1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 126 127 __visible bool kvm_rebooting; 128 EXPORT_SYMBOL_GPL(kvm_rebooting); 129 130 static bool largepages_enabled = true; 131 132 #define KVM_EVENT_CREATE_VM 0 133 #define KVM_EVENT_DESTROY_VM 1 134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 135 static unsigned long long kvm_createvm_count; 136 static unsigned long long kvm_active_vms; 137 138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 139 unsigned long start, unsigned long end) 140 { 141 } 142 143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 144 { 145 if (pfn_valid(pfn)) 146 return PageReserved(pfn_to_page(pfn)); 147 148 return true; 149 } 150 151 /* 152 * Switches to specified vcpu, until a matching vcpu_put() 153 */ 154 void vcpu_load(struct kvm_vcpu *vcpu) 155 { 156 int cpu = get_cpu(); 157 preempt_notifier_register(&vcpu->preempt_notifier); 158 kvm_arch_vcpu_load(vcpu, cpu); 159 put_cpu(); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_load); 162 163 void vcpu_put(struct kvm_vcpu *vcpu) 164 { 165 preempt_disable(); 166 kvm_arch_vcpu_put(vcpu); 167 preempt_notifier_unregister(&vcpu->preempt_notifier); 168 preempt_enable(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_put); 171 172 /* TODO: merge with kvm_arch_vcpu_should_kick */ 173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 174 { 175 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 176 177 /* 178 * We need to wait for the VCPU to reenable interrupts and get out of 179 * READING_SHADOW_PAGE_TABLES mode. 180 */ 181 if (req & KVM_REQUEST_WAIT) 182 return mode != OUTSIDE_GUEST_MODE; 183 184 /* 185 * Need to kick a running VCPU, but otherwise there is nothing to do. 186 */ 187 return mode == IN_GUEST_MODE; 188 } 189 190 static void ack_flush(void *_completed) 191 { 192 } 193 194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 195 { 196 if (unlikely(!cpus)) 197 cpus = cpu_online_mask; 198 199 if (cpumask_empty(cpus)) 200 return false; 201 202 smp_call_function_many(cpus, ack_flush, NULL, wait); 203 return true; 204 } 205 206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 207 { 208 int i, cpu, me; 209 cpumask_var_t cpus; 210 bool called; 211 struct kvm_vcpu *vcpu; 212 213 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 214 215 me = get_cpu(); 216 kvm_for_each_vcpu(i, vcpu, kvm) { 217 kvm_make_request(req, vcpu); 218 cpu = vcpu->cpu; 219 220 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 221 continue; 222 223 if (cpus != NULL && cpu != -1 && cpu != me && 224 kvm_request_needs_ipi(vcpu, req)) 225 __cpumask_set_cpu(cpu, cpus); 226 } 227 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 228 put_cpu(); 229 free_cpumask_var(cpus); 230 return called; 231 } 232 233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 234 void kvm_flush_remote_tlbs(struct kvm *kvm) 235 { 236 /* 237 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 238 * kvm_make_all_cpus_request. 239 */ 240 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 241 242 /* 243 * We want to publish modifications to the page tables before reading 244 * mode. Pairs with a memory barrier in arch-specific code. 245 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 246 * and smp_mb in walk_shadow_page_lockless_begin/end. 247 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 248 * 249 * There is already an smp_mb__after_atomic() before 250 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 251 * barrier here. 252 */ 253 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 254 ++kvm->stat.remote_tlb_flush; 255 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 256 } 257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 258 #endif 259 260 void kvm_reload_remote_mmus(struct kvm *kvm) 261 { 262 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 263 } 264 265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 266 { 267 struct page *page; 268 int r; 269 270 mutex_init(&vcpu->mutex); 271 vcpu->cpu = -1; 272 vcpu->kvm = kvm; 273 vcpu->vcpu_id = id; 274 vcpu->pid = NULL; 275 init_swait_queue_head(&vcpu->wq); 276 kvm_async_pf_vcpu_init(vcpu); 277 278 vcpu->pre_pcpu = -1; 279 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 280 281 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 282 if (!page) { 283 r = -ENOMEM; 284 goto fail; 285 } 286 vcpu->run = page_address(page); 287 288 kvm_vcpu_set_in_spin_loop(vcpu, false); 289 kvm_vcpu_set_dy_eligible(vcpu, false); 290 vcpu->preempted = false; 291 292 r = kvm_arch_vcpu_init(vcpu); 293 if (r < 0) 294 goto fail_free_run; 295 return 0; 296 297 fail_free_run: 298 free_page((unsigned long)vcpu->run); 299 fail: 300 return r; 301 } 302 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 303 304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 305 { 306 /* 307 * no need for rcu_read_lock as VCPU_RUN is the only place that 308 * will change the vcpu->pid pointer and on uninit all file 309 * descriptors are already gone. 310 */ 311 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 312 kvm_arch_vcpu_uninit(vcpu); 313 free_page((unsigned long)vcpu->run); 314 } 315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 316 317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 319 { 320 return container_of(mn, struct kvm, mmu_notifier); 321 } 322 323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 324 struct mm_struct *mm, 325 unsigned long address, 326 pte_t pte) 327 { 328 struct kvm *kvm = mmu_notifier_to_kvm(mn); 329 int idx; 330 331 idx = srcu_read_lock(&kvm->srcu); 332 spin_lock(&kvm->mmu_lock); 333 kvm->mmu_notifier_seq++; 334 kvm_set_spte_hva(kvm, address, pte); 335 spin_unlock(&kvm->mmu_lock); 336 srcu_read_unlock(&kvm->srcu, idx); 337 } 338 339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 340 struct mm_struct *mm, 341 unsigned long start, 342 unsigned long end) 343 { 344 struct kvm *kvm = mmu_notifier_to_kvm(mn); 345 int need_tlb_flush = 0, idx; 346 347 idx = srcu_read_lock(&kvm->srcu); 348 spin_lock(&kvm->mmu_lock); 349 /* 350 * The count increase must become visible at unlock time as no 351 * spte can be established without taking the mmu_lock and 352 * count is also read inside the mmu_lock critical section. 353 */ 354 kvm->mmu_notifier_count++; 355 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 356 need_tlb_flush |= kvm->tlbs_dirty; 357 /* we've to flush the tlb before the pages can be freed */ 358 if (need_tlb_flush) 359 kvm_flush_remote_tlbs(kvm); 360 361 spin_unlock(&kvm->mmu_lock); 362 363 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 364 365 srcu_read_unlock(&kvm->srcu, idx); 366 } 367 368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 369 struct mm_struct *mm, 370 unsigned long start, 371 unsigned long end) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 375 spin_lock(&kvm->mmu_lock); 376 /* 377 * This sequence increase will notify the kvm page fault that 378 * the page that is going to be mapped in the spte could have 379 * been freed. 380 */ 381 kvm->mmu_notifier_seq++; 382 smp_wmb(); 383 /* 384 * The above sequence increase must be visible before the 385 * below count decrease, which is ensured by the smp_wmb above 386 * in conjunction with the smp_rmb in mmu_notifier_retry(). 387 */ 388 kvm->mmu_notifier_count--; 389 spin_unlock(&kvm->mmu_lock); 390 391 BUG_ON(kvm->mmu_notifier_count < 0); 392 } 393 394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 395 struct mm_struct *mm, 396 unsigned long start, 397 unsigned long end) 398 { 399 struct kvm *kvm = mmu_notifier_to_kvm(mn); 400 int young, idx; 401 402 idx = srcu_read_lock(&kvm->srcu); 403 spin_lock(&kvm->mmu_lock); 404 405 young = kvm_age_hva(kvm, start, end); 406 if (young) 407 kvm_flush_remote_tlbs(kvm); 408 409 spin_unlock(&kvm->mmu_lock); 410 srcu_read_unlock(&kvm->srcu, idx); 411 412 return young; 413 } 414 415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 416 struct mm_struct *mm, 417 unsigned long start, 418 unsigned long end) 419 { 420 struct kvm *kvm = mmu_notifier_to_kvm(mn); 421 int young, idx; 422 423 idx = srcu_read_lock(&kvm->srcu); 424 spin_lock(&kvm->mmu_lock); 425 /* 426 * Even though we do not flush TLB, this will still adversely 427 * affect performance on pre-Haswell Intel EPT, where there is 428 * no EPT Access Bit to clear so that we have to tear down EPT 429 * tables instead. If we find this unacceptable, we can always 430 * add a parameter to kvm_age_hva so that it effectively doesn't 431 * do anything on clear_young. 432 * 433 * Also note that currently we never issue secondary TLB flushes 434 * from clear_young, leaving this job up to the regular system 435 * cadence. If we find this inaccurate, we might come up with a 436 * more sophisticated heuristic later. 437 */ 438 young = kvm_age_hva(kvm, start, end); 439 spin_unlock(&kvm->mmu_lock); 440 srcu_read_unlock(&kvm->srcu, idx); 441 442 return young; 443 } 444 445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 446 struct mm_struct *mm, 447 unsigned long address) 448 { 449 struct kvm *kvm = mmu_notifier_to_kvm(mn); 450 int young, idx; 451 452 idx = srcu_read_lock(&kvm->srcu); 453 spin_lock(&kvm->mmu_lock); 454 young = kvm_test_age_hva(kvm, address); 455 spin_unlock(&kvm->mmu_lock); 456 srcu_read_unlock(&kvm->srcu, idx); 457 458 return young; 459 } 460 461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 462 struct mm_struct *mm) 463 { 464 struct kvm *kvm = mmu_notifier_to_kvm(mn); 465 int idx; 466 467 idx = srcu_read_lock(&kvm->srcu); 468 kvm_arch_flush_shadow_all(kvm); 469 srcu_read_unlock(&kvm->srcu, idx); 470 } 471 472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 473 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK, 474 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 475 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 476 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 477 .clear_young = kvm_mmu_notifier_clear_young, 478 .test_young = kvm_mmu_notifier_test_young, 479 .change_pte = kvm_mmu_notifier_change_pte, 480 .release = kvm_mmu_notifier_release, 481 }; 482 483 static int kvm_init_mmu_notifier(struct kvm *kvm) 484 { 485 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 486 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 487 } 488 489 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 490 491 static int kvm_init_mmu_notifier(struct kvm *kvm) 492 { 493 return 0; 494 } 495 496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 497 498 static struct kvm_memslots *kvm_alloc_memslots(void) 499 { 500 int i; 501 struct kvm_memslots *slots; 502 503 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 504 if (!slots) 505 return NULL; 506 507 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 508 slots->id_to_index[i] = slots->memslots[i].id = i; 509 510 return slots; 511 } 512 513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 514 { 515 if (!memslot->dirty_bitmap) 516 return; 517 518 kvfree(memslot->dirty_bitmap); 519 memslot->dirty_bitmap = NULL; 520 } 521 522 /* 523 * Free any memory in @free but not in @dont. 524 */ 525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 526 struct kvm_memory_slot *dont) 527 { 528 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 529 kvm_destroy_dirty_bitmap(free); 530 531 kvm_arch_free_memslot(kvm, free, dont); 532 533 free->npages = 0; 534 } 535 536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 537 { 538 struct kvm_memory_slot *memslot; 539 540 if (!slots) 541 return; 542 543 kvm_for_each_memslot(memslot, slots) 544 kvm_free_memslot(kvm, memslot, NULL); 545 546 kvfree(slots); 547 } 548 549 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 550 { 551 int i; 552 553 if (!kvm->debugfs_dentry) 554 return; 555 556 debugfs_remove_recursive(kvm->debugfs_dentry); 557 558 if (kvm->debugfs_stat_data) { 559 for (i = 0; i < kvm_debugfs_num_entries; i++) 560 kfree(kvm->debugfs_stat_data[i]); 561 kfree(kvm->debugfs_stat_data); 562 } 563 } 564 565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 566 { 567 char dir_name[ITOA_MAX_LEN * 2]; 568 struct kvm_stat_data *stat_data; 569 struct kvm_stats_debugfs_item *p; 570 571 if (!debugfs_initialized()) 572 return 0; 573 574 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 575 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 576 kvm_debugfs_dir); 577 if (!kvm->debugfs_dentry) 578 return -ENOMEM; 579 580 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 581 sizeof(*kvm->debugfs_stat_data), 582 GFP_KERNEL); 583 if (!kvm->debugfs_stat_data) 584 return -ENOMEM; 585 586 for (p = debugfs_entries; p->name; p++) { 587 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 588 if (!stat_data) 589 return -ENOMEM; 590 591 stat_data->kvm = kvm; 592 stat_data->offset = p->offset; 593 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 594 if (!debugfs_create_file(p->name, 0644, 595 kvm->debugfs_dentry, 596 stat_data, 597 stat_fops_per_vm[p->kind])) 598 return -ENOMEM; 599 } 600 return 0; 601 } 602 603 static struct kvm *kvm_create_vm(unsigned long type) 604 { 605 int r, i; 606 struct kvm *kvm = kvm_arch_alloc_vm(); 607 608 if (!kvm) 609 return ERR_PTR(-ENOMEM); 610 611 spin_lock_init(&kvm->mmu_lock); 612 mmgrab(current->mm); 613 kvm->mm = current->mm; 614 kvm_eventfd_init(kvm); 615 mutex_init(&kvm->lock); 616 mutex_init(&kvm->irq_lock); 617 mutex_init(&kvm->slots_lock); 618 refcount_set(&kvm->users_count, 1); 619 INIT_LIST_HEAD(&kvm->devices); 620 621 r = kvm_arch_init_vm(kvm, type); 622 if (r) 623 goto out_err_no_disable; 624 625 r = hardware_enable_all(); 626 if (r) 627 goto out_err_no_disable; 628 629 #ifdef CONFIG_HAVE_KVM_IRQFD 630 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 631 #endif 632 633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 634 635 r = -ENOMEM; 636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 637 struct kvm_memslots *slots = kvm_alloc_memslots(); 638 if (!slots) 639 goto out_err_no_srcu; 640 /* 641 * Generations must be different for each address space. 