1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_SPINLOCK(kvm_lock); 74 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 75 LIST_HEAD(vm_list); 76 77 static cpumask_var_t cpus_hardware_enabled; 78 static int kvm_usage_count = 0; 79 static atomic_t hardware_enable_failed; 80 81 struct kmem_cache *kvm_vcpu_cache; 82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 83 84 static __read_mostly struct preempt_ops kvm_preempt_ops; 85 86 struct dentry *kvm_debugfs_dir; 87 88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 89 unsigned long arg); 90 #ifdef CONFIG_COMPAT 91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 92 unsigned long arg); 93 #endif 94 static int hardware_enable_all(void); 95 static void hardware_disable_all(void); 96 97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 98 99 bool kvm_rebooting; 100 EXPORT_SYMBOL_GPL(kvm_rebooting); 101 102 static bool largepages_enabled = true; 103 104 bool kvm_is_mmio_pfn(pfn_t pfn) 105 { 106 if (pfn_valid(pfn)) 107 return PageReserved(pfn_to_page(pfn)); 108 109 return true; 110 } 111 112 /* 113 * Switches to specified vcpu, until a matching vcpu_put() 114 */ 115 int vcpu_load(struct kvm_vcpu *vcpu) 116 { 117 int cpu; 118 119 if (mutex_lock_killable(&vcpu->mutex)) 120 return -EINTR; 121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 122 /* The thread running this VCPU changed. */ 123 struct pid *oldpid = vcpu->pid; 124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 125 rcu_assign_pointer(vcpu->pid, newpid); 126 synchronize_rcu(); 127 put_pid(oldpid); 128 } 129 cpu = get_cpu(); 130 preempt_notifier_register(&vcpu->preempt_notifier); 131 kvm_arch_vcpu_load(vcpu, cpu); 132 put_cpu(); 133 return 0; 134 } 135 136 void vcpu_put(struct kvm_vcpu *vcpu) 137 { 138 preempt_disable(); 139 kvm_arch_vcpu_put(vcpu); 140 preempt_notifier_unregister(&vcpu->preempt_notifier); 141 preempt_enable(); 142 mutex_unlock(&vcpu->mutex); 143 } 144 145 static void ack_flush(void *_completed) 146 { 147 } 148 149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 150 { 151 int i, cpu, me; 152 cpumask_var_t cpus; 153 bool called = true; 154 struct kvm_vcpu *vcpu; 155 156 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 157 158 me = get_cpu(); 159 kvm_for_each_vcpu(i, vcpu, kvm) { 160 kvm_make_request(req, vcpu); 161 cpu = vcpu->cpu; 162 163 /* Set ->requests bit before we read ->mode */ 164 smp_mb(); 165 166 if (cpus != NULL && cpu != -1 && cpu != me && 167 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 168 cpumask_set_cpu(cpu, cpus); 169 } 170 if (unlikely(cpus == NULL)) 171 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 172 else if (!cpumask_empty(cpus)) 173 smp_call_function_many(cpus, ack_flush, NULL, 1); 174 else 175 called = false; 176 put_cpu(); 177 free_cpumask_var(cpus); 178 return called; 179 } 180 181 void kvm_flush_remote_tlbs(struct kvm *kvm) 182 { 183 long dirty_count = kvm->tlbs_dirty; 184 185 smp_mb(); 186 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 187 ++kvm->stat.remote_tlb_flush; 188 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 189 } 190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 191 192 void kvm_reload_remote_mmus(struct kvm *kvm) 193 { 194 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 195 } 196 197 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 198 { 199 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 200 } 201 202 void kvm_make_scan_ioapic_request(struct kvm *kvm) 203 { 204 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 205 } 206 207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 208 { 209 struct page *page; 210 int r; 211 212 mutex_init(&vcpu->mutex); 213 vcpu->cpu = -1; 214 vcpu->kvm = kvm; 215 vcpu->vcpu_id = id; 216 vcpu->pid = NULL; 217 init_waitqueue_head(&vcpu->wq); 218 kvm_async_pf_vcpu_init(vcpu); 219 220 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 221 if (!page) { 222 r = -ENOMEM; 223 goto fail; 224 } 225 vcpu->run = page_address(page); 226 227 kvm_vcpu_set_in_spin_loop(vcpu, false); 228 kvm_vcpu_set_dy_eligible(vcpu, false); 229 vcpu->preempted = false; 230 231 r = kvm_arch_vcpu_init(vcpu); 232 if (r < 0) 233 goto fail_free_run; 234 return 0; 235 236 fail_free_run: 237 free_page((unsigned long)vcpu->run); 238 fail: 239 return r; 240 } 241 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 242 243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 244 { 245 put_pid(vcpu->pid); 246 kvm_arch_vcpu_uninit(vcpu); 247 free_page((unsigned