xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 7effbd18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 LIST_HEAD(vm_list);
104 
105 static struct kmem_cache *kvm_vcpu_cache;
106 
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
109 
110 struct dentry *kvm_debugfs_dir;
111 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
112 
113 static const struct file_operations stat_fops_per_vm;
114 
115 static struct file_operations kvm_chardev_ops;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 #define KVM_EVENT_CREATE_VM 0
147 #define KVM_EVENT_DESTROY_VM 1
148 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
149 static unsigned long long kvm_createvm_count;
150 static unsigned long long kvm_active_vms;
151 
152 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
153 
154 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
155 						   unsigned long start, unsigned long end)
156 {
157 }
158 
159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160 {
161 }
162 
163 bool kvm_is_zone_device_page(struct page *page)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (WARN_ON_ONCE(!page_count(page)))
172 		return false;
173 
174 	return is_zone_device_page(page);
175 }
176 
177 /*
178  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
179  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
180  * is likely incomplete, it has been compiled purely through people wanting to
181  * back guest with a certain type of memory and encountering issues.
182  */
183 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
184 {
185 	struct page *page;
186 
187 	if (!pfn_valid(pfn))
188 		return NULL;
189 
190 	page = pfn_to_page(pfn);
191 	if (!PageReserved(page))
192 		return page;
193 
194 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
195 	if (is_zero_pfn(pfn))
196 		return page;
197 
198 	/*
199 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
200 	 * perspective they are "normal" pages, albeit with slightly different
201 	 * usage rules.
202 	 */
203 	if (kvm_is_zone_device_page(page))
204 		return page;
205 
206 	return NULL;
207 }
208 
209 /*
210  * Switches to specified vcpu, until a matching vcpu_put()
211  */
212 void vcpu_load(struct kvm_vcpu *vcpu)
213 {
214 	int cpu = get_cpu();
215 
216 	__this_cpu_write(kvm_running_vcpu, vcpu);
217 	preempt_notifier_register(&vcpu->preempt_notifier);
218 	kvm_arch_vcpu_load(vcpu, cpu);
219 	put_cpu();
220 }
221 EXPORT_SYMBOL_GPL(vcpu_load);
222 
223 void vcpu_put(struct kvm_vcpu *vcpu)
224 {
225 	preempt_disable();
226 	kvm_arch_vcpu_put(vcpu);
227 	preempt_notifier_unregister(&vcpu->preempt_notifier);
228 	__this_cpu_write(kvm_running_vcpu, NULL);
229 	preempt_enable();
230 }
231 EXPORT_SYMBOL_GPL(vcpu_put);
232 
233 /* TODO: merge with kvm_arch_vcpu_should_kick */
234 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
235 {
236 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
237 
238 	/*
239 	 * We need to wait for the VCPU to reenable interrupts and get out of
240 	 * READING_SHADOW_PAGE_TABLES mode.
241 	 */
242 	if (req & KVM_REQUEST_WAIT)
243 		return mode != OUTSIDE_GUEST_MODE;
244 
245 	/*
246 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
247 	 */
248 	return mode == IN_GUEST_MODE;
249 }
250 
251 static void ack_kick(void *_completed)
252 {
253 }
254 
255 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
256 {
257 	if (cpumask_empty(cpus))
258 		return false;
259 
260 	smp_call_function_many(cpus, ack_kick, NULL, wait);
261 	return true;
262 }
263 
264 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
265 				  struct cpumask *tmp, int current_cpu)
266 {
267 	int cpu;
268 
269 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
270 		__kvm_make_request(req, vcpu);
271 
272 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
273 		return;
274 
275 	/*
276 	 * Note, the vCPU could get migrated to a different pCPU at any point
277 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
278 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
279 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
280 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
281 	 * after this point is also OK, as the requirement is only that KVM wait
282 	 * for vCPUs that were reading SPTEs _before_ any changes were
283 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
284 	 */
285 	if (kvm_request_needs_ipi(vcpu, req)) {
286 		cpu = READ_ONCE(vcpu->cpu);
287 		if (cpu != -1 && cpu != current_cpu)
288 			__cpumask_set_cpu(cpu, tmp);
289 	}
290 }
291 
292 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
293 				 unsigned long *vcpu_bitmap)
294 {
295 	struct kvm_vcpu *vcpu;
296 	struct cpumask *cpus;
297 	int i, me;
298 	bool called;
299 
300 	me = get_cpu();
301 
302 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
303 	cpumask_clear(cpus);
304 
305 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
306 		vcpu = kvm_get_vcpu(kvm, i);
307 		if (!vcpu)
308 			continue;
309 		kvm_make_vcpu_request(vcpu, req, cpus, me);
310 	}
311 
312 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
313 	put_cpu();
314 
315 	return called;
316 }
317 
318 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
319 				      struct kvm_vcpu *except)
320 {
321 	struct kvm_vcpu *vcpu;
322 	struct cpumask *cpus;
323 	unsigned long i;
324 	bool called;
325 	int me;
326 
327 	me = get_cpu();
328 
329 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
330 	cpumask_clear(cpus);
331 
332 	kvm_for_each_vcpu(i, vcpu, kvm) {
333 		if (vcpu == except)
334 			continue;
335 		kvm_make_vcpu_request(vcpu, req, cpus, me);
336 	}
337 
338 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
339 	put_cpu();
340 
341 	return called;
342 }
343 
344 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
345 {
346 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
347 }
348 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
349 
350 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
351 void kvm_flush_remote_tlbs(struct kvm *kvm)
352 {
353 	++kvm->stat.generic.remote_tlb_flush_requests;
354 
355 	/*
356 	 * We want to publish modifications to the page tables before reading
357 	 * mode. Pairs with a memory barrier in arch-specific code.
358 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
359 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
360 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
361 	 *
362 	 * There is already an smp_mb__after_atomic() before
363 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
364 	 * barrier here.
365 	 */
366 	if (!kvm_arch_flush_remote_tlb(kvm)
367 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
368 		++kvm->stat.generic.remote_tlb_flush;
369 }
370 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
371 #endif
372 
373 static void kvm_flush_shadow_all(struct kvm *kvm)
374 {
375 	kvm_arch_flush_shadow_all(kvm);
376 	kvm_arch_guest_memory_reclaimed(kvm);
377 }
378 
379 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
380 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
381 					       gfp_t gfp_flags)
382 {
383 	gfp_flags |= mc->gfp_zero;
384 
385 	if (mc->kmem_cache)
386 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
387 	else
388 		return (void *)__get_free_page(gfp_flags);
389 }
390 
391 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
392 {
393 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
394 	void *obj;
395 
396 	if (mc->nobjs >= min)
397 		return 0;
398 
399 	if (unlikely(!mc->objects)) {
400 		if (WARN_ON_ONCE(!capacity))
401 			return -EIO;
402 
403 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
404 		if (!mc->objects)
405 			return -ENOMEM;
406 
407 		mc->capacity = capacity;
408 	}
409 
410 	/* It is illegal to request a different capacity across topups. */
411 	if (WARN_ON_ONCE(mc->capacity != capacity))
412 		return -EIO;
413 
414 	while (mc->nobjs < mc->capacity) {
415 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
416 		if (!obj)
417 			return mc->nobjs >= min ? 0 : -ENOMEM;
418 		mc->objects[mc->nobjs++] = obj;
419 	}
420 	return 0;
421 }
422 
423 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
424 {
425 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
426 }
427 
428 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
429 {
430 	return mc->nobjs;
431 }
432 
433 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
434 {
435 	while (mc->nobjs) {
436 		if (mc->kmem_cache)
437 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
438 		else
439 			free_page((unsigned long)mc->objects[--mc->nobjs]);
440 	}
441 
442 	kvfree(mc->objects);
443 
444 	mc->objects = NULL;
445 	mc->capacity = 0;
446 }
447 
448 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
449 {
450 	void *p;
451 
452 	if (WARN_ON(!mc->nobjs))
453 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
454 	else
455 		p = mc->objects[--mc->nobjs];
456 	BUG_ON(!p);
457 	return p;
458 }
459 #endif
460 
461 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
462 {
463 	mutex_init(&vcpu->mutex);
464 	vcpu->cpu = -1;
465 	vcpu->kvm = kvm;
466 	vcpu->vcpu_id = id;
467 	vcpu->pid = NULL;
468 #ifndef __KVM_HAVE_ARCH_WQP
469 	rcuwait_init(&vcpu->wait);
470 #endif
471 	kvm_async_pf_vcpu_init(vcpu);
472 
473 	kvm_vcpu_set_in_spin_loop(vcpu, false);
474 	kvm_vcpu_set_dy_eligible(vcpu, false);
475 	vcpu->preempted = false;
476 	vcpu->ready = false;
477 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
478 	vcpu->last_used_slot = NULL;
479 
480 	/* Fill the stats id string for the vcpu */
481 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
482 		 task_pid_nr(current), id);
483 }
484 
485 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
486 {
487 	kvm_arch_vcpu_destroy(vcpu);
488 	kvm_dirty_ring_free(&vcpu->dirty_ring);
489 
490 	/*
491 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
492 	 * the vcpu->pid pointer, and at destruction time all file descriptors
493 	 * are already gone.
494 	 */
495 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
496 
497 	free_page((unsigned long)vcpu->run);
498 	kmem_cache_free(kvm_vcpu_cache, vcpu);
499 }
500 
501 void kvm_destroy_vcpus(struct kvm *kvm)
502 {
503 	unsigned long i;
504 	struct kvm_vcpu *vcpu;
505 
506 	kvm_for_each_vcpu(i, vcpu, kvm) {
507 		kvm_vcpu_destroy(vcpu);
508 		xa_erase(&kvm->vcpu_array, i);
509 	}
510 
511 	atomic_set(&kvm->online_vcpus, 0);
512 }
513 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
514 
515 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
516 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
517 {
518 	return container_of(mn, struct kvm, mmu_notifier);
519 }
520 
521 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
522 					      struct mm_struct *mm,
523 					      unsigned long start, unsigned long end)
524 {
525 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
526 	int idx;
527 
528 	idx = srcu_read_lock(&kvm->srcu);
529 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
530 	srcu_read_unlock(&kvm->srcu, idx);
531 }
532 
533 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
534 
535 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
536 			     unsigned long end);
537 
538 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
539 
540 struct kvm_hva_range {
541 	unsigned long start;
542 	unsigned long end;
543 	pte_t pte;
544 	hva_handler_t handler;
545 	on_lock_fn_t on_lock;
546 	on_unlock_fn_t on_unlock;
547 	bool flush_on_ret;
548 	bool may_block;
549 };
550 
551 /*
552  * Use a dedicated stub instead of NULL to indicate that there is no callback
553  * function/handler.  The compiler technically can't guarantee that a real
554  * function will have a non-zero address, and so it will generate code to
555  * check for !NULL, whereas comparing against a stub will be elided at compile
556  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
557  */
558 static void kvm_null_fn(void)
559 {
560 
561 }
562 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
563 
564 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
565 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
566 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
567 	     node;							     \
568 	     node = interval_tree_iter_next(node, start, last))	     \
569 
570 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
571 						  const struct kvm_hva_range *range)
572 {
573 	bool ret = false, locked = false;
574 	struct kvm_gfn_range gfn_range;
575 	struct kvm_memory_slot *slot;
576 	struct kvm_memslots *slots;
577 	int i, idx;
578 
579 	if (WARN_ON_ONCE(range->end <= range->start))
580 		return 0;
581 
582 	/* A null handler is allowed if and only if on_lock() is provided. */
583 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
584 			 IS_KVM_NULL_FN(range->handler)))
585 		return 0;
586 
587 	idx = srcu_read_lock(&kvm->srcu);
588 
589 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
590 		struct interval_tree_node *node;
591 
592 		slots = __kvm_memslots(kvm, i);
593 		kvm_for_each_memslot_in_hva_range(node, slots,
594 						  range->start, range->end - 1) {
595 			unsigned long hva_start, hva_end;
596 
597 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
598 			hva_start = max(range->start, slot->userspace_addr);
599 			hva_end = min(range->end, slot->userspace_addr +
600 						  (slot->npages << PAGE_SHIFT));
601 
602 			/*
603 			 * To optimize for the likely case where the address
604 			 * range is covered by zero or one memslots, don't
605 			 * bother making these conditional (to avoid writes on
606 			 * the second or later invocation of the handler).
607 			 */
608 			gfn_range.pte = range->pte;
609 			gfn_range.may_block = range->may_block;
610 
611 			/*
612 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
613 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
614 			 */
615 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
616 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
617 			gfn_range.slot = slot;
618 
619 			if (!locked) {
620 				locked = true;
621 				KVM_MMU_LOCK(kvm);
622 				if (!IS_KVM_NULL_FN(range->on_lock))
623 					range->on_lock(kvm, range->start, range->end);
624 				if (IS_KVM_NULL_FN(range->handler))
625 					break;
626 			}
627 			ret |= range->handler(kvm, &gfn_range);
628 		}
629 	}
630 
631 	if (range->flush_on_ret && ret)
632 		kvm_flush_remote_tlbs(kvm);
633 
634 	if (locked) {
635 		KVM_MMU_UNLOCK(kvm);
636 		if (!IS_KVM_NULL_FN(range->on_unlock))
637 			range->on_unlock(kvm);
638 	}
639 
640 	srcu_read_unlock(&kvm->srcu, idx);
641 
642 	/* The notifiers are averse to booleans. :-( */
643 	return (int)ret;
644 }
645 
646 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
647 						unsigned long start,
648 						unsigned long end,
649 						pte_t pte,
650 						hva_handler_t handler)
651 {
652 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
653 	const struct kvm_hva_range range = {
654 		.start		= start,
655 		.end		= end,
656 		.pte		= pte,
657 		.handler	= handler,
658 		.on_lock	= (void *)kvm_null_fn,
659 		.on_unlock	= (void *)kvm_null_fn,
660 		.flush_on_ret	= true,
661 		.may_block	= false,
662 	};
663 
664 	return __kvm_handle_hva_range(kvm, &range);
665 }
666 
667 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
668 							 unsigned long start,
669 							 unsigned long end,
670 							 hva_handler_t handler)
671 {
672 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
673 	const struct kvm_hva_range range = {
674 		.start		= start,
675 		.end		= end,
676 		.pte		= __pte(0),
677 		.handler	= handler,
678 		.on_lock	= (void *)kvm_null_fn,
679 		.on_unlock	= (void *)kvm_null_fn,
680 		.flush_on_ret	= false,
681 		.may_block	= false,
682 	};
683 
684 	return __kvm_handle_hva_range(kvm, &range);
685 }
686 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
687 					struct mm_struct *mm,
688 					unsigned long address,
689 					pte_t pte)
690 {
691 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
692 
693 	trace_kvm_set_spte_hva(address);
694 
695 	/*
696 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
697 	 * If mmu_invalidate_in_progress is zero, then no in-progress
698 	 * invalidations, including this one, found a relevant memslot at
699 	 * start(); rechecking memslots here is unnecessary.  Note, a false
700 	 * positive (count elevated by a different invalidation) is sub-optimal
701 	 * but functionally ok.
702 	 */
703 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
704 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
705 		return;
706 
707 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
708 }
709 
710 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
711 			      unsigned long end)
712 {
713 	/*
714 	 * The count increase must become visible at unlock time as no
715 	 * spte can be established without taking the mmu_lock and
716 	 * count is also read inside the mmu_lock critical section.
717 	 */
718 	kvm->mmu_invalidate_in_progress++;
719 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
720 		kvm->mmu_invalidate_range_start = start;
721 		kvm->mmu_invalidate_range_end = end;
722 	} else {
723 		/*
724 		 * Fully tracking multiple concurrent ranges has diminishing
725 		 * returns. Keep things simple and just find the minimal range
726 		 * which includes the current and new ranges. As there won't be
727 		 * enough information to subtract a range after its invalidate
728 		 * completes, any ranges invalidated concurrently will
729 		 * accumulate and persist until all outstanding invalidates
730 		 * complete.
731 		 */
732 		kvm->mmu_invalidate_range_start =
733 			min(kvm->mmu_invalidate_range_start, start);
734 		kvm->mmu_invalidate_range_end =
735 			max(kvm->mmu_invalidate_range_end, end);
736 	}
737 }
738 
739 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
740 					const struct mmu_notifier_range *range)
741 {
742 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
743 	const struct kvm_hva_range hva_range = {
744 		.start		= range->start,
745 		.end		= range->end,
746 		.pte		= __pte(0),
747 		.handler	= kvm_unmap_gfn_range,
748 		.on_lock	= kvm_mmu_invalidate_begin,
749 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
750 		.flush_on_ret	= true,
751 		.may_block	= mmu_notifier_range_blockable(range),
752 	};
753 
754 	trace_kvm_unmap_hva_range(range->start, range->end);
755 
756 	/*
757 	 * Prevent memslot modification between range_start() and range_end()
758 	 * so that conditionally locking provides the same result in both
759 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
760 	 * adjustments will be imbalanced.
761 	 *
762 	 * Pairs with the decrement in range_end().
763 	 */
764 	spin_lock(&kvm->mn_invalidate_lock);
765 	kvm->mn_active_invalidate_count++;
766 	spin_unlock(&kvm->mn_invalidate_lock);
767 
768 	/*
769 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
770 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
771 	 * each cache's lock.  There are relatively few caches in existence at
772 	 * any given time, and the caches themselves can check for hva overlap,
773 	 * i.e. don't need to rely on memslot overlap checks for performance.
774 	 * Because this runs without holding mmu_lock, the pfn caches must use
775 	 * mn_active_invalidate_count (see above) instead of
776 	 * mmu_invalidate_in_progress.
777 	 */
778 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
779 					  hva_range.may_block);
780 
781 	__kvm_handle_hva_range(kvm, &hva_range);
782 
783 	return 0;
784 }
785 
786 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
787 			    unsigned long end)
788 {
789 	/*
790 	 * This sequence increase will notify the kvm page fault that
791 	 * the page that is going to be mapped in the spte could have
792 	 * been freed.
793 	 */
794 	kvm->mmu_invalidate_seq++;
795 	smp_wmb();
796 	/*
797 	 * The above sequence increase must be visible before the
798 	 * below count decrease, which is ensured by the smp_wmb above
799 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
800 	 */
801 	kvm->mmu_invalidate_in_progress--;
802 }
803 
804 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
805 					const struct mmu_notifier_range *range)
806 {
807 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
808 	const struct kvm_hva_range hva_range = {
809 		.start		= range->start,
810 		.end		= range->end,
811 		.pte		= __pte(0),
812 		.handler	= (void *)kvm_null_fn,
813 		.on_lock	= kvm_mmu_invalidate_end,
814 		.on_unlock	= (void *)kvm_null_fn,
815 		.flush_on_ret	= false,
816 		.may_block	= mmu_notifier_range_blockable(range),
817 	};
818 	bool wake;
819 
820 	__kvm_handle_hva_range(kvm, &hva_range);
821 
822 	/* Pairs with the increment in range_start(). */
823 	spin_lock(&kvm->mn_invalidate_lock);
824 	wake = (--kvm->mn_active_invalidate_count == 0);
825 	spin_unlock(&kvm->mn_invalidate_lock);
826 
827 	/*
828 	 * There can only be one waiter, since the wait happens under
829 	 * slots_lock.
830 	 */
831 	if (wake)
832 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
833 
834 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
835 }
836 
837 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
838 					      struct mm_struct *mm,
839 					      unsigned long start,
840 					      unsigned long end)
841 {
842 	trace_kvm_age_hva(start, end);
843 
844 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
845 }
846 
847 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
848 					struct mm_struct *mm,
849 					unsigned long start,
850 					unsigned long end)
851 {
852 	trace_kvm_age_hva(start, end);
853 
854 	/*
855 	 * Even though we do not flush TLB, this will still adversely
856 	 * affect performance on pre-Haswell Intel EPT, where there is
857 	 * no EPT Access Bit to clear so that we have to tear down EPT
858 	 * tables instead. If we find this unacceptable, we can always
859 	 * add a parameter to kvm_age_hva so that it effectively doesn't
860 	 * do anything on clear_young.
861 	 *
862 	 * Also note that currently we never issue secondary TLB flushes
863 	 * from clear_young, leaving this job up to the regular system
864 	 * cadence. If we find this inaccurate, we might come up with a
865 	 * more sophisticated heuristic later.
