 
558 	if (kvm->debugfs_stat_data) {
559 		for (i = 0; i < kvm_debugfs_num_entries; i++)
560 			kfree(kvm->debugfs_stat_data[i]);
561 		kfree(kvm->debugfs_stat_data);
562 	}
563 }
564 
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
566 {
567 	char dir_name[ITOA_MAX_LEN * 2];
568 	struct kvm_stat_data *stat_data;
569 	struct kvm_stats_debugfs_item *p;
570 
571 	if (!debugfs_initialized())
572 		return 0;
573 
574 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 						 kvm_debugfs_dir);
577 	if (!kvm->debugfs_dentry)
578 		return -ENOMEM;
579 
580 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 					 sizeof(*kvm->debugfs_stat_data),
582 					 GFP_KERNEL);
583 	if (!kvm->debugfs_stat_data)
584 		return -ENOMEM;
585 
586 	for (p = debugfs_entries; p->name; p++) {
587 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 		if (!stat_data)
589 			return -ENOMEM;
590 
591 		stat_data->kvm = kvm;
592 		stat_data->offset = p->offset;
593 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 		if (!debugfs_create_file(p->name, 0644,
595 					 kvm->debugfs_dentry,
596 					 stat_data,
597 					 stat_fops_per_vm[p->kind]))
598 			return -ENOMEM;
599 	}
600 	return 0;
601 }
602 
603 static struct kvm *kvm_create_vm(unsigned long type)
604 {
605 	int r, i;
606 	struct kvm *kvm = kvm_arch_alloc_vm();
607 
608 	if (!kvm)
609 		return ERR_PTR(-ENOMEM);
610 
611 	spin_lock_init(&kvm->mmu_lock);
612 	mmgrab(current->mm);
613 	kvm->mm = current->mm;
614 	kvm_eventfd_init(kvm);
615 	mutex_init(&kvm->lock);
616 	mutex_init(&kvm->irq_lock);
617 	mutex_init(&kvm->slots_lock);
618 	refcount_set(&kvm->users_count, 1);
619 	INIT_LIST_HEAD(&kvm->devices);
620 
621 	r = kvm_arch_init_vm(kvm, type);
622 	if (r)
623 		goto out_err_no_disable;
624 
625 	r = hardware_enable_all();
626 	if (r)
627 		goto out_err_no_disable;
628 
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
632 
633 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
634 
635 	r = -ENOMEM;
636 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 		struct kvm_memslots *slots = kvm_alloc_memslots();
638 		if (!slots)
639 			goto out_err_no_srcu;
640 		/*
641 		 * Generations must be different for each address space.
642 		 * Init kvm generation close to the maximum to easily test the
643 		 * code of handling generation number wrap-around.
644 		 */
645 		slots->generation = i * 2 - 150;
646 		rcu_assign_pointer(kvm->memslots[i], slots);
647 	}
648 
649 	if (init_srcu_struct(&kvm->srcu))
650 		goto out_err_no_srcu;
651 	if (init_srcu_struct(&kvm->irq_srcu))
652 		goto out_err_no_irq_srcu;
653 	for (i = 0; i < KVM_NR_BUSES; i++) {
654 		rcu_assign_pointer(kvm->buses[i],
655 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
656 		if (!kvm->buses[i])
657 			goto out_err;
658 	}
659 
660 	r = kvm_init_mmu_notifier(kvm);
661 	if (r)
662 		goto out_err;
663 
664 	spin_lock(&kvm_lock);
665 	list_add(&kvm->vm_list, &vm_list);
666 	spin_unlock(&kvm_lock);
667 
668 	preempt_notifier_inc();
669 
670 	return kvm;
671 
672 out_err:
673 	cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 	cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 	hardware_disable_all();
678 out_err_no_disable:
679 	refcount_set(&kvm->users_count, 0);
680 	for (i = 0; i < KVM_NR_BUSES; i++)
681 		kfree(kvm_get_bus(kvm, i));
682 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
683 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
684 	kvm_arch_free_vm(kvm);
685 	mmdrop(current->mm);
686 	return ERR_PTR(r);
687 }
688 
689 static void kvm_destroy_devices(struct kvm *kvm)
690 {
691 	struct kvm_device *dev, *tmp;
692 
693 	/*
694 	 * We do not need to take the kvm->lock here, because nobody else
695 	 * has a reference to the struct kvm at this point and therefore
696 	 * cannot access the devices list anyhow.
697 	 */
698 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
699 		list_del(&dev->vm_node);
700 		dev->ops->destroy(dev);
701 	}
702 }
703 
704 static void kvm_destroy_vm(struct kvm *kvm)
705 {
706 	int i;
707 	struct mm_struct *mm = kvm->mm;
708 
709 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
710 	kvm_destroy_vm_debugfs(kvm);
711 	kvm_arch_sync_events(kvm);
712 	spin_lock(&kvm_lock);
713 	list_del(&kvm->vm_list);
714 	spin_unlock(&kvm_lock);
715 	kvm_free_irq_routing(kvm);
716 	for (i = 0; i < KVM_NR_BUSES; i++) {
717 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
718 
719 		if (bus)
720 			kvm_io_bus_destroy(bus);
721 		kvm->buses[i] = NULL;
722 	}
723 	kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727 	kvm_arch_flush_shadow_all(kvm);
728 #endif
729 	kvm_arch_destroy_vm(kvm);
730 	kvm_destroy_devices(kvm);
731 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
733 	cleanup_srcu_struct(&kvm->irq_srcu);
734 	cleanup_srcu_struct(&kvm->srcu);
735 	kvm_arch_free_vm(kvm);
736 	preempt_notifier_dec();
737 	hardware_disable_all();
738 	mmdrop(mm);
739 }
740 
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743 	refcount_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746 
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749 	if (refcount_dec_and_test(&kvm->users_count))
750 		kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753 
754 
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757 	struct kvm *kvm = filp->private_data;
758 
759 	kvm_irqfd_release(kvm);
760 
761 	kvm_put_kvm(kvm);
762 	return 0;
763 }
764 
765 /*
766  * Allocation size is twice as large as the actual dirty bitmap size.
767  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
768  */
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
770 {
771 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
772 
773 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
774 	if (!memslot->dirty_bitmap)
775 		return -ENOMEM;
776 
777 	return 0;
778 }
779 
780 /*
781  * Insert memslot and re-sort memslots based on their GFN,
782  * so binary search could be used to lookup GFN.
783  * Sorting algorithm takes advantage of having initially
784  * sorted array and known changed memslot position.
785  */
786 static void update_memslots(struct kvm_memslots *slots,
787 			    struct kvm_memory_slot *new)
788 {
789 	int id = new->id;
790 	int i = slots->id_to_index[id];
791 	struct kvm_memory_slot *mslots = slots->memslots;
792 
793 	WARN_ON(mslots[i].id != id);
794 	if (!new->npages) {
795 		WARN_ON(!mslots[i].npages);
796 		if (mslots[i].npages)
797 			slots->used_slots--;
798 	} else {
799 		if (!mslots[i].npages)
800 			slots->used_slots++;
801 	}
802 
803 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
804 	       new->base_gfn <= mslots[i + 1].base_gfn) {
805 		if (!mslots[i + 1].npages)
806 			break;
807 		mslots[i] = mslots[i + 1];
808 		slots->id_to_index[mslots[i].id] = i;
809 		i++;
810 	}
811 
812 	/*
813 	 * The ">=" is needed when creating a slot with base_gfn == 0,
814 	 * so that it moves before all those with base_gfn == npages == 0.
815 	 *
816 	 * On the other hand, if new->npages is zero, the above loop has
817 	 * already left i pointing to the beginning of the empty part of
818 	 * mslots, and the ">=" would move the hole backwards in this
819 	 * case---which is wrong.  So skip the loop when deleting a slot.
820 	 */
821 	if (new->npages) {
822 		while (i > 0 &&
823 		       new->base_gfn >= mslots[i - 1].base_gfn) {
824 			mslots[i] = mslots[i - 1];
825 			slots->id_to_index[mslots[i].id] = i;
826 			i--;
827 		}
828 	} else
829 		WARN_ON_ONCE(i != slots->used_slots);
830 
831 	mslots[i] = *new;
832 	slots->id_to_index[mslots[i].id] = i;
833 }
834 
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
836 {
837 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
838 
839 #ifdef __KVM_HAVE_READONLY_MEM
840 	valid_flags |= KVM_MEM_READONLY;
841 #endif
842 
843 	if (mem->flags & ~valid_flags)
844 		return -EINVAL;
845 
846 	return 0;
847 }
848 
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850 		int as_id, struct kvm_memslots *slots)
851 {
852 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853 
854 	/*
855 	 * Set the low bit in the generation, which disables SPTE caching
856 	 * until the end of synchronize_srcu_expedited.
857 	 */
858 	WARN_ON(old_memslots->generation & 1);
859 	slots->generation = old_memslots->generation + 1;
860 
861 	rcu_assign_pointer(kvm->memslots[as_id], slots);
862 	synchronize_srcu_expedited(&kvm->srcu);
863 
864 	/*
865 	 * Increment the new memslot generation a second time. This prevents
866 	 * vm exits that race with memslot updates from caching a memslot
867 	 * generation that will (potentially) be valid forever.
868 	 *
869 	 * Generations must be unique even across address spaces.  We do not need
870 	 * a global counter for that, instead the generation space is evenly split
871 	 * across address spaces.  For example, with two address spaces, address
872 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873 	 * use generations 2, 6, 10, 14, ...
874 	 */
875 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
876 
877 	kvm_arch_memslots_updated(kvm, slots);
878 
879 	return old_memslots;
880 }
881 
882 /*
883  * Allocate some memory and give it an address in the guest physical address
884  * space.
885  *
886  * Discontiguous memory is allowed, mostly for framebuffers.
887  *
888  * Must be called holding kvm->slots_lock for write.
889  */
890 int __kvm_set_memory_region(struct kvm *kvm,
891 			    const struct kvm_userspace_memory_region *mem)
892 {
893 	int r;
894 	gfn_t base_gfn;
895 	unsigned long npages;
896 	struct kvm_memory_slot *slot;
897 	struct kvm_memory_slot old, new;
898 	struct kvm_memslots *slots = NULL, *old_memslots;
899 	int as_id, id;
900 	enum kvm_mr_change change;
901 
902 	r = check_memory_region_flags(mem);
903 	if (r)
904 		goto out;
905 
906 	r = -EINVAL;
907 	as_id = mem->slot >> 16;
908 	id = (u16)mem->slot;
909 
910 	/* General sanity checks */
911 	if (mem->memory_size & (PAGE_SIZE - 1))
912 		goto out;
913 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
914 		goto out;
915 	/* We can read the guest memory with __xxx_user() later on. */
916 	if ((id < KVM_USER_MEM_SLOTS) &&
917 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
918 	     !access_ok(VERIFY_WRITE,
919 			(void __user *)(unsigned long)mem->userspace_addr,
920 			mem->memory_size)))
921 		goto out;
922 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
923 		goto out;
924 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925 		goto out;
926 
927 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
928 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
929 	npages = mem->memory_size >> PAGE_SHIFT;
930 
931 	if (npages > KVM_MEM_MAX_NR_PAGES)
932 		goto out;
933 
934 	new = old = *slot;
935 
936 	new.id = id;
937 	new.base_gfn = base_gfn;
938 	new.npages = npages;
939 	new.flags = mem->flags;
940 
941 	if (npages) {
942 		if (!old.npages)
943 			change = KVM_MR_CREATE;
944 		else { /* Modify an existing slot. */
945 			if ((mem->userspace_addr != old.userspace_addr) ||
946 			    (npages != old.npages) ||
947 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948 				goto out;
949 
950 			if (base_gfn != old.base_gfn)
951 				change = KVM_MR_MOVE;
952 			else if (new.flags != old.flags)
953 				change = KVM_MR_FLAGS_ONLY;
954 			else { /* Nothing to change. */
955 				r = 0;
956 				goto out;
957 			}
958 		}
959 	} else {
960 		if (!old.npages)
961 			goto out;
962 
963 		change = KVM_MR_DELETE;
964 		new.base_gfn = 0;
965 		new.flags = 0;
966 	}
967 
968 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
969 		/* Check for overlaps */
970 		r = -EEXIST;
971 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
972 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
973 			    (slot->id == id))
974 				continue;
975 			if (!((base_gfn + npages <= slot->base_gfn) ||
976 			      (base_gfn >= slot->base_gfn + slot->npages)))
977 				goto out;
978 		}
979 	}
980 
981 	/* Free page dirty bitmap if unneeded */
982 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
983 		new.dirty_bitmap = NULL;
984 
985 	r = -ENOMEM;
986 	if (change == KVM_MR_CREATE) {
987 		new.userspace_addr = mem->userspace_addr;
988 
989 		if (kvm_arch_create_memslot(kvm, &new, npages))
990 			goto out_free;
991 	}
992 
993 	/* Allocate page dirty bitmap if needed */
994 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
995 		if (kvm_create_dirty_bitmap(&new) < 0)
996 			goto out_free;
997 	}
998 
999 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1000 	if (!slots)
1001 		goto out_free;
1002 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1003 
1004 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1005 		slot = id_to_memslot(slots, id);
1006 		slot->flags |= KVM_MEMSLOT_INVALID;
1007 
1008 		old_memslots = install_new_memslots(kvm, as_id, slots);
1009 
1010 		/* From this point no new shadow pages pointing to a deleted,
1011 		 * or moved, memslot will be created.
