xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 79f08d9e)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 
102 static bool largepages_enabled = true;
103 
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 	if (pfn_valid(pfn))
107 		return PageReserved(pfn_to_page(pfn));
108 
109 	return true;
110 }
111 
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117 	int cpu;
118 
119 	if (mutex_lock_killable(&vcpu->mutex))
120 		return -EINTR;
121 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122 		/* The thread running this VCPU changed. */
123 		struct pid *oldpid = vcpu->pid;
124 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125 		rcu_assign_pointer(vcpu->pid, newpid);
126 		synchronize_rcu();
127 		put_pid(oldpid);
128 	}
129 	cpu = get_cpu();
130 	preempt_notifier_register(&vcpu->preempt_notifier);
131 	kvm_arch_vcpu_load(vcpu, cpu);
132 	put_cpu();
133 	return 0;
134 }
135 
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138 	preempt_disable();
139 	kvm_arch_vcpu_put(vcpu);
140 	preempt_notifier_unregister(&vcpu->preempt_notifier);
141 	preempt_enable();
142 	mutex_unlock(&vcpu->mutex);
143 }
144 
145 static void ack_flush(void *_completed)
146 {
147 }
148 
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151 	int i, cpu, me;
152 	cpumask_var_t cpus;
153 	bool called = true;
154 	struct kvm_vcpu *vcpu;
155 
156 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157 
158 	me = get_cpu();
159 	kvm_for_each_vcpu(i, vcpu, kvm) {
160 		kvm_make_request(req, vcpu);
161 		cpu = vcpu->cpu;
162 
163 		/* Set ->requests bit before we read ->mode */
164 		smp_mb();
165 
166 		if (cpus != NULL && cpu != -1 && cpu != me &&
167 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168 			cpumask_set_cpu(cpu, cpus);
169 	}
170 	if (unlikely(cpus == NULL))
171 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172 	else if (!cpumask_empty(cpus))
173 		smp_call_function_many(cpus, ack_flush, NULL, 1);
174 	else
175 		called = false;
176 	put_cpu();
177 	free_cpumask_var(cpus);
178 	return called;
179 }
180 
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183 	long dirty_count = kvm->tlbs_dirty;
184 
185 	smp_mb();
186 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187 		++kvm->stat.remote_tlb_flush;
188 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
191 
192 void kvm_reload_remote_mmus(struct kvm *kvm)
193 {
194 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
195 }
196 
197 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
198 {
199 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
200 }
201 
202 void kvm_make_scan_ioapic_request(struct kvm *kvm)
203 {
204 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
205 }
206 
207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
208 {
209 	struct page *page;
210 	int r;
211 
212 	mutex_init(&vcpu->mutex);
213 	vcpu->cpu = -1;
214 	vcpu->kvm = kvm;
215 	vcpu->vcpu_id = id;
216 	vcpu->pid = NULL;
217 	init_waitqueue_head(&vcpu->wq);
218 	kvm_async_pf_vcpu_init(vcpu);
219 
220 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
221 	if (!page) {
222 		r = -ENOMEM;
223 		goto fail;
224 	}
225 	vcpu->run = page_address(page);
226 
227 	kvm_vcpu_set_in_spin_loop(vcpu, false);
228 	kvm_vcpu_set_dy_eligible(vcpu, false);
229 	vcpu->preempted = false;
230 
231 	r = kvm_arch_vcpu_init(vcpu);
232 	if (r < 0)
233 		goto fail_free_run;
234 	return 0;
235 
236 fail_free_run:
237 	free_page((unsigned long)vcpu->run);
238 fail:
239 	return r;
240 }
241 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
242 
243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
244 {
245 	put_pid(vcpu->pid);
246 	kvm_arch_vcpu_uninit(vcpu);
247 	free_page((unsigned long)vcpu->run);
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
250 
251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
253 {
254 	return container_of(mn, struct kvm, mmu_notifier);
255 }
256 
257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
258 					     struct mm_struct *mm,
259 					     unsigned long address)
260 {
261 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
262 	int need_tlb_flush, idx;
263 
264 	/*
265 	 * When ->invalidate_page runs, the linux pte has been zapped
266 	 * already but the page is still allocated until
267 	 * ->invalidate_page returns. So if we increase the sequence
268 	 * here the kvm page fault will notice if the spte can't be
269 	 * established because the page is going to be freed. If
270 	 * instead the kvm page fault establishes the spte before
271 	 * ->invalidate_page runs, kvm_unmap_hva will release it
272 	 * before returning.
273 	 *
274 	 * The sequence increase only need to be seen at spin_unlock
275 	 * time, and not at spin_lock time.
276 	 *
277 	 * Increasing the sequence after the spin_unlock would be
278 	 * unsafe because the kvm page fault could then establish the
279 	 * pte after kvm_unmap_hva returned, without noticing the page
280 	 * is going to be freed.
281 	 */
282 	idx = srcu_read_lock(&kvm->srcu);
283 	spin_lock(&kvm->mmu_lock);
284 
285 	kvm->mmu_notifier_seq++;
286 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
287 	/* we've to flush the tlb before the pages can be freed */
288 	if (need_tlb_flush)
289 		kvm_flush_remote_tlbs(kvm);
290 
291 	spin_unlock(&kvm->mmu_lock);
292 	srcu_read_unlock(&kvm->srcu, idx);
293 }
294 
295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
296 					struct mm_struct *mm,
297 					unsigned long address,
298 					pte_t pte)
299 {
300 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
301 	int idx;
302 
303 	idx = srcu_read_lock(&kvm->srcu);
304 	spin_lock(&kvm->mmu_lock);
305 	kvm->mmu_notifier_seq++;
306 	kvm_set_spte_hva(kvm, address, pte);
307 	spin_unlock(&kvm->mmu_lock);
308 	srcu_read_unlock(&kvm->srcu, idx);
309 }
310 
311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
312 						    struct mm_struct *mm,
313 						    unsigned long start,
314 						    unsigned long end)
315 {
316 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 	int need_tlb_flush = 0, idx;
318 
319 	idx = srcu_read_lock(&kvm->srcu);
320 	spin_lock(&kvm->mmu_lock);
321 	/*
322 	 * The count increase must become visible at unlock time as no
323 	 * spte can be established without taking the mmu_lock and
324 	 * count is also read inside the mmu_lock critical section.
325 	 */
326 	kvm->mmu_notifier_count++;
327 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
328 	need_tlb_flush |= kvm->tlbs_dirty;
329 	/* we've to flush the tlb before the pages can be freed */
330 	if (need_tlb_flush)
331 		kvm_flush_remote_tlbs(kvm);
332 
333 	spin_unlock(&kvm->mmu_lock);
334 	srcu_read_unlock(&kvm->srcu, idx);
335 }
336 
337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
338 						  struct mm_struct *mm,
339 						  unsigned long start,
340 						  unsigned long end)
341 {
342 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
343 
344 	spin_lock(&kvm->mmu_lock);
345 	/*
346 	 * This sequence increase will notify the kvm page fault that
347 	 * the page that is going to be mapped in the spte could have
348 	 * been freed.
349 	 */
350 	kvm->mmu_notifier_seq++;
351 	smp_wmb();
352 	/*
353 	 * The above sequence increase must be visible before the
354 	 * below count decrease, which is ensured by the smp_wmb above
355 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
356 	 */
357 	kvm->mmu_notifier_count--;
358 	spin_unlock(&kvm->mmu_lock);
359 
360 	BUG_ON(kvm->mmu_notifier_count < 0);
361 }
362 
363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
364 					      struct mm_struct *mm,
365 					      unsigned long address)
366 {
367 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 	int young, idx;
369 
370 	idx = srcu_read_lock(&kvm->srcu);
371 	spin_lock(&kvm->mmu_lock);
372 
373 	young = kvm_age_hva(kvm, address);
374 	if (young)
375 		kvm_flush_remote_tlbs(kvm);
376 
377 	spin_unlock(&kvm->mmu_lock);
378 	srcu_read_unlock(&kvm->srcu, idx);
379 
380 	return young;
381 }
382 
383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
384 				       struct mm_struct *mm,
385 				       unsigned long address)
386 {
387 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 	int young, idx;
389 
390 	idx = srcu_read_lock(&kvm->srcu);
391 	spin_lock(&kvm->mmu_lock);
392 	young = kvm_test_age_hva(kvm, address);
393 	spin_unlock(&kvm->mmu_lock);
394 	srcu_read_unlock(&kvm->srcu, idx);
395 
396 	return young;
397 }
398 
399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
400 				     struct mm_struct *mm)
401 {
402 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 	int idx;
404 
405 	idx = srcu_read_lock(&kvm->srcu);
406 	kvm_arch_flush_shadow_all(kvm);
407 	srcu_read_unlock(&kvm->srcu, idx);
408 }
409 
410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
411 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
412 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
413 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
414 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
415 	.test_young		= kvm_mmu_notifier_test_young,
416 	.change_pte		= kvm_mmu_notifier_change_pte,
417 	.release		= kvm_mmu_notifier_release,
418 };
419 
420 static int kvm_init_mmu_notifier(struct kvm *kvm)
421 {
422 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
423 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
424 }
425 
426 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427 
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 	return 0;
431 }
432 
433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434 
435 static void kvm_init_memslots_id(struct kvm *kvm)
436 {
437 	int i;
438 	struct kvm_memslots *slots = kvm->memslots;
439 
440 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
441 		slots->id_to_index[i] = slots->memslots[i].id = i;
442 }
443 
444 static struct kvm *kvm_create_vm(unsigned long type)
445 {
446 	int r, i;
447 	struct kvm *kvm = kvm_arch_alloc_vm();
448 
449 	if (!kvm)
450 		return ERR_PTR(-ENOMEM);
451 
452 	r = kvm_arch_init_vm(kvm, type);
453 	if (r)
454 		goto out_err_nodisable;
455 
456 	r = hardware_enable_all();
457 	if (r)
458 		goto out_err_nodisable;
459 
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
464 
465 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
466 
467 	r = -ENOMEM;
468 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
469 	if (!kvm->memslots)
470 		goto out_err_nosrcu;
471 	kvm_init_memslots_id(kvm);
472 	if (init_srcu_struct(&kvm->srcu))
473 		goto out_err_nosrcu;
474 	for (i = 0; i < KVM_NR_BUSES; i++) {
475 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
476 					GFP_KERNEL);
477 		if (!kvm->buses[i])
478 			goto out_err;
479 	}
480 
481 	spin_lock_init(&kvm->mmu_lock);
482 	kvm->mm = current->mm;
483 	atomic_inc(&kvm->mm->mm_count);
484 	kvm_eventfd_init(kvm);
485 	mutex_init(&kvm->lock);
486 	mutex_init(&kvm->irq_lock);
487 	mutex_init(&kvm->slots_lock);
488 	atomic_set(&kvm->users_count, 1);
489 	INIT_LIST_HEAD(&kvm->devices);
490 
491 	r = kvm_init_mmu_notifier(kvm);
492 	if (r)
493 		goto out_err;
494 
495 	spin_lock(&kvm_lock);
496 	list_add(&kvm->vm_list, &vm_list);
497 	spin_unlock(&kvm_lock);
498 
499 	return kvm;
500 
501 out_err:
502 	cleanup_srcu_struct(&kvm->srcu);
503 out_err_nosrcu:
504 	hardware_disable_all();
505 out_err_nodisable:
506 	for (i = 0; i < KVM_NR_BUSES; i++)
507 		kfree(kvm->buses[i]);
508 	kfree(kvm->memslots);
509 	kvm_arch_free_vm(kvm);
510 	return ERR_PTR(r);
511 }
512 
513 /*
514  * Avoid using vmalloc for a small buffer.