866 	 */
867 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
868 }
869 
870 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
871 				       struct mm_struct *mm,
872 				       unsigned long address)
873 {
874 	trace_kvm_test_age_hva(address);
875 
876 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
877 					     kvm_test_age_gfn);
878 }
879 
880 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
881 				     struct mm_struct *mm)
882 {
883 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
884 	int idx;
885 
886 	idx = srcu_read_lock(&kvm->srcu);
887 	kvm_flush_shadow_all(kvm);
888 	srcu_read_unlock(&kvm->srcu, idx);
889 }
890 
891 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
892 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
893 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
894 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
895 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
896 	.clear_young		= kvm_mmu_notifier_clear_young,
897 	.test_young		= kvm_mmu_notifier_test_young,
898 	.change_pte		= kvm_mmu_notifier_change_pte,
899 	.release		= kvm_mmu_notifier_release,
900 };
901 
902 static int kvm_init_mmu_notifier(struct kvm *kvm)
903 {
904 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
905 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
906 }
907 
908 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
909 
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912 	return 0;
913 }
914 
915 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
916 
917 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
918 static int kvm_pm_notifier_call(struct notifier_block *bl,
919 				unsigned long state,
920 				void *unused)
921 {
922 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
923 
924 	return kvm_arch_pm_notifier(kvm, state);
925 }
926 
927 static void kvm_init_pm_notifier(struct kvm *kvm)
928 {
929 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
930 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
931 	kvm->pm_notifier.priority = INT_MAX;
932 	register_pm_notifier(&kvm->pm_notifier);
933 }
934 
935 static void kvm_destroy_pm_notifier(struct kvm *kvm)
936 {
937 	unregister_pm_notifier(&kvm->pm_notifier);
938 }
939 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
940 static void kvm_init_pm_notifier(struct kvm *kvm)
941 {
942 }
943 
944 static void kvm_destroy_pm_notifier(struct kvm *kvm)
945 {
946 }
947 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
948 
949 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
950 {
951 	if (!memslot->dirty_bitmap)
952 		return;
953 
954 	kvfree(memslot->dirty_bitmap);
955 	memslot->dirty_bitmap = NULL;
956 }
957 
958 /* This does not remove the slot from struct kvm_memslots data structures */
959 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
960 {
961 	kvm_destroy_dirty_bitmap(slot);
962 
963 	kvm_arch_free_memslot(kvm, slot);
964 
965 	kfree(slot);
966 }
967 
968 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
969 {
970 	struct hlist_node *idnode;
971 	struct kvm_memory_slot *memslot;
972 	int bkt;
973 
974 	/*
975 	 * The same memslot objects live in both active and inactive sets,
976 	 * arbitrarily free using index '1' so the second invocation of this
977 	 * function isn't operating over a structure with dangling pointers
978 	 * (even though this function isn't actually touching them).
979 	 */
980 	if (!slots->node_idx)
981 		return;
982 
983 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
984 		kvm_free_memslot(kvm, memslot);
985 }
986 
987 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
988 {
989 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
990 	case KVM_STATS_TYPE_INSTANT:
991 		return 0444;
992 	case KVM_STATS_TYPE_CUMULATIVE:
993 	case KVM_STATS_TYPE_PEAK:
994 	default:
995 		return 0644;
996 	}
997 }
998 
999 
1000 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1001 {
1002 	int i;
1003 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1004 				      kvm_vcpu_stats_header.num_desc;
1005 
1006 	if (IS_ERR(kvm->debugfs_dentry))
1007 		return;
1008 
1009 	debugfs_remove_recursive(kvm->debugfs_dentry);
1010 
1011 	if (kvm->debugfs_stat_data) {
1012 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1013 			kfree(kvm->debugfs_stat_data[i]);
1014 		kfree(kvm->debugfs_stat_data);
1015 	}
1016 }
1017 
1018 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1019 {
1020 	static DEFINE_MUTEX(kvm_debugfs_lock);
1021 	struct dentry *dent;
1022 	char dir_name[ITOA_MAX_LEN * 2];
1023 	struct kvm_stat_data *stat_data;
1024 	const struct _kvm_stats_desc *pdesc;
1025 	int i, ret = -ENOMEM;
1026 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1027 				      kvm_vcpu_stats_header.num_desc;
1028 
1029 	if (!debugfs_initialized())
1030 		return 0;
1031 
1032 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1033 	mutex_lock(&kvm_debugfs_lock);
1034 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1035 	if (dent) {
1036 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1037 		dput(dent);
1038 		mutex_unlock(&kvm_debugfs_lock);
1039 		return 0;
1040 	}
1041 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1042 	mutex_unlock(&kvm_debugfs_lock);
1043 	if (IS_ERR(dent))
1044 		return 0;
1045 
1046 	kvm->debugfs_dentry = dent;
1047 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1048 					 sizeof(*kvm->debugfs_stat_data),
1049 					 GFP_KERNEL_ACCOUNT);
1050 	if (!kvm->debugfs_stat_data)
1051 		goto out_err;
1052 
1053 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1054 		pdesc = &kvm_vm_stats_desc[i];
1055 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1056 		if (!stat_data)
1057 			goto out_err;
1058 
1059 		stat_data->kvm = kvm;
1060 		stat_data->desc = pdesc;
1061 		stat_data->kind = KVM_STAT_VM;
1062 		kvm->debugfs_stat_data[i] = stat_data;
1063 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1064 				    kvm->debugfs_dentry, stat_data,
1065 				    &stat_fops_per_vm);
1066 	}
1067 
1068 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1069 		pdesc = &kvm_vcpu_stats_desc[i];
1070 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1071 		if (!stat_data)
1072 			goto out_err;
1073 
1074 		stat_data->kvm = kvm;
1075 		stat_data->desc = pdesc;
1076 		stat_data->kind = KVM_STAT_VCPU;
1077 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1078 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1079 				    kvm->debugfs_dentry, stat_data,
1080 				    &stat_fops_per_vm);
1081 	}
1082 
1083 	ret = kvm_arch_create_vm_debugfs(kvm);
1084 	if (ret)
1085 		goto out_err;
1086 
1087 	return 0;
1088 out_err:
1089 	kvm_destroy_vm_debugfs(kvm);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Called after the VM is otherwise initialized, but just before adding it to
1095  * the vm_list.
1096  */
1097 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1098 {
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Called just after removing the VM from the vm_list, but before doing any
1104  * other destruction.
1105  */
1106 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1107 {
1108 }
1109 
1110 /*
1111  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1112  * be setup already, so we can create arch-specific debugfs entries under it.
1113  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1114  * a per-arch destroy interface is not needed.
1115  */
1116 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1117 {
1118 	return 0;
1119 }
1120 
1121 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1122 {
1123 	struct kvm *kvm = kvm_arch_alloc_vm();
1124 	struct kvm_memslots *slots;
1125 	int r = -ENOMEM;
1126 	int i, j;
1127 
1128 	if (!kvm)
1129 		return ERR_PTR(-ENOMEM);
1130 
1131 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1132 	__module_get(kvm_chardev_ops.owner);
1133 
1134 	KVM_MMU_LOCK_INIT(kvm);
1135 	mmgrab(current->mm);
1136 	kvm->mm = current->mm;
1137 	kvm_eventfd_init(kvm);
1138 	mutex_init(&kvm->lock);
1139 	mutex_init(&kvm->irq_lock);
1140 	mutex_init(&kvm->slots_lock);
1141 	mutex_init(&kvm->slots_arch_lock);
1142 	spin_lock_init(&kvm->mn_invalidate_lock);
1143 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1144 	xa_init(&kvm->vcpu_array);
1145 
1146 	INIT_LIST_HEAD(&kvm->gpc_list);
1147 	spin_lock_init(&kvm->gpc_lock);
1148 
1149 	INIT_LIST_HEAD(&kvm->devices);
1150 	kvm->max_vcpus = KVM_MAX_VCPUS;
1151 
1152 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1153 
1154 	/*
1155 	 * Force subsequent debugfs file creations to fail if the VM directory
1156 	 * is not created (by kvm_create_vm_debugfs()).
1157 	 */
1158 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1159 
1160 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1161 		 task_pid_nr(current));
1162 
1163 	if (init_srcu_struct(&kvm->srcu))
1164 		goto out_err_no_srcu;
1165 	if (init_srcu_struct(&kvm->irq_srcu))
1166 		goto out_err_no_irq_srcu;
1167 
1168 	refcount_set(&kvm->users_count, 1);
1169 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1170 		for (j = 0; j < 2; j++) {
1171 			slots = &kvm->__memslots[i][j];
1172 
1173 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1174 			slots->hva_tree = RB_ROOT_CACHED;
1175 			slots->gfn_tree = RB_ROOT;
1176 			hash_init(slots->id_hash);
1177 			slots->node_idx = j;
1178 
1179 			/* Generations must be different for each address space. */
1180 			slots->generation = i;
1181 		}
1182 
1183 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1184 	}
1185 
1186 	for (i = 0; i < KVM_NR_BUSES; i++) {
1187 		rcu_assign_pointer(kvm->buses[i],
1188 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1189 		if (!kvm->buses[i])
1190 			goto out_err_no_arch_destroy_vm;
1191 	}
1192 
1193 	r = kvm_arch_init_vm(kvm, type);
1194 	if (r)
1195 		goto out_err_no_arch_destroy_vm;
1196 
1197 	r = hardware_enable_all();
1198 	if (r)
1199 		goto out_err_no_disable;
1200 
1201 #ifdef CONFIG_HAVE_KVM_IRQFD
1202 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1203 #endif
1204 
1205 	r = kvm_init_mmu_notifier(kvm);
1206 	if (r)
1207 		goto out_err_no_mmu_notifier;
1208 
1209 	r = kvm_coalesced_mmio_init(kvm);
1210 	if (r < 0)
1211 		goto out_no_coalesced_mmio;
1212 
1213 	r = kvm_create_vm_debugfs(kvm, fdname);
1214 	if (r)
1215 		goto out_err_no_debugfs;
1216 
1217 	r = kvm_arch_post_init_vm(kvm);
1218 	if (r)
1219 		goto out_err;
1220 
1221 	mutex_lock(&kvm_lock);
1222 	list_add(&kvm->vm_list, &vm_list);
1223 	mutex_unlock(&kvm_lock);
1224 
1225 	preempt_notifier_inc();
1226 	kvm_init_pm_notifier(kvm);
1227 
1228 	return kvm;
1229 
1230 out_err:
1231 	kvm_destroy_vm_debugfs(kvm);
1232 out_err_no_debugfs:
1233 	kvm_coalesced_mmio_free(kvm);
1234 out_no_coalesced_mmio:
1235 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1236 	if (kvm->mmu_notifier.ops)
1237 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1238 #endif
1239 out_err_no_mmu_notifier:
1240 	hardware_disable_all();
1241 out_err_no_disable:
1242 	kvm_arch_destroy_vm(kvm);
1243 out_err_no_arch_destroy_vm:
1244 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1245 	for (i = 0; i < KVM_NR_BUSES; i++)
1246 		kfree(kvm_get_bus(kvm, i));
1247 	cleanup_srcu_struct(&kvm->irq_srcu);
1248 out_err_no_irq_srcu:
1249 	cleanup_srcu_struct(&kvm->srcu);
1250 out_err_no_srcu:
1251 	kvm_arch_free_vm(kvm);
1252 	mmdrop(current->mm);
1253 	module_put(kvm_chardev_ops.owner);
1254 	return ERR_PTR(r);
1255 }
1256 
1257 static void kvm_destroy_devices(struct kvm *kvm)
1258 {
1259 	struct kvm_device *dev, *tmp;
1260 
1261 	/*
1262 	 * We do not need to take the kvm->lock here, because nobody else
1263 	 * has a reference to the struct kvm at this point and therefore
1264 	 * cannot access the devices list anyhow.
1265 	 */
1266 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1267 		list_del(&dev->vm_node);
1268 		dev->ops->destroy(dev);
1269 	}
1270 }
1271 
1272 static void kvm_destroy_vm(struct kvm *kvm)
1273 {
1274 	int i;
1275 	struct mm_struct *mm = kvm->mm;
1276 
1277 	kvm_destroy_pm_notifier(kvm);
1278 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1279 	kvm_destroy_vm_debugfs(kvm);
1280 	kvm_arch_sync_events(kvm);
1281 	mutex_lock(&kvm_lock);
1282 	list_del(&kvm->vm_list);
1283 	mutex_unlock(&kvm_lock);
1284 	kvm_arch_pre_destroy_vm(kvm);
1285 
1286 	kvm_free_irq_routing(kvm);
1287 	for (i = 0; i < KVM_NR_BUSES; i++) {
1288 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1289 
1290 		if (bus)
1291 			kvm_io_bus_destroy(bus);
1292 		kvm->buses[i] = NULL;
1293 	}
1294 	kvm_coalesced_mmio_free(kvm);
1295 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1296 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1297 	/*
1298 	 * At this point, pending calls to invalidate_range_start()
1299 	 * have completed but no more MMU notifiers will run, so
1300 	 * mn_active_invalidate_count may remain unbalanced.
1301 	 * No threads can be waiting in install_new_memslots as the
1302 	 * last reference on KVM has been dropped, but freeing
1303 	 * memslots would deadlock without this manual intervention.
1304 	 */
1305 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1306 	kvm->mn_active_invalidate_count = 0;
1307 #else
1308 	kvm_flush_shadow_all(kvm);
1309 #endif
1310 	kvm_arch_destroy_vm(kvm);
1311 	kvm_destroy_devices(kvm);
1312 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1313 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1314 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1315 	}
1316 	cleanup_srcu_struct(&kvm->irq_srcu);
1317 	cleanup_srcu_struct(&kvm->srcu);
1318 	kvm_arch_free_vm(kvm);
1319 	preempt_notifier_dec();
1320 	hardware_disable_all();
1321 	mmdrop(mm);
1322 	module_put(kvm_chardev_ops.owner);
1323 }
1324 
1325 void kvm_get_kvm(struct kvm *kvm)
1326 {
1327 	refcount_inc(&kvm->users_count);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330 
1331 /*
1332  * Make sure the vm is not during destruction, which is a safe version of
1333  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1334  */
1335 bool kvm_get_kvm_safe(struct kvm *kvm)
1336 {
1337 	return refcount_inc_not_zero(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340 
1341 void kvm_put_kvm(struct kvm *kvm)
1342 {
1343 	if (refcount_dec_and_test(&kvm->users_count))
1344 		kvm_destroy_vm(kvm);
1345 }
1346 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347 
1348 /*
1349  * Used to put a reference that was taken on behalf of an object associated
1350  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351  * of the new file descriptor fails and the reference cannot be transferred to
1352  * its final owner.  In such cases, the caller is still actively using @kvm and
1353  * will fail miserably if the refcount unexpectedly hits zero.
1354  */
1355 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356 {
1357 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360 
1361 static int kvm_vm_release(struct inode *inode, struct file *filp)
1362 {
1363 	struct kvm *kvm = filp->private_data;
1364 
1365 	kvm_irqfd_release(kvm);
1366 
1367 	kvm_put_kvm(kvm);
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Allocation size is twice as large as the actual dirty bitmap size.
1373  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1374  */
1375 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1376 {
1377 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1378 
1379 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1380 	if (!memslot->dirty_bitmap)
1381 		return -ENOMEM;
1382 
1383 	return 0;
1384 }
1385 
1386 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1387 {
1388 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1389 	int node_idx_inactive = active->node_idx ^ 1;
1390 
1391 	return &kvm->__memslots[as_id][node_idx_inactive];
1392 }
1393 
1394 /*
1395  * Helper to get the address space ID when one of memslot pointers may be NULL.
1396  * This also serves as a sanity that at least one of the pointers is non-NULL,
1397  * and that their address space IDs don't diverge.
1398  */
1399 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1400 				  struct kvm_memory_slot *b)
1401 {
1402 	if (WARN_ON_ONCE(!a && !b))
1403 		return 0;
1404 
1405 	if (!a)
1406 		return b->as_id;
1407 	if (!b)
1408 		return a->as_id;
1409 
1410 	WARN_ON_ONCE(a->as_id != b->as_id);
1411 	return a->as_id;
1412 }
1413 
1414 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1415 				struct kvm_memory_slot *slot)
1416 {
1417 	struct rb_root *gfn_tree = &slots->gfn_tree;
1418 	struct rb_node **node, *parent;
1419 	int idx = slots->node_idx;
1420 
1421 	parent = NULL;
1422 	for (node = &gfn_tree->rb_node; *node; ) {
1423 		struct kvm_memory_slot *tmp;
1424 
1425 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1426 		parent = *node;
1427 		if (slot->base_gfn < tmp->base_gfn)
1428 			node = &(*node)->rb_left;
1429 		else if (slot->base_gfn > tmp->base_gfn)
1430 			node = &(*node)->rb_right;
1431 		else
1432 			BUG();
1433 	}
1434 
1435 	rb_link_node(&slot->gfn_node[idx], parent, node);
1436 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1437 }
1438 
1439 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1440 			       struct kvm_memory_slot *slot)
1441 {
1442 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1443 }
1444 
1445 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1446 				 struct kvm_memory_slot *old,
1447 				 struct kvm_memory_slot *new)
1448 {
1449 	int idx = slots->node_idx;
1450 
1451 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1452 
1453 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1454 			&slots->gfn_tree);
1455 }
1456 
1457 /*
1458  * Replace @old with @new in the inactive memslots.
1459  *
1460  * With NULL @old this simply adds @new.
1461  * With NULL @new this simply removes @old.
1462  *
1463  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1464  * appropriately.
1465  */
1466 static void kvm_replace_memslot(struct kvm *kvm,
1467 				struct kvm_memory_slot *old,
1468 				struct kvm_memory_slot *new)
1469 {
1470 	int as_id = kvm_memslots_get_as_id(old, new);
1471 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1472 	int idx = slots->node_idx;
1473 
1474 	if (old) {
1475 		hash_del(&old->id_node[idx]);
1476 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1477 
1478 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1479 			atomic_long_set(&slots->last_used_slot, (long)new);
1480 
1481 		if (!new) {
1482 			kvm_erase_gfn_node(slots, old);
1483 			return;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * Initialize @new's hva range.  Do this even when replacing an @old
1489 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1490 	 */
1491 	new->hva_node[idx].start = new->userspace_addr;
1492 	new->hva_node[idx].last = new->userspace_addr +
1493 				  (new->npages << PAGE_SHIFT) - 1;
1494 
1495 	/*
1496 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1497 	 * hva_node needs to be swapped with remove+insert even though hva can't
1498 	 * change when replacing an existing slot.
1499 	 */
1500 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1501 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1502 
1503 	/*
1504 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1505 	 * switch the node in the gfn tree instead of removing the old and
1506 	 * inserting the new as two separate operations. Replacement is a
1507 	 * single O(1) operation versus two O(log(n)) operations for
1508 	 * remove+insert.
1509 	 */
1510 	if (old && old->base_gfn == new->base_gfn) {
1511 		kvm_replace_gfn_node(slots, old, new);
1512 	} else {
1513 		if (old)
1514 			kvm_erase_gfn_node(slots, old);
1515 		kvm_insert_gfn_node(slots, new);
1516 	}
1517 }
1518 
1519 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1520 {
1521 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1522 
1523 #ifdef __KVM_HAVE_READONLY_MEM
1524 	valid_flags |= KVM_MEM_READONLY;
1525 #endif
1526 
1527 	if (mem->flags & ~valid_flags)
1528 		return -EINVAL;
1529 
1530 	return 0;
1531 }
1532 
1533 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1534 {
1535 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1536 
1537 	/* Grab the generation from the activate memslots. */
1538 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1539 
1540 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1541 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1542 
1543 	/*
1544 	 * Do not store the new memslots while there are invalidations in
1545 	 * progress, otherwise the locking in invalidate_range_start and
1546 	 * invalidate_range_end will be unbalanced.
1547 	 */
1548 	spin_lock(&kvm->mn_invalidate_lock);
1549 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1550 	while (kvm->mn_active_invalidate_count) {
1551 		set_current_state(TASK_UNINTERRUPTIBLE);
1552 		spin_unlock(&kvm->mn_invalidate_lock);
1553 		schedule();
1554 		spin_lock(&kvm->mn_invalidate_lock);
1555 	}
1556 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1557 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1558 	spin_unlock(&kvm->mn_invalidate_lock);
1559 
1560 	/*
1561 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1562 	 * SRCU below in order to avoid deadlock with another thread
1563 	 * acquiring the slots_arch_lock in an srcu critical section.
1564 	 */
1565 	mutex_unlock(&kvm->slots_arch_lock);
1566 
1567 	synchronize_srcu_expedited(&kvm->srcu);
1568 
1569 	/*
1570 	 * Increment the new memslot generation a second time, dropping the
1571 	 * update in-progress flag and incrementing the generation based on
1572 	 * the number of address spaces.  This provides a unique and easily
1573 	 * identifiable generation number while the memslots are in flux.
1574 	 */
1575 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1576 
1577 	/*
1578 	 * Generations must be unique even across address spaces.  We do not need
1579 	 * a global counter for that, instead the generation space is evenly split
1580 	 * across address spaces.  For example, with two address spaces, address
1581 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1582 	 * use generations 1, 3, 5, ...
1583 	 */
1584 	gen += KVM_ADDRESS_SPACE_NUM;
1585 
1586 	kvm_arch_memslots_updated(kvm, gen);
1587 
1588 	slots->generation = gen;
1589 }
1590 
1591 static int kvm_prepare_memory_region(struct kvm *kvm,
1592 				     const struct kvm_memory_slot *old,
1593 				     struct kvm_memory_slot *new,
1594 				     enum kvm_mr_change change)
1595 {
1596 	int r;
1597 
1598 	/*
1599 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1600 	 * will be freed on "commit".  If logging is enabled in both old and
1601 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1602 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1603 	 * new bitmap.
1604 	 */
1605 	if (change != KVM_MR_DELETE) {
1606 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1607 			new->dirty_bitmap = NULL;
1608 		else if (old && old->dirty_bitmap)
1609 			new->dirty_bitmap = old->dirty_bitmap;
1610 		else if (kvm_use_dirty_bitmap(kvm)) {
1611 			r = kvm_alloc_dirty_bitmap(new);
1612 			if (r)
1613 				return r;
1614 
1615 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1616 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1617 		}
1618 	}
1619 
1620 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1621 
1622 	/* Free the bitmap on failure if it was allocated above. */
1623 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1624 		kvm_destroy_dirty_bitmap(new);
1625 
1626 	return r;
1627 }
1628 
1629 static void kvm_commit_memory_region(struct kvm *kvm,
1630 				     struct kvm_memory_slot *old,
1631 				     const struct kvm_memory_slot *new,
1632 				     enum kvm_mr_change change)
1633 {
1634 	int old_flags = old ? old->flags : 0;
1635 	int new_flags = new ? new->flags : 0;
1636 	/*
1637 	 * Update the total number of memslot pages before calling the arch
1638 	 * hook so that architectures can consume the result directly.
