1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_page(struct page *page) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (WARN_ON_ONCE(!page_count(page))) 180 return false; 181 182 return is_zone_device_page(page); 183 } 184 185 /* 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 188 * is likely incomplete, it has been compiled purely through people wanting to 189 * back guest with a certain type of memory and encountering issues. 190 */ 191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 192 { 193 struct page *page; 194 195 if (!pfn_valid(pfn)) 196 return NULL; 197 198 page = pfn_to_page(pfn); 199 if (!PageReserved(page)) 200 return page; 201 202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 203 if (is_zero_pfn(pfn)) 204 return page; 205 206 /* 207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 208 * perspective they are "normal" pages, albeit with slightly different 209 * usage rules. 210 */ 211 if (kvm_is_zone_device_page(page)) 212 return page; 213 214 return NULL; 215 } 216 217 /* 218 * Switches to specified vcpu, until a matching vcpu_put() 219 */ 220 void vcpu_load(struct kvm_vcpu *vcpu) 221 { 222 int cpu = get_cpu(); 223 224 __this_cpu_write(kvm_running_vcpu, vcpu); 225 preempt_notifier_register(&vcpu->preempt_notifier); 226 kvm_arch_vcpu_load(vcpu, cpu); 227 put_cpu(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_load); 230 231 void vcpu_put(struct kvm_vcpu *vcpu) 232 { 233 preempt_disable(); 234 kvm_arch_vcpu_put(vcpu); 235 preempt_notifier_unregister(&vcpu->preempt_notifier); 236 __this_cpu_write(kvm_running_vcpu, NULL); 237 preempt_enable(); 238 } 239 EXPORT_SYMBOL_GPL(vcpu_put); 240 241 /* TODO: merge with kvm_arch_vcpu_should_kick */ 242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 243 { 244 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 245 246 /* 247 * We need to wait for the VCPU to reenable interrupts and get out of 248 * READING_SHADOW_PAGE_TABLES mode. 249 */ 250 if (req & KVM_REQUEST_WAIT) 251 return mode != OUTSIDE_GUEST_MODE; 252 253 /* 254 * Need to kick a running VCPU, but otherwise there is nothing to do. 255 */ 256 return mode == IN_GUEST_MODE; 257 } 258 259 static void ack_kick(void *_completed) 260 { 261 } 262 263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 264 { 265 if (cpumask_empty(cpus)) 266 return false; 267 268 smp_call_function_many(cpus, ack_kick, NULL, wait); 269 return true; 270 } 271 272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 273 struct cpumask *tmp, int current_cpu) 274 { 275 int cpu; 276 277 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 278 __kvm_make_request(req, vcpu); 279 280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 281 return; 282 283 /* 284 * Note, the vCPU could get migrated to a different pCPU at any point 285 * after kvm_request_needs_ipi(), which could result in sending an IPI 286 * to the previous pCPU. But, that's OK because the purpose of the IPI 287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 289 * after this point is also OK, as the requirement is only that KVM wait 290 * for vCPUs that were reading SPTEs _before_ any changes were 291 * finalized. See kvm_vcpu_kick() for more details on handling requests. 292 */ 293 if (kvm_request_needs_ipi(vcpu, req)) { 294 cpu = READ_ONCE(vcpu->cpu); 295 if (cpu != -1 && cpu != current_cpu) 296 __cpumask_set_cpu(cpu, tmp); 297 } 298 } 299 300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 301 unsigned long *vcpu_bitmap) 302 { 303 struct kvm_vcpu *vcpu; 304 struct cpumask *cpus; 305 int i, me; 306 bool called; 307 308 me = get_cpu(); 309 310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 311 cpumask_clear(cpus); 312 313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 314 vcpu = kvm_get_vcpu(kvm, i); 315 if (!vcpu) 316 continue; 317 kvm_make_vcpu_request(vcpu, req, cpus, me); 318 } 319 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 321 put_cpu(); 322 323 return called; 324 } 325 326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 327 struct kvm_vcpu *except) 328 { 329 struct kvm_vcpu *vcpu; 330 struct cpumask *cpus; 331 unsigned long i; 332 bool called; 333 int me; 334 335 me = get_cpu(); 336 337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 338 cpumask_clear(cpus); 339 340 kvm_for_each_vcpu(i, vcpu, kvm) { 341 if (vcpu == except) 342 continue; 343 kvm_make_vcpu_request(vcpu, req, cpus, me); 344 } 345 346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 347 put_cpu(); 348 349 return called; 350 } 351 352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 353 { 354 return kvm_make_all_cpus_request_except(kvm, req, NULL); 355 } 356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 357 358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 359 void kvm_flush_remote_tlbs(struct kvm *kvm) 360 { 361 ++kvm->stat.generic.remote_tlb_flush_requests; 362 363 /* 364 * We want to publish modifications to the page tables before reading 365 * mode. Pairs with a memory barrier in arch-specific code. 366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 367 * and smp_mb in walk_shadow_page_lockless_begin/end. 368 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 369 * 370 * There is already an smp_mb__after_atomic() before 371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 372 * barrier here. 373 */ 374 if (!kvm_arch_flush_remote_tlb(kvm) 375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 376 ++kvm->stat.generic.remote_tlb_flush; 377 } 378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 379 #endif 380 381 static void kvm_flush_shadow_all(struct kvm *kvm) 382 { 383 kvm_arch_flush_shadow_all(kvm); 384 kvm_arch_guest_memory_reclaimed(kvm); 385 } 386 387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 389 gfp_t gfp_flags) 390 { 391 gfp_flags |= mc->gfp_zero; 392 393 if (mc->kmem_cache) 394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 395 else 396 return (void *)__get_free_page(gfp_flags); 397 } 398 399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 400 { 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 402 void *obj; 403 404 if (mc->nobjs >= min) 405 return 0; 406 407 if (unlikely(!mc->objects)) { 408 if (WARN_ON_ONCE(!capacity)) 409 return -EIO; 410 411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 412 if (!mc->objects) 413 return -ENOMEM; 414 415 mc->capacity = capacity; 416 } 417 418 /* It is illegal to request a different capacity across topups. */ 419 if (WARN_ON_ONCE(mc->capacity != capacity)) 420 return -EIO; 421 422 while (mc->nobjs < mc->capacity) { 423 obj = mmu_memory_cache_alloc_obj(mc, gfp); 424 if (!obj) 425 return mc->nobjs >= min ? 0 : -ENOMEM; 426 mc->objects[mc->nobjs++] = obj; 427 } 428 return 0; 429 } 430 431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 432 { 433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 434 } 435 436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 437 { 438 return mc->nobjs; 439 } 440 441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 442 { 443 while (mc->nobjs) { 444 if (mc->kmem_cache) 445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 446 else 447 free_page((unsigned long)mc->objects[--mc->nobjs]); 448 } 449 450 kvfree(mc->objects); 451 452 mc->objects = NULL; 453 mc->capacity = 0; 454 } 455 456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 457 { 458 void *p; 459 460 if (WARN_ON(!mc->nobjs)) 461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 462 else 463 p = mc->objects[--mc->nobjs]; 464 BUG_ON(!p); 465 return p; 466 } 467 #endif 468 469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 470 { 471 mutex_init(&vcpu->mutex); 472 vcpu->cpu = -1; 473 vcpu->kvm = kvm; 474 vcpu->vcpu_id = id; 475 vcpu->pid = NULL; 476 #ifndef __KVM_HAVE_ARCH_WQP 477 rcuwait_init(&vcpu->wait); 478 #endif 479 kvm_async_pf_vcpu_init(vcpu); 480 481 kvm_vcpu_set_in_spin_loop(vcpu, false); 482 kvm_vcpu_set_dy_eligible(vcpu, false); 483 vcpu->preempted = false; 484 vcpu->ready = false; 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 486 vcpu->last_used_slot = NULL; 487 488 /* Fill the stats id string for the vcpu */ 489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 490 task_pid_nr(current), id); 491 } 492 493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 494 { 495 kvm_arch_vcpu_destroy(vcpu); 496 kvm_dirty_ring_free(&vcpu->dirty_ring); 497 498 /* 499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 500 * the vcpu->pid pointer, and at destruction time all file descriptors 501 * are already gone. 502 */ 503 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 504 505 free_page((unsigned long)vcpu->run); 506 kmem_cache_free(kvm_vcpu_cache, vcpu); 507 } 508 509 void kvm_destroy_vcpus(struct kvm *kvm) 510 { 511 unsigned long i; 512 struct kvm_vcpu *vcpu; 513 514 kvm_for_each_vcpu(i, vcpu, kvm) { 515 kvm_vcpu_destroy(vcpu); 516 xa_erase(&kvm->vcpu_array, i); 517 } 518 519 atomic_set(&kvm->online_vcpus, 0); 520 } 521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 522 523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 525 { 526 return container_of(mn, struct kvm, mmu_notifier); 527 } 528 529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 530 struct mm_struct *mm, 531 unsigned long start, unsigned long end) 532 { 533 struct kvm *kvm = mmu_notifier_to_kvm(mn); 534 int idx; 535 536 idx = srcu_read_lock(&kvm->srcu); 537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 538 srcu_read_unlock(&kvm->srcu, idx); 539 } 540 541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 542 543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 544 unsigned long end); 545 546 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 547 548 struct kvm_hva_range { 549 unsigned long start; 550 unsigned long end; 551 pte_t pte; 552 hva_handler_t handler; 553 on_lock_fn_t on_lock; 554 on_unlock_fn_t on_unlock; 555 bool flush_on_ret; 556 bool may_block; 557 }; 558 559 /* 560 * Use a dedicated stub instead of NULL to indicate that there is no callback 561 * function/handler. The compiler technically can't guarantee that a real 562 * function will have a non-zero address, and so it will generate code to 563 * check for !NULL, whereas comparing against a stub will be elided at compile 564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 565 */ 566 static void kvm_null_fn(void) 567 { 568 569 } 570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 571 572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 575 node; \ 576 node = interval_tree_iter_next(node, start, last)) \ 577 578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 579 const struct kvm_hva_range *range) 580 { 581 bool ret = false, locked = false; 582 struct kvm_gfn_range gfn_range; 583 struct kvm_memory_slot *slot; 584 struct kvm_memslots *slots; 585 int i, idx; 586 587 if (WARN_ON_ONCE(range->end <= range->start)) 588 return 0; 589 590 /* A null handler is allowed if and only if on_lock() is provided. */ 591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 592 IS_KVM_NULL_FN(range->handler))) 593 return 0; 594 595 idx = srcu_read_lock(&kvm->srcu); 596 597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 598 struct interval_tree_node *node; 599 600 slots = __kvm_memslots(kvm, i); 601 kvm_for_each_memslot_in_hva_range(node, slots, 602 range->start, range->end - 1) { 603 unsigned long hva_start, hva_end; 604 605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 606 hva_start = max(range->start, slot->userspace_addr); 607 hva_end = min(range->end, slot->userspace_addr + 608 (slot->npages << PAGE_SHIFT)); 609 610 /* 611 * To optimize for the likely case where the address 612 * range is covered by zero or one memslots, don't 613 * bother making these conditional (to avoid writes on 614 * the second or later invocation of the handler). 615 */ 616 gfn_range.pte = range->pte; 617 gfn_range.may_block = range->may_block; 618 619 /* 620 * {gfn(page) | page intersects with [hva_start, hva_end)} = 621 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 622 */ 623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 625 gfn_range.slot = slot; 626 627 if (!locked) { 628 locked = true; 629 KVM_MMU_LOCK(kvm); 630 if (!IS_KVM_NULL_FN(range->on_lock)) 631 range->on_lock(kvm, range->start, range->end); 632 if (IS_KVM_NULL_FN(range->handler)) 633 break; 634 } 635 ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 if (locked) { 643 KVM_MMU_UNLOCK(kvm); 644 if (!IS_KVM_NULL_FN(range->on_unlock)) 645 range->on_unlock(kvm); 646 } 647 648 srcu_read_unlock(&kvm->srcu, idx); 649 650 /* The notifiers are averse to booleans. :-( */ 651 return (int)ret; 652 } 653 654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 655 unsigned long start, 656 unsigned long end, 657 pte_t pte, 658 hva_handler_t handler) 659 { 660 struct kvm *kvm = mmu_notifier_to_kvm(mn); 661 const struct kvm_hva_range range = { 662 .start = start, 663 .end = end, 664 .pte = pte, 665 .handler = handler, 666 .on_lock = (void *)kvm_null_fn, 667 .on_unlock = (void *)kvm_null_fn, 668 .flush_on_ret = true, 669 .may_block = false, 670 }; 671 672 return __kvm_handle_hva_range(kvm, &range); 673 } 674 675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 676 unsigned long start, 677 unsigned long end, 678 hva_handler_t handler) 679 { 680 struct kvm *kvm = mmu_notifier_to_kvm(mn); 681 const struct kvm_hva_range range = { 682 .start = start, 683 .end = end, 684 .pte = __pte(0), 685 .handler = handler, 686 .on_lock = (void *)kvm_null_fn, 687 .on_unlock = (void *)kvm_null_fn, 688 .flush_on_ret = false, 689 .may_block = false, 690 }; 691 692 return __kvm_handle_hva_range(kvm, &range); 693 } 694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 695 struct mm_struct *mm, 696 unsigned long address, 697 pte_t pte) 698 { 699 struct kvm *kvm = mmu_notifier_to_kvm(mn); 700 701 trace_kvm_set_spte_hva(address); 702 703 /* 704 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 705 * If mmu_notifier_count is zero, then no in-progress invalidations, 706 * including this one, found a relevant memslot at start(); rechecking 707 * memslots here is unnecessary. Note, a false positive (count elevated 708 * by a different invalidation) is sub-optimal but functionally ok. 709 */ 710 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 711 if (!READ_ONCE(kvm->mmu_notifier_count)) 712 return; 713 714 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 715 } 716 717 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 718 unsigned long end) 719 { 720 /* 721 * The count increase must become visible at unlock time as no 722 * spte can be established without taking the mmu_lock and 723 * count is also read inside the mmu_lock critical section. 724 */ 725 kvm->mmu_notifier_count++; 726 if (likely(kvm->mmu_notifier_count == 1)) { 727 kvm->mmu_notifier_range_start = start; 728 kvm->mmu_notifier_range_end = end; 729 } else { 730 /* 731 * Fully tracking multiple concurrent ranges has diminishing 732 * returns. Keep things simple and just find the minimal range 733 * which includes the current and new ranges. As there won't be 734 * enough information to subtract a range after its invalidate 735 * completes, any ranges invalidated concurrently will 736 * accumulate and persist until all outstanding invalidates 737 * complete. 738 */ 739 kvm->mmu_notifier_range_start = 740 min(kvm->mmu_notifier_range_start, start); 741 kvm->mmu_notifier_range_end = 742 max(kvm->mmu_notifier_range_end, end); 743 } 744 } 745 746 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 747 const struct mmu_notifier_range *range) 748 { 749 struct kvm *kvm = mmu_notifier_to_kvm(mn); 750 const struct kvm_hva_range hva_range = { 751 .start = range->start, 752 .end = range->end, 753 .pte = __pte(0), 754 .handler = kvm_unmap_gfn_range, 755 .on_lock = kvm_inc_notifier_count, 756 .on_unlock = kvm_arch_guest_memory_reclaimed, 757 .flush_on_ret = true, 758 .may_block = mmu_notifier_range_blockable(range), 759 }; 760 761 trace_kvm_unmap_hva_range(range->start, range->end); 762 763 /* 764 * Prevent memslot modification between range_start() and range_end() 765 * so that conditionally locking provides the same result in both 766 * functions. Without that guarantee, the mmu_notifier_count 767 * adjustments will be imbalanced. 768 * 769 * Pairs with the decrement in range_end(). 770 */ 771 spin_lock(&kvm->mn_invalidate_lock); 772 kvm->mn_active_invalidate_count++; 773 spin_unlock(&kvm->mn_invalidate_lock); 774 775 /* 776 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 777 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 778 * each cache's lock. There are relatively few caches in existence at 779 * any given time, and the caches themselves can check for hva overlap, 780 * i.e. don't need to rely on memslot overlap checks for performance. 781 * Because this runs without holding mmu_lock, the pfn caches must use 782 * mn_active_invalidate_count (see above) instead of mmu_notifier_count. 783 */ 784 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 785 hva_range.may_block); 786 787 __kvm_handle_hva_range(kvm, &hva_range); 788 789 return 0; 790 } 791 792 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 793 unsigned long end) 794 { 795 /* 796 * This sequence increase will notify the kvm page fault that 797 * the page that is going to be mapped in the spte could have 798 * been freed. 799 */ 800 kvm->mmu_notifier_seq++; 801 smp_wmb(); 802 /* 803 * The above sequence increase must be visible before the 804 * below count decrease, which is ensured by the smp_wmb above 805 * in conjunction with the smp_rmb in mmu_notifier_retry(). 806 */ 807 kvm->mmu_notifier_count--; 808 } 809 810 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 811 const struct mmu_notifier_range *range) 812 { 813 struct kvm *kvm = mmu_notifier_to_kvm(mn); 814 const struct kvm_hva_range hva_range = { 815 .start = range->start, 816 .end = range->end, 817 .pte = __pte(0), 818 .handler = (void *)kvm_null_fn, 819 .on_lock = kvm_dec_notifier_count, 820 .on_unlock = (void *)kvm_null_fn, 821 .flush_on_ret = false, 822 .may_block = mmu_notifier_range_blockable(range), 823 }; 824 bool wake; 825 826 __kvm_handle_hva_range(kvm, &hva_range); 827 828 /* Pairs with the increment in range_start(). */ 829 spin_lock(&kvm->mn_invalidate_lock); 830 wake = (--kvm->mn_active_invalidate_count == 0); 831 spin_unlock(&kvm->mn_invalidate_lock); 832 833 /* 834 * There can only be one waiter, since the wait happens under 835 * slots_lock. 836 */ 837 if (wake) 838 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 839 840 BUG_ON(kvm->mmu_notifier_count < 0); 841 } 842 843 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 844 struct mm_struct *mm, 845 unsigned long start, 846 unsigned long end) 847 { 848 trace_kvm_age_hva(start, end); 849 850 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 851 } 852 853 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 854 struct mm_struct *mm, 855 unsigned long start, 856 unsigned long end) 857 { 858 trace_kvm_age_hva(start, end); 859 860 /* 861 * Even though we do not flush TLB, this will still adversely 862 * affect performance on pre-Haswell Intel EPT, where there is 863 * no EPT Access Bit to clear so that we have to tear down EPT 864 * tables instead. If we find this unacceptable, we can always 865 * add a parameter to kvm_age_hva so that it effectively doesn't 866 * do anything on clear_young. 867 * 868 * Also note that currently we never issue secondary TLB flushes 869 * from clear_young, leaving this job up to the regular system 870 * cadence. If we find this inaccurate, we might come up with a 871 * more sophisticated heuristic later. 