642 * Init kvm generation close to the maximum to easily test the 643 * code of handling generation number wrap-around. 644 */ 645 slots->generation = i * 2 - 150; 646 rcu_assign_pointer(kvm->memslots[i], slots); 647 } 648 649 if (init_srcu_struct(&kvm->srcu)) 650 goto out_err_no_srcu; 651 if (init_srcu_struct(&kvm->irq_srcu)) 652 goto out_err_no_irq_srcu; 653 for (i = 0; i < KVM_NR_BUSES; i++) { 654 rcu_assign_pointer(kvm->buses[i], 655 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 656 if (!kvm->buses[i]) 657 goto out_err; 658 } 659 660 r = kvm_init_mmu_notifier(kvm); 661 if (r) 662 goto out_err; 663 664 spin_lock(&kvm_lock); 665 list_add(&kvm->vm_list, &vm_list); 666 spin_unlock(&kvm_lock); 667 668 preempt_notifier_inc(); 669 670 return kvm; 671 672 out_err: 673 cleanup_srcu_struct(&kvm->irq_srcu); 674 out_err_no_irq_srcu: 675 cleanup_srcu_struct(&kvm->srcu); 676 out_err_no_srcu: 677 hardware_disable_all(); 678 out_err_no_disable: 679 refcount_set(&kvm->users_count, 0); 680 for (i = 0; i < KVM_NR_BUSES; i++) 681 kfree(kvm_get_bus(kvm, i)); 682 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 683 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 684 kvm_arch_free_vm(kvm); 685 mmdrop(current->mm); 686 return ERR_PTR(r); 687 } 688 689 static void kvm_destroy_devices(struct kvm *kvm) 690 { 691 struct kvm_device *dev, *tmp; 692 693 /* 694 * We do not need to take the kvm->lock here, because nobody else 695 * has a reference to the struct kvm at this point and therefore 696 * cannot access the devices list anyhow. 697 */ 698 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 699 list_del(&dev->vm_node); 700 dev->ops->destroy(dev); 701 } 702 } 703 704 static void kvm_destroy_vm(struct kvm *kvm) 705 { 706 int i; 707 struct mm_struct *mm = kvm->mm; 708 709 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 710 kvm_destroy_vm_debugfs(kvm); 711 kvm_arch_sync_events(kvm); 712 spin_lock(&kvm_lock); 713 list_del(&kvm->vm_list); 714 spin_unlock(&kvm_lock); 715 kvm_free_irq_routing(kvm); 716 for (i = 0; i < KVM_NR_BUSES; i++) { 717 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 718 719 if (bus) 720 kvm_io_bus_destroy(bus); 721 kvm->buses[i] = NULL; 722 } 723 kvm_coalesced_mmio_free(kvm); 724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 725 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 726 #else 727 kvm_arch_flush_shadow_all(kvm); 728 #endif 729 kvm_arch_destroy_vm(kvm); 730 kvm_destroy_devices(kvm); 731 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 732 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 733 cleanup_srcu_struct(&kvm->irq_srcu); 734 cleanup_srcu_struct(&kvm->srcu); 735 kvm_arch_free_vm(kvm); 736 preempt_notifier_dec(); 737 hardware_disable_all(); 738 mmdrop(mm); 739 } 740 741 void kvm_get_kvm(struct kvm *kvm) 742 { 743 refcount_inc(&kvm->users_count); 744 } 745 EXPORT_SYMBOL_GPL(kvm_get_kvm); 746 747 void kvm_put_kvm(struct kvm *kvm) 748 { 749 if (refcount_dec_and_test(&kvm->users_count)) 750 kvm_destroy_vm(kvm); 751 } 752 EXPORT_SYMBOL_GPL(kvm_put_kvm); 753 754 755 static int kvm_vm_release(struct inode *inode, struct file *filp) 756 { 757 struct kvm *kvm = filp->private_data; 758 759 kvm_irqfd_release(kvm); 760 761 kvm_put_kvm(kvm); 762 return 0; 763 } 764 765 /* 766 * Allocation size is twice as large as the actual dirty bitmap size. 767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 768 */ 769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 770 { 771 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 772 773 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 774 if (!memslot->dirty_bitmap) 775 return -ENOMEM; 776 777 return 0; 778 } 779 780 /* 781 * Insert memslot and re-sort memslots based on their GFN, 782 * so binary search could be used to lookup GFN. 783 * Sorting algorithm takes advantage of having initially 784 * sorted array and known changed memslot position. 785 */ 786 static void update_memslots(struct kvm_memslots *slots, 787 struct kvm_memory_slot *new) 788 { 789 int id = new->id; 790 int i = slots->id_to_index[id]; 791 struct kvm_memory_slot *mslots = slots->memslots; 792 793 WARN_ON(mslots[i].id != id); 794 if (!new->npages) { 795 WARN_ON(!mslots[i].npages); 796 if (mslots[i].npages) 797 slots->used_slots--; 798 } else { 799 if (!mslots[i].npages) 800 slots->used_slots++; 801 } 802 803 while (i < KVM_MEM_SLOTS_NUM - 1 && 804 new->base_gfn <= mslots[i + 1].base_gfn) { 805 if (!mslots[i + 1].npages) 806 break; 807 mslots[i] = mslots[i + 1]; 808 slots->id_to_index[mslots[i].id] = i; 809 i++; 810 } 811 812 /* 813 * The ">=" is needed when creating a slot with base_gfn == 0, 814 * so that it moves before all those with base_gfn == npages == 0. 815 * 816 * On the other hand, if new->npages is zero, the above loop has 817 * already left i pointing to the beginning of the empty part of 818 * mslots, and the ">=" would move the hole backwards in this 819 * case---which is wrong. So skip the loop when deleting a slot. 820 */ 821 if (new->npages) { 822 while (i > 0 && 823 new->base_gfn >= mslots[i - 1].base_gfn) { 824 mslots[i] = mslots[i - 1]; 825 slots->id_to_index[mslots[i].id] = i; 826 i--; 827 } 828 } else 829 WARN_ON_ONCE(i != slots->used_slots); 830 831 mslots[i] = *new; 832 slots->id_to_index[mslots[i].id] = i; 833 } 834 835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 836 { 837 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 838 839 #ifdef __KVM_HAVE_READONLY_MEM 840 valid_flags |= KVM_MEM_READONLY; 841 #endif 842 843 if (mem->flags & ~valid_flags) 844 return -EINVAL; 845 846 return 0; 847 } 848 849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 850 int as_id, struct kvm_memslots *slots) 851 { 852 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 853 854 /* 855 * Set the low bit in the generation, which disables SPTE caching 856 * until the end of synchronize_srcu_expedited. 857 */ 858 WARN_ON(old_memslots->generation & 1); 859 slots->generation = old_memslots->generation + 1; 860 861 rcu_assign_pointer(kvm->memslots[as_id], slots); 862 synchronize_srcu_expedited(&kvm->srcu); 863 864 /* 865 * Increment the new memslot generation a second time. This prevents 866 * vm exits that race with memslot updates from caching a memslot 867 * generation that will (potentially) be valid forever. 868 * 869 * Generations must be unique even across address spaces. We do not need 870 * a global counter for that, instead the generation space is evenly split 871 * across address spaces. For example, with two address spaces, address 872 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 873 * use generations 2, 6, 10, 14, ... 874 */ 875 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 876 877 kvm_arch_memslots_updated(kvm, slots); 878 879 return old_memslots; 880 } 881 882 /* 883 * Allocate some memory and give it an address in the guest physical address 884 * space. 885 * 886 * Discontiguous memory is allowed, mostly for framebuffers. 887 * 888 * Must be called holding kvm->slots_lock for write. 889 */ 890 int __kvm_set_memory_region(struct kvm *kvm, 891 const struct kvm_userspace_memory_region *mem) 892 { 893 int r; 894 gfn_t base_gfn; 895 unsigned long npages; 896 struct kvm_memory_slot *slot; 897 struct kvm_memory_slot old, new; 898 struct kvm_memslots *slots = NULL, *old_memslots; 899 int as_id, id; 900 enum kvm_mr_change change; 901 902 r = check_memory_region_flags(mem); 903 if (r) 904 goto out; 905 906 r = -EINVAL; 907 as_id = mem->slot >> 16; 908 id = (u16)mem->slot; 909 910 /* General sanity checks */ 911 if (mem->memory_size & (PAGE_SIZE - 1)) 912 goto out; 913 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 914 goto out; 915 /* We can read the guest memory with __xxx_user() later on. */ 916 if ((id < KVM_USER_MEM_SLOTS) && 917 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 918 !access_ok(VERIFY_WRITE, 919 (void __user *)(unsigned long)mem->userspace_addr, 920 mem->memory_size))) 921 goto out; 922 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 923 goto out; 924 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 925 goto out; 926 927 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 928 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 929 npages = mem->memory_size >> PAGE_SHIFT; 930 931 if (npages > KVM_MEM_MAX_NR_PAGES) 932 goto out; 933 934 new = old = *slot; 935 936 new.id = id; 937 new.base_gfn = base_gfn; 938 new.npages = npages; 939 new.flags = mem->flags; 940 941 if (npages) { 942 if (!old.npages) 943 change = KVM_MR_CREATE; 944 else { /* Modify an existing slot. */ 945 if ((mem->userspace_addr != old.userspace_addr) || 946 (npages != old.npages) || 947 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 948 goto out; 949 950 if (base_gfn != old.base_gfn) 951 change = KVM_MR_MOVE; 952 else if (new.flags != old.flags) 953 change = KVM_MR_FLAGS_ONLY; 954 else { /* Nothing to change. */ 955 r = 0; 956 goto out; 957 } 958 } 959 } else { 960 if (!old.npages) 961 goto out; 962 963 change = KVM_MR_DELETE; 964 new.base_gfn = 0; 965 new.flags = 0; 966 } 967 968 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 969 /* Check for overlaps */ 970 r = -EEXIST; 971 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 972 if ((slot->id >= KVM_USER_MEM_SLOTS) || 973 (slot->id == id)) 974 continue; 975 if (!((base_gfn + npages <= slot->base_gfn) || 976 (base_gfn >= slot->base_gfn + slot->npages))) 977 goto out; 978 } 979 } 980 981 /* Free page dirty bitmap if unneeded */ 982 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 983 new.dirty_bitmap = NULL; 984 985 r = -ENOMEM; 986 if (change == KVM_MR_CREATE) { 987 new.userspace_addr = mem->userspace_addr; 988 989 if (kvm_arch_create_memslot(kvm, &new, npages)) 990 goto out_free; 991 } 992 993 /* Allocate page dirty bitmap if needed */ 994 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 995 if (kvm_create_dirty_bitmap(&new) < 0) 996 goto out_free; 997 } 998 999 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1000 if (!slots) 1001 goto out_free; 1002 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1003 1004 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1005 slot = id_to_memslot(slots, id); 1006 slot->flags |= KVM_MEMSLOT_INVALID; 1007 1008 old_memslots = install_new_memslots(kvm, as_id, slots); 1009 1010 /* From this point no new shadow pages pointing to a deleted, 1011 * or moved, memslot will be created. 1012 * 1013 * validation of sp->gfn happens in: 1014 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1015 * - kvm_is_visible_gfn (mmu_check_roots) 1016 */ 1017 kvm_arch_flush_shadow_memslot(kvm, slot); 1018 1019 /* 1020 * We can re-use the old_memslots from above, the only difference 1021 * from the currently installed memslots is the invalid flag. This 1022 * will get overwritten by update_memslots anyway. 1023 */ 1024 slots = old_memslots; 1025 } 1026 1027 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1028 if (r) 1029 goto out_slots; 1030 1031 /* actual memory is freed via old in kvm_free_memslot below */ 1032 if (change == KVM_MR_DELETE) { 1033 new.dirty_bitmap = NULL; 1034 memset(&new.arch, 0, sizeof(new.arch)); 1035 } 1036 1037 update_memslots(slots, &new); 1038 old_memslots = install_new_memslots(kvm, as_id, slots); 1039 1040 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1041 1042 kvm_free_memslot(kvm, &old, &new); 1043 kvfree(old_memslots); 1044 return 0; 1045 1046 out_slots: 1047 kvfree(slots); 1048 out_free: 1049 kvm_free_memslot(kvm, &new, &old); 1050 out: 1051 return r; 1052 } 1053 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1054 1055 int kvm_set_memory_region(struct kvm *kvm, 1056 const struct kvm_userspace_memory_region *mem) 1057 { 1058 int r; 1059 1060 mutex_lock(&kvm->slots_lock); 1061 r = __kvm_set_memory_region(kvm, mem); 1062 mutex_unlock(&kvm->slots_lock); 1063 return r; 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1066 1067 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1068 struct kvm_userspace_memory_region *mem) 1069 { 1070 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1071 return -EINVAL; 1072 1073 return kvm_set_memory_region(kvm, mem); 1074 } 1075 1076 int kvm_get_dirty_log(struct kvm *kvm, 1077 struct kvm_dirty_log *log, int *is_dirty) 1078 { 1079 struct kvm_memslots *slots; 1080 struct kvm_memory_slot *memslot; 1081 int i, as_id, id; 1082 unsigned long n; 1083 unsigned long any = 0; 1084 1085 as_id = log->slot >> 16; 1086 id = (u16)log->slot; 1087 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1088 return -EINVAL; 1089 1090 slots = __kvm_memslots(kvm, as_id); 1091 memslot = id_to_memslot(slots, id); 1092 if (!memslot->dirty_bitmap) 1093 return -ENOENT; 1094 1095 n = kvm_dirty_bitmap_bytes(memslot); 1096 1097 for (i = 0; !any && i < n/sizeof(long); ++i) 1098 any = memslot->dirty_bitmap[i]; 1099 1100 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1101 return -EFAULT; 1102 1103 if (any) 1104 *is_dirty = 1; 1105 return 0; 1106 } 1107 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1108 1109 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1110 /** 1111 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1112 * are dirty write protect them for next write. 