1639 	 */
1640 	if (change == KVM_MR_DELETE)
1641 		kvm->nr_memslot_pages -= old->npages;
1642 	else if (change == KVM_MR_CREATE)
1643 		kvm->nr_memslot_pages += new->npages;
1644 
1645 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1646 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1647 		atomic_set(&kvm->nr_memslots_dirty_logging,
1648 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1649 	}
1650 
1651 	kvm_arch_commit_memory_region(kvm, old, new, change);
1652 
1653 	switch (change) {
1654 	case KVM_MR_CREATE:
1655 		/* Nothing more to do. */
1656 		break;
1657 	case KVM_MR_DELETE:
1658 		/* Free the old memslot and all its metadata. */
1659 		kvm_free_memslot(kvm, old);
1660 		break;
1661 	case KVM_MR_MOVE:
1662 	case KVM_MR_FLAGS_ONLY:
1663 		/*
1664 		 * Free the dirty bitmap as needed; the below check encompasses
1665 		 * both the flags and whether a ring buffer is being used)
1666 		 */
1667 		if (old->dirty_bitmap && !new->dirty_bitmap)
1668 			kvm_destroy_dirty_bitmap(old);
1669 
1670 		/*
1671 		 * The final quirk.  Free the detached, old slot, but only its
1672 		 * memory, not any metadata.  Metadata, including arch specific
1673 		 * data, may be reused by @new.
1674 		 */
1675 		kfree(old);
1676 		break;
1677 	default:
1678 		BUG();
1679 	}
1680 }
1681 
1682 /*
1683  * Activate @new, which must be installed in the inactive slots by the caller,
1684  * by swapping the active slots and then propagating @new to @old once @old is
1685  * unreachable and can be safely modified.
1686  *
1687  * With NULL @old this simply adds @new to @active (while swapping the sets).
1688  * With NULL @new this simply removes @old from @active and frees it
1689  * (while also swapping the sets).
1690  */
1691 static void kvm_activate_memslot(struct kvm *kvm,
1692 				 struct kvm_memory_slot *old,
1693 				 struct kvm_memory_slot *new)
1694 {
1695 	int as_id = kvm_memslots_get_as_id(old, new);
1696 
1697 	kvm_swap_active_memslots(kvm, as_id);
1698 
1699 	/* Propagate the new memslot to the now inactive memslots. */
1700 	kvm_replace_memslot(kvm, old, new);
1701 }
1702 
1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1704 			     const struct kvm_memory_slot *src)
1705 {
1706 	dest->base_gfn = src->base_gfn;
1707 	dest->npages = src->npages;
1708 	dest->dirty_bitmap = src->dirty_bitmap;
1709 	dest->arch = src->arch;
1710 	dest->userspace_addr = src->userspace_addr;
1711 	dest->flags = src->flags;
1712 	dest->id = src->id;
1713 	dest->as_id = src->as_id;
1714 }
1715 
1716 static void kvm_invalidate_memslot(struct kvm *kvm,
1717 				   struct kvm_memory_slot *old,
1718 				   struct kvm_memory_slot *invalid_slot)
1719 {
1720 	/*
1721 	 * Mark the current slot INVALID.  As with all memslot modifications,
1722 	 * this must be done on an unreachable slot to avoid modifying the
1723 	 * current slot in the active tree.
1724 	 */
1725 	kvm_copy_memslot(invalid_slot, old);
1726 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1727 	kvm_replace_memslot(kvm, old, invalid_slot);
1728 
1729 	/*
1730 	 * Activate the slot that is now marked INVALID, but don't propagate
1731 	 * the slot to the now inactive slots. The slot is either going to be
1732 	 * deleted or recreated as a new slot.
1733 	 */
1734 	kvm_swap_active_memslots(kvm, old->as_id);
1735 
1736 	/*
1737 	 * From this point no new shadow pages pointing to a deleted, or moved,
1738 	 * memslot will be created.  Validation of sp->gfn happens in:
1739 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1740 	 *	- kvm_is_visible_gfn (mmu_check_root)
1741 	 */
1742 	kvm_arch_flush_shadow_memslot(kvm, old);
1743 	kvm_arch_guest_memory_reclaimed(kvm);
1744 
1745 	/* Was released by kvm_swap_active_memslots, reacquire. */
1746 	mutex_lock(&kvm->slots_arch_lock);
1747 
1748 	/*
1749 	 * Copy the arch-specific field of the newly-installed slot back to the
1750 	 * old slot as the arch data could have changed between releasing
1751 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1752 	 * above.  Writers are required to retrieve memslots *after* acquiring
1753 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1754 	 */
1755 	old->arch = invalid_slot->arch;
1756 }
1757 
1758 static void kvm_create_memslot(struct kvm *kvm,
1759 			       struct kvm_memory_slot *new)
1760 {
1761 	/* Add the new memslot to the inactive set and activate. */
1762 	kvm_replace_memslot(kvm, NULL, new);
1763 	kvm_activate_memslot(kvm, NULL, new);
1764 }
1765 
1766 static void kvm_delete_memslot(struct kvm *kvm,
1767 			       struct kvm_memory_slot *old,
1768 			       struct kvm_memory_slot *invalid_slot)
1769 {
1770 	/*
1771 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1772 	 * the "new" slot, and for the invalid version in the active slots.
1773 	 */
1774 	kvm_replace_memslot(kvm, old, NULL);
1775 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1776 }
1777 
1778 static void kvm_move_memslot(struct kvm *kvm,
1779 			     struct kvm_memory_slot *old,
1780 			     struct kvm_memory_slot *new,
1781 			     struct kvm_memory_slot *invalid_slot)
1782 {
1783 	/*
1784 	 * Replace the old memslot in the inactive slots, and then swap slots
1785 	 * and replace the current INVALID with the new as well.
1786 	 */
1787 	kvm_replace_memslot(kvm, old, new);
1788 	kvm_activate_memslot(kvm, invalid_slot, new);
1789 }
1790 
1791 static void kvm_update_flags_memslot(struct kvm *kvm,
1792 				     struct kvm_memory_slot *old,
1793 				     struct kvm_memory_slot *new)
1794 {
1795 	/*
1796 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1797 	 * an intermediate step. Instead, the old memslot is simply replaced
1798 	 * with a new, updated copy in both memslot sets.
1799 	 */
1800 	kvm_replace_memslot(kvm, old, new);
1801 	kvm_activate_memslot(kvm, old, new);
1802 }
1803 
1804 static int kvm_set_memslot(struct kvm *kvm,
1805 			   struct kvm_memory_slot *old,
1806 			   struct kvm_memory_slot *new,
1807 			   enum kvm_mr_change change)
1808 {
1809 	struct kvm_memory_slot *invalid_slot;
1810 	int r;
1811 
1812 	/*
1813 	 * Released in kvm_swap_active_memslots.
1814 	 *
1815 	 * Must be held from before the current memslots are copied until
1816 	 * after the new memslots are installed with rcu_assign_pointer,
1817 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1818 	 *
1819 	 * When modifying memslots outside of the slots_lock, must be held
1820 	 * before reading the pointer to the current memslots until after all
1821 	 * changes to those memslots are complete.
1822 	 *
1823 	 * These rules ensure that installing new memslots does not lose
1824 	 * changes made to the previous memslots.
1825 	 */
1826 	mutex_lock(&kvm->slots_arch_lock);
1827 
1828 	/*
1829 	 * Invalidate the old slot if it's being deleted or moved.  This is
1830 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1831 	 * continue running by ensuring there are no mappings or shadow pages
1832 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1833 	 * (and without a lock), a window would exist between effecting the
1834 	 * delete/move and committing the changes in arch code where KVM or a
1835 	 * guest could access a non-existent memslot.
1836 	 *
1837 	 * Modifications are done on a temporary, unreachable slot.  The old
1838 	 * slot needs to be preserved in case a later step fails and the
1839 	 * invalidation needs to be reverted.
1840 	 */
1841 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1842 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1843 		if (!invalid_slot) {
1844 			mutex_unlock(&kvm->slots_arch_lock);
1845 			return -ENOMEM;
1846 		}
1847 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1848 	}
1849 
1850 	r = kvm_prepare_memory_region(kvm, old, new, change);
1851 	if (r) {
1852 		/*
1853 		 * For DELETE/MOVE, revert the above INVALID change.  No
1854 		 * modifications required since the original slot was preserved
1855 		 * in the inactive slots.  Changing the active memslots also
1856 		 * release slots_arch_lock.
1857 		 */
1858 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859 			kvm_activate_memslot(kvm, invalid_slot, old);
1860 			kfree(invalid_slot);
1861 		} else {
1862 			mutex_unlock(&kvm->slots_arch_lock);
1863 		}
1864 		return r;
1865 	}
1866 
1867 	/*
1868 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1869 	 * version of the old slot.  MOVE is particularly special as it reuses
1870 	 * the old slot and returns a copy of the old slot (in working_slot).
1871 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1872 	 * old slot is detached but otherwise preserved.
1873 	 */
1874 	if (change == KVM_MR_CREATE)
1875 		kvm_create_memslot(kvm, new);
1876 	else if (change == KVM_MR_DELETE)
1877 		kvm_delete_memslot(kvm, old, invalid_slot);
1878 	else if (change == KVM_MR_MOVE)
1879 		kvm_move_memslot(kvm, old, new, invalid_slot);
1880 	else if (change == KVM_MR_FLAGS_ONLY)
1881 		kvm_update_flags_memslot(kvm, old, new);
1882 	else
1883 		BUG();
1884 
1885 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1886 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1887 		kfree(invalid_slot);
1888 
1889 	/*
1890 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1891 	 * will directly hit the final, active memslot.  Architectures are
1892 	 * responsible for knowing that new->arch may be stale.
1893 	 */
1894 	kvm_commit_memory_region(kvm, old, new, change);
1895 
1896 	return 0;
1897 }
1898 
1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1900 				      gfn_t start, gfn_t end)
1901 {
1902 	struct kvm_memslot_iter iter;
1903 
1904 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1905 		if (iter.slot->id != id)
1906 			return true;
1907 	}
1908 
1909 	return false;
1910 }
1911 
1912 /*
1913  * Allocate some memory and give it an address in the guest physical address
1914  * space.
1915  *
1916  * Discontiguous memory is allowed, mostly for framebuffers.
1917  *
1918  * Must be called holding kvm->slots_lock for write.
1919  */
1920 int __kvm_set_memory_region(struct kvm *kvm,
1921 			    const struct kvm_userspace_memory_region *mem)
1922 {
1923 	struct kvm_memory_slot *old, *new;
1924 	struct kvm_memslots *slots;
1925 	enum kvm_mr_change change;
1926 	unsigned long npages;
1927 	gfn_t base_gfn;
1928 	int as_id, id;
1929 	int r;
1930 
1931 	r = check_memory_region_flags(mem);
1932 	if (r)
1933 		return r;
1934 
1935 	as_id = mem->slot >> 16;
1936 	id = (u16)mem->slot;
1937 
1938 	/* General sanity checks */
1939 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1940 	    (mem->memory_size != (unsigned long)mem->memory_size))
1941 		return -EINVAL;
1942 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1943 		return -EINVAL;
1944 	/* We can read the guest memory with __xxx_user() later on. */
1945 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1946 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1947 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1948 			mem->memory_size))
1949 		return -EINVAL;
1950 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1951 		return -EINVAL;
1952 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1953 		return -EINVAL;
1954 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1955 		return -EINVAL;
1956 
1957 	slots = __kvm_memslots(kvm, as_id);
1958 
1959 	/*
1960 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1961 	 * and/or destroyed by kvm_set_memslot().
1962 	 */
1963 	old = id_to_memslot(slots, id);
1964 
1965 	if (!mem->memory_size) {
1966 		if (!old || !old->npages)
1967 			return -EINVAL;
1968 
1969 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1970 			return -EIO;
1971 
1972 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1973 	}
1974 
1975 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1976 	npages = (mem->memory_size >> PAGE_SHIFT);
1977 
1978 	if (!old || !old->npages) {
1979 		change = KVM_MR_CREATE;
1980 
1981 		/*
1982 		 * To simplify KVM internals, the total number of pages across
1983 		 * all memslots must fit in an unsigned long.
1984 		 */
1985 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1986 			return -EINVAL;
1987 	} else { /* Modify an existing slot. */
1988 		if ((mem->userspace_addr != old->userspace_addr) ||
1989 		    (npages != old->npages) ||
1990 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1991 			return -EINVAL;
1992 
1993 		if (base_gfn != old->base_gfn)
1994 			change = KVM_MR_MOVE;
1995 		else if (mem->flags != old->flags)
1996 			change = KVM_MR_FLAGS_ONLY;
1997 		else /* Nothing to change. */
1998 			return 0;
1999 	}
2000 
2001 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2002 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2003 		return -EEXIST;
2004 
2005 	/* Allocate a slot that will persist in the memslot. */
2006 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2007 	if (!new)
2008 		return -ENOMEM;
2009 
2010 	new->as_id = as_id;
2011 	new->id = id;
2012 	new->base_gfn = base_gfn;
2013 	new->npages = npages;
2014 	new->flags = mem->flags;
2015 	new->userspace_addr = mem->userspace_addr;
2016 
2017 	r = kvm_set_memslot(kvm, old, new, change);
2018 	if (r)
2019 		kfree(new);
2020 	return r;
2021 }
2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2023 
2024 int kvm_set_memory_region(struct kvm *kvm,
2025 			  const struct kvm_userspace_memory_region *mem)
2026 {
2027 	int r;
2028 
2029 	mutex_lock(&kvm->slots_lock);
2030 	r = __kvm_set_memory_region(kvm, mem);
2031 	mutex_unlock(&kvm->slots_lock);
2032 	return r;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2035 
2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2037 					  struct kvm_userspace_memory_region *mem)
2038 {
2039 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2040 		return -EINVAL;
2041 
2042 	return kvm_set_memory_region(kvm, mem);
2043 }
2044 
2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2046 /**
2047  * kvm_get_dirty_log - get a snapshot of dirty pages
2048  * @kvm:	pointer to kvm instance
2049  * @log:	slot id and address to which we copy the log
2050  * @is_dirty:	set to '1' if any dirty pages were found
2051  * @memslot:	set to the associated memslot, always valid on success
2052  */
2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2054 		      int *is_dirty, struct kvm_memory_slot **memslot)
2055 {
2056 	struct kvm_memslots *slots;
2057 	int i, as_id, id;
2058 	unsigned long n;
2059 	unsigned long any = 0;
2060 
2061 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2062 	if (!kvm_use_dirty_bitmap(kvm))
2063 		return -ENXIO;
2064 
2065 	*memslot = NULL;
2066 	*is_dirty = 0;
2067 
2068 	as_id = log->slot >> 16;
2069 	id = (u16)log->slot;
2070 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2071 		return -EINVAL;
2072 
2073 	slots = __kvm_memslots(kvm, as_id);
2074 	*memslot = id_to_memslot(slots, id);
2075 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2076 		return -ENOENT;
2077 
2078 	kvm_arch_sync_dirty_log(kvm, *memslot);
2079 
2080 	n = kvm_dirty_bitmap_bytes(*memslot);
2081 
2082 	for (i = 0; !any && i < n/sizeof(long); ++i)
2083 		any = (*memslot)->dirty_bitmap[i];
2084 
2085 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2086 		return -EFAULT;
2087 
2088 	if (any)
2089 		*is_dirty = 1;
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2093 
2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2095 /**
2096  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2097  *	and reenable dirty page tracking for the corresponding pages.
2098  * @kvm:	pointer to kvm instance
2099  * @log:	slot id and address to which we copy the log
2100  *
2101  * We need to keep it in mind that VCPU threads can write to the bitmap
2102  * concurrently. So, to avoid losing track of dirty pages we keep the
2103  * following order:
2104  *
2105  *    1. Take a snapshot of the bit and clear it if needed.
2106  *    2. Write protect the corresponding page.
2107  *    3. Copy the snapshot to the userspace.
2108  *    4. Upon return caller flushes TLB's if needed.
2109  *
2110  * Between 2 and 4, the guest may write to the page using the remaining TLB
2111  * entry.  This is not a problem because the page is reported dirty using
2112  * the snapshot taken before and step 4 ensures that writes done after
2113  * exiting to userspace will be logged for the next call.
2114  *
2115  */
2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2117 {
2118 	struct kvm_memslots *slots;
2119 	struct kvm_memory_slot *memslot;
2120 	int i, as_id, id;
2121 	unsigned long n;
2122 	unsigned long *dirty_bitmap;
2123 	unsigned long *dirty_bitmap_buffer;
2124 	bool flush;
2125 
2126 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2127 	if (!kvm_use_dirty_bitmap(kvm))
2128 		return -ENXIO;
2129 
2130 	as_id = log->slot >> 16;
2131 	id = (u16)log->slot;
2132 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2133 		return -EINVAL;
2134 
2135 	slots = __kvm_memslots(kvm, as_id);
2136 	memslot = id_to_memslot(slots, id);
2137 	if (!memslot || !memslot->dirty_bitmap)
2138 		return -ENOENT;
2139 
2140 	dirty_bitmap = memslot->dirty_bitmap;
2141 
2142 	kvm_arch_sync_dirty_log(kvm, memslot);
2143 
2144 	n = kvm_dirty_bitmap_bytes(memslot);
2145 	flush = false;
2146 	if (kvm->manual_dirty_log_protect) {
2147 		/*
2148 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2149 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2150 		 * is some code duplication between this function and
2151 		 * kvm_get_dirty_log, but hopefully all architecture
2152 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2153 		 * can be eliminated.
2154 		 */
2155 		dirty_bitmap_buffer = dirty_bitmap;
2156 	} else {
2157 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2158 		memset(dirty_bitmap_buffer, 0, n);
2159 
2160 		KVM_MMU_LOCK(kvm);
2161 		for (i = 0; i < n / sizeof(long); i++) {
2162 			unsigned long mask;
2163 			gfn_t offset;
2164 
2165 			if (!dirty_bitmap[i])
2166 				continue;
2167 
2168 			flush = true;
2169 			mask = xchg(&dirty_bitmap[i], 0);
2170 			dirty_bitmap_buffer[i] = mask;
2171 
2172 			offset = i * BITS_PER_LONG;
2173 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2174 								offset, mask);
2175 		}
2176 		KVM_MMU_UNLOCK(kvm);
2177 	}
2178 
2179 	if (flush)
2180 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2181 
2182 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2183 		return -EFAULT;
2184 	return 0;
2185 }
2186 
2187 
2188 /**
2189  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2190  * @kvm: kvm instance
2191  * @log: slot id and address to which we copy the log
2192  *
2193  * Steps 1-4 below provide general overview of dirty page logging. See
2194  * kvm_get_dirty_log_protect() function description for additional details.
2195  *
2196  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2197  * always flush the TLB (step 4) even if previous step failed  and the dirty
2198  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2199  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2200  * writes will be marked dirty for next log read.
2201  *
2202  *   1. Take a snapshot of the bit and clear it if needed.
2203  *   2. Write protect the corresponding page.
2204  *   3. Copy the snapshot to the userspace.
2205  *   4. Flush TLB's if needed.
2206  */
2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2208 				      struct kvm_dirty_log *log)
2209 {
2210 	int r;
2211 
2212 	mutex_lock(&kvm->slots_lock);
2213 
2214 	r = kvm_get_dirty_log_protect(kvm, log);
2215 
2216 	mutex_unlock(&kvm->slots_lock);
2217 	return r;
2218 }
2219 
2220 /**
2221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2222  *	and reenable dirty page tracking for the corresponding pages.
2223  * @kvm:	pointer to kvm instance
2224  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2225  */
2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2227 				       struct kvm_clear_dirty_log *log)
2228 {
2229 	struct kvm_memslots *slots;
2230 	struct kvm_memory_slot *memslot;
2231 	int as_id, id;
2232 	gfn_t offset;
2233 	unsigned long i, n;
2234 	unsigned long *dirty_bitmap;
2235 	unsigned long *dirty_bitmap_buffer;
2236 	bool flush;
2237 
2238 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2239 	if (!kvm_use_dirty_bitmap(kvm))
2240 		return -ENXIO;
2241 
2242 	as_id = log->slot >> 16;
2243 	id = (u16)log->slot;
2244 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2245 		return -EINVAL;
2246 
2247 	if (log->first_page & 63)
2248 		return -EINVAL;
2249 
2250 	slots = __kvm_memslots(kvm, as_id);
2251 	memslot = id_to_memslot(slots, id);
2252 	if (!memslot || !memslot->dirty_bitmap)
2253 		return -ENOENT;
2254 
2255 	dirty_bitmap = memslot->dirty_bitmap;
2256 
2257 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2258 
2259 	if (log->first_page > memslot->npages ||
2260 	    log->num_pages > memslot->npages - log->first_page ||
2261 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2262 	    return -EINVAL;
2263 
2264 	kvm_arch_sync_dirty_log(kvm, memslot);
2265 
2266 	flush = false;
2267 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2268 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2269 		return -EFAULT;
2270 
2271 	KVM_MMU_LOCK(kvm);
2272 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2273 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2274 	     i++, offset += BITS_PER_LONG) {
2275 		unsigned long mask = *dirty_bitmap_buffer++;
2276 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2277 		if (!mask)
2278 			continue;
2279 
2280 		mask &= atomic_long_fetch_andnot(mask, p);
2281 
2282 		/*
2283 		 * mask contains the bits that really have been cleared.  This
2284 		 * never includes any bits beyond the length of the memslot (if
2285 		 * the length is not aligned to 64 pages), therefore it is not
2286 		 * a problem if userspace sets them in log->dirty_bitmap.