1012 		 *
1013 		 * validation of sp->gfn happens in:
1014 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1015 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1016 		 */
1017 		kvm_arch_flush_shadow_memslot(kvm, slot);
1018 
1019 		/*
1020 		 * We can re-use the old_memslots from above, the only difference
1021 		 * from the currently installed memslots is the invalid flag.  This
1022 		 * will get overwritten by update_memslots anyway.
1023 		 */
1024 		slots = old_memslots;
1025 	}
1026 
1027 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1028 	if (r)
1029 		goto out_slots;
1030 
1031 	/* actual memory is freed via old in kvm_free_memslot below */
1032 	if (change == KVM_MR_DELETE) {
1033 		new.dirty_bitmap = NULL;
1034 		memset(&new.arch, 0, sizeof(new.arch));
1035 	}
1036 
1037 	update_memslots(slots, &new);
1038 	old_memslots = install_new_memslots(kvm, as_id, slots);
1039 
1040 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1041 
1042 	kvm_free_memslot(kvm, &old, &new);
1043 	kvfree(old_memslots);
1044 	return 0;
1045 
1046 out_slots:
1047 	kvfree(slots);
1048 out_free:
1049 	kvm_free_memslot(kvm, &new, &old);
1050 out:
1051 	return r;
1052 }
1053 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1054 
1055 int kvm_set_memory_region(struct kvm *kvm,
1056 			  const struct kvm_userspace_memory_region *mem)
1057 {
1058 	int r;
1059 
1060 	mutex_lock(&kvm->slots_lock);
1061 	r = __kvm_set_memory_region(kvm, mem);
1062 	mutex_unlock(&kvm->slots_lock);
1063 	return r;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1066 
1067 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1068 					  struct kvm_userspace_memory_region *mem)
1069 {
1070 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1071 		return -EINVAL;
1072 
1073 	return kvm_set_memory_region(kvm, mem);
1074 }
1075 
1076 int kvm_get_dirty_log(struct kvm *kvm,
1077 			struct kvm_dirty_log *log, int *is_dirty)
1078 {
1079 	struct kvm_memslots *slots;
1080 	struct kvm_memory_slot *memslot;
1081 	int i, as_id, id;
1082 	unsigned long n;
1083 	unsigned long any = 0;
1084 
1085 	as_id = log->slot >> 16;
1086 	id = (u16)log->slot;
1087 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1088 		return -EINVAL;
1089 
1090 	slots = __kvm_memslots(kvm, as_id);
1091 	memslot = id_to_memslot(slots, id);
1092 	if (!memslot->dirty_bitmap)
1093 		return -ENOENT;
1094 
1095 	n = kvm_dirty_bitmap_bytes(memslot);
1096 
1097 	for (i = 0; !any && i < n/sizeof(long); ++i)
1098 		any = memslot->dirty_bitmap[i];
1099 
1100 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1101 		return -EFAULT;
1102 
1103 	if (any)
1104 		*is_dirty = 1;
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1108 
1109 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1110 /**
1111  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1112  *	are dirty write protect them for next write.
1113  * @kvm:	pointer to kvm instance
1114  * @log:	slot id and address to which we copy the log
1115  * @is_dirty:	flag set if any page is dirty
1116  *
1117  * We need to keep it in mind that VCPU threads can write to the bitmap
1118  * concurrently. So, to avoid losing track of dirty pages we keep the
1119  * following order:
1120  *
1121  *    1. Take a snapshot of the bit and clear it if needed.
1122  *    2. Write protect the corresponding page.
1123  *    3. Copy the snapshot to the userspace.
1124  *    4. Upon return caller flushes TLB's if needed.
1125  *
1126  * Between 2 and 4, the guest may write to the page using the remaining TLB
1127  * entry.  This is not a problem because the page is reported dirty using
1128  * the snapshot taken before and step 4 ensures that writes done after
1129  * exiting to userspace will be logged for the next call.
1130  *
1131  */
1132 int kvm_get_dirty_log_protect(struct kvm *kvm,
1133 			struct kvm_dirty_log *log, bool *is_dirty)
1134 {
1135 	struct kvm_memslots *slots;
1136 	struct kvm_memory_slot *memslot;
1137 	int i, as_id, id;
1138 	unsigned long n;
1139 	unsigned long *dirty_bitmap;
1140 	unsigned long *dirty_bitmap_buffer;
1141 
1142 	as_id = log->slot >> 16;
1143 	id = (u16)log->slot;
1144 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1145 		return -EINVAL;
1146 
1147 	slots = __kvm_memslots(kvm, as_id);
1148 	memslot = id_to_memslot(slots, id);
1149 
1150 	dirty_bitmap = memslot->dirty_bitmap;
1151 	if (!dirty_bitmap)
1152 		return -ENOENT;
1153 
1154 	n = kvm_dirty_bitmap_bytes(memslot);
1155 
1156 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1157 	memset(dirty_bitmap_buffer, 0, n);
1158 
1159 	spin_lock(&kvm->mmu_lock);
1160 	*is_dirty = false;
1161 	for (i = 0; i < n / sizeof(long); i++) {
1162 		unsigned long mask;
1163 		gfn_t offset;
1164 
1165 		if (!dirty_bitmap[i])
1166 			continue;
1167 
1168 		*is_dirty = true;
1169 
1170 		mask = xchg(&dirty_bitmap[i], 0);
1171 		dirty_bitmap_buffer[i] = mask;
1172 
1173 		if (mask) {
1174 			offset = i * BITS_PER_LONG;
1175 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1176 								offset, mask);
1177 		}
1178 	}
1179 
1180 	spin_unlock(&kvm->mmu_lock);
1181 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1182 		return -EFAULT;
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1186 #endif
1187 
1188 bool kvm_largepages_enabled(void)
1189 {
1190 	return largepages_enabled;
1191 }
1192 
1193 void kvm_disable_largepages(void)
1194 {
1195 	largepages_enabled = false;
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1198 
1199 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1200 {
1201 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1202 }
1203 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1204 
1205 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1206 {
1207 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1208 }
1209 
1210 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1211 {
1212 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1213 
1214 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1215 	      memslot->flags & KVM_MEMSLOT_INVALID)
1216 		return false;
1217 
1218 	return true;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1221 
1222 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1223 {
1224 	struct vm_area_struct *vma;
1225 	unsigned long addr, size;
1226 
1227 	size = PAGE_SIZE;
1228 
1229 	addr = gfn_to_hva(kvm, gfn);
1230 	if (kvm_is_error_hva(addr))
1231 		return PAGE_SIZE;
1232 
1233 	down_read(&current->mm->mmap_sem);
1234 	vma = find_vma(current->mm, addr);
1235 	if (!vma)
1236 		goto out;
1237 
1238 	size = vma_kernel_pagesize(vma);
1239 
1240 out:
1241 	up_read(&current->mm->mmap_sem);
1242 
1243 	return size;
1244 }
1245 
1246 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1247 {
1248 	return slot->flags & KVM_MEM_READONLY;
1249 }
1250 
1251 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1252 				       gfn_t *nr_pages, bool write)
1253 {
1254 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1255 		return KVM_HVA_ERR_BAD;
1256 
1257 	if (memslot_is_readonly(slot) && write)
1258 		return KVM_HVA_ERR_RO_BAD;
1259 
1260 	if (nr_pages)
1261 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1262 
1263 	return __gfn_to_hva_memslot(slot, gfn);
1264 }
1265 
1266 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1267 				     gfn_t *nr_pages)
1268 {
1269 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1270 }
1271 
1272 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1273 					gfn_t gfn)
1274 {
1275 	return gfn_to_hva_many(slot, gfn, NULL);
1276 }
1277 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1278 
1279 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1280 {
1281 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1282 }
1283 EXPORT_SYMBOL_GPL(gfn_to_hva);
1284 
1285 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1286 {
1287 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1290 
1291 /*
1292  * If writable is set to false, the hva returned by this function is only
1293  * allowed to be read.
1294  */
1295 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1296 				      gfn_t gfn, bool *writable)
1297 {
1298 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1299 
1300 	if (!kvm_is_error_hva(hva) && writable)
1301 		*writable = !memslot_is_readonly(slot);
1302 
1303 	return hva;
1304 }
1305 
1306 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1307 {
1308 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1309 
1310 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1311 }
1312 
1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1314 {
1315 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316 
1317 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1318 }
1319 
1320 static inline int check_user_page_hwpoison(unsigned long addr)
1321 {
1322 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1323 
1324 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1325 	return rc == -EHWPOISON;
1326 }
1327 
1328 /*
1329  * The atomic path to get the writable pfn which will be stored in @pfn,
1330  * true indicates success, otherwise false is returned.
1331  */
1332 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1333 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1334 {
1335 	struct page *page[1];
1336 	int npages;
1337 
1338 	if (!(async || atomic))
1339 		return false;
1340 
1341 	/*
1342 	 * Fast pin a writable pfn only if it is a write fault request
1343 	 * or the caller allows to map a writable pfn for a read fault
1344 	 * request.
1345 	 */
1346 	if (!(write_fault || writable))
1347 		return false;
1348 
1349 	npages = __get_user_pages_fast(addr, 1, 1, page);
1350 	if (npages == 1) {
1351 		*pfn = page_to_pfn(page[0]);
1352 
1353 		if (writable)
1354 			*writable = true;
1355 		return true;
1356 	}
1357 
1358 	return false;
1359 }
1360 
1361 /*
1362  * The slow path to get the pfn of the specified host virtual address,
1363  * 1 indicates success, -errno is returned if error is detected.
1364  */
1365 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1366 			   bool *writable, kvm_pfn_t *pfn)
1367 {
1368 	unsigned int flags = FOLL_HWPOISON;
1369 	struct page *page;
1370 	int npages = 0;
1371 
1372 	might_sleep();
1373 
1374 	if (writable)
1375 		*writable = write_fault;
1376 
1377 	if (write_fault)
1378 		flags |= FOLL_WRITE;
1379 	if (async)
1380 		flags |= FOLL_NOWAIT;
1381 
1382 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1383 	if (npages != 1)
1384 		return npages;
1385 
1386 	/* map read fault as writable if possible */
1387 	if (unlikely(!write_fault) && writable) {
1388 		struct page *wpage;
1389 
1390 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1391 			*writable = true;
1392 			put_page(page);
1393 			page = wpage;
1394 		}
1395 	}
1396 	*pfn = page_to_pfn(page);
1397 	return npages;
1398 }
1399 
1400 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1401 {
1402 	if (unlikely(!(vma->vm_flags & VM_READ)))
1403 		return false;
1404 
1405 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1406 		return false;
1407 
1408 	return true;
1409 }
1410 
1411 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1412 			       unsigned long addr, bool *async,
1413 			       bool write_fault, bool *writable,
1414 			       kvm_pfn_t *p_pfn)
1415 {
1416 	unsigned long pfn;
1417 	int r;
1418 
1419 	r = follow_pfn(vma, addr, &pfn);
1420 	if (r) {
1421 		/*
1422 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1423 		 * not call the fault handler, so do it here.