515  * Should not be used when the size is statically known.
516  */
517 void *kvm_kvzalloc(unsigned long size)
518 {
519 	if (size > PAGE_SIZE)
520 		return vzalloc(size);
521 	else
522 		return kzalloc(size, GFP_KERNEL);
523 }
524 
525 void kvm_kvfree(const void *addr)
526 {
527 	if (is_vmalloc_addr(addr))
528 		vfree(addr);
529 	else
530 		kfree(addr);
531 }
532 
533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
534 {
535 	if (!memslot->dirty_bitmap)
536 		return;
537 
538 	kvm_kvfree(memslot->dirty_bitmap);
539 	memslot->dirty_bitmap = NULL;
540 }
541 
542 /*
543  * Free any memory in @free but not in @dont.
544  */
545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
546 				  struct kvm_memory_slot *dont)
547 {
548 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
549 		kvm_destroy_dirty_bitmap(free);
550 
551 	kvm_arch_free_memslot(kvm, free, dont);
552 
553 	free->npages = 0;
554 }
555 
556 void kvm_free_physmem(struct kvm *kvm)
557 {
558 	struct kvm_memslots *slots = kvm->memslots;
559 	struct kvm_memory_slot *memslot;
560 
561 	kvm_for_each_memslot(memslot, slots)
562 		kvm_free_physmem_slot(kvm, memslot, NULL);
563 
564 	kfree(kvm->memslots);
565 }
566 
567 static void kvm_destroy_devices(struct kvm *kvm)
568 {
569 	struct list_head *node, *tmp;
570 
571 	list_for_each_safe(node, tmp, &kvm->devices) {
572 		struct kvm_device *dev =
573 			list_entry(node, struct kvm_device, vm_node);
574 
575 		list_del(node);
576 		dev->ops->destroy(dev);
577 	}
578 }
579 
580 static void kvm_destroy_vm(struct kvm *kvm)
581 {
582 	int i;
583 	struct mm_struct *mm = kvm->mm;
584 
585 	kvm_arch_sync_events(kvm);
586 	spin_lock(&kvm_lock);
587 	list_del(&kvm->vm_list);
588 	spin_unlock(&kvm_lock);
589 	kvm_free_irq_routing(kvm);
590 	for (i = 0; i < KVM_NR_BUSES; i++)
591 		kvm_io_bus_destroy(kvm->buses[i]);
592 	kvm_coalesced_mmio_free(kvm);
593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
595 #else
596 	kvm_arch_flush_shadow_all(kvm);
597 #endif
598 	kvm_arch_destroy_vm(kvm);
599 	kvm_destroy_devices(kvm);
600 	kvm_free_physmem(kvm);
601 	cleanup_srcu_struct(&kvm->srcu);
602 	kvm_arch_free_vm(kvm);
603 	hardware_disable_all();
604 	mmdrop(mm);
605 }
606 
607 void kvm_get_kvm(struct kvm *kvm)
608 {
609 	atomic_inc(&kvm->users_count);
610 }
611 EXPORT_SYMBOL_GPL(kvm_get_kvm);
612 
613 void kvm_put_kvm(struct kvm *kvm)
614 {
615 	if (atomic_dec_and_test(&kvm->users_count))
616 		kvm_destroy_vm(kvm);
617 }
618 EXPORT_SYMBOL_GPL(kvm_put_kvm);
619 
620 
621 static int kvm_vm_release(struct inode *inode, struct file *filp)
622 {
623 	struct kvm *kvm = filp->private_data;
624 
625 	kvm_irqfd_release(kvm);
626 
627 	kvm_put_kvm(kvm);
628 	return 0;
629 }
630 
631 /*
632  * Allocation size is twice as large as the actual dirty bitmap size.
633  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634  */
635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 #ifndef CONFIG_S390
638 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
639 
640 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
641 	if (!memslot->dirty_bitmap)
642 		return -ENOMEM;
643 
644 #endif /* !CONFIG_S390 */
645 	return 0;
646 }
647 
648 static int cmp_memslot(const void *slot1, const void *slot2)
649 {
650 	struct kvm_memory_slot *s1, *s2;
651 
652 	s1 = (struct kvm_memory_slot *)slot1;
653 	s2 = (struct kvm_memory_slot *)slot2;
654 
655 	if (s1->npages < s2->npages)
656 		return 1;
657 	if (s1->npages > s2->npages)
658 		return -1;
659 
660 	return 0;
661 }
662 
663 /*
664  * Sort the memslots base on its size, so the larger slots
665  * will get better fit.
666  */
667 static void sort_memslots(struct kvm_memslots *slots)
668 {
669 	int i;
670 
671 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
672 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
673 
674 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
675 		slots->id_to_index[slots->memslots[i].id] = i;
676 }
677 
678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
679 		     u64 last_generation)
680 {
681 	if (new) {
682 		int id = new->id;
683 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
684 		unsigned long npages = old->npages;
685 
686 		*old = *new;
687 		if (new->npages != npages)
688 			sort_memslots(slots);
689 	}
690 
691 	slots->generation = last_generation + 1;
692 }
693 
694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
695 {
696 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
697 
698 #ifdef KVM_CAP_READONLY_MEM
699 	valid_flags |= KVM_MEM_READONLY;
700 #endif
701 
702 	if (mem->flags & ~valid_flags)
703 		return -EINVAL;
704 
705 	return 0;
706 }
707 
708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
709 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
710 {
711 	struct kvm_memslots *old_memslots = kvm->memslots;
712 
713 	update_memslots(slots, new, kvm->memslots->generation);
714 	rcu_assign_pointer(kvm->memslots, slots);
715 	synchronize_srcu_expedited(&kvm->srcu);
716 
717 	kvm_arch_memslots_updated(kvm);
718 
719 	return old_memslots;
720 }
721 
722 /*
723  * Allocate some memory and give it an address in the guest physical address
724  * space.
725  *
726  * Discontiguous memory is allowed, mostly for framebuffers.
727  *
728  * Must be called holding mmap_sem for write.
729  */
730 int __kvm_set_memory_region(struct kvm *kvm,
731 			    struct kvm_userspace_memory_region *mem)
732 {
733 	int r;
734 	gfn_t base_gfn;
735 	unsigned long npages;
736 	struct kvm_memory_slot *slot;
737 	struct kvm_memory_slot old, new;
738 	struct kvm_memslots *slots = NULL, *old_memslots;
739 	enum kvm_mr_change change;
740 
741 	r = check_memory_region_flags(mem);
742 	if (r)
743 		goto out;
744 
745 	r = -EINVAL;
746 	/* General sanity checks */
747 	if (mem->memory_size & (PAGE_SIZE - 1))
748 		goto out;
749 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 		goto out;
751 	/* We can read the guest memory with __xxx_user() later on. */
752 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 	     !access_ok(VERIFY_WRITE,
755 			(void __user *)(unsigned long)mem->userspace_addr,
756 			mem->memory_size)))
757 		goto out;
758 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 		goto out;
760 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 		goto out;
762 
763 	slot = id_to_memslot(kvm->memslots, mem->slot);
764 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 	npages = mem->memory_size >> PAGE_SHIFT;
766 
767 	r = -EINVAL;
768 	if (npages > KVM_MEM_MAX_NR_PAGES)
769 		goto out;
770 
771 	if (!npages)
772 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773 
774 	new = old = *slot;
775 
776 	new.id = mem->slot;
777 	new.base_gfn = base_gfn;
778 	new.npages = npages;
779 	new.flags = mem->flags;
780 
781 	r = -EINVAL;
782 	if (npages) {
783 		if (!old.npages)
784 			change = KVM_MR_CREATE;
785 		else { /* Modify an existing slot. */
786 			if ((mem->userspace_addr != old.userspace_addr) ||
787 			    (npages != old.npages) ||
788 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 				goto out;
790 
791 			if (base_gfn != old.base_gfn)
792 				change = KVM_MR_MOVE;
793 			else if (new.flags != old.flags)
794 				change = KVM_MR_FLAGS_ONLY;
795 			else { /* Nothing to change. */
796 				r = 0;
797 				goto out;
798 			}
799 		}
800 	} else if (old.npages) {
801 		change = KVM_MR_DELETE;
802 	} else /* Modify a non-existent slot: disallowed. */
803 		goto out;
804 
805 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 		/* Check for overlaps */
807 		r = -EEXIST;
808 		kvm_for_each_memslot(slot, kvm->memslots) {
809 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 			    (slot->id == mem->slot))
811 				continue;
812 			if (!((base_gfn + npages <= slot->base_gfn) ||
813 			      (base_gfn >= slot->base_gfn + slot->npages)))
814 				goto out;
815 		}
816 	}
817 
818 	/* Free page dirty bitmap if unneeded */
819 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 		new.dirty_bitmap = NULL;
821 
822 	r = -ENOMEM;
823 	if (change == KVM_MR_CREATE) {
824 		new.userspace_addr = mem->userspace_addr;
825 
826 		if (kvm_arch_create_memslot(kvm, &new, npages))
827 			goto out_free;
828 	}
829 
830 	/* Allocate page dirty bitmap if needed */
831 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 		if (kvm_create_dirty_bitmap(&new) < 0)
833 			goto out_free;
834 	}
835 
836 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 		r = -ENOMEM;
838 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 				GFP_KERNEL);
840 		if (!slots)
841 			goto out_free;
842 		slot = id_to_memslot(slots, mem->slot);
843 		slot->flags |= KVM_MEMSLOT_INVALID;
844 
845 		old_memslots = install_new_memslots(kvm, slots, NULL);
846 
847 		/* slot was deleted or moved, clear iommu mapping */
848 		kvm_iommu_unmap_pages(kvm, &old);
849 		/* From this point no new shadow pages pointing to a deleted,
850 		 * or moved, memslot will be created.
851 		 *
852 		 * validation of sp->gfn happens in:
853 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
855 		 */
856 		kvm_arch_flush_shadow_memslot(kvm, slot);
857 		slots = old_memslots;
858 	}
859 
860 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 	if (r)
862 		goto out_slots;
863 
864 	r = -ENOMEM;
865 	/*
866 	 * We can re-use the old_memslots from above, the only difference
867 	 * from the currently installed memslots is the invalid flag.  This
868 	 * will get overwritten by update_memslots anyway.