872 */ 873 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 874 } 875 876 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 877 struct mm_struct *mm, 878 unsigned long address) 879 { 880 trace_kvm_test_age_hva(address); 881 882 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 883 kvm_test_age_gfn); 884 } 885 886 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 887 struct mm_struct *mm) 888 { 889 struct kvm *kvm = mmu_notifier_to_kvm(mn); 890 int idx; 891 892 idx = srcu_read_lock(&kvm->srcu); 893 kvm_flush_shadow_all(kvm); 894 srcu_read_unlock(&kvm->srcu, idx); 895 } 896 897 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 898 .invalidate_range = kvm_mmu_notifier_invalidate_range, 899 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 900 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 901 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 902 .clear_young = kvm_mmu_notifier_clear_young, 903 .test_young = kvm_mmu_notifier_test_young, 904 .change_pte = kvm_mmu_notifier_change_pte, 905 .release = kvm_mmu_notifier_release, 906 }; 907 908 static int kvm_init_mmu_notifier(struct kvm *kvm) 909 { 910 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 911 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 912 } 913 914 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 915 916 static int kvm_init_mmu_notifier(struct kvm *kvm) 917 { 918 return 0; 919 } 920 921 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 922 923 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 924 static int kvm_pm_notifier_call(struct notifier_block *bl, 925 unsigned long state, 926 void *unused) 927 { 928 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 929 930 return kvm_arch_pm_notifier(kvm, state); 931 } 932 933 static void kvm_init_pm_notifier(struct kvm *kvm) 934 { 935 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 936 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 937 kvm->pm_notifier.priority = INT_MAX; 938 register_pm_notifier(&kvm->pm_notifier); 939 } 940 941 static void kvm_destroy_pm_notifier(struct kvm *kvm) 942 { 943 unregister_pm_notifier(&kvm->pm_notifier); 944 } 945 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 946 static void kvm_init_pm_notifier(struct kvm *kvm) 947 { 948 } 949 950 static void kvm_destroy_pm_notifier(struct kvm *kvm) 951 { 952 } 953 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 954 955 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 956 { 957 if (!memslot->dirty_bitmap) 958 return; 959 960 kvfree(memslot->dirty_bitmap); 961 memslot->dirty_bitmap = NULL; 962 } 963 964 /* This does not remove the slot from struct kvm_memslots data structures */ 965 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 966 { 967 kvm_destroy_dirty_bitmap(slot); 968 969 kvm_arch_free_memslot(kvm, slot); 970 971 kfree(slot); 972 } 973 974 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 975 { 976 struct hlist_node *idnode; 977 struct kvm_memory_slot *memslot; 978 int bkt; 979 980 /* 981 * The same memslot objects live in both active and inactive sets, 982 * arbitrarily free using index '1' so the second invocation of this 983 * function isn't operating over a structure with dangling pointers 984 * (even though this function isn't actually touching them). 985 */ 986 if (!slots->node_idx) 987 return; 988 989 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 990 kvm_free_memslot(kvm, memslot); 991 } 992 993 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 994 { 995 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 996 case KVM_STATS_TYPE_INSTANT: 997 return 0444; 998 case KVM_STATS_TYPE_CUMULATIVE: 999 case KVM_STATS_TYPE_PEAK: 1000 default: 1001 return 0644; 1002 } 1003 } 1004 1005 1006 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1007 { 1008 int i; 1009 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1010 kvm_vcpu_stats_header.num_desc; 1011 1012 if (IS_ERR(kvm->debugfs_dentry)) 1013 return; 1014 1015 debugfs_remove_recursive(kvm->debugfs_dentry); 1016 1017 if (kvm->debugfs_stat_data) { 1018 for (i = 0; i < kvm_debugfs_num_entries; i++) 1019 kfree(kvm->debugfs_stat_data[i]); 1020 kfree(kvm->debugfs_stat_data); 1021 } 1022 } 1023 1024 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1025 { 1026 static DEFINE_MUTEX(kvm_debugfs_lock); 1027 struct dentry *dent; 1028 char dir_name[ITOA_MAX_LEN * 2]; 1029 struct kvm_stat_data *stat_data; 1030 const struct _kvm_stats_desc *pdesc; 1031 int i, ret = -ENOMEM; 1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1033 kvm_vcpu_stats_header.num_desc; 1034 1035 if (!debugfs_initialized()) 1036 return 0; 1037 1038 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1039 mutex_lock(&kvm_debugfs_lock); 1040 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1041 if (dent) { 1042 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1043 dput(dent); 1044 mutex_unlock(&kvm_debugfs_lock); 1045 return 0; 1046 } 1047 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1048 mutex_unlock(&kvm_debugfs_lock); 1049 if (IS_ERR(dent)) 1050 return 0; 1051 1052 kvm->debugfs_dentry = dent; 1053 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1054 sizeof(*kvm->debugfs_stat_data), 1055 GFP_KERNEL_ACCOUNT); 1056 if (!kvm->debugfs_stat_data) 1057 goto out_err; 1058 1059 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1060 pdesc = &kvm_vm_stats_desc[i]; 1061 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1062 if (!stat_data) 1063 goto out_err; 1064 1065 stat_data->kvm = kvm; 1066 stat_data->desc = pdesc; 1067 stat_data->kind = KVM_STAT_VM; 1068 kvm->debugfs_stat_data[i] = stat_data; 1069 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1070 kvm->debugfs_dentry, stat_data, 1071 &stat_fops_per_vm); 1072 } 1073 1074 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1075 pdesc = &kvm_vcpu_stats_desc[i]; 1076 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1077 if (!stat_data) 1078 goto out_err; 1079 1080 stat_data->kvm = kvm; 1081 stat_data->desc = pdesc; 1082 stat_data->kind = KVM_STAT_VCPU; 1083 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1084 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1085 kvm->debugfs_dentry, stat_data, 1086 &stat_fops_per_vm); 1087 } 1088 1089 ret = kvm_arch_create_vm_debugfs(kvm); 1090 if (ret) 1091 goto out_err; 1092 1093 return 0; 1094 out_err: 1095 kvm_destroy_vm_debugfs(kvm); 1096 return ret; 1097 } 1098 1099 /* 1100 * Called after the VM is otherwise initialized, but just before adding it to 1101 * the vm_list. 1102 */ 1103 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1104 { 1105 return 0; 1106 } 1107 1108 /* 1109 * Called just after removing the VM from the vm_list, but before doing any 1110 * other destruction. 1111 */ 1112 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1113 { 1114 } 1115 1116 /* 1117 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1118 * be setup already, so we can create arch-specific debugfs entries under it. 1119 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1120 * a per-arch destroy interface is not needed. 1121 */ 1122 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1123 { 1124 return 0; 1125 } 1126 1127 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1128 { 1129 struct kvm *kvm = kvm_arch_alloc_vm(); 1130 struct kvm_memslots *slots; 1131 int r = -ENOMEM; 1132 int i, j; 1133 1134 if (!kvm) 1135 return ERR_PTR(-ENOMEM); 1136 1137 KVM_MMU_LOCK_INIT(kvm); 1138 mmgrab(current->mm); 1139 kvm->mm = current->mm; 1140 kvm_eventfd_init(kvm); 1141 mutex_init(&kvm->lock); 1142 mutex_init(&kvm->irq_lock); 1143 mutex_init(&kvm->slots_lock); 1144 mutex_init(&kvm->slots_arch_lock); 1145 spin_lock_init(&kvm->mn_invalidate_lock); 1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1147 xa_init(&kvm->vcpu_array); 1148 1149 INIT_LIST_HEAD(&kvm->gpc_list); 1150 spin_lock_init(&kvm->gpc_lock); 1151 1152 INIT_LIST_HEAD(&kvm->devices); 1153 kvm->max_vcpus = KVM_MAX_VCPUS; 1154 1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1156 1157 /* 1158 * Force subsequent debugfs file creations to fail if the VM directory 1159 * is not created (by kvm_create_vm_debugfs()). 1160 */ 1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1162 1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1164 task_pid_nr(current)); 1165 1166 if (init_srcu_struct(&kvm->srcu)) 1167 goto out_err_no_srcu; 1168 if (init_srcu_struct(&kvm->irq_srcu)) 1169 goto out_err_no_irq_srcu; 1170 1171 refcount_set(&kvm->users_count, 1); 1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1173 for (j = 0; j < 2; j++) { 1174 slots = &kvm->__memslots[i][j]; 1175 1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1177 slots->hva_tree = RB_ROOT_CACHED; 1178 slots->gfn_tree = RB_ROOT; 1179 hash_init(slots->id_hash); 1180 slots->node_idx = j; 1181 1182 /* Generations must be different for each address space. */ 1183 slots->generation = i; 1184 } 1185 1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1187 } 1188 1189 for (i = 0; i < KVM_NR_BUSES; i++) { 1190 rcu_assign_pointer(kvm->buses[i], 1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1192 if (!kvm->buses[i]) 1193 goto out_err_no_arch_destroy_vm; 1194 } 1195 1196 kvm->max_halt_poll_ns = halt_poll_ns; 1197 1198 r = kvm_arch_init_vm(kvm, type); 1199 if (r) 1200 goto out_err_no_arch_destroy_vm; 1201 1202 r = hardware_enable_all(); 1203 if (r) 1204 goto out_err_no_disable; 1205 1206 #ifdef CONFIG_HAVE_KVM_IRQFD 1207 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1208 #endif 1209 1210 r = kvm_init_mmu_notifier(kvm); 1211 if (r) 1212 goto out_err_no_mmu_notifier; 1213 1214 r = kvm_arch_post_init_vm(kvm); 1215 if (r) 1216 goto out_err_mmu_notifier; 1217 1218 mutex_lock(&kvm_lock); 1219 list_add(&kvm->vm_list, &vm_list); 1220 mutex_unlock(&kvm_lock); 1221 1222 preempt_notifier_inc(); 1223 kvm_init_pm_notifier(kvm); 1224 1225 /* 1226 * When the fd passed to this ioctl() is opened it pins the module, 1227 * but try_module_get() also prevents getting a reference if the module 1228 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1229 */ 1230 if (!try_module_get(kvm_chardev_ops.owner)) { 1231 r = -ENODEV; 1232 goto out_err_mmu_notifier; 1233 } 1234 1235 r = kvm_create_vm_debugfs(kvm, fdname); 1236 if (r) 1237 goto out_err; 1238 1239 return kvm; 1240 1241 out_err: 1242 module_put(kvm_chardev_ops.owner); 1243 out_err_mmu_notifier: 1244 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1245 if (kvm->mmu_notifier.ops) 1246 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1247 #endif 1248 out_err_no_mmu_notifier: 1249 hardware_disable_all(); 1250 out_err_no_disable: 1251 kvm_arch_destroy_vm(kvm); 1252 out_err_no_arch_destroy_vm: 1253 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1254 for (i = 0; i < KVM_NR_BUSES; i++) 1255 kfree(kvm_get_bus(kvm, i)); 1256 cleanup_srcu_struct(&kvm->irq_srcu); 1257 out_err_no_irq_srcu: 1258 cleanup_srcu_struct(&kvm->srcu); 1259 out_err_no_srcu: 1260 kvm_arch_free_vm(kvm); 1261 mmdrop(current->mm); 1262 return ERR_PTR(r); 1263 } 1264 1265 static void kvm_destroy_devices(struct kvm *kvm) 1266 { 1267 struct kvm_device *dev, *tmp; 1268 1269 /* 1270 * We do not need to take the kvm->lock here, because nobody else 1271 * has a reference to the struct kvm at this point and therefore 1272 * cannot access the devices list anyhow. 1273 */ 1274 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1275 list_del(&dev->vm_node); 1276 dev->ops->destroy(dev); 1277 } 1278 } 1279 1280 static void kvm_destroy_vm(struct kvm *kvm) 1281 { 1282 int i; 1283 struct mm_struct *mm = kvm->mm; 1284 1285 kvm_destroy_pm_notifier(kvm); 1286 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1287 kvm_destroy_vm_debugfs(kvm); 1288 kvm_arch_sync_events(kvm); 1289 mutex_lock(&kvm_lock); 1290 list_del(&kvm->vm_list); 1291 mutex_unlock(&kvm_lock); 1292 kvm_arch_pre_destroy_vm(kvm); 1293 1294 kvm_free_irq_routing(kvm); 1295 for (i = 0; i < KVM_NR_BUSES; i++) { 1296 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1297 1298 if (bus) 1299 kvm_io_bus_destroy(bus); 1300 kvm->buses[i] = NULL; 1301 } 1302 kvm_coalesced_mmio_free(kvm); 1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1304 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1305 /* 1306 * At this point, pending calls to invalidate_range_start() 1307 * have completed but no more MMU notifiers will run, so 1308 * mn_active_invalidate_count may remain unbalanced. 1309 * No threads can be waiting in install_new_memslots as the 1310 * last reference on KVM has been dropped, but freeing 1311 * memslots would deadlock without this manual intervention. 1312 */ 1313 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1314 kvm->mn_active_invalidate_count = 0; 1315 #else 1316 kvm_flush_shadow_all(kvm); 1317 #endif 1318 kvm_arch_destroy_vm(kvm); 1319 kvm_destroy_devices(kvm); 1320 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1321 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1322 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1323 } 1324 cleanup_srcu_struct(&kvm->irq_srcu); 1325 cleanup_srcu_struct(&kvm->srcu); 1326 kvm_arch_free_vm(kvm); 1327 preempt_notifier_dec(); 1328 hardware_disable_all(); 1329 mmdrop(mm); 1330 module_put(kvm_chardev_ops.owner); 1331 } 1332 1333 void kvm_get_kvm(struct kvm *kvm) 1334 { 1335 refcount_inc(&kvm->users_count); 1336 } 1337 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1338 1339 /* 1340 * Make sure the vm is not during destruction, which is a safe version of 1341 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1342 */ 1343 bool kvm_get_kvm_safe(struct kvm *kvm) 1344 { 1345 return refcount_inc_not_zero(&kvm->users_count); 1346 } 1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1348 1349 void kvm_put_kvm(struct kvm *kvm) 1350 { 1351 if (refcount_dec_and_test(&kvm->users_count)) 1352 kvm_destroy_vm(kvm); 1353 } 1354 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1355 1356 /* 1357 * Used to put a reference that was taken on behalf of an object associated 1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1359 * of the new file descriptor fails and the reference cannot be transferred to 1360 * its final owner. In such cases, the caller is still actively using @kvm and 1361 * will fail miserably if the refcount unexpectedly hits zero. 1362 */ 1363 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1364 { 1365 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1366 } 1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1368 1369 static int kvm_vm_release(struct inode *inode, struct file *filp) 1370 { 1371 struct kvm *kvm = filp->private_data; 1372 1373 kvm_irqfd_release(kvm); 1374 1375 kvm_put_kvm(kvm); 1376 return 0; 1377 } 1378 1379 /* 1380 * Allocation size is twice as large as the actual dirty bitmap size. 1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1382 */ 1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1384 { 1385 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1386 1387 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1388 if (!memslot->dirty_bitmap) 1389 return -ENOMEM; 1390 1391 return 0; 1392 } 1393 1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1395 { 1396 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1397 int node_idx_inactive = active->node_idx ^ 1; 1398 1399 return &kvm->__memslots[as_id][node_idx_inactive]; 1400 } 1401 1402 /* 1403 * Helper to get the address space ID when one of memslot pointers may be NULL. 1404 * This also serves as a sanity that at least one of the pointers is non-NULL, 1405 * and that their address space IDs don't diverge. 1406 */ 1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1408 struct kvm_memory_slot *b) 1409 { 1410 if (WARN_ON_ONCE(!a && !b)) 1411 return 0; 1412 1413 if (!a) 1414 return b->as_id; 1415 if (!b) 1416 return a->as_id; 1417 1418 WARN_ON_ONCE(a->as_id != b->as_id); 1419 return a->as_id; 1420 } 1421 1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1423 struct kvm_memory_slot *slot) 1424 { 1425 struct rb_root *gfn_tree = &slots->gfn_tree; 1426 struct rb_node **node, *parent; 1427 int idx = slots->node_idx; 1428 1429 parent = NULL; 1430 for (node = &gfn_tree->rb_node; *node; ) { 1431 struct kvm_memory_slot *tmp; 1432 1433 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1434 parent = *node; 1435 if (slot->base_gfn < tmp->base_gfn) 1436 node = &(*node)->rb_left; 1437 else if (slot->base_gfn > tmp->base_gfn) 1438 node = &(*node)->rb_right; 1439 else 1440 BUG(); 1441 } 1442 1443 rb_link_node(&slot->gfn_node[idx], parent, node); 1444 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1445 } 1446 1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1448 struct kvm_memory_slot *slot) 1449 { 1450 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1451 } 1452 1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1454 struct kvm_memory_slot *old, 1455 struct kvm_memory_slot *new) 1456 { 1457 int idx = slots->node_idx; 1458 1459 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1460 1461 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1462 &slots->gfn_tree); 1463 } 1464 1465 /* 1466 * Replace @old with @new in the inactive memslots. 1467 * 1468 * With NULL @old this simply adds @new. 1469 * With NULL @new this simply removes @old. 1470 * 1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1472 * appropriately. 1473 */ 1474 static void kvm_replace_memslot(struct kvm *kvm, 1475 struct kvm_memory_slot *old, 1476 struct kvm_memory_slot *new) 1477 { 1478 int as_id = kvm_memslots_get_as_id(old, new); 1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1480 int idx = slots->node_idx; 1481 1482 if (old) { 1483 hash_del(&old->id_node[idx]); 1484 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1485 1486 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1487 atomic_long_set(&slots->last_used_slot, (long)new); 1488 1489 if (!new) { 1490 kvm_erase_gfn_node(slots, old); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * Initialize @new's hva range. Do this even when replacing an @old 1497 * slot, kvm_copy_memslot() deliberately does not touch node data. 1498 */ 1499 new->hva_node[idx].start = new->userspace_addr; 1500 new->hva_node[idx].last = new->userspace_addr + 1501 (new->npages << PAGE_SHIFT) - 1; 1502 1503 /* 1504 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1505 * hva_node needs to be swapped with remove+insert even though hva can't 1506 * change when replacing an existing slot. 1507 */ 1508 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1509 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1510 1511 /* 1512 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1513 * switch the node in the gfn tree instead of removing the old and 1514 * inserting the new as two separate operations. Replacement is a 1515 * single O(1) operation versus two O(log(n)) operations for 1516 * remove+insert. 1517 */ 1518 if (old && old->base_gfn == new->base_gfn) { 1519 kvm_replace_gfn_node(slots, old, new); 1520 } else { 1521 if (old) 1522 kvm_erase_gfn_node(slots, old); 1523 kvm_insert_gfn_node(slots, new); 1524 } 1525 } 1526 1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1528 { 1529 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1530 1531 #ifdef __KVM_HAVE_READONLY_MEM 1532 valid_flags |= KVM_MEM_READONLY; 1533 #endif 1534 1535 if (mem->flags & ~valid_flags) 1536 return -EINVAL; 1537 1538 return 0; 1539 } 1540 1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1542 { 1543 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1544 1545 /* Grab the generation from the activate memslots. */ 1546 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1547 1548 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1549 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1550 1551 /* 1552 * Do not store the new memslots while there are invalidations in 1553 * progress, otherwise the locking in invalidate_range_start and 1554 * invalidate_range_end will be unbalanced. 1555 */ 1556 spin_lock(&kvm->mn_invalidate_lock); 1557 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1558 while (kvm->mn_active_invalidate_count) { 1559 set_current_state(TASK_UNINTERRUPTIBLE); 1560 spin_unlock(&kvm->mn_invalidate_lock); 1561 schedule(); 1562 spin_lock(&kvm->mn_invalidate_lock); 1563 } 1564 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1565 rcu_assign_pointer(kvm->memslots[as_id], slots); 1566 spin_unlock(&kvm->mn_invalidate_lock); 1567 1568 /* 1569 * Acquired in kvm_set_memslot. Must be released before synchronize 1570 * SRCU below in order to avoid deadlock with another thread 1571 * acquiring the slots_arch_lock in an srcu critical section. 1572 */ 1573 mutex_unlock(&kvm->slots_arch_lock); 1574 1575 synchronize_srcu_expedited(&kvm->srcu); 1576 1577 /* 1578 * Increment the new memslot generation a second time, dropping the 1579 * update in-progress flag and incrementing the generation based on 1580 * the number of address spaces. This provides a unique and easily 1581 * identifiable generation number while the memslots are in flux. 1582 */ 1583 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1584 1585 /* 1586 * Generations must be unique even across address spaces. We do not need 1587 * a global counter for that, instead the generation space is evenly split 1588 * across address spaces. For example, with two address spaces, address 1589 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1590 * use generations 1, 3, 5, ... 