1424 		 */
1425 		bool unlocked = false;
1426 		r = fixup_user_fault(current, current->mm, addr,
1427 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1428 				     &unlocked);
1429 		if (unlocked)
1430 			return -EAGAIN;
1431 		if (r)
1432 			return r;
1433 
1434 		r = follow_pfn(vma, addr, &pfn);
1435 		if (r)
1436 			return r;
1437 
1438 	}
1439 
1440 	if (writable)
1441 		*writable = true;
1442 
1443 	/*
1444 	 * Get a reference here because callers of *hva_to_pfn* and
1445 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1446 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1447 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1448 	 * simply do nothing for reserved pfns.
1449 	 *
1450 	 * Whoever called remap_pfn_range is also going to call e.g.
1451 	 * unmap_mapping_range before the underlying pages are freed,
1452 	 * causing a call to our MMU notifier.
1453 	 */
1454 	kvm_get_pfn(pfn);
1455 
1456 	*p_pfn = pfn;
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Pin guest page in memory and return its pfn.
1462  * @addr: host virtual address which maps memory to the guest
1463  * @atomic: whether this function can sleep
1464  * @async: whether this function need to wait IO complete if the
1465  *         host page is not in the memory
1466  * @write_fault: whether we should get a writable host page
1467  * @writable: whether it allows to map a writable host page for !@write_fault
1468  *
1469  * The function will map a writable host page for these two cases:
1470  * 1): @write_fault = true
1471  * 2): @write_fault = false && @writable, @writable will tell the caller
1472  *     whether the mapping is writable.
1473  */
1474 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1475 			bool write_fault, bool *writable)
1476 {
1477 	struct vm_area_struct *vma;
1478 	kvm_pfn_t pfn = 0;
1479 	int npages, r;
1480 
1481 	/* we can do it either atomically or asynchronously, not both */
1482 	BUG_ON(atomic && async);
1483 
1484 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1485 		return pfn;
1486 
1487 	if (atomic)
1488 		return KVM_PFN_ERR_FAULT;
1489 
1490 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1491 	if (npages == 1)
1492 		return pfn;
1493 
1494 	down_read(&current->mm->mmap_sem);
1495 	if (npages == -EHWPOISON ||
1496 	      (!async && check_user_page_hwpoison(addr))) {
1497 		pfn = KVM_PFN_ERR_HWPOISON;
1498 		goto exit;
1499 	}
1500 
1501 retry:
1502 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1503 
1504 	if (vma == NULL)
1505 		pfn = KVM_PFN_ERR_FAULT;
1506 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1507 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1508 		if (r == -EAGAIN)
1509 			goto retry;
1510 		if (r < 0)
1511 			pfn = KVM_PFN_ERR_FAULT;
1512 	} else {
1513 		if (async && vma_is_valid(vma, write_fault))
1514 			*async = true;
1515 		pfn = KVM_PFN_ERR_FAULT;
1516 	}
1517 exit:
1518 	up_read(&current->mm->mmap_sem);
1519 	return pfn;
1520 }
1521 
1522 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1523 			       bool atomic, bool *async, bool write_fault,
1524 			       bool *writable)
1525 {
1526 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1527 
1528 	if (addr == KVM_HVA_ERR_RO_BAD) {
1529 		if (writable)
1530 			*writable = false;
1531 		return KVM_PFN_ERR_RO_FAULT;
1532 	}
1533 
1534 	if (kvm_is_error_hva(addr)) {
1535 		if (writable)
1536 			*writable = false;
1537 		return KVM_PFN_NOSLOT;
1538 	}
1539 
1540 	/* Do not map writable pfn in the readonly memslot. */
1541 	if (writable && memslot_is_readonly(slot)) {
1542 		*writable = false;
1543 		writable = NULL;
1544 	}
1545 
1546 	return hva_to_pfn(addr, atomic, async, write_fault,
1547 			  writable);
1548 }
1549 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1550 
1551 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1552 		      bool *writable)
1553 {
1554 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1555 				    write_fault, writable);
1556 }
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1558 
1559 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1560 {
1561 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1562 }
1563 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1564 
1565 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1566 {
1567 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1568 }
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1570 
1571 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1572 {
1573 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1574 }
1575 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1576 
1577 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1578 {
1579 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1582 
1583 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1584 {
1585 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1586 }
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1588 
1589 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1590 {
1591 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1592 }
1593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1594 
1595 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1596 			    struct page **pages, int nr_pages)
1597 {
1598 	unsigned long addr;
1599 	gfn_t entry = 0;
1600 
1601 	addr = gfn_to_hva_many(slot, gfn, &entry);
1602 	if (kvm_is_error_hva(addr))
1603 		return -1;
1604 
1605 	if (entry < nr_pages)
1606 		return 0;
1607 
1608 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1611 
1612 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1613 {
1614 	if (is_error_noslot_pfn(pfn))
1615 		return KVM_ERR_PTR_BAD_PAGE;
1616 
1617 	if (kvm_is_reserved_pfn(pfn)) {
1618 		WARN_ON(1);
1619 		return KVM_ERR_PTR_BAD_PAGE;
1620 	}
1621 
1622 	return pfn_to_page(pfn);
1623 }
1624 
1625 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1626 {
1627 	kvm_pfn_t pfn;
1628 
1629 	pfn = gfn_to_pfn(kvm, gfn);
1630 
1631 	return kvm_pfn_to_page(pfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_page);
1634 
1635 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637 	kvm_pfn_t pfn;
1638 
1639 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1640 
1641 	return kvm_pfn_to_page(pfn);
1642 }
1643 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1644 
1645 void kvm_release_page_clean(struct page *page)
1646 {
1647 	WARN_ON(is_error_page(page));
1648 
1649 	kvm_release_pfn_clean(page_to_pfn(page));
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1652 
1653 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1654 {
1655 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1656 		put_page(pfn_to_page(pfn));
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1659 
1660 void kvm_release_page_dirty(struct page *page)
1661 {
1662 	WARN_ON(is_error_page(page));
1663 
1664 	kvm_release_pfn_dirty(page_to_pfn(page));
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1667 
1668 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1669 {
1670 	kvm_set_pfn_dirty(pfn);
1671 	kvm_release_pfn_clean(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1674 
1675 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1676 {
1677 	if (!kvm_is_reserved_pfn(pfn)) {
1678 		struct page *page = pfn_to_page(pfn);
1679 
1680 		if (!PageReserved(page))
1681 			SetPageDirty(page);
1682 	}
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1685 
1686 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1687 {
1688 	if (!kvm_is_reserved_pfn(pfn))
1689 		mark_page_accessed(pfn_to_page(pfn));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1692 
1693 void kvm_get_pfn(kvm_pfn_t pfn)
1694 {
1695 	if (!kvm_is_reserved_pfn(pfn))
1696 		get_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1699 
1700 static int next_segment(unsigned long len, int offset)
1701 {
1702 	if (len > PAGE_SIZE - offset)
1703 		return PAGE_SIZE - offset;
1704 	else
1705 		return len;
1706 }
1707 
1708 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1709 				 void *data, int offset, int len)
1710 {
1711 	int r;
1712 	unsigned long addr;
1713 
1714 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1715 	if (kvm_is_error_hva(addr))
1716 		return -EFAULT;
1717 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1718 	if (r)
1719 		return -EFAULT;
1720 	return 0;
1721 }
1722 
1723 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1724 			int len)
1725 {
1726 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1727 
1728 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1731 
1732 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1733 			     int offset, int len)
1734 {
1735 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736 
1737 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1740 
1741 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1742 {
1743 	gfn_t gfn = gpa >> PAGE_SHIFT;
1744 	int seg;
1745 	int offset = offset_in_page(gpa);
1746 	int ret;
1747 
1748 	while ((seg = next_segment(len, offset)) != 0) {
1749 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1750 		if (ret < 0)
1751 			return ret;
1752 		offset = 0;
1753 		len -= seg;
1754 		data += seg;
1755 		++gfn;
1756 	}
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_read_guest);
1760 
1761 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1762 {
1763 	gfn_t gfn = gpa >> PAGE_SHIFT;
1764 	int seg;
1765 	int offset = offset_in_page(gpa);
1766 	int ret;
1767 
1768 	while ((seg = next_segment(len, offset)) != 0) {
1769 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1770 		if (ret < 0)
1771 			return ret;
1772 		offset = 0;
1773 		len -= seg;
1774 		data += seg;
1775 		++gfn;
1776 	}
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1780 
1781 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1782 			           void *data, int offset, unsigned long len)
1783 {
1784 	int r;
1785 	unsigned long addr;
1786 
1787 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1788 	if (kvm_is_error_hva(addr))
1789 		return -EFAULT;
1790 	pagefault_disable();
1791 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1792 	pagefault_enable();
1793 	if (r)
1794 		return -EFAULT;
1795 	return 0;
1796 }
1797 
1798 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1799 			  unsigned long len)
1800 {
1801 	gfn_t gfn = gpa >> PAGE_SHIFT;
1802 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1803 	int offset = offset_in_page(gpa);
1804 
1805 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1808 
1809 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1810 			       void *data, unsigned long len)
1811 {
1812 	gfn_t gfn = gpa >> PAGE_SHIFT;
1813 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1814 	int offset = offset_in_page(gpa);
1815 
1816 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1819 
1820 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1821 			          const void *data, int offset, int len)
1822 {
1823 	int r;
1824 	unsigned long addr;
1825 
1826 	addr = gfn_to_hva_memslot(memslot, gfn);
1827 	if (kvm_is_error_hva(addr))
1828 		return -EFAULT;
1829 	r = __copy_to_user((void __user *)addr + offset, data, len);
1830 	if (r)
1831 		return -EFAULT;
1832 	mark_page_dirty_in_slot(memslot, gfn);
1833 	return 0;
1834 }
1835 
1836 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1837 			 const void *data, int offset, int len)
1838 {
1839 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1840 
1841 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1844 
1845 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1846 			      const void *data, int offset, int len)
1847 {
1848 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1849 
1850 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1853 
1854 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1855 		    unsigned long len)
1856 {
1857 	gfn_t gfn = gpa >> PAGE_SHIFT;
1858 	int seg;
1859 	int offset = offset_in_page(gpa);
1860 	int ret;
1861 
1862 	while ((seg = next_segment(len, offset)) != 0) {
1863 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1864 		if (ret < 0)
1865 			return ret;
1866 		offset = 0;
1867 		len -= seg;
1868 		data += seg;
1869 		++gfn;
1870 	}
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_write_guest);
1874 
1875 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1876 		         unsigned long len)
1877 {
1878 	gfn_t gfn = gpa >> PAGE_SHIFT;
1879 	int seg;
1880 	int offset = offset_in_page(gpa);
1881 	int ret;
1882 
1883 	while ((seg = next_segment(len, offset)) != 0) {
1884 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1885 		if (ret < 0)
1886 			return ret;
1887 		offset = 0;
1888 		len -= seg;
1889 		data += seg;
1890 		++gfn;
1891 	}
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1895 
1896 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1897 				       struct gfn_to_hva_cache *ghc,
1898 				       gpa_t gpa, unsigned long len)
1899 {
1900 	int offset = offset_in_page(gpa);
1901 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1902 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1903 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1904 	gfn_t nr_pages_avail;
1905 
1906 	ghc->gpa = gpa;
1907 	ghc->generation = slots->generation;
1908 	ghc->len = len;
1909 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1910 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1911 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1912 		ghc->hva += offset;
1913 	} else {
1914 		/*
1915 		 * If the requested region crosses two memslots, we still
1916 		 * verify that the entire region is valid here.