long)vcpu->run); 248 } 249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 250 251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 253 { 254 return container_of(mn, struct kvm, mmu_notifier); 255 } 256 257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 258 struct mm_struct *mm, 259 unsigned long address) 260 { 261 struct kvm *kvm = mmu_notifier_to_kvm(mn); 262 int need_tlb_flush, idx; 263 264 /* 265 * When ->invalidate_page runs, the linux pte has been zapped 266 * already but the page is still allocated until 267 * ->invalidate_page returns. So if we increase the sequence 268 * here the kvm page fault will notice if the spte can't be 269 * established because the page is going to be freed. If 270 * instead the kvm page fault establishes the spte before 271 * ->invalidate_page runs, kvm_unmap_hva will release it 272 * before returning. 273 * 274 * The sequence increase only need to be seen at spin_unlock 275 * time, and not at spin_lock time. 276 * 277 * Increasing the sequence after the spin_unlock would be 278 * unsafe because the kvm page fault could then establish the 279 * pte after kvm_unmap_hva returned, without noticing the page 280 * is going to be freed. 281 */ 282 idx = srcu_read_lock(&kvm->srcu); 283 spin_lock(&kvm->mmu_lock); 284 285 kvm->mmu_notifier_seq++; 286 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 287 /* we've to flush the tlb before the pages can be freed */ 288 if (need_tlb_flush) 289 kvm_flush_remote_tlbs(kvm); 290 291 spin_unlock(&kvm->mmu_lock); 292 srcu_read_unlock(&kvm->srcu, idx); 293 } 294 295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 296 struct mm_struct *mm, 297 unsigned long address, 298 pte_t pte) 299 { 300 struct kvm *kvm = mmu_notifier_to_kvm(mn); 301 int idx; 302 303 idx = srcu_read_lock(&kvm->srcu); 304 spin_lock(&kvm->mmu_lock); 305 kvm->mmu_notifier_seq++; 306 kvm_set_spte_hva(kvm, address, pte); 307 spin_unlock(&kvm->mmu_lock); 308 srcu_read_unlock(&kvm->srcu, idx); 309 } 310 311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 312 struct mm_struct *mm, 313 unsigned long start, 314 unsigned long end) 315 { 316 struct kvm *kvm = mmu_notifier_to_kvm(mn); 317 int need_tlb_flush = 0, idx; 318 319 idx = srcu_read_lock(&kvm->srcu); 320 spin_lock(&kvm->mmu_lock); 321 /* 322 * The count increase must become visible at unlock time as no 323 * spte can be established without taking the mmu_lock and 324 * count is also read inside the mmu_lock critical section. 325 */ 326 kvm->mmu_notifier_count++; 327 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 328 need_tlb_flush |= kvm->tlbs_dirty; 329 /* we've to flush the tlb before the pages can be freed */ 330 if (need_tlb_flush) 331 kvm_flush_remote_tlbs(kvm); 332 333 spin_unlock(&kvm->mmu_lock); 334 srcu_read_unlock(&kvm->srcu, idx); 335 } 336 337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 338 struct mm_struct *mm, 339 unsigned long start, 340 unsigned long end) 341 { 342 struct kvm *kvm = mmu_notifier_to_kvm(mn); 343 344 spin_lock(&kvm->mmu_lock); 345 /* 346 * This sequence increase will notify the kvm page fault that 347 * the page that is going to be mapped in the spte could have 348 * been freed. 349 */ 350 kvm->mmu_notifier_seq++; 351 smp_wmb(); 352 /* 353 * The above sequence increase must be visible before the 354 * below count decrease, which is ensured by the smp_wmb above 355 * in conjunction with the smp_rmb in mmu_notifier_retry(). 356 */ 357 kvm->mmu_notifier_count--; 358 spin_unlock(&kvm->mmu_lock); 359 360 BUG_ON(kvm->mmu_notifier_count < 0); 361 } 362 363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 364 struct mm_struct *mm, 365 unsigned long address) 366 { 367 struct kvm *kvm = mmu_notifier_to_kvm(mn); 368 int young, idx; 369 370 idx = srcu_read_lock(&kvm->srcu); 371 spin_lock(&kvm->mmu_lock); 372 373 young = kvm_age_hva(kvm, address); 374 if (young) 375 kvm_flush_remote_tlbs(kvm); 376 377 spin_unlock(&kvm->mmu_lock); 378 srcu_read_unlock(&kvm->srcu, idx); 379 380 return young; 381 } 382 383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 384 struct mm_struct *mm, 385 unsigned long address) 386 { 387 struct kvm *kvm = mmu_notifier_to_kvm(mn); 388 int young, idx; 389 390 idx = srcu_read_lock(&kvm->srcu); 391 spin_lock(&kvm->mmu_lock); 392 young = kvm_test_age_hva(kvm, address); 393 spin_unlock(&kvm->mmu_lock); 394 srcu_read_unlock(&kvm->srcu, idx); 395 396 return young; 397 } 398 399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 400 struct mm_struct *mm) 401 { 