1591 */ 1592 gen += KVM_ADDRESS_SPACE_NUM; 1593 1594 kvm_arch_memslots_updated(kvm, gen); 1595 1596 slots->generation = gen; 1597 } 1598 1599 static int kvm_prepare_memory_region(struct kvm *kvm, 1600 const struct kvm_memory_slot *old, 1601 struct kvm_memory_slot *new, 1602 enum kvm_mr_change change) 1603 { 1604 int r; 1605 1606 /* 1607 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1608 * will be freed on "commit". If logging is enabled in both old and 1609 * new, reuse the existing bitmap. If logging is enabled only in the 1610 * new and KVM isn't using a ring buffer, allocate and initialize a 1611 * new bitmap. 1612 */ 1613 if (change != KVM_MR_DELETE) { 1614 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1615 new->dirty_bitmap = NULL; 1616 else if (old && old->dirty_bitmap) 1617 new->dirty_bitmap = old->dirty_bitmap; 1618 else if (!kvm->dirty_ring_size) { 1619 r = kvm_alloc_dirty_bitmap(new); 1620 if (r) 1621 return r; 1622 1623 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1624 bitmap_set(new->dirty_bitmap, 0, new->npages); 1625 } 1626 } 1627 1628 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1629 1630 /* Free the bitmap on failure if it was allocated above. */ 1631 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1632 kvm_destroy_dirty_bitmap(new); 1633 1634 return r; 1635 } 1636 1637 static void kvm_commit_memory_region(struct kvm *kvm, 1638 struct kvm_memory_slot *old, 1639 const struct kvm_memory_slot *new, 1640 enum kvm_mr_change change) 1641 { 1642 /* 1643 * Update the total number of memslot pages before calling the arch 1644 * hook so that architectures can consume the result directly. 1645 */ 1646 if (change == KVM_MR_DELETE) 1647 kvm->nr_memslot_pages -= old->npages; 1648 else if (change == KVM_MR_CREATE) 1649 kvm->nr_memslot_pages += new->npages; 1650 1651 kvm_arch_commit_memory_region(kvm, old, new, change); 1652 1653 switch (change) { 1654 case KVM_MR_CREATE: 1655 /* Nothing more to do. */ 1656 break; 1657 case KVM_MR_DELETE: 1658 /* Free the old memslot and all its metadata. */ 1659 kvm_free_memslot(kvm, old); 1660 break; 1661 case KVM_MR_MOVE: 1662 case KVM_MR_FLAGS_ONLY: 1663 /* 1664 * Free the dirty bitmap as needed; the below check encompasses 1665 * both the flags and whether a ring buffer is being used) 1666 */ 1667 if (old->dirty_bitmap && !new->dirty_bitmap) 1668 kvm_destroy_dirty_bitmap(old); 1669 1670 /* 1671 * The final quirk. Free the detached, old slot, but only its 1672 * memory, not any metadata. Metadata, including arch specific 1673 * data, may be reused by @new. 1674 */ 1675 kfree(old); 1676 break; 1677 default: 1678 BUG(); 1679 } 1680 } 1681 1682 /* 1683 * Activate @new, which must be installed in the inactive slots by the caller, 1684 * by swapping the active slots and then propagating @new to @old once @old is 1685 * unreachable and can be safely modified. 1686 * 1687 * With NULL @old this simply adds @new to @active (while swapping the sets). 1688 * With NULL @new this simply removes @old from @active and frees it 1689 * (while also swapping the sets). 1690 */ 1691 static void kvm_activate_memslot(struct kvm *kvm, 1692 struct kvm_memory_slot *old, 1693 struct kvm_memory_slot *new) 1694 { 1695 int as_id = kvm_memslots_get_as_id(old, new); 1696 1697 kvm_swap_active_memslots(kvm, as_id); 1698 1699 /* Propagate the new memslot to the now inactive memslots. */ 1700 kvm_replace_memslot(kvm, old, new); 1701 } 1702 1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1704 const struct kvm_memory_slot *src) 1705 { 1706 dest->base_gfn = src->base_gfn; 1707 dest->npages = src->npages; 1708 dest->dirty_bitmap = src->dirty_bitmap; 1709 dest->arch = src->arch; 1710 dest->userspace_addr = src->userspace_addr; 1711 dest->flags = src->flags; 1712 dest->id = src->id; 1713 dest->as_id = src->as_id; 1714 } 1715 1716 static void kvm_invalidate_memslot(struct kvm *kvm, 1717 struct kvm_memory_slot *old, 1718 struct kvm_memory_slot *invalid_slot) 1719 { 1720 /* 1721 * Mark the current slot INVALID. As with all memslot modifications, 1722 * this must be done on an unreachable slot to avoid modifying the 1723 * current slot in the active tree. 1724 */ 1725 kvm_copy_memslot(invalid_slot, old); 1726 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1727 kvm_replace_memslot(kvm, old, invalid_slot); 1728 1729 /* 1730 * Activate the slot that is now marked INVALID, but don't propagate 1731 * the slot to the now inactive slots. The slot is either going to be 1732 * deleted or recreated as a new slot. 1733 */ 1734 kvm_swap_active_memslots(kvm, old->as_id); 1735 1736 /* 1737 * From this point no new shadow pages pointing to a deleted, or moved, 1738 * memslot will be created. Validation of sp->gfn happens in: 1739 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1740 * - kvm_is_visible_gfn (mmu_check_root) 1741 */ 1742 kvm_arch_flush_shadow_memslot(kvm, old); 1743 kvm_arch_guest_memory_reclaimed(kvm); 1744 1745 /* Was released by kvm_swap_active_memslots, reacquire. */ 1746 mutex_lock(&kvm->slots_arch_lock); 1747 1748 /* 1749 * Copy the arch-specific field of the newly-installed slot back to the 1750 * old slot as the arch data could have changed between releasing 1751 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1752 * above. Writers are required to retrieve memslots *after* acquiring 1753 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1754 */ 1755 old->arch = invalid_slot->arch; 1756 } 1757 1758 static void kvm_create_memslot(struct kvm *kvm, 1759 struct kvm_memory_slot *new) 1760 { 1761 /* Add the new memslot to the inactive set and activate. */ 1762 kvm_replace_memslot(kvm, NULL, new); 1763 kvm_activate_memslot(kvm, NULL, new); 1764 } 1765 1766 static void kvm_delete_memslot(struct kvm *kvm, 1767 struct kvm_memory_slot *old, 1768 struct kvm_memory_slot *invalid_slot) 1769 { 1770 /* 1771 * Remove the old memslot (in the inactive memslots) by passing NULL as 1772 * the "new" slot, and for the invalid version in the active slots. 1773 */ 1774 kvm_replace_memslot(kvm, old, NULL); 1775 kvm_activate_memslot(kvm, invalid_slot, NULL); 1776 } 1777 1778 static void kvm_move_memslot(struct kvm *kvm, 1779 struct kvm_memory_slot *old, 1780 struct kvm_memory_slot *new, 1781 struct kvm_memory_slot *invalid_slot) 1782 { 1783 /* 1784 * Replace the old memslot in the inactive slots, and then swap slots 1785 * and replace the current INVALID with the new as well. 1786 */ 1787 kvm_replace_memslot(kvm, old, new); 1788 kvm_activate_memslot(kvm, invalid_slot, new); 1789 } 1790 1791 static void kvm_update_flags_memslot(struct kvm *kvm, 1792 struct kvm_memory_slot *old, 1793 struct kvm_memory_slot *new) 1794 { 1795 /* 1796 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1797 * an intermediate step. Instead, the old memslot is simply replaced 1798 * with a new, updated copy in both memslot sets. 1799 */ 1800 kvm_replace_memslot(kvm, old, new); 1801 kvm_activate_memslot(kvm, old, new); 1802 } 1803 1804 static int kvm_set_memslot(struct kvm *kvm, 1805 struct kvm_memory_slot *old, 1806 struct kvm_memory_slot *new, 1807 enum kvm_mr_change change) 1808 { 1809 struct kvm_memory_slot *invalid_slot; 1810 int r; 1811 1812 /* 1813 * Released in kvm_swap_active_memslots. 1814 * 1815 * Must be held from before the current memslots are copied until 1816 * after the new memslots are installed with rcu_assign_pointer, 1817 * then released before the synchronize srcu in kvm_swap_active_memslots. 1818 * 1819 * When modifying memslots outside of the slots_lock, must be held 1820 * before reading the pointer to the current memslots until after all 1821 * changes to those memslots are complete. 1822 * 1823 * These rules ensure that installing new memslots does not lose 1824 * changes made to the previous memslots. 1825 */ 1826 mutex_lock(&kvm->slots_arch_lock); 1827 1828 /* 1829 * Invalidate the old slot if it's being deleted or moved. This is 1830 * done prior to actually deleting/moving the memslot to allow vCPUs to 1831 * continue running by ensuring there are no mappings or shadow pages 1832 * for the memslot when it is deleted/moved. Without pre-invalidation 1833 * (and without a lock), a window would exist between effecting the 1834 * delete/move and committing the changes in arch code where KVM or a 1835 * guest could access a non-existent memslot. 1836 * 1837 * Modifications are done on a temporary, unreachable slot. The old 1838 * slot needs to be preserved in case a later step fails and the 1839 * invalidation needs to be reverted. 1840 */ 1841 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1842 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1843 if (!invalid_slot) { 1844 mutex_unlock(&kvm->slots_arch_lock); 1845 return -ENOMEM; 1846 } 1847 kvm_invalidate_memslot(kvm, old, invalid_slot); 1848 } 1849 1850 r = kvm_prepare_memory_region(kvm, old, new, change); 1851 if (r) { 1852 /* 1853 * For DELETE/MOVE, revert the above INVALID change. No 1854 * modifications required since the original slot was preserved 1855 * in the inactive slots. Changing the active memslots also 1856 * release slots_arch_lock. 1857 */ 1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1859 kvm_activate_memslot(kvm, invalid_slot, old); 1860 kfree(invalid_slot); 1861 } else { 1862 mutex_unlock(&kvm->slots_arch_lock); 1863 } 1864 return r; 1865 } 1866 1867 /* 1868 * For DELETE and MOVE, the working slot is now active as the INVALID 1869 * version of the old slot. MOVE is particularly special as it reuses 1870 * the old slot and returns a copy of the old slot (in working_slot). 1871 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1872 * old slot is detached but otherwise preserved. 1873 */ 1874 if (change == KVM_MR_CREATE) 1875 kvm_create_memslot(kvm, new); 1876 else if (change == KVM_MR_DELETE) 1877 kvm_delete_memslot(kvm, old, invalid_slot); 1878 else if (change == KVM_MR_MOVE) 1879 kvm_move_memslot(kvm, old, new, invalid_slot); 1880 else if (change == KVM_MR_FLAGS_ONLY) 1881 kvm_update_flags_memslot(kvm, old, new); 1882 else 1883 BUG(); 1884 1885 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1886 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1887 kfree(invalid_slot); 1888 1889 /* 1890 * No need to refresh new->arch, changes after dropping slots_arch_lock 1891 * will directly hit the final, active memslot. Architectures are 1892 * responsible for knowing that new->arch may be stale. 1893 */ 1894 kvm_commit_memory_region(kvm, old, new, change); 1895 1896 return 0; 1897 } 1898 1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1900 gfn_t start, gfn_t end) 1901 { 1902 struct kvm_memslot_iter iter; 1903 1904 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1905 if (iter.slot->id != id) 1906 return true; 1907 } 1908 1909 return false; 1910 } 1911 1912 /* 1913 * Allocate some memory and give it an address in the guest physical address 1914 * space. 1915 * 1916 * Discontiguous memory is allowed, mostly for framebuffers. 1917 * 1918 * Must be called holding kvm->slots_lock for write. 1919 */ 1920 int __kvm_set_memory_region(struct kvm *kvm, 1921 const struct kvm_userspace_memory_region *mem) 1922 { 1923 struct kvm_memory_slot *old, *new; 1924 struct kvm_memslots *slots; 1925 enum kvm_mr_change change; 1926 unsigned long npages; 1927 gfn_t base_gfn; 1928 int as_id, id; 1929 int r; 1930 1931 r = check_memory_region_flags(mem); 1932 if (r) 1933 return r; 1934 1935 as_id = mem->slot >> 16; 1936 id = (u16)mem->slot; 1937 1938 /* General sanity checks */ 1939 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1940 (mem->memory_size != (unsigned long)mem->memory_size)) 1941 return -EINVAL; 1942 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1943 return -EINVAL; 1944 /* We can read the guest memory with __xxx_user() later on. */ 1945 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1946 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1947 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1948 mem->memory_size)) 1949 return -EINVAL; 1950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1951 return -EINVAL; 1952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1953 return -EINVAL; 1954 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1955 return -EINVAL; 1956 1957 slots = __kvm_memslots(kvm, as_id); 1958 1959 /* 1960 * Note, the old memslot (and the pointer itself!) may be invalidated 1961 * and/or destroyed by kvm_set_memslot(). 1962 */ 1963 old = id_to_memslot(slots, id); 1964 1965 if (!mem->memory_size) { 1966 if (!old || !old->npages) 1967 return -EINVAL; 1968 1969 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1970 return -EIO; 1971 1972 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1973 } 1974 1975 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1976 npages = (mem->memory_size >> PAGE_SHIFT); 1977 1978 if (!old || !old->npages) { 1979 change = KVM_MR_CREATE; 1980 1981 /* 1982 * To simplify KVM internals, the total number of pages across 1983 * all memslots must fit in an unsigned long. 1984 */ 1985 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1986 return -EINVAL; 1987 } else { /* Modify an existing slot. */ 1988 if ((mem->userspace_addr != old->userspace_addr) || 1989 (npages != old->npages) || 1990 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1991 return -EINVAL; 1992 1993 if (base_gfn != old->base_gfn) 1994 change = KVM_MR_MOVE; 1995 else if (mem->flags != old->flags) 1996 change = KVM_MR_FLAGS_ONLY; 1997 else /* Nothing to change. */ 1998 return 0; 1999 } 2000 2001 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2002 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2003 return -EEXIST; 2004 2005 /* Allocate a slot that will persist in the memslot. */ 2006 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2007 if (!new) 2008 return -ENOMEM; 2009 2010 new->as_id = as_id; 2011 new->id = id; 2012 new->base_gfn = base_gfn; 2013 new->npages = npages; 2014 new->flags = mem->flags; 2015 new->userspace_addr = mem->userspace_addr; 2016 2017 r = kvm_set_memslot(kvm, old, new, change); 2018 if (r) 2019 kfree(new); 2020 return r; 2021 } 2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2023 2024 int kvm_set_memory_region(struct kvm *kvm, 2025 const struct kvm_userspace_memory_region *mem) 2026 { 2027 int r; 2028 2029 mutex_lock(&kvm->slots_lock); 2030 r = __kvm_set_memory_region(kvm, mem); 2031 mutex_unlock(&kvm->slots_lock); 2032 return r; 2033 } 2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2035 2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2037 struct kvm_userspace_memory_region *mem) 2038 { 2039 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2040 return -EINVAL; 2041 2042 return kvm_set_memory_region(kvm, mem); 2043 } 2044 2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2046 /** 2047 * kvm_get_dirty_log - get a snapshot of dirty pages 2048 * @kvm: pointer to kvm instance 2049 * @log: slot id and address to which we copy the log 2050 * @is_dirty: set to '1' if any dirty pages were found 2051 * @memslot: set to the associated memslot, always valid on success 2052 */ 2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2054 int *is_dirty, struct kvm_memory_slot **memslot) 2055 { 2056 struct kvm_memslots *slots; 2057 int i, as_id, id; 2058 unsigned long n; 2059 unsigned long any = 0; 2060 2061 /* Dirty ring tracking is exclusive to dirty log tracking */ 2062 if (kvm->dirty_ring_size) 2063 return -ENXIO; 2064 2065 *memslot = NULL; 2066 *is_dirty = 0; 2067 2068 as_id = log->slot >> 16; 2069 id = (u16)log->slot; 2070 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2071 return -EINVAL; 2072 2073 slots = __kvm_memslots(kvm, as_id); 2074 *memslot = id_to_memslot(slots, id); 2075 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2076 return -ENOENT; 2077 2078 kvm_arch_sync_dirty_log(kvm, *memslot); 2079 2080 n = kvm_dirty_bitmap_bytes(*memslot); 2081 2082 for (i = 0; !any && i < n/sizeof(long); ++i) 2083 any = (*memslot)->dirty_bitmap[i]; 2084 2085 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2086 return -EFAULT; 2087 2088 if (any) 2089 *is_dirty = 1; 2090 return 0; 2091 } 2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2093 2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2095 /** 2096 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2097 * and reenable dirty page tracking for the corresponding pages. 2098 * @kvm: pointer to kvm instance 2099 * @log: slot id and address to which we copy the log 2100 * 2101 * We need to keep it in mind that VCPU threads can write to the bitmap 2102 * concurrently. So, to avoid losing track of dirty pages we keep the 2103 * following order: 2104 * 2105 * 1. Take a snapshot of the bit and clear it if needed. 2106 * 2. Write protect the corresponding page. 2107 * 3. Copy the snapshot to the userspace. 2108 * 4. Upon return caller flushes TLB's if needed. 2109 * 2110 * Between 2 and 4, the guest may write to the page using the remaining TLB 2111 * entry. This is not a problem because the page is reported dirty using 2112 * the snapshot taken before and step 4 ensures that writes done after 2113 * exiting to userspace will be logged for the next call. 2114 * 2115 */ 2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2117 { 2118 struct kvm_memslots *slots; 2119 struct kvm_memory_slot *memslot; 2120 int i, as_id, id; 2121 unsigned long n; 2122 unsigned long *dirty_bitmap; 2123 unsigned long *dirty_bitmap_buffer; 2124 bool flush; 2125 2126 /* Dirty ring tracking is exclusive to dirty log tracking */ 2127 if (kvm->dirty_ring_size) 2128 return -ENXIO; 2129 2130 as_id = log->slot >> 16; 2131 id = (u16)log->slot; 2132 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2133 return -EINVAL; 2134 2135 slots = __kvm_memslots(kvm, as_id); 2136 memslot = id_to_memslot(slots, id); 2137 if (!memslot || !memslot->dirty_bitmap) 2138 return -ENOENT; 2139 2140 dirty_bitmap = memslot->dirty_bitmap; 2141 2142 kvm_arch_sync_dirty_log(kvm, memslot); 2143 2144 n = kvm_dirty_bitmap_bytes(memslot); 2145 flush = false; 2146 if (kvm->manual_dirty_log_protect) { 2147 /* 2148 * Unlike kvm_get_dirty_log, we always return false in *flush, 2149 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2150 * is some code duplication between this function and 2151 * kvm_get_dirty_log, but hopefully all architecture 2152 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2153 * can be eliminated. 2154 */ 2155 dirty_bitmap_buffer = dirty_bitmap; 2156 } else { 2157 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2158 memset(dirty_bitmap_buffer, 0, n); 2159 2160 KVM_MMU_LOCK(kvm); 2161 for (i = 0; i < n / sizeof(long); i++) { 2162 unsigned long mask; 2163 gfn_t offset; 2164 2165 if (!dirty_bitmap[i]) 2166 continue; 2167 2168 flush = true; 2169 mask = xchg(&dirty_bitmap[i], 0); 2170 dirty_bitmap_buffer[i] = mask; 2171 2172 offset = i * BITS_PER_LONG; 2173 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2174 offset, mask); 2175 } 2176 KVM_MMU_UNLOCK(kvm); 2177 } 2178 2179 if (flush) 2180 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2181 2182 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2183 return -EFAULT; 2184 return 0; 2185 } 2186 2187 2188 /** 2189 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2190 * @kvm: kvm instance 2191 * @log: slot id and address to which we copy the log 2192 * 2193 * Steps 1-4 below provide general overview of dirty page logging. See 2194 * kvm_get_dirty_log_protect() function description for additional details. 2195 * 2196 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2197 * always flush the TLB (step 4) even if previous step failed and the dirty 2198 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2199 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2200 * writes will be marked dirty for next log read. 2201 * 2202 * 1. Take a snapshot of the bit and clear it if needed. 2203 * 2. Write protect the corresponding page. 2204 * 3. Copy the snapshot to the userspace. 2205 * 4. Flush TLB's if needed. 2206 */ 2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2208 struct kvm_dirty_log *log) 2209 { 2210 int r; 2211 2212 mutex_lock(&kvm->slots_lock); 2213 2214 r = kvm_get_dirty_log_protect(kvm, log); 2215 2216 mutex_unlock(&kvm->slots_lock); 2217 return r; 2218 } 2219 2220 /** 2221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2222 * and reenable dirty page tracking for the corresponding pages. 