869 	 */
870 	if (!slots) {
871 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 				GFP_KERNEL);
873 		if (!slots)
874 			goto out_free;
875 	}
876 
877 	/* actual memory is freed via old in kvm_free_physmem_slot below */
878 	if (change == KVM_MR_DELETE) {
879 		new.dirty_bitmap = NULL;
880 		memset(&new.arch, 0, sizeof(new.arch));
881 	}
882 
883 	old_memslots = install_new_memslots(kvm, slots, &new);
884 
885 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
886 
887 	kvm_free_physmem_slot(kvm, &old, &new);
888 	kfree(old_memslots);
889 
890 	/*
891 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
892 	 * un-mapped and re-mapped if their base changes.  Since base change
893 	 * unmapping is handled above with slot deletion, mapping alone is
894 	 * needed here.  Anything else the iommu might care about for existing
895 	 * slots (size changes, userspace addr changes and read-only flag
896 	 * changes) is disallowed above, so any other attribute changes getting
897 	 * here can be skipped.
898 	 */
899 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
900 		r = kvm_iommu_map_pages(kvm, &new);
901 		return r;
902 	}
903 
904 	return 0;
905 
906 out_slots:
907 	kfree(slots);
908 out_free:
909 	kvm_free_physmem_slot(kvm, &new, &old);
910 out:
911 	return r;
912 }
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
914 
915 int kvm_set_memory_region(struct kvm *kvm,
916 			  struct kvm_userspace_memory_region *mem)
917 {
918 	int r;
919 
920 	mutex_lock(&kvm->slots_lock);
921 	r = __kvm_set_memory_region(kvm, mem);
922 	mutex_unlock(&kvm->slots_lock);
923 	return r;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
926 
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928 				   struct kvm_userspace_memory_region *mem)
929 {
930 	if (mem->slot >= KVM_USER_MEM_SLOTS)
931 		return -EINVAL;
932 	return kvm_set_memory_region(kvm, mem);
933 }
934 
935 int kvm_get_dirty_log(struct kvm *kvm,
936 			struct kvm_dirty_log *log, int *is_dirty)
937 {
938 	struct kvm_memory_slot *memslot;
939 	int r, i;
940 	unsigned long n;
941 	unsigned long any = 0;
942 
943 	r = -EINVAL;
944 	if (log->slot >= KVM_USER_MEM_SLOTS)
945 		goto out;
946 
947 	memslot = id_to_memslot(kvm->memslots, log->slot);
948 	r = -ENOENT;
949 	if (!memslot->dirty_bitmap)
950 		goto out;
951 
952 	n = kvm_dirty_bitmap_bytes(memslot);
953 
954 	for (i = 0; !any && i < n/sizeof(long); ++i)
955 		any = memslot->dirty_bitmap[i];
956 
957 	r = -EFAULT;
958 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959 		goto out;
960 
961 	if (any)
962 		*is_dirty = 1;
963 
964 	r = 0;
965 out:
966 	return r;
967 }
968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
969 
970 bool kvm_largepages_enabled(void)
971 {
972 	return largepages_enabled;
973 }
974 
975 void kvm_disable_largepages(void)
976 {
977 	largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980 
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986 
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990 
991 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 	      memslot->flags & KVM_MEMSLOT_INVALID)
993 		return 0;
994 
995 	return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998 
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001 	struct vm_area_struct *vma;
1002 	unsigned long addr, size;
1003 
1004 	size = PAGE_SIZE;
1005 
1006 	addr = gfn_to_hva(kvm, gfn);
1007 	if (kvm_is_error_hva(addr))
1008 		return PAGE_SIZE;
1009 
1010 	down_read(&current->mm->mmap_sem);
1011 	vma = find_vma(current->mm, addr);
1012 	if (!vma)
1013 		goto out;
1014 
1015 	size = vma_kernel_pagesize(vma);
1016 
1017 out:
1018 	up_read(&current->mm->mmap_sem);
1019 
1020 	return size;
1021 }
1022 
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025 	return slot->flags & KVM_MEM_READONLY;
1026 }
1027 
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 				       gfn_t *nr_pages, bool write)
1030 {
1031 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 		return KVM_HVA_ERR_BAD;
1033 
1034 	if (memslot_is_readonly(slot) && write)
1035 		return KVM_HVA_ERR_RO_BAD;
1036 
1037 	if (nr_pages)
1038 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1039 
1040 	return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042 
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 				     gfn_t *nr_pages)
1045 {
1046 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048 
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 				 gfn_t gfn)
1051 {
1052 	return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055 
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061 
1062 /*
1063  * If writable is set to false, the hva returned by this function is only
1064  * allowed to be read.
1065  */
1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1067 {
1068 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1069 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1070 
1071 	if (!kvm_is_error_hva(hva) && writable)
1072 		*writable = !memslot_is_readonly(slot);
1073 
1074 	return hva;
1075 }
1076 
1077 static int kvm_read_hva(void *data, void __user *hva, int len)
1078 {
1079 	return __copy_from_user(data, hva, len);
1080 }
1081 
1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1083 {
1084 	return __copy_from_user_inatomic(data, hva, len);
1085 }
1086 
1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088 	unsigned long start, int write, struct page **page)
1089 {
1090 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1091 
1092 	if (write)
1093 		flags |= FOLL_WRITE;
1094 
1095 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1096 }
1097 
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1099 {
1100 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1101 
1102 	rc = __get_user_pages(current, current->mm, addr, 1,
1103 			      flags, NULL, NULL, NULL);
1104 	return rc == -EHWPOISON;
1105 }
1106 
1107 /*
1108  * The atomic path to get the writable pfn which will be stored in @pfn,
1109  * true indicates success, otherwise false is returned.
1110  */
1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1112 			    bool write_fault, bool *writable, pfn_t *pfn)
1113 {
1114 	struct page *page[1];
1115 	int npages;
1116 
1117 	if (!(async || atomic))
1118 		return false;
1119 
1120 	/*
1121 	 * Fast pin a writable pfn only if it is a write fault request
1122 	 * or the caller allows to map a writable pfn for a read fault
1123 	 * request.
1124 	 */
1125 	if (!(write_fault || writable))
1126 		return false;
1127 
1128 	npages = __get_user_pages_fast(addr, 1, 1, page);
1129 	if (npages == 1) {
1130 		*pfn = page_to_pfn(page[0]);
1131 
1132 		if (writable)
1133 			*writable = true;
1134 		return true;
1135 	}
1136 
1137 	return false;
1138 }
1139 
1140 /*
1141  * The slow path to get the pfn of the specified host virtual address,
1142  * 1 indicates success, -errno is returned if error is detected.
1143  */
1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1145 			   bool *writable, pfn_t *pfn)
1146 {
1147 	struct page *page[1];
1148 	int npages = 0;
1149 
1150 	might_sleep();
1151 
1152 	if (writable)
1153 		*writable = write_fault;
1154 
1155 	if (async) {
1156 		down_read(&current->mm->mmap_sem);
1157 		npages = get_user_page_nowait(current, current->mm,
1158 					      addr, write_fault, page);
1159 		up_read(&current->mm->mmap_sem);
1160 	} else
1161 		npages = get_user_pages_fast(addr, 1, write_fault,
1162 					     page);
1163 	if (npages != 1)
1164 		return npages;
1165 
1166 	/* map read fault as writable if possible */
1167 	if (unlikely(!write_fault) && writable) {
1168 		struct page *wpage[1];
1169 
1170 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1171 		if (npages == 1) {
1172 			*writable = true;
1173 			put_page(page[0]);
1174 			page[0] = wpage[0];
1175 		}
1176 
1177 		npages = 1;
1178 	}
1179 	*pfn = page_to_pfn(page[0]);
1180 	return npages;
1181 }
1182 
1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1184 {
1185 	if (unlikely(!(vma->vm_flags & VM_READ)))
1186 		return false;
1187 
1188 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1189 		return false;
1190 
1191 	return true;
1192 }
1193 
1194 /*
1195  * Pin guest page in memory and return its pfn.
1196  * @addr: host virtual address which maps memory to the guest
1197  * @atomic: whether this function can sleep
1198  * @async: whether this function need to wait IO complete if the
1199  *         host page is not in the memory
1200  * @write_fault: whether we should get a writable host page
1201  * @writable: whether it allows to map a writable host page for !@write_fault
1202  *
1203  * The function will map a writable host page for these two cases:
1204  * 1): @write_fault = true
1205  * 2): @write_fault = false && @writable, @writable will tell the caller
1206  *     whether the mapping is writable.