1113 * @kvm: pointer to kvm instance 1114 * @log: slot id and address to which we copy the log 1115 * @is_dirty: flag set if any page is dirty 1116 * 1117 * We need to keep it in mind that VCPU threads can write to the bitmap 1118 * concurrently. So, to avoid losing track of dirty pages we keep the 1119 * following order: 1120 * 1121 * 1. Take a snapshot of the bit and clear it if needed. 1122 * 2. Write protect the corresponding page. 1123 * 3. Copy the snapshot to the userspace. 1124 * 4. Upon return caller flushes TLB's if needed. 1125 * 1126 * Between 2 and 4, the guest may write to the page using the remaining TLB 1127 * entry. This is not a problem because the page is reported dirty using 1128 * the snapshot taken before and step 4 ensures that writes done after 1129 * exiting to userspace will be logged for the next call. 1130 * 1131 */ 1132 int kvm_get_dirty_log_protect(struct kvm *kvm, 1133 struct kvm_dirty_log *log, bool *is_dirty) 1134 { 1135 struct kvm_memslots *slots; 1136 struct kvm_memory_slot *memslot; 1137 int i, as_id, id; 1138 unsigned long n; 1139 unsigned long *dirty_bitmap; 1140 unsigned long *dirty_bitmap_buffer; 1141 1142 as_id = log->slot >> 16; 1143 id = (u16)log->slot; 1144 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1145 return -EINVAL; 1146 1147 slots = __kvm_memslots(kvm, as_id); 1148 memslot = id_to_memslot(slots, id); 1149 1150 dirty_bitmap = memslot->dirty_bitmap; 1151 if (!dirty_bitmap) 1152 return -ENOENT; 1153 1154 n = kvm_dirty_bitmap_bytes(memslot); 1155 1156 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1157 memset(dirty_bitmap_buffer, 0, n); 1158 1159 spin_lock(&kvm->mmu_lock); 1160 *is_dirty = false; 1161 for (i = 0; i < n / sizeof(long); i++) { 1162 unsigned long mask; 1163 gfn_t offset; 1164 1165 if (!dirty_bitmap[i]) 1166 continue; 1167 1168 *is_dirty = true; 1169 1170 mask = xchg(&dirty_bitmap[i], 0); 1171 dirty_bitmap_buffer[i] = mask; 1172 1173 if (mask) { 1174 offset = i * BITS_PER_LONG; 1175 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1176 offset, mask); 1177 } 1178 } 1179 1180 spin_unlock(&kvm->mmu_lock); 1181 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1182 return -EFAULT; 1183 return 0; 1184 } 1185 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1186 #endif 1187 1188 bool kvm_largepages_enabled(void) 1189 { 1190 return largepages_enabled; 1191 } 1192 1193 void kvm_disable_largepages(void) 1194 { 1195 largepages_enabled = false; 1196 } 1197 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1198 1199 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1200 { 1201 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1202 } 1203 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1204 1205 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1206 { 1207 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1208 } 1209 1210 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1211 { 1212 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1213 1214 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1215 memslot->flags & KVM_MEMSLOT_INVALID) 1216 return false; 1217 1218 return true; 1219 } 1220 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1221 1222 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1223 { 1224 struct vm_area_struct *vma; 1225 unsigned long addr, size; 1226 1227 size = PAGE_SIZE; 1228 1229 addr = gfn_to_hva(kvm, gfn); 1230 if (kvm_is_error_hva(addr)) 1231 return PAGE_SIZE; 1232 1233 down_read(¤t->mm->mmap_sem); 1234 vma = find_vma(current->mm, addr); 1235 if (!vma) 1236 goto out; 1237 1238 size = vma_kernel_pagesize(vma); 1239 1240 out: 1241 up_read(¤t->mm->mmap_sem); 1242 1243 return size; 1244 } 1245 1246 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1247 { 1248 return slot->flags & KVM_MEM_READONLY; 1249 } 1250 1251 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1252 gfn_t *nr_pages, bool write) 1253 { 1254 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1255 return KVM_HVA_ERR_BAD; 1256 1257 if (memslot_is_readonly(slot) && write) 1258 return KVM_HVA_ERR_RO_BAD; 1259 1260 if (nr_pages) 1261 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1262 1263 return __gfn_to_hva_memslot(slot, gfn); 1264 } 1265 1266 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1267 gfn_t *nr_pages) 1268 { 1269 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1270 } 1271 1272 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1273 gfn_t gfn) 1274 { 1275 return gfn_to_hva_many(slot, gfn, NULL); 1276 } 1277 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1278 1279 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1280 { 1281 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1282 } 1283 EXPORT_SYMBOL_GPL(gfn_to_hva); 1284 1285 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1286 { 1287 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1288 } 1289 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1290 1291 /* 1292 * If writable is set to false, the hva returned by this function is only 1293 * allowed to be read. 1294 */ 1295 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1296 gfn_t gfn, bool *writable) 1297 { 1298 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1299 1300 if (!kvm_is_error_hva(hva) && writable) 1301 *writable = !memslot_is_readonly(slot); 1302 1303 return hva; 1304 } 1305 1306 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1307 { 1308 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1309 1310 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1311 } 1312 1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1314 { 1315 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1316 1317 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1318 } 1319 1320 static inline int check_user_page_hwpoison(unsigned long addr) 1321 { 1322 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1323 1324 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1325 return rc == -EHWPOISON; 1326 } 1327 1328 /* 1329 * The atomic path to get the writable pfn which will be stored in @pfn, 1330 * true indicates success, otherwise false is returned. 1331 */ 1332 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1333 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1334 { 1335 struct page *page[1]; 1336 int npages; 1337 1338 if (!(async || atomic)) 1339 return false; 1340 1341 /* 1342 * Fast pin a writable pfn only if it is a write fault request 1343 * or the caller allows to map a writable pfn for a read fault 1344 * request. 1345 */ 1346 if (!(write_fault || writable)) 1347 return false; 1348 1349 npages = __get_user_pages_fast(addr, 1, 1, page); 1350 if (npages == 1) { 1351 *pfn = page_to_pfn(page[0]); 1352 1353 if (writable) 1354 *writable = true; 1355 return true; 1356 } 1357 1358 return false; 1359 } 1360 1361 /* 1362 * The slow path to get the pfn of the specified host virtual address, 1363 * 1 indicates success, -errno is returned if error is detected. 1364 */ 1365 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1366 bool *writable, kvm_pfn_t *pfn) 1367 { 1368 unsigned int flags = FOLL_HWPOISON; 1369 struct page *page; 1370 int npages = 0; 1371 1372 might_sleep(); 1373 1374 if (writable) 1375 *writable = write_fault; 1376 1377 if (write_fault) 1378 flags |= FOLL_WRITE; 1379 if (async) 1380 flags |= FOLL_NOWAIT; 1381 1382 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1383 if (npages != 1) 1384 return npages; 1385 1386 /* map read fault as writable if possible */ 1387 if (unlikely(!write_fault) && writable) { 1388 struct page *wpage; 1389 1390 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1391 *writable = true; 1392 put_page(page); 1393 page = wpage; 1394 } 1395 } 1396 *pfn = page_to_pfn(page); 1397 return npages; 1398 } 1399 1400 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1401 { 1402 if (unlikely(!(vma->vm_flags & VM_READ))) 1403 return false; 1404 1405 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1406 return false; 1407 1408 return true; 1409 } 1410 1411 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1412 unsigned long addr, bool *async, 1413 bool write_fault, bool *writable, 1414 kvm_pfn_t *p_pfn) 1415 { 1416 unsigned long pfn; 1417 int r; 1418 1419 r = follow_pfn(vma, addr, &pfn); 1420 if (r) { 1421 /* 1422 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1423 * not call the fault handler, so do it here. 1424 */ 1425 bool unlocked = false; 1426 r = fixup_user_fault(current, current->mm, addr, 1427 (write_fault ? FAULT_FLAG_WRITE : 0), 1428 &unlocked); 1429 if (unlocked) 1430 return -EAGAIN; 1431 if (r) 1432 return r; 1433 1434 r = follow_pfn(vma, addr, &pfn); 1435 if (r) 1436 return r; 1437 1438 } 1439 1440 if (writable) 1441 *writable = true; 1442 1443 /* 1444 * Get a reference here because callers of *hva_to_pfn* and 1445 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1446 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1447 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1448 * simply do nothing for reserved pfns. 1449 * 1450 * Whoever called remap_pfn_range is also going to call e.g. 1451 * unmap_mapping_range before the underlying pages are freed, 1452 * causing a call to our MMU notifier. 1453 */ 1454 kvm_get_pfn(pfn); 1455 1456 *p_pfn = pfn; 1457 return 0; 1458 } 1459 1460 /* 1461 * Pin guest page in memory and return its pfn. 1462 * @addr: host virtual address which maps memory to the guest 1463 * @atomic: whether this function can sleep 1464 * @async: whether this function need to wait IO complete if the 1465 * host page is not in the memory 1466 * @write_fault: whether we should get a writable host page 1467 * @writable: whether it allows to map a writable host page for !@write_fault 1468 * 1469 * The function will map a writable host page for these two cases: 1470 * 1): @write_fault = true 1471 * 2): @write_fault = false && @writable, @writable will tell the caller 1472 * whether the mapping is writable. 1473 */ 1474 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1475 bool write_fault, bool *writable) 1476 { 1477 struct vm_area_struct *vma; 1478 kvm_pfn_t pfn = 0; 1479 int npages, r; 1480 1481 /* we can do it either atomically or asynchronously, not both */ 1482 BUG_ON(atomic && async); 1483 1484 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1485 return pfn; 1486 1487 if (atomic) 1488 return KVM_PFN_ERR_FAULT; 1489 1490 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1491 if (npages == 1) 1492 return pfn; 1493 1494 down_read(¤t->mm->mmap_sem); 1495 if (npages == -EHWPOISON || 1496 (!async && check_user_page_hwpoison(addr))) { 1497 pfn = KVM_PFN_ERR_HWPOISON; 1498 goto exit; 1499 } 1500 1501 retry: 1502 vma = find_vma_intersection(current->mm, addr, addr + 1); 1503 1504 if (vma == NULL) 1505 pfn = KVM_PFN_ERR_FAULT; 1506 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1507 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1508 if (r == -EAGAIN) 1509 goto retry; 1510 if (r < 0) 1511 pfn = KVM_PFN_ERR_FAULT; 1512 } else { 1513 if (async && vma_is_valid(vma, write_fault)) 1514 *async = true; 1515 pfn = KVM_PFN_ERR_FAULT; 1516 } 1517 exit: 1518 up_read(¤t->mm->mmap_sem); 1519 return pfn; 1520 } 1521 1522 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1523 bool atomic, bool *async, bool write_fault, 1524 bool *writable) 1525 { 1526 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1527 1528 if (addr == KVM_HVA_ERR_RO_BAD) { 1529 if (writable) 1530 *writable = false; 1531 return KVM_PFN_ERR_RO_FAULT; 1532 } 1533 1534 if (kvm_is_error_hva(addr)) { 1535 if (writable) 1536 *writable = false; 1537 return KVM_PFN_NOSLOT; 1538 } 1539 1540 /* Do not map writable pfn in the readonly memslot. */ 1541 if (writable && memslot_is_readonly(slot)) { 1542 *writable = false; 1543 writable = NULL; 1544 } 1545 1546 return hva_to_pfn(addr, atomic, async, write_fault, 1547 writable); 1548 } 1549 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1550 1551 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1552 bool *writable) 1553 { 1554 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1555 write_fault, writable); 1556 } 1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1558 1559 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1560 { 1561 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1562 } 1563 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1564 1565 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1566 { 1567 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1568 } 1569 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1570 1571 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1572 { 1573 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1574 } 1575 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1576 1577 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1578 { 1579 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1580 } 1581 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1582 1583 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1584 { 1585 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1586 } 1587 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1588 1589 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1590 { 1591 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1592 } 1593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1594 1595 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1596 struct page **pages, int nr_pages) 1597 { 1598 unsigned long addr; 1599 gfn_t entry = 0; 1600 1601 addr = gfn_to_hva_many(slot, gfn, &entry); 1602 if (kvm_is_error_hva(addr)) 1603 return -1; 1604 1605 if (entry < nr_pages) 1606 return 0; 1607 1608 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1609 } 1610 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1611 1612 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1613 { 1614 if (is_error_noslot_pfn(pfn)) 1615 return KVM_ERR_PTR_BAD_PAGE; 1616 1617 if (kvm_is_reserved_pfn(pfn)) { 1618 WARN_ON(1); 1619 return KVM_ERR_PTR_BAD_PAGE; 1620 } 1621 1622 return pfn_to_page(pfn); 1623 } 1624 1625 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1626 { 1627 kvm_pfn_t pfn; 1628 1629 pfn = gfn_to_pfn(kvm, gfn); 1630 1631 return kvm_pfn_to_page(pfn); 1632 } 1633 EXPORT_SYMBOL_GPL(gfn_to_page); 1634 1635 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1636 { 1637 kvm_pfn_t pfn; 1638 1639 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1640 1641 return kvm_pfn_to_page(pfn); 1642 } 1643 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1644 1645 void kvm_release_page_clean(struct page *page) 1646 { 1647 WARN_ON(is_error_page(page)); 1648 1649 kvm_release_pfn_clean(page_to_pfn(page)); 1650 } 1651 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1652 1653 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1654 { 1655 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1656 put_page(pfn_to_page(pfn)); 1657 } 1658 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1659 1660 void kvm_release_page_dirty(struct page *page) 1661 { 1662 WARN_ON(is_error_page(page)); 1663 1664 kvm_release_pfn_dirty(page_to_pfn(page)); 1665 } 1666 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1667 1668 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1669 { 1670 kvm_set_pfn_dirty(pfn); 1671 kvm_release_pfn_clean(pfn); 1672 } 1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1674 1675 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1676 { 1677 if (!kvm_is_reserved_pfn(pfn)) { 1678 struct page *page = pfn_to_page(pfn); 1679 1680 if (!PageReserved(page)) 1681 SetPageDirty(page); 1682 } 1683 } 1684 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1685 1686 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1687 { 1688 if (!kvm_is_reserved_pfn(pfn)) 1689 mark_page_accessed(pfn_to_page(pfn)); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1692 1693 void kvm_get_pfn(kvm_pfn_t pfn) 1694 { 1695 if (!kvm_is_reserved_pfn(pfn)) 1696 get_page(pfn_to_page(pfn)); 1697 } 1698 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1699 1700 static int next_segment(unsigned long len, int offset) 1701 { 1702 if (len > PAGE_SIZE - offset) 1703 return PAGE_SIZE - offset; 1704 else 1705 return len; 1706 } 1707 1708 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1709 void *data, int offset, int len) 1710 { 1711 int r; 1712 unsigned long addr; 1713 1714 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1715 if (kvm_is_error_hva(addr)) 1716 return -EFAULT; 1717 r = __copy_from_user(data, (void __user *)addr + offset, len); 1718 if (r) 1719 return -EFAULT; 1720 return 0; 1721 } 1722 1723 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1724 int len) 1725 { 1726 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1727 1728 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1729 } 1730 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1731 1732 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1733 int offset, int len) 1734 { 1735 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1736 1737 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1738 } 1739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1740 1741 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1742 { 1743 gfn_t gfn = gpa >> PAGE_SHIFT; 1744 int seg; 1745 int offset = offset_in_page(gpa); 1746 int ret; 1747 1748 while ((seg = next_segment(len, offset)) != 0) { 1749 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1750 if (ret < 0) 1751 return ret; 1752 offset = 0; 1753 len -= seg; 1754 data += seg; 1755 ++gfn; 1756 } 1757 return 0; 1758 } 1759 EXPORT_SYMBOL_GPL(kvm_read_guest); 1760 1761 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1762 { 1763 gfn_t gfn = gpa >> PAGE_SHIFT; 1764 int seg; 1765 int offset = offset_in_page(gpa); 1766 int ret; 1767 1768 while ((seg = next_segment(len, offset)) != 0) { 1769 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1770 if (ret < 0) 1771 return ret; 1772 offset = 0; 1773 len -= seg; 1774 data += seg; 1775 ++gfn; 1776 } 1777 return 0; 1778 } 1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1780 1781 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1782 void *data, int offset, unsigned long len) 1783 { 1784 int r; 1785 unsigned long addr; 1786 1787 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1788 if (kvm_is_error_hva(addr)) 1789 return -EFAULT; 1790 pagefault_disable(); 1791 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1792 pagefault_enable(); 1793 if (r) 1794 return -EFAULT; 1795 return 0; 1796 } 1797 1798 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1799 unsigned long len) 1800 { 1801 gfn_t gfn = gpa >> PAGE_SHIFT; 1802 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1803 int offset = offset_in_page(gpa); 1804 1805 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1806 } 1807 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1808 1809 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1810 void *data, unsigned long len) 1811 { 1812 gfn_t gfn = gpa >> PAGE_SHIFT; 1813 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1814 int offset = offset_in_page(gpa); 1815 1816 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1817 } 1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1819 1820 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1821 const void *data, int offset, int len) 1822 { 1823 int r; 1824 unsigned long addr; 1825 1826 addr = gfn_to_hva_memslot(memslot, gfn); 1827 if (kvm_is_error_hva(addr)) 1828 return -EFAULT; 1829 r = __copy_to_user((void __user *)addr + offset, data, len); 1830 if (r) 1831 return -EFAULT; 1832 mark_page_dirty_in_slot(memslot, gfn); 1833 return 0; 1834 } 1835 1836 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1837 const void *data, int offset, int len) 1838 { 1839 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1840 1841 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1842 } 1843 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1844 1845 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1846 const void *data, int offset, int len) 1847 { 1848 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1849 1850 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1851 } 1852 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1853 1854 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1855 unsigned long len) 1856 { 1857 gfn_t gfn = gpa >> PAGE_SHIFT; 1858 int seg; 1859 int offset = offset_in_page(gpa); 1860 int ret; 1861 1862 while ((seg = next_segment(len, offset)) != 0) { 1863 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1864 if (ret < 0) 1865 return ret; 1866 offset = 0; 1867 len -= seg; 1868 data += seg; 1869 ++gfn; 1870 } 1871 return 0; 1872 } 1873 EXPORT_SYMBOL_GPL(kvm_write_guest); 1874 1875 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1876 unsigned long len) 1877 { 1878 gfn_t gfn = gpa >> PAGE_SHIFT; 1879 int seg; 1880 int offset = offset_in_page(gpa); 1881 int ret; 1882 1883 while ((seg = next_segment(len, offset)) != 0) { 1884 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1885 if (ret < 0) 1886 return ret; 1887 offset = 0; 1888 len -= seg; 1889 data += seg; 1890 ++gfn; 1891 } 1892 return 0; 1893 } 1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1895 1896 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1897 struct gfn_to_hva_cache *ghc, 1898 gpa_t gpa, unsigned long len) 1899 { 1900 int offset = offset_in_page(gpa); 1901 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1902 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1903 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1904 gfn_t nr_pages_avail; 1905 1906 ghc->gpa = gpa; 1907 ghc->generation = slots->generation; 1908 ghc->len = len; 1909 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1910 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1911 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1912 ghc->hva += offset; 1913 } else { 1914 /* 1915 * If the requested region crosses two memslots, we still 1916 * verify that the entire region is valid here. 1917 */ 1918 while (start_gfn <= end_gfn) { 1919 nr_pages_avail = 0; 1920 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1921 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1922 &nr_pages_avail); 1923 if (kvm_is_error_hva(ghc->hva)) 1924 return -EFAULT; 1925 start_gfn += nr_pages_avail; 1926 } 1927 /* Use the slow path for cross page reads and writes. */ 1928 ghc->memslot = NULL; 1929 } 1930 return 0; 1931 } 1932 1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1934 gpa_t gpa, unsigned long len) 1935 { 1936 struct kvm_memslots *slots = kvm_memslots(kvm); 1937 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1938 } 1939 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1940 1941 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1942 void *data, int offset, unsigned long len) 1943 { 1944 struct kvm_memslots *slots = kvm_memslots(kvm); 1945 int r; 1946 gpa_t gpa = ghc->gpa + offset; 1947 1948 BUG_ON(len + offset > ghc->len); 1949 1950 if (slots->generation != ghc->generation) 1951 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1952 1953 if (unlikely(!ghc->memslot)) 1954 return kvm_write_guest(kvm, gpa, data, len); 1955 1956 if (kvm_is_error_hva(ghc->hva)) 1957 return -EFAULT; 1958 1959 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1960 if (r) 1961 return -EFAULT; 1962 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1963 1964 return 0; 1965 } 1966 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1967 1968 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1969 void *data, unsigned long len) 1970 { 1971 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1972 } 1973 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1974 1975 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1976 void *data, unsigned long len) 1977 { 1978 struct kvm_memslots *slots = kvm_memslots(kvm); 1979 int r; 1980 1981 BUG_ON(len > ghc->len); 1982 1983 if (slots->generation != ghc->generation) 1984 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1985 1986 if (unlikely(!ghc->memslot)) 1987 return kvm_read_guest(kvm, ghc->gpa, data, len); 1988 1989 if (kvm_is_error_hva(ghc->hva)) 1990 return -EFAULT; 1991 1992 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1993 if (r) 1994 return -EFAULT; 1995 1996 return 0; 1997 } 1998 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1999 2000 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2001 { 2002 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2003 2004 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2005 } 2006 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2007 2008 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2009 { 2010 gfn_t gfn = gpa >> PAGE_SHIFT; 2011 int seg; 2012 int offset = offset_in_page(gpa); 2013 int ret; 2014 2015 while ((seg = next_segment(len, offset)) != 0) { 2016 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2017 if (ret < 0) 2018 return ret; 2019 offset = 0; 2020 len -= seg; 2021 ++gfn; 2022 } 2023 return 0; 2024 } 2025 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2026 2027 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2028 gfn_t gfn) 2029 { 2030 if (memslot && memslot->dirty_bitmap) { 2031 unsigned long rel_gfn = gfn - memslot->base_gfn; 2032 2033 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2034 } 2035 } 2036 2037 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2038 { 2039 struct kvm_memory_slot *memslot; 2040 2041 memslot = gfn_to_memslot(kvm, gfn); 2042 mark_page_dirty_in_slot(memslot, gfn); 2043 } 2044 EXPORT_SYMBOL_GPL(mark_page_dirty); 2045 2046 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2047 { 2048 struct kvm_memory_slot *memslot; 2049 2050 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2051 mark_page_dirty_in_slot(memslot, gfn); 2052 } 2053 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2054 2055 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2056 { 2057 if (!vcpu->sigset_active) 2058 return; 2059 2060 /* 2061 * This does a lockless modification of ->real_blocked, which is fine 2062 * because, only current can change ->real_blocked and all readers of 2063 * ->real_blocked don't care as long ->real_blocked is always a subset 2064 * of ->blocked. 