2223 * @kvm: pointer to kvm instance 2224 * @log: slot id and address from which to fetch the bitmap of dirty pages 2225 */ 2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2227 struct kvm_clear_dirty_log *log) 2228 { 2229 struct kvm_memslots *slots; 2230 struct kvm_memory_slot *memslot; 2231 int as_id, id; 2232 gfn_t offset; 2233 unsigned long i, n; 2234 unsigned long *dirty_bitmap; 2235 unsigned long *dirty_bitmap_buffer; 2236 bool flush; 2237 2238 /* Dirty ring tracking is exclusive to dirty log tracking */ 2239 if (kvm->dirty_ring_size) 2240 return -ENXIO; 2241 2242 as_id = log->slot >> 16; 2243 id = (u16)log->slot; 2244 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2245 return -EINVAL; 2246 2247 if (log->first_page & 63) 2248 return -EINVAL; 2249 2250 slots = __kvm_memslots(kvm, as_id); 2251 memslot = id_to_memslot(slots, id); 2252 if (!memslot || !memslot->dirty_bitmap) 2253 return -ENOENT; 2254 2255 dirty_bitmap = memslot->dirty_bitmap; 2256 2257 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2258 2259 if (log->first_page > memslot->npages || 2260 log->num_pages > memslot->npages - log->first_page || 2261 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2262 return -EINVAL; 2263 2264 kvm_arch_sync_dirty_log(kvm, memslot); 2265 2266 flush = false; 2267 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2268 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2269 return -EFAULT; 2270 2271 KVM_MMU_LOCK(kvm); 2272 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2273 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2274 i++, offset += BITS_PER_LONG) { 2275 unsigned long mask = *dirty_bitmap_buffer++; 2276 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2277 if (!mask) 2278 continue; 2279 2280 mask &= atomic_long_fetch_andnot(mask, p); 2281 2282 /* 2283 * mask contains the bits that really have been cleared. This 2284 * never includes any bits beyond the length of the memslot (if 2285 * the length is not aligned to 64 pages), therefore it is not 2286 * a problem if userspace sets them in log->dirty_bitmap. 2287 */ 2288 if (mask) { 2289 flush = true; 2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2291 offset, mask); 2292 } 2293 } 2294 KVM_MMU_UNLOCK(kvm); 2295 2296 if (flush) 2297 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2298 2299 return 0; 2300 } 2301 2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2303 struct kvm_clear_dirty_log *log) 2304 { 2305 int r; 2306 2307 mutex_lock(&kvm->slots_lock); 2308 2309 r = kvm_clear_dirty_log_protect(kvm, log); 2310 2311 mutex_unlock(&kvm->slots_lock); 2312 return r; 2313 } 2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2315 2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2317 { 2318 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2319 } 2320 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2321 2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2323 { 2324 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2325 u64 gen = slots->generation; 2326 struct kvm_memory_slot *slot; 2327 2328 /* 2329 * This also protects against using a memslot from a different address space, 2330 * since different address spaces have different generation numbers. 2331 */ 2332 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2333 vcpu->last_used_slot = NULL; 2334 vcpu->last_used_slot_gen = gen; 2335 } 2336 2337 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2338 if (slot) 2339 return slot; 2340 2341 /* 2342 * Fall back to searching all memslots. We purposely use 2343 * search_memslots() instead of __gfn_to_memslot() to avoid 2344 * thrashing the VM-wide last_used_slot in kvm_memslots. 2345 */ 2346 slot = search_memslots(slots, gfn, false); 2347 if (slot) { 2348 vcpu->last_used_slot = slot; 2349 return slot; 2350 } 2351 2352 return NULL; 2353 } 2354 2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2356 { 2357 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2358 2359 return kvm_is_visible_memslot(memslot); 2360 } 2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2362 2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2364 { 2365 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2366 2367 return kvm_is_visible_memslot(memslot); 2368 } 2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2370 2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2372 { 2373 struct vm_area_struct *vma; 2374 unsigned long addr, size; 2375 2376 size = PAGE_SIZE; 2377 2378 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2379 if (kvm_is_error_hva(addr)) 2380 return PAGE_SIZE; 2381 2382 mmap_read_lock(current->mm); 2383 vma = find_vma(current->mm, addr); 2384 if (!vma) 2385 goto out; 2386 2387 size = vma_kernel_pagesize(vma); 2388 2389 out: 2390 mmap_read_unlock(current->mm); 2391 2392 return size; 2393 } 2394 2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2396 { 2397 return slot->flags & KVM_MEM_READONLY; 2398 } 2399 2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2401 gfn_t *nr_pages, bool write) 2402 { 2403 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2404 return KVM_HVA_ERR_BAD; 2405 2406 if (memslot_is_readonly(slot) && write) 2407 return KVM_HVA_ERR_RO_BAD; 2408 2409 if (nr_pages) 2410 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2411 2412 return __gfn_to_hva_memslot(slot, gfn); 2413 } 2414 2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2416 gfn_t *nr_pages) 2417 { 2418 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2419 } 2420 2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2422 gfn_t gfn) 2423 { 2424 return gfn_to_hva_many(slot, gfn, NULL); 2425 } 2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2427 2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2429 { 2430 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2431 } 2432 EXPORT_SYMBOL_GPL(gfn_to_hva); 2433 2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2435 { 2436 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2437 } 2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2439 2440 /* 2441 * Return the hva of a @gfn and the R/W attribute if possible. 2442 * 2443 * @slot: the kvm_memory_slot which contains @gfn 2444 * @gfn: the gfn to be translated 2445 * @writable: used to return the read/write attribute of the @slot if the hva 2446 * is valid and @writable is not NULL 2447 */ 2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2449 gfn_t gfn, bool *writable) 2450 { 2451 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2452 2453 if (!kvm_is_error_hva(hva) && writable) 2454 *writable = !memslot_is_readonly(slot); 2455 2456 return hva; 2457 } 2458 2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2460 { 2461 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2462 2463 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2464 } 2465 2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2467 { 2468 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2469 2470 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2471 } 2472 2473 static inline int check_user_page_hwpoison(unsigned long addr) 2474 { 2475 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2476 2477 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2478 return rc == -EHWPOISON; 2479 } 2480 2481 /* 2482 * The fast path to get the writable pfn which will be stored in @pfn, 2483 * true indicates success, otherwise false is returned. It's also the 2484 * only part that runs if we can in atomic context. 2485 */ 2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2487 bool *writable, kvm_pfn_t *pfn) 2488 { 2489 struct page *page[1]; 2490 2491 /* 2492 * Fast pin a writable pfn only if it is a write fault request 2493 * or the caller allows to map a writable pfn for a read fault 2494 * request. 2495 */ 2496 if (!(write_fault || writable)) 2497 return false; 2498 2499 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2500 *pfn = page_to_pfn(page[0]); 2501 2502 if (writable) 2503 *writable = true; 2504 return true; 2505 } 2506 2507 return false; 2508 } 2509 2510 /* 2511 * The slow path to get the pfn of the specified host virtual address, 2512 * 1 indicates success, -errno is returned if error is detected. 2513 */ 2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2515 bool *writable, kvm_pfn_t *pfn) 2516 { 2517 unsigned int flags = FOLL_HWPOISON; 2518 struct page *page; 2519 int npages = 0; 2520 2521 might_sleep(); 2522 2523 if (writable) 2524 *writable = write_fault; 2525 2526 if (write_fault) 2527 flags |= FOLL_WRITE; 2528 if (async) 2529 flags |= FOLL_NOWAIT; 2530 2531 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2532 if (npages != 1) 2533 return npages; 2534 2535 /* map read fault as writable if possible */ 2536 if (unlikely(!write_fault) && writable) { 2537 struct page *wpage; 2538 2539 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2540 *writable = true; 2541 put_page(page); 2542 page = wpage; 2543 } 2544 } 2545 *pfn = page_to_pfn(page); 2546 return npages; 2547 } 2548 2549 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2550 { 2551 if (unlikely(!(vma->vm_flags & VM_READ))) 2552 return false; 2553 2554 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2555 return false; 2556 2557 return true; 2558 } 2559 2560 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2561 { 2562 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2563 2564 if (!page) 2565 return 1; 2566 2567 return get_page_unless_zero(page); 2568 } 2569 2570 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2571 unsigned long addr, bool write_fault, 2572 bool *writable, kvm_pfn_t *p_pfn) 2573 { 2574 kvm_pfn_t pfn; 2575 pte_t *ptep; 2576 spinlock_t *ptl; 2577 int r; 2578 2579 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2580 if (r) { 2581 /* 2582 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2583 * not call the fault handler, so do it here. 2584 */ 2585 bool unlocked = false; 2586 r = fixup_user_fault(current->mm, addr, 2587 (write_fault ? FAULT_FLAG_WRITE : 0), 2588 &unlocked); 2589 if (unlocked) 2590 return -EAGAIN; 2591 if (r) 2592 return r; 2593 2594 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2595 if (r) 2596 return r; 2597 } 2598 2599 if (write_fault && !pte_write(*ptep)) { 2600 pfn = KVM_PFN_ERR_RO_FAULT; 2601 goto out; 2602 } 2603 2604 if (writable) 2605 *writable = pte_write(*ptep); 2606 pfn = pte_pfn(*ptep); 2607 2608 /* 2609 * Get a reference here because callers of *hva_to_pfn* and 2610 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2611 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2612 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2613 * simply do nothing for reserved pfns. 2614 * 2615 * Whoever called remap_pfn_range is also going to call e.g. 2616 * unmap_mapping_range before the underlying pages are freed, 2617 * causing a call to our MMU notifier. 2618 * 2619 * Certain IO or PFNMAP mappings can be backed with valid 2620 * struct pages, but be allocated without refcounting e.g., 2621 * tail pages of non-compound higher order allocations, which 2622 * would then underflow the refcount when the caller does the 2623 * required put_page. Don't allow those pages here. 2624 */ 2625 if (!kvm_try_get_pfn(pfn)) 2626 r = -EFAULT; 2627 2628 out: 2629 pte_unmap_unlock(ptep, ptl); 2630 *p_pfn = pfn; 2631 2632 return r; 2633 } 2634 2635 /* 2636 * Pin guest page in memory and return its pfn. 2637 * @addr: host virtual address which maps memory to the guest 2638 * @atomic: whether this function can sleep 2639 * @async: whether this function need to wait IO complete if the 2640 * host page is not in the memory 2641 * @write_fault: whether we should get a writable host page 2642 * @writable: whether it allows to map a writable host page for !@write_fault 2643 * 2644 * The function will map a writable host page for these two cases: 2645 * 1): @write_fault = true 2646 * 2): @write_fault = false && @writable, @writable will tell the caller 2647 * whether the mapping is writable. 2648 */ 2649 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2650 bool write_fault, bool *writable) 2651 { 2652 struct vm_area_struct *vma; 2653 kvm_pfn_t pfn; 2654 int npages, r; 2655 2656 /* we can do it either atomically or asynchronously, not both */ 2657 BUG_ON(atomic && async); 2658 2659 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2660 return pfn; 2661 2662 if (atomic) 2663 return KVM_PFN_ERR_FAULT; 2664 2665 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2666 if (npages == 1) 2667 return pfn; 2668 2669 mmap_read_lock(current->mm); 2670 if (npages == -EHWPOISON || 2671 (!async && check_user_page_hwpoison(addr))) { 2672 pfn = KVM_PFN_ERR_HWPOISON; 2673 goto exit; 2674 } 2675 2676 retry: 2677 vma = vma_lookup(current->mm, addr); 2678 2679 if (vma == NULL) 2680 pfn = KVM_PFN_ERR_FAULT; 2681 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2682 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2683 if (r == -EAGAIN) 2684 goto retry; 2685 if (r < 0) 2686 pfn = KVM_PFN_ERR_FAULT; 2687 } else { 2688 if (async && vma_is_valid(vma, write_fault)) 2689 *async = true; 2690 pfn = KVM_PFN_ERR_FAULT; 2691 } 2692 exit: 2693 mmap_read_unlock(current->mm); 2694 return pfn; 2695 } 2696 2697 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2698 bool atomic, bool *async, bool write_fault, 2699 bool *writable, hva_t *hva) 2700 { 2701 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2702 2703 if (hva) 2704 *hva = addr; 2705 2706 if (addr == KVM_HVA_ERR_RO_BAD) { 2707 if (writable) 2708 *writable = false; 2709 return KVM_PFN_ERR_RO_FAULT; 2710 } 2711 2712 if (kvm_is_error_hva(addr)) { 2713 if (writable) 2714 *writable = false; 2715 return KVM_PFN_NOSLOT; 2716 } 2717 2718 /* Do not map writable pfn in the readonly memslot. */ 2719 if (writable && memslot_is_readonly(slot)) { 2720 *writable = false; 2721 writable = NULL; 2722 } 2723 2724 return hva_to_pfn(addr, atomic, async, write_fault, 2725 writable); 2726 } 2727 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2728 2729 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2730 bool *writable) 2731 { 2732 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2733 write_fault, writable, NULL); 2734 } 2735 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2736 2737 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2738 { 2739 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2740 } 2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2742 2743 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2744 { 2745 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2746 } 2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2748 2749 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2750 { 2751 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2752 } 2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2754 2755 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2756 { 2757 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2758 } 2759 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2760 2761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2762 { 2763 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2764 } 2765 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2766 2767 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2768 struct page **pages, int nr_pages) 2769 { 2770 unsigned long addr; 2771 gfn_t entry = 0; 2772 2773 addr = gfn_to_hva_many(slot, gfn, &entry); 2774 if (kvm_is_error_hva(addr)) 2775 return -1; 2776 2777 if (entry < nr_pages) 2778 return 0; 2779 2780 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2781 } 2782 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2783 2784 /* 2785 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2786 * backed by 'struct page'. A valid example is if the backing memslot is 2787 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2788 * been elevated by gfn_to_pfn(). 2789 */ 2790 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2791 { 2792 struct page *page; 2793 kvm_pfn_t pfn; 2794 2795 pfn = gfn_to_pfn(kvm, gfn); 2796 2797 if (is_error_noslot_pfn(pfn)) 2798 return KVM_ERR_PTR_BAD_PAGE; 2799 2800 page = kvm_pfn_to_refcounted_page(pfn); 2801 if (!page) 2802 return KVM_ERR_PTR_BAD_PAGE; 2803 2804 return page; 2805 } 2806 EXPORT_SYMBOL_GPL(gfn_to_page); 2807 2808 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2809 { 2810 if (dirty) 2811 kvm_release_pfn_dirty(pfn); 2812 else 2813 kvm_release_pfn_clean(pfn); 2814 } 2815 2816 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2817 { 2818 kvm_pfn_t pfn; 2819 void *hva = NULL; 2820 struct page *page = KVM_UNMAPPED_PAGE; 2821 2822 if (!map) 2823 return -EINVAL; 2824 2825 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2826 if (is_error_noslot_pfn(pfn)) 2827 return -EINVAL; 2828 2829 if (pfn_valid(pfn)) { 2830 page = pfn_to_page(pfn); 2831 hva = kmap(page); 2832 #ifdef CONFIG_HAS_IOMEM 2833 } else { 2834 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2835 #endif 2836 } 2837 2838 if (!hva) 2839 return -EFAULT; 2840 2841 map->page = page; 2842 map->hva = hva; 2843 map->pfn = pfn; 2844 map->gfn = gfn; 2845 2846 return 0; 2847 } 2848 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2849 2850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2851 { 2852 if (!map) 2853 return; 2854 2855 if (!map->hva) 2856 return; 2857 2858 if (map->page != KVM_UNMAPPED_PAGE) 2859 kunmap(map->page); 2860 #ifdef CONFIG_HAS_IOMEM 2861 else 2862 memunmap(map->hva); 2863 #endif 2864 2865 if (dirty) 2866 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2867 2868 kvm_release_pfn(map->pfn, dirty); 2869 2870 map->hva = NULL; 2871 map->page = NULL; 2872 } 2873 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2874 2875 static bool kvm_is_ad_tracked_page(struct page *page) 2876 { 2877 /* 2878 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2879 * touched (e.g. set dirty) except by its owner". 2880 */ 2881 return !PageReserved(page); 2882 } 2883 2884 static void kvm_set_page_dirty(struct page *page) 2885 { 2886 if (kvm_is_ad_tracked_page(page)) 2887 SetPageDirty(page); 2888 } 2889 2890 static void kvm_set_page_accessed(struct page *page) 2891 { 2892 if (kvm_is_ad_tracked_page(page)) 2893 mark_page_accessed(page); 2894 } 2895 2896 void kvm_release_page_clean(struct page *page) 2897 { 2898 WARN_ON(is_error_page(page)); 2899 2900 kvm_set_page_accessed(page); 2901 put_page(page); 2902 } 2903 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2904 2905 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2906 { 2907 struct page *page; 2908 2909 if (is_error_noslot_pfn(pfn)) 2910 return; 2911 2912 page = kvm_pfn_to_refcounted_page(pfn); 2913 if (!page) 2914 return; 2915 2916 kvm_release_page_clean(page); 2917 } 2918 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2919 2920 void kvm_release_page_dirty(struct page *page) 2921 { 2922 WARN_ON(is_error_page(page)); 2923 2924 kvm_set_page_dirty(page); 2925 kvm_release_page_clean(page); 2926 } 2927 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2928 2929 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2930 { 2931 struct page *page; 2932 2933 if (is_error_noslot_pfn(pfn)) 2934 return; 2935 2936 page = kvm_pfn_to_refcounted_page(pfn); 2937 if (!page) 2938 return; 2939 2940 kvm_release_page_dirty(page); 2941 } 2942 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2943 2944 /* 2945 * Note, checking for an error/noslot pfn is the caller's responsibility when 2946 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2947 * "set" helpers are not to be used when the pfn might point at garbage. 