2287 		*/
2288 		if (mask) {
2289 			flush = true;
2290 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291 								offset, mask);
2292 		}
2293 	}
2294 	KVM_MMU_UNLOCK(kvm);
2295 
2296 	if (flush)
2297 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2298 
2299 	return 0;
2300 }
2301 
2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2303 					struct kvm_clear_dirty_log *log)
2304 {
2305 	int r;
2306 
2307 	mutex_lock(&kvm->slots_lock);
2308 
2309 	r = kvm_clear_dirty_log_protect(kvm, log);
2310 
2311 	mutex_unlock(&kvm->slots_lock);
2312 	return r;
2313 }
2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2315 
2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2317 {
2318 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2319 }
2320 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2321 
2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2323 {
2324 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2325 	u64 gen = slots->generation;
2326 	struct kvm_memory_slot *slot;
2327 
2328 	/*
2329 	 * This also protects against using a memslot from a different address space,
2330 	 * since different address spaces have different generation numbers.
2331 	 */
2332 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2333 		vcpu->last_used_slot = NULL;
2334 		vcpu->last_used_slot_gen = gen;
2335 	}
2336 
2337 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2338 	if (slot)
2339 		return slot;
2340 
2341 	/*
2342 	 * Fall back to searching all memslots. We purposely use
2343 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2344 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2345 	 */
2346 	slot = search_memslots(slots, gfn, false);
2347 	if (slot) {
2348 		vcpu->last_used_slot = slot;
2349 		return slot;
2350 	}
2351 
2352 	return NULL;
2353 }
2354 
2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2356 {
2357 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2358 
2359 	return kvm_is_visible_memslot(memslot);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2362 
2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2364 {
2365 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366 
2367 	return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2370 
2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373 	struct vm_area_struct *vma;
2374 	unsigned long addr, size;
2375 
2376 	size = PAGE_SIZE;
2377 
2378 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2379 	if (kvm_is_error_hva(addr))
2380 		return PAGE_SIZE;
2381 
2382 	mmap_read_lock(current->mm);
2383 	vma = find_vma(current->mm, addr);
2384 	if (!vma)
2385 		goto out;
2386 
2387 	size = vma_kernel_pagesize(vma);
2388 
2389 out:
2390 	mmap_read_unlock(current->mm);
2391 
2392 	return size;
2393 }
2394 
2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2396 {
2397 	return slot->flags & KVM_MEM_READONLY;
2398 }
2399 
2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2401 				       gfn_t *nr_pages, bool write)
2402 {
2403 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2404 		return KVM_HVA_ERR_BAD;
2405 
2406 	if (memslot_is_readonly(slot) && write)
2407 		return KVM_HVA_ERR_RO_BAD;
2408 
2409 	if (nr_pages)
2410 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2411 
2412 	return __gfn_to_hva_memslot(slot, gfn);
2413 }
2414 
2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2416 				     gfn_t *nr_pages)
2417 {
2418 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2419 }
2420 
2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2422 					gfn_t gfn)
2423 {
2424 	return gfn_to_hva_many(slot, gfn, NULL);
2425 }
2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2427 
2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2429 {
2430 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2431 }
2432 EXPORT_SYMBOL_GPL(gfn_to_hva);
2433 
2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2435 {
2436 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2439 
2440 /*
2441  * Return the hva of a @gfn and the R/W attribute if possible.
2442  *
2443  * @slot: the kvm_memory_slot which contains @gfn
2444  * @gfn: the gfn to be translated
2445  * @writable: used to return the read/write attribute of the @slot if the hva
2446  * is valid and @writable is not NULL
2447  */
2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2449 				      gfn_t gfn, bool *writable)
2450 {
2451 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2452 
2453 	if (!kvm_is_error_hva(hva) && writable)
2454 		*writable = !memslot_is_readonly(slot);
2455 
2456 	return hva;
2457 }
2458 
2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2460 {
2461 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2462 
2463 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465 
2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2467 {
2468 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2469 
2470 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2471 }
2472 
2473 static inline int check_user_page_hwpoison(unsigned long addr)
2474 {
2475 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2476 
2477 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2478 	return rc == -EHWPOISON;
2479 }
2480 
2481 /*
2482  * The fast path to get the writable pfn which will be stored in @pfn,
2483  * true indicates success, otherwise false is returned.  It's also the
2484  * only part that runs if we can in atomic context.
2485  */
2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2487 			    bool *writable, kvm_pfn_t *pfn)
2488 {
2489 	struct page *page[1];
2490 
2491 	/*
2492 	 * Fast pin a writable pfn only if it is a write fault request
2493 	 * or the caller allows to map a writable pfn for a read fault
2494 	 * request.
2495 	 */
2496 	if (!(write_fault || writable))
2497 		return false;
2498 
2499 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2500 		*pfn = page_to_pfn(page[0]);
2501 
2502 		if (writable)
2503 			*writable = true;
2504 		return true;
2505 	}
2506 
2507 	return false;
2508 }
2509 
2510 /*
2511  * The slow path to get the pfn of the specified host virtual address,
2512  * 1 indicates success, -errno is returned if error is detected.
2513  */
2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2515 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2516 {
2517 	unsigned int flags = FOLL_HWPOISON;
2518 	struct page *page;
2519 	int npages;
2520 
2521 	might_sleep();
2522 
2523 	if (writable)
2524 		*writable = write_fault;
2525 
2526 	if (write_fault)
2527 		flags |= FOLL_WRITE;
2528 	if (async)
2529 		flags |= FOLL_NOWAIT;
2530 	if (interruptible)
2531 		flags |= FOLL_INTERRUPTIBLE;
2532 
2533 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2534 	if (npages != 1)
2535 		return npages;
2536 
2537 	/* map read fault as writable if possible */
2538 	if (unlikely(!write_fault) && writable) {
2539 		struct page *wpage;
2540 
2541 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2542 			*writable = true;
2543 			put_page(page);
2544 			page = wpage;
2545 		}
2546 	}
2547 	*pfn = page_to_pfn(page);
2548 	return npages;
2549 }
2550 
2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2552 {
2553 	if (unlikely(!(vma->vm_flags & VM_READ)))
2554 		return false;
2555 
2556 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2557 		return false;
2558 
2559 	return true;
2560 }
2561 
2562 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2563 {
2564 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2565 
2566 	if (!page)
2567 		return 1;
2568 
2569 	return get_page_unless_zero(page);
2570 }
2571 
2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2573 			       unsigned long addr, bool write_fault,
2574 			       bool *writable, kvm_pfn_t *p_pfn)
2575 {
2576 	kvm_pfn_t pfn;
2577 	pte_t *ptep;
2578 	spinlock_t *ptl;
2579 	int r;
2580 
2581 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2582 	if (r) {
2583 		/*
2584 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2585 		 * not call the fault handler, so do it here.
2586 		 */
2587 		bool unlocked = false;
2588 		r = fixup_user_fault(current->mm, addr,
2589 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2590 				     &unlocked);
2591 		if (unlocked)
2592 			return -EAGAIN;
2593 		if (r)
2594 			return r;
2595 
2596 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597 		if (r)
2598 			return r;
2599 	}
2600 
2601 	if (write_fault && !pte_write(*ptep)) {
2602 		pfn = KVM_PFN_ERR_RO_FAULT;
2603 		goto out;
2604 	}
2605 
2606 	if (writable)
2607 		*writable = pte_write(*ptep);
2608 	pfn = pte_pfn(*ptep);
2609 
2610 	/*
2611 	 * Get a reference here because callers of *hva_to_pfn* and
2612 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2613 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2614 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2615 	 * simply do nothing for reserved pfns.
2616 	 *
2617 	 * Whoever called remap_pfn_range is also going to call e.g.
2618 	 * unmap_mapping_range before the underlying pages are freed,
2619 	 * causing a call to our MMU notifier.
2620 	 *
2621 	 * Certain IO or PFNMAP mappings can be backed with valid
2622 	 * struct pages, but be allocated without refcounting e.g.,
2623 	 * tail pages of non-compound higher order allocations, which
2624 	 * would then underflow the refcount when the caller does the
2625 	 * required put_page. Don't allow those pages here.
2626 	 */
2627 	if (!kvm_try_get_pfn(pfn))
2628 		r = -EFAULT;
2629 
2630 out:
2631 	pte_unmap_unlock(ptep, ptl);
2632 	*p_pfn = pfn;
2633 
2634 	return r;
2635 }
2636 
2637 /*
2638  * Pin guest page in memory and return its pfn.
2639  * @addr: host virtual address which maps memory to the guest
2640  * @atomic: whether this function can sleep
2641  * @interruptible: whether the process can be interrupted by non-fatal signals
2642  * @async: whether this function need to wait IO complete if the
2643  *         host page is not in the memory
2644  * @write_fault: whether we should get a writable host page
2645  * @writable: whether it allows to map a writable host page for !@write_fault
2646  *
2647  * The function will map a writable host page for these two cases:
2648  * 1): @write_fault = true
2649  * 2): @write_fault = false && @writable, @writable will tell the caller
2650  *     whether the mapping is writable.
2651  */
2652 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2653 		     bool *async, bool write_fault, bool *writable)
2654 {
2655 	struct vm_area_struct *vma;
2656 	kvm_pfn_t pfn;
2657 	int npages, r;
2658 
2659 	/* we can do it either atomically or asynchronously, not both */
2660 	BUG_ON(atomic && async);
2661 
2662 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2663 		return pfn;
2664 
2665 	if (atomic)
2666 		return KVM_PFN_ERR_FAULT;
2667 
2668 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2669 				 writable, &pfn);
2670 	if (npages == 1)
2671 		return pfn;
2672 	if (npages == -EINTR)
2673 		return KVM_PFN_ERR_SIGPENDING;
2674 
2675 	mmap_read_lock(current->mm);
2676 	if (npages == -EHWPOISON ||
2677 	      (!async && check_user_page_hwpoison(addr))) {
2678 		pfn = KVM_PFN_ERR_HWPOISON;
2679 		goto exit;
2680 	}
2681 
2682 retry:
2683 	vma = vma_lookup(current->mm, addr);
2684 
2685 	if (vma == NULL)
2686 		pfn = KVM_PFN_ERR_FAULT;
2687 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2688 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2689 		if (r == -EAGAIN)
2690 			goto retry;
2691 		if (r < 0)
2692 			pfn = KVM_PFN_ERR_FAULT;
2693 	} else {
2694 		if (async && vma_is_valid(vma, write_fault))
2695 			*async = true;
2696 		pfn = KVM_PFN_ERR_FAULT;
2697 	}
2698 exit:
2699 	mmap_read_unlock(current->mm);
2700 	return pfn;
2701 }
2702 
2703 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2704 			       bool atomic, bool interruptible, bool *async,
2705 			       bool write_fault, bool *writable, hva_t *hva)
2706 {
2707 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2708 
2709 	if (hva)
2710 		*hva = addr;
2711 
2712 	if (addr == KVM_HVA_ERR_RO_BAD) {
2713 		if (writable)
2714 			*writable = false;
2715 		return KVM_PFN_ERR_RO_FAULT;
2716 	}
2717 
2718 	if (kvm_is_error_hva(addr)) {
2719 		if (writable)
2720 			*writable = false;
2721 		return KVM_PFN_NOSLOT;
2722 	}
2723 
2724 	/* Do not map writable pfn in the readonly memslot. */
2725 	if (writable && memslot_is_readonly(slot)) {
2726 		*writable = false;
2727 		writable = NULL;
2728 	}
2729 
2730 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2731 			  writable);
2732 }
2733 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2734 
2735 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2736 		      bool *writable)
2737 {
2738 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2739 				    NULL, write_fault, writable, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2742 
2743 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2744 {
2745 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2746 				    NULL, NULL);
2747 }
2748 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2749 
2750 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2751 {
2752 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2753 				    NULL, NULL);
2754 }
2755 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2756 
2757 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2758 {
2759 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2762 
2763 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2764 {
2765 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2768 
2769 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2770 {
2771 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2772 }
2773 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2774 
2775 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2776 			    struct page **pages, int nr_pages)
2777 {
2778 	unsigned long addr;
2779 	gfn_t entry = 0;
2780 
2781 	addr = gfn_to_hva_many(slot, gfn, &entry);
2782 	if (kvm_is_error_hva(addr))
2783 		return -1;
2784 
2785 	if (entry < nr_pages)
2786 		return 0;
2787 
2788 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2789 }
2790 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2791 
2792 /*
2793  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2794  * backed by 'struct page'.  A valid example is if the backing memslot is
2795  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2796  * been elevated by gfn_to_pfn().
2797  */
2798 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2799 {
2800 	struct page *page;
2801 	kvm_pfn_t pfn;
2802 
2803 	pfn = gfn_to_pfn(kvm, gfn);
2804 
2805 	if (is_error_noslot_pfn(pfn))
2806 		return KVM_ERR_PTR_BAD_PAGE;
2807 
2808 	page = kvm_pfn_to_refcounted_page(pfn);
2809 	if (!page)
2810 		return KVM_ERR_PTR_BAD_PAGE;
2811 
2812 	return page;
2813 }
2814 EXPORT_SYMBOL_GPL(gfn_to_page);
2815 
2816 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2817 {
2818 	if (dirty)
2819 		kvm_release_pfn_dirty(pfn);
2820 	else
2821 		kvm_release_pfn_clean(pfn);
2822 }
2823 
2824 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2825 {
2826 	kvm_pfn_t pfn;
2827 	void *hva = NULL;
2828 	struct page *page = KVM_UNMAPPED_PAGE;
2829 
2830 	if (!map)
2831 		return -EINVAL;
2832 
2833 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2834 	if (is_error_noslot_pfn(pfn))
2835 		return -EINVAL;
2836 
2837 	if (pfn_valid(pfn)) {
2838 		page = pfn_to_page(pfn);
2839 		hva = kmap(page);
2840 #ifdef CONFIG_HAS_IOMEM
2841 	} else {
2842 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2843 #endif
2844 	}
2845 
2846 	if (!hva)
2847 		return -EFAULT;
2848 
2849 	map->page = page;
2850 	map->hva = hva;
2851 	map->pfn = pfn;
2852 	map->gfn = gfn;
2853 
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2857 
2858 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2859 {
2860 	if (!map)
2861 		return;
2862 
2863 	if (!map->hva)
2864 		return;
2865 
2866 	if (map->page != KVM_UNMAPPED_PAGE)
2867 		kunmap(map->page);
2868 #ifdef CONFIG_HAS_IOMEM
2869 	else
2870 		memunmap(map->hva);
2871 #endif
2872 
2873 	if (dirty)
2874 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2875 
2876 	kvm_release_pfn(map->pfn, dirty);
2877 
2878 	map->hva = NULL;
2879 	map->page = NULL;
2880 }
2881 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2882 
2883 static bool kvm_is_ad_tracked_page(struct page *page)
2884 {
2885 	/*
2886 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2887 	 * touched (e.g. set dirty) except by its owner".
2888 	 */
2889 	return !PageReserved(page);
2890 }
2891 
2892 static void kvm_set_page_dirty(struct page *page)
2893 {
2894 	if (kvm_is_ad_tracked_page(page))
2895 		SetPageDirty(page);
2896 }
2897 
2898 static void kvm_set_page_accessed(struct page *page)
2899 {
2900 	if (kvm_is_ad_tracked_page(page))
2901 		mark_page_accessed(page);
2902 }
2903 
2904 void kvm_release_page_clean(struct page *page)
2905 {
2906 	WARN_ON(is_error_page(page));
2907 
2908 	kvm_set_page_accessed(page);
2909 	put_page(page);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2912 
2913 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2914 {
2915 	struct page *page;
2916 
2917 	if (is_error_noslot_pfn(pfn))
2918 		return;
2919 
2920 	page = kvm_pfn_to_refcounted_page(pfn);
2921 	if (!page)
2922 		return;
2923 
2924 	kvm_release_page_clean(page);
2925 }
2926 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2927 
2928 void kvm_release_page_dirty(struct page *page)
2929 {
2930 	WARN_ON(is_error_page(page));
2931 
2932 	kvm_set_page_dirty(page);
2933 	kvm_release_page_clean(page);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2936 
2937 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2938 {
2939 	struct page *page;
2940 
2941 	if (is_error_noslot_pfn(pfn))
2942 		return;
2943 
2944 	page = kvm_pfn_to_refcounted_page(pfn);
2945 	if (!page)
2946 		return;
2947 
2948 	kvm_release_page_dirty(page);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2951 
2952 /*
2953  * Note, checking for an error/noslot pfn is the caller's responsibility when
2954  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2955  * "set" helpers are not to be used when the pfn might point at garbage.
2956  */
2957 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2958 {
2959 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2960 		return;
2961 
2962 	if (pfn_valid(pfn))
2963 		kvm_set_page_dirty(pfn_to_page(pfn));
2964 }
2965 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2966 
2967 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2968 {
2969 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2970 		return;
2971 
2972 	if (pfn_valid(pfn))
2973 		kvm_set_page_accessed(pfn_to_page(pfn));
2974 }
2975 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2976 
2977 static int next_segment(unsigned long len, int offset)
2978 {
2979 	if (len > PAGE_SIZE - offset)
2980 		return PAGE_SIZE - offset;
2981 	else
2982 		return len;
2983 }
2984 
2985 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2986 				 void *data, int offset, int len)
2987 {
2988 	int r;
2989 	unsigned long addr;
2990 
2991 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2992 	if (kvm_is_error_hva(addr))
2993 		return -EFAULT;
2994 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2995 	if (r)
2996 		return -EFAULT;
2997 	return 0;
2998 }
2999 
3000 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3001 			int len)
3002 {
3003 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3004 
3005 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3008 
3009 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3010 			     int offset, int len)
3011 {
3012 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3013 
3014 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3015 }
3016 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3017 
3018 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3019 {
3020 	gfn_t gfn = gpa >> PAGE_SHIFT;
3021 	int seg;
3022 	int offset = offset_in_page(gpa);
3023 	int ret;
3024 
3025 	while ((seg = next_segment(len, offset)) != 0) {
3026 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3027 		if (ret < 0)
3028 			return ret;
3029 		offset = 0;
3030 		len -= seg;
3031 		data += seg;
3032 		++gfn;
3033 	}
3034 	return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_read_guest);
3037 
3038 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3039 {
3040 	gfn_t gfn = gpa >> PAGE_SHIFT;
3041 	int seg;
3042 	int offset = offset_in_page(gpa);
3043 	int ret;
3044 
3045 	while ((seg = next_segment(len, offset)) != 0) {
3046 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3047 		if (ret < 0)
3048 			return ret;
3049 		offset = 0;
3050 		len -= seg;
3051 		data += seg;
3052 		++gfn;
3053 	}
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3057 
3058 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3059 			           void *data, int offset, unsigned long len)
3060 {
3061 	int r;
3062 	unsigned long addr;
3063 
3064 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3065 	if (kvm_is_error_hva(addr))
3066 		return -EFAULT;
3067 	pagefault_disable();
3068 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3069 	pagefault_enable();
3070 	if (r)
3071 		return -EFAULT;
3072 	return 0;
3073 }
3074 
3075 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3076 			       void *data, unsigned long len)
3077 {
3078 	gfn_t gfn = gpa >> PAGE_SHIFT;
3079 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3080 	int offset = offset_in_page(gpa);
3081 
3082 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3083 }
3084 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3085 
3086 static int __kvm_write_guest_page(struct kvm *kvm,
3087 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3088 			          const void *data, int offset, int len)
3089 {
3090 	int r;
3091 	unsigned long addr;
3092 
3093 	addr = gfn_to_hva_memslot(memslot, gfn);
3094 	if (kvm_is_error_hva(addr))
3095 		return -EFAULT;
3096 	r = __copy_to_user((void __user *)addr + offset, data, len);
3097 	if (r)
3098 		return -EFAULT;
3099 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3100 	return 0;
3101 }
3102 
3103 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3104 			 const void *data, int offset, int len)
3105 {
3106 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3107 
3108 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3109 }
3110 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3111 
3112 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3113 			      const void *data, int offset, int len)
3114 {
3115 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3116 
3117 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3118 }
3119 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3120 
3121 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3122 		    unsigned long len)
3123 {
3124 	gfn_t gfn = gpa >> PAGE_SHIFT;
3125 	int seg;
3126 	int offset = offset_in_page(gpa);
3127 	int ret;
3128 
3129 	while ((seg = next_segment(len, offset)) != 0) {
3130 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3131 		if (ret < 0)
3132 			return ret;
3133 		offset = 0;
3134 		len -= seg;
3135 		data += seg;
3136 		++gfn;
3137 	}
3138 	return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_write_guest);
3141 
3142 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3143 		         unsigned long len)
3144 {
3145 	gfn_t gfn = gpa >> PAGE_SHIFT;
3146 	int seg;
3147 	int offset = offset_in_page(gpa);
3148 	int ret;
3149 
3150 	while ((seg = next_segment(len, offset)) != 0) {
3151 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3152 		if (ret < 0)
3153 			return ret;
3154 		offset = 0;
3155 		len -= seg;
3156 		data += seg;
3157 		++gfn;
3158 	}
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3162 
3163 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3164 				       struct gfn_to_hva_cache *ghc,
3165 				       gpa_t gpa, unsigned long len)
3166 {
3167 	int offset = offset_in_page(gpa);
3168 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3169 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3170 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3171 	gfn_t nr_pages_avail;
3172 
3173 	/* Update ghc->generation before performing any error checks. */
3174 	ghc->generation = slots->generation;
3175 
3176 	if (start_gfn > end_gfn) {
3177 		ghc->hva = KVM_HVA_ERR_BAD;
3178 		return -EINVAL;
3179 	}
3180 
3181 	/*
3182 	 * If the requested region crosses two memslots, we still
3183 	 * verify that the entire region is valid here.