1207  */
1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1209 			bool write_fault, bool *writable)
1210 {
1211 	struct vm_area_struct *vma;
1212 	pfn_t pfn = 0;
1213 	int npages;
1214 
1215 	/* we can do it either atomically or asynchronously, not both */
1216 	BUG_ON(atomic && async);
1217 
1218 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1219 		return pfn;
1220 
1221 	if (atomic)
1222 		return KVM_PFN_ERR_FAULT;
1223 
1224 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1225 	if (npages == 1)
1226 		return pfn;
1227 
1228 	down_read(&current->mm->mmap_sem);
1229 	if (npages == -EHWPOISON ||
1230 	      (!async && check_user_page_hwpoison(addr))) {
1231 		pfn = KVM_PFN_ERR_HWPOISON;
1232 		goto exit;
1233 	}
1234 
1235 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1236 
1237 	if (vma == NULL)
1238 		pfn = KVM_PFN_ERR_FAULT;
1239 	else if ((vma->vm_flags & VM_PFNMAP)) {
1240 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1241 			vma->vm_pgoff;
1242 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1243 	} else {
1244 		if (async && vma_is_valid(vma, write_fault))
1245 			*async = true;
1246 		pfn = KVM_PFN_ERR_FAULT;
1247 	}
1248 exit:
1249 	up_read(&current->mm->mmap_sem);
1250 	return pfn;
1251 }
1252 
1253 static pfn_t
1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1255 		     bool *async, bool write_fault, bool *writable)
1256 {
1257 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1258 
1259 	if (addr == KVM_HVA_ERR_RO_BAD)
1260 		return KVM_PFN_ERR_RO_FAULT;
1261 
1262 	if (kvm_is_error_hva(addr))
1263 		return KVM_PFN_NOSLOT;
1264 
1265 	/* Do not map writable pfn in the readonly memslot. */
1266 	if (writable && memslot_is_readonly(slot)) {
1267 		*writable = false;
1268 		writable = NULL;
1269 	}
1270 
1271 	return hva_to_pfn(addr, atomic, async, write_fault,
1272 			  writable);
1273 }
1274 
1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1276 			  bool write_fault, bool *writable)
1277 {
1278 	struct kvm_memory_slot *slot;
1279 
1280 	if (async)
1281 		*async = false;
1282 
1283 	slot = gfn_to_memslot(kvm, gfn);
1284 
1285 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1286 				    writable);
1287 }
1288 
1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1290 {
1291 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1294 
1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1296 		       bool write_fault, bool *writable)
1297 {
1298 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1301 
1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1303 {
1304 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1307 
1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1309 		      bool *writable)
1310 {
1311 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1314 
1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1316 {
1317 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1318 }
1319 
1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1321 {
1322 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1323 }
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1325 
1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1327 								  int nr_pages)
1328 {
1329 	unsigned long addr;
1330 	gfn_t entry;
1331 
1332 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1333 	if (kvm_is_error_hva(addr))
1334 		return -1;
1335 
1336 	if (entry < nr_pages)
1337 		return 0;
1338 
1339 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1340 }
1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1342 
1343 static struct page *kvm_pfn_to_page(pfn_t pfn)
1344 {
1345 	if (is_error_noslot_pfn(pfn))
1346 		return KVM_ERR_PTR_BAD_PAGE;
1347 
1348 	if (kvm_is_mmio_pfn(pfn)) {
1349 		WARN_ON(1);
1350 		return KVM_ERR_PTR_BAD_PAGE;
1351 	}
1352 
1353 	return pfn_to_page(pfn);
1354 }
1355 
1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1357 {
1358 	pfn_t pfn;
1359 
1360 	pfn = gfn_to_pfn(kvm, gfn);
1361 
1362 	return kvm_pfn_to_page(pfn);
1363 }
1364 
1365 EXPORT_SYMBOL_GPL(gfn_to_page);
1366 
1367 void kvm_release_page_clean(struct page *page)
1368 {
1369 	WARN_ON(is_error_page(page));
1370 
1371 	kvm_release_pfn_clean(page_to_pfn(page));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1374 
1375 void kvm_release_pfn_clean(pfn_t pfn)
1376 {
1377 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1378 		put_page(pfn_to_page(pfn));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1381 
1382 void kvm_release_page_dirty(struct page *page)
1383 {
1384 	WARN_ON(is_error_page(page));
1385 
1386 	kvm_release_pfn_dirty(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1389 
1390 void kvm_release_pfn_dirty(pfn_t pfn)
1391 {
1392 	kvm_set_pfn_dirty(pfn);
1393 	kvm_release_pfn_clean(pfn);
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1396 
1397 void kvm_set_page_dirty(struct page *page)
1398 {
1399 	kvm_set_pfn_dirty(page_to_pfn(page));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1402 
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1404 {
1405 	if (!kvm_is_mmio_pfn(pfn)) {
1406 		struct page *page = pfn_to_page(pfn);
1407 		if (!PageReserved(page))
1408 			SetPageDirty(page);
1409 	}
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1412 
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1414 {
1415 	if (!kvm_is_mmio_pfn(pfn))
1416 		mark_page_accessed(pfn_to_page(pfn));
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1419 
1420 void kvm_get_pfn(pfn_t pfn)
1421 {
1422 	if (!kvm_is_mmio_pfn(pfn))
1423 		get_page(pfn_to_page(pfn));
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1426 
1427 static int next_segment(unsigned long len, int offset)
1428 {
1429 	if (len > PAGE_SIZE - offset)
1430 		return PAGE_SIZE - offset;
1431 	else
1432 		return len;
1433 }
1434 
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436 			int len)
1437 {
1438 	int r;
1439 	unsigned long addr;
1440 
1441 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 	if (kvm_is_error_hva(addr))
1443 		return -EFAULT;
1444 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445 	if (r)
1446 		return -EFAULT;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1450 
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1452 {
1453 	gfn_t gfn = gpa >> PAGE_SHIFT;
1454 	int seg;
1455 	int offset = offset_in_page(gpa);
1456 	int ret;
1457 
1458 	while ((seg = next_segment(len, offset)) != 0) {
1459 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460 		if (ret < 0)
1461 			return ret;
1462 		offset = 0;
1463 		len -= seg;
1464 		data += seg;
1465 		++gfn;
1466 	}
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1470 
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472 			  unsigned long len)
1473 {
1474 	int r;
1475 	unsigned long addr;
1476 	gfn_t gfn = gpa >> PAGE_SHIFT;
1477 	int offset = offset_in_page(gpa);
1478 
1479 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 	if (kvm_is_error_hva(addr))
1481 		return -EFAULT;
1482 	pagefault_disable();
1483 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484 	pagefault_enable();
1485 	if (r)
1486 		return -EFAULT;
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1490 
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 			 int offset, int len)
1493 {
1494 	int r;
1495 	unsigned long addr;
1496 
1497 	addr = gfn_to_hva(kvm, gfn);
1498 	if (kvm_is_error_hva(addr))
1499 		return -EFAULT;
1500 	r = __copy_to_user((void __user *)addr + offset, data, len);
1501 	if (r)
1502 		return -EFAULT;
1503 	mark_page_dirty(kvm, gfn);
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1507 
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509 		    unsigned long len)
1510 {
1511 	gfn_t gfn = gpa >> PAGE_SHIFT;
1512 	int seg;
1513 	int offset = offset_in_page(gpa);
1514 	int ret;
1515 
1516 	while ((seg = next_segment(len, offset)) != 0) {
1517 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518 		if (ret < 0)
1519 			return ret;
1520 		offset = 0;
1521 		len -= seg;
1522 		data += seg;
1523 		++gfn;
1524 	}
1525 	return 0;
1526 }
1527 
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 			      gpa_t gpa, unsigned long len)
1530 {
1531 	struct kvm_memslots *slots = kvm_memslots(kvm);
1532 	int offset = offset_in_page(gpa);
1533 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 	gfn_t nr_pages_avail;
1537 
1538 	ghc->gpa = gpa;
1539 	ghc->generation = slots->generation;
1540 	ghc->len = len;
1541 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 		ghc->hva += offset;
1545 	} else {
1546 		/*
1547 		 * If the requested region crosses two memslots, we still
1548 		 * verify that the entire region is valid here.
1549 		 */
1550 		while (start_gfn <= end_gfn) {
1551 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553 						   &nr_pages_avail);
1554 			if (kvm_is_error_hva(ghc->hva))
1555 				return -EFAULT;
1556 			start_gfn += nr_pages_avail;
1557 		}
1558 		/* Use the slow path for cross page reads and writes. */
1559 		ghc->memslot = NULL;
1560 	}
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1564 
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 			   void *data, unsigned long len)
1567 {
1568 	struct kvm_memslots *slots = kvm_memslots(kvm);
1569 	int r;
1570 
1571 	BUG_ON(len > ghc->len);
1572 
1573 	if (slots->generation != ghc->generation)
1574 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1575 
1576 	if (unlikely(!ghc->memslot))
1577 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1578 
1579 	if (kvm_is_error_hva(ghc->hva))
1580 		return -EFAULT;
1581 
1582 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1583 	if (r)
1584 		return -EFAULT;
1585 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1590 
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 			   void *data, unsigned long len)
1593 {
1594 	struct kvm_memslots *slots = kvm_memslots(kvm);
1595 	int r;
1596 
1597 	BUG_ON(len > ghc->len);
1598 
1599 	if (slots->generation != ghc->generation)
1600 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1601 
1602 	if (unlikely(!ghc->memslot))
1603 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1604 
1605 	if (kvm_is_error_hva(ghc->hva))
1606 		return -EFAULT;
1607 
1608 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 	if (r)
1610 		return -EFAULT;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615 
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1619 
1620 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623 
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626 	gfn_t gfn = gpa >> PAGE_SHIFT;
1627 	int seg;
1628 	int offset = offset_in_page(gpa);
1629 	int ret;
1630 
1631         while ((seg = next_segment(len, offset)) != 0) {
1632 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633 		if (ret < 0)
1634 			return ret;
1635 		offset = 0;
1636 		len -= seg;
1637 		++gfn;
1638 	}
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642 
1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1644 			     gfn_t gfn)
1645 {
1646 	if (memslot && memslot->dirty_bitmap) {
1647 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1648 
1649 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1650 	}
1651 }
1652 
1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1654 {
1655 	struct kvm_memory_slot *memslot;
1656 
1657 	memslot = gfn_to_memslot(kvm, gfn);
1658 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1659 }
1660 EXPORT_SYMBOL_GPL(mark_page_dirty);
1661 
1662 /*
1663  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1664  */
1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1666 {
1667 	DEFINE_WAIT(wait);
1668 
1669 	for (;;) {
1670 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1671 
1672 		if (kvm_arch_vcpu_runnable(vcpu)) {
1673 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1674 			break;
1675 		}
1676 		if (kvm_cpu_has_pending_timer(vcpu))
1677 			break;
1678 		if (signal_pending(current))
1679 			break;
1680 
1681 		schedule();
1682 	}
1683 
1684 	finish_wait(&vcpu->wq, &wait);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1687 
1688 #ifndef CONFIG_S390
1689 /*
1690  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1691  */
1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 {
1694 	int me;
1695 	int cpu = vcpu->cpu;
1696 	wait_queue_head_t *wqp;
1697 
1698 	wqp = kvm_arch_vcpu_wq(vcpu);
1699 	if (waitqueue_active(wqp)) {
1700 		wake_up_interruptible(wqp);
1701 		++vcpu->stat.halt_wakeup;
1702 	}
1703 
1704 	me = get_cpu();
1705 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1706 		if (kvm_arch_vcpu_should_kick(vcpu))
1707 			smp_send_reschedule(cpu);
1708 	put_cpu();
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1711 #endif /* !CONFIG_S390 */
1712 
1713 void kvm_resched(struct kvm_vcpu *vcpu)
1714 {
1715 	if (!need_resched())
1716 		return;
1717 	cond_resched();
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_resched);
1720 
1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1722 {
1723 	struct pid *pid;
1724 	struct task_struct *task = NULL;
1725 	bool ret = false;
1726 
1727 	rcu_read_lock();
1728 	pid = rcu_dereference(target->pid);
1729 	if (pid)
1730 		task = get_pid_task(target->pid, PIDTYPE_PID);
1731 	rcu_read_unlock();
1732 	if (!task)
1733 		return ret;
1734 	if (task->flags & PF_VCPU) {
1735 		put_task_struct(task);
1736 		return ret;
1737 	}
1738 	ret = yield_to(task, 1);
1739 	put_task_struct(task);
1740 
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1744 
1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1746 /*
1747  * Helper that checks whether a VCPU is eligible for directed yield.
1748  * Most eligible candidate to yield is decided by following heuristics:
1749  *
1750  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1751  *  (preempted lock holder), indicated by @in_spin_loop.
1752  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1753  *
1754  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1755  *  chance last time (mostly it has become eligible now since we have probably
1756  *  yielded to lockholder in last iteration. This is done by toggling
1757  *  @dy_eligible each time a VCPU checked for eligibility.)
1758  *
1759  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1760  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1761  *  burning. Giving priority for a potential lock-holder increases lock
1762  *  progress.
1763  *
1764  *  Since algorithm is based on heuristics, accessing another VCPU data without
1765  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1766  *  and continue with next VCPU and so on.