1917 		 */
1918 		while (start_gfn <= end_gfn) {
1919 			nr_pages_avail = 0;
1920 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1921 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1922 						   &nr_pages_avail);
1923 			if (kvm_is_error_hva(ghc->hva))
1924 				return -EFAULT;
1925 			start_gfn += nr_pages_avail;
1926 		}
1927 		/* Use the slow path for cross page reads and writes. */
1928 		ghc->memslot = NULL;
1929 	}
1930 	return 0;
1931 }
1932 
1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1934 			      gpa_t gpa, unsigned long len)
1935 {
1936 	struct kvm_memslots *slots = kvm_memslots(kvm);
1937 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1940 
1941 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1942 			   void *data, int offset, unsigned long len)
1943 {
1944 	struct kvm_memslots *slots = kvm_memslots(kvm);
1945 	int r;
1946 	gpa_t gpa = ghc->gpa + offset;
1947 
1948 	BUG_ON(len + offset > ghc->len);
1949 
1950 	if (slots->generation != ghc->generation)
1951 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1952 
1953 	if (unlikely(!ghc->memslot))
1954 		return kvm_write_guest(kvm, gpa, data, len);
1955 
1956 	if (kvm_is_error_hva(ghc->hva))
1957 		return -EFAULT;
1958 
1959 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1960 	if (r)
1961 		return -EFAULT;
1962 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1967 
1968 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1969 			   void *data, unsigned long len)
1970 {
1971 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1974 
1975 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976 			   void *data, unsigned long len)
1977 {
1978 	struct kvm_memslots *slots = kvm_memslots(kvm);
1979 	int r;
1980 
1981 	BUG_ON(len > ghc->len);
1982 
1983 	if (slots->generation != ghc->generation)
1984 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1985 
1986 	if (unlikely(!ghc->memslot))
1987 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1988 
1989 	if (kvm_is_error_hva(ghc->hva))
1990 		return -EFAULT;
1991 
1992 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1993 	if (r)
1994 		return -EFAULT;
1995 
1996 	return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1999 
2000 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2001 {
2002 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2003 
2004 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2007 
2008 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2009 {
2010 	gfn_t gfn = gpa >> PAGE_SHIFT;
2011 	int seg;
2012 	int offset = offset_in_page(gpa);
2013 	int ret;
2014 
2015 	while ((seg = next_segment(len, offset)) != 0) {
2016 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2017 		if (ret < 0)
2018 			return ret;
2019 		offset = 0;
2020 		len -= seg;
2021 		++gfn;
2022 	}
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2026 
2027 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2028 				    gfn_t gfn)
2029 {
2030 	if (memslot && memslot->dirty_bitmap) {
2031 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2032 
2033 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2034 	}
2035 }
2036 
2037 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2038 {
2039 	struct kvm_memory_slot *memslot;
2040 
2041 	memslot = gfn_to_memslot(kvm, gfn);
2042 	mark_page_dirty_in_slot(memslot, gfn);
2043 }
2044 EXPORT_SYMBOL_GPL(mark_page_dirty);
2045 
2046 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2047 {
2048 	struct kvm_memory_slot *memslot;
2049 
2050 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2051 	mark_page_dirty_in_slot(memslot, gfn);
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2054 
2055 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2056 {
2057 	if (!vcpu->sigset_active)
2058 		return;
2059 
2060 	/*
2061 	 * This does a lockless modification of ->real_blocked, which is fine
2062 	 * because, only current can change ->real_blocked and all readers of
2063 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2064 	 * of ->blocked.
2065 	 */
2066 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2067 }
2068 
2069 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2070 {
2071 	if (!vcpu->sigset_active)
2072 		return;
2073 
2074 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2075 	sigemptyset(&current->real_blocked);
2076 }
2077 
2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2079 {
2080 	unsigned int old, val, grow;
2081 
2082 	old = val = vcpu->halt_poll_ns;
2083 	grow = READ_ONCE(halt_poll_ns_grow);
2084 	/* 10us base */
2085 	if (val == 0 && grow)
2086 		val = 10000;
2087 	else
2088 		val *= grow;
2089 
2090 	if (val > halt_poll_ns)
2091 		val = halt_poll_ns;
2092 
2093 	vcpu->halt_poll_ns = val;
2094 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2095 }
2096 
2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2098 {
2099 	unsigned int old, val, shrink;
2100 
2101 	old = val = vcpu->halt_poll_ns;
2102 	shrink = READ_ONCE(halt_poll_ns_shrink);
2103 	if (shrink == 0)
2104 		val = 0;
2105 	else
2106 		val /= shrink;
2107 
2108 	vcpu->halt_poll_ns = val;
2109 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2110 }
2111 
2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2113 {
2114 	if (kvm_arch_vcpu_runnable(vcpu)) {
2115 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2116 		return -EINTR;
2117 	}
2118 	if (kvm_cpu_has_pending_timer(vcpu))
2119 		return -EINTR;
2120 	if (signal_pending(current))
2121 		return -EINTR;
2122 
2123 	return 0;
2124 }
2125 
2126 /*
2127  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2128  */
2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2130 {
2131 	ktime_t start, cur;
2132 	DECLARE_SWAITQUEUE(wait);
2133 	bool waited = false;
2134 	u64 block_ns;
2135 
2136 	start = cur = ktime_get();
2137 	if (vcpu->halt_poll_ns) {
2138 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2139 
2140 		++vcpu->stat.halt_attempted_poll;
2141 		do {
2142 			/*
2143 			 * This sets KVM_REQ_UNHALT if an interrupt
2144 			 * arrives.
2145 			 */
2146 			if (kvm_vcpu_check_block(vcpu) < 0) {
2147 				++vcpu->stat.halt_successful_poll;
2148 				if (!vcpu_valid_wakeup(vcpu))
2149 					++vcpu->stat.halt_poll_invalid;
2150 				goto out;
2151 			}
2152 			cur = ktime_get();
2153 		} while (single_task_running() && ktime_before(cur, stop));
2154 	}
2155 
2156 	kvm_arch_vcpu_blocking(vcpu);
2157 
2158 	for (;;) {
2159 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2160 
2161 		if (kvm_vcpu_check_block(vcpu) < 0)
2162 			break;
2163 
2164 		waited = true;
2165 		schedule();
2166 	}
2167 
2168 	finish_swait(&vcpu->wq, &wait);
2169 	cur = ktime_get();
2170 
2171 	kvm_arch_vcpu_unblocking(vcpu);
2172 out:
2173 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2174 
2175 	if (!vcpu_valid_wakeup(vcpu))
2176 		shrink_halt_poll_ns(vcpu);
2177 	else if (halt_poll_ns) {
2178 		if (block_ns <= vcpu->halt_poll_ns)
2179 			;
2180 		/* we had a long block, shrink polling */
2181 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2182 			shrink_halt_poll_ns(vcpu);
2183 		/* we had a short halt and our poll time is too small */
2184 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2185 			block_ns < halt_poll_ns)
2186 			grow_halt_poll_ns(vcpu);
2187 	} else
2188 		vcpu->halt_poll_ns = 0;
2189 
2190 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2191 	kvm_arch_vcpu_block_finish(vcpu);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2194 
2195 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2196 {
2197 	struct swait_queue_head *wqp;
2198 
2199 	wqp = kvm_arch_vcpu_wq(vcpu);
2200 	if (swq_has_sleeper(wqp)) {
2201 		swake_up(wqp);
2202 		++vcpu->stat.halt_wakeup;
2203 		return true;
2204 	}
2205 
2206 	return false;
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2209 
2210 #ifndef CONFIG_S390
2211 /*
2212  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2213  */
2214 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2215 {
2216 	int me;
2217 	int cpu = vcpu->cpu;
2218 
2219 	if (kvm_vcpu_wake_up(vcpu))
2220 		return;
2221 
2222 	me = get_cpu();
2223 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2224 		if (kvm_arch_vcpu_should_kick(vcpu))
2225 			smp_send_reschedule(cpu);
2226 	put_cpu();
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2229 #endif /* !CONFIG_S390 */
2230 
2231 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2232 {
2233 	struct pid *pid;
2234 	struct task_struct *task = NULL;
2235 	int ret = 0;
2236 
2237 	rcu_read_lock();
2238 	pid = rcu_dereference(target->pid);
2239 	if (pid)
2240 		task = get_pid_task(pid, PIDTYPE_PID);
2241 	rcu_read_unlock();
2242 	if (!task)
2243 		return ret;
2244 	ret = yield_to(task, 1);
2245 	put_task_struct(task);
2246 
2247 	return ret;
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2250 
2251 /*
2252  * Helper that checks whether a VCPU is eligible for directed yield.
2253  * Most eligible candidate to yield is decided by following heuristics:
2254  *
2255  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2256  *  (preempted lock holder), indicated by @in_spin_loop.
2257  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2258  *
2259  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2260  *  chance last time (mostly it has become eligible now since we have probably
2261  *  yielded to lockholder in last iteration. This is done by toggling
2262  *  @dy_eligible each time a VCPU checked for eligibility.)
2263  *
2264  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2265  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2266  *  burning. Giving priority for a potential lock-holder increases lock
2267  *  progress.
2268  *
2269  *  Since algorithm is based on heuristics, accessing another VCPU data without
2270  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2271  *  and continue with next VCPU and so on.
2272  */
2273 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2274 {
2275 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2276 	bool eligible;
2277 
2278 	eligible = !vcpu->spin_loop.in_spin_loop ||
2279 		    vcpu->spin_loop.dy_eligible;
2280 
2281 	if (vcpu->spin_loop.in_spin_loop)
2282 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2283 
2284 	return eligible;
2285 #else
2286 	return true;
2287 #endif
2288 }
2289 
2290 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2291 {
2292 	struct kvm *kvm = me->kvm;
2293 	struct kvm_vcpu *vcpu;
2294 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2295 	int yielded = 0;
2296 	int try = 3;
2297 	int pass;
2298 	int i;
2299 
2300 	kvm_vcpu_set_in_spin_loop(me, true);
2301 	/*
2302 	 * We boost the priority of a VCPU that is runnable but not
2303 	 * currently running, because it got preempted by something
2304 	 * else and called schedule in __vcpu_run.  Hopefully that
2305 	 * VCPU is holding the lock that we need and will release it.
2306 	 * We approximate round-robin by starting at the last boosted VCPU.
2307 	 */
2308 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2309 		kvm_for_each_vcpu(i, vcpu, kvm) {
2310 			if (!pass && i <= last_boosted_vcpu) {
2311 				i = last_boosted_vcpu;
2312 				continue;
2313 			} else if (pass && i > last_boosted_vcpu)
2314 				break;
2315 			if (!READ_ONCE(vcpu->preempted))
2316 				continue;
2317 			if (vcpu == me)
2318 				continue;
2319 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2320 				continue;
2321 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2322 				continue;
2323 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2324 				continue;
2325 
2326 			yielded = kvm_vcpu_yield_to(vcpu);
2327 			if (yielded > 0) {
2328 				kvm->last_boosted_vcpu = i;
2329 				break;
2330 			} else if (yielded < 0) {
2331 				try--;
2332 				if (!try)
2333 					break;
2334 			}
2335 		}
2336 	}
2337 	kvm_vcpu_set_in_spin_loop(me, false);
2338 
2339 	/* Ensure vcpu is not eligible during next spinloop */
2340 	kvm_vcpu_set_dy_eligible(me, false);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2343 
2344 static int kvm_vcpu_fault(struct vm_fault *vmf)
2345 {
2346 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2347 	struct page *page;
2348 
2349 	if (vmf->pgoff == 0)
2350 		page = virt_to_page(vcpu->run);
2351 #ifdef CONFIG_X86
2352 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2353 		page = virt_to_page(vcpu->arch.pio_data);
2354 #endif
2355 #ifdef CONFIG_KVM_MMIO
2356 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2357 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2358 #endif
2359 	else
2360 		return kvm_arch_vcpu_fault(vcpu, vmf);
2361 	get_page(page);
2362 	vmf->page = page;
2363 	return 0;
2364 }
2365 
2366 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2367 	.fault = kvm_vcpu_fault,
2368 };
2369 
2370 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2371 {
2372 	vma->vm_ops = &kvm_vcpu_vm_ops;
2373 	return 0;
2374 }
2375 
2376 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2377 {
2378 	struct kvm_vcpu *vcpu = filp->private_data;
2379 
2380 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2381 	kvm_put_kvm(vcpu->kvm);
2382 	return 0;
2383 }
2384 
2385 static struct file_operations kvm_vcpu_fops = {
2386 	.release        = kvm_vcpu_release,
2387 	.unlocked_ioctl = kvm_vcpu_ioctl,
2388 #ifdef CONFIG_KVM_COMPAT
2389 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2390 #endif
2391 	.mmap           = kvm_vcpu_mmap,
2392 	.llseek		= noop_llseek,
2393 };
2394 
2395 /*
2396  * Allocates an inode for the vcpu.