2948 */ 2949 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2950 { 2951 if (WARN_ON(is_error_noslot_pfn(pfn))) 2952 return; 2953 2954 if (pfn_valid(pfn)) 2955 kvm_set_page_dirty(pfn_to_page(pfn)); 2956 } 2957 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2958 2959 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2960 { 2961 if (WARN_ON(is_error_noslot_pfn(pfn))) 2962 return; 2963 2964 if (pfn_valid(pfn)) 2965 kvm_set_page_accessed(pfn_to_page(pfn)); 2966 } 2967 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2968 2969 static int next_segment(unsigned long len, int offset) 2970 { 2971 if (len > PAGE_SIZE - offset) 2972 return PAGE_SIZE - offset; 2973 else 2974 return len; 2975 } 2976 2977 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2978 void *data, int offset, int len) 2979 { 2980 int r; 2981 unsigned long addr; 2982 2983 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2984 if (kvm_is_error_hva(addr)) 2985 return -EFAULT; 2986 r = __copy_from_user(data, (void __user *)addr + offset, len); 2987 if (r) 2988 return -EFAULT; 2989 return 0; 2990 } 2991 2992 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2993 int len) 2994 { 2995 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2996 2997 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2998 } 2999 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3000 3001 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3002 int offset, int len) 3003 { 3004 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3005 3006 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3007 } 3008 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3009 3010 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3011 { 3012 gfn_t gfn = gpa >> PAGE_SHIFT; 3013 int seg; 3014 int offset = offset_in_page(gpa); 3015 int ret; 3016 3017 while ((seg = next_segment(len, offset)) != 0) { 3018 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3019 if (ret < 0) 3020 return ret; 3021 offset = 0; 3022 len -= seg; 3023 data += seg; 3024 ++gfn; 3025 } 3026 return 0; 3027 } 3028 EXPORT_SYMBOL_GPL(kvm_read_guest); 3029 3030 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3031 { 3032 gfn_t gfn = gpa >> PAGE_SHIFT; 3033 int seg; 3034 int offset = offset_in_page(gpa); 3035 int ret; 3036 3037 while ((seg = next_segment(len, offset)) != 0) { 3038 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3039 if (ret < 0) 3040 return ret; 3041 offset = 0; 3042 len -= seg; 3043 data += seg; 3044 ++gfn; 3045 } 3046 return 0; 3047 } 3048 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3049 3050 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3051 void *data, int offset, unsigned long len) 3052 { 3053 int r; 3054 unsigned long addr; 3055 3056 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3057 if (kvm_is_error_hva(addr)) 3058 return -EFAULT; 3059 pagefault_disable(); 3060 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3061 pagefault_enable(); 3062 if (r) 3063 return -EFAULT; 3064 return 0; 3065 } 3066 3067 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3068 void *data, unsigned long len) 3069 { 3070 gfn_t gfn = gpa >> PAGE_SHIFT; 3071 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3072 int offset = offset_in_page(gpa); 3073 3074 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3075 } 3076 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3077 3078 static int __kvm_write_guest_page(struct kvm *kvm, 3079 struct kvm_memory_slot *memslot, gfn_t gfn, 3080 const void *data, int offset, int len) 3081 { 3082 int r; 3083 unsigned long addr; 3084 3085 addr = gfn_to_hva_memslot(memslot, gfn); 3086 if (kvm_is_error_hva(addr)) 3087 return -EFAULT; 3088 r = __copy_to_user((void __user *)addr + offset, data, len); 3089 if (r) 3090 return -EFAULT; 3091 mark_page_dirty_in_slot(kvm, memslot, gfn); 3092 return 0; 3093 } 3094 3095 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3096 const void *data, int offset, int len) 3097 { 3098 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3099 3100 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3101 } 3102 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3103 3104 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3105 const void *data, int offset, int len) 3106 { 3107 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3108 3109 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3110 } 3111 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3112 3113 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3114 unsigned long len) 3115 { 3116 gfn_t gfn = gpa >> PAGE_SHIFT; 3117 int seg; 3118 int offset = offset_in_page(gpa); 3119 int ret; 3120 3121 while ((seg = next_segment(len, offset)) != 0) { 3122 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3123 if (ret < 0) 3124 return ret; 3125 offset = 0; 3126 len -= seg; 3127 data += seg; 3128 ++gfn; 3129 } 3130 return 0; 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_write_guest); 3133 3134 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3135 unsigned long len) 3136 { 3137 gfn_t gfn = gpa >> PAGE_SHIFT; 3138 int seg; 3139 int offset = offset_in_page(gpa); 3140 int ret; 3141 3142 while ((seg = next_segment(len, offset)) != 0) { 3143 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3144 if (ret < 0) 3145 return ret; 3146 offset = 0; 3147 len -= seg; 3148 data += seg; 3149 ++gfn; 3150 } 3151 return 0; 3152 } 3153 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3154 3155 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3156 struct gfn_to_hva_cache *ghc, 3157 gpa_t gpa, unsigned long len) 3158 { 3159 int offset = offset_in_page(gpa); 3160 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3161 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3162 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3163 gfn_t nr_pages_avail; 3164 3165 /* Update ghc->generation before performing any error checks. */ 3166 ghc->generation = slots->generation; 3167 3168 if (start_gfn > end_gfn) { 3169 ghc->hva = KVM_HVA_ERR_BAD; 3170 return -EINVAL; 3171 } 3172 3173 /* 3174 * If the requested region crosses two memslots, we still 3175 * verify that the entire region is valid here. 3176 */ 3177 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3178 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3179 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3180 &nr_pages_avail); 3181 if (kvm_is_error_hva(ghc->hva)) 3182 return -EFAULT; 3183 } 3184 3185 /* Use the slow path for cross page reads and writes. */ 3186 if (nr_pages_needed == 1) 3187 ghc->hva += offset; 3188 else 3189 ghc->memslot = NULL; 3190 3191 ghc->gpa = gpa; 3192 ghc->len = len; 3193 return 0; 3194 } 3195 3196 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3197 gpa_t gpa, unsigned long len) 3198 { 3199 struct kvm_memslots *slots = kvm_memslots(kvm); 3200 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3201 } 3202 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3203 3204 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3205 void *data, unsigned int offset, 3206 unsigned long len) 3207 { 3208 struct kvm_memslots *slots = kvm_memslots(kvm); 3209 int r; 3210 gpa_t gpa = ghc->gpa + offset; 3211 3212 if (WARN_ON_ONCE(len + offset > ghc->len)) 3213 return -EINVAL; 3214 3215 if (slots->generation != ghc->generation) { 3216 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3217 return -EFAULT; 3218 } 3219 3220 if (kvm_is_error_hva(ghc->hva)) 3221 return -EFAULT; 3222 3223 if (unlikely(!ghc->memslot)) 3224 return kvm_write_guest(kvm, gpa, data, len); 3225 3226 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3227 if (r) 3228 return -EFAULT; 3229 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3230 3231 return 0; 3232 } 3233 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3234 3235 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3236 void *data, unsigned long len) 3237 { 3238 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3239 } 3240 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3241 3242 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3243 void *data, unsigned int offset, 3244 unsigned long len) 3245 { 3246 struct kvm_memslots *slots = kvm_memslots(kvm); 3247 int r; 3248 gpa_t gpa = ghc->gpa + offset; 3249 3250 if (WARN_ON_ONCE(len + offset > ghc->len)) 3251 return -EINVAL; 3252 3253 if (slots->generation != ghc->generation) { 3254 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3255 return -EFAULT; 3256 } 3257 3258 if (kvm_is_error_hva(ghc->hva)) 3259 return -EFAULT; 3260 3261 if (unlikely(!ghc->memslot)) 3262 return kvm_read_guest(kvm, gpa, data, len); 3263 3264 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3265 if (r) 3266 return -EFAULT; 3267 3268 return 0; 3269 } 3270 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3271 3272 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3273 void *data, unsigned long len) 3274 { 3275 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3276 } 3277 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3278 3279 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3280 { 3281 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3282 gfn_t gfn = gpa >> PAGE_SHIFT; 3283 int seg; 3284 int offset = offset_in_page(gpa); 3285 int ret; 3286 3287 while ((seg = next_segment(len, offset)) != 0) { 3288 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3289 if (ret < 0) 3290 return ret; 3291 offset = 0; 3292 len -= seg; 3293 ++gfn; 3294 } 3295 return 0; 3296 } 3297 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3298 3299 void mark_page_dirty_in_slot(struct kvm *kvm, 3300 const struct kvm_memory_slot *memslot, 3301 gfn_t gfn) 3302 { 3303 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3304 3305 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3306 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3307 return; 3308 #endif 3309 3310 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3311 unsigned long rel_gfn = gfn - memslot->base_gfn; 3312 u32 slot = (memslot->as_id << 16) | memslot->id; 3313 3314 if (kvm->dirty_ring_size) 3315 kvm_dirty_ring_push(&vcpu->dirty_ring, 3316 slot, rel_gfn); 3317 else 3318 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3319 } 3320 } 3321 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3322 3323 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3324 { 3325 struct kvm_memory_slot *memslot; 3326 3327 memslot = gfn_to_memslot(kvm, gfn); 3328 mark_page_dirty_in_slot(kvm, memslot, gfn); 3329 } 3330 EXPORT_SYMBOL_GPL(mark_page_dirty); 3331 3332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3333 { 3334 struct kvm_memory_slot *memslot; 3335 3336 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3337 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3338 } 3339 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3340 3341 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3342 { 3343 if (!vcpu->sigset_active) 3344 return; 3345 3346 /* 3347 * This does a lockless modification of ->real_blocked, which is fine 3348 * because, only current can change ->real_blocked and all readers of 3349 * ->real_blocked don't care as long ->real_blocked is always a subset 3350 * of ->blocked. 3351 */ 3352 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3353 } 3354 3355 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3356 { 3357 if (!vcpu->sigset_active) 3358 return; 3359 3360 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3361 sigemptyset(¤t->real_blocked); 3362 } 3363 3364 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3365 { 3366 unsigned int old, val, grow, grow_start; 3367 3368 old = val = vcpu->halt_poll_ns; 3369 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3370 grow = READ_ONCE(halt_poll_ns_grow); 3371 if (!grow) 3372 goto out; 3373 3374 val *= grow; 3375 if (val < grow_start) 3376 val = grow_start; 3377 3378 if (val > vcpu->kvm->max_halt_poll_ns) 3379 val = vcpu->kvm->max_halt_poll_ns; 3380 3381 vcpu->halt_poll_ns = val; 3382 out: 3383 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3384 } 3385 3386 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3387 { 3388 unsigned int old, val, shrink, grow_start; 3389 3390 old = val = vcpu->halt_poll_ns; 3391 shrink = READ_ONCE(halt_poll_ns_shrink); 3392 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3393 if (shrink == 0) 3394 val = 0; 3395 else 3396 val /= shrink; 3397 3398 if (val < grow_start) 3399 val = 0; 3400 3401 vcpu->halt_poll_ns = val; 3402 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3403 } 3404 3405 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3406 { 3407 int ret = -EINTR; 3408 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3409 3410 if (kvm_arch_vcpu_runnable(vcpu)) { 3411 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3412 goto out; 3413 } 3414 if (kvm_cpu_has_pending_timer(vcpu)) 3415 goto out; 3416 if (signal_pending(current)) 3417 goto out; 3418 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3419 goto out; 3420 3421 ret = 0; 3422 out: 3423 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3424 return ret; 3425 } 3426 3427 /* 3428 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3429 * pending. This is mostly used when halting a vCPU, but may also be used 3430 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3431 */ 3432 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3433 { 3434 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3435 bool waited = false; 3436 3437 vcpu->stat.generic.blocking = 1; 3438 3439 preempt_disable(); 3440 kvm_arch_vcpu_blocking(vcpu); 3441 prepare_to_rcuwait(wait); 3442 preempt_enable(); 3443 3444 for (;;) { 3445 set_current_state(TASK_INTERRUPTIBLE); 3446 3447 if (kvm_vcpu_check_block(vcpu) < 0) 3448 break; 3449 3450 waited = true; 3451 schedule(); 3452 } 3453 3454 preempt_disable(); 3455 finish_rcuwait(wait); 3456 kvm_arch_vcpu_unblocking(vcpu); 3457 preempt_enable(); 3458 3459 vcpu->stat.generic.blocking = 0; 3460 3461 return waited; 3462 } 3463 3464 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3465 ktime_t end, bool success) 3466 { 3467 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3468 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3469 3470 ++vcpu->stat.generic.halt_attempted_poll; 3471 3472 if (success) { 3473 ++vcpu->stat.generic.halt_successful_poll; 3474 3475 if (!vcpu_valid_wakeup(vcpu)) 3476 ++vcpu->stat.generic.halt_poll_invalid; 3477 3478 stats->halt_poll_success_ns += poll_ns; 3479 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3480 } else { 3481 stats->halt_poll_fail_ns += poll_ns; 3482 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3483 } 3484 } 3485 3486 /* 3487 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3488 * polling is enabled, busy wait for a short time before blocking to avoid the 3489 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3490 * is halted. 3491 */ 3492 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3493 { 3494 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3495 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3496 ktime_t start, cur, poll_end; 3497 bool waited = false; 3498 u64 halt_ns; 3499 3500 start = cur = poll_end = ktime_get(); 3501 if (do_halt_poll) { 3502 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3503 3504 do { 3505 /* 3506 * This sets KVM_REQ_UNHALT if an interrupt 3507 * arrives. 3508 */ 3509 if (kvm_vcpu_check_block(vcpu) < 0) 3510 goto out; 3511 cpu_relax(); 3512 poll_end = cur = ktime_get(); 3513 } while (kvm_vcpu_can_poll(cur, stop)); 3514 } 3515 3516 waited = kvm_vcpu_block(vcpu); 3517 3518 cur = ktime_get(); 3519 if (waited) { 3520 vcpu->stat.generic.halt_wait_ns += 3521 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3522 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3523 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3524 } 3525 out: 3526 /* The total time the vCPU was "halted", including polling time. */ 3527 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3528 3529 /* 3530 * Note, halt-polling is considered successful so long as the vCPU was 3531 * never actually scheduled out, i.e. even if the wake event arrived 3532 * after of the halt-polling loop itself, but before the full wait. 3533 */ 3534 if (do_halt_poll) 3535 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3536 3537 if (halt_poll_allowed) { 3538 if (!vcpu_valid_wakeup(vcpu)) { 3539 shrink_halt_poll_ns(vcpu); 3540 } else if (vcpu->kvm->max_halt_poll_ns) { 3541 if (halt_ns <= vcpu->halt_poll_ns) 3542 ; 3543 /* we had a long block, shrink polling */ 3544 else if (vcpu->halt_poll_ns && 3545 halt_ns > vcpu->kvm->max_halt_poll_ns) 3546 shrink_halt_poll_ns(vcpu); 3547 /* we had a short halt and our poll time is too small */ 3548 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3549 halt_ns < vcpu->kvm->max_halt_poll_ns) 3550 grow_halt_poll_ns(vcpu); 3551 } else { 3552 vcpu->halt_poll_ns = 0; 3553 } 3554 } 3555 3556 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3557 } 3558 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3559 3560 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3561 { 3562 if (__kvm_vcpu_wake_up(vcpu)) { 3563 WRITE_ONCE(vcpu->ready, true); 3564 ++vcpu->stat.generic.halt_wakeup; 3565 return true; 3566 } 3567 3568 return false; 3569 } 3570 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3571 3572 #ifndef CONFIG_S390 3573 /* 3574 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3575 */ 3576 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3577 { 3578 int me, cpu; 3579 3580 if (kvm_vcpu_wake_up(vcpu)) 3581 return; 3582 3583 me = get_cpu(); 3584 /* 3585 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3586 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3587 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3588 * within the vCPU thread itself. 3589 */ 3590 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3591 if (vcpu->mode == IN_GUEST_MODE) 3592 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3593 goto out; 3594 } 3595 3596 /* 3597 * Note, the vCPU could get migrated to a different pCPU at any point 3598 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3599 * IPI to the previous pCPU. But, that's ok because the purpose of the 3600 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3601 * vCPU also requires it to leave IN_GUEST_MODE. 3602 */ 3603 if (kvm_arch_vcpu_should_kick(vcpu)) { 3604 cpu = READ_ONCE(vcpu->cpu); 3605 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3606 smp_send_reschedule(cpu); 3607 } 3608 out: 3609 put_cpu(); 3610 } 3611 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3612 #endif /* !CONFIG_S390 */ 3613 3614 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3615 { 3616 struct pid *pid; 3617 struct task_struct *task = NULL; 3618 int ret = 0; 3619 3620 rcu_read_lock(); 3621 pid = rcu_dereference(target->pid); 3622 if (pid) 3623 task = get_pid_task(pid, PIDTYPE_PID); 3624 rcu_read_unlock(); 3625 if (!task) 3626 return ret; 3627 ret = yield_to(task, 1); 3628 put_task_struct(task); 3629 3630 return ret; 3631 } 3632 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3633 3634 /* 3635 * Helper that checks whether a VCPU is eligible for directed yield. 3636 * Most eligible candidate to yield is decided by following heuristics: 3637 * 3638 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3639 * (preempted lock holder), indicated by @in_spin_loop. 3640 * Set at the beginning and cleared at the end of interception/PLE handler. 3641 * 3642 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3643 * chance last time (mostly it has become eligible now since we have probably 3644 * yielded to lockholder in last iteration. This is done by toggling 3645 * @dy_eligible each time a VCPU checked for eligibility.) 3646 * 3647 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3648 * to preempted lock-holder could result in wrong VCPU selection and CPU 3649 * burning. Giving priority for a potential lock-holder increases lock 3650 * progress. 