1767  */
1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1769 {
1770 	bool eligible;
1771 
1772 	eligible = !vcpu->spin_loop.in_spin_loop ||
1773 			(vcpu->spin_loop.in_spin_loop &&
1774 			 vcpu->spin_loop.dy_eligible);
1775 
1776 	if (vcpu->spin_loop.in_spin_loop)
1777 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778 
1779 	return eligible;
1780 }
1781 #endif
1782 
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785 	struct kvm *kvm = me->kvm;
1786 	struct kvm_vcpu *vcpu;
1787 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 	int yielded = 0;
1789 	int try = 3;
1790 	int pass;
1791 	int i;
1792 
1793 	kvm_vcpu_set_in_spin_loop(me, true);
1794 	/*
1795 	 * We boost the priority of a VCPU that is runnable but not
1796 	 * currently running, because it got preempted by something
1797 	 * else and called schedule in __vcpu_run.  Hopefully that
1798 	 * VCPU is holding the lock that we need and will release it.
1799 	 * We approximate round-robin by starting at the last boosted VCPU.
1800 	 */
1801 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802 		kvm_for_each_vcpu(i, vcpu, kvm) {
1803 			if (!pass && i <= last_boosted_vcpu) {
1804 				i = last_boosted_vcpu;
1805 				continue;
1806 			} else if (pass && i > last_boosted_vcpu)
1807 				break;
1808 			if (!ACCESS_ONCE(vcpu->preempted))
1809 				continue;
1810 			if (vcpu == me)
1811 				continue;
1812 			if (waitqueue_active(&vcpu->wq))
1813 				continue;
1814 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815 				continue;
1816 
1817 			yielded = kvm_vcpu_yield_to(vcpu);
1818 			if (yielded > 0) {
1819 				kvm->last_boosted_vcpu = i;
1820 				break;
1821 			} else if (yielded < 0) {
1822 				try--;
1823 				if (!try)
1824 					break;
1825 			}
1826 		}
1827 	}
1828 	kvm_vcpu_set_in_spin_loop(me, false);
1829 
1830 	/* Ensure vcpu is not eligible during next spinloop */
1831 	kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834 
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838 	struct page *page;
1839 
1840 	if (vmf->pgoff == 0)
1841 		page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844 		page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850 	else
1851 		return kvm_arch_vcpu_fault(vcpu, vmf);
1852 	get_page(page);
1853 	vmf->page = page;
1854 	return 0;
1855 }
1856 
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858 	.fault = kvm_vcpu_fault,
1859 };
1860 
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863 	vma->vm_ops = &kvm_vcpu_vm_ops;
1864 	return 0;
1865 }
1866 
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869 	struct kvm_vcpu *vcpu = filp->private_data;
1870 
1871 	kvm_put_kvm(vcpu->kvm);
1872 	return 0;
1873 }
1874 
1875 static struct file_operations kvm_vcpu_fops = {
1876 	.release        = kvm_vcpu_release,
1877 	.unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1880 #endif
1881 	.mmap           = kvm_vcpu_mmap,
1882 	.llseek		= noop_llseek,
1883 };
1884 
1885 /*
1886  * Allocates an inode for the vcpu.
1887  */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892 
1893 /*
1894  * Creates some virtual cpus.  Good luck creating more than one.
1895  */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898 	int r;
1899 	struct kvm_vcpu *vcpu, *v;
1900 
1901 	vcpu = kvm_arch_vcpu_create(kvm, id);
1902 	if (IS_ERR(vcpu))
1903 		return PTR_ERR(vcpu);
1904 
1905 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1906 
1907 	r = kvm_arch_vcpu_setup(vcpu);
1908 	if (r)
1909 		goto vcpu_destroy;
1910 
1911 	mutex_lock(&kvm->lock);
1912 	if (!kvm_vcpu_compatible(vcpu)) {
1913 		r = -EINVAL;
1914 		goto unlock_vcpu_destroy;
1915 	}
1916 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1917 		r = -EINVAL;
1918 		goto unlock_vcpu_destroy;
1919 	}
1920 
1921 	kvm_for_each_vcpu(r, v, kvm)
1922 		if (v->vcpu_id == id) {
1923 			r = -EEXIST;
1924 			goto unlock_vcpu_destroy;
1925 		}
1926 
1927 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1928 
1929 	/* Now it's all set up, let userspace reach it */
1930 	kvm_get_kvm(kvm);
1931 	r = create_vcpu_fd(vcpu);
1932 	if (r < 0) {
1933 		kvm_put_kvm(kvm);
1934 		goto unlock_vcpu_destroy;
1935 	}
1936 
1937 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1938 	smp_wmb();
1939 	atomic_inc(&kvm->online_vcpus);
1940 
1941 	mutex_unlock(&kvm->lock);
1942 	kvm_arch_vcpu_postcreate(vcpu);
1943 	return r;
1944 
1945 unlock_vcpu_destroy:
1946 	mutex_unlock(&kvm->lock);
1947 vcpu_destroy:
1948 	kvm_arch_vcpu_destroy(vcpu);
1949 	return r;
1950 }
1951 
1952 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1953 {
1954 	if (sigset) {
1955 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1956 		vcpu->sigset_active = 1;
1957 		vcpu->sigset = *sigset;
1958 	} else
1959 		vcpu->sigset_active = 0;
1960 	return 0;
1961 }
1962 
1963 static long kvm_vcpu_ioctl(struct file *filp,
1964 			   unsigned int ioctl, unsigned long arg)
1965 {
1966 	struct kvm_vcpu *vcpu = filp->private_data;
1967 	void __user *argp = (void __user *)arg;
1968 	int r;
1969 	struct kvm_fpu *fpu = NULL;
1970 	struct kvm_sregs *kvm_sregs = NULL;
1971 
1972 	if (vcpu->kvm->mm != current->mm)
1973 		return -EIO;
1974 
1975 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1976 	/*
1977 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1978 	 * so vcpu_load() would break it.
1979 	 */
1980 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1981 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1982 #endif
1983 
1984 
1985 	r = vcpu_load(vcpu);
1986 	if (r)
1987 		return r;
1988 	switch (ioctl) {
1989 	case KVM_RUN:
1990 		r = -EINVAL;
1991 		if (arg)
1992 			goto out;
1993 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1994 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1995 		break;
1996 	case KVM_GET_REGS: {
1997 		struct kvm_regs *kvm_regs;
1998 
1999 		r = -ENOMEM;
2000 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2001 		if (!kvm_regs)
2002 			goto out;
2003 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2004 		if (r)
2005 			goto out_free1;
2006 		r = -EFAULT;
2007 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2008 			goto out_free1;
2009 		r = 0;
2010 out_free1:
2011 		kfree(kvm_regs);
2012 		break;
2013 	}
2014 	case KVM_SET_REGS: {
2015 		struct kvm_regs *kvm_regs;
2016 
2017 		r = -ENOMEM;
2018 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2019 		if (IS_ERR(kvm_regs)) {
2020 			r = PTR_ERR(kvm_regs);
2021 			goto out;
2022 		}
2023 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2024 		kfree(kvm_regs);
2025 		break;
2026 	}
2027 	case KVM_GET_SREGS: {
2028 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2029 		r = -ENOMEM;
2030 		if (!kvm_sregs)
2031 			goto out;
2032 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2033 		if (r)
2034 			goto out;
2035 		r = -EFAULT;
2036 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2037 			goto out;
2038 		r = 0;
2039 		break;
2040 	}
2041 	case KVM_SET_SREGS: {
2042 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2043 		if (IS_ERR(kvm_sregs)) {
2044 			r = PTR_ERR(kvm_sregs);
2045 			kvm_sregs = NULL;
2046 			goto out;
2047 		}
2048 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2049 		break;
2050 	}
2051 	case KVM_GET_MP_STATE: {
2052 		struct kvm_mp_state mp_state;
2053 
2054 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2055 		if (r)
2056 			goto out;
2057 		r = -EFAULT;
2058 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2059 			goto out;
2060 		r = 0;
2061 		break;
2062 	}
2063 	case KVM_SET_MP_STATE: {
2064 		struct kvm_mp_state mp_state;
2065 
2066 		r = -EFAULT;
2067 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2068 			goto out;
2069 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2070 		break;
2071 	}
2072 	case KVM_TRANSLATE: {
2073 		struct kvm_translation tr;
2074 
2075 		r = -EFAULT;
2076 		if (copy_from_user(&tr, argp, sizeof tr))
2077 			goto out;
2078 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2079 		if (r)
2080 			goto out;
2081 		r = -EFAULT;
2082 		if (copy_to_user(argp, &tr, sizeof tr))
2083 			goto out;
2084 		r = 0;
2085 		break;
2086 	}
2087 	case KVM_SET_GUEST_DEBUG: {
2088 		struct kvm_guest_debug dbg;
2089 
2090 		r = -EFAULT;
2091 		if (copy_from_user(&dbg, argp, sizeof dbg))
2092 			goto out;
2093 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2094 		break;
2095 	}
2096 	case KVM_SET_SIGNAL_MASK: {
2097 		struct kvm_signal_mask __user *sigmask_arg = argp;
2098 		struct kvm_signal_mask kvm_sigmask;
2099 		sigset_t sigset, *p;
2100 
2101 		p = NULL;
2102 		if (argp) {
2103 			r = -EFAULT;
2104 			if (copy_from_user(&kvm_sigmask, argp,
2105 					   sizeof kvm_sigmask))
2106 				goto out;
2107 			r = -EINVAL;
2108 			if (kvm_sigmask.len != sizeof sigset)
2109 				goto out;
2110 			r = -EFAULT;
2111 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2112 					   sizeof sigset))
2113 				goto out;
2114 			p = &sigset;
2115 		}
2116 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2117 		break;
2118 	}
2119 	case KVM_GET_FPU: {
2120 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2121 		r = -ENOMEM;
2122 		if (!fpu)
2123 			goto out;
2124 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2125 		if (r)
2126 			goto out;
2127 		r = -EFAULT;
2128 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2129 			goto out;
2130 		r = 0;
2131 		break;
2132 	}
2133 	case KVM_SET_FPU: {
2134 		fpu = memdup_user(argp, sizeof(*fpu));
2135 		if (IS_ERR(fpu)) {
2136 			r = PTR_ERR(fpu);
2137 			fpu = NULL;
2138 			goto out;
2139 		}
2140 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2141 		break;
2142 	}
2143 	default:
2144 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2145 	}
2146 out:
2147 	vcpu_put(vcpu);
2148 	kfree(fpu);