2397  */
2398 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2399 {
2400 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2401 
2402 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2403 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2404 }
2405 
2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2407 {
2408 	char dir_name[ITOA_MAX_LEN * 2];
2409 	int ret;
2410 
2411 	if (!kvm_arch_has_vcpu_debugfs())
2412 		return 0;
2413 
2414 	if (!debugfs_initialized())
2415 		return 0;
2416 
2417 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2418 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2419 								vcpu->kvm->debugfs_dentry);
2420 	if (!vcpu->debugfs_dentry)
2421 		return -ENOMEM;
2422 
2423 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2424 	if (ret < 0) {
2425 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2426 		return ret;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Creates some virtual cpus.  Good luck creating more than one.
2434  */
2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2436 {
2437 	int r;
2438 	struct kvm_vcpu *vcpu;
2439 
2440 	if (id >= KVM_MAX_VCPU_ID)
2441 		return -EINVAL;
2442 
2443 	mutex_lock(&kvm->lock);
2444 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2445 		mutex_unlock(&kvm->lock);
2446 		return -EINVAL;
2447 	}
2448 
2449 	kvm->created_vcpus++;
2450 	mutex_unlock(&kvm->lock);
2451 
2452 	vcpu = kvm_arch_vcpu_create(kvm, id);
2453 	if (IS_ERR(vcpu)) {
2454 		r = PTR_ERR(vcpu);
2455 		goto vcpu_decrement;
2456 	}
2457 
2458 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2459 
2460 	r = kvm_arch_vcpu_setup(vcpu);
2461 	if (r)
2462 		goto vcpu_destroy;
2463 
2464 	r = kvm_create_vcpu_debugfs(vcpu);
2465 	if (r)
2466 		goto vcpu_destroy;
2467 
2468 	mutex_lock(&kvm->lock);
2469 	if (kvm_get_vcpu_by_id(kvm, id)) {
2470 		r = -EEXIST;
2471 		goto unlock_vcpu_destroy;
2472 	}
2473 
2474 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2475 
2476 	/* Now it's all set up, let userspace reach it */
2477 	kvm_get_kvm(kvm);
2478 	r = create_vcpu_fd(vcpu);
2479 	if (r < 0) {
2480 		kvm_put_kvm(kvm);
2481 		goto unlock_vcpu_destroy;
2482 	}
2483 
2484 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2485 
2486 	/*
2487 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2488 	 * before kvm->online_vcpu's incremented value.
2489 	 */
2490 	smp_wmb();
2491 	atomic_inc(&kvm->online_vcpus);
2492 
2493 	mutex_unlock(&kvm->lock);
2494 	kvm_arch_vcpu_postcreate(vcpu);
2495 	return r;
2496 
2497 unlock_vcpu_destroy:
2498 	mutex_unlock(&kvm->lock);
2499 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2500 vcpu_destroy:
2501 	kvm_arch_vcpu_destroy(vcpu);
2502 vcpu_decrement:
2503 	mutex_lock(&kvm->lock);
2504 	kvm->created_vcpus--;
2505 	mutex_unlock(&kvm->lock);
2506 	return r;
2507 }
2508 
2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2510 {
2511 	if (sigset) {
2512 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2513 		vcpu->sigset_active = 1;
2514 		vcpu->sigset = *sigset;
2515 	} else
2516 		vcpu->sigset_active = 0;
2517 	return 0;
2518 }
2519 
2520 static long kvm_vcpu_ioctl(struct file *filp,
2521 			   unsigned int ioctl, unsigned long arg)
2522 {
2523 	struct kvm_vcpu *vcpu = filp->private_data;
2524 	void __user *argp = (void __user *)arg;
2525 	int r;
2526 	struct kvm_fpu *fpu = NULL;
2527 	struct kvm_sregs *kvm_sregs = NULL;
2528 
2529 	if (vcpu->kvm->mm != current->mm)
2530 		return -EIO;
2531 
2532 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2533 		return -EINVAL;
2534 
2535 	/*
2536 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2537 	 * execution; mutex_lock() would break them.
2538 	 */
2539 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2540 	if (r != -ENOIOCTLCMD)
2541 		return r;
2542 
2543 	if (mutex_lock_killable(&vcpu->mutex))
2544 		return -EINTR;
2545 	switch (ioctl) {
2546 	case KVM_RUN: {
2547 		struct pid *oldpid;
2548 		r = -EINVAL;
2549 		if (arg)
2550 			goto out;
2551 		oldpid = rcu_access_pointer(vcpu->pid);
2552 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2553 			/* The thread running this VCPU changed. */
2554 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2555 
2556 			rcu_assign_pointer(vcpu->pid, newpid);
2557 			if (oldpid)
2558 				synchronize_rcu();
2559 			put_pid(oldpid);
2560 		}
2561 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2562 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2563 		break;
2564 	}
2565 	case KVM_GET_REGS: {
2566 		struct kvm_regs *kvm_regs;
2567 
2568 		r = -ENOMEM;
2569 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2570 		if (!kvm_regs)
2571 			goto out;
2572 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2573 		if (r)
2574 			goto out_free1;
2575 		r = -EFAULT;
2576 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2577 			goto out_free1;
2578 		r = 0;
2579 out_free1:
2580 		kfree(kvm_regs);
2581 		break;
2582 	}
2583 	case KVM_SET_REGS: {
2584 		struct kvm_regs *kvm_regs;
2585 
2586 		r = -ENOMEM;
2587 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2588 		if (IS_ERR(kvm_regs)) {
2589 			r = PTR_ERR(kvm_regs);
2590 			goto out;
2591 		}
2592 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2593 		kfree(kvm_regs);
2594 		break;
2595 	}
2596 	case KVM_GET_SREGS: {
2597 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2598 		r = -ENOMEM;
2599 		if (!kvm_sregs)
2600 			goto out;
2601 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2602 		if (r)
2603 			goto out;
2604 		r = -EFAULT;
2605 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2606 			goto out;
2607 		r = 0;
2608 		break;
2609 	}
2610 	case KVM_SET_SREGS: {
2611 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2612 		if (IS_ERR(kvm_sregs)) {
2613 			r = PTR_ERR(kvm_sregs);
2614 			kvm_sregs = NULL;
2615 			goto out;
2616 		}
2617 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2618 		break;
2619 	}
2620 	case KVM_GET_MP_STATE: {
2621 		struct kvm_mp_state mp_state;
2622 
2623 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2624 		if (r)
2625 			goto out;
2626 		r = -EFAULT;
2627 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2628 			goto out;
2629 		r = 0;
2630 		break;
2631 	}
2632 	case KVM_SET_MP_STATE: {
2633 		struct kvm_mp_state mp_state;
2634 
2635 		r = -EFAULT;
2636 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2637 			goto out;
2638 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2639 		break;
2640 	}
2641 	case KVM_TRANSLATE: {
2642 		struct kvm_translation tr;
2643 
2644 		r = -EFAULT;
2645 		if (copy_from_user(&tr, argp, sizeof(tr)))
2646 			goto out;
2647 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2648 		if (r)
2649 			goto out;
2650 		r = -EFAULT;
2651 		if (copy_to_user(argp, &tr, sizeof(tr)))
2652 			goto out;
2653 		r = 0;
2654 		break;
2655 	}
2656 	case KVM_SET_GUEST_DEBUG: {
2657 		struct kvm_guest_debug dbg;
2658 
2659 		r = -EFAULT;
2660 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2661 			goto out;
2662 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2663 		break;
2664 	}
2665 	case KVM_SET_SIGNAL_MASK: {
2666 		struct kvm_signal_mask __user *sigmask_arg = argp;
2667 		struct kvm_signal_mask kvm_sigmask;
2668 		sigset_t sigset, *p;
2669 
2670 		p = NULL;
2671 		if (argp) {
2672 			r = -EFAULT;
2673 			if (copy_from_user(&kvm_sigmask, argp,
2674 					   sizeof(kvm_sigmask)))
2675 				goto out;
2676 			r = -EINVAL;
2677 			if (kvm_sigmask.len != sizeof(sigset))
2678 				goto out;
2679 			r = -EFAULT;
2680 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2681 					   sizeof(sigset)))
2682 				goto out;
2683 			p = &sigset;
2684 		}
2685 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2686 		break;
2687 	}
2688 	case KVM_GET_FPU: {
2689 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2690 		r = -ENOMEM;
2691 		if (!fpu)
2692 			goto out;
2693 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2694 		if (r)
2695 			goto out;
2696 		r = -EFAULT;
2697 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2698 			goto out;
2699 		r = 0;
2700 		break;
2701 	}
2702 	case KVM_SET_FPU: {
2703 		fpu = memdup_user(argp, sizeof(*fpu));
2704 		if (IS_ERR(fpu)) {
2705 			r = PTR_ERR(fpu);
2706 			fpu = NULL;
2707 			goto out;
2708 		}
2709 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2710 		break;
2711 	}
2712 	default:
2713 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2714 	}
2715 out:
2716 	mutex_unlock(&vcpu->mutex);
2717 	kfree(fpu);
2718 	kfree(kvm_sregs);
2719 	return r;
2720 }
2721 
2722 #ifdef CONFIG_KVM_COMPAT
2723 static long kvm_vcpu_compat_ioctl(struct file *filp,
2724 				  unsigned int ioctl, unsigned long arg)
2725 {
2726 	struct kvm_vcpu *vcpu = filp->private_data;
2727 	void __user *argp = compat_ptr(arg);
2728 	int r;
2729 
2730 	if (vcpu->kvm->mm != current->mm)
2731 		return -EIO;
2732 
2733 	switch (ioctl) {
2734 	case KVM_SET_SIGNAL_MASK: {
2735 		struct kvm_signal_mask __user *sigmask_arg = argp;
2736 		struct kvm_signal_mask kvm_sigmask;
2737 		sigset_t sigset;
2738 
2739 		if (argp) {
2740 			r = -EFAULT;
2741 			if (copy_from_user(&kvm_sigmask, argp,
2742 					   sizeof(kvm_sigmask)))
2743 				goto out;
2744 			r = -EINVAL;
2745 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2746 				goto out;
2747 			r = -EFAULT;
2748 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2749 				goto out;
2750 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2751 		} else
2752 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2753 		break;
2754 	}
2755 	default:
2756 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2757 	}
2758 
2759 out:
2760 	return r;
2761 }
2762 #endif
2763 
2764 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2765 				 int (*accessor)(struct kvm_device *dev,
2766 						 struct kvm_device_attr *attr),
2767 				 unsigned long arg)
2768 {
2769 	struct kvm_device_attr attr;
2770 
2771 	if (!accessor)
2772 		return -EPERM;
2773 
2774 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2775 		return -EFAULT;
2776 
2777 	return accessor(dev, &attr);
2778 }
2779 
2780 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2781 			     unsigned long arg)
2782 {
2783 	struct kvm_device *dev = filp->private_data;
2784 
2785 	switch (ioctl) {
2786 	case KVM_SET_DEVICE_ATTR:
2787 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2788 	case KVM_GET_DEVICE_ATTR:
2789 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2790 	case KVM_HAS_DEVICE_ATTR:
2791 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2792 	default:
2793 		if (dev->ops->ioctl)
2794 			return dev->ops->ioctl(dev, ioctl, arg);
2795 
2796 		return -ENOTTY;
2797 	}
2798 }
2799 
2800 static int kvm_device_release(struct inode *inode, struct file *filp)
2801 {
2802 	struct kvm_device *dev = filp->private_data;
2803 	struct kvm *kvm = dev->kvm;
2804 
2805 	kvm_put_kvm(kvm);
2806 	return 0;
2807 }
2808 
2809 static const struct file_operations kvm_device_fops = {
2810 	.unlocked_ioctl = kvm_device_ioctl,
2811 #ifdef CONFIG_KVM_COMPAT
2812 	.compat_ioctl = kvm_device_ioctl,
2813 #endif
2814 	.release = kvm_device_release,
2815 };
2816 
2817 struct kvm_device *kvm_device_from_filp(struct file *filp)
2818 {
2819 	if (filp->f_op != &kvm_device_fops)
2820 		return NULL;
2821 
2822 	return filp->private_data;
2823 }
2824 
2825 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2826 #ifdef CONFIG_KVM_MPIC
2827 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2828 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2829 #endif
2830 };
2831 
2832 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2833 {
2834 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2835 		return -ENOSPC;
2836 
2837 	if (kvm_device_ops_table[type] != NULL)
2838 		return -EEXIST;
2839 
2840 	kvm_device_ops_table[type] = ops;
2841 	return 0;
2842 }
2843 
2844 void kvm_unregister_device_ops(u32 type)
2845 {
2846 	if (kvm_device_ops_table[type] != NULL)
2847 		kvm_device_ops_table[type] = NULL;
2848 }
2849 
2850 static int kvm_ioctl_create_device(struct kvm *kvm,
2851 				   struct kvm_create_device *cd)
2852 {
2853 	struct kvm_device_ops *ops = NULL;
2854 	struct kvm_device *dev;
2855 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2856 	int ret;
2857 
2858 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2859 		return -ENODEV;
2860 
2861 	ops = kvm_device_ops_table[cd->type];
2862 	if (ops == NULL)
2863 		return -ENODEV;
2864 
2865 	if (test)
2866 		return 0;
2867 
2868 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2869 	if (!dev)
2870 		return -ENOMEM;
2871 
2872 	dev->ops = ops;
2873 	dev->kvm = kvm;
2874 
2875 	mutex_lock(&kvm->lock);
2876 	ret = ops->create(dev, cd->type);
2877 	if (ret < 0) {
2878 		mutex_unlock(&kvm->lock);
2879 		kfree(dev);
2880 		return ret;
2881 	}
2882 	list_add(&dev->vm_node, &kvm->devices);
2883 	mutex_unlock(&kvm->lock);
2884 
2885 	if (ops->init)
2886 		ops->init(dev);
2887 
2888 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2889 	if (ret < 0) {
2890 		mutex_lock(&kvm->lock);
2891 		list_del(&dev->vm_node);
2892 		mutex_unlock(&kvm->lock);
2893 		ops->destroy(dev);
2894 		return ret;
2895 	}
2896 
2897 	kvm_get_kvm(kvm);
2898 	cd->fd = ret;
2899 	return 0;
2900 }
2901 
2902 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2903 {
2904 	switch (arg) {
2905 	case KVM_CAP_USER_MEMORY:
2906 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2907 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2908 	case KVM_CAP_INTERNAL_ERROR_DATA:
2909 #ifdef CONFIG_HAVE_KVM_MSI
2910 	case KVM_CAP_SIGNAL_MSI:
2911 #endif
2912 #ifdef CONFIG_HAVE_KVM_IRQFD
2913 	case KVM_CAP_IRQFD:
2914 	case KVM_CAP_IRQFD_RESAMPLE:
2915 #endif
2916 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2917 	case KVM_CAP_CHECK_EXTENSION_VM:
2918 		return 1;
2919 #ifdef CONFIG_KVM_MMIO
2920 	case KVM_CAP_COALESCED_MMIO:
2921 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2922 #endif
2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2924 	case KVM_CAP_IRQ_ROUTING:
2925 		return KVM_MAX_IRQ_ROUTES;
2926 #endif
2927 #if KVM_ADDRESS_SPACE_NUM > 1
2928 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2929 		return KVM_ADDRESS_SPACE_NUM;
2930 #endif
2931 	case KVM_CAP_MAX_VCPU_ID:
2932 		return KVM_MAX_VCPU_ID;
2933 	default:
2934 		break;
2935 	}
2936 	return kvm_vm_ioctl_check_extension(kvm, arg);
2937 }
2938 
2939 static long kvm_vm_ioctl(struct file *filp,
2940 			   unsigned int ioctl, unsigned long arg)
2941 {
2942 	struct kvm *kvm = filp->private_data;
2943 	void __user *argp = (void __user *)arg;
2944 	int r;
2945 
2946 	if (kvm->mm != current->mm)
2947 		return -EIO;
2948 	switch (ioctl) {
2949 	case KVM_CREATE_VCPU:
2950 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2951 		break;
2952 	case KVM_SET_USER_MEMORY_REGION: {
2953 		struct kvm_userspace_memory_region kvm_userspace_mem;
2954 
2955 		r = -EFAULT;
2956 		if (copy_from_user(&kvm_userspace_mem, argp,
2957 						sizeof(kvm_userspace_mem)))
2958 			goto out;
2959 
2960 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2961 		break;
2962 	}
2963 	case KVM_GET_DIRTY_LOG: {
2964 		struct kvm_dirty_log log;
2965 
2966 		r = -EFAULT;
2967 		if (copy_from_user(&log, argp, sizeof(log)))
2968 			goto out;
2969 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2970 		break;
2971 	}
2972 #ifdef CONFIG_KVM_MMIO
2973 	case KVM_REGISTER_COALESCED_MMIO: {
2974 		struct kvm_coalesced_mmio_zone zone;
2975 
2976 		r = -EFAULT;
2977 		if (copy_from_user(&zone, argp, sizeof(zone)))
2978 			goto out;
2979 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2980 		break;
2981 	}
2982 	case KVM_UNREGISTER_COALESCED_MMIO: {
2983 		struct kvm_coalesced_mmio_zone zone;
2984 
2985 		r = -EFAULT;
2986 		if (copy_from_user(&zone, argp, sizeof(zone)))
2987 			goto out;
2988 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2989 		break;
2990 	}
2991 #endif
2992 	case KVM_IRQFD: {
2993 		struct kvm_irqfd data;
2994 
2995 		r = -EFAULT;
2996 		if (copy_from_user(&data, argp, sizeof(data)))
2997 			goto out;
2998 		r = kvm_irqfd(kvm, &data);
2999 		break;
3000 	}
3001 	case KVM_IOEVENTFD: {
3002 		struct kvm_ioeventfd data;
3003 
3004 		r = -EFAULT;
3005 		if (copy_from_user(&data, argp, sizeof(data)))
3006 			goto out;
3007 		r = kvm_ioeventfd(kvm, &data);
3008 		break;
3009 	}
3010 #ifdef CONFIG_HAVE_KVM_MSI
3011 	case KVM_SIGNAL_MSI: {
3012 		struct kvm_msi msi;
3013 
3014 		r = -EFAULT;
3015 		if (copy_from_user(&msi, argp, sizeof(msi)))
3016 			goto out;
3017 		r = kvm_send_userspace_msi(kvm, &msi);
3018 		break;
3019 	}
3020 #endif
3021 #ifdef __KVM_HAVE_IRQ_LINE
3022 	case KVM_IRQ_LINE_STATUS:
3023 	case KVM_IRQ_LINE: {
3024 		struct kvm_irq_level irq_event;
3025 
3026 		r = -EFAULT;
3027 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3028 			goto out;
3029 
3030 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3031 					ioctl == KVM_IRQ_LINE_STATUS);
3032 		if (r)
3033 			goto out;
3034 
3035 		r = -EFAULT;
3036 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3037 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3038 				goto out;
3039 		}
3040 
3041 		r = 0;
3042 		break;
3043 	}
3044 #endif
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046 	case KVM_SET_GSI_ROUTING: {
3047 		struct kvm_irq_routing routing;
3048 		struct kvm_irq_routing __user *urouting;
3049 		struct kvm_irq_routing_entry *entries = NULL;
3050 
3051 		r = -EFAULT;
3052 		if (copy_from_user(&routing, argp, sizeof(routing)))
3053 			goto out;
3054 		r = -EINVAL;
3055 		if (!kvm_arch_can_set_irq_routing(kvm))
3056 			goto out;
3057 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3058 			goto out;
3059 		if (routing.flags)
3060 			goto out;
3061 		if (routing.nr) {
3062 			r = -ENOMEM;
3063 			entries = vmalloc(routing.nr * sizeof(*entries));
3064 			if (!entries)
3065 				goto out;
3066 			r = -EFAULT;
3067 			urouting = argp;
3068 			if (copy_from_user(entries, urouting->entries,
3069 					   routing.nr * sizeof(*entries)))
3070 				goto out_free_irq_routing;
3071 		}
3072 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3073 					routing.flags);
3074 out_free_irq_routing:
3075 		vfree(entries);
3076 		break;
3077 	}
3078 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3079 	case KVM_CREATE_DEVICE: {
3080 		struct kvm_create_device cd;
3081 
3082 		r = -EFAULT;
3083 		if (copy_from_user(&cd, argp, sizeof(cd)))
3084 			goto out;
3085 
3086 		r = kvm_ioctl_create_device(kvm, &cd);
3087 		if (r)
3088 			goto out;
3089 
3090 		r = -EFAULT;
3091 		if (copy_to_user(argp, &cd, sizeof(cd)))
3092 			goto out;
3093 
3094 		r = 0;
3095 		break;
3096 	}
3097 	case KVM_CHECK_EXTENSION:
3098 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3099 		break;
3100 	default:
3101 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3102 	}
3103 out:
3104 	return r;
3105 }
3106 
3107 #ifdef CONFIG_KVM_COMPAT
3108 struct compat_kvm_dirty_log {
3109 	__u32 slot;
3110 	__u32 padding1;
3111 	union {
3112 		compat_uptr_t dirty_bitmap; /* one bit per page */
3113 		__u64 padding2;
3114 	};
3115 };
3116 
3117 static long kvm_vm_compat_ioctl(struct file *filp,
3118 			   unsigned int ioctl, unsigned long arg)
3119 {
3120 	struct kvm *kvm = filp->private_data;
3121 	int r;
3122 
3123 	if (kvm->mm != current->mm)
3124 		return -EIO;
3125 	switch (ioctl) {
3126 	case KVM_GET_DIRTY_LOG: {
3127 		struct compat_kvm_dirty_log compat_log;
3128 		struct kvm_dirty_log log;
3129 
3130 		if (copy_from_user(&compat_log, (void __user *)arg,
3131 				   sizeof(compat_log)))
3132 			return -EFAULT;
3133 		log.slot	 = compat_log.slot;
3134 		log.padding1	 = compat_log.padding1;
3135 		log.padding2	 = compat_log.padding2;
3136 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3137 
3138 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3139 		break;
3140 	}
3141 	default:
3142 		r = kvm_vm_ioctl(filp, ioctl, arg);
3143 	}
3144 	return r;
3145 }
3146 #endif
3147 
3148 static struct file_operations kvm_vm_fops = {
3149 	.release        = kvm_vm_release,
3150 	.unlocked_ioctl = kvm_vm_ioctl,
3151 #ifdef CONFIG_KVM_COMPAT
3152 	.compat_ioctl   = kvm_vm_compat_ioctl,
3153 #endif
3154 	.llseek		= noop_llseek,
3155 };
3156 
3157 static int kvm_dev_ioctl_create_vm(unsigned long type)
3158 {
3159 	int r;
3160 	struct kvm *kvm;
3161 	struct file *file;
3162 
3163 	kvm = kvm_create_vm(type);
3164 	if (IS_ERR(kvm))
3165 		return PTR_ERR(kvm);
3166 #ifdef CONFIG_KVM_MMIO
3167 	r = kvm_coalesced_mmio_init(kvm);
3168 	if (r < 0)
3169 		goto put_kvm;
3170 #endif
3171 	r = get_unused_fd_flags(O_CLOEXEC);
3172 	if (r < 0)
3173 		goto put_kvm;
3174 
3175 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3176 	if (IS_ERR(file)) {
3177 		put_unused_fd(r);
3178 		r = PTR_ERR(file);
3179 		goto put_kvm;
3180 	}
3181 
3182 	/*
3183 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3184 	 * already set, with ->release() being kvm_vm_release().  In error
3185 	 * cases it will be called by the final fput(file) and will take
3186 	 * care of doing kvm_put_kvm(kvm).