3651 * 3652 * Since algorithm is based on heuristics, accessing another VCPU data without 3653 * locking does not harm. It may result in trying to yield to same VCPU, fail 3654 * and continue with next VCPU and so on. 3655 */ 3656 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3657 { 3658 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3659 bool eligible; 3660 3661 eligible = !vcpu->spin_loop.in_spin_loop || 3662 vcpu->spin_loop.dy_eligible; 3663 3664 if (vcpu->spin_loop.in_spin_loop) 3665 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3666 3667 return eligible; 3668 #else 3669 return true; 3670 #endif 3671 } 3672 3673 /* 3674 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3675 * a vcpu_load/vcpu_put pair. However, for most architectures 3676 * kvm_arch_vcpu_runnable does not require vcpu_load. 3677 */ 3678 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3679 { 3680 return kvm_arch_vcpu_runnable(vcpu); 3681 } 3682 3683 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3684 { 3685 if (kvm_arch_dy_runnable(vcpu)) 3686 return true; 3687 3688 #ifdef CONFIG_KVM_ASYNC_PF 3689 if (!list_empty_careful(&vcpu->async_pf.done)) 3690 return true; 3691 #endif 3692 3693 return false; 3694 } 3695 3696 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3697 { 3698 return false; 3699 } 3700 3701 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3702 { 3703 struct kvm *kvm = me->kvm; 3704 struct kvm_vcpu *vcpu; 3705 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3706 unsigned long i; 3707 int yielded = 0; 3708 int try = 3; 3709 int pass; 3710 3711 kvm_vcpu_set_in_spin_loop(me, true); 3712 /* 3713 * We boost the priority of a VCPU that is runnable but not 3714 * currently running, because it got preempted by something 3715 * else and called schedule in __vcpu_run. Hopefully that 3716 * VCPU is holding the lock that we need and will release it. 3717 * We approximate round-robin by starting at the last boosted VCPU. 3718 */ 3719 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3720 kvm_for_each_vcpu(i, vcpu, kvm) { 3721 if (!pass && i <= last_boosted_vcpu) { 3722 i = last_boosted_vcpu; 3723 continue; 3724 } else if (pass && i > last_boosted_vcpu) 3725 break; 3726 if (!READ_ONCE(vcpu->ready)) 3727 continue; 3728 if (vcpu == me) 3729 continue; 3730 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3731 continue; 3732 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3733 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3734 !kvm_arch_vcpu_in_kernel(vcpu)) 3735 continue; 3736 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3737 continue; 3738 3739 yielded = kvm_vcpu_yield_to(vcpu); 3740 if (yielded > 0) { 3741 kvm->last_boosted_vcpu = i; 3742 break; 3743 } else if (yielded < 0) { 3744 try--; 3745 if (!try) 3746 break; 3747 } 3748 } 3749 } 3750 kvm_vcpu_set_in_spin_loop(me, false); 3751 3752 /* Ensure vcpu is not eligible during next spinloop */ 3753 kvm_vcpu_set_dy_eligible(me, false); 3754 } 3755 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3756 3757 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3758 { 3759 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3760 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3761 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3762 kvm->dirty_ring_size / PAGE_SIZE); 3763 #else 3764 return false; 3765 #endif 3766 } 3767 3768 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3769 { 3770 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3771 struct page *page; 3772 3773 if (vmf->pgoff == 0) 3774 page = virt_to_page(vcpu->run); 3775 #ifdef CONFIG_X86 3776 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3777 page = virt_to_page(vcpu->arch.pio_data); 3778 #endif 3779 #ifdef CONFIG_KVM_MMIO 3780 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3781 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3782 #endif 3783 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3784 page = kvm_dirty_ring_get_page( 3785 &vcpu->dirty_ring, 3786 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3787 else 3788 return kvm_arch_vcpu_fault(vcpu, vmf); 3789 get_page(page); 3790 vmf->page = page; 3791 return 0; 3792 } 3793 3794 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3795 .fault = kvm_vcpu_fault, 3796 }; 3797 3798 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3799 { 3800 struct kvm_vcpu *vcpu = file->private_data; 3801 unsigned long pages = vma_pages(vma); 3802 3803 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3804 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3805 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3806 return -EINVAL; 3807 3808 vma->vm_ops = &kvm_vcpu_vm_ops; 3809 return 0; 3810 } 3811 3812 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3813 { 3814 struct kvm_vcpu *vcpu = filp->private_data; 3815 3816 kvm_put_kvm(vcpu->kvm); 3817 return 0; 3818 } 3819 3820 static const struct file_operations kvm_vcpu_fops = { 3821 .release = kvm_vcpu_release, 3822 .unlocked_ioctl = kvm_vcpu_ioctl, 3823 .mmap = kvm_vcpu_mmap, 3824 .llseek = noop_llseek, 3825 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3826 }; 3827 3828 /* 3829 * Allocates an inode for the vcpu. 3830 */ 3831 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3832 { 3833 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3834 3835 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3836 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3837 } 3838 3839 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3840 static int vcpu_get_pid(void *data, u64 *val) 3841 { 3842 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data; 3843 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3844 return 0; 3845 } 3846 3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3848 3849 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3850 { 3851 struct dentry *debugfs_dentry; 3852 char dir_name[ITOA_MAX_LEN * 2]; 3853 3854 if (!debugfs_initialized()) 3855 return; 3856 3857 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3858 debugfs_dentry = debugfs_create_dir(dir_name, 3859 vcpu->kvm->debugfs_dentry); 3860 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3861 &vcpu_get_pid_fops); 3862 3863 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3864 } 3865 #endif 3866 3867 /* 3868 * Creates some virtual cpus. Good luck creating more than one. 3869 */ 3870 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3871 { 3872 int r; 3873 struct kvm_vcpu *vcpu; 3874 struct page *page; 3875 3876 if (id >= KVM_MAX_VCPU_IDS) 3877 return -EINVAL; 3878 3879 mutex_lock(&kvm->lock); 3880 if (kvm->created_vcpus >= kvm->max_vcpus) { 3881 mutex_unlock(&kvm->lock); 3882 return -EINVAL; 3883 } 3884 3885 r = kvm_arch_vcpu_precreate(kvm, id); 3886 if (r) { 3887 mutex_unlock(&kvm->lock); 3888 return r; 3889 } 3890 3891 kvm->created_vcpus++; 3892 mutex_unlock(&kvm->lock); 3893 3894 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3895 if (!vcpu) { 3896 r = -ENOMEM; 3897 goto vcpu_decrement; 3898 } 3899 3900 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3901 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3902 if (!page) { 3903 r = -ENOMEM; 3904 goto vcpu_free; 3905 } 3906 vcpu->run = page_address(page); 3907 3908 kvm_vcpu_init(vcpu, kvm, id); 3909 3910 r = kvm_arch_vcpu_create(vcpu); 3911 if (r) 3912 goto vcpu_free_run_page; 3913 3914 if (kvm->dirty_ring_size) { 3915 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3916 id, kvm->dirty_ring_size); 3917 if (r) 3918 goto arch_vcpu_destroy; 3919 } 3920 3921 mutex_lock(&kvm->lock); 3922 if (kvm_get_vcpu_by_id(kvm, id)) { 3923 r = -EEXIST; 3924 goto unlock_vcpu_destroy; 3925 } 3926 3927 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3928 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3929 BUG_ON(r == -EBUSY); 3930 if (r) 3931 goto unlock_vcpu_destroy; 3932 3933 /* Now it's all set up, let userspace reach it */ 3934 kvm_get_kvm(kvm); 3935 r = create_vcpu_fd(vcpu); 3936 if (r < 0) { 3937 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3938 kvm_put_kvm_no_destroy(kvm); 3939 goto unlock_vcpu_destroy; 3940 } 3941 3942 /* 3943 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3944 * pointer before kvm->online_vcpu's incremented value. 3945 */ 3946 smp_wmb(); 3947 atomic_inc(&kvm->online_vcpus); 3948 3949 mutex_unlock(&kvm->lock); 3950 kvm_arch_vcpu_postcreate(vcpu); 3951 kvm_create_vcpu_debugfs(vcpu); 3952 return r; 3953 3954 unlock_vcpu_destroy: 3955 mutex_unlock(&kvm->lock); 3956 kvm_dirty_ring_free(&vcpu->dirty_ring); 3957 arch_vcpu_destroy: 3958 kvm_arch_vcpu_destroy(vcpu); 3959 vcpu_free_run_page: 3960 free_page((unsigned long)vcpu->run); 3961 vcpu_free: 3962 kmem_cache_free(kvm_vcpu_cache, vcpu); 3963 vcpu_decrement: 3964 mutex_lock(&kvm->lock); 3965 kvm->created_vcpus--; 3966 mutex_unlock(&kvm->lock); 3967 return r; 3968 } 3969 3970 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3971 { 3972 if (sigset) { 3973 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3974 vcpu->sigset_active = 1; 3975 vcpu->sigset = *sigset; 3976 } else 3977 vcpu->sigset_active = 0; 3978 return 0; 3979 } 3980 3981 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3982 size_t size, loff_t *offset) 3983 { 3984 struct kvm_vcpu *vcpu = file->private_data; 3985 3986 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3987 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3988 sizeof(vcpu->stat), user_buffer, size, offset); 3989 } 3990 3991 static const struct file_operations kvm_vcpu_stats_fops = { 3992 .read = kvm_vcpu_stats_read, 3993 .llseek = noop_llseek, 3994 }; 3995 3996 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3997 { 3998 int fd; 3999 struct file *file; 4000 char name[15 + ITOA_MAX_LEN + 1]; 4001 4002 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4003 4004 fd = get_unused_fd_flags(O_CLOEXEC); 4005 if (fd < 0) 4006 return fd; 4007 4008 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4009 if (IS_ERR(file)) { 4010 put_unused_fd(fd); 4011 return PTR_ERR(file); 4012 } 4013 file->f_mode |= FMODE_PREAD; 4014 fd_install(fd, file); 4015 4016 return fd; 4017 } 4018 4019 static long kvm_vcpu_ioctl(struct file *filp, 4020 unsigned int ioctl, unsigned long arg) 4021 { 4022 struct kvm_vcpu *vcpu = filp->private_data; 4023 void __user *argp = (void __user *)arg; 4024 int r; 4025 struct kvm_fpu *fpu = NULL; 4026 struct kvm_sregs *kvm_sregs = NULL; 4027 4028 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4029 return -EIO; 4030 4031 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4032 return -EINVAL; 4033 4034 /* 4035 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4036 * execution; mutex_lock() would break them. 4037 */ 4038 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4039 if (r != -ENOIOCTLCMD) 4040 return r; 4041 4042 if (mutex_lock_killable(&vcpu->mutex)) 4043 return -EINTR; 4044 switch (ioctl) { 4045 case KVM_RUN: { 4046 struct pid *oldpid; 4047 r = -EINVAL; 4048 if (arg) 4049 goto out; 4050 oldpid = rcu_access_pointer(vcpu->pid); 4051 if (unlikely(oldpid != task_pid(current))) { 4052 /* The thread running this VCPU changed. */ 4053 struct pid *newpid; 4054 4055 r = kvm_arch_vcpu_run_pid_change(vcpu); 4056 if (r) 4057 break; 4058 4059 newpid = get_task_pid(current, PIDTYPE_PID); 4060 rcu_assign_pointer(vcpu->pid, newpid); 4061 if (oldpid) 4062 synchronize_rcu(); 4063 put_pid(oldpid); 4064 } 4065 r = kvm_arch_vcpu_ioctl_run(vcpu); 4066 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4067 break; 4068 } 4069 case KVM_GET_REGS: { 4070 struct kvm_regs *kvm_regs; 4071 4072 r = -ENOMEM; 4073 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4074 if (!kvm_regs) 4075 goto out; 4076 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4077 if (r) 4078 goto out_free1; 4079 r = -EFAULT; 4080 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4081 goto out_free1; 4082 r = 0; 4083 out_free1: 4084 kfree(kvm_regs); 4085 break; 4086 } 4087 case KVM_SET_REGS: { 4088 struct kvm_regs *kvm_regs; 4089 4090 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4091 if (IS_ERR(kvm_regs)) { 4092 r = PTR_ERR(kvm_regs); 4093 goto out; 4094 } 4095 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4096 kfree(kvm_regs); 4097 break; 4098 } 4099 case KVM_GET_SREGS: { 4100 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4101 GFP_KERNEL_ACCOUNT); 4102 r = -ENOMEM; 4103 if (!kvm_sregs) 4104 goto out; 4105 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4106 if (r) 4107 goto out; 4108 r = -EFAULT; 4109 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4110 goto out; 4111 r = 0; 4112 break; 4113 } 4114 case KVM_SET_SREGS: { 4115 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4116 if (IS_ERR(kvm_sregs)) { 4117 r = PTR_ERR(kvm_sregs); 4118 kvm_sregs = NULL; 4119 goto out; 4120 } 4121 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4122 break; 4123 } 4124 case KVM_GET_MP_STATE: { 4125 struct kvm_mp_state mp_state; 4126 4127 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4128 if (r) 4129 goto out; 4130 r = -EFAULT; 4131 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4132 goto out; 4133 r = 0; 4134 break; 4135 } 4136 case KVM_SET_MP_STATE: { 4137 struct kvm_mp_state mp_state; 4138 4139 r = -EFAULT; 4140 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4141 goto out; 4142 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4143 break; 4144 } 4145 case KVM_TRANSLATE: { 4146 struct kvm_translation tr; 4147 4148 r = -EFAULT; 4149 if (copy_from_user(&tr, argp, sizeof(tr))) 4150 goto out; 4151 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4152 if (r) 4153 goto out; 4154 r = -EFAULT; 4155 if (copy_to_user(argp, &tr, sizeof(tr))) 4156 goto out; 4157 r = 0; 4158 break; 4159 } 4160 case KVM_SET_GUEST_DEBUG: { 4161 struct kvm_guest_debug dbg; 4162 4163 r = -EFAULT; 4164 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4165 goto out; 4166 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4167 break; 4168 } 4169 case KVM_SET_SIGNAL_MASK: { 4170 struct kvm_signal_mask __user *sigmask_arg = argp; 4171 struct kvm_signal_mask kvm_sigmask; 4172 sigset_t sigset, *p; 4173 4174 p = NULL; 4175 if (argp) { 4176 r = -EFAULT; 4177 if (copy_from_user(&kvm_sigmask, argp, 4178 sizeof(kvm_sigmask))) 4179 goto out; 4180 r = -EINVAL; 4181 if (kvm_sigmask.len != sizeof(sigset)) 4182 goto out; 4183 r = -EFAULT; 4184 if (copy_from_user(&sigset, sigmask_arg->sigset, 4185 sizeof(sigset))) 4186 goto out; 4187 p = &sigset; 4188 } 4189 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4190 break; 4191 } 4192 case KVM_GET_FPU: { 4193 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4194 r = -ENOMEM; 4195 if (!fpu) 4196 goto out; 4197 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4198 if (r) 4199 goto out; 4200 r = -EFAULT; 4201 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4202 goto out; 4203 r = 0; 4204 break; 4205 } 4206 case KVM_SET_FPU: { 4207 fpu = memdup_user(argp, sizeof(*fpu)); 4208 if (IS_ERR(fpu)) { 4209 r = PTR_ERR(fpu); 4210 fpu = NULL; 4211 goto out; 4212 } 4213 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4214 break; 4215 } 4216 case KVM_GET_STATS_FD: { 4217 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4218 break; 4219 } 4220 default: 4221 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4222 } 4223 out: 4224 mutex_unlock(&vcpu->mutex); 4225 kfree(fpu); 4226 kfree(kvm_sregs); 4227 return r; 4228 } 4229 4230 #ifdef CONFIG_KVM_COMPAT 4231 static long kvm_vcpu_compat_ioctl(struct file *filp, 4232 unsigned int ioctl, unsigned long arg) 4233 { 4234 struct kvm_vcpu *vcpu = filp->private_data; 4235 void __user *argp = compat_ptr(arg); 4236 int r; 4237 4238 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4239 return -EIO; 4240 4241 switch (ioctl) { 4242 case KVM_SET_SIGNAL_MASK: { 4243 struct kvm_signal_mask __user *sigmask_arg = argp; 4244 struct kvm_signal_mask kvm_sigmask; 4245 sigset_t sigset; 4246 4247 if (argp) { 4248 r = -EFAULT; 4249 if (copy_from_user(&kvm_sigmask, argp, 4250 sizeof(kvm_sigmask))) 4251 goto out; 4252 r = -EINVAL; 4253 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4254 goto out; 4255 r = -EFAULT; 4256 if (get_compat_sigset(&sigset, 4257 (compat_sigset_t __user *)sigmask_arg->sigset)) 4258 goto out; 4259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4260 } else 4261 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4262 break; 4263 } 4264 default: 4265 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4266 } 4267 4268 out: 4269 return r; 4270 } 4271 #endif 4272 4273 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4274 { 4275 struct kvm_device *dev = filp->private_data; 4276 4277 if (dev->ops->mmap) 4278 return dev->ops->mmap(dev, vma); 4279 4280 return -ENODEV; 4281 } 4282 4283 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4284 int (*accessor)(struct kvm_device *dev, 4285 struct kvm_device_attr *attr), 4286 unsigned long arg) 4287 { 4288 struct kvm_device_attr attr; 4289 4290 if (!accessor) 4291 return -EPERM; 4292 4293 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4294 return -EFAULT; 4295 4296 return accessor(dev, &attr); 4297 } 4298 4299 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4300 unsigned long arg) 4301 { 4302 struct kvm_device *dev = filp->private_data; 4303 4304 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4305 return -EIO; 4306 4307 switch (ioctl) { 4308 case KVM_SET_DEVICE_ATTR: 4309 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4310 case KVM_GET_DEVICE_ATTR: 4311 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4312 case KVM_HAS_DEVICE_ATTR: 4313 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4314 default: 4315 if (dev->ops->ioctl) 4316 return dev->ops->ioctl(dev, ioctl, arg); 4317 4318 return -ENOTTY; 4319 } 4320 } 4321 4322 static int kvm_device_release(struct inode *inode, struct file *filp) 4323 { 4324 struct kvm_device *dev = filp->private_data; 4325 struct kvm *kvm = dev->kvm; 4326 4327 if (dev->ops->release) { 4328 mutex_lock(&kvm->lock); 4329 list_del(&dev->vm_node); 4330 dev->ops->release(dev); 4331 mutex_unlock(&kvm->lock); 4332 } 4333 4334 kvm_put_kvm(kvm); 4335 return 0; 4336 } 4337 4338 static const struct file_operations kvm_device_fops = { 4339 .unlocked_ioctl = kvm_device_ioctl, 4340 .release = kvm_device_release, 4341 KVM_COMPAT(kvm_device_ioctl), 4342 .mmap = kvm_device_mmap, 4343 }; 4344 4345 struct kvm_device *kvm_device_from_filp(struct file *filp) 4346 { 4347 if (filp->f_op != &kvm_device_fops) 4348 return NULL; 4349 4350 return filp->private_data; 4351 } 4352 4353 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4354 #ifdef CONFIG_KVM_MPIC 4355 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4356 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4357 #endif 4358 }; 4359 4360 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4361 { 4362 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4363 return -ENOSPC; 4364 4365 if (kvm_device_ops_table[type] != NULL) 4366 return -EEXIST; 4367 4368 kvm_device_ops_table[type] = ops; 4369 return 0; 4370 } 4371 4372 void kvm_unregister_device_ops(u32 type) 4373 { 4374 if (kvm_device_ops_table[type] != NULL) 4375 kvm_device_ops_table[type] = NULL; 4376 } 4377 4378 static int kvm_ioctl_create_device(struct kvm *kvm, 4379 struct kvm_create_device *cd) 4380 { 4381 const struct kvm_device_ops *ops = NULL; 4382 struct kvm_device *dev; 4383 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4384 int type; 4385 int ret; 4386 4387 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4388 return -ENODEV; 4389 4390 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4391 ops = kvm_device_ops_table[type]; 4392 if (ops == NULL) 4393 return -ENODEV; 4394 4395 if (test) 4396 return 0; 4397 4398 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4399 if (!dev) 4400 return -ENOMEM; 4401 4402 dev->ops = ops; 4403 dev->kvm = kvm; 4404 4405 mutex_lock(&kvm->lock); 4406 ret = ops->create(dev, type); 4407 if (ret < 0) { 4408 mutex_unlock(&kvm->lock); 4409 kfree(dev); 4410 return ret; 4411 } 4412 list_add(&dev->vm_node, &kvm->devices); 4413 mutex_unlock(&kvm->lock); 4414 4415 if (ops->init) 4416 ops->init(dev); 4417 4418 kvm_get_kvm(kvm); 4419 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4420 if (ret < 0) { 4421 kvm_put_kvm_no_destroy(kvm); 4422 mutex_lock(&kvm->lock); 4423 list_del(&dev->vm_node); 4424 if (ops->release) 4425 ops->release(dev); 4426 mutex_unlock(&kvm->lock); 4427 if (ops->destroy) 4428 ops->destroy(dev); 4429 return ret; 4430 } 4431 4432 cd->fd = ret; 4433 return 0; 4434 } 4435 4436 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4437 { 4438 switch (arg) { 4439 case KVM_CAP_USER_MEMORY: 4440 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4441 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4442 case KVM_CAP_INTERNAL_ERROR_DATA: 4443 #ifdef CONFIG_HAVE_KVM_MSI 4444 case KVM_CAP_SIGNAL_MSI: 4445 #endif 4446 #ifdef CONFIG_HAVE_KVM_IRQFD 4447 case KVM_CAP_IRQFD: 4448 case KVM_CAP_IRQFD_RESAMPLE: 4449 #endif 4450 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4451 case KVM_CAP_CHECK_EXTENSION_VM: 4452 case KVM_CAP_ENABLE_CAP_VM: 4453 case KVM_CAP_HALT_POLL: 4454 return 1; 4455 #ifdef CONFIG_KVM_MMIO 4456 case KVM_CAP_COALESCED_MMIO: 4457 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4458 case KVM_CAP_COALESCED_PIO: 4459 return 1; 4460 #endif 4461 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4462 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4463 return KVM_DIRTY_LOG_MANUAL_CAPS; 4464 #endif 4465 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4466 case KVM_CAP_IRQ_ROUTING: 4467 return KVM_MAX_IRQ_ROUTES; 4468 #endif 4469 #if KVM_ADDRESS_SPACE_NUM > 1 4470 case KVM_CAP_MULTI_ADDRESS_SPACE: 4471 return KVM_ADDRESS_SPACE_NUM; 4472 #endif 4473 case KVM_CAP_NR_MEMSLOTS: 4474 return KVM_USER_MEM_SLOTS; 