3184 	 */
3185 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3186 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3187 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3188 					   &nr_pages_avail);
3189 		if (kvm_is_error_hva(ghc->hva))
3190 			return -EFAULT;
3191 	}
3192 
3193 	/* Use the slow path for cross page reads and writes. */
3194 	if (nr_pages_needed == 1)
3195 		ghc->hva += offset;
3196 	else
3197 		ghc->memslot = NULL;
3198 
3199 	ghc->gpa = gpa;
3200 	ghc->len = len;
3201 	return 0;
3202 }
3203 
3204 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3205 			      gpa_t gpa, unsigned long len)
3206 {
3207 	struct kvm_memslots *slots = kvm_memslots(kvm);
3208 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3211 
3212 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213 				  void *data, unsigned int offset,
3214 				  unsigned long len)
3215 {
3216 	struct kvm_memslots *slots = kvm_memslots(kvm);
3217 	int r;
3218 	gpa_t gpa = ghc->gpa + offset;
3219 
3220 	if (WARN_ON_ONCE(len + offset > ghc->len))
3221 		return -EINVAL;
3222 
3223 	if (slots->generation != ghc->generation) {
3224 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3225 			return -EFAULT;
3226 	}
3227 
3228 	if (kvm_is_error_hva(ghc->hva))
3229 		return -EFAULT;
3230 
3231 	if (unlikely(!ghc->memslot))
3232 		return kvm_write_guest(kvm, gpa, data, len);
3233 
3234 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3235 	if (r)
3236 		return -EFAULT;
3237 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3238 
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3242 
3243 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3244 			   void *data, unsigned long len)
3245 {
3246 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3247 }
3248 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3249 
3250 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3251 				 void *data, unsigned int offset,
3252 				 unsigned long len)
3253 {
3254 	struct kvm_memslots *slots = kvm_memslots(kvm);
3255 	int r;
3256 	gpa_t gpa = ghc->gpa + offset;
3257 
3258 	if (WARN_ON_ONCE(len + offset > ghc->len))
3259 		return -EINVAL;
3260 
3261 	if (slots->generation != ghc->generation) {
3262 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3263 			return -EFAULT;
3264 	}
3265 
3266 	if (kvm_is_error_hva(ghc->hva))
3267 		return -EFAULT;
3268 
3269 	if (unlikely(!ghc->memslot))
3270 		return kvm_read_guest(kvm, gpa, data, len);
3271 
3272 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3273 	if (r)
3274 		return -EFAULT;
3275 
3276 	return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3279 
3280 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3281 			  void *data, unsigned long len)
3282 {
3283 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3284 }
3285 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3286 
3287 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3288 {
3289 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3290 	gfn_t gfn = gpa >> PAGE_SHIFT;
3291 	int seg;
3292 	int offset = offset_in_page(gpa);
3293 	int ret;
3294 
3295 	while ((seg = next_segment(len, offset)) != 0) {
3296 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3297 		if (ret < 0)
3298 			return ret;
3299 		offset = 0;
3300 		len -= seg;
3301 		++gfn;
3302 	}
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3306 
3307 void mark_page_dirty_in_slot(struct kvm *kvm,
3308 			     const struct kvm_memory_slot *memslot,
3309 		 	     gfn_t gfn)
3310 {
3311 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3312 
3313 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3314 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3315 		return;
3316 
3317 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3318 #endif
3319 
3320 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3321 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3322 		u32 slot = (memslot->as_id << 16) | memslot->id;
3323 
3324 		if (kvm->dirty_ring_size && vcpu)
3325 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3326 		else if (memslot->dirty_bitmap)
3327 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3328 	}
3329 }
3330 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3331 
3332 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3333 {
3334 	struct kvm_memory_slot *memslot;
3335 
3336 	memslot = gfn_to_memslot(kvm, gfn);
3337 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3338 }
3339 EXPORT_SYMBOL_GPL(mark_page_dirty);
3340 
3341 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3342 {
3343 	struct kvm_memory_slot *memslot;
3344 
3345 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3346 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3347 }
3348 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3349 
3350 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3351 {
3352 	if (!vcpu->sigset_active)
3353 		return;
3354 
3355 	/*
3356 	 * This does a lockless modification of ->real_blocked, which is fine
3357 	 * because, only current can change ->real_blocked and all readers of
3358 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3359 	 * of ->blocked.
3360 	 */
3361 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3362 }
3363 
3364 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3365 {
3366 	if (!vcpu->sigset_active)
3367 		return;
3368 
3369 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3370 	sigemptyset(&current->real_blocked);
3371 }
3372 
3373 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3374 {
3375 	unsigned int old, val, grow, grow_start;
3376 
3377 	old = val = vcpu->halt_poll_ns;
3378 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3379 	grow = READ_ONCE(halt_poll_ns_grow);
3380 	if (!grow)
3381 		goto out;
3382 
3383 	val *= grow;
3384 	if (val < grow_start)
3385 		val = grow_start;
3386 
3387 	vcpu->halt_poll_ns = val;
3388 out:
3389 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3390 }
3391 
3392 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3393 {
3394 	unsigned int old, val, shrink, grow_start;
3395 
3396 	old = val = vcpu->halt_poll_ns;
3397 	shrink = READ_ONCE(halt_poll_ns_shrink);
3398 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3399 	if (shrink == 0)
3400 		val = 0;
3401 	else
3402 		val /= shrink;
3403 
3404 	if (val < grow_start)
3405 		val = 0;
3406 
3407 	vcpu->halt_poll_ns = val;
3408 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3409 }
3410 
3411 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3412 {
3413 	int ret = -EINTR;
3414 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3415 
3416 	if (kvm_arch_vcpu_runnable(vcpu))
3417 		goto out;
3418 	if (kvm_cpu_has_pending_timer(vcpu))
3419 		goto out;
3420 	if (signal_pending(current))
3421 		goto out;
3422 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3423 		goto out;
3424 
3425 	ret = 0;
3426 out:
3427 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3428 	return ret;
3429 }
3430 
3431 /*
3432  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3433  * pending.  This is mostly used when halting a vCPU, but may also be used
3434  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3435  */
3436 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3437 {
3438 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3439 	bool waited = false;
3440 
3441 	vcpu->stat.generic.blocking = 1;
3442 
3443 	preempt_disable();
3444 	kvm_arch_vcpu_blocking(vcpu);
3445 	prepare_to_rcuwait(wait);
3446 	preempt_enable();
3447 
3448 	for (;;) {
3449 		set_current_state(TASK_INTERRUPTIBLE);
3450 
3451 		if (kvm_vcpu_check_block(vcpu) < 0)
3452 			break;
3453 
3454 		waited = true;
3455 		schedule();
3456 	}
3457 
3458 	preempt_disable();
3459 	finish_rcuwait(wait);
3460 	kvm_arch_vcpu_unblocking(vcpu);
3461 	preempt_enable();
3462 
3463 	vcpu->stat.generic.blocking = 0;
3464 
3465 	return waited;
3466 }
3467 
3468 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3469 					  ktime_t end, bool success)
3470 {
3471 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3472 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3473 
3474 	++vcpu->stat.generic.halt_attempted_poll;
3475 
3476 	if (success) {
3477 		++vcpu->stat.generic.halt_successful_poll;
3478 
3479 		if (!vcpu_valid_wakeup(vcpu))
3480 			++vcpu->stat.generic.halt_poll_invalid;
3481 
3482 		stats->halt_poll_success_ns += poll_ns;
3483 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3484 	} else {
3485 		stats->halt_poll_fail_ns += poll_ns;
3486 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3487 	}
3488 }
3489 
3490 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3491 {
3492 	struct kvm *kvm = vcpu->kvm;
3493 
3494 	if (kvm->override_halt_poll_ns) {
3495 		/*
3496 		 * Ensure kvm->max_halt_poll_ns is not read before
3497 		 * kvm->override_halt_poll_ns.
3498 		 *
3499 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3500 		 */
3501 		smp_rmb();
3502 		return READ_ONCE(kvm->max_halt_poll_ns);
3503 	}
3504 
3505 	return READ_ONCE(halt_poll_ns);
3506 }
3507 
3508 /*
3509  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3510  * polling is enabled, busy wait for a short time before blocking to avoid the
3511  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3512  * is halted.
3513  */
3514 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3515 {
3516 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3517 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3518 	ktime_t start, cur, poll_end;
3519 	bool waited = false;
3520 	bool do_halt_poll;
3521 	u64 halt_ns;
3522 
3523 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3524 		vcpu->halt_poll_ns = max_halt_poll_ns;
3525 
3526 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3527 
3528 	start = cur = poll_end = ktime_get();
3529 	if (do_halt_poll) {
3530 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3531 
3532 		do {
3533 			if (kvm_vcpu_check_block(vcpu) < 0)
3534 				goto out;
3535 			cpu_relax();
3536 			poll_end = cur = ktime_get();
3537 		} while (kvm_vcpu_can_poll(cur, stop));
3538 	}
3539 
3540 	waited = kvm_vcpu_block(vcpu);
3541 
3542 	cur = ktime_get();
3543 	if (waited) {
3544 		vcpu->stat.generic.halt_wait_ns +=
3545 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3546 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3547 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3548 	}
3549 out:
3550 	/* The total time the vCPU was "halted", including polling time. */
3551 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3552 
3553 	/*
3554 	 * Note, halt-polling is considered successful so long as the vCPU was
3555 	 * never actually scheduled out, i.e. even if the wake event arrived
3556 	 * after of the halt-polling loop itself, but before the full wait.
3557 	 */
3558 	if (do_halt_poll)
3559 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3560 
3561 	if (halt_poll_allowed) {
3562 		/* Recompute the max halt poll time in case it changed. */
3563 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3564 
3565 		if (!vcpu_valid_wakeup(vcpu)) {
3566 			shrink_halt_poll_ns(vcpu);
3567 		} else if (max_halt_poll_ns) {
3568 			if (halt_ns <= vcpu->halt_poll_ns)
3569 				;
3570 			/* we had a long block, shrink polling */
3571 			else if (vcpu->halt_poll_ns &&
3572 				 halt_ns > max_halt_poll_ns)
3573 				shrink_halt_poll_ns(vcpu);
3574 			/* we had a short halt and our poll time is too small */
3575 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3576 				 halt_ns < max_halt_poll_ns)
3577 				grow_halt_poll_ns(vcpu);
3578 		} else {
3579 			vcpu->halt_poll_ns = 0;
3580 		}
3581 	}
3582 
3583 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3584 }
3585 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3586 
3587 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3588 {
3589 	if (__kvm_vcpu_wake_up(vcpu)) {
3590 		WRITE_ONCE(vcpu->ready, true);
3591 		++vcpu->stat.generic.halt_wakeup;
3592 		return true;
3593 	}
3594 
3595 	return false;
3596 }
3597 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3598 
3599 #ifndef CONFIG_S390
3600 /*
3601  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3602  */
3603 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3604 {
3605 	int me, cpu;
3606 
3607 	if (kvm_vcpu_wake_up(vcpu))
3608 		return;
3609 
3610 	me = get_cpu();
3611 	/*
3612 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3613 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3614 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3615 	 * within the vCPU thread itself.
3616 	 */
3617 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3618 		if (vcpu->mode == IN_GUEST_MODE)
3619 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3620 		goto out;
3621 	}
3622 
3623 	/*
3624 	 * Note, the vCPU could get migrated to a different pCPU at any point
3625 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3626 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3627 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3628 	 * vCPU also requires it to leave IN_GUEST_MODE.
3629 	 */
3630 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3631 		cpu = READ_ONCE(vcpu->cpu);
3632 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3633 			smp_send_reschedule(cpu);
3634 	}
3635 out:
3636 	put_cpu();
3637 }
3638 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3639 #endif /* !CONFIG_S390 */
3640 
3641 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3642 {
3643 	struct pid *pid;
3644 	struct task_struct *task = NULL;
3645 	int ret = 0;
3646 
3647 	rcu_read_lock();
3648 	pid = rcu_dereference(target->pid);
3649 	if (pid)
3650 		task = get_pid_task(pid, PIDTYPE_PID);
3651 	rcu_read_unlock();
3652 	if (!task)
3653 		return ret;
3654 	ret = yield_to(task, 1);
3655 	put_task_struct(task);
3656 
3657 	return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3660 
3661 /*
3662  * Helper that checks whether a VCPU is eligible for directed yield.
3663  * Most eligible candidate to yield is decided by following heuristics:
3664  *
3665  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3666  *  (preempted lock holder), indicated by @in_spin_loop.
3667  *  Set at the beginning and cleared at the end of interception/PLE handler.
3668  *
3669  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3670  *  chance last time (mostly it has become eligible now since we have probably
3671  *  yielded to lockholder in last iteration. This is done by toggling
3672  *  @dy_eligible each time a VCPU checked for eligibility.)
3673  *
3674  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3675  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3676  *  burning. Giving priority for a potential lock-holder increases lock
3677  *  progress.
3678  *
3679  *  Since algorithm is based on heuristics, accessing another VCPU data without
3680  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3681  *  and continue with next VCPU and so on.
3682  */
3683 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3684 {
3685 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3686 	bool eligible;
3687 
3688 	eligible = !vcpu->spin_loop.in_spin_loop ||
3689 		    vcpu->spin_loop.dy_eligible;
3690 
3691 	if (vcpu->spin_loop.in_spin_loop)
3692 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3693 
3694 	return eligible;
3695 #else
3696 	return true;
3697 #endif
3698 }
3699 
3700 /*
3701  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3702  * a vcpu_load/vcpu_put pair.  However, for most architectures
3703  * kvm_arch_vcpu_runnable does not require vcpu_load.
3704  */
3705 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3706 {
3707 	return kvm_arch_vcpu_runnable(vcpu);
3708 }
3709 
3710 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3711 {
3712 	if (kvm_arch_dy_runnable(vcpu))
3713 		return true;
3714 
3715 #ifdef CONFIG_KVM_ASYNC_PF
3716 	if (!list_empty_careful(&vcpu->async_pf.done))
3717 		return true;
3718 #endif
3719 
3720 	return false;
3721 }
3722 
3723 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3724 {
3725 	return false;
3726 }
3727 
3728 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3729 {
3730 	struct kvm *kvm = me->kvm;
3731 	struct kvm_vcpu *vcpu;
3732 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3733 	unsigned long i;
3734 	int yielded = 0;
3735 	int try = 3;
3736 	int pass;
3737 
3738 	kvm_vcpu_set_in_spin_loop(me, true);
3739 	/*
3740 	 * We boost the priority of a VCPU that is runnable but not
3741 	 * currently running, because it got preempted by something
3742 	 * else and called schedule in __vcpu_run.  Hopefully that
3743 	 * VCPU is holding the lock that we need and will release it.
3744 	 * We approximate round-robin by starting at the last boosted VCPU.
3745 	 */
3746 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3747 		kvm_for_each_vcpu(i, vcpu, kvm) {
3748 			if (!pass && i <= last_boosted_vcpu) {
3749 				i = last_boosted_vcpu;
3750 				continue;
3751 			} else if (pass && i > last_boosted_vcpu)
3752 				break;
3753 			if (!READ_ONCE(vcpu->ready))
3754 				continue;
3755 			if (vcpu == me)
3756 				continue;
3757 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3758 				continue;
3759 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3760 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3761 			    !kvm_arch_vcpu_in_kernel(vcpu))
3762 				continue;
3763 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3764 				continue;
3765 
3766 			yielded = kvm_vcpu_yield_to(vcpu);
3767 			if (yielded > 0) {
3768 				kvm->last_boosted_vcpu = i;
3769 				break;
3770 			} else if (yielded < 0) {
3771 				try--;
3772 				if (!try)
3773 					break;
3774 			}
3775 		}
3776 	}
3777 	kvm_vcpu_set_in_spin_loop(me, false);
3778 
3779 	/* Ensure vcpu is not eligible during next spinloop */
3780 	kvm_vcpu_set_dy_eligible(me, false);
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3783 
3784 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3785 {
3786 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3787 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3788 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3789 	     kvm->dirty_ring_size / PAGE_SIZE);
3790 #else
3791 	return false;
3792 #endif
3793 }
3794 
3795 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3796 {
3797 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3798 	struct page *page;
3799 
3800 	if (vmf->pgoff == 0)
3801 		page = virt_to_page(vcpu->run);
3802 #ifdef CONFIG_X86
3803 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3804 		page = virt_to_page(vcpu->arch.pio_data);
3805 #endif
3806 #ifdef CONFIG_KVM_MMIO
3807 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3808 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3809 #endif
3810 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3811 		page = kvm_dirty_ring_get_page(
3812 		    &vcpu->dirty_ring,
3813 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3814 	else
3815 		return kvm_arch_vcpu_fault(vcpu, vmf);
3816 	get_page(page);
3817 	vmf->page = page;
3818 	return 0;
3819 }
3820 
3821 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3822 	.fault = kvm_vcpu_fault,
3823 };
3824 
3825 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3826 {
3827 	struct kvm_vcpu *vcpu = file->private_data;
3828 	unsigned long pages = vma_pages(vma);
3829 
3830 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3831 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3832 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3833 		return -EINVAL;
3834 
3835 	vma->vm_ops = &kvm_vcpu_vm_ops;
3836 	return 0;
3837 }
3838 
3839 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3840 {
3841 	struct kvm_vcpu *vcpu = filp->private_data;
3842 
3843 	kvm_put_kvm(vcpu->kvm);
3844 	return 0;
3845 }
3846 
3847 static const struct file_operations kvm_vcpu_fops = {
3848 	.release        = kvm_vcpu_release,
3849 	.unlocked_ioctl = kvm_vcpu_ioctl,
3850 	.mmap           = kvm_vcpu_mmap,
3851 	.llseek		= noop_llseek,
3852 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3853 };
3854 
3855 /*
3856  * Allocates an inode for the vcpu.
3857  */
3858 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3859 {
3860 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3861 
3862 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3863 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3864 }
3865 
3866 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3867 static int vcpu_get_pid(void *data, u64 *val)
3868 {
3869 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3870 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3871 	return 0;
3872 }
3873 
3874 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3875 
3876 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3877 {
3878 	struct dentry *debugfs_dentry;
3879 	char dir_name[ITOA_MAX_LEN * 2];
3880 
3881 	if (!debugfs_initialized())
3882 		return;
3883 
3884 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3885 	debugfs_dentry = debugfs_create_dir(dir_name,
3886 					    vcpu->kvm->debugfs_dentry);
3887 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3888 			    &vcpu_get_pid_fops);
3889 
3890 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3891 }
3892 #endif
3893 
3894 /*
3895  * Creates some virtual cpus.  Good luck creating more than one.
3896  */
3897 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3898 {
3899 	int r;
3900 	struct kvm_vcpu *vcpu;
3901 	struct page *page;
3902 
3903 	if (id >= KVM_MAX_VCPU_IDS)
3904 		return -EINVAL;
3905 
3906 	mutex_lock(&kvm->lock);
3907 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3908 		mutex_unlock(&kvm->lock);
3909 		return -EINVAL;
3910 	}
3911 
3912 	r = kvm_arch_vcpu_precreate(kvm, id);
3913 	if (r) {
3914 		mutex_unlock(&kvm->lock);
3915 		return r;
3916 	}
3917 
3918 	kvm->created_vcpus++;
3919 	mutex_unlock(&kvm->lock);
3920 
3921 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3922 	if (!vcpu) {
3923 		r = -ENOMEM;
3924 		goto vcpu_decrement;
3925 	}
3926 
3927 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3928 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3929 	if (!page) {
3930 		r = -ENOMEM;
3931 		goto vcpu_free;
3932 	}
3933 	vcpu->run = page_address(page);
3934 
3935 	kvm_vcpu_init(vcpu, kvm, id);
3936 
3937 	r = kvm_arch_vcpu_create(vcpu);
3938 	if (r)
3939 		goto vcpu_free_run_page;
3940 
3941 	if (kvm->dirty_ring_size) {
3942 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3943 					 id, kvm->dirty_ring_size);
3944 		if (r)
3945 			goto arch_vcpu_destroy;
3946 	}
3947 
3948 	mutex_lock(&kvm->lock);
3949 
3950 #ifdef CONFIG_LOCKDEP
3951 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3952 	mutex_lock(&vcpu->mutex);
3953 	mutex_unlock(&vcpu->mutex);
3954 #endif
3955 
3956 	if (kvm_get_vcpu_by_id(kvm, id)) {
3957 		r = -EEXIST;
3958 		goto unlock_vcpu_destroy;
3959 	}
3960 
3961 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3962 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3963 	BUG_ON(r == -EBUSY);
3964 	if (r)
3965 		goto unlock_vcpu_destroy;
3966 
3967 	/* Now it's all set up, let userspace reach it */
3968 	kvm_get_kvm(kvm);
3969 	r = create_vcpu_fd(vcpu);
3970 	if (r < 0) {
3971 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3972 		kvm_put_kvm_no_destroy(kvm);
3973 		goto unlock_vcpu_destroy;
3974 	}
3975 
3976 	/*
3977 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3978 	 * pointer before kvm->online_vcpu's incremented value.