3187 	 */
3188 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3189 		put_unused_fd(r);
3190 		fput(file);
3191 		return -ENOMEM;
3192 	}
3193 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3194 
3195 	fd_install(r, file);
3196 	return r;
3197 
3198 put_kvm:
3199 	kvm_put_kvm(kvm);
3200 	return r;
3201 }
3202 
3203 static long kvm_dev_ioctl(struct file *filp,
3204 			  unsigned int ioctl, unsigned long arg)
3205 {
3206 	long r = -EINVAL;
3207 
3208 	switch (ioctl) {
3209 	case KVM_GET_API_VERSION:
3210 		if (arg)
3211 			goto out;
3212 		r = KVM_API_VERSION;
3213 		break;
3214 	case KVM_CREATE_VM:
3215 		r = kvm_dev_ioctl_create_vm(arg);
3216 		break;
3217 	case KVM_CHECK_EXTENSION:
3218 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3219 		break;
3220 	case KVM_GET_VCPU_MMAP_SIZE:
3221 		if (arg)
3222 			goto out;
3223 		r = PAGE_SIZE;     /* struct kvm_run */
3224 #ifdef CONFIG_X86
3225 		r += PAGE_SIZE;    /* pio data page */
3226 #endif
3227 #ifdef CONFIG_KVM_MMIO
3228 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3229 #endif
3230 		break;
3231 	case KVM_TRACE_ENABLE:
3232 	case KVM_TRACE_PAUSE:
3233 	case KVM_TRACE_DISABLE:
3234 		r = -EOPNOTSUPP;
3235 		break;
3236 	default:
3237 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3238 	}
3239 out:
3240 	return r;
3241 }
3242 
3243 static struct file_operations kvm_chardev_ops = {
3244 	.unlocked_ioctl = kvm_dev_ioctl,
3245 	.compat_ioctl   = kvm_dev_ioctl,
3246 	.llseek		= noop_llseek,
3247 };
3248 
3249 static struct miscdevice kvm_dev = {
3250 	KVM_MINOR,
3251 	"kvm",
3252 	&kvm_chardev_ops,
3253 };
3254 
3255 static void hardware_enable_nolock(void *junk)
3256 {
3257 	int cpu = raw_smp_processor_id();
3258 	int r;
3259 
3260 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3261 		return;
3262 
3263 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3264 
3265 	r = kvm_arch_hardware_enable();
3266 
3267 	if (r) {
3268 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3269 		atomic_inc(&hardware_enable_failed);
3270 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3271 	}
3272 }
3273 
3274 static int kvm_starting_cpu(unsigned int cpu)
3275 {
3276 	raw_spin_lock(&kvm_count_lock);
3277 	if (kvm_usage_count)
3278 		hardware_enable_nolock(NULL);
3279 	raw_spin_unlock(&kvm_count_lock);
3280 	return 0;
3281 }
3282 
3283 static void hardware_disable_nolock(void *junk)
3284 {
3285 	int cpu = raw_smp_processor_id();
3286 
3287 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288 		return;
3289 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290 	kvm_arch_hardware_disable();
3291 }
3292 
3293 static int kvm_dying_cpu(unsigned int cpu)
3294 {
3295 	raw_spin_lock(&kvm_count_lock);
3296 	if (kvm_usage_count)
3297 		hardware_disable_nolock(NULL);
3298 	raw_spin_unlock(&kvm_count_lock);
3299 	return 0;
3300 }
3301 
3302 static void hardware_disable_all_nolock(void)
3303 {
3304 	BUG_ON(!kvm_usage_count);
3305 
3306 	kvm_usage_count--;
3307 	if (!kvm_usage_count)
3308 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3309 }
3310 
3311 static void hardware_disable_all(void)
3312 {
3313 	raw_spin_lock(&kvm_count_lock);
3314 	hardware_disable_all_nolock();
3315 	raw_spin_unlock(&kvm_count_lock);
3316 }
3317 
3318 static int hardware_enable_all(void)
3319 {
3320 	int r = 0;
3321 
3322 	raw_spin_lock(&kvm_count_lock);
3323 
3324 	kvm_usage_count++;
3325 	if (kvm_usage_count == 1) {
3326 		atomic_set(&hardware_enable_failed, 0);
3327 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3328 
3329 		if (atomic_read(&hardware_enable_failed)) {
3330 			hardware_disable_all_nolock();
3331 			r = -EBUSY;
3332 		}
3333 	}
3334 
3335 	raw_spin_unlock(&kvm_count_lock);
3336 
3337 	return r;
3338 }
3339 
3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3341 		      void *v)
3342 {
3343 	/*
3344 	 * Some (well, at least mine) BIOSes hang on reboot if
3345 	 * in vmx root mode.
3346 	 *
3347 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3348 	 */
3349 	pr_info("kvm: exiting hardware virtualization\n");
3350 	kvm_rebooting = true;
3351 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3352 	return NOTIFY_OK;
3353 }
3354 
3355 static struct notifier_block kvm_reboot_notifier = {
3356 	.notifier_call = kvm_reboot,
3357 	.priority = 0,
3358 };
3359 
3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3361 {
3362 	int i;
3363 
3364 	for (i = 0; i < bus->dev_count; i++) {
3365 		struct kvm_io_device *pos = bus->range[i].dev;
3366 
3367 		kvm_iodevice_destructor(pos);
3368 	}
3369 	kfree(bus);
3370 }
3371 
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3373 				 const struct kvm_io_range *r2)
3374 {
3375 	gpa_t addr1 = r1->addr;
3376 	gpa_t addr2 = r2->addr;
3377 
3378 	if (addr1 < addr2)
3379 		return -1;
3380 
3381 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3382 	 * accept any overlapping write.  Any order is acceptable for
3383 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384 	 * we process all of them.
3385 	 */
3386 	if (r2->len) {
3387 		addr1 += r1->len;
3388 		addr2 += r2->len;
3389 	}
3390 
3391 	if (addr1 > addr2)
3392 		return 1;
3393 
3394 	return 0;
3395 }
3396 
3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3398 {
3399 	return kvm_io_bus_cmp(p1, p2);
3400 }
3401 
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3403 			  gpa_t addr, int len)
3404 {
3405 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3406 		.addr = addr,
3407 		.len = len,
3408 		.dev = dev,
3409 	};
3410 
3411 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3412 		kvm_io_bus_sort_cmp, NULL);
3413 
3414 	return 0;
3415 }
3416 
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3418 			     gpa_t addr, int len)
3419 {
3420 	struct kvm_io_range *range, key;
3421 	int off;
3422 
3423 	key = (struct kvm_io_range) {
3424 		.addr = addr,
3425 		.len = len,
3426 	};
3427 
3428 	range = bsearch(&key, bus->range, bus->dev_count,
3429 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3430 	if (range == NULL)
3431 		return -ENOENT;
3432 
3433 	off = range - bus->range;
3434 
3435 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3436 		off--;
3437 
3438 	return off;
3439 }
3440 
3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3442 			      struct kvm_io_range *range, const void *val)
3443 {
3444 	int idx;
3445 
3446 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3447 	if (idx < 0)
3448 		return -EOPNOTSUPP;
3449 
3450 	while (idx < bus->dev_count &&
3451 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3452 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453 					range->len, val))
3454 			return idx;
3455 		idx++;
3456 	}
3457 
3458 	return -EOPNOTSUPP;
3459 }
3460 
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3463 		     int len, const void *val)
3464 {
3465 	struct kvm_io_bus *bus;
3466 	struct kvm_io_range range;
3467 	int r;
3468 
3469 	range = (struct kvm_io_range) {
3470 		.addr = addr,
3471 		.len = len,
3472 	};
3473 
3474 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3475 	if (!bus)
3476 		return -ENOMEM;
3477 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 	return r < 0 ? r : 0;
3479 }
3480 
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 			    gpa_t addr, int len, const void *val, long cookie)
3484 {
3485 	struct kvm_io_bus *bus;
3486 	struct kvm_io_range range;
3487 
3488 	range = (struct kvm_io_range) {
3489 		.addr = addr,
3490 		.len = len,
3491 	};
3492 
3493 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494 	if (!bus)
3495 		return -ENOMEM;
3496 
3497 	/* First try the device referenced by cookie. */
3498 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3499 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3500 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3501 					val))
3502 			return cookie;
3503 
3504 	/*
3505 	 * cookie contained garbage; fall back to search and return the
3506 	 * correct cookie value.
3507 	 */
3508 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3509 }
3510 
3511 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3512 			     struct kvm_io_range *range, void *val)
3513 {
3514 	int idx;
3515 
3516 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3517 	if (idx < 0)
3518 		return -EOPNOTSUPP;
3519 
3520 	while (idx < bus->dev_count &&
3521 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3522 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3523 				       range->len, val))
3524 			return idx;
3525 		idx++;
3526 	}
3527 
3528 	return -EOPNOTSUPP;
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3531 
3532 /* kvm_io_bus_read - called under kvm->slots_lock */
3533 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3534 		    int len, void *val)
3535 {
3536 	struct kvm_io_bus *bus;
3537 	struct kvm_io_range range;
3538 	int r;
3539 
3540 	range = (struct kvm_io_range) {
3541 		.addr = addr,
3542 		.len = len,
3543 	};
3544 
3545 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3546 	if (!bus)
3547 		return -ENOMEM;
3548 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3549 	return r < 0 ? r : 0;
3550 }
3551 
3552 
3553 /* Caller must hold slots_lock. */
3554 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3555 			    int len, struct kvm_io_device *dev)
3556 {
3557 	struct kvm_io_bus *new_bus, *bus;
3558 
3559 	bus = kvm_get_bus(kvm, bus_idx);
3560 	if (!bus)
3561 		return -ENOMEM;
3562 
3563 	/* exclude ioeventfd which is limited by maximum fd */
3564 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3565 		return -ENOSPC;
3566 
3567 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3568 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3569 	if (!new_bus)
3570 		return -ENOMEM;
3571 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3572 	       sizeof(struct kvm_io_range)));
3573 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3574 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3575 	synchronize_srcu_expedited(&kvm->srcu);
3576 	kfree(bus);
3577 
3578 	return 0;
3579 }
3580 
3581 /* Caller must hold slots_lock. */
3582 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3583 			       struct kvm_io_device *dev)
3584 {
3585 	int i;
3586 	struct kvm_io_bus *new_bus, *bus;
3587 
3588 	bus = kvm_get_bus(kvm, bus_idx);
3589 	if (!bus)
3590 		return;
3591 
3592 	for (i = 0; i < bus->dev_count; i++)
3593 		if (bus->range[i].dev == dev) {
3594 			break;
3595 		}
3596 
3597 	if (i == bus->dev_count)
3598 		return;
3599 
3600 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3601 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3602 	if (!new_bus)  {
3603 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3604 		goto broken;
3605 	}
3606 
3607 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3608 	new_bus->dev_count--;
3609 	memcpy(new_bus->range + i, bus->range + i + 1,
3610 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3611 
3612 broken:
3613 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3614 	synchronize_srcu_expedited(&kvm->srcu);
3615 	kfree(bus);
3616 	return;
3617 }
3618 
3619 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3620 					 gpa_t addr)
3621 {
3622 	struct kvm_io_bus *bus;
3623 	int dev_idx, srcu_idx;
3624 	struct kvm_io_device *iodev = NULL;
3625 
3626 	srcu_idx = srcu_read_lock(&kvm->srcu);
3627 
3628 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3629 	if (!bus)
3630 		goto out_unlock;
3631 
3632 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3633 	if (dev_idx < 0)
3634 		goto out_unlock;
3635 
3636 	iodev = bus->range[dev_idx].dev;
3637 
3638 out_unlock:
3639 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3640 
3641 	return iodev;
3642 }
3643 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3644 
3645 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3646 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3647 			   const char *fmt)
3648 {
3649 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3650 					  inode->i_private;
3651 
3652 	/* The debugfs files are a reference to the kvm struct which
3653 	 * is still valid when kvm_destroy_vm is called.
3654 	 * To avoid the race between open and the removal of the debugfs
3655 	 * directory we test against the users count.