4475 case KVM_CAP_DIRTY_LOG_RING: 4476 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4477 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4478 #else 4479 return 0; 4480 #endif 4481 case KVM_CAP_BINARY_STATS_FD: 4482 case KVM_CAP_SYSTEM_EVENT_DATA: 4483 return 1; 4484 default: 4485 break; 4486 } 4487 return kvm_vm_ioctl_check_extension(kvm, arg); 4488 } 4489 4490 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4491 { 4492 int r; 4493 4494 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4495 return -EINVAL; 4496 4497 /* the size should be power of 2 */ 4498 if (!size || (size & (size - 1))) 4499 return -EINVAL; 4500 4501 /* Should be bigger to keep the reserved entries, or a page */ 4502 if (size < kvm_dirty_ring_get_rsvd_entries() * 4503 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4504 return -EINVAL; 4505 4506 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4507 sizeof(struct kvm_dirty_gfn)) 4508 return -E2BIG; 4509 4510 /* We only allow it to set once */ 4511 if (kvm->dirty_ring_size) 4512 return -EINVAL; 4513 4514 mutex_lock(&kvm->lock); 4515 4516 if (kvm->created_vcpus) { 4517 /* We don't allow to change this value after vcpu created */ 4518 r = -EINVAL; 4519 } else { 4520 kvm->dirty_ring_size = size; 4521 r = 0; 4522 } 4523 4524 mutex_unlock(&kvm->lock); 4525 return r; 4526 } 4527 4528 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4529 { 4530 unsigned long i; 4531 struct kvm_vcpu *vcpu; 4532 int cleared = 0; 4533 4534 if (!kvm->dirty_ring_size) 4535 return -EINVAL; 4536 4537 mutex_lock(&kvm->slots_lock); 4538 4539 kvm_for_each_vcpu(i, vcpu, kvm) 4540 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4541 4542 mutex_unlock(&kvm->slots_lock); 4543 4544 if (cleared) 4545 kvm_flush_remote_tlbs(kvm); 4546 4547 return cleared; 4548 } 4549 4550 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4551 struct kvm_enable_cap *cap) 4552 { 4553 return -EINVAL; 4554 } 4555 4556 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4557 struct kvm_enable_cap *cap) 4558 { 4559 switch (cap->cap) { 4560 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4561 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4562 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4563 4564 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4565 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4566 4567 if (cap->flags || (cap->args[0] & ~allowed_options)) 4568 return -EINVAL; 4569 kvm->manual_dirty_log_protect = cap->args[0]; 4570 return 0; 4571 } 4572 #endif 4573 case KVM_CAP_HALT_POLL: { 4574 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4575 return -EINVAL; 4576 4577 kvm->max_halt_poll_ns = cap->args[0]; 4578 return 0; 4579 } 4580 case KVM_CAP_DIRTY_LOG_RING: 4581 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4582 default: 4583 return kvm_vm_ioctl_enable_cap(kvm, cap); 4584 } 4585 } 4586 4587 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4588 size_t size, loff_t *offset) 4589 { 4590 struct kvm *kvm = file->private_data; 4591 4592 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4593 &kvm_vm_stats_desc[0], &kvm->stat, 4594 sizeof(kvm->stat), user_buffer, size, offset); 4595 } 4596 4597 static const struct file_operations kvm_vm_stats_fops = { 4598 .read = kvm_vm_stats_read, 4599 .llseek = noop_llseek, 4600 }; 4601 4602 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4603 { 4604 int fd; 4605 struct file *file; 4606 4607 fd = get_unused_fd_flags(O_CLOEXEC); 4608 if (fd < 0) 4609 return fd; 4610 4611 file = anon_inode_getfile("kvm-vm-stats", 4612 &kvm_vm_stats_fops, kvm, O_RDONLY); 4613 if (IS_ERR(file)) { 4614 put_unused_fd(fd); 4615 return PTR_ERR(file); 4616 } 4617 file->f_mode |= FMODE_PREAD; 4618 fd_install(fd, file); 4619 4620 return fd; 4621 } 4622 4623 static long kvm_vm_ioctl(struct file *filp, 4624 unsigned int ioctl, unsigned long arg) 4625 { 4626 struct kvm *kvm = filp->private_data; 4627 void __user *argp = (void __user *)arg; 4628 int r; 4629 4630 if (kvm->mm != current->mm || kvm->vm_dead) 4631 return -EIO; 4632 switch (ioctl) { 4633 case KVM_CREATE_VCPU: 4634 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4635 break; 4636 case KVM_ENABLE_CAP: { 4637 struct kvm_enable_cap cap; 4638 4639 r = -EFAULT; 4640 if (copy_from_user(&cap, argp, sizeof(cap))) 4641 goto out; 4642 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4643 break; 4644 } 4645 case KVM_SET_USER_MEMORY_REGION: { 4646 struct kvm_userspace_memory_region kvm_userspace_mem; 4647 4648 r = -EFAULT; 4649 if (copy_from_user(&kvm_userspace_mem, argp, 4650 sizeof(kvm_userspace_mem))) 4651 goto out; 4652 4653 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4654 break; 4655 } 4656 case KVM_GET_DIRTY_LOG: { 4657 struct kvm_dirty_log log; 4658 4659 r = -EFAULT; 4660 if (copy_from_user(&log, argp, sizeof(log))) 4661 goto out; 4662 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4663 break; 4664 } 4665 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4666 case KVM_CLEAR_DIRTY_LOG: { 4667 struct kvm_clear_dirty_log log; 4668 4669 r = -EFAULT; 4670 if (copy_from_user(&log, argp, sizeof(log))) 4671 goto out; 4672 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4673 break; 4674 } 4675 #endif 4676 #ifdef CONFIG_KVM_MMIO 4677 case KVM_REGISTER_COALESCED_MMIO: { 4678 struct kvm_coalesced_mmio_zone zone; 4679 4680 r = -EFAULT; 4681 if (copy_from_user(&zone, argp, sizeof(zone))) 4682 goto out; 4683 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4684 break; 4685 } 4686 case KVM_UNREGISTER_COALESCED_MMIO: { 4687 struct kvm_coalesced_mmio_zone zone; 4688 4689 r = -EFAULT; 4690 if (copy_from_user(&zone, argp, sizeof(zone))) 4691 goto out; 4692 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4693 break; 4694 } 4695 #endif 4696 case KVM_IRQFD: { 4697 struct kvm_irqfd data; 4698 4699 r = -EFAULT; 4700 if (copy_from_user(&data, argp, sizeof(data))) 4701 goto out; 4702 r = kvm_irqfd(kvm, &data); 4703 break; 4704 } 4705 case KVM_IOEVENTFD: { 4706 struct kvm_ioeventfd data; 4707 4708 r = -EFAULT; 4709 if (copy_from_user(&data, argp, sizeof(data))) 4710 goto out; 4711 r = kvm_ioeventfd(kvm, &data); 4712 break; 4713 } 4714 #ifdef CONFIG_HAVE_KVM_MSI 4715 case KVM_SIGNAL_MSI: { 4716 struct kvm_msi msi; 4717 4718 r = -EFAULT; 4719 if (copy_from_user(&msi, argp, sizeof(msi))) 4720 goto out; 4721 r = kvm_send_userspace_msi(kvm, &msi); 4722 break; 4723 } 4724 #endif 4725 #ifdef __KVM_HAVE_IRQ_LINE 4726 case KVM_IRQ_LINE_STATUS: 4727 case KVM_IRQ_LINE: { 4728 struct kvm_irq_level irq_event; 4729 4730 r = -EFAULT; 4731 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4732 goto out; 4733 4734 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4735 ioctl == KVM_IRQ_LINE_STATUS); 4736 if (r) 4737 goto out; 4738 4739 r = -EFAULT; 4740 if (ioctl == KVM_IRQ_LINE_STATUS) { 4741 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4742 goto out; 4743 } 4744 4745 r = 0; 4746 break; 4747 } 4748 #endif 4749 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4750 case KVM_SET_GSI_ROUTING: { 4751 struct kvm_irq_routing routing; 4752 struct kvm_irq_routing __user *urouting; 4753 struct kvm_irq_routing_entry *entries = NULL; 4754 4755 r = -EFAULT; 4756 if (copy_from_user(&routing, argp, sizeof(routing))) 4757 goto out; 4758 r = -EINVAL; 4759 if (!kvm_arch_can_set_irq_routing(kvm)) 4760 goto out; 4761 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4762 goto out; 4763 if (routing.flags) 4764 goto out; 4765 if (routing.nr) { 4766 urouting = argp; 4767 entries = vmemdup_user(urouting->entries, 4768 array_size(sizeof(*entries), 4769 routing.nr)); 4770 if (IS_ERR(entries)) { 4771 r = PTR_ERR(entries); 4772 goto out; 4773 } 4774 } 4775 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4776 routing.flags); 4777 kvfree(entries); 4778 break; 4779 } 4780 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4781 case KVM_CREATE_DEVICE: { 4782 struct kvm_create_device cd; 4783 4784 r = -EFAULT; 4785 if (copy_from_user(&cd, argp, sizeof(cd))) 4786 goto out; 4787 4788 r = kvm_ioctl_create_device(kvm, &cd); 4789 if (r) 4790 goto out; 4791 4792 r = -EFAULT; 4793 if (copy_to_user(argp, &cd, sizeof(cd))) 4794 goto out; 4795 4796 r = 0; 4797 break; 4798 } 4799 case KVM_CHECK_EXTENSION: 4800 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4801 break; 4802 case KVM_RESET_DIRTY_RINGS: 4803 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4804 break; 4805 case KVM_GET_STATS_FD: 4806 r = kvm_vm_ioctl_get_stats_fd(kvm); 4807 break; 4808 default: 4809 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4810 } 4811 out: 4812 return r; 4813 } 4814 4815 #ifdef CONFIG_KVM_COMPAT 4816 struct compat_kvm_dirty_log { 4817 __u32 slot; 4818 __u32 padding1; 4819 union { 4820 compat_uptr_t dirty_bitmap; /* one bit per page */ 4821 __u64 padding2; 4822 }; 4823 }; 4824 4825 struct compat_kvm_clear_dirty_log { 4826 __u32 slot; 4827 __u32 num_pages; 4828 __u64 first_page; 4829 union { 4830 compat_uptr_t dirty_bitmap; /* one bit per page */ 4831 __u64 padding2; 4832 }; 4833 }; 4834 4835 static long kvm_vm_compat_ioctl(struct file *filp, 4836 unsigned int ioctl, unsigned long arg) 4837 { 4838 struct kvm *kvm = filp->private_data; 4839 int r; 4840 4841 if (kvm->mm != current->mm || kvm->vm_dead) 4842 return -EIO; 4843 switch (ioctl) { 4844 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4845 case KVM_CLEAR_DIRTY_LOG: { 4846 struct compat_kvm_clear_dirty_log compat_log; 4847 struct kvm_clear_dirty_log log; 4848 4849 if (copy_from_user(&compat_log, (void __user *)arg, 4850 sizeof(compat_log))) 4851 return -EFAULT; 4852 log.slot = compat_log.slot; 4853 log.num_pages = compat_log.num_pages; 4854 log.first_page = compat_log.first_page; 4855 log.padding2 = compat_log.padding2; 4856 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4857 4858 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4859 break; 4860 } 4861 #endif 4862 case KVM_GET_DIRTY_LOG: { 4863 struct compat_kvm_dirty_log compat_log; 4864 struct kvm_dirty_log log; 4865 4866 if (copy_from_user(&compat_log, (void __user *)arg, 4867 sizeof(compat_log))) 4868 return -EFAULT; 4869 log.slot = compat_log.slot; 4870 log.padding1 = compat_log.padding1; 4871 log.padding2 = compat_log.padding2; 4872 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4873 4874 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4875 break; 4876 } 4877 default: 4878 r = kvm_vm_ioctl(filp, ioctl, arg); 4879 } 4880 return r; 4881 } 4882 #endif 4883 4884 static const struct file_operations kvm_vm_fops = { 4885 .release = kvm_vm_release, 4886 .unlocked_ioctl = kvm_vm_ioctl, 4887 .llseek = noop_llseek, 4888 KVM_COMPAT(kvm_vm_compat_ioctl), 4889 }; 4890 4891 bool file_is_kvm(struct file *file) 4892 { 4893 return file && file->f_op == &kvm_vm_fops; 4894 } 4895 EXPORT_SYMBOL_GPL(file_is_kvm); 4896 4897 static int kvm_dev_ioctl_create_vm(unsigned long type) 4898 { 4899 char fdname[ITOA_MAX_LEN + 1]; 4900 int r, fd; 4901 struct kvm *kvm; 4902 struct file *file; 4903 4904 fd = get_unused_fd_flags(O_CLOEXEC); 4905 if (fd < 0) 4906 return fd; 4907 4908 snprintf(fdname, sizeof(fdname), "%d", fd); 4909 4910 kvm = kvm_create_vm(type, fdname); 4911 if (IS_ERR(kvm)) { 4912 r = PTR_ERR(kvm); 4913 goto put_fd; 4914 } 4915 4916 #ifdef CONFIG_KVM_MMIO 4917 r = kvm_coalesced_mmio_init(kvm); 4918 if (r < 0) 4919 goto put_kvm; 4920 #endif 4921 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4922 if (IS_ERR(file)) { 4923 r = PTR_ERR(file); 4924 goto put_kvm; 4925 } 4926 4927 /* 4928 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4929 * already set, with ->release() being kvm_vm_release(). In error 4930 * cases it will be called by the final fput(file) and will take 4931 * care of doing kvm_put_kvm(kvm). 4932 */ 4933 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4934 4935 fd_install(fd, file); 4936 return fd; 4937 4938 put_kvm: 4939 kvm_put_kvm(kvm); 4940 put_fd: 4941 put_unused_fd(fd); 4942 return r; 4943 } 4944 4945 static long kvm_dev_ioctl(struct file *filp, 4946 unsigned int ioctl, unsigned long arg) 4947 { 4948 long r = -EINVAL; 4949 4950 switch (ioctl) { 4951 case KVM_GET_API_VERSION: 4952 if (arg) 4953 goto out; 4954 r = KVM_API_VERSION; 4955 break; 4956 case KVM_CREATE_VM: 4957 r = kvm_dev_ioctl_create_vm(arg); 4958 break; 4959 case KVM_CHECK_EXTENSION: 4960 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4961 break; 4962 case KVM_GET_VCPU_MMAP_SIZE: 4963 if (arg) 4964 goto out; 4965 r = PAGE_SIZE; /* struct kvm_run */ 4966 #ifdef CONFIG_X86 4967 r += PAGE_SIZE; /* pio data page */ 4968 #endif 4969 #ifdef CONFIG_KVM_MMIO 4970 r += PAGE_SIZE; /* coalesced mmio ring page */ 4971 #endif 4972 break; 4973 case KVM_TRACE_ENABLE: 4974 case KVM_TRACE_PAUSE: 4975 case KVM_TRACE_DISABLE: 4976 r = -EOPNOTSUPP; 4977 break; 4978 default: 4979 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4980 } 4981 out: 4982 return r; 4983 } 4984 4985 static struct file_operations kvm_chardev_ops = { 4986 .unlocked_ioctl = kvm_dev_ioctl, 4987 .llseek = noop_llseek, 4988 KVM_COMPAT(kvm_dev_ioctl), 4989 }; 4990 4991 static struct miscdevice kvm_dev = { 4992 KVM_MINOR, 4993 "kvm", 4994 &kvm_chardev_ops, 4995 }; 4996 4997 static void hardware_enable_nolock(void *junk) 4998 { 4999 int cpu = raw_smp_processor_id(); 5000 int r; 5001 5002 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5003 return; 5004 5005 cpumask_set_cpu(cpu, cpus_hardware_enabled); 5006 5007 r = kvm_arch_hardware_enable(); 5008 5009 if (r) { 5010 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5011 atomic_inc(&hardware_enable_failed); 5012 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 5013 } 5014 } 5015 5016 static int kvm_starting_cpu(unsigned int cpu) 5017 { 5018 raw_spin_lock(&kvm_count_lock); 5019 if (kvm_usage_count) 5020 hardware_enable_nolock(NULL); 5021 raw_spin_unlock(&kvm_count_lock); 5022 return 0; 5023 } 5024 5025 static void hardware_disable_nolock(void *junk) 5026 { 5027 int cpu = raw_smp_processor_id(); 5028 5029 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5030 return; 5031 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5032 kvm_arch_hardware_disable(); 5033 } 5034 5035 static int kvm_dying_cpu(unsigned int cpu) 5036 { 5037 raw_spin_lock(&kvm_count_lock); 5038 if (kvm_usage_count) 5039 hardware_disable_nolock(NULL); 5040 raw_spin_unlock(&kvm_count_lock); 5041 return 0; 5042 } 5043 5044 static void hardware_disable_all_nolock(void) 5045 { 5046 BUG_ON(!kvm_usage_count); 5047 5048 kvm_usage_count--; 5049 if (!kvm_usage_count) 5050 on_each_cpu(hardware_disable_nolock, NULL, 1); 5051 } 5052 5053 static void hardware_disable_all(void) 5054 { 5055 raw_spin_lock(&kvm_count_lock); 5056 hardware_disable_all_nolock(); 5057 raw_spin_unlock(&kvm_count_lock); 5058 } 5059 5060 static int hardware_enable_all(void) 5061 { 5062 int r = 0; 5063 5064 raw_spin_lock(&kvm_count_lock); 5065 5066 kvm_usage_count++; 5067 if (kvm_usage_count == 1) { 5068 atomic_set(&hardware_enable_failed, 0); 5069 on_each_cpu(hardware_enable_nolock, NULL, 1); 5070 5071 if (atomic_read(&hardware_enable_failed)) { 5072 hardware_disable_all_nolock(); 5073 r = -EBUSY; 5074 } 5075 } 5076 5077 raw_spin_unlock(&kvm_count_lock); 5078 5079 return r; 5080 } 5081 5082 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5083 void *v) 5084 { 5085 /* 5086 * Some (well, at least mine) BIOSes hang on reboot if 5087 * in vmx root mode. 5088 * 5089 * And Intel TXT required VMX off for all cpu when system shutdown. 5090 */ 5091 pr_info("kvm: exiting hardware virtualization\n"); 5092 kvm_rebooting = true; 5093 on_each_cpu(hardware_disable_nolock, NULL, 1); 5094 return NOTIFY_OK; 5095 } 5096 5097 static struct notifier_block kvm_reboot_notifier = { 5098 .notifier_call = kvm_reboot, 5099 .priority = 0, 5100 }; 5101 5102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5103 { 5104 int i; 5105 5106 for (i = 0; i < bus->dev_count; i++) { 5107 struct kvm_io_device *pos = bus->range[i].dev; 5108 5109 kvm_iodevice_destructor(pos); 5110 } 5111 kfree(bus); 5112 } 5113 5114 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5115 const struct kvm_io_range *r2) 5116 { 5117 gpa_t addr1 = r1->addr; 5118 gpa_t addr2 = r2->addr; 5119 5120 if (addr1 < addr2) 5121 return -1; 5122 5123 /* If r2->len == 0, match the exact address. If r2->len != 0, 5124 * accept any overlapping write. Any order is acceptable for 5125 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5126 * we process all of them. 5127 */ 5128 if (r2->len) { 5129 addr1 += r1->len; 5130 addr2 += r2->len; 5131 } 5132 5133 if (addr1 > addr2) 5134 return 1; 5135 5136 return 0; 5137 } 5138 5139 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5140 { 5141 return kvm_io_bus_cmp(p1, p2); 5142 } 5143 5144 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5145 gpa_t addr, int len) 5146 { 5147 struct kvm_io_range *range, key; 5148 int off; 5149 5150 key = (struct kvm_io_range) { 5151 .addr = addr, 5152 .len = len, 5153 }; 5154 5155 range = bsearch(&key, bus->range, bus->dev_count, 5156 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5157 if (range == NULL) 5158 return -ENOENT; 5159 5160 off = range - bus->range; 5161 5162 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5163 off--; 5164 5165 return off; 5166 } 5167 5168 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5169 struct kvm_io_range *range, const void *val) 5170 { 5171 int idx; 5172 5173 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5174 if (idx < 0) 5175 return -EOPNOTSUPP; 5176 5177 while (idx < bus->dev_count && 5178 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5179 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5180 range->len, val)) 5181 return idx; 5182 idx++; 5183 } 5184 5185 return -EOPNOTSUPP; 5186 } 5187 5188 /* kvm_io_bus_write - called under kvm->slots_lock */ 5189 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5190 int len, const void *val) 5191 { 5192 struct kvm_io_bus *bus; 5193 struct kvm_io_range range; 5194 int r; 5195 5196 range = (struct kvm_io_range) { 5197 .addr = addr, 5198 .len = len, 5199 }; 5200 5201 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5202 if (!bus) 5203 return -ENOMEM; 5204 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5205 return r < 0 ? r : 0; 5206 } 5207 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5208 5209 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5210 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5211 gpa_t addr, int len, const void *val, long cookie) 5212 { 5213 struct kvm_io_bus *bus; 5214 struct kvm_io_range range; 5215 5216 range = (struct kvm_io_range) { 5217 .addr = addr, 5218 .len = len, 5219 }; 5220 5221 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5222 if (!bus) 5223 return -ENOMEM; 5224 5225 /* First try the device referenced by cookie. */ 5226 if ((cookie >= 0) && (cookie < bus->dev_count) && 5227 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5228 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5229 val)) 5230 return cookie; 5231 5232 /* 5233 * cookie contained garbage; fall back to search and return the 5234 * correct cookie value. 