2149 	kfree(kvm_sregs);
2150 	return r;
2151 }
2152 
2153 #ifdef CONFIG_COMPAT
2154 static long kvm_vcpu_compat_ioctl(struct file *filp,
2155 				  unsigned int ioctl, unsigned long arg)
2156 {
2157 	struct kvm_vcpu *vcpu = filp->private_data;
2158 	void __user *argp = compat_ptr(arg);
2159 	int r;
2160 
2161 	if (vcpu->kvm->mm != current->mm)
2162 		return -EIO;
2163 
2164 	switch (ioctl) {
2165 	case KVM_SET_SIGNAL_MASK: {
2166 		struct kvm_signal_mask __user *sigmask_arg = argp;
2167 		struct kvm_signal_mask kvm_sigmask;
2168 		compat_sigset_t csigset;
2169 		sigset_t sigset;
2170 
2171 		if (argp) {
2172 			r = -EFAULT;
2173 			if (copy_from_user(&kvm_sigmask, argp,
2174 					   sizeof kvm_sigmask))
2175 				goto out;
2176 			r = -EINVAL;
2177 			if (kvm_sigmask.len != sizeof csigset)
2178 				goto out;
2179 			r = -EFAULT;
2180 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2181 					   sizeof csigset))
2182 				goto out;
2183 			sigset_from_compat(&sigset, &csigset);
2184 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2185 		} else
2186 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2187 		break;
2188 	}
2189 	default:
2190 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2191 	}
2192 
2193 out:
2194 	return r;
2195 }
2196 #endif
2197 
2198 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2199 				 int (*accessor)(struct kvm_device *dev,
2200 						 struct kvm_device_attr *attr),
2201 				 unsigned long arg)
2202 {
2203 	struct kvm_device_attr attr;
2204 
2205 	if (!accessor)
2206 		return -EPERM;
2207 
2208 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2209 		return -EFAULT;
2210 
2211 	return accessor(dev, &attr);
2212 }
2213 
2214 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2215 			     unsigned long arg)
2216 {
2217 	struct kvm_device *dev = filp->private_data;
2218 
2219 	switch (ioctl) {
2220 	case KVM_SET_DEVICE_ATTR:
2221 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2222 	case KVM_GET_DEVICE_ATTR:
2223 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2224 	case KVM_HAS_DEVICE_ATTR:
2225 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2226 	default:
2227 		if (dev->ops->ioctl)
2228 			return dev->ops->ioctl(dev, ioctl, arg);
2229 
2230 		return -ENOTTY;
2231 	}
2232 }
2233 
2234 static int kvm_device_release(struct inode *inode, struct file *filp)
2235 {
2236 	struct kvm_device *dev = filp->private_data;
2237 	struct kvm *kvm = dev->kvm;
2238 
2239 	kvm_put_kvm(kvm);
2240 	return 0;
2241 }
2242 
2243 static const struct file_operations kvm_device_fops = {
2244 	.unlocked_ioctl = kvm_device_ioctl,
2245 #ifdef CONFIG_COMPAT
2246 	.compat_ioctl = kvm_device_ioctl,
2247 #endif
2248 	.release = kvm_device_release,
2249 };
2250 
2251 struct kvm_device *kvm_device_from_filp(struct file *filp)
2252 {
2253 	if (filp->f_op != &kvm_device_fops)
2254 		return NULL;
2255 
2256 	return filp->private_data;
2257 }
2258 
2259 static int kvm_ioctl_create_device(struct kvm *kvm,
2260 				   struct kvm_create_device *cd)
2261 {
2262 	struct kvm_device_ops *ops = NULL;
2263 	struct kvm_device *dev;
2264 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2265 	int ret;
2266 
2267 	switch (cd->type) {
2268 #ifdef CONFIG_KVM_MPIC
2269 	case KVM_DEV_TYPE_FSL_MPIC_20:
2270 	case KVM_DEV_TYPE_FSL_MPIC_42:
2271 		ops = &kvm_mpic_ops;
2272 		break;
2273 #endif
2274 #ifdef CONFIG_KVM_XICS
2275 	case KVM_DEV_TYPE_XICS:
2276 		ops = &kvm_xics_ops;
2277 		break;
2278 #endif
2279 #ifdef CONFIG_KVM_VFIO
2280 	case KVM_DEV_TYPE_VFIO:
2281 		ops = &kvm_vfio_ops;
2282 		break;
2283 #endif
2284 	default:
2285 		return -ENODEV;
2286 	}
2287 
2288 	if (test)
2289 		return 0;
2290 
2291 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2292 	if (!dev)
2293 		return -ENOMEM;
2294 
2295 	dev->ops = ops;
2296 	dev->kvm = kvm;
2297 
2298 	ret = ops->create(dev, cd->type);
2299 	if (ret < 0) {
2300 		kfree(dev);
2301 		return ret;
2302 	}
2303 
2304 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2305 	if (ret < 0) {
2306 		ops->destroy(dev);
2307 		return ret;
2308 	}
2309 
2310 	list_add(&dev->vm_node, &kvm->devices);
2311 	kvm_get_kvm(kvm);
2312 	cd->fd = ret;
2313 	return 0;
2314 }
2315 
2316 static long kvm_vm_ioctl(struct file *filp,
2317 			   unsigned int ioctl, unsigned long arg)
2318 {
2319 	struct kvm *kvm = filp->private_data;
2320 	void __user *argp = (void __user *)arg;
2321 	int r;
2322 
2323 	if (kvm->mm != current->mm)
2324 		return -EIO;
2325 	switch (ioctl) {
2326 	case KVM_CREATE_VCPU:
2327 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2328 		break;
2329 	case KVM_SET_USER_MEMORY_REGION: {
2330 		struct kvm_userspace_memory_region kvm_userspace_mem;
2331 
2332 		r = -EFAULT;
2333 		if (copy_from_user(&kvm_userspace_mem, argp,
2334 						sizeof kvm_userspace_mem))
2335 			goto out;
2336 
2337 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2338 		break;
2339 	}
2340 	case KVM_GET_DIRTY_LOG: {
2341 		struct kvm_dirty_log log;
2342 
2343 		r = -EFAULT;
2344 		if (copy_from_user(&log, argp, sizeof log))
2345 			goto out;
2346 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2347 		break;
2348 	}
2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2350 	case KVM_REGISTER_COALESCED_MMIO: {
2351 		struct kvm_coalesced_mmio_zone zone;
2352 		r = -EFAULT;
2353 		if (copy_from_user(&zone, argp, sizeof zone))
2354 			goto out;
2355 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2356 		break;
2357 	}
2358 	case KVM_UNREGISTER_COALESCED_MMIO: {
2359 		struct kvm_coalesced_mmio_zone zone;
2360 		r = -EFAULT;
2361 		if (copy_from_user(&zone, argp, sizeof zone))
2362 			goto out;
2363 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2364 		break;
2365 	}
2366 #endif
2367 	case KVM_IRQFD: {
2368 		struct kvm_irqfd data;
2369 
2370 		r = -EFAULT;
2371 		if (copy_from_user(&data, argp, sizeof data))
2372 			goto out;
2373 		r = kvm_irqfd(kvm, &data);
2374 		break;
2375 	}
2376 	case KVM_IOEVENTFD: {
2377 		struct kvm_ioeventfd data;
2378 
2379 		r = -EFAULT;
2380 		if (copy_from_user(&data, argp, sizeof data))
2381 			goto out;
2382 		r = kvm_ioeventfd(kvm, &data);
2383 		break;
2384 	}
2385 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2386 	case KVM_SET_BOOT_CPU_ID:
2387 		r = 0;
2388 		mutex_lock(&kvm->lock);
2389 		if (atomic_read(&kvm->online_vcpus) != 0)
2390 			r = -EBUSY;
2391 		else
2392 			kvm->bsp_vcpu_id = arg;
2393 		mutex_unlock(&kvm->lock);
2394 		break;
2395 #endif
2396 #ifdef CONFIG_HAVE_KVM_MSI
2397 	case KVM_SIGNAL_MSI: {
2398 		struct kvm_msi msi;
2399 
2400 		r = -EFAULT;
2401 		if (copy_from_user(&msi, argp, sizeof msi))
2402 			goto out;
2403 		r = kvm_send_userspace_msi(kvm, &msi);
2404 		break;
2405 	}
2406 #endif
2407 #ifdef __KVM_HAVE_IRQ_LINE
2408 	case KVM_IRQ_LINE_STATUS:
2409 	case KVM_IRQ_LINE: {
2410 		struct kvm_irq_level irq_event;
2411 
2412 		r = -EFAULT;
2413 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2414 			goto out;
2415 
2416 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2417 					ioctl == KVM_IRQ_LINE_STATUS);
2418 		if (r)
2419 			goto out;
2420 
2421 		r = -EFAULT;
2422 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2423 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2424 				goto out;
2425 		}
2426 
2427 		r = 0;
2428 		break;
2429 	}
2430 #endif
2431 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2432 	case KVM_SET_GSI_ROUTING: {
2433 		struct kvm_irq_routing routing;
2434 		struct kvm_irq_routing __user *urouting;
2435 		struct kvm_irq_routing_entry *entries;
2436 
2437 		r = -EFAULT;
2438 		if (copy_from_user(&routing, argp, sizeof(routing)))
2439 			goto out;
2440 		r = -EINVAL;
2441 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2442 			goto out;
2443 		if (routing.flags)
2444 			goto out;
2445 		r = -ENOMEM;
2446 		entries = vmalloc(routing.nr * sizeof(*entries));
2447 		if (!entries)
2448 			goto out;
2449 		r = -EFAULT;
2450 		urouting = argp;
2451 		if (copy_from_user(entries, urouting->entries,
2452 				   routing.nr * sizeof(*entries)))
2453 			goto out_free_irq_routing;
2454 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2455 					routing.flags);
2456 	out_free_irq_routing:
2457 		vfree(entries);
2458 		break;
2459 	}
2460 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2461 	case KVM_CREATE_DEVICE: {
2462 		struct kvm_create_device cd;
2463 
2464 		r = -EFAULT;
2465 		if (copy_from_user(&cd, argp, sizeof(cd)))
2466 			goto out;
2467 
2468 		r = kvm_ioctl_create_device(kvm, &cd);
2469 		if (r)
2470 			goto out;
2471 
2472 		r = -EFAULT;
2473 		if (copy_to_user(argp, &cd, sizeof(cd)))
2474 			goto out;
2475 
2476 		r = 0;
2477 		break;
2478 	}
2479 	default:
2480 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2481 		if (r == -ENOTTY)
2482 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2483 	}
2484 out:
2485 	return r;
2486 }
2487 
2488 #ifdef CONFIG_COMPAT
2489 struct compat_kvm_dirty_log {
2490 	__u32 slot;
2491 	__u32 padding1;
2492 	union {
2493 		compat_uptr_t dirty_bitmap; /* one bit per page */
2494 		__u64 padding2;
2495 	};
2496 };
2497 
2498 static long kvm_vm_compat_ioctl(struct file *filp,
2499 			   unsigned int ioctl, unsigned long arg)
2500 {
2501 	struct kvm *kvm = filp->private_data;
2502 	int r;
2503 
2504 	if (kvm->mm != current->mm)
2505 		return -EIO;
2506 	switch (ioctl) {
2507 	case KVM_GET_DIRTY_LOG: {
2508 		struct compat_kvm_dirty_log compat_log;
2509 		struct kvm_dirty_log log;
2510 
2511 		r = -EFAULT;
2512 		if (copy_from_user(&compat_log, (void __user *)arg,
2513 				   sizeof(compat_log)))
2514 			goto out;
2515 		log.slot	 = compat_log.slot;
2516 		log.padding1	 = compat_log.padding1;
2517 		log.padding2	 = compat_log.padding2;