2065 */ 2066 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2067 } 2068 2069 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2070 { 2071 if (!vcpu->sigset_active) 2072 return; 2073 2074 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2075 sigemptyset(¤t->real_blocked); 2076 } 2077 2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2079 { 2080 unsigned int old, val, grow; 2081 2082 old = val = vcpu->halt_poll_ns; 2083 grow = READ_ONCE(halt_poll_ns_grow); 2084 /* 10us base */ 2085 if (val == 0 && grow) 2086 val = 10000; 2087 else 2088 val *= grow; 2089 2090 if (val > halt_poll_ns) 2091 val = halt_poll_ns; 2092 2093 vcpu->halt_poll_ns = val; 2094 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2095 } 2096 2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2098 { 2099 unsigned int old, val, shrink; 2100 2101 old = val = vcpu->halt_poll_ns; 2102 shrink = READ_ONCE(halt_poll_ns_shrink); 2103 if (shrink == 0) 2104 val = 0; 2105 else 2106 val /= shrink; 2107 2108 vcpu->halt_poll_ns = val; 2109 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2110 } 2111 2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2113 { 2114 if (kvm_arch_vcpu_runnable(vcpu)) { 2115 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2116 return -EINTR; 2117 } 2118 if (kvm_cpu_has_pending_timer(vcpu)) 2119 return -EINTR; 2120 if (signal_pending(current)) 2121 return -EINTR; 2122 2123 return 0; 2124 } 2125 2126 /* 2127 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2128 */ 2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2130 { 2131 ktime_t start, cur; 2132 DECLARE_SWAITQUEUE(wait); 2133 bool waited = false; 2134 u64 block_ns; 2135 2136 start = cur = ktime_get(); 2137 if (vcpu->halt_poll_ns) { 2138 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2139 2140 ++vcpu->stat.halt_attempted_poll; 2141 do { 2142 /* 2143 * This sets KVM_REQ_UNHALT if an interrupt 2144 * arrives. 2145 */ 2146 if (kvm_vcpu_check_block(vcpu) < 0) { 2147 ++vcpu->stat.halt_successful_poll; 2148 if (!vcpu_valid_wakeup(vcpu)) 2149 ++vcpu->stat.halt_poll_invalid; 2150 goto out; 2151 } 2152 cur = ktime_get(); 2153 } while (single_task_running() && ktime_before(cur, stop)); 2154 } 2155 2156 kvm_arch_vcpu_blocking(vcpu); 2157 2158 for (;;) { 2159 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2160 2161 if (kvm_vcpu_check_block(vcpu) < 0) 2162 break; 2163 2164 waited = true; 2165 schedule(); 2166 } 2167 2168 finish_swait(&vcpu->wq, &wait); 2169 cur = ktime_get(); 2170 2171 kvm_arch_vcpu_unblocking(vcpu); 2172 out: 2173 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2174 2175 if (!vcpu_valid_wakeup(vcpu)) 2176 shrink_halt_poll_ns(vcpu); 2177 else if (halt_poll_ns) { 2178 if (block_ns <= vcpu->halt_poll_ns) 2179 ; 2180 /* we had a long block, shrink polling */ 2181 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2182 shrink_halt_poll_ns(vcpu); 2183 /* we had a short halt and our poll time is too small */ 2184 else if (vcpu->halt_poll_ns < halt_poll_ns && 2185 block_ns < halt_poll_ns) 2186 grow_halt_poll_ns(vcpu); 2187 } else 2188 vcpu->halt_poll_ns = 0; 2189 2190 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2191 kvm_arch_vcpu_block_finish(vcpu); 2192 } 2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2194 2195 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2196 { 2197 struct swait_queue_head *wqp; 2198 2199 wqp = kvm_arch_vcpu_wq(vcpu); 2200 if (swq_has_sleeper(wqp)) { 2201 swake_up(wqp); 2202 ++vcpu->stat.halt_wakeup; 2203 return true; 2204 } 2205 2206 return false; 2207 } 2208 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2209 2210 #ifndef CONFIG_S390 2211 /* 2212 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2213 */ 2214 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2215 { 2216 int me; 2217 int cpu = vcpu->cpu; 2218 2219 if (kvm_vcpu_wake_up(vcpu)) 2220 return; 2221 2222 me = get_cpu(); 2223 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2224 if (kvm_arch_vcpu_should_kick(vcpu)) 2225 smp_send_reschedule(cpu); 2226 put_cpu(); 2227 } 2228 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2229 #endif /* !CONFIG_S390 */ 2230 2231 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2232 { 2233 struct pid *pid; 2234 struct task_struct *task = NULL; 2235 int ret = 0; 2236 2237 rcu_read_lock(); 2238 pid = rcu_dereference(target->pid); 2239 if (pid) 2240 task = get_pid_task(pid, PIDTYPE_PID); 2241 rcu_read_unlock(); 2242 if (!task) 2243 return ret; 2244 ret = yield_to(task, 1); 2245 put_task_struct(task); 2246 2247 return ret; 2248 } 2249 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2250 2251 /* 2252 * Helper that checks whether a VCPU is eligible for directed yield. 2253 * Most eligible candidate to yield is decided by following heuristics: 2254 * 2255 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2256 * (preempted lock holder), indicated by @in_spin_loop. 2257 * Set at the beiginning and cleared at the end of interception/PLE handler. 2258 * 2259 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2260 * chance last time (mostly it has become eligible now since we have probably 2261 * yielded to lockholder in last iteration. This is done by toggling 2262 * @dy_eligible each time a VCPU checked for eligibility.) 2263 * 2264 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2265 * to preempted lock-holder could result in wrong VCPU selection and CPU 2266 * burning. Giving priority for a potential lock-holder increases lock 2267 * progress. 2268 * 2269 * Since algorithm is based on heuristics, accessing another VCPU data without 2270 * locking does not harm. It may result in trying to yield to same VCPU, fail 2271 * and continue with next VCPU and so on. 2272 */ 2273 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2274 { 2275 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2276 bool eligible; 2277 2278 eligible = !vcpu->spin_loop.in_spin_loop || 2279 vcpu->spin_loop.dy_eligible; 2280 2281 if (vcpu->spin_loop.in_spin_loop) 2282 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2283 2284 return eligible; 2285 #else 2286 return true; 2287 #endif 2288 } 2289 2290 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2291 { 2292 struct kvm *kvm = me->kvm; 2293 struct kvm_vcpu *vcpu; 2294 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2295 int yielded = 0; 2296 int try = 3; 2297 int pass; 2298 int i; 2299 2300 kvm_vcpu_set_in_spin_loop(me, true); 2301 /* 2302 * We boost the priority of a VCPU that is runnable but not 2303 * currently running, because it got preempted by something 2304 * else and called schedule in __vcpu_run. Hopefully that 2305 * VCPU is holding the lock that we need and will release it. 2306 * We approximate round-robin by starting at the last boosted VCPU. 2307 */ 2308 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2309 kvm_for_each_vcpu(i, vcpu, kvm) { 2310 if (!pass && i <= last_boosted_vcpu) { 2311 i = last_boosted_vcpu; 2312 continue; 2313 } else if (pass && i > last_boosted_vcpu) 2314 break; 2315 if (!READ_ONCE(vcpu->preempted)) 2316 continue; 2317 if (vcpu == me) 2318 continue; 2319 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2320 continue; 2321 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2322 continue; 2323 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2324 continue; 2325 2326 yielded = kvm_vcpu_yield_to(vcpu); 2327 if (yielded > 0) { 2328 kvm->last_boosted_vcpu = i; 2329 break; 2330 } else if (yielded < 0) { 2331 try--; 2332 if (!try) 2333 break; 2334 } 2335 } 2336 } 2337 kvm_vcpu_set_in_spin_loop(me, false); 2338 2339 /* Ensure vcpu is not eligible during next spinloop */ 2340 kvm_vcpu_set_dy_eligible(me, false); 2341 } 2342 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2343 2344 static int kvm_vcpu_fault(struct vm_fault *vmf) 2345 { 2346 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2347 struct page *page; 2348 2349 if (vmf->pgoff == 0) 2350 page = virt_to_page(vcpu->run); 2351 #ifdef CONFIG_X86 2352 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2353 page = virt_to_page(vcpu->arch.pio_data); 2354 #endif 2355 #ifdef CONFIG_KVM_MMIO 2356 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2357 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2358 #endif 2359 else 2360 return kvm_arch_vcpu_fault(vcpu, vmf); 2361 get_page(page); 2362 vmf->page = page; 2363 return 0; 2364 } 2365 2366 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2367 .fault = kvm_vcpu_fault, 2368 }; 2369 2370 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2371 { 2372 vma->vm_ops = &kvm_vcpu_vm_ops; 2373 return 0; 2374 } 2375 2376 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2377 { 2378 struct kvm_vcpu *vcpu = filp->private_data; 2379 2380 debugfs_remove_recursive(vcpu->debugfs_dentry); 2381 kvm_put_kvm(vcpu->kvm); 2382 return 0; 2383 } 2384 2385 static struct file_operations kvm_vcpu_fops = { 2386 .release = kvm_vcpu_release, 2387 .unlocked_ioctl = kvm_vcpu_ioctl, 2388 #ifdef CONFIG_KVM_COMPAT 2389 .compat_ioctl = kvm_vcpu_compat_ioctl, 2390 #endif 2391 .mmap = kvm_vcpu_mmap, 2392 .llseek = noop_llseek, 2393 }; 2394 2395 /* 2396 * Allocates an inode for the vcpu. 2397 */ 2398 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2399 { 2400 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2401 2402 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2403 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2404 } 2405 2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2407 { 2408 char dir_name[ITOA_MAX_LEN * 2]; 2409 int ret; 2410 2411 if (!kvm_arch_has_vcpu_debugfs()) 2412 return 0; 2413 2414 if (!debugfs_initialized()) 2415 return 0; 2416 2417 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2418 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2419 vcpu->kvm->debugfs_dentry); 2420 if (!vcpu->debugfs_dentry) 2421 return -ENOMEM; 2422 2423 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2424 if (ret < 0) { 2425 debugfs_remove_recursive(vcpu->debugfs_dentry); 2426 return ret; 2427 } 2428 2429 return 0; 2430 } 2431 2432 /* 2433 * Creates some virtual cpus. Good luck creating more than one. 2434 */ 2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2436 { 2437 int r; 2438 struct kvm_vcpu *vcpu; 2439 2440 if (id >= KVM_MAX_VCPU_ID) 2441 return -EINVAL; 2442 2443 mutex_lock(&kvm->lock); 2444 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2445 mutex_unlock(&kvm->lock); 2446 return -EINVAL; 2447 } 2448 2449 kvm->created_vcpus++; 2450 mutex_unlock(&kvm->lock); 2451 2452 vcpu = kvm_arch_vcpu_create(kvm, id); 2453 if (IS_ERR(vcpu)) { 2454 r = PTR_ERR(vcpu); 2455 goto vcpu_decrement; 2456 } 2457 2458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2459 2460 r = kvm_arch_vcpu_setup(vcpu); 2461 if (r) 2462 goto vcpu_destroy; 2463 2464 r = kvm_create_vcpu_debugfs(vcpu); 2465 if (r) 2466 goto vcpu_destroy; 2467 2468 mutex_lock(&kvm->lock); 2469 if (kvm_get_vcpu_by_id(kvm, id)) { 2470 r = -EEXIST; 2471 goto unlock_vcpu_destroy; 2472 } 2473 2474 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2475 2476 /* Now it's all set up, let userspace reach it */ 2477 kvm_get_kvm(kvm); 2478 r = create_vcpu_fd(vcpu); 2479 if (r < 0) { 2480 kvm_put_kvm(kvm); 2481 goto unlock_vcpu_destroy; 2482 } 2483 2484 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2485 2486 /* 2487 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2488 * before kvm->online_vcpu's incremented value. 