3656 	 */
3657 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3658 		return -ENOENT;
3659 
3660 	if (simple_attr_open(inode, file, get, set, fmt)) {
3661 		kvm_put_kvm(stat_data->kvm);
3662 		return -ENOMEM;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3669 {
3670 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3671 					  inode->i_private;
3672 
3673 	simple_attr_release(inode, file);
3674 	kvm_put_kvm(stat_data->kvm);
3675 
3676 	return 0;
3677 }
3678 
3679 static int vm_stat_get_per_vm(void *data, u64 *val)
3680 {
3681 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3682 
3683 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3684 
3685 	return 0;
3686 }
3687 
3688 static int vm_stat_clear_per_vm(void *data, u64 val)
3689 {
3690 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3691 
3692 	if (val)
3693 		return -EINVAL;
3694 
3695 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3696 
3697 	return 0;
3698 }
3699 
3700 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3701 {
3702 	__simple_attr_check_format("%llu\n", 0ull);
3703 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3704 				vm_stat_clear_per_vm, "%llu\n");
3705 }
3706 
3707 static const struct file_operations vm_stat_get_per_vm_fops = {
3708 	.owner   = THIS_MODULE,
3709 	.open    = vm_stat_get_per_vm_open,
3710 	.release = kvm_debugfs_release,
3711 	.read    = simple_attr_read,
3712 	.write   = simple_attr_write,
3713 	.llseek  = no_llseek,
3714 };
3715 
3716 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3717 {
3718 	int i;
3719 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720 	struct kvm_vcpu *vcpu;
3721 
3722 	*val = 0;
3723 
3724 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3725 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3726 
3727 	return 0;
3728 }
3729 
3730 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3731 {
3732 	int i;
3733 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3734 	struct kvm_vcpu *vcpu;
3735 
3736 	if (val)
3737 		return -EINVAL;
3738 
3739 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3740 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3741 
3742 	return 0;
3743 }
3744 
3745 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3746 {
3747 	__simple_attr_check_format("%llu\n", 0ull);
3748 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3749 				 vcpu_stat_clear_per_vm, "%llu\n");
3750 }
3751 
3752 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3753 	.owner   = THIS_MODULE,
3754 	.open    = vcpu_stat_get_per_vm_open,
3755 	.release = kvm_debugfs_release,
3756 	.read    = simple_attr_read,
3757 	.write   = simple_attr_write,
3758 	.llseek  = no_llseek,
3759 };
3760 
3761 static const struct file_operations *stat_fops_per_vm[] = {
3762 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3763 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3764 };
3765 
3766 static int vm_stat_get(void *_offset, u64 *val)
3767 {
3768 	unsigned offset = (long)_offset;
3769 	struct kvm *kvm;
3770 	struct kvm_stat_data stat_tmp = {.offset = offset};
3771 	u64 tmp_val;
3772 
3773 	*val = 0;
3774 	spin_lock(&kvm_lock);
3775 	list_for_each_entry(kvm, &vm_list, vm_list) {
3776 		stat_tmp.kvm = kvm;
3777 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3778 		*val += tmp_val;
3779 	}
3780 	spin_unlock(&kvm_lock);
3781 	return 0;
3782 }
3783 
3784 static int vm_stat_clear(void *_offset, u64 val)
3785 {
3786 	unsigned offset = (long)_offset;
3787 	struct kvm *kvm;
3788 	struct kvm_stat_data stat_tmp = {.offset = offset};
3789 
3790 	if (val)
3791 		return -EINVAL;
3792 
3793 	spin_lock(&kvm_lock);
3794 	list_for_each_entry(kvm, &vm_list, vm_list) {
3795 		stat_tmp.kvm = kvm;
3796 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3797 	}
3798 	spin_unlock(&kvm_lock);
3799 
3800 	return 0;
3801 }
3802 
3803 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3804 
3805 static int vcpu_stat_get(void *_offset, u64 *val)
3806 {
3807 	unsigned offset = (long)_offset;
3808 	struct kvm *kvm;
3809 	struct kvm_stat_data stat_tmp = {.offset = offset};
3810 	u64 tmp_val;
3811 
3812 	*val = 0;
3813 	spin_lock(&kvm_lock);
3814 	list_for_each_entry(kvm, &vm_list, vm_list) {
3815 		stat_tmp.kvm = kvm;
3816 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3817 		*val += tmp_val;
3818 	}
3819 	spin_unlock(&kvm_lock);
3820 	return 0;
3821 }
3822 
3823 static int vcpu_stat_clear(void *_offset, u64 val)
3824 {
3825 	unsigned offset = (long)_offset;
3826 	struct kvm *kvm;
3827 	struct kvm_stat_data stat_tmp = {.offset = offset};
3828 
3829 	if (val)
3830 		return -EINVAL;
3831 
3832 	spin_lock(&kvm_lock);
3833 	list_for_each_entry(kvm, &vm_list, vm_list) {
3834 		stat_tmp.kvm = kvm;
3835 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3836 	}
3837 	spin_unlock(&kvm_lock);
3838 
3839 	return 0;
3840 }
3841 
3842 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3843 			"%llu\n");
3844 
3845 static const struct file_operations *stat_fops[] = {
3846 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3847 	[KVM_STAT_VM]   = &vm_stat_fops,
3848 };
3849 
3850 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3851 {
3852 	struct kobj_uevent_env *env;
3853 	unsigned long long created, active;
3854 
3855 	if (!kvm_dev.this_device || !kvm)
3856 		return;
3857 
3858 	spin_lock(&kvm_lock);
3859 	if (type == KVM_EVENT_CREATE_VM) {
3860 		kvm_createvm_count++;
3861 		kvm_active_vms++;
3862 	} else if (type == KVM_EVENT_DESTROY_VM) {
3863 		kvm_active_vms--;
3864 	}
3865 	created = kvm_createvm_count;
3866 	active = kvm_active_vms;
3867 	spin_unlock(&kvm_lock);
3868 
3869 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3870 	if (!env)
3871 		return;
3872 
3873 	add_uevent_var(env, "CREATED=%llu", created);
3874 	add_uevent_var(env, "COUNT=%llu", active);
3875 
3876 	if (type == KVM_EVENT_CREATE_VM) {
3877 		add_uevent_var(env, "EVENT=create");
3878 		kvm->userspace_pid = task_pid_nr(current);
3879 	} else if (type == KVM_EVENT_DESTROY_VM) {
3880 		add_uevent_var(env, "EVENT=destroy");
3881 	}
3882 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3883 
3884 	if (kvm->debugfs_dentry) {
3885 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3886 
3887 		if (p) {
3888 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3889 			if (!IS_ERR(tmp))
3890 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3891 			kfree(p);
3892 		}
3893 	}
3894 	/* no need for checks, since we are adding at most only 5 keys */
3895 	env->envp[env->envp_idx++] = NULL;
3896 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3897 	kfree(env);
3898 }
3899 
3900 static int kvm_init_debug(void)
3901 {
3902 	int r = -EEXIST;
3903 	struct kvm_stats_debugfs_item *p;
3904 
3905 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3906 	if (kvm_debugfs_dir == NULL)
3907 		goto out;
3908 
3909 	kvm_debugfs_num_entries = 0;
3910 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3911 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3912 					 (void *)(long)p->offset,
3913 					 stat_fops[p->kind]))
3914 			goto out_dir;
3915 	}
3916 
3917 	return 0;
3918 
3919 out_dir:
3920 	debugfs_remove_recursive(kvm_debugfs_dir);
3921 out:
3922 	return r;
3923 }
3924 
3925 static int kvm_suspend(void)
3926 {
3927 	if (kvm_usage_count)
3928 		hardware_disable_nolock(NULL);
3929 	return 0;
3930 }
3931 
3932 static void kvm_resume(void)
3933 {
3934 	if (kvm_usage_count) {
3935 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3936 		hardware_enable_nolock(NULL);
3937 	}
3938 }
3939 
3940 static struct syscore_ops kvm_syscore_ops = {
3941 	.suspend = kvm_suspend,
3942 	.resume = kvm_resume,
3943 };
3944 
3945 static inline
3946 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3947 {
3948 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3949 }
3950 
3951 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3952 {
3953 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3954 
3955 	if (vcpu->preempted)
3956 		vcpu->preempted = false;
3957 
3958 	kvm_arch_sched_in(vcpu, cpu);
3959 
3960 	kvm_arch_vcpu_load(vcpu, cpu);
3961 }
3962 
3963 static void kvm_sched_out(struct preempt_notifier *pn,
3964 			  struct task_struct *next)
3965 {
3966 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3967 
3968 	if (current->state == TASK_RUNNING)
3969 		vcpu->preempted = true;
3970 	kvm_arch_vcpu_put(vcpu);
3971 }
3972 
3973 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3974 		  struct module *module)
3975 {
3976 	int r;
3977 	int cpu;
3978 
3979 	r = kvm_arch_init(opaque);
3980 	if (r)
3981 		goto out_fail;
3982 
3983 	/*
3984 	 * kvm_arch_init makes sure there's at most one caller
3985 	 * for architectures that support multiple implementations,
3986 	 * like intel and amd on x86.
3987 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3988 	 * conflicts in case kvm is already setup for another implementation.
3989 	 */
3990 	r = kvm_irqfd_init();
3991 	if (r)
3992 		goto out_irqfd;
3993 
3994 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3995 		r = -ENOMEM;
3996 		goto out_free_0;
3997 	}
3998 
3999 	r = kvm_arch_hardware_setup();
4000 	if (r < 0)
4001 		goto out_free_0a;
4002 
4003 	for_each_online_cpu(cpu) {
4004 		smp_call_function_single(cpu,
4005 				kvm_arch_check_processor_compat,
4006 				&r, 1);
4007 		if (r < 0)
4008 			goto out_free_1;
4009 	}
4010 
4011 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4012 				      kvm_starting_cpu, kvm_dying_cpu);
4013 	if (r)
4014 		goto out_free_2;
4015 	register_reboot_notifier(&kvm_reboot_notifier);
4016 
4017 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4018 	if (!vcpu_align)
4019 		vcpu_align = __alignof__(struct kvm_vcpu);
4020 	kvm_vcpu_cache =
4021 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4022 					   SLAB_ACCOUNT,
4023 					   offsetof(struct kvm_vcpu, arch),
4024 					   sizeof_field(struct kvm_vcpu, arch),
4025 					   NULL);
4026 	if (!kvm_vcpu_cache) {
4027 		r = -ENOMEM;
4028 		goto out_free_3;
4029 	}
4030 
4031 	r = kvm_async_pf_init();
4032 	if (r)
4033 		goto out_free;
4034 
4035 	kvm_chardev_ops.owner = module;
4036 	kvm_vm_fops.owner = module;
4037 	kvm_vcpu_fops.owner = module;
4038 
4039 	r = misc_register(&kvm_dev);
4040 	if (r) {
4041 		pr_err("kvm: misc device register failed\n");
4042 		goto out_unreg;
4043 	}
4044 
4045 	register_syscore_ops(&kvm_syscore_ops);
4046 
4047 	kvm_preempt_ops.sched_in = kvm_sched_in;
4048 	kvm_preempt_ops.sched_out = kvm_sched_out;
4049 
4050 	r = kvm_init_debug();
4051 	if (r) {
4052 		pr_err("kvm: create debugfs files failed\n");
4053 		goto out_undebugfs;
4054 	}
4055 
4056 	r = kvm_vfio_ops_init();
4057 	WARN_ON(r);
4058 
4059 	return 0;
4060 
4061 out_undebugfs:
4062 	unregister_syscore_ops(&kvm_syscore_ops);
4063 	misc_deregister(&kvm_dev);
4064 out_unreg:
4065 	kvm_async_pf_deinit();
4066 out_free:
4067 	kmem_cache_destroy(kvm_vcpu_cache);
4068 out_free_3:
4069 	unregister_reboot_notifier(&kvm_reboot_notifier);
4070 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4071 out_free_2:
4072 out_free_1:
4073 	kvm_arch_hardware_unsetup();
4074 out_free_0a:
4075 	free_cpumask_var(cpus_hardware_enabled);
4076 out_free_0:
4077 	kvm_irqfd_exit();
4078 out_irqfd:
4079 	kvm_arch_exit();
4080 out_fail:
4081 	return r;
4082 }
4083 EXPORT_SYMBOL_GPL(kvm_init);
4084 
4085 void kvm_exit(void)
4086 {
4087 	debugfs_remove_recursive(kvm_debugfs_dir);
4088 	misc_deregister(&kvm_dev);
4089 	kmem_cache_destroy(kvm_vcpu_cache);
4090 	kvm_async_pf_deinit();
4091 	unregister_syscore_ops(&kvm_syscore_ops);
4092 	unregister_reboot_notifier(&kvm_reboot_notifier);
4093 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4094 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4095 	kvm_arch_hardware_unsetup();
4096 	kvm_arch_exit();
4097 	kvm_irqfd_exit();
4098 	free_cpumask_var(cpus_hardware_enabled);
4099 	kvm_vfio_ops_exit();
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_exit);
4102