2518 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2519 
2520 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2521 		break;
2522 	}
2523 	default:
2524 		r = kvm_vm_ioctl(filp, ioctl, arg);
2525 	}
2526 
2527 out:
2528 	return r;
2529 }
2530 #endif
2531 
2532 static struct file_operations kvm_vm_fops = {
2533 	.release        = kvm_vm_release,
2534 	.unlocked_ioctl = kvm_vm_ioctl,
2535 #ifdef CONFIG_COMPAT
2536 	.compat_ioctl   = kvm_vm_compat_ioctl,
2537 #endif
2538 	.llseek		= noop_llseek,
2539 };
2540 
2541 static int kvm_dev_ioctl_create_vm(unsigned long type)
2542 {
2543 	int r;
2544 	struct kvm *kvm;
2545 
2546 	kvm = kvm_create_vm(type);
2547 	if (IS_ERR(kvm))
2548 		return PTR_ERR(kvm);
2549 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2550 	r = kvm_coalesced_mmio_init(kvm);
2551 	if (r < 0) {
2552 		kvm_put_kvm(kvm);
2553 		return r;
2554 	}
2555 #endif
2556 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2557 	if (r < 0)
2558 		kvm_put_kvm(kvm);
2559 
2560 	return r;
2561 }
2562 
2563 static long kvm_dev_ioctl_check_extension_generic(long arg)
2564 {
2565 	switch (arg) {
2566 	case KVM_CAP_USER_MEMORY:
2567 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2568 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2569 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2570 	case KVM_CAP_SET_BOOT_CPU_ID:
2571 #endif
2572 	case KVM_CAP_INTERNAL_ERROR_DATA:
2573 #ifdef CONFIG_HAVE_KVM_MSI
2574 	case KVM_CAP_SIGNAL_MSI:
2575 #endif
2576 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2577 	case KVM_CAP_IRQFD_RESAMPLE:
2578 #endif
2579 		return 1;
2580 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2581 	case KVM_CAP_IRQ_ROUTING:
2582 		return KVM_MAX_IRQ_ROUTES;
2583 #endif
2584 	default:
2585 		break;
2586 	}
2587 	return kvm_dev_ioctl_check_extension(arg);
2588 }
2589 
2590 static long kvm_dev_ioctl(struct file *filp,
2591 			  unsigned int ioctl, unsigned long arg)
2592 {
2593 	long r = -EINVAL;
2594 
2595 	switch (ioctl) {
2596 	case KVM_GET_API_VERSION:
2597 		r = -EINVAL;
2598 		if (arg)
2599 			goto out;
2600 		r = KVM_API_VERSION;
2601 		break;
2602 	case KVM_CREATE_VM:
2603 		r = kvm_dev_ioctl_create_vm(arg);
2604 		break;
2605 	case KVM_CHECK_EXTENSION:
2606 		r = kvm_dev_ioctl_check_extension_generic(arg);
2607 		break;
2608 	case KVM_GET_VCPU_MMAP_SIZE:
2609 		r = -EINVAL;
2610 		if (arg)
2611 			goto out;
2612 		r = PAGE_SIZE;     /* struct kvm_run */
2613 #ifdef CONFIG_X86
2614 		r += PAGE_SIZE;    /* pio data page */
2615 #endif
2616 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2617 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2618 #endif
2619 		break;
2620 	case KVM_TRACE_ENABLE:
2621 	case KVM_TRACE_PAUSE:
2622 	case KVM_TRACE_DISABLE:
2623 		r = -EOPNOTSUPP;
2624 		break;
2625 	default:
2626 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2627 	}
2628 out:
2629 	return r;
2630 }
2631 
2632 static struct file_operations kvm_chardev_ops = {
2633 	.unlocked_ioctl = kvm_dev_ioctl,
2634 	.compat_ioctl   = kvm_dev_ioctl,
2635 	.llseek		= noop_llseek,
2636 };
2637 
2638 static struct miscdevice kvm_dev = {
2639 	KVM_MINOR,
2640 	"kvm",
2641 	&kvm_chardev_ops,
2642 };
2643 
2644 static void hardware_enable_nolock(void *junk)
2645 {
2646 	int cpu = raw_smp_processor_id();
2647 	int r;
2648 
2649 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2650 		return;
2651 
2652 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2653 
2654 	r = kvm_arch_hardware_enable(NULL);
2655 
2656 	if (r) {
2657 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2658 		atomic_inc(&hardware_enable_failed);
2659 		printk(KERN_INFO "kvm: enabling virtualization on "
2660 				 "CPU%d failed\n", cpu);
2661 	}
2662 }
2663 
2664 static void hardware_enable(void)
2665 {
2666 	raw_spin_lock(&kvm_count_lock);
2667 	if (kvm_usage_count)
2668 		hardware_enable_nolock(NULL);
2669 	raw_spin_unlock(&kvm_count_lock);
2670 }
2671 
2672 static void hardware_disable_nolock(void *junk)
2673 {
2674 	int cpu = raw_smp_processor_id();
2675 
2676 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2677 		return;
2678 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2679 	kvm_arch_hardware_disable(NULL);
2680 }
2681 
2682 static void hardware_disable(void)
2683 {
2684 	raw_spin_lock(&kvm_count_lock);
2685 	if (kvm_usage_count)
2686 		hardware_disable_nolock(NULL);
2687 	raw_spin_unlock(&kvm_count_lock);
2688 }
2689 
2690 static void hardware_disable_all_nolock(void)
2691 {
2692 	BUG_ON(!kvm_usage_count);
2693 
2694 	kvm_usage_count--;
2695 	if (!kvm_usage_count)
2696 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2697 }
2698 
2699 static void hardware_disable_all(void)
2700 {
2701 	raw_spin_lock(&kvm_count_lock);
2702 	hardware_disable_all_nolock();
2703 	raw_spin_unlock(&kvm_count_lock);
2704 }
2705 
2706 static int hardware_enable_all(void)
2707 {
2708 	int r = 0;
2709 
2710 	raw_spin_lock(&kvm_count_lock);
2711 
2712 	kvm_usage_count++;
2713 	if (kvm_usage_count == 1) {
2714 		atomic_set(&hardware_enable_failed, 0);
2715 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2716 
2717 		if (atomic_read(&hardware_enable_failed)) {
2718 			hardware_disable_all_nolock();
2719 			r = -EBUSY;
2720 		}
2721 	}
2722 
2723 	raw_spin_unlock(&kvm_count_lock);
2724 
2725 	return r;
2726 }
2727 
2728 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2729 			   void *v)
2730 {
2731 	int cpu = (long)v;
2732 
2733 	val &= ~CPU_TASKS_FROZEN;
2734 	switch (val) {
2735 	case CPU_DYING:
2736 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2737 		       cpu);
2738 		hardware_disable();
2739 		break;
2740 	case CPU_STARTING:
2741 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2742 		       cpu);
2743 		hardware_enable();
2744 		break;
2745 	}
2746 	return NOTIFY_OK;
2747 }
2748 
2749 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2750 		      void *v)
2751 {
2752 	/*
2753 	 * Some (well, at least mine) BIOSes hang on reboot if
2754 	 * in vmx root mode.
2755 	 *
2756 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2757 	 */
2758 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2759 	kvm_rebooting = true;
2760 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2761 	return NOTIFY_OK;
2762 }
2763 
2764 static struct notifier_block kvm_reboot_notifier = {
2765 	.notifier_call = kvm_reboot,
2766 	.priority = 0,
2767 };
2768 
2769 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2770 {
2771 	int i;
2772 
2773 	for (i = 0; i < bus->dev_count; i++) {
2774 		struct kvm_io_device *pos = bus->range[i].dev;
2775 
2776 		kvm_iodevice_destructor(pos);
2777 	}
2778 	kfree(bus);
2779 }
2780 
2781 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2782                                  const struct kvm_io_range *r2)
2783 {
2784 	if (r1->addr < r2->addr)
2785 		return -1;
2786 	if (r1->addr + r1->len > r2->addr + r2->len)
2787 		return 1;
2788 	return 0;
2789 }
2790 
2791 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2792 {
2793 	return kvm_io_bus_cmp(p1, p2);
2794 }
2795 
2796 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2797 			  gpa_t addr, int len)
2798 {
2799 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2800 		.addr = addr,
2801 		.len = len,
2802 		.dev = dev,
2803 	};
2804 
2805 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2806 		kvm_io_bus_sort_cmp, NULL);
2807 
2808 	return 0;
2809 }
2810 
2811 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2812 			     gpa_t addr, int len)
2813 {
2814 	struct kvm_io_range *range, key;
2815 	int off;
2816 
2817 	key = (struct kvm_io_range) {
2818 		.addr = addr,
2819 		.len = len,
2820 	};
2821 
2822 	range = bsearch(&key, bus->range, bus->dev_count,
2823 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2824 	if (range == NULL)
2825 		return -ENOENT;
2826 
2827 	off = range - bus->range;
2828 
2829 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2830 		off--;
2831 
2832 	return off;
2833 }
2834 
2835 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2836 			      struct kvm_io_range *range, const void *val)
2837 {
2838 	int idx;
2839 
2840 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2841 	if (idx < 0)
2842 		return -EOPNOTSUPP;
2843 
2844 	while (idx < bus->dev_count &&
2845 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2846 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2847 					range->len, val))
2848 			return idx;
2849 		idx++;
2850 	}
2851 
2852 	return -EOPNOTSUPP;
2853 }
2854 
2855 /* kvm_io_bus_write - called under kvm->slots_lock */
2856 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2857 		     int len, const void *val)
2858 {
2859 	struct kvm_io_bus *bus;
2860 	struct kvm_io_range range;
2861 	int r;
2862 
2863 	range = (struct kvm_io_range) {
2864 		.addr = addr,
2865 		.len = len,
2866 	};
2867 
2868 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2869 	r = __kvm_io_bus_write(bus, &range, val);
2870 	return r < 0 ? r : 0;
2871 }
2872 
2873 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2874 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2875 			    int len, const void *val, long cookie)
2876 {
2877 	struct kvm_io_bus *bus;
2878 	struct kvm_io_range range;
2879 
2880 	range = (struct kvm_io_range) {
2881 		.addr = addr,
2882 		.len = len,
2883 	};
2884 
2885 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886 
2887 	/* First try the device referenced by cookie. */
2888 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2889 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2890 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2891 					val))
2892 			return cookie;
2893 
2894 	/*
2895 	 * cookie contained garbage; fall back to search and return the
2896 	 * correct cookie value.