3979 	 */
3980 	smp_wmb();
3981 	atomic_inc(&kvm->online_vcpus);
3982 
3983 	mutex_unlock(&kvm->lock);
3984 	kvm_arch_vcpu_postcreate(vcpu);
3985 	kvm_create_vcpu_debugfs(vcpu);
3986 	return r;
3987 
3988 unlock_vcpu_destroy:
3989 	mutex_unlock(&kvm->lock);
3990 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3991 arch_vcpu_destroy:
3992 	kvm_arch_vcpu_destroy(vcpu);
3993 vcpu_free_run_page:
3994 	free_page((unsigned long)vcpu->run);
3995 vcpu_free:
3996 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3997 vcpu_decrement:
3998 	mutex_lock(&kvm->lock);
3999 	kvm->created_vcpus--;
4000 	mutex_unlock(&kvm->lock);
4001 	return r;
4002 }
4003 
4004 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4005 {
4006 	if (sigset) {
4007 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4008 		vcpu->sigset_active = 1;
4009 		vcpu->sigset = *sigset;
4010 	} else
4011 		vcpu->sigset_active = 0;
4012 	return 0;
4013 }
4014 
4015 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4016 			      size_t size, loff_t *offset)
4017 {
4018 	struct kvm_vcpu *vcpu = file->private_data;
4019 
4020 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4021 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4022 			sizeof(vcpu->stat), user_buffer, size, offset);
4023 }
4024 
4025 static const struct file_operations kvm_vcpu_stats_fops = {
4026 	.read = kvm_vcpu_stats_read,
4027 	.llseek = noop_llseek,
4028 };
4029 
4030 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4031 {
4032 	int fd;
4033 	struct file *file;
4034 	char name[15 + ITOA_MAX_LEN + 1];
4035 
4036 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4037 
4038 	fd = get_unused_fd_flags(O_CLOEXEC);
4039 	if (fd < 0)
4040 		return fd;
4041 
4042 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4043 	if (IS_ERR(file)) {
4044 		put_unused_fd(fd);
4045 		return PTR_ERR(file);
4046 	}
4047 	file->f_mode |= FMODE_PREAD;
4048 	fd_install(fd, file);
4049 
4050 	return fd;
4051 }
4052 
4053 static long kvm_vcpu_ioctl(struct file *filp,
4054 			   unsigned int ioctl, unsigned long arg)
4055 {
4056 	struct kvm_vcpu *vcpu = filp->private_data;
4057 	void __user *argp = (void __user *)arg;
4058 	int r;
4059 	struct kvm_fpu *fpu = NULL;
4060 	struct kvm_sregs *kvm_sregs = NULL;
4061 
4062 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4063 		return -EIO;
4064 
4065 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4066 		return -EINVAL;
4067 
4068 	/*
4069 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4070 	 * execution; mutex_lock() would break them.
4071 	 */
4072 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4073 	if (r != -ENOIOCTLCMD)
4074 		return r;
4075 
4076 	if (mutex_lock_killable(&vcpu->mutex))
4077 		return -EINTR;
4078 	switch (ioctl) {
4079 	case KVM_RUN: {
4080 		struct pid *oldpid;
4081 		r = -EINVAL;
4082 		if (arg)
4083 			goto out;
4084 		oldpid = rcu_access_pointer(vcpu->pid);
4085 		if (unlikely(oldpid != task_pid(current))) {
4086 			/* The thread running this VCPU changed. */
4087 			struct pid *newpid;
4088 
4089 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4090 			if (r)
4091 				break;
4092 
4093 			newpid = get_task_pid(current, PIDTYPE_PID);
4094 			rcu_assign_pointer(vcpu->pid, newpid);
4095 			if (oldpid)
4096 				synchronize_rcu();
4097 			put_pid(oldpid);
4098 		}
4099 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4100 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4101 		break;
4102 	}
4103 	case KVM_GET_REGS: {
4104 		struct kvm_regs *kvm_regs;
4105 
4106 		r = -ENOMEM;
4107 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4108 		if (!kvm_regs)
4109 			goto out;
4110 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4111 		if (r)
4112 			goto out_free1;
4113 		r = -EFAULT;
4114 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4115 			goto out_free1;
4116 		r = 0;
4117 out_free1:
4118 		kfree(kvm_regs);
4119 		break;
4120 	}
4121 	case KVM_SET_REGS: {
4122 		struct kvm_regs *kvm_regs;
4123 
4124 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4125 		if (IS_ERR(kvm_regs)) {
4126 			r = PTR_ERR(kvm_regs);
4127 			goto out;
4128 		}
4129 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4130 		kfree(kvm_regs);
4131 		break;
4132 	}
4133 	case KVM_GET_SREGS: {
4134 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4135 				    GFP_KERNEL_ACCOUNT);
4136 		r = -ENOMEM;
4137 		if (!kvm_sregs)
4138 			goto out;
4139 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4140 		if (r)
4141 			goto out;
4142 		r = -EFAULT;
4143 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4144 			goto out;
4145 		r = 0;
4146 		break;
4147 	}
4148 	case KVM_SET_SREGS: {
4149 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4150 		if (IS_ERR(kvm_sregs)) {
4151 			r = PTR_ERR(kvm_sregs);
4152 			kvm_sregs = NULL;
4153 			goto out;
4154 		}
4155 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4156 		break;
4157 	}
4158 	case KVM_GET_MP_STATE: {
4159 		struct kvm_mp_state mp_state;
4160 
4161 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4162 		if (r)
4163 			goto out;
4164 		r = -EFAULT;
4165 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4166 			goto out;
4167 		r = 0;
4168 		break;
4169 	}
4170 	case KVM_SET_MP_STATE: {
4171 		struct kvm_mp_state mp_state;
4172 
4173 		r = -EFAULT;
4174 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4175 			goto out;
4176 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4177 		break;
4178 	}
4179 	case KVM_TRANSLATE: {
4180 		struct kvm_translation tr;
4181 
4182 		r = -EFAULT;
4183 		if (copy_from_user(&tr, argp, sizeof(tr)))
4184 			goto out;
4185 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4186 		if (r)
4187 			goto out;
4188 		r = -EFAULT;
4189 		if (copy_to_user(argp, &tr, sizeof(tr)))
4190 			goto out;
4191 		r = 0;
4192 		break;
4193 	}
4194 	case KVM_SET_GUEST_DEBUG: {
4195 		struct kvm_guest_debug dbg;
4196 
4197 		r = -EFAULT;
4198 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4199 			goto out;
4200 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4201 		break;
4202 	}
4203 	case KVM_SET_SIGNAL_MASK: {
4204 		struct kvm_signal_mask __user *sigmask_arg = argp;
4205 		struct kvm_signal_mask kvm_sigmask;
4206 		sigset_t sigset, *p;
4207 
4208 		p = NULL;
4209 		if (argp) {
4210 			r = -EFAULT;
4211 			if (copy_from_user(&kvm_sigmask, argp,
4212 					   sizeof(kvm_sigmask)))
4213 				goto out;
4214 			r = -EINVAL;
4215 			if (kvm_sigmask.len != sizeof(sigset))
4216 				goto out;
4217 			r = -EFAULT;
4218 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4219 					   sizeof(sigset)))
4220 				goto out;
4221 			p = &sigset;
4222 		}
4223 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4224 		break;
4225 	}
4226 	case KVM_GET_FPU: {
4227 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4228 		r = -ENOMEM;
4229 		if (!fpu)
4230 			goto out;
4231 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4232 		if (r)
4233 			goto out;
4234 		r = -EFAULT;
4235 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4236 			goto out;
4237 		r = 0;
4238 		break;
4239 	}
4240 	case KVM_SET_FPU: {
4241 		fpu = memdup_user(argp, sizeof(*fpu));
4242 		if (IS_ERR(fpu)) {
4243 			r = PTR_ERR(fpu);
4244 			fpu = NULL;
4245 			goto out;
4246 		}
4247 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4248 		break;
4249 	}
4250 	case KVM_GET_STATS_FD: {
4251 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4252 		break;
4253 	}
4254 	default:
4255 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4256 	}
4257 out:
4258 	mutex_unlock(&vcpu->mutex);
4259 	kfree(fpu);
4260 	kfree(kvm_sregs);
4261 	return r;
4262 }
4263 
4264 #ifdef CONFIG_KVM_COMPAT
4265 static long kvm_vcpu_compat_ioctl(struct file *filp,
4266 				  unsigned int ioctl, unsigned long arg)
4267 {
4268 	struct kvm_vcpu *vcpu = filp->private_data;
4269 	void __user *argp = compat_ptr(arg);
4270 	int r;
4271 
4272 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4273 		return -EIO;
4274 
4275 	switch (ioctl) {
4276 	case KVM_SET_SIGNAL_MASK: {
4277 		struct kvm_signal_mask __user *sigmask_arg = argp;
4278 		struct kvm_signal_mask kvm_sigmask;
4279 		sigset_t sigset;
4280 
4281 		if (argp) {
4282 			r = -EFAULT;
4283 			if (copy_from_user(&kvm_sigmask, argp,
4284 					   sizeof(kvm_sigmask)))
4285 				goto out;
4286 			r = -EINVAL;
4287 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4288 				goto out;
4289 			r = -EFAULT;
4290 			if (get_compat_sigset(&sigset,
4291 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4292 				goto out;
4293 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4294 		} else
4295 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4296 		break;
4297 	}
4298 	default:
4299 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4300 	}
4301 
4302 out:
4303 	return r;
4304 }
4305 #endif
4306 
4307 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4308 {
4309 	struct kvm_device *dev = filp->private_data;
4310 
4311 	if (dev->ops->mmap)
4312 		return dev->ops->mmap(dev, vma);
4313 
4314 	return -ENODEV;
4315 }
4316 
4317 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4318 				 int (*accessor)(struct kvm_device *dev,
4319 						 struct kvm_device_attr *attr),
4320 				 unsigned long arg)
4321 {
4322 	struct kvm_device_attr attr;
4323 
4324 	if (!accessor)
4325 		return -EPERM;
4326 
4327 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4328 		return -EFAULT;
4329 
4330 	return accessor(dev, &attr);
4331 }
4332 
4333 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4334 			     unsigned long arg)
4335 {
4336 	struct kvm_device *dev = filp->private_data;
4337 
4338 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4339 		return -EIO;
4340 
4341 	switch (ioctl) {
4342 	case KVM_SET_DEVICE_ATTR:
4343 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4344 	case KVM_GET_DEVICE_ATTR:
4345 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4346 	case KVM_HAS_DEVICE_ATTR:
4347 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4348 	default:
4349 		if (dev->ops->ioctl)
4350 			return dev->ops->ioctl(dev, ioctl, arg);
4351 
4352 		return -ENOTTY;
4353 	}
4354 }
4355 
4356 static int kvm_device_release(struct inode *inode, struct file *filp)
4357 {
4358 	struct kvm_device *dev = filp->private_data;
4359 	struct kvm *kvm = dev->kvm;
4360 
4361 	if (dev->ops->release) {
4362 		mutex_lock(&kvm->lock);
4363 		list_del(&dev->vm_node);
4364 		dev->ops->release(dev);
4365 		mutex_unlock(&kvm->lock);
4366 	}
4367 
4368 	kvm_put_kvm(kvm);
4369 	return 0;
4370 }
4371 
4372 static const struct file_operations kvm_device_fops = {
4373 	.unlocked_ioctl = kvm_device_ioctl,
4374 	.release = kvm_device_release,
4375 	KVM_COMPAT(kvm_device_ioctl),
4376 	.mmap = kvm_device_mmap,
4377 };
4378 
4379 struct kvm_device *kvm_device_from_filp(struct file *filp)
4380 {
4381 	if (filp->f_op != &kvm_device_fops)
4382 		return NULL;
4383 
4384 	return filp->private_data;
4385 }
4386 
4387 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4388 #ifdef CONFIG_KVM_MPIC
4389 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4390 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4391 #endif
4392 };
4393 
4394 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4395 {
4396 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4397 		return -ENOSPC;
4398 
4399 	if (kvm_device_ops_table[type] != NULL)
4400 		return -EEXIST;
4401 
4402 	kvm_device_ops_table[type] = ops;
4403 	return 0;
4404 }
4405 
4406 void kvm_unregister_device_ops(u32 type)
4407 {
4408 	if (kvm_device_ops_table[type] != NULL)
4409 		kvm_device_ops_table[type] = NULL;
4410 }
4411 
4412 static int kvm_ioctl_create_device(struct kvm *kvm,
4413 				   struct kvm_create_device *cd)
4414 {
4415 	const struct kvm_device_ops *ops;
4416 	struct kvm_device *dev;
4417 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4418 	int type;
4419 	int ret;
4420 
4421 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4422 		return -ENODEV;
4423 
4424 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4425 	ops = kvm_device_ops_table[type];
4426 	if (ops == NULL)
4427 		return -ENODEV;
4428 
4429 	if (test)
4430 		return 0;
4431 
4432 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4433 	if (!dev)
4434 		return -ENOMEM;
4435 
4436 	dev->ops = ops;
4437 	dev->kvm = kvm;
4438 
4439 	mutex_lock(&kvm->lock);
4440 	ret = ops->create(dev, type);
4441 	if (ret < 0) {
4442 		mutex_unlock(&kvm->lock);
4443 		kfree(dev);
4444 		return ret;
4445 	}
4446 	list_add(&dev->vm_node, &kvm->devices);
4447 	mutex_unlock(&kvm->lock);
4448 
4449 	if (ops->init)
4450 		ops->init(dev);
4451 
4452 	kvm_get_kvm(kvm);
4453 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4454 	if (ret < 0) {
4455 		kvm_put_kvm_no_destroy(kvm);
4456 		mutex_lock(&kvm->lock);
4457 		list_del(&dev->vm_node);
4458 		if (ops->release)
4459 			ops->release(dev);
4460 		mutex_unlock(&kvm->lock);
4461 		if (ops->destroy)
4462 			ops->destroy(dev);
4463 		return ret;
4464 	}
4465 
4466 	cd->fd = ret;
4467 	return 0;
4468 }
4469 
4470 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4471 {
4472 	switch (arg) {
4473 	case KVM_CAP_USER_MEMORY:
4474 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4475 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4476 	case KVM_CAP_INTERNAL_ERROR_DATA:
4477 #ifdef CONFIG_HAVE_KVM_MSI
4478 	case KVM_CAP_SIGNAL_MSI:
4479 #endif
4480 #ifdef CONFIG_HAVE_KVM_IRQFD
4481 	case KVM_CAP_IRQFD:
4482 	case KVM_CAP_IRQFD_RESAMPLE:
4483 #endif
4484 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4485 	case KVM_CAP_CHECK_EXTENSION_VM:
4486 	case KVM_CAP_ENABLE_CAP_VM:
4487 	case KVM_CAP_HALT_POLL:
4488 		return 1;
4489 #ifdef CONFIG_KVM_MMIO
4490 	case KVM_CAP_COALESCED_MMIO:
4491 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4492 	case KVM_CAP_COALESCED_PIO:
4493 		return 1;
4494 #endif
4495 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4496 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4497 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4498 #endif
4499 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4500 	case KVM_CAP_IRQ_ROUTING:
4501 		return KVM_MAX_IRQ_ROUTES;
4502 #endif
4503 #if KVM_ADDRESS_SPACE_NUM > 1
4504 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4505 		return KVM_ADDRESS_SPACE_NUM;
4506 #endif
4507 	case KVM_CAP_NR_MEMSLOTS:
4508 		return KVM_USER_MEM_SLOTS;
4509 	case KVM_CAP_DIRTY_LOG_RING:
4510 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4511 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4512 #else
4513 		return 0;
4514 #endif
4515 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4516 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4517 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4518 #else
4519 		return 0;
4520 #endif
4521 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4522 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4523 #endif
4524 	case KVM_CAP_BINARY_STATS_FD:
4525 	case KVM_CAP_SYSTEM_EVENT_DATA:
4526 		return 1;
4527 	default:
4528 		break;
4529 	}
4530 	return kvm_vm_ioctl_check_extension(kvm, arg);
4531 }
4532 
4533 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4534 {
4535 	int r;
4536 
4537 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4538 		return -EINVAL;
4539 
4540 	/* the size should be power of 2 */
4541 	if (!size || (size & (size - 1)))
4542 		return -EINVAL;
4543 
4544 	/* Should be bigger to keep the reserved entries, or a page */
4545 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4546 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4547 		return -EINVAL;
4548 
4549 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4550 	    sizeof(struct kvm_dirty_gfn))
4551 		return -E2BIG;
4552 
4553 	/* We only allow it to set once */
4554 	if (kvm->dirty_ring_size)
4555 		return -EINVAL;
4556 
4557 	mutex_lock(&kvm->lock);
4558 
4559 	if (kvm->created_vcpus) {
4560 		/* We don't allow to change this value after vcpu created */
4561 		r = -EINVAL;
4562 	} else {
4563 		kvm->dirty_ring_size = size;
4564 		r = 0;
4565 	}
4566 
4567 	mutex_unlock(&kvm->lock);
4568 	return r;
4569 }
4570 
4571 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4572 {
4573 	unsigned long i;
4574 	struct kvm_vcpu *vcpu;
4575 	int cleared = 0;
4576 
4577 	if (!kvm->dirty_ring_size)
4578 		return -EINVAL;
4579 
4580 	mutex_lock(&kvm->slots_lock);
4581 
4582 	kvm_for_each_vcpu(i, vcpu, kvm)
4583 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4584 
4585 	mutex_unlock(&kvm->slots_lock);
4586 
4587 	if (cleared)
4588 		kvm_flush_remote_tlbs(kvm);
4589 
4590 	return cleared;
4591 }
4592 
4593 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4594 						  struct kvm_enable_cap *cap)
4595 {
4596 	return -EINVAL;
4597 }
4598 
4599 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4600 {
4601 	int i;
4602 
4603 	lockdep_assert_held(&kvm->slots_lock);
4604 
4605 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4606 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4607 			return false;
4608 	}
4609 
4610 	return true;
4611 }
4612 
4613 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4614 					   struct kvm_enable_cap *cap)
4615 {
4616 	switch (cap->cap) {
4617 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4618 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4619 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4620 
4621 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4622 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4623 
4624 		if (cap->flags || (cap->args[0] & ~allowed_options))
4625 			return -EINVAL;
4626 		kvm->manual_dirty_log_protect = cap->args[0];
4627 		return 0;
4628 	}
4629 #endif
4630 	case KVM_CAP_HALT_POLL: {
4631 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4632 			return -EINVAL;
4633 
4634 		kvm->max_halt_poll_ns = cap->args[0];
4635 
4636 		/*
4637 		 * Ensure kvm->override_halt_poll_ns does not become visible
4638 		 * before kvm->max_halt_poll_ns.
4639 		 *
4640 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4641 		 */
4642 		smp_wmb();
4643 		kvm->override_halt_poll_ns = true;
4644 
4645 		return 0;
4646 	}
4647 	case KVM_CAP_DIRTY_LOG_RING:
4648 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4649 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4650 			return -EINVAL;
4651 
4652 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4653 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4654 		int r = -EINVAL;
4655 
4656 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4657 		    !kvm->dirty_ring_size || cap->flags)
4658 			return r;
4659 
4660 		mutex_lock(&kvm->slots_lock);
4661 
4662 		/*
4663 		 * For simplicity, allow enabling ring+bitmap if and only if
4664 		 * there are no memslots, e.g. to ensure all memslots allocate
4665 		 * a bitmap after the capability is enabled.