5235 */ 5236 return __kvm_io_bus_write(vcpu, bus, &range, val); 5237 } 5238 5239 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5240 struct kvm_io_range *range, void *val) 5241 { 5242 int idx; 5243 5244 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5245 if (idx < 0) 5246 return -EOPNOTSUPP; 5247 5248 while (idx < bus->dev_count && 5249 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5250 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5251 range->len, val)) 5252 return idx; 5253 idx++; 5254 } 5255 5256 return -EOPNOTSUPP; 5257 } 5258 5259 /* kvm_io_bus_read - called under kvm->slots_lock */ 5260 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5261 int len, void *val) 5262 { 5263 struct kvm_io_bus *bus; 5264 struct kvm_io_range range; 5265 int r; 5266 5267 range = (struct kvm_io_range) { 5268 .addr = addr, 5269 .len = len, 5270 }; 5271 5272 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5273 if (!bus) 5274 return -ENOMEM; 5275 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5276 return r < 0 ? r : 0; 5277 } 5278 5279 /* Caller must hold slots_lock. */ 5280 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5281 int len, struct kvm_io_device *dev) 5282 { 5283 int i; 5284 struct kvm_io_bus *new_bus, *bus; 5285 struct kvm_io_range range; 5286 5287 bus = kvm_get_bus(kvm, bus_idx); 5288 if (!bus) 5289 return -ENOMEM; 5290 5291 /* exclude ioeventfd which is limited by maximum fd */ 5292 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5293 return -ENOSPC; 5294 5295 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5296 GFP_KERNEL_ACCOUNT); 5297 if (!new_bus) 5298 return -ENOMEM; 5299 5300 range = (struct kvm_io_range) { 5301 .addr = addr, 5302 .len = len, 5303 .dev = dev, 5304 }; 5305 5306 for (i = 0; i < bus->dev_count; i++) 5307 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5308 break; 5309 5310 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5311 new_bus->dev_count++; 5312 new_bus->range[i] = range; 5313 memcpy(new_bus->range + i + 1, bus->range + i, 5314 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5315 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5316 synchronize_srcu_expedited(&kvm->srcu); 5317 kfree(bus); 5318 5319 return 0; 5320 } 5321 5322 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5323 struct kvm_io_device *dev) 5324 { 5325 int i, j; 5326 struct kvm_io_bus *new_bus, *bus; 5327 5328 lockdep_assert_held(&kvm->slots_lock); 5329 5330 bus = kvm_get_bus(kvm, bus_idx); 5331 if (!bus) 5332 return 0; 5333 5334 for (i = 0; i < bus->dev_count; i++) { 5335 if (bus->range[i].dev == dev) { 5336 break; 5337 } 5338 } 5339 5340 if (i == bus->dev_count) 5341 return 0; 5342 5343 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5344 GFP_KERNEL_ACCOUNT); 5345 if (new_bus) { 5346 memcpy(new_bus, bus, struct_size(bus, range, i)); 5347 new_bus->dev_count--; 5348 memcpy(new_bus->range + i, bus->range + i + 1, 5349 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5350 } 5351 5352 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5353 synchronize_srcu_expedited(&kvm->srcu); 5354 5355 /* Destroy the old bus _after_ installing the (null) bus. */ 5356 if (!new_bus) { 5357 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5358 for (j = 0; j < bus->dev_count; j++) { 5359 if (j == i) 5360 continue; 5361 kvm_iodevice_destructor(bus->range[j].dev); 5362 } 5363 } 5364 5365 kfree(bus); 5366 return new_bus ? 0 : -ENOMEM; 5367 } 5368 5369 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5370 gpa_t addr) 5371 { 5372 struct kvm_io_bus *bus; 5373 int dev_idx, srcu_idx; 5374 struct kvm_io_device *iodev = NULL; 5375 5376 srcu_idx = srcu_read_lock(&kvm->srcu); 5377 5378 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5379 if (!bus) 5380 goto out_unlock; 5381 5382 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5383 if (dev_idx < 0) 5384 goto out_unlock; 5385 5386 iodev = bus->range[dev_idx].dev; 5387 5388 out_unlock: 5389 srcu_read_unlock(&kvm->srcu, srcu_idx); 5390 5391 return iodev; 5392 } 5393 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5394 5395 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5396 int (*get)(void *, u64 *), int (*set)(void *, u64), 5397 const char *fmt) 5398 { 5399 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5400 inode->i_private; 5401 5402 /* 5403 * The debugfs files are a reference to the kvm struct which 5404 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5405 * avoids the race between open and the removal of the debugfs directory. 5406 */ 5407 if (!kvm_get_kvm_safe(stat_data->kvm)) 5408 return -ENOENT; 5409 5410 if (simple_attr_open(inode, file, get, 5411 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5412 ? set : NULL, 5413 fmt)) { 5414 kvm_put_kvm(stat_data->kvm); 5415 return -ENOMEM; 5416 } 5417 5418 return 0; 5419 } 5420 5421 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5422 { 5423 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5424 inode->i_private; 5425 5426 simple_attr_release(inode, file); 5427 kvm_put_kvm(stat_data->kvm); 5428 5429 return 0; 5430 } 5431 5432 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5433 { 5434 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5435 5436 return 0; 5437 } 5438 5439 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5440 { 5441 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5442 5443 return 0; 5444 } 5445 5446 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5447 { 5448 unsigned long i; 5449 struct kvm_vcpu *vcpu; 5450 5451 *val = 0; 5452 5453 kvm_for_each_vcpu(i, vcpu, kvm) 5454 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5455 5456 return 0; 5457 } 5458 5459 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5460 { 5461 unsigned long i; 5462 struct kvm_vcpu *vcpu; 5463 5464 kvm_for_each_vcpu(i, vcpu, kvm) 5465 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5466 5467 return 0; 5468 } 5469 5470 static int kvm_stat_data_get(void *data, u64 *val) 5471 { 5472 int r = -EFAULT; 5473 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5474 5475 switch (stat_data->kind) { 5476 case KVM_STAT_VM: 5477 r = kvm_get_stat_per_vm(stat_data->kvm, 5478 stat_data->desc->desc.offset, val); 5479 break; 5480 case KVM_STAT_VCPU: 5481 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5482 stat_data->desc->desc.offset, val); 5483 break; 5484 } 5485 5486 return r; 5487 } 5488 5489 static int kvm_stat_data_clear(void *data, u64 val) 5490 { 5491 int r = -EFAULT; 5492 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5493 5494 if (val) 5495 return -EINVAL; 5496 5497 switch (stat_data->kind) { 5498 case KVM_STAT_VM: 5499 r = kvm_clear_stat_per_vm(stat_data->kvm, 5500 stat_data->desc->desc.offset); 5501 break; 5502 case KVM_STAT_VCPU: 5503 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5504 stat_data->desc->desc.offset); 5505 break; 5506 } 5507 5508 return r; 5509 } 5510 5511 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5512 { 5513 __simple_attr_check_format("%llu\n", 0ull); 5514 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5515 kvm_stat_data_clear, "%llu\n"); 5516 } 5517 5518 static const struct file_operations stat_fops_per_vm = { 5519 .owner = THIS_MODULE, 5520 .open = kvm_stat_data_open, 5521 .release = kvm_debugfs_release, 5522 .read = simple_attr_read, 5523 .write = simple_attr_write, 5524 .llseek = no_llseek, 5525 }; 5526 5527 static int vm_stat_get(void *_offset, u64 *val) 5528 { 5529 unsigned offset = (long)_offset; 5530 struct kvm *kvm; 5531 u64 tmp_val; 5532 5533 *val = 0; 5534 mutex_lock(&kvm_lock); 5535 list_for_each_entry(kvm, &vm_list, vm_list) { 5536 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5537 *val += tmp_val; 5538 } 5539 mutex_unlock(&kvm_lock); 5540 return 0; 5541 } 5542 5543 static int vm_stat_clear(void *_offset, u64 val) 5544 { 5545 unsigned offset = (long)_offset; 5546 struct kvm *kvm; 5547 5548 if (val) 5549 return -EINVAL; 5550 5551 mutex_lock(&kvm_lock); 5552 list_for_each_entry(kvm, &vm_list, vm_list) { 5553 kvm_clear_stat_per_vm(kvm, offset); 5554 } 5555 mutex_unlock(&kvm_lock); 5556 5557 return 0; 5558 } 5559 5560 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5561 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5562 5563 static int vcpu_stat_get(void *_offset, u64 *val) 5564 { 5565 unsigned offset = (long)_offset; 5566 struct kvm *kvm; 5567 u64 tmp_val; 5568 5569 *val = 0; 5570 mutex_lock(&kvm_lock); 5571 list_for_each_entry(kvm, &vm_list, vm_list) { 5572 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5573 *val += tmp_val; 5574 } 5575 mutex_unlock(&kvm_lock); 5576 return 0; 5577 } 5578 5579 static int vcpu_stat_clear(void *_offset, u64 val) 5580 { 5581 unsigned offset = (long)_offset; 5582 struct kvm *kvm; 5583 5584 if (val) 5585 return -EINVAL; 5586 5587 mutex_lock(&kvm_lock); 5588 list_for_each_entry(kvm, &vm_list, vm_list) { 5589 kvm_clear_stat_per_vcpu(kvm, offset); 5590 } 5591 mutex_unlock(&kvm_lock); 5592 5593 return 0; 5594 } 5595 5596 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5597 "%llu\n"); 5598 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5599 5600 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5601 { 5602 struct kobj_uevent_env *env; 5603 unsigned long long created, active; 5604 5605 if (!kvm_dev.this_device || !kvm) 5606 return; 5607 5608 mutex_lock(&kvm_lock); 5609 if (type == KVM_EVENT_CREATE_VM) { 5610 kvm_createvm_count++; 5611 kvm_active_vms++; 5612 } else if (type == KVM_EVENT_DESTROY_VM) { 5613 kvm_active_vms--; 5614 } 5615 created = kvm_createvm_count; 5616 active = kvm_active_vms; 5617 mutex_unlock(&kvm_lock); 5618 5619 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5620 if (!env) 5621 return; 5622 5623 add_uevent_var(env, "CREATED=%llu", created); 5624 add_uevent_var(env, "COUNT=%llu", active); 5625 5626 if (type == KVM_EVENT_CREATE_VM) { 5627 add_uevent_var(env, "EVENT=create"); 5628 kvm->userspace_pid = task_pid_nr(current); 5629 } else if (type == KVM_EVENT_DESTROY_VM) { 5630 add_uevent_var(env, "EVENT=destroy"); 5631 } 5632 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5633 5634 if (!IS_ERR(kvm->debugfs_dentry)) { 5635 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5636 5637 if (p) { 5638 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5639 if (!IS_ERR(tmp)) 5640 add_uevent_var(env, "STATS_PATH=%s", tmp); 5641 kfree(p); 5642 } 5643 } 5644 /* no need for checks, since we are adding at most only 5 keys */ 5645 env->envp[env->envp_idx++] = NULL; 5646 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5647 kfree(env); 5648 } 5649 5650 static void kvm_init_debug(void) 5651 { 5652 const struct file_operations *fops; 5653 const struct _kvm_stats_desc *pdesc; 5654 int i; 5655 5656 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5657 5658 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5659 pdesc = &kvm_vm_stats_desc[i]; 5660 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5661 fops = &vm_stat_fops; 5662 else 5663 fops = &vm_stat_readonly_fops; 5664 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5665 kvm_debugfs_dir, 5666 (void *)(long)pdesc->desc.offset, fops); 5667 } 5668 5669 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5670 pdesc = &kvm_vcpu_stats_desc[i]; 5671 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5672 fops = &vcpu_stat_fops; 5673 else 5674 fops = &vcpu_stat_readonly_fops; 5675 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5676 kvm_debugfs_dir, 5677 (void *)(long)pdesc->desc.offset, fops); 5678 } 5679 } 5680 5681 static int kvm_suspend(void) 5682 { 5683 if (kvm_usage_count) 5684 hardware_disable_nolock(NULL); 5685 return 0; 5686 } 5687 5688 static void kvm_resume(void) 5689 { 5690 if (kvm_usage_count) { 5691 lockdep_assert_not_held(&kvm_count_lock); 5692 hardware_enable_nolock(NULL); 5693 } 5694 } 5695 5696 static struct syscore_ops kvm_syscore_ops = { 5697 .suspend = kvm_suspend, 5698 .resume = kvm_resume, 5699 }; 5700 5701 static inline 5702 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5703 { 5704 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5705 } 5706 5707 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5708 { 5709 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5710 5711 WRITE_ONCE(vcpu->preempted, false); 5712 WRITE_ONCE(vcpu->ready, false); 5713 5714 __this_cpu_write(kvm_running_vcpu, vcpu); 5715 kvm_arch_sched_in(vcpu, cpu); 5716 kvm_arch_vcpu_load(vcpu, cpu); 5717 } 5718 5719 static void kvm_sched_out(struct preempt_notifier *pn, 5720 struct task_struct *next) 5721 { 5722 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5723 5724 if (current->on_rq) { 5725 WRITE_ONCE(vcpu->preempted, true); 5726 WRITE_ONCE(vcpu->ready, true); 5727 } 5728 kvm_arch_vcpu_put(vcpu); 5729 __this_cpu_write(kvm_running_vcpu, NULL); 5730 } 5731 5732 /** 5733 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5734 * 5735 * We can disable preemption locally around accessing the per-CPU variable, 5736 * and use the resolved vcpu pointer after enabling preemption again, 5737 * because even if the current thread is migrated to another CPU, reading 5738 * the per-CPU value later will give us the same value as we update the 5739 * per-CPU variable in the preempt notifier handlers. 5740 */ 5741 struct kvm_vcpu *kvm_get_running_vcpu(void) 5742 { 5743 struct kvm_vcpu *vcpu; 5744 5745 preempt_disable(); 5746 vcpu = __this_cpu_read(kvm_running_vcpu); 5747 preempt_enable(); 5748 5749 return vcpu; 5750 } 5751 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5752 5753 /** 5754 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5755 */ 5756 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5757 { 5758 return &kvm_running_vcpu; 5759 } 5760 5761 #ifdef CONFIG_GUEST_PERF_EVENTS 5762 static unsigned int kvm_guest_state(void) 5763 { 5764 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5765 unsigned int state; 5766 5767 if (!kvm_arch_pmi_in_guest(vcpu)) 5768 return 0; 5769 5770 state = PERF_GUEST_ACTIVE; 5771 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5772 state |= PERF_GUEST_USER; 5773 5774 return state; 5775 } 5776 5777 static unsigned long kvm_guest_get_ip(void) 5778 { 5779 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5780 5781 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5782 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5783 return 0; 5784 5785 return kvm_arch_vcpu_get_ip(vcpu); 5786 } 5787 5788 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5789 .state = kvm_guest_state, 5790 .get_ip = kvm_guest_get_ip, 5791 .handle_intel_pt_intr = NULL, 5792 }; 5793 5794 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5795 { 5796 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5797 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5798 } 5799 void kvm_unregister_perf_callbacks(void) 5800 { 5801 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5802 } 5803 #endif 5804 5805 struct kvm_cpu_compat_check { 5806 void *opaque; 5807 int *ret; 5808 }; 5809 5810 static void check_processor_compat(void *data) 5811 { 5812 struct kvm_cpu_compat_check *c = data; 5813 5814 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5815 } 5816 5817 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5818 struct module *module) 5819 { 5820 struct kvm_cpu_compat_check c; 5821 int r; 5822 int cpu; 5823 5824 r = kvm_arch_init(opaque); 5825 if (r) 5826 goto out_fail; 5827 5828 /* 5829 * kvm_arch_init makes sure there's at most one caller 5830 * for architectures that support multiple implementations, 5831 * like intel and amd on x86. 5832 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5833 * conflicts in case kvm is already setup for another implementation. 5834 */ 5835 r = kvm_irqfd_init(); 5836 if (r) 5837 goto out_irqfd; 5838 5839 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5840 r = -ENOMEM; 5841 goto out_free_0; 5842 } 5843 5844 r = kvm_arch_hardware_setup(opaque); 5845 if (r < 0) 5846 goto out_free_1; 5847 5848 c.ret = &r; 5849 c.opaque = opaque; 5850 for_each_online_cpu(cpu) { 5851 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5852 if (r < 0) 5853 goto out_free_2; 5854 } 5855 5856 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5857 kvm_starting_cpu, kvm_dying_cpu); 5858 if (r) 5859 goto out_free_2; 5860 register_reboot_notifier(&kvm_reboot_notifier); 5861 5862 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5863 if (!vcpu_align) 5864 vcpu_align = __alignof__(struct kvm_vcpu); 5865 kvm_vcpu_cache = 5866 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5867 SLAB_ACCOUNT, 5868 offsetof(struct kvm_vcpu, arch), 5869 offsetofend(struct kvm_vcpu, stats_id) 5870 - offsetof(struct kvm_vcpu, arch), 5871 NULL); 5872 if (!kvm_vcpu_cache) { 5873 r = -ENOMEM; 5874 goto out_free_3; 5875 } 5876 5877 for_each_possible_cpu(cpu) { 5878 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5879 GFP_KERNEL, cpu_to_node(cpu))) { 5880 r = -ENOMEM; 5881 goto out_free_4; 5882 } 5883 } 5884 5885 r = kvm_async_pf_init(); 5886 if (r) 5887 goto out_free_5; 5888 5889 kvm_chardev_ops.owner = module; 5890 5891 r = misc_register(&kvm_dev); 5892 if (r) { 5893 pr_err("kvm: misc device register failed\n"); 5894 goto out_unreg; 5895 } 5896 5897 register_syscore_ops(&kvm_syscore_ops); 5898 5899 kvm_preempt_ops.sched_in = kvm_sched_in; 5900 kvm_preempt_ops.sched_out = kvm_sched_out; 5901 5902 kvm_init_debug(); 5903 5904 r = kvm_vfio_ops_init(); 5905 WARN_ON(r); 5906 5907 return 0; 5908 5909 out_unreg: 5910 kvm_async_pf_deinit(); 5911 out_free_5: 5912 for_each_possible_cpu(cpu) 5913 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5914 out_free_4: 5915 kmem_cache_destroy(kvm_vcpu_cache); 5916 out_free_3: 5917 unregister_reboot_notifier(&kvm_reboot_notifier); 5918 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5919 out_free_2: 5920 kvm_arch_hardware_unsetup(); 5921 out_free_1: 5922 free_cpumask_var(cpus_hardware_enabled); 5923 out_free_0: 5924 kvm_irqfd_exit(); 5925 out_irqfd: 5926 kvm_arch_exit(); 5927 out_fail: 5928 return r; 5929 } 5930 EXPORT_SYMBOL_GPL(kvm_init); 5931 5932 void kvm_exit(void) 5933 { 5934 int cpu; 5935 5936 debugfs_remove_recursive(kvm_debugfs_dir); 5937 misc_deregister(&kvm_dev); 5938 for_each_possible_cpu(cpu) 5939 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5940 kmem_cache_destroy(kvm_vcpu_cache); 5941 kvm_async_pf_deinit(); 5942 unregister_syscore_ops(&kvm_syscore_ops); 5943 unregister_reboot_notifier(&kvm_reboot_notifier); 5944 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5945 on_each_cpu(hardware_disable_nolock, NULL, 1); 5946 kvm_arch_hardware_unsetup(); 5947 kvm_arch_exit(); 5948 kvm_irqfd_exit(); 5949 free_cpumask_var(cpus_hardware_enabled); 5950 kvm_vfio_ops_exit(); 5951 } 5952 EXPORT_SYMBOL_GPL(kvm_exit); 5953 5954 struct kvm_vm_worker_thread_context { 5955 struct kvm *kvm; 5956 struct task_struct *parent; 5957 struct completion init_done; 5958 kvm_vm_thread_fn_t thread_fn; 5959 uintptr_t data; 5960 int err; 5961 }; 5962 5963 static int kvm_vm_worker_thread(void *context) 5964 { 5965 /* 5966 * The init_context is allocated on the stack of the parent thread, so 5967 * we have to locally copy anything that is needed beyond initialization 5968 */ 5969 struct kvm_vm_worker_thread_context *init_context = context; 5970 struct task_struct *parent; 5971 struct kvm *kvm = init_context->kvm; 5972 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5973 uintptr_t data = init_context->data; 5974 int err; 5975 5976 err = kthread_park(current); 5977 /* kthread_park(current) is never supposed to return an error */ 5978 WARN_ON(err != 0); 5979 if (err) 5980 goto init_complete; 5981 5982 err = cgroup_attach_task_all(init_context->parent, current); 5983 if (err) { 5984 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5985 __func__, err); 5986 goto init_complete; 5987 } 5988 5989 set_user_nice(current, task_nice(init_context->parent)); 5990 5991 init_complete: 5992 init_context->err = err; 5993 complete(&init_context->init_done); 5994 init_context = NULL; 5995 5996 if (err) 5997 goto out; 5998 5999 /* Wait to be woken up by the spawner before proceeding. */ 6000 kthread_parkme(); 6001 6002 if (!kthread_should_stop()) 6003 err = thread_fn(kvm, data); 6004 6005 out: 6006 /* 6007 * Move kthread back to its original cgroup to prevent it lingering in 6008 * the cgroup of the VM process, after the latter finishes its 6009 * execution. 6010 * 6011 * kthread_stop() waits on the 'exited' completion condition which is 6012 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6013 * kthread is removed from the cgroup in the cgroup_exit() which is 6014 * called after the exit_mm(). This causes the kthread_stop() to return 6015 * before the kthread actually quits the cgroup. 6016 */ 6017 rcu_read_lock(); 6018 parent = rcu_dereference(current->real_parent); 6019 get_task_struct(parent); 6020 rcu_read_unlock(); 6021 cgroup_attach_task_all(parent, current); 6022 put_task_struct(parent); 6023 6024 return err; 6025 } 6026 6027 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6028 uintptr_t data, const char *name, 6029 struct task_struct **thread_ptr) 6030 { 6031 struct kvm_vm_worker_thread_context init_context = {}; 6032 struct task_struct *thread; 6033 6034 *thread_ptr = NULL; 6035 init_context.kvm = kvm; 6036 init_context.parent = current; 6037 init_context.thread_fn = thread_fn; 6038 init_context.data = data; 6039 init_completion(&init_context.init_done); 6040 6041 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6042 "%s-%d", name, task_pid_nr(current)); 6043 if (IS_ERR(thread)) 6044 return PTR_ERR(thread); 6045 6046 /* kthread_run is never supposed to return NULL */ 6047 WARN_ON(thread == NULL); 6048 6049 wait_for_completion(&init_context.init_done); 6050 6051 if (!init_context.err) 6052 *thread_ptr = thread; 6053 6054 return init_context.err; 6055 } 6056