2897 	 */
2898 	return __kvm_io_bus_write(bus, &range, val);
2899 }
2900 
2901 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2902 			     void *val)
2903 {
2904 	int idx;
2905 
2906 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2907 	if (idx < 0)
2908 		return -EOPNOTSUPP;
2909 
2910 	while (idx < bus->dev_count &&
2911 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2912 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2913 				       range->len, val))
2914 			return idx;
2915 		idx++;
2916 	}
2917 
2918 	return -EOPNOTSUPP;
2919 }
2920 
2921 /* kvm_io_bus_read - called under kvm->slots_lock */
2922 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2923 		    int len, void *val)
2924 {
2925 	struct kvm_io_bus *bus;
2926 	struct kvm_io_range range;
2927 	int r;
2928 
2929 	range = (struct kvm_io_range) {
2930 		.addr = addr,
2931 		.len = len,
2932 	};
2933 
2934 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2935 	r = __kvm_io_bus_read(bus, &range, val);
2936 	return r < 0 ? r : 0;
2937 }
2938 
2939 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2940 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2941 			   int len, void *val, long cookie)
2942 {
2943 	struct kvm_io_bus *bus;
2944 	struct kvm_io_range range;
2945 
2946 	range = (struct kvm_io_range) {
2947 		.addr = addr,
2948 		.len = len,
2949 	};
2950 
2951 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2952 
2953 	/* First try the device referenced by cookie. */
2954 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2955 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2956 		if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2957 				       val))
2958 			return cookie;
2959 
2960 	/*
2961 	 * cookie contained garbage; fall back to search and return the
2962 	 * correct cookie value.
2963 	 */
2964 	return __kvm_io_bus_read(bus, &range, val);
2965 }
2966 
2967 /* Caller must hold slots_lock. */
2968 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2969 			    int len, struct kvm_io_device *dev)
2970 {
2971 	struct kvm_io_bus *new_bus, *bus;
2972 
2973 	bus = kvm->buses[bus_idx];
2974 	/* exclude ioeventfd which is limited by maximum fd */
2975 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2976 		return -ENOSPC;
2977 
2978 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2979 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2980 	if (!new_bus)
2981 		return -ENOMEM;
2982 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2983 	       sizeof(struct kvm_io_range)));
2984 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2985 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2986 	synchronize_srcu_expedited(&kvm->srcu);
2987 	kfree(bus);
2988 
2989 	return 0;
2990 }
2991 
2992 /* Caller must hold slots_lock. */
2993 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2994 			      struct kvm_io_device *dev)
2995 {
2996 	int i, r;
2997 	struct kvm_io_bus *new_bus, *bus;
2998 
2999 	bus = kvm->buses[bus_idx];
3000 	r = -ENOENT;
3001 	for (i = 0; i < bus->dev_count; i++)
3002 		if (bus->range[i].dev == dev) {
3003 			r = 0;
3004 			break;
3005 		}
3006 
3007 	if (r)
3008 		return r;
3009 
3010 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3011 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3012 	if (!new_bus)
3013 		return -ENOMEM;
3014 
3015 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3016 	new_bus->dev_count--;
3017 	memcpy(new_bus->range + i, bus->range + i + 1,
3018 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3019 
3020 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3021 	synchronize_srcu_expedited(&kvm->srcu);
3022 	kfree(bus);
3023 	return r;
3024 }
3025 
3026 static struct notifier_block kvm_cpu_notifier = {
3027 	.notifier_call = kvm_cpu_hotplug,
3028 };
3029 
3030 static int vm_stat_get(void *_offset, u64 *val)
3031 {
3032 	unsigned offset = (long)_offset;
3033 	struct kvm *kvm;
3034 
3035 	*val = 0;
3036 	spin_lock(&kvm_lock);
3037 	list_for_each_entry(kvm, &vm_list, vm_list)
3038 		*val += *(u32 *)((void *)kvm + offset);
3039 	spin_unlock(&kvm_lock);
3040 	return 0;
3041 }
3042 
3043 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3044 
3045 static int vcpu_stat_get(void *_offset, u64 *val)
3046 {
3047 	unsigned offset = (long)_offset;
3048 	struct kvm *kvm;
3049 	struct kvm_vcpu *vcpu;
3050 	int i;
3051 
3052 	*val = 0;
3053 	spin_lock(&kvm_lock);
3054 	list_for_each_entry(kvm, &vm_list, vm_list)
3055 		kvm_for_each_vcpu(i, vcpu, kvm)
3056 			*val += *(u32 *)((void *)vcpu + offset);
3057 
3058 	spin_unlock(&kvm_lock);
3059 	return 0;
3060 }
3061 
3062 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3063 
3064 static const struct file_operations *stat_fops[] = {
3065 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3066 	[KVM_STAT_VM]   = &vm_stat_fops,
3067 };
3068 
3069 static int kvm_init_debug(void)
3070 {
3071 	int r = -EEXIST;
3072 	struct kvm_stats_debugfs_item *p;
3073 
3074 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3075 	if (kvm_debugfs_dir == NULL)
3076 		goto out;
3077 
3078 	for (p = debugfs_entries; p->name; ++p) {
3079 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3080 						(void *)(long)p->offset,
3081 						stat_fops[p->kind]);
3082 		if (p->dentry == NULL)
3083 			goto out_dir;
3084 	}
3085 
3086 	return 0;
3087 
3088 out_dir:
3089 	debugfs_remove_recursive(kvm_debugfs_dir);
3090 out:
3091 	return r;
3092 }
3093 
3094 static void kvm_exit_debug(void)
3095 {
3096 	struct kvm_stats_debugfs_item *p;
3097 
3098 	for (p = debugfs_entries; p->name; ++p)
3099 		debugfs_remove(p->dentry);
3100 	debugfs_remove(kvm_debugfs_dir);
3101 }
3102 
3103 static int kvm_suspend(void)
3104 {
3105 	if (kvm_usage_count)
3106 		hardware_disable_nolock(NULL);
3107 	return 0;
3108 }
3109 
3110 static void kvm_resume(void)
3111 {
3112 	if (kvm_usage_count) {
3113 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3114 		hardware_enable_nolock(NULL);
3115 	}
3116 }
3117 
3118 static struct syscore_ops kvm_syscore_ops = {
3119 	.suspend = kvm_suspend,
3120 	.resume = kvm_resume,
3121 };
3122 
3123 static inline
3124 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3125 {
3126 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3127 }
3128 
3129 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3130 {
3131 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3132 	if (vcpu->preempted)
3133 		vcpu->preempted = false;
3134 
3135 	kvm_arch_vcpu_load(vcpu, cpu);
3136 }
3137 
3138 static void kvm_sched_out(struct preempt_notifier *pn,
3139 			  struct task_struct *next)
3140 {
3141 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3142 
3143 	if (current->state == TASK_RUNNING)
3144 		vcpu->preempted = true;
3145 	kvm_arch_vcpu_put(vcpu);
3146 }
3147 
3148 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3149 		  struct module *module)
3150 {
3151 	int r;
3152 	int cpu;
3153 
3154 	r = kvm_arch_init(opaque);
3155 	if (r)
3156 		goto out_fail;
3157 
3158 	/*
3159 	 * kvm_arch_init makes sure there's at most one caller
3160 	 * for architectures that support multiple implementations,
3161 	 * like intel and amd on x86.
3162 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3163 	 * conflicts in case kvm is already setup for another implementation.
3164 	 */
3165 	r = kvm_irqfd_init();
3166 	if (r)
3167 		goto out_irqfd;
3168 
3169 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3170 		r = -ENOMEM;
3171 		goto out_free_0;
3172 	}
3173 
3174 	r = kvm_arch_hardware_setup();
3175 	if (r < 0)
3176 		goto out_free_0a;
3177 
3178 	for_each_online_cpu(cpu) {
3179 		smp_call_function_single(cpu,
3180 				kvm_arch_check_processor_compat,
3181 				&r, 1);
3182 		if (r < 0)
3183 			goto out_free_1;
3184 	}
3185 
3186 	r = register_cpu_notifier(&kvm_cpu_notifier);
3187 	if (r)
3188 		goto out_free_2;
3189 	register_reboot_notifier(&kvm_reboot_notifier);
3190 
3191 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3192 	if (!vcpu_align)
3193 		vcpu_align = __alignof__(struct kvm_vcpu);
3194 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3195 					   0, NULL);
3196 	if (!kvm_vcpu_cache) {
3197 		r = -ENOMEM;
3198 		goto out_free_3;
3199 	}
3200 
3201 	r = kvm_async_pf_init();
3202 	if (r)
3203 		goto out_free;
3204 
3205 	kvm_chardev_ops.owner = module;
3206 	kvm_vm_fops.owner = module;
3207 	kvm_vcpu_fops.owner = module;
3208 
3209 	r = misc_register(&kvm_dev);
3210 	if (r) {
3211 		printk(KERN_ERR "kvm: misc device register failed\n");
3212 		goto out_unreg;
3213 	}
3214 
3215 	register_syscore_ops(&kvm_syscore_ops);
3216 
3217 	kvm_preempt_ops.sched_in = kvm_sched_in;
3218 	kvm_preempt_ops.sched_out = kvm_sched_out;
3219 
3220 	r = kvm_init_debug();
3221 	if (r) {
3222 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3223 		goto out_undebugfs;
3224 	}
3225 
3226 	return 0;
3227 
3228 out_undebugfs:
3229 	unregister_syscore_ops(&kvm_syscore_ops);
3230 	misc_deregister(&kvm_dev);
3231 out_unreg:
3232 	kvm_async_pf_deinit();
3233 out_free:
3234 	kmem_cache_destroy(kvm_vcpu_cache);
3235 out_free_3:
3236 	unregister_reboot_notifier(&kvm_reboot_notifier);
3237 	unregister_cpu_notifier(&kvm_cpu_notifier);
3238 out_free_2:
3239 out_free_1:
3240 	kvm_arch_hardware_unsetup();
3241 out_free_0a:
3242 	free_cpumask_var(cpus_hardware_enabled);
3243 out_free_0:
3244 	kvm_irqfd_exit();
3245 out_irqfd:
3246 	kvm_arch_exit();
3247 out_fail:
3248 	return r;
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_init);
3251 
3252 void kvm_exit(void)
3253 {
3254 	kvm_exit_debug();
3255 	misc_deregister(&kvm_dev);
3256 	kmem_cache_destroy(kvm_vcpu_cache);
3257 	kvm_async_pf_deinit();
3258 	unregister_syscore_ops(&kvm_syscore_ops);
3259 	unregister_reboot_notifier(&kvm_reboot_notifier);
3260 	unregister_cpu_notifier(&kvm_cpu_notifier);
3261 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3262 	kvm_arch_hardware_unsetup();
3263 	kvm_arch_exit();
3264 	kvm_irqfd_exit();
3265 	free_cpumask_var(cpus_hardware_enabled);
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_exit);
3268