4666 		 */
4667 		if (kvm_are_all_memslots_empty(kvm)) {
4668 			kvm->dirty_ring_with_bitmap = true;
4669 			r = 0;
4670 		}
4671 
4672 		mutex_unlock(&kvm->slots_lock);
4673 
4674 		return r;
4675 	}
4676 	default:
4677 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4678 	}
4679 }
4680 
4681 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4682 			      size_t size, loff_t *offset)
4683 {
4684 	struct kvm *kvm = file->private_data;
4685 
4686 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4687 				&kvm_vm_stats_desc[0], &kvm->stat,
4688 				sizeof(kvm->stat), user_buffer, size, offset);
4689 }
4690 
4691 static const struct file_operations kvm_vm_stats_fops = {
4692 	.read = kvm_vm_stats_read,
4693 	.llseek = noop_llseek,
4694 };
4695 
4696 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4697 {
4698 	int fd;
4699 	struct file *file;
4700 
4701 	fd = get_unused_fd_flags(O_CLOEXEC);
4702 	if (fd < 0)
4703 		return fd;
4704 
4705 	file = anon_inode_getfile("kvm-vm-stats",
4706 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4707 	if (IS_ERR(file)) {
4708 		put_unused_fd(fd);
4709 		return PTR_ERR(file);
4710 	}
4711 	file->f_mode |= FMODE_PREAD;
4712 	fd_install(fd, file);
4713 
4714 	return fd;
4715 }
4716 
4717 static long kvm_vm_ioctl(struct file *filp,
4718 			   unsigned int ioctl, unsigned long arg)
4719 {
4720 	struct kvm *kvm = filp->private_data;
4721 	void __user *argp = (void __user *)arg;
4722 	int r;
4723 
4724 	if (kvm->mm != current->mm || kvm->vm_dead)
4725 		return -EIO;
4726 	switch (ioctl) {
4727 	case KVM_CREATE_VCPU:
4728 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4729 		break;
4730 	case KVM_ENABLE_CAP: {
4731 		struct kvm_enable_cap cap;
4732 
4733 		r = -EFAULT;
4734 		if (copy_from_user(&cap, argp, sizeof(cap)))
4735 			goto out;
4736 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4737 		break;
4738 	}
4739 	case KVM_SET_USER_MEMORY_REGION: {
4740 		struct kvm_userspace_memory_region kvm_userspace_mem;
4741 
4742 		r = -EFAULT;
4743 		if (copy_from_user(&kvm_userspace_mem, argp,
4744 						sizeof(kvm_userspace_mem)))
4745 			goto out;
4746 
4747 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4748 		break;
4749 	}
4750 	case KVM_GET_DIRTY_LOG: {
4751 		struct kvm_dirty_log log;
4752 
4753 		r = -EFAULT;
4754 		if (copy_from_user(&log, argp, sizeof(log)))
4755 			goto out;
4756 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4757 		break;
4758 	}
4759 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4760 	case KVM_CLEAR_DIRTY_LOG: {
4761 		struct kvm_clear_dirty_log log;
4762 
4763 		r = -EFAULT;
4764 		if (copy_from_user(&log, argp, sizeof(log)))
4765 			goto out;
4766 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4767 		break;
4768 	}
4769 #endif
4770 #ifdef CONFIG_KVM_MMIO
4771 	case KVM_REGISTER_COALESCED_MMIO: {
4772 		struct kvm_coalesced_mmio_zone zone;
4773 
4774 		r = -EFAULT;
4775 		if (copy_from_user(&zone, argp, sizeof(zone)))
4776 			goto out;
4777 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4778 		break;
4779 	}
4780 	case KVM_UNREGISTER_COALESCED_MMIO: {
4781 		struct kvm_coalesced_mmio_zone zone;
4782 
4783 		r = -EFAULT;
4784 		if (copy_from_user(&zone, argp, sizeof(zone)))
4785 			goto out;
4786 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4787 		break;
4788 	}
4789 #endif
4790 	case KVM_IRQFD: {
4791 		struct kvm_irqfd data;
4792 
4793 		r = -EFAULT;
4794 		if (copy_from_user(&data, argp, sizeof(data)))
4795 			goto out;
4796 		r = kvm_irqfd(kvm, &data);
4797 		break;
4798 	}
4799 	case KVM_IOEVENTFD: {
4800 		struct kvm_ioeventfd data;
4801 
4802 		r = -EFAULT;
4803 		if (copy_from_user(&data, argp, sizeof(data)))
4804 			goto out;
4805 		r = kvm_ioeventfd(kvm, &data);
4806 		break;
4807 	}
4808 #ifdef CONFIG_HAVE_KVM_MSI
4809 	case KVM_SIGNAL_MSI: {
4810 		struct kvm_msi msi;
4811 
4812 		r = -EFAULT;
4813 		if (copy_from_user(&msi, argp, sizeof(msi)))
4814 			goto out;
4815 		r = kvm_send_userspace_msi(kvm, &msi);
4816 		break;
4817 	}
4818 #endif
4819 #ifdef __KVM_HAVE_IRQ_LINE
4820 	case KVM_IRQ_LINE_STATUS:
4821 	case KVM_IRQ_LINE: {
4822 		struct kvm_irq_level irq_event;
4823 
4824 		r = -EFAULT;
4825 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4826 			goto out;
4827 
4828 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4829 					ioctl == KVM_IRQ_LINE_STATUS);
4830 		if (r)
4831 			goto out;
4832 
4833 		r = -EFAULT;
4834 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4835 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4836 				goto out;
4837 		}
4838 
4839 		r = 0;
4840 		break;
4841 	}
4842 #endif
4843 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4844 	case KVM_SET_GSI_ROUTING: {
4845 		struct kvm_irq_routing routing;
4846 		struct kvm_irq_routing __user *urouting;
4847 		struct kvm_irq_routing_entry *entries = NULL;
4848 
4849 		r = -EFAULT;
4850 		if (copy_from_user(&routing, argp, sizeof(routing)))
4851 			goto out;
4852 		r = -EINVAL;
4853 		if (!kvm_arch_can_set_irq_routing(kvm))
4854 			goto out;
4855 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4856 			goto out;
4857 		if (routing.flags)
4858 			goto out;
4859 		if (routing.nr) {
4860 			urouting = argp;
4861 			entries = vmemdup_user(urouting->entries,
4862 					       array_size(sizeof(*entries),
4863 							  routing.nr));
4864 			if (IS_ERR(entries)) {
4865 				r = PTR_ERR(entries);
4866 				goto out;
4867 			}
4868 		}
4869 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4870 					routing.flags);
4871 		kvfree(entries);
4872 		break;
4873 	}
4874 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4875 	case KVM_CREATE_DEVICE: {
4876 		struct kvm_create_device cd;
4877 
4878 		r = -EFAULT;
4879 		if (copy_from_user(&cd, argp, sizeof(cd)))
4880 			goto out;
4881 
4882 		r = kvm_ioctl_create_device(kvm, &cd);
4883 		if (r)
4884 			goto out;
4885 
4886 		r = -EFAULT;
4887 		if (copy_to_user(argp, &cd, sizeof(cd)))
4888 			goto out;
4889 
4890 		r = 0;
4891 		break;
4892 	}
4893 	case KVM_CHECK_EXTENSION:
4894 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4895 		break;
4896 	case KVM_RESET_DIRTY_RINGS:
4897 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4898 		break;
4899 	case KVM_GET_STATS_FD:
4900 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4901 		break;
4902 	default:
4903 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4904 	}
4905 out:
4906 	return r;
4907 }
4908 
4909 #ifdef CONFIG_KVM_COMPAT
4910 struct compat_kvm_dirty_log {
4911 	__u32 slot;
4912 	__u32 padding1;
4913 	union {
4914 		compat_uptr_t dirty_bitmap; /* one bit per page */
4915 		__u64 padding2;
4916 	};
4917 };
4918 
4919 struct compat_kvm_clear_dirty_log {
4920 	__u32 slot;
4921 	__u32 num_pages;
4922 	__u64 first_page;
4923 	union {
4924 		compat_uptr_t dirty_bitmap; /* one bit per page */
4925 		__u64 padding2;
4926 	};
4927 };
4928 
4929 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4930 				     unsigned long arg)
4931 {
4932 	return -ENOTTY;
4933 }
4934 
4935 static long kvm_vm_compat_ioctl(struct file *filp,
4936 			   unsigned int ioctl, unsigned long arg)
4937 {
4938 	struct kvm *kvm = filp->private_data;
4939 	int r;
4940 
4941 	if (kvm->mm != current->mm || kvm->vm_dead)
4942 		return -EIO;
4943 
4944 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4945 	if (r != -ENOTTY)
4946 		return r;
4947 
4948 	switch (ioctl) {
4949 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4950 	case KVM_CLEAR_DIRTY_LOG: {
4951 		struct compat_kvm_clear_dirty_log compat_log;
4952 		struct kvm_clear_dirty_log log;
4953 
4954 		if (copy_from_user(&compat_log, (void __user *)arg,
4955 				   sizeof(compat_log)))
4956 			return -EFAULT;
4957 		log.slot	 = compat_log.slot;
4958 		log.num_pages	 = compat_log.num_pages;
4959 		log.first_page	 = compat_log.first_page;
4960 		log.padding2	 = compat_log.padding2;
4961 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4962 
4963 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4964 		break;
4965 	}
4966 #endif
4967 	case KVM_GET_DIRTY_LOG: {
4968 		struct compat_kvm_dirty_log compat_log;
4969 		struct kvm_dirty_log log;
4970 
4971 		if (copy_from_user(&compat_log, (void __user *)arg,
4972 				   sizeof(compat_log)))
4973 			return -EFAULT;
4974 		log.slot	 = compat_log.slot;
4975 		log.padding1	 = compat_log.padding1;
4976 		log.padding2	 = compat_log.padding2;
4977 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4978 
4979 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4980 		break;
4981 	}
4982 	default:
4983 		r = kvm_vm_ioctl(filp, ioctl, arg);
4984 	}
4985 	return r;
4986 }
4987 #endif
4988 
4989 static const struct file_operations kvm_vm_fops = {
4990 	.release        = kvm_vm_release,
4991 	.unlocked_ioctl = kvm_vm_ioctl,
4992 	.llseek		= noop_llseek,
4993 	KVM_COMPAT(kvm_vm_compat_ioctl),
4994 };
4995 
4996 bool file_is_kvm(struct file *file)
4997 {
4998 	return file && file->f_op == &kvm_vm_fops;
4999 }
5000 EXPORT_SYMBOL_GPL(file_is_kvm);
5001 
5002 static int kvm_dev_ioctl_create_vm(unsigned long type)
5003 {
5004 	char fdname[ITOA_MAX_LEN + 1];
5005 	int r, fd;
5006 	struct kvm *kvm;
5007 	struct file *file;
5008 
5009 	fd = get_unused_fd_flags(O_CLOEXEC);
5010 	if (fd < 0)
5011 		return fd;
5012 
5013 	snprintf(fdname, sizeof(fdname), "%d", fd);
5014 
5015 	kvm = kvm_create_vm(type, fdname);
5016 	if (IS_ERR(kvm)) {
5017 		r = PTR_ERR(kvm);
5018 		goto put_fd;
5019 	}
5020 
5021 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5022 	if (IS_ERR(file)) {
5023 		r = PTR_ERR(file);
5024 		goto put_kvm;
5025 	}
5026 
5027 	/*
5028 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5029 	 * already set, with ->release() being kvm_vm_release().  In error
5030 	 * cases it will be called by the final fput(file) and will take
5031 	 * care of doing kvm_put_kvm(kvm).
5032 	 */
5033 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5034 
5035 	fd_install(fd, file);
5036 	return fd;
5037 
5038 put_kvm:
5039 	kvm_put_kvm(kvm);
5040 put_fd:
5041 	put_unused_fd(fd);
5042 	return r;
5043 }
5044 
5045 static long kvm_dev_ioctl(struct file *filp,
5046 			  unsigned int ioctl, unsigned long arg)
5047 {
5048 	long r = -EINVAL;
5049 
5050 	switch (ioctl) {
5051 	case KVM_GET_API_VERSION:
5052 		if (arg)
5053 			goto out;
5054 		r = KVM_API_VERSION;
5055 		break;
5056 	case KVM_CREATE_VM:
5057 		r = kvm_dev_ioctl_create_vm(arg);
5058 		break;
5059 	case KVM_CHECK_EXTENSION:
5060 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5061 		break;
5062 	case KVM_GET_VCPU_MMAP_SIZE:
5063 		if (arg)
5064 			goto out;
5065 		r = PAGE_SIZE;     /* struct kvm_run */
5066 #ifdef CONFIG_X86
5067 		r += PAGE_SIZE;    /* pio data page */
5068 #endif
5069 #ifdef CONFIG_KVM_MMIO
5070 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5071 #endif
5072 		break;
5073 	case KVM_TRACE_ENABLE:
5074 	case KVM_TRACE_PAUSE:
5075 	case KVM_TRACE_DISABLE:
5076 		r = -EOPNOTSUPP;
5077 		break;
5078 	default:
5079 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5080 	}
5081 out:
5082 	return r;
5083 }
5084 
5085 static struct file_operations kvm_chardev_ops = {
5086 	.unlocked_ioctl = kvm_dev_ioctl,
5087 	.llseek		= noop_llseek,
5088 	KVM_COMPAT(kvm_dev_ioctl),
5089 };
5090 
5091 static struct miscdevice kvm_dev = {
5092 	KVM_MINOR,
5093 	"kvm",
5094 	&kvm_chardev_ops,
5095 };
5096 
5097 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5098 __visible bool kvm_rebooting;
5099 EXPORT_SYMBOL_GPL(kvm_rebooting);
5100 
5101 static DEFINE_PER_CPU(bool, hardware_enabled);
5102 static int kvm_usage_count;
5103 
5104 static int __hardware_enable_nolock(void)
5105 {
5106 	if (__this_cpu_read(hardware_enabled))
5107 		return 0;
5108 
5109 	if (kvm_arch_hardware_enable()) {
5110 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5111 			raw_smp_processor_id());
5112 		return -EIO;
5113 	}
5114 
5115 	__this_cpu_write(hardware_enabled, true);
5116 	return 0;
5117 }
5118 
5119 static void hardware_enable_nolock(void *failed)
5120 {
5121 	if (__hardware_enable_nolock())
5122 		atomic_inc(failed);
5123 }
5124 
5125 static int kvm_online_cpu(unsigned int cpu)
5126 {
5127 	int ret = 0;
5128 
5129 	/*
5130 	 * Abort the CPU online process if hardware virtualization cannot
5131 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5132 	 * errors when scheduled to this CPU.
5133 	 */
5134 	mutex_lock(&kvm_lock);
5135 	if (kvm_usage_count)
5136 		ret = __hardware_enable_nolock();
5137 	mutex_unlock(&kvm_lock);
5138 	return ret;
5139 }
5140 
5141 static void hardware_disable_nolock(void *junk)
5142 {
5143 	/*
5144 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5145 	 * hardware, not just CPUs that successfully enabled hardware!
5146 	 */
5147 	if (!__this_cpu_read(hardware_enabled))
5148 		return;
5149 
5150 	kvm_arch_hardware_disable();
5151 
5152 	__this_cpu_write(hardware_enabled, false);
5153 }
5154 
5155 static int kvm_offline_cpu(unsigned int cpu)
5156 {
5157 	mutex_lock(&kvm_lock);
5158 	if (kvm_usage_count)
5159 		hardware_disable_nolock(NULL);
5160 	mutex_unlock(&kvm_lock);
5161 	return 0;
5162 }
5163 
5164 static void hardware_disable_all_nolock(void)
5165 {
5166 	BUG_ON(!kvm_usage_count);
5167 
5168 	kvm_usage_count--;
5169 	if (!kvm_usage_count)
5170 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5171 }
5172 
5173 static void hardware_disable_all(void)
5174 {
5175 	cpus_read_lock();
5176 	mutex_lock(&kvm_lock);
5177 	hardware_disable_all_nolock();
5178 	mutex_unlock(&kvm_lock);
5179 	cpus_read_unlock();
5180 }
5181 
5182 static int hardware_enable_all(void)
5183 {
5184 	atomic_t failed = ATOMIC_INIT(0);
5185 	int r = 0;
5186 
5187 	/*
5188 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5189 	 * is called, and so on_each_cpu() between them includes the CPU that
5190 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5191 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5192 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5193 	 * enable hardware multiple times.
5194 	 */
5195 	cpus_read_lock();
5196 	mutex_lock(&kvm_lock);
5197 
5198 	kvm_usage_count++;
5199 	if (kvm_usage_count == 1) {
5200 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5201 
5202 		if (atomic_read(&failed)) {
5203 			hardware_disable_all_nolock();
5204 			r = -EBUSY;
5205 		}
5206 	}
5207 
5208 	mutex_unlock(&kvm_lock);
5209 	cpus_read_unlock();
5210 
5211 	return r;
5212 }
5213 
5214 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5215 		      void *v)
5216 {
5217 	/*
5218 	 * Some (well, at least mine) BIOSes hang on reboot if
5219 	 * in vmx root mode.
5220 	 *
5221 	 * And Intel TXT required VMX off for all cpu when system shutdown.
5222 	 */
5223 	pr_info("kvm: exiting hardware virtualization\n");
5224 	kvm_rebooting = true;
5225 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5226 	return NOTIFY_OK;
5227 }
5228 
5229 static struct notifier_block kvm_reboot_notifier = {
5230 	.notifier_call = kvm_reboot,
5231 	.priority = 0,
5232 };
5233 
5234 static int kvm_suspend(void)
5235 {
5236 	/*
5237 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5238 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5239 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5240 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5241 	 * can be preempted, but the task cannot be frozen until it has dropped
5242 	 * all locks (userspace tasks are frozen via a fake signal).
5243 	 */
5244 	lockdep_assert_not_held(&kvm_lock);
5245 	lockdep_assert_irqs_disabled();
5246 
5247 	if (kvm_usage_count)
5248 		hardware_disable_nolock(NULL);
5249 	return 0;
5250 }
5251 
5252 static void kvm_resume(void)
5253 {
5254 	lockdep_assert_not_held(&kvm_lock);
5255 	lockdep_assert_irqs_disabled();
5256 
5257 	if (kvm_usage_count)
5258 		WARN_ON_ONCE(__hardware_enable_nolock());
5259 }
5260 
5261 static struct syscore_ops kvm_syscore_ops = {
5262 	.suspend = kvm_suspend,
5263 	.resume = kvm_resume,
5264 };
5265 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5266 static int hardware_enable_all(void)
5267 {
5268 	return 0;
5269 }
5270 
5271 static void hardware_disable_all(void)
5272 {
5273 
5274 }
5275 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5276 
5277 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5278 {
5279 	int i;
5280 
5281 	for (i = 0; i < bus->dev_count; i++) {
5282 		struct kvm_io_device *pos = bus->range[i].dev;
5283 
5284 		kvm_iodevice_destructor(pos);
5285 	}
5286 	kfree(bus);
5287 }
5288 
5289 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5290 				 const struct kvm_io_range *r2)
5291 {
5292 	gpa_t addr1 = r1->addr;
5293 	gpa_t addr2 = r2->addr;
5294 
5295 	if (addr1 < addr2)
5296 		return -1;
5297 
5298 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5299 	 * accept any overlapping write.  Any order is acceptable for
5300 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5301 	 * we process all of them.
5302 	 */
5303 	if (r2->len) {
5304 		addr1 += r1->len;
5305 		addr2 += r2->len;
5306 	}
5307 
5308 	if (addr1 > addr2)
5309 		return 1;
5310 
5311 	return 0;
5312 }
5313 
5314 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5315 {
5316 	return kvm_io_bus_cmp(p1, p2);
5317 }
5318 
5319 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5320 			     gpa_t addr, int len)
5321 {
5322 	struct kvm_io_range *range, key;
5323 	int off;
5324 
5325 	key = (struct kvm_io_range) {
5326 		.addr = addr,
5327 		.len = len,
5328 	};
5329 
5330 	range = bsearch(&key, bus->range, bus->dev_count,
5331 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5332 	if (range == NULL)
5333 		return -ENOENT;
5334 
5335 	off = range - bus->range;
5336 
5337 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5338 		off--;
5339 
5340 	return off;
5341 }
5342 
5343 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5344 			      struct kvm_io_range *range, const void *val)
5345 {
5346 	int idx;
5347 
5348 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5349 	if (idx < 0)
5350 		return -EOPNOTSUPP;
5351 
5352 	while (idx < bus->dev_count &&
5353 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5354 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5355 					range->len, val))
5356 			return idx;
5357 		idx++;
5358 	}
5359 
5360 	return -EOPNOTSUPP;
5361 }
5362 
5363 /* kvm_io_bus_write - called under kvm->slots_lock */
5364 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5365 		     int len, const void *val)
5366 {
5367 	struct kvm_io_bus *bus;
5368 	struct kvm_io_range range;
5369 	int r;
5370 
5371 	range = (struct kvm_io_range) {
5372 		.addr = addr,
5373 		.len = len,
5374 	};
5375 
5376 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5377 	if (!bus)
5378 		return -ENOMEM;
5379 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5380 	return r < 0 ? r : 0;
5381 }
5382 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5383 
5384 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5385 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5386 			    gpa_t addr, int len, const void *val, long cookie)
5387 {
5388 	struct kvm_io_bus *bus;
5389 	struct kvm_io_range range;
5390 
5391 	range = (struct kvm_io_range) {
5392 		.addr = addr,
5393 		.len = len,
5394 	};
5395 
5396 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5397 	if (!bus)
5398 		return -ENOMEM;
5399 
5400 	/* First try the device referenced by cookie. */
5401 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5402 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5403 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5404 					val))
5405 			return cookie;
5406 
5407 	/*
5408 	 * cookie contained garbage; fall back to search and return the
5409 	 * correct cookie value.