2489 */ 2490 smp_wmb(); 2491 atomic_inc(&kvm->online_vcpus); 2492 2493 mutex_unlock(&kvm->lock); 2494 kvm_arch_vcpu_postcreate(vcpu); 2495 return r; 2496 2497 unlock_vcpu_destroy: 2498 mutex_unlock(&kvm->lock); 2499 debugfs_remove_recursive(vcpu->debugfs_dentry); 2500 vcpu_destroy: 2501 kvm_arch_vcpu_destroy(vcpu); 2502 vcpu_decrement: 2503 mutex_lock(&kvm->lock); 2504 kvm->created_vcpus--; 2505 mutex_unlock(&kvm->lock); 2506 return r; 2507 } 2508 2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2510 { 2511 if (sigset) { 2512 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2513 vcpu->sigset_active = 1; 2514 vcpu->sigset = *sigset; 2515 } else 2516 vcpu->sigset_active = 0; 2517 return 0; 2518 } 2519 2520 static long kvm_vcpu_ioctl(struct file *filp, 2521 unsigned int ioctl, unsigned long arg) 2522 { 2523 struct kvm_vcpu *vcpu = filp->private_data; 2524 void __user *argp = (void __user *)arg; 2525 int r; 2526 struct kvm_fpu *fpu = NULL; 2527 struct kvm_sregs *kvm_sregs = NULL; 2528 2529 if (vcpu->kvm->mm != current->mm) 2530 return -EIO; 2531 2532 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2533 return -EINVAL; 2534 2535 /* 2536 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2537 * execution; mutex_lock() would break them. 2538 */ 2539 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2540 if (r != -ENOIOCTLCMD) 2541 return r; 2542 2543 if (mutex_lock_killable(&vcpu->mutex)) 2544 return -EINTR; 2545 switch (ioctl) { 2546 case KVM_RUN: { 2547 struct pid *oldpid; 2548 r = -EINVAL; 2549 if (arg) 2550 goto out; 2551 oldpid = rcu_access_pointer(vcpu->pid); 2552 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2553 /* The thread running this VCPU changed. */ 2554 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2555 2556 rcu_assign_pointer(vcpu->pid, newpid); 2557 if (oldpid) 2558 synchronize_rcu(); 2559 put_pid(oldpid); 2560 } 2561 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2562 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2563 break; 2564 } 2565 case KVM_GET_REGS: { 2566 struct kvm_regs *kvm_regs; 2567 2568 r = -ENOMEM; 2569 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2570 if (!kvm_regs) 2571 goto out; 2572 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2573 if (r) 2574 goto out_free1; 2575 r = -EFAULT; 2576 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2577 goto out_free1; 2578 r = 0; 2579 out_free1: 2580 kfree(kvm_regs); 2581 break; 2582 } 2583 case KVM_SET_REGS: { 2584 struct kvm_regs *kvm_regs; 2585 2586 r = -ENOMEM; 2587 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2588 if (IS_ERR(kvm_regs)) { 2589 r = PTR_ERR(kvm_regs); 2590 goto out; 2591 } 2592 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2593 kfree(kvm_regs); 2594 break; 2595 } 2596 case KVM_GET_SREGS: { 2597 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2598 r = -ENOMEM; 2599 if (!kvm_sregs) 2600 goto out; 2601 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2602 if (r) 2603 goto out; 2604 r = -EFAULT; 2605 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2606 goto out; 2607 r = 0; 2608 break; 2609 } 2610 case KVM_SET_SREGS: { 2611 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2612 if (IS_ERR(kvm_sregs)) { 2613 r = PTR_ERR(kvm_sregs); 2614 kvm_sregs = NULL; 2615 goto out; 2616 } 2617 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2618 break; 2619 } 2620 case KVM_GET_MP_STATE: { 2621 struct kvm_mp_state mp_state; 2622 2623 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2624 if (r) 2625 goto out; 2626 r = -EFAULT; 2627 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2628 goto out; 2629 r = 0; 2630 break; 2631 } 2632 case KVM_SET_MP_STATE: { 2633 struct kvm_mp_state mp_state; 2634 2635 r = -EFAULT; 2636 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2637 goto out; 2638 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2639 break; 2640 } 2641 case KVM_TRANSLATE: { 2642 struct kvm_translation tr; 2643 2644 r = -EFAULT; 2645 if (copy_from_user(&tr, argp, sizeof(tr))) 2646 goto out; 2647 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2648 if (r) 2649 goto out; 2650 r = -EFAULT; 2651 if (copy_to_user(argp, &tr, sizeof(tr))) 2652 goto out; 2653 r = 0; 2654 break; 2655 } 2656 case KVM_SET_GUEST_DEBUG: { 2657 struct kvm_guest_debug dbg; 2658 2659 r = -EFAULT; 2660 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2661 goto out; 2662 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2663 break; 2664 } 2665 case KVM_SET_SIGNAL_MASK: { 2666 struct kvm_signal_mask __user *sigmask_arg = argp; 2667 struct kvm_signal_mask kvm_sigmask; 2668 sigset_t sigset, *p; 2669 2670 p = NULL; 2671 if (argp) { 2672 r = -EFAULT; 2673 if (copy_from_user(&kvm_sigmask, argp, 2674 sizeof(kvm_sigmask))) 2675 goto out; 2676 r = -EINVAL; 2677 if (kvm_sigmask.len != sizeof(sigset)) 2678 goto out; 2679 r = -EFAULT; 2680 if (copy_from_user(&sigset, sigmask_arg->sigset, 2681 sizeof(sigset))) 2682 goto out; 2683 p = &sigset; 2684 } 2685 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2686 break; 2687 } 2688 case KVM_GET_FPU: { 2689 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2690 r = -ENOMEM; 2691 if (!fpu) 2692 goto out; 2693 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2694 if (r) 2695 goto out; 2696 r = -EFAULT; 2697 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2698 goto out; 2699 r = 0; 2700 break; 2701 } 2702 case KVM_SET_FPU: { 2703 fpu = memdup_user(argp, sizeof(*fpu)); 2704 if (IS_ERR(fpu)) { 2705 r = PTR_ERR(fpu); 2706 fpu = NULL; 2707 goto out; 2708 } 2709 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2710 break; 2711 } 2712 default: 2713 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2714 } 2715 out: 2716 mutex_unlock(&vcpu->mutex); 2717 kfree(fpu); 2718 kfree(kvm_sregs); 2719 return r; 2720 } 2721 2722 #ifdef CONFIG_KVM_COMPAT 2723 static long kvm_vcpu_compat_ioctl(struct file *filp, 2724 unsigned int ioctl, unsigned long arg) 2725 { 2726 struct kvm_vcpu *vcpu = filp->private_data; 2727 void __user *argp = compat_ptr(arg); 2728 int r; 2729 2730 if (vcpu->kvm->mm != current->mm) 2731 return -EIO; 2732 2733 switch (ioctl) { 2734 case KVM_SET_SIGNAL_MASK: { 2735 struct kvm_signal_mask __user *sigmask_arg = argp; 2736 struct kvm_signal_mask kvm_sigmask; 2737 sigset_t sigset; 2738 2739 if (argp) { 2740 r = -EFAULT; 2741 if (copy_from_user(&kvm_sigmask, argp, 2742 sizeof(kvm_sigmask))) 2743 goto out; 2744 r = -EINVAL; 2745 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2746 goto out; 2747 r = -EFAULT; 2748 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2749 goto out; 2750 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2751 } else 2752 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2753 break; 2754 } 2755 default: 2756 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2757 } 2758 2759 out: 2760 return r; 2761 } 2762 #endif 2763 2764 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2765 int (*accessor)(struct kvm_device *dev, 2766 struct kvm_device_attr *attr), 2767 unsigned long arg) 2768 { 2769 struct kvm_device_attr attr; 2770 2771 if (!accessor) 2772 return -EPERM; 2773 2774 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2775 return -EFAULT; 2776 2777 return accessor(dev, &attr); 2778 } 2779 2780 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2781 unsigned long arg) 2782 { 2783 struct kvm_device *dev = filp->private_data; 2784 2785 switch (ioctl) { 2786 case KVM_SET_DEVICE_ATTR: 2787 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2788 case KVM_GET_DEVICE_ATTR: 2789 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2790 case KVM_HAS_DEVICE_ATTR: 2791 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2792 default: 2793 if (dev->ops->ioctl) 2794 return dev->ops->ioctl(dev, ioctl, arg); 2795 2796 return -ENOTTY; 2797 } 2798 } 2799 2800 static int kvm_device_release(struct inode *inode, struct file *filp) 2801 { 2802 struct kvm_device *dev = filp->private_data; 2803 struct kvm *kvm = dev->kvm; 2804 2805 kvm_put_kvm(kvm); 2806 return 0; 2807 } 2808 2809 static const struct file_operations kvm_device_fops = { 2810 .unlocked_ioctl = kvm_device_ioctl, 2811 #ifdef CONFIG_KVM_COMPAT 2812 .compat_ioctl = kvm_device_ioctl, 2813 #endif 2814 .release = kvm_device_release, 2815 }; 2816 2817 struct kvm_device *kvm_device_from_filp(struct file *filp) 2818 { 2819 if (filp->f_op != &kvm_device_fops) 2820 return NULL; 2821 2822 return filp->private_data; 2823 } 2824 2825 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2826 #ifdef CONFIG_KVM_MPIC 2827 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2828 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2829 #endif 2830 }; 2831 2832 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2833 { 2834 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2835 return -ENOSPC; 2836 2837 if (kvm_device_ops_table[type] != NULL) 2838 return -EEXIST; 2839 2840 kvm_device_ops_table[type] = ops; 2841 return 0; 2842 } 2843 2844 void kvm_unregister_device_ops(u32 type) 2845 { 2846 if (kvm_device_ops_table[type] != NULL) 2847 kvm_device_ops_table[type] = NULL; 2848 } 2849 2850 static int kvm_ioctl_create_device(struct kvm *kvm, 2851 struct kvm_create_device *cd) 2852 { 2853 struct kvm_device_ops *ops = NULL; 2854 struct kvm_device *dev; 2855 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2856 int ret; 2857 2858 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2859 return -ENODEV; 2860 2861 ops = kvm_device_ops_table[cd->type]; 2862 if (ops == NULL) 2863 return -ENODEV; 2864 2865 if (test) 2866 return 0; 2867 2868 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2869 if (!dev) 2870 return -ENOMEM; 2871 2872 dev->ops = ops; 2873 dev->kvm = kvm; 2874 2875 mutex_lock(&kvm->lock); 2876 ret = ops->create(dev, cd->type); 2877 if (ret < 0) { 2878 mutex_unlock(&kvm->lock); 2879 kfree(dev); 2880 return ret; 2881 } 2882 list_add(&dev->vm_node, &kvm->devices); 2883 mutex_unlock(&kvm->lock); 2884 2885 if (ops->init) 2886 ops->init(dev); 2887 2888 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2889 if (ret < 0) { 2890 mutex_lock(&kvm->lock); 2891 list_del(&dev->vm_node); 2892 mutex_unlock(&kvm->lock); 2893 ops->destroy(dev); 2894 return ret; 2895 } 2896 2897 kvm_get_kvm(kvm); 2898 cd->fd = ret; 2899 return 0; 2900 } 2901 2902 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2903 { 2904 switch (arg) { 2905 case KVM_CAP_USER_MEMORY: 2906 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2907 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2908 case KVM_CAP_INTERNAL_ERROR_DATA: 2909 #ifdef CONFIG_HAVE_KVM_MSI 2910 case KVM_CAP_SIGNAL_MSI: 2911 #endif 2912 #ifdef CONFIG_HAVE_KVM_IRQFD 2913 case KVM_CAP_IRQFD: 2914 case KVM_CAP_IRQFD_RESAMPLE: 2915 #endif 2916 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2917 case KVM_CAP_CHECK_EXTENSION_VM: 2918 return 1; 2919 #ifdef CONFIG_KVM_MMIO 2920 case KVM_CAP_COALESCED_MMIO: 2921 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2922 #endif 2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2924 case KVM_CAP_IRQ_ROUTING: 2925 return KVM_MAX_IRQ_ROUTES; 2926 #endif 2927 #if KVM_ADDRESS_SPACE_NUM > 1 2928 case KVM_CAP_MULTI_ADDRESS_SPACE: 2929 return KVM_ADDRESS_SPACE_NUM; 2930 #endif 2931 case KVM_CAP_MAX_VCPU_ID: 2932 return KVM_MAX_VCPU_ID; 2933 default: 2934 break; 2935 } 2936 return kvm_vm_ioctl_check_extension(kvm, arg); 2937 } 2938 2939 static long kvm_vm_ioctl(struct file *filp, 2940 unsigned int ioctl, unsigned long arg) 2941 { 2942 struct kvm *kvm = filp->private_data; 2943 void __user *argp = (void __user *)arg; 2944 int r; 2945 2946 if (kvm->mm != current->mm) 2947 return -EIO; 2948 switch (ioctl) { 2949 case KVM_CREATE_VCPU: 2950 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2951 break; 2952 case KVM_SET_USER_MEMORY_REGION: { 2953 struct kvm_userspace_memory_region kvm_userspace_mem; 2954 2955 r = -EFAULT; 2956 if (copy_from_user(&kvm_userspace_mem, argp, 2957 sizeof(kvm_userspace_mem))) 2958 goto out; 2959 2960 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2961 break; 2962 } 2963 case KVM_GET_DIRTY_LOG: { 2964 struct kvm_dirty_log log; 2965 2966 r = -EFAULT; 2967 if (copy_from_user(&log, argp, sizeof(log))) 2968 goto out; 2969 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2970 break; 2971 } 2972 #ifdef CONFIG_KVM_MMIO 2973 case KVM_REGISTER_COALESCED_MMIO: { 2974 struct kvm_coalesced_mmio_zone zone; 2975 2976 r = -EFAULT; 2977 if (copy_from_user(&zone, argp, sizeof(zone))) 2978 goto out; 2979 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2980 break; 2981 } 2982 case KVM_UNREGISTER_COALESCED_MMIO: { 2983 struct kvm_coalesced_mmio_zone zone; 2984 2985 r = -EFAULT; 2986 if (copy_from_user(&zone, argp, sizeof(zone))) 2987 goto out; 2988 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2989 break; 2990 } 2991 #endif 2992 case KVM_IRQFD: { 2993 struct kvm_irqfd data; 2994 2995 r = -EFAULT; 2996 if (copy_from_user(&data, argp, sizeof(data))) 2997 goto out; 2998 r = kvm_irqfd(kvm, &data); 2999 break; 3000 } 3001 case KVM_IOEVENTFD: { 3002 struct kvm_ioeventfd data; 3003 3004 r = -EFAULT; 3005 if (copy_from_user(&data, argp, sizeof(data))) 3006 goto out; 3007 r = kvm_ioeventfd(kvm, &data); 3008 break; 3009 } 3010 #ifdef CONFIG_HAVE_KVM_MSI 3011 case KVM_SIGNAL_MSI: { 3012 struct kvm_msi msi; 3013 3014 r = -EFAULT; 3015 if (copy_from_user(&msi, argp, sizeof(msi))) 3016 goto out; 3017 r = kvm_send_userspace_msi(kvm, &msi); 3018 break; 3019 } 3020 #endif 3021 #ifdef __KVM_HAVE_IRQ_LINE 3022 case KVM_IRQ_LINE_STATUS: 3023 case KVM_IRQ_LINE: { 3024 struct kvm_irq_level irq_event; 3025 3026 r = -EFAULT; 3027 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3028 goto out; 3029 3030 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3031 ioctl == KVM_IRQ_LINE_STATUS); 3032 if (r) 3033 goto out; 3034 3035 r = -EFAULT; 3036 if (ioctl == KVM_IRQ_LINE_STATUS) { 3037 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3038 goto out; 3039 } 3040 3041 r = 0; 3042 break; 3043 } 3044 #endif 3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3046 case KVM_SET_GSI_ROUTING: { 3047 struct kvm_irq_routing routing; 3048 struct kvm_irq_routing __user *urouting; 3049 struct kvm_irq_routing_entry *entries = NULL; 3050 3051 r = -EFAULT; 3052 if (copy_from_user(&routing, argp, sizeof(routing))) 3053 goto out; 3054 r = -EINVAL; 3055 if (!kvm_arch_can_set_irq_routing(kvm)) 3056 goto out; 3057 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3058 goto out; 3059 if (routing.flags) 3060 goto out; 3061 if (routing.nr) { 3062 r = -ENOMEM; 3063 entries = vmalloc(routing.nr * sizeof(*entries)); 3064 if (!entries) 3065 goto out; 3066 r = -EFAULT; 3067 urouting = argp; 3068 if (copy_from_user(entries, urouting->entries, 3069 routing.nr * sizeof(*entries))) 3070 goto out_free_irq_routing; 3071 } 3072 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3073 routing.flags); 3074 out_free_irq_routing: 3075 vfree(entries); 3076 break; 3077 } 3078 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3079 case KVM_CREATE_DEVICE: { 3080 struct kvm_create_device cd; 3081 3082 r = -EFAULT; 3083 if (copy_from_user(&cd, argp, sizeof(cd))) 3084 goto out; 3085 3086 r = kvm_ioctl_create_device(kvm, &cd); 3087 if (r) 3088 goto out; 3089 3090 r = -EFAULT; 3091 if (copy_to_user(argp, &cd, sizeof(cd))) 3092 goto out; 3093 3094 r = 0; 3095 break; 3096 } 3097 case KVM_CHECK_EXTENSION: 3098 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3099 break; 3100 default: 3101 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3102 } 3103 out: 3104 return r; 3105 } 3106 3107 #ifdef CONFIG_KVM_COMPAT 3108 struct compat_kvm_dirty_log { 3109 __u32 slot; 3110 __u32 padding1; 3111 union { 3112 compat_uptr_t dirty_bitmap; /* one bit per page */ 3113 __u64 padding2; 3114 }; 3115 }; 3116 3117 static long kvm_vm_compat_ioctl(struct file *filp, 3118 unsigned int ioctl, unsigned long arg) 3119 { 3120 struct kvm *kvm = filp->private_data; 3121 int r; 3122 3123 if (kvm->mm != current->mm) 3124 return -EIO; 3125 switch (ioctl) { 3126 case KVM_GET_DIRTY_LOG: { 3127 struct compat_kvm_dirty_log compat_log; 3128 struct kvm_dirty_log log; 3129 3130 if (copy_from_user(&compat_log, (void __user *)arg, 3131 sizeof(compat_log))) 3132 return -EFAULT; 3133 log.slot = compat_log.slot; 3134 log.padding1 = compat_log.padding1; 3135 log.padding2 = compat_log.padding2; 3136 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3137 3138 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3139 break; 3140 } 3141 default: 3142 r = kvm_vm_ioctl(filp, ioctl, arg); 3143 } 3144 return r; 3145 } 3146 #endif 3147 3148 static struct file_operations kvm_vm_fops = { 3149 .release = kvm_vm_release, 3150 .unlocked_ioctl = kvm_vm_ioctl, 3151 #ifdef CONFIG_KVM_COMPAT 3152 .compat_ioctl = kvm_vm_compat_ioctl, 3153 #endif 3154 .llseek = noop_llseek, 3155 }; 3156 3157 static int kvm_dev_ioctl_create_vm(unsigned long type) 3158 { 3159 int r; 3160 struct kvm *kvm; 3161 struct file *file; 3162 3163 kvm = kvm_create_vm(type); 3164 if (IS_ERR(kvm)) 3165 return PTR_ERR(kvm); 3166 #ifdef CONFIG_KVM_MMIO 3167 r = kvm_coalesced_mmio_init(kvm); 3168 if (r < 0) 3169 goto put_kvm; 3170 #endif 3171 r = get_unused_fd_flags(O_CLOEXEC); 3172 if (r < 0) 3173 goto put_kvm; 3174 3175 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3176 if (IS_ERR(file)) { 3177 put_unused_fd(r); 3178 r = PTR_ERR(file); 3179 goto put_kvm; 3180 } 3181 3182 /* 3183 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3184 * already set, with ->release() being kvm_vm_release(). In error 3185 * cases it will be called by the final fput(file) and will take 3186 * care of doing kvm_put_kvm(kvm). 3187 */ 3188 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3189 put_unused_fd(r); 3190 fput(file); 3191 return -ENOMEM; 3192 } 3193 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3194 3195 fd_install(r, file); 3196 return r; 3197 3198 put_kvm: 3199 kvm_put_kvm(kvm); 3200 return r; 3201 } 3202 3203 static long kvm_dev_ioctl(struct file *filp, 3204 unsigned int ioctl, unsigned long arg) 3205 { 3206 long r = -EINVAL; 3207 3208 switch (ioctl) { 3209 case KVM_GET_API_VERSION: 3210 if (arg) 3211 goto out; 3212 r = KVM_API_VERSION; 3213 break; 3214 case KVM_CREATE_VM: 3215 r = kvm_dev_ioctl_create_vm(arg); 3216 break; 3217 case KVM_CHECK_EXTENSION: 3218 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3219 break; 3220 case KVM_GET_VCPU_MMAP_SIZE: 3221 if (arg) 3222 goto out; 3223 r = PAGE_SIZE; /* struct kvm_run */ 3224 #ifdef CONFIG_X86 3225 r += PAGE_SIZE; /* pio data page */ 3226 #endif 3227 #ifdef CONFIG_KVM_MMIO 3228 r += PAGE_SIZE; /* coalesced mmio ring page */ 3229 #endif 3230 break; 3231 case KVM_TRACE_ENABLE: 3232 case KVM_TRACE_PAUSE: 3233 case KVM_TRACE_DISABLE: 3234 r = -EOPNOTSUPP; 3235 break; 3236 default: 3237 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3238 } 3239 out: 3240 return r; 3241 } 3242 3243 static struct file_operations kvm_chardev_ops = { 3244 .unlocked_ioctl = kvm_dev_ioctl, 3245 .compat_ioctl = kvm_dev_ioctl, 3246 .llseek = noop_llseek, 3247 }; 3248 3249 static struct miscdevice kvm_dev = { 3250 KVM_MINOR, 3251 "kvm", 3252 &kvm_chardev_ops, 3253 }; 3254 3255 static void hardware_enable_nolock(void *junk) 3256 { 3257 int cpu = raw_smp_processor_id(); 3258 int r; 3259 3260 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3261 return; 3262 3263 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3264 3265 r = kvm_arch_hardware_enable(); 3266 3267 if (r) { 3268 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3269 atomic_inc(&hardware_enable_failed); 3270 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3271 } 3272 } 3273 3274 static int kvm_starting_cpu(unsigned int cpu) 3275 { 3276 raw_spin_lock(&kvm_count_lock); 3277 if (kvm_usage_count) 3278 hardware_enable_nolock(NULL); 3279 raw_spin_unlock(&kvm_count_lock); 3280 return 0; 3281 } 3282 3283 static void hardware_disable_nolock(void *junk) 3284 { 3285 int cpu = raw_smp_processor_id(); 3286 3287 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3288 return; 3289 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3290 kvm_arch_hardware_disable(); 3291 } 3292 3293 static int kvm_dying_cpu(unsigned int cpu) 3294 { 3295 raw_spin_lock(&kvm_count_lock); 3296 if (kvm_usage_count) 3297 hardware_disable_nolock(NULL); 3298 raw_spin_unlock(&kvm_count_lock); 3299 return 0; 3300 } 3301 3302 static void hardware_disable_all_nolock(void) 3303 { 3304 BUG_ON(!kvm_usage_count); 3305 3306 kvm_usage_count--; 3307 if (!kvm_usage_count) 3308 on_each_cpu(hardware_disable_nolock, NULL, 1); 3309 } 3310 3311 static void hardware_disable_all(void) 3312 { 3313 raw_spin_lock(&kvm_count_lock); 3314 hardware_disable_all_nolock(); 3315 raw_spin_unlock(&kvm_count_lock); 3316 } 3317 3318 static int hardware_enable_all(void) 3319 { 3320 int r = 0; 3321 3322 raw_spin_lock(&kvm_count_lock); 3323 3324 kvm_usage_count++; 3325 if (kvm_usage_count == 1) { 3326 atomic_set(&hardware_enable_failed, 0); 3327 on_each_cpu(hardware_enable_nolock, NULL, 1); 3328 3329 if (atomic_read(&hardware_enable_failed)) { 3330 hardware_disable_all_nolock(); 3331 r = -EBUSY; 3332 } 3333 } 3334 3335 raw_spin_unlock(&kvm_count_lock); 3336 3337 return r; 3338 } 3339 3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3341 void *v) 3342 { 3343 /* 3344 * Some (well, at least mine) BIOSes hang on reboot if 3345 * in vmx root mode. 3346 * 3347 * And Intel TXT required VMX off for all cpu when system shutdown. 3348 */ 3349 pr_info("kvm: exiting hardware virtualization\n"); 3350 kvm_rebooting = true; 3351 on_each_cpu(hardware_disable_nolock, NULL, 1); 3352 return NOTIFY_OK; 3353 } 3354 3355 static struct notifier_block kvm_reboot_notifier = { 3356 .notifier_call = kvm_reboot, 3357 .priority = 0, 3358 }; 3359 3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3361 { 3362 int i; 3363 3364 for (i = 0; i < bus->dev_count; i++) { 3365 struct kvm_io_device *pos = bus->range[i].dev; 3366 3367 kvm_iodevice_destructor(pos); 3368 } 3369 kfree(bus); 3370 } 3371 3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3373 const struct kvm_io_range *r2) 3374 { 3375 gpa_t addr1 = r1->addr; 3376 gpa_t addr2 = r2->addr; 3377 3378 if (addr1 < addr2) 3379 return -1; 3380 3381 /* If r2->len == 0, match the exact address. If r2->len != 0, 3382 * accept any overlapping write. Any order is acceptable for 3383 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3384 * we process all of them. 3385 */ 3386 if (r2->len) { 3387 addr1 += r1->len; 3388 addr2 += r2->len; 3389 } 3390 3391 if (addr1 > addr2) 3392 return 1; 3393 3394 return 0; 3395 } 3396 3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3398 { 3399 return kvm_io_bus_cmp(p1, p2); 3400 } 3401 3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3403 gpa_t addr, int len) 3404 { 3405 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3406 .addr = addr, 3407 .len = len, 3408 .dev = dev, 3409 }; 3410 3411 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3412 kvm_io_bus_sort_cmp, NULL); 3413 3414 return 0; 3415 } 3416 3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3418 gpa_t addr, int len) 3419 { 3420 struct kvm_io_range *range, key; 3421 int off; 3422 3423 key = (struct kvm_io_range) { 3424 .addr = addr, 3425 .len = len, 3426 }; 3427 3428 range = bsearch(&key, bus->range, bus->dev_count, 3429 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3430 if (range == NULL) 3431 return -ENOENT; 3432 3433 off = range - bus->range; 3434 3435 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3436 off--; 3437 3438 return off; 3439 } 3440 3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3442 struct kvm_io_range *range, const void *val) 3443 { 3444 int idx; 3445 3446 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3447 if (idx < 0) 3448 return -EOPNOTSUPP; 3449 3450 while (idx < bus->dev_count && 3451 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3452 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3453 range->len, val)) 3454 return idx; 3455 idx++; 3456 } 3457 3458 return -EOPNOTSUPP; 3459 } 3460 3461 /* kvm_io_bus_write - called under kvm->slots_lock */ 3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3463 int len, const void *val) 3464 { 3465 struct kvm_io_bus *bus; 3466 struct kvm_io_range range; 3467 int r; 3468 3469 range = (struct kvm_io_range) { 3470 .addr = addr, 3471 .len = len, 3472 }; 3473 3474 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3475 if (!bus) 3476 return -ENOMEM; 3477 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3478 return r < 0 ? r : 0; 3479 } 3480 3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3483 gpa_t addr, int len, const void *val, long cookie) 3484 { 3485 struct kvm_io_bus *bus; 3486 struct kvm_io_range range; 3487 3488 range = (struct kvm_io_range) { 3489 .addr = addr, 3490 .len = len, 3491 }; 3492 3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3494 if (!bus) 3495 return -ENOMEM; 3496 3497 /* First try the device referenced by cookie. */ 3498 if ((cookie >= 0) && (cookie < bus->dev_count) && 3499 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3500 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3501 val)) 3502 return cookie; 3503 3504 /* 3505 * cookie contained garbage; fall back to search and return the 3506 * correct cookie value. 3507 */ 3508 return __kvm_io_bus_write(vcpu, bus, &range, val); 3509 } 3510 3511 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3512 struct kvm_io_range *range, void *val) 3513 { 3514 int idx; 3515 3516 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3517 if (idx < 0) 3518 return -EOPNOTSUPP; 3519 3520 while (idx < bus->dev_count && 3521 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3522 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3523 range->len, val)) 3524 return idx; 3525 idx++; 3526 } 3527 3528 return -EOPNOTSUPP; 3529 } 3530 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3531 3532 /* kvm_io_bus_read - called under kvm->slots_lock */ 3533 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3534 int len, void *val) 3535 { 3536 struct kvm_io_bus *bus; 3537 struct kvm_io_range range; 3538 int r; 3539 3540 range = (struct kvm_io_range) { 3541 .addr = addr, 3542 .len = len, 3543 }; 3544 3545 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3546 if (!bus) 3547 return -ENOMEM; 3548 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3549 return r < 0 ? r : 0; 3550 } 3551 3552 3553 /* Caller must hold slots_lock. */ 3554 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3555 int len, struct kvm_io_device *dev) 3556 { 3557 struct kvm_io_bus *new_bus, *bus; 3558 3559 bus = kvm_get_bus(kvm, bus_idx); 3560 if (!bus) 3561 return -ENOMEM; 3562 3563 /* exclude ioeventfd which is limited by maximum fd */ 3564 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3565 return -ENOSPC; 3566 3567 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3568 sizeof(struct kvm_io_range)), GFP_KERNEL); 3569 if (!new_bus) 3570 return -ENOMEM; 3571 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3572 sizeof(struct kvm_io_range))); 3573 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3574 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3575 synchronize_srcu_expedited(&kvm->srcu); 3576 kfree(bus); 3577 3578 return 0; 3579 } 3580 3581 /* Caller must hold slots_lock. */ 3582 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3583 struct kvm_io_device *dev) 3584 { 3585 int i; 3586 struct kvm_io_bus *new_bus, *bus; 3587 3588 bus = kvm_get_bus(kvm, bus_idx); 3589 if (!bus) 3590 return; 3591 3592 for (i = 0; i < bus->dev_count; i++) 3593 if (bus->range[i].dev == dev) { 3594 break; 3595 } 3596 3597 if (i == bus->dev_count) 3598 return; 3599 3600 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3601 sizeof(struct kvm_io_range)), GFP_KERNEL); 3602 if (!new_bus) { 3603 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3604 goto broken; 3605 } 3606 3607 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3608 new_bus->dev_count--; 3609 memcpy(new_bus->range + i, bus->range + i + 1, 3610 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3611 3612 broken: 3613 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3614 synchronize_srcu_expedited(&kvm->srcu); 3615 kfree(bus); 3616 return; 3617 } 3618 3619 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3620 gpa_t addr) 3621 { 3622 struct kvm_io_bus *bus; 3623 int dev_idx, srcu_idx; 3624 struct kvm_io_device *iodev = NULL; 3625 3626 srcu_idx = srcu_read_lock(&kvm->srcu); 3627 3628 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3629 if (!bus) 3630 goto out_unlock; 3631 3632 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3633 if (dev_idx < 0) 3634 goto out_unlock; 3635 3636 iodev = bus->range[dev_idx].dev; 3637 3638 out_unlock: 3639 srcu_read_unlock(&kvm->srcu, srcu_idx); 3640 3641 return iodev; 3642 } 3643 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3644 3645 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3646 int (*get)(void *, u64 *), int (*set)(void *, u64), 3647 const char *fmt) 3648 { 3649 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3650 inode->i_private; 3651 3652 /* The debugfs files are a reference to the kvm struct which 3653 * is still valid when kvm_destroy_vm is called. 