5410 	 */
5411 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5412 }
5413 
5414 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5415 			     struct kvm_io_range *range, void *val)
5416 {
5417 	int idx;
5418 
5419 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5420 	if (idx < 0)
5421 		return -EOPNOTSUPP;
5422 
5423 	while (idx < bus->dev_count &&
5424 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5425 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5426 				       range->len, val))
5427 			return idx;
5428 		idx++;
5429 	}
5430 
5431 	return -EOPNOTSUPP;
5432 }
5433 
5434 /* kvm_io_bus_read - called under kvm->slots_lock */
5435 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5436 		    int len, void *val)
5437 {
5438 	struct kvm_io_bus *bus;
5439 	struct kvm_io_range range;
5440 	int r;
5441 
5442 	range = (struct kvm_io_range) {
5443 		.addr = addr,
5444 		.len = len,
5445 	};
5446 
5447 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5448 	if (!bus)
5449 		return -ENOMEM;
5450 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5451 	return r < 0 ? r : 0;
5452 }
5453 
5454 /* Caller must hold slots_lock. */
5455 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5456 			    int len, struct kvm_io_device *dev)
5457 {
5458 	int i;
5459 	struct kvm_io_bus *new_bus, *bus;
5460 	struct kvm_io_range range;
5461 
5462 	bus = kvm_get_bus(kvm, bus_idx);
5463 	if (!bus)
5464 		return -ENOMEM;
5465 
5466 	/* exclude ioeventfd which is limited by maximum fd */
5467 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5468 		return -ENOSPC;
5469 
5470 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5471 			  GFP_KERNEL_ACCOUNT);
5472 	if (!new_bus)
5473 		return -ENOMEM;
5474 
5475 	range = (struct kvm_io_range) {
5476 		.addr = addr,
5477 		.len = len,
5478 		.dev = dev,
5479 	};
5480 
5481 	for (i = 0; i < bus->dev_count; i++)
5482 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5483 			break;
5484 
5485 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5486 	new_bus->dev_count++;
5487 	new_bus->range[i] = range;
5488 	memcpy(new_bus->range + i + 1, bus->range + i,
5489 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5490 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5491 	synchronize_srcu_expedited(&kvm->srcu);
5492 	kfree(bus);
5493 
5494 	return 0;
5495 }
5496 
5497 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5498 			      struct kvm_io_device *dev)
5499 {
5500 	int i, j;
5501 	struct kvm_io_bus *new_bus, *bus;
5502 
5503 	lockdep_assert_held(&kvm->slots_lock);
5504 
5505 	bus = kvm_get_bus(kvm, bus_idx);
5506 	if (!bus)
5507 		return 0;
5508 
5509 	for (i = 0; i < bus->dev_count; i++) {
5510 		if (bus->range[i].dev == dev) {
5511 			break;
5512 		}
5513 	}
5514 
5515 	if (i == bus->dev_count)
5516 		return 0;
5517 
5518 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5519 			  GFP_KERNEL_ACCOUNT);
5520 	if (new_bus) {
5521 		memcpy(new_bus, bus, struct_size(bus, range, i));
5522 		new_bus->dev_count--;
5523 		memcpy(new_bus->range + i, bus->range + i + 1,
5524 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5525 	}
5526 
5527 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5528 	synchronize_srcu_expedited(&kvm->srcu);
5529 
5530 	/* Destroy the old bus _after_ installing the (null) bus. */
5531 	if (!new_bus) {
5532 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5533 		for (j = 0; j < bus->dev_count; j++) {
5534 			if (j == i)
5535 				continue;
5536 			kvm_iodevice_destructor(bus->range[j].dev);
5537 		}
5538 	}
5539 
5540 	kfree(bus);
5541 	return new_bus ? 0 : -ENOMEM;
5542 }
5543 
5544 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5545 					 gpa_t addr)
5546 {
5547 	struct kvm_io_bus *bus;
5548 	int dev_idx, srcu_idx;
5549 	struct kvm_io_device *iodev = NULL;
5550 
5551 	srcu_idx = srcu_read_lock(&kvm->srcu);
5552 
5553 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5554 	if (!bus)
5555 		goto out_unlock;
5556 
5557 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5558 	if (dev_idx < 0)
5559 		goto out_unlock;
5560 
5561 	iodev = bus->range[dev_idx].dev;
5562 
5563 out_unlock:
5564 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5565 
5566 	return iodev;
5567 }
5568 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5569 
5570 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5571 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5572 			   const char *fmt)
5573 {
5574 	int ret;
5575 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5576 					  inode->i_private;
5577 
5578 	/*
5579 	 * The debugfs files are a reference to the kvm struct which
5580         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5581         * avoids the race between open and the removal of the debugfs directory.
5582 	 */
5583 	if (!kvm_get_kvm_safe(stat_data->kvm))
5584 		return -ENOENT;
5585 
5586 	ret = simple_attr_open(inode, file, get,
5587 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5588 			       ? set : NULL, fmt);
5589 	if (ret)
5590 		kvm_put_kvm(stat_data->kvm);
5591 
5592 	return ret;
5593 }
5594 
5595 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5596 {
5597 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5598 					  inode->i_private;
5599 
5600 	simple_attr_release(inode, file);
5601 	kvm_put_kvm(stat_data->kvm);
5602 
5603 	return 0;
5604 }
5605 
5606 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5607 {
5608 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5609 
5610 	return 0;
5611 }
5612 
5613 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5614 {
5615 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5616 
5617 	return 0;
5618 }
5619 
5620 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5621 {
5622 	unsigned long i;
5623 	struct kvm_vcpu *vcpu;
5624 
5625 	*val = 0;
5626 
5627 	kvm_for_each_vcpu(i, vcpu, kvm)
5628 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5629 
5630 	return 0;
5631 }
5632 
5633 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5634 {
5635 	unsigned long i;
5636 	struct kvm_vcpu *vcpu;
5637 
5638 	kvm_for_each_vcpu(i, vcpu, kvm)
5639 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5640 
5641 	return 0;
5642 }
5643 
5644 static int kvm_stat_data_get(void *data, u64 *val)
5645 {
5646 	int r = -EFAULT;
5647 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5648 
5649 	switch (stat_data->kind) {
5650 	case KVM_STAT_VM:
5651 		r = kvm_get_stat_per_vm(stat_data->kvm,
5652 					stat_data->desc->desc.offset, val);
5653 		break;
5654 	case KVM_STAT_VCPU:
5655 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5656 					  stat_data->desc->desc.offset, val);
5657 		break;
5658 	}
5659 
5660 	return r;
5661 }
5662 
5663 static int kvm_stat_data_clear(void *data, u64 val)
5664 {
5665 	int r = -EFAULT;
5666 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5667 
5668 	if (val)
5669 		return -EINVAL;
5670 
5671 	switch (stat_data->kind) {
5672 	case KVM_STAT_VM:
5673 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5674 					  stat_data->desc->desc.offset);
5675 		break;
5676 	case KVM_STAT_VCPU:
5677 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5678 					    stat_data->desc->desc.offset);
5679 		break;
5680 	}
5681 
5682 	return r;
5683 }
5684 
5685 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5686 {
5687 	__simple_attr_check_format("%llu\n", 0ull);
5688 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5689 				kvm_stat_data_clear, "%llu\n");
5690 }
5691 
5692 static const struct file_operations stat_fops_per_vm = {
5693 	.owner = THIS_MODULE,
5694 	.open = kvm_stat_data_open,
5695 	.release = kvm_debugfs_release,
5696 	.read = simple_attr_read,
5697 	.write = simple_attr_write,
5698 	.llseek = no_llseek,
5699 };
5700 
5701 static int vm_stat_get(void *_offset, u64 *val)
5702 {
5703 	unsigned offset = (long)_offset;
5704 	struct kvm *kvm;
5705 	u64 tmp_val;
5706 
5707 	*val = 0;
5708 	mutex_lock(&kvm_lock);
5709 	list_for_each_entry(kvm, &vm_list, vm_list) {
5710 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5711 		*val += tmp_val;
5712 	}
5713 	mutex_unlock(&kvm_lock);
5714 	return 0;
5715 }
5716 
5717 static int vm_stat_clear(void *_offset, u64 val)
5718 {
5719 	unsigned offset = (long)_offset;
5720 	struct kvm *kvm;
5721 
5722 	if (val)
5723 		return -EINVAL;
5724 
5725 	mutex_lock(&kvm_lock);
5726 	list_for_each_entry(kvm, &vm_list, vm_list) {
5727 		kvm_clear_stat_per_vm(kvm, offset);
5728 	}
5729 	mutex_unlock(&kvm_lock);
5730 
5731 	return 0;
5732 }
5733 
5734 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5735 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5736 
5737 static int vcpu_stat_get(void *_offset, u64 *val)
5738 {
5739 	unsigned offset = (long)_offset;
5740 	struct kvm *kvm;
5741 	u64 tmp_val;
5742 
5743 	*val = 0;
5744 	mutex_lock(&kvm_lock);
5745 	list_for_each_entry(kvm, &vm_list, vm_list) {
5746 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5747 		*val += tmp_val;
5748 	}
5749 	mutex_unlock(&kvm_lock);
5750 	return 0;
5751 }
5752 
5753 static int vcpu_stat_clear(void *_offset, u64 val)
5754 {
5755 	unsigned offset = (long)_offset;
5756 	struct kvm *kvm;
5757 
5758 	if (val)
5759 		return -EINVAL;
5760 
5761 	mutex_lock(&kvm_lock);
5762 	list_for_each_entry(kvm, &vm_list, vm_list) {
5763 		kvm_clear_stat_per_vcpu(kvm, offset);
5764 	}
5765 	mutex_unlock(&kvm_lock);
5766 
5767 	return 0;
5768 }
5769 
5770 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5771 			"%llu\n");
5772 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5773 
5774 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5775 {
5776 	struct kobj_uevent_env *env;
5777 	unsigned long long created, active;
5778 
5779 	if (!kvm_dev.this_device || !kvm)
5780 		return;
5781 
5782 	mutex_lock(&kvm_lock);
5783 	if (type == KVM_EVENT_CREATE_VM) {
5784 		kvm_createvm_count++;
5785 		kvm_active_vms++;
5786 	} else if (type == KVM_EVENT_DESTROY_VM) {
5787 		kvm_active_vms--;
5788 	}
5789 	created = kvm_createvm_count;
5790 	active = kvm_active_vms;
5791 	mutex_unlock(&kvm_lock);
5792 
5793 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5794 	if (!env)
5795 		return;
5796 
5797 	add_uevent_var(env, "CREATED=%llu", created);
5798 	add_uevent_var(env, "COUNT=%llu", active);
5799 
5800 	if (type == KVM_EVENT_CREATE_VM) {
5801 		add_uevent_var(env, "EVENT=create");
5802 		kvm->userspace_pid = task_pid_nr(current);
5803 	} else if (type == KVM_EVENT_DESTROY_VM) {
5804 		add_uevent_var(env, "EVENT=destroy");
5805 	}
5806 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5807 
5808 	if (!IS_ERR(kvm->debugfs_dentry)) {
5809 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5810 
5811 		if (p) {
5812 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5813 			if (!IS_ERR(tmp))
5814 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5815 			kfree(p);
5816 		}
5817 	}
5818 	/* no need for checks, since we are adding at most only 5 keys */
5819 	env->envp[env->envp_idx++] = NULL;
5820 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5821 	kfree(env);
5822 }
5823 
5824 static void kvm_init_debug(void)
5825 {
5826 	const struct file_operations *fops;
5827 	const struct _kvm_stats_desc *pdesc;
5828 	int i;
5829 
5830 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5831 
5832 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5833 		pdesc = &kvm_vm_stats_desc[i];
5834 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5835 			fops = &vm_stat_fops;
5836 		else
5837 			fops = &vm_stat_readonly_fops;
5838 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5839 				kvm_debugfs_dir,
5840 				(void *)(long)pdesc->desc.offset, fops);
5841 	}
5842 
5843 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5844 		pdesc = &kvm_vcpu_stats_desc[i];
5845 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5846 			fops = &vcpu_stat_fops;
5847 		else
5848 			fops = &vcpu_stat_readonly_fops;
5849 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5850 				kvm_debugfs_dir,
5851 				(void *)(long)pdesc->desc.offset, fops);
5852 	}
5853 }
5854 
5855 static inline
5856 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5857 {
5858 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5859 }
5860 
5861 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5862 {
5863 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5864 
5865 	WRITE_ONCE(vcpu->preempted, false);
5866 	WRITE_ONCE(vcpu->ready, false);
5867 
5868 	__this_cpu_write(kvm_running_vcpu, vcpu);
5869 	kvm_arch_sched_in(vcpu, cpu);
5870 	kvm_arch_vcpu_load(vcpu, cpu);
5871 }
5872 
5873 static void kvm_sched_out(struct preempt_notifier *pn,
5874 			  struct task_struct *next)
5875 {
5876 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5877 
5878 	if (current->on_rq) {
5879 		WRITE_ONCE(vcpu->preempted, true);
5880 		WRITE_ONCE(vcpu->ready, true);
5881 	}
5882 	kvm_arch_vcpu_put(vcpu);
5883 	__this_cpu_write(kvm_running_vcpu, NULL);
5884 }
5885 
5886 /**
5887  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5888  *
5889  * We can disable preemption locally around accessing the per-CPU variable,
5890  * and use the resolved vcpu pointer after enabling preemption again,
5891  * because even if the current thread is migrated to another CPU, reading
5892  * the per-CPU value later will give us the same value as we update the
5893  * per-CPU variable in the preempt notifier handlers.
5894  */
5895 struct kvm_vcpu *kvm_get_running_vcpu(void)
5896 {
5897 	struct kvm_vcpu *vcpu;
5898 
5899 	preempt_disable();
5900 	vcpu = __this_cpu_read(kvm_running_vcpu);
5901 	preempt_enable();
5902 
5903 	return vcpu;
5904 }
5905 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5906 
5907 /**
5908  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5909  */
5910 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5911 {
5912         return &kvm_running_vcpu;
5913 }
5914 
5915 #ifdef CONFIG_GUEST_PERF_EVENTS
5916 static unsigned int kvm_guest_state(void)
5917 {
5918 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5919 	unsigned int state;
5920 
5921 	if (!kvm_arch_pmi_in_guest(vcpu))
5922 		return 0;
5923 
5924 	state = PERF_GUEST_ACTIVE;
5925 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5926 		state |= PERF_GUEST_USER;
5927 
5928 	return state;
5929 }
5930 
5931 static unsigned long kvm_guest_get_ip(void)
5932 {
5933 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5934 
5935 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5936 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5937 		return 0;
5938 
5939 	return kvm_arch_vcpu_get_ip(vcpu);
5940 }
5941 
5942 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5943 	.state			= kvm_guest_state,
5944 	.get_ip			= kvm_guest_get_ip,
5945 	.handle_intel_pt_intr	= NULL,
5946 };
5947 
5948 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5949 {
5950 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5951 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5952 }
5953 void kvm_unregister_perf_callbacks(void)
5954 {
5955 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5956 }
5957 #endif
5958 
5959 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5960 {
5961 	int r;
5962 	int cpu;
5963 
5964 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5965 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5966 				      kvm_online_cpu, kvm_offline_cpu);
5967 	if (r)
5968 		return r;
5969 
5970 	register_reboot_notifier(&kvm_reboot_notifier);
5971 	register_syscore_ops(&kvm_syscore_ops);
5972 #endif
5973 
5974 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5975 	if (!vcpu_align)
5976 		vcpu_align = __alignof__(struct kvm_vcpu);
5977 	kvm_vcpu_cache =
5978 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5979 					   SLAB_ACCOUNT,
5980 					   offsetof(struct kvm_vcpu, arch),
5981 					   offsetofend(struct kvm_vcpu, stats_id)
5982 					   - offsetof(struct kvm_vcpu, arch),
5983 					   NULL);
5984 	if (!kvm_vcpu_cache) {
5985 		r = -ENOMEM;
5986 		goto err_vcpu_cache;
5987 	}
5988 
5989 	for_each_possible_cpu(cpu) {
5990 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5991 					    GFP_KERNEL, cpu_to_node(cpu))) {
5992 			r = -ENOMEM;
5993 			goto err_cpu_kick_mask;
5994 		}
5995 	}
5996 
5997 	r = kvm_irqfd_init();
5998 	if (r)
5999 		goto err_irqfd;
6000 
6001 	r = kvm_async_pf_init();
6002 	if (r)
6003 		goto err_async_pf;
6004 
6005 	kvm_chardev_ops.owner = module;
6006 
6007 	kvm_preempt_ops.sched_in = kvm_sched_in;
6008 	kvm_preempt_ops.sched_out = kvm_sched_out;
6009 
6010 	kvm_init_debug();
6011 
6012 	r = kvm_vfio_ops_init();
6013 	if (WARN_ON_ONCE(r))
6014 		goto err_vfio;
6015 
6016 	/*
6017 	 * Registration _must_ be the very last thing done, as this exposes
6018 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6019 	 */
6020 	r = misc_register(&kvm_dev);
6021 	if (r) {
6022 		pr_err("kvm: misc device register failed\n");
6023 		goto err_register;
6024 	}
6025 
6026 	return 0;
6027 
6028 err_register:
6029 	kvm_vfio_ops_exit();
6030 err_vfio:
6031 	kvm_async_pf_deinit();
6032 err_async_pf:
6033 	kvm_irqfd_exit();
6034 err_irqfd:
6035 err_cpu_kick_mask:
6036 	for_each_possible_cpu(cpu)
6037 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6038 	kmem_cache_destroy(kvm_vcpu_cache);
6039 err_vcpu_cache:
6040 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6041 	unregister_syscore_ops(&kvm_syscore_ops);
6042 	unregister_reboot_notifier(&kvm_reboot_notifier);
6043 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6044 #endif
6045 	return r;
6046 }
6047 EXPORT_SYMBOL_GPL(kvm_init);
6048 
6049 void kvm_exit(void)
6050 {
6051 	int cpu;
6052 
6053 	/*
6054 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6055 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6056 	 * to KVM while the module is being stopped.
6057 	 */
6058 	misc_deregister(&kvm_dev);
6059 
6060 	debugfs_remove_recursive(kvm_debugfs_dir);
6061 	for_each_possible_cpu(cpu)
6062 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6063 	kmem_cache_destroy(kvm_vcpu_cache);
6064 	kvm_vfio_ops_exit();
6065 	kvm_async_pf_deinit();
6066 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6067 	unregister_syscore_ops(&kvm_syscore_ops);
6068 	unregister_reboot_notifier(&kvm_reboot_notifier);
6069 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6070 #endif
6071 	kvm_irqfd_exit();
6072 }
6073 EXPORT_SYMBOL_GPL(kvm_exit);
6074 
6075 struct kvm_vm_worker_thread_context {
6076 	struct kvm *kvm;
6077 	struct task_struct *parent;
6078 	struct completion init_done;
6079 	kvm_vm_thread_fn_t thread_fn;
6080 	uintptr_t data;
6081 	int err;
6082 };
6083 
6084 static int kvm_vm_worker_thread(void *context)
6085 {
6086 	/*
6087 	 * The init_context is allocated on the stack of the parent thread, so
6088 	 * we have to locally copy anything that is needed beyond initialization
6089 	 */
6090 	struct kvm_vm_worker_thread_context *init_context = context;
6091 	struct task_struct *parent;
6092 	struct kvm *kvm = init_context->kvm;
6093 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6094 	uintptr_t data = init_context->data;
6095 	int err;
6096 
6097 	err = kthread_park(current);
6098 	/* kthread_park(current) is never supposed to return an error */
6099 	WARN_ON(err != 0);
6100 	if (err)
6101 		goto init_complete;
6102 
6103 	err = cgroup_attach_task_all(init_context->parent, current);
6104 	if (err) {
6105 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6106 			__func__, err);
6107 		goto init_complete;
6108 	}
6109 
6110 	set_user_nice(current, task_nice(init_context->parent));
6111 
6112 init_complete:
6113 	init_context->err = err;
6114 	complete(&init_context->init_done);
6115 	init_context = NULL;
6116 
6117 	if (err)
6118 		goto out;
6119 
6120 	/* Wait to be woken up by the spawner before proceeding. */
6121 	kthread_parkme();
6122 
6123 	if (!kthread_should_stop())
6124 		err = thread_fn(kvm, data);
6125 
6126 out:
6127 	/*
6128 	 * Move kthread back to its original cgroup to prevent it lingering in
6129 	 * the cgroup of the VM process, after the latter finishes its
6130 	 * execution.
6131 	 *
6132 	 * kthread_stop() waits on the 'exited' completion condition which is
6133 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6134 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6135 	 * called after the exit_mm(). This causes the kthread_stop() to return
6136 	 * before the kthread actually quits the cgroup.
6137 	 */
6138 	rcu_read_lock();
6139 	parent = rcu_dereference(current->real_parent);
6140 	get_task_struct(parent);
6141 	rcu_read_unlock();
6142 	cgroup_attach_task_all(parent, current);
6143 	put_task_struct(parent);
6144 
6145 	return err;
6146 }
6147 
6148 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6149 				uintptr_t data, const char *name,
6150 				struct task_struct **thread_ptr)
6151 {
6152 	struct kvm_vm_worker_thread_context init_context = {};
6153 	struct task_struct *thread;
6154 
6155 	*thread_ptr = NULL;
6156 	init_context.kvm = kvm;
6157 	init_context.parent = current;
6158 	init_context.thread_fn = thread_fn;
6159 	init_context.data = data;
6160 	init_completion(&init_context.init_done);
6161 
6162 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6163 			     "%s-%d", name, task_pid_nr(current));
6164 	if (IS_ERR(thread))
6165 		return PTR_ERR(thread);
6166 
6167 	/* kthread_run is never supposed to return NULL */
6168 	WARN_ON(thread == NULL);
6169 
6170 	wait_for_completion(&init_context.init_done);
6171 
6172 	if (!init_context.err)
6173 		*thread_ptr = thread;
6174 
6175 	return init_context.err;
6176 }
6177