3654 * To avoid the race between open and the removal of the debugfs 3655 * directory we test against the users count. 3656 */ 3657 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3658 return -ENOENT; 3659 3660 if (simple_attr_open(inode, file, get, set, fmt)) { 3661 kvm_put_kvm(stat_data->kvm); 3662 return -ENOMEM; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3669 { 3670 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3671 inode->i_private; 3672 3673 simple_attr_release(inode, file); 3674 kvm_put_kvm(stat_data->kvm); 3675 3676 return 0; 3677 } 3678 3679 static int vm_stat_get_per_vm(void *data, u64 *val) 3680 { 3681 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3682 3683 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3684 3685 return 0; 3686 } 3687 3688 static int vm_stat_clear_per_vm(void *data, u64 val) 3689 { 3690 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3691 3692 if (val) 3693 return -EINVAL; 3694 3695 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3696 3697 return 0; 3698 } 3699 3700 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3701 { 3702 __simple_attr_check_format("%llu\n", 0ull); 3703 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3704 vm_stat_clear_per_vm, "%llu\n"); 3705 } 3706 3707 static const struct file_operations vm_stat_get_per_vm_fops = { 3708 .owner = THIS_MODULE, 3709 .open = vm_stat_get_per_vm_open, 3710 .release = kvm_debugfs_release, 3711 .read = simple_attr_read, 3712 .write = simple_attr_write, 3713 .llseek = no_llseek, 3714 }; 3715 3716 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3717 { 3718 int i; 3719 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3720 struct kvm_vcpu *vcpu; 3721 3722 *val = 0; 3723 3724 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3725 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3726 3727 return 0; 3728 } 3729 3730 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3731 { 3732 int i; 3733 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3734 struct kvm_vcpu *vcpu; 3735 3736 if (val) 3737 return -EINVAL; 3738 3739 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3740 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3741 3742 return 0; 3743 } 3744 3745 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3746 { 3747 __simple_attr_check_format("%llu\n", 0ull); 3748 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3749 vcpu_stat_clear_per_vm, "%llu\n"); 3750 } 3751 3752 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3753 .owner = THIS_MODULE, 3754 .open = vcpu_stat_get_per_vm_open, 3755 .release = kvm_debugfs_release, 3756 .read = simple_attr_read, 3757 .write = simple_attr_write, 3758 .llseek = no_llseek, 3759 }; 3760 3761 static const struct file_operations *stat_fops_per_vm[] = { 3762 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3763 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3764 }; 3765 3766 static int vm_stat_get(void *_offset, u64 *val) 3767 { 3768 unsigned offset = (long)_offset; 3769 struct kvm *kvm; 3770 struct kvm_stat_data stat_tmp = {.offset = offset}; 3771 u64 tmp_val; 3772 3773 *val = 0; 3774 spin_lock(&kvm_lock); 3775 list_for_each_entry(kvm, &vm_list, vm_list) { 3776 stat_tmp.kvm = kvm; 3777 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3778 *val += tmp_val; 3779 } 3780 spin_unlock(&kvm_lock); 3781 return 0; 3782 } 3783 3784 static int vm_stat_clear(void *_offset, u64 val) 3785 { 3786 unsigned offset = (long)_offset; 3787 struct kvm *kvm; 3788 struct kvm_stat_data stat_tmp = {.offset = offset}; 3789 3790 if (val) 3791 return -EINVAL; 3792 3793 spin_lock(&kvm_lock); 3794 list_for_each_entry(kvm, &vm_list, vm_list) { 3795 stat_tmp.kvm = kvm; 3796 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3797 } 3798 spin_unlock(&kvm_lock); 3799 3800 return 0; 3801 } 3802 3803 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3804 3805 static int vcpu_stat_get(void *_offset, u64 *val) 3806 { 3807 unsigned offset = (long)_offset; 3808 struct kvm *kvm; 3809 struct kvm_stat_data stat_tmp = {.offset = offset}; 3810 u64 tmp_val; 3811 3812 *val = 0; 3813 spin_lock(&kvm_lock); 3814 list_for_each_entry(kvm, &vm_list, vm_list) { 3815 stat_tmp.kvm = kvm; 3816 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3817 *val += tmp_val; 3818 } 3819 spin_unlock(&kvm_lock); 3820 return 0; 3821 } 3822 3823 static int vcpu_stat_clear(void *_offset, u64 val) 3824 { 3825 unsigned offset = (long)_offset; 3826 struct kvm *kvm; 3827 struct kvm_stat_data stat_tmp = {.offset = offset}; 3828 3829 if (val) 3830 return -EINVAL; 3831 3832 spin_lock(&kvm_lock); 3833 list_for_each_entry(kvm, &vm_list, vm_list) { 3834 stat_tmp.kvm = kvm; 3835 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3836 } 3837 spin_unlock(&kvm_lock); 3838 3839 return 0; 3840 } 3841 3842 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3843 "%llu\n"); 3844 3845 static const struct file_operations *stat_fops[] = { 3846 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3847 [KVM_STAT_VM] = &vm_stat_fops, 3848 }; 3849 3850 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3851 { 3852 struct kobj_uevent_env *env; 3853 unsigned long long created, active; 3854 3855 if (!kvm_dev.this_device || !kvm) 3856 return; 3857 3858 spin_lock(&kvm_lock); 3859 if (type == KVM_EVENT_CREATE_VM) { 3860 kvm_createvm_count++; 3861 kvm_active_vms++; 3862 } else if (type == KVM_EVENT_DESTROY_VM) { 3863 kvm_active_vms--; 3864 } 3865 created = kvm_createvm_count; 3866 active = kvm_active_vms; 3867 spin_unlock(&kvm_lock); 3868 3869 env = kzalloc(sizeof(*env), GFP_KERNEL); 3870 if (!env) 3871 return; 3872 3873 add_uevent_var(env, "CREATED=%llu", created); 3874 add_uevent_var(env, "COUNT=%llu", active); 3875 3876 if (type == KVM_EVENT_CREATE_VM) { 3877 add_uevent_var(env, "EVENT=create"); 3878 kvm->userspace_pid = task_pid_nr(current); 3879 } else if (type == KVM_EVENT_DESTROY_VM) { 3880 add_uevent_var(env, "EVENT=destroy"); 3881 } 3882 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3883 3884 if (kvm->debugfs_dentry) { 3885 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3886 3887 if (p) { 3888 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3889 if (!IS_ERR(tmp)) 3890 add_uevent_var(env, "STATS_PATH=%s", tmp); 3891 kfree(p); 3892 } 3893 } 3894 /* no need for checks, since we are adding at most only 5 keys */ 3895 env->envp[env->envp_idx++] = NULL; 3896 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3897 kfree(env); 3898 } 3899 3900 static int kvm_init_debug(void) 3901 { 3902 int r = -EEXIST; 3903 struct kvm_stats_debugfs_item *p; 3904 3905 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3906 if (kvm_debugfs_dir == NULL) 3907 goto out; 3908 3909 kvm_debugfs_num_entries = 0; 3910 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3911 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3912 (void *)(long)p->offset, 3913 stat_fops[p->kind])) 3914 goto out_dir; 3915 } 3916 3917 return 0; 3918 3919 out_dir: 3920 debugfs_remove_recursive(kvm_debugfs_dir); 3921 out: 3922 return r; 3923 } 3924 3925 static int kvm_suspend(void) 3926 { 3927 if (kvm_usage_count) 3928 hardware_disable_nolock(NULL); 3929 return 0; 3930 } 3931 3932 static void kvm_resume(void) 3933 { 3934 if (kvm_usage_count) { 3935 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3936 hardware_enable_nolock(NULL); 3937 } 3938 } 3939 3940 static struct syscore_ops kvm_syscore_ops = { 3941 .suspend = kvm_suspend, 3942 .resume = kvm_resume, 3943 }; 3944 3945 static inline 3946 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3947 { 3948 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3949 } 3950 3951 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3952 { 3953 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3954 3955 if (vcpu->preempted) 3956 vcpu->preempted = false; 3957 3958 kvm_arch_sched_in(vcpu, cpu); 3959 3960 kvm_arch_vcpu_load(vcpu, cpu); 3961 } 3962 3963 static void kvm_sched_out(struct preempt_notifier *pn, 3964 struct task_struct *next) 3965 { 3966 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3967 3968 if (current->state == TASK_RUNNING) 3969 vcpu->preempted = true; 3970 kvm_arch_vcpu_put(vcpu); 3971 } 3972 3973 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3974 struct module *module) 3975 { 3976 int r; 3977 int cpu; 3978 3979 r = kvm_arch_init(opaque); 3980 if (r) 3981 goto out_fail; 3982 3983 /* 3984 * kvm_arch_init makes sure there's at most one caller 3985 * for architectures that support multiple implementations, 3986 * like intel and amd on x86. 3987 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3988 * conflicts in case kvm is already setup for another implementation. 3989 */ 3990 r = kvm_irqfd_init(); 3991 if (r) 3992 goto out_irqfd; 3993 3994 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3995 r = -ENOMEM; 3996 goto out_free_0; 3997 } 3998 3999 r = kvm_arch_hardware_setup(); 4000 if (r < 0) 4001 goto out_free_0a; 4002 4003 for_each_online_cpu(cpu) { 4004 smp_call_function_single(cpu, 4005 kvm_arch_check_processor_compat, 4006 &r, 1); 4007 if (r < 0) 4008 goto out_free_1; 4009 } 4010 4011 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4012 kvm_starting_cpu, kvm_dying_cpu); 4013 if (r) 4014 goto out_free_2; 4015 register_reboot_notifier(&kvm_reboot_notifier); 4016 4017 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4018 if (!vcpu_align) 4019 vcpu_align = __alignof__(struct kvm_vcpu); 4020 kvm_vcpu_cache = 4021 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4022 SLAB_ACCOUNT, 4023 offsetof(struct kvm_vcpu, arch), 4024 sizeof_field(struct kvm_vcpu, arch), 4025 NULL); 4026 if (!kvm_vcpu_cache) { 4027 r = -ENOMEM; 4028 goto out_free_3; 4029 } 4030 4031 r = kvm_async_pf_init(); 4032 if (r) 4033 goto out_free; 4034 4035 kvm_chardev_ops.owner = module; 4036 kvm_vm_fops.owner = module; 4037 kvm_vcpu_fops.owner = module; 4038 4039 r = misc_register(&kvm_dev); 4040 if (r) { 4041 pr_err("kvm: misc device register failed\n"); 4042 goto out_unreg; 4043 } 4044 4045 register_syscore_ops(&kvm_syscore_ops); 4046 4047 kvm_preempt_ops.sched_in = kvm_sched_in; 4048 kvm_preempt_ops.sched_out = kvm_sched_out; 4049 4050 r = kvm_init_debug(); 4051 if (r) { 4052 pr_err("kvm: create debugfs files failed\n"); 4053 goto out_undebugfs; 4054 } 4055 4056 r = kvm_vfio_ops_init(); 4057 WARN_ON(r); 4058 4059 return 0; 4060 4061 out_undebugfs: 4062 unregister_syscore_ops(&kvm_syscore_ops); 4063 misc_deregister(&kvm_dev); 4064 out_unreg: 4065 kvm_async_pf_deinit(); 4066 out_free: 4067 kmem_cache_destroy(kvm_vcpu_cache); 4068 out_free_3: 4069 unregister_reboot_notifier(&kvm_reboot_notifier); 4070 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4071 out_free_2: 4072 out_free_1: 4073 kvm_arch_hardware_unsetup(); 4074 out_free_0a: 4075 free_cpumask_var(cpus_hardware_enabled); 4076 out_free_0: 4077 kvm_irqfd_exit(); 4078 out_irqfd: 4079 kvm_arch_exit(); 4080 out_fail: 4081 return r; 4082 } 4083 EXPORT_SYMBOL_GPL(kvm_init); 4084 4085 void kvm_exit(void) 4086 { 4087 debugfs_remove_recursive(kvm_debugfs_dir); 4088 misc_deregister(&kvm_dev); 4089 kmem_cache_destroy(kvm_vcpu_cache); 4090 kvm_async_pf_deinit(); 4091 unregister_syscore_ops(&kvm_syscore_ops); 4092 unregister_reboot_notifier(&kvm_reboot_notifier); 4093 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4094 on_each_cpu(hardware_disable_nolock, NULL, 1); 4095 kvm_arch_hardware_unsetup(); 4096 kvm_arch_exit(); 4097 kvm_irqfd_exit(); 4098 free_cpumask_var(cpus_hardware_enabled); 4099 kvm_vfio_ops_exit(); 4100 } 4101 EXPORT_SYMBOL_GPL(kvm_exit); 4102