402 struct kvm *kvm = mmu_notifier_to_kvm(mn); 403 int idx; 404 405 idx = srcu_read_lock(&kvm->srcu); 406 kvm_arch_flush_shadow_all(kvm); 407 srcu_read_unlock(&kvm->srcu, idx); 408 } 409 410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 411 .invalidate_page = kvm_mmu_notifier_invalidate_page, 412 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 413 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 414 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 415 .test_young = kvm_mmu_notifier_test_young, 416 .change_pte = kvm_mmu_notifier_change_pte, 417 .release = kvm_mmu_notifier_release, 418 }; 419 420 static int kvm_init_mmu_notifier(struct kvm *kvm) 421 { 422 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 423 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 424 } 425 426 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 427 428 static int kvm_init_mmu_notifier(struct kvm *kvm) 429 { 430 return 0; 431 } 432 433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 434 435 static void kvm_init_memslots_id(struct kvm *kvm) 436 { 437 int i; 438 struct kvm_memslots *slots = kvm->memslots; 439 440 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 441 slots->id_to_index[i] = slots->memslots[i].id = i; 442 } 443 444 static struct kvm *kvm_create_vm(unsigned long type) 445 { 446 int r, i; 447 struct kvm *kvm = kvm_arch_alloc_vm(); 448 449 if (!kvm) 450 return ERR_PTR(-ENOMEM); 451 452 r = kvm_arch_init_vm(kvm, type); 453 if (r) 454 goto out_err_nodisable; 455 456 r = hardware_enable_all(); 457 if (r) 458 goto out_err_nodisable; 459 460 #ifdef CONFIG_HAVE_KVM_IRQCHIP 461 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 462 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 463 #endif 464 465 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 466 467 r = -ENOMEM; 468 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 469 if (!kvm->memslots) 470 goto out_err_nosrcu; 471 kvm_init_memslots_id(kvm); 472 if (init_srcu_struct(&kvm->srcu)) 473 goto out_err_nosrcu; 474 for (i = 0; i < KVM_NR_BUSES; i++) { 475 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 476 GFP_KERNEL); 477 if (!kvm->buses[i]) 478 goto out_err; 479 } 480 481 spin_lock_init(&kvm->mmu_lock); 482 kvm->mm = current->mm; 483 atomic_inc(&kvm->mm->mm_count); 484 kvm_eventfd_init(kvm); 485 mutex_init(&kvm->lock); 486 mutex_init(&kvm->irq_lock); 487 mutex_init(&kvm->slots_lock); 488 atomic_set(&kvm->users_count, 1); 489 INIT_LIST_HEAD(&kvm->devices); 490 491 r = kvm_init_mmu_notifier(kvm); 492 if (r) 493 goto out_err; 494 495 spin_lock(&kvm_lock); 496 list_add(&kvm->vm_list, &vm_list); 497 spin_unlock(&kvm_lock); 498 499 return kvm; 500 501 out_err: 502 cleanup_srcu_struct(&kvm->srcu); 503 out_err_nosrcu: 504 hardware_disable_all(); 505 out_err_nodisable: 506 for (i = 0; i < KVM_NR_BUSES; i++) 507 kfree(kvm->buses[i]); 508 kfree(kvm->memslots); 509 kvm_arch_free_vm(kvm); 510 return ERR_PTR(r); 511 } 512 513 /* 514 * Avoid using vmalloc for a small buffer. 515 * Should not be used when the size is statically known. 516 */ 517 void *kvm_kvzalloc(unsigned long size) 518 { 519 if (size > PAGE_SIZE) 520 return vzalloc(size); 521 else 522 return kzalloc(size, GFP_KERNEL); 523 } 524 525 void kvm_kvfree(const void *addr) 526 { 527 if (is_vmalloc_addr(addr)) 528 vfree(addr); 529 else 530 kfree(addr); 531 } 532 533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 534 { 535 if (!memslot->dirty_bitmap) 536 return; 537 538 kvm_kvfree(memslot->dirty_bitmap); 539 memslot->dirty_bitmap = NULL; 540 } 541 542 /* 543 * Free any memory in @free but not in @dont. 544 */ 545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 546 struct kvm_memory_slot *dont) 547 { 548 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 549 kvm_destroy_dirty_bitmap(free); 550 551 kvm_arch_free_memslot(kvm, free, dont); 552 553 free->npages = 0; 554 } 555 556 void kvm_free_physmem(struct kvm *kvm) 557 { 558 struct kvm_memslots *slots = kvm->memslots; 559 struct kvm_memory_slot *memslot; 560 561 kvm_for_each_memslot(memslot, slots) 562 kvm_free_physmem_slot(kvm, memslot, NULL); 563 564 kfree(kvm->memslots); 565 } 566 567 static void kvm_destroy_devices(struct kvm *kvm) 568 { 569 struct list_head *node, *tmp; 570 571 list_for_each_safe(node, tmp, &kvm->devices) { 572 struct kvm_device *dev = 573 list_entry(node, struct kvm_device, vm_node); 574 575 list_del(node); 576 dev->ops->destroy(dev); 577 } 578 } 579 580 static void kvm_destroy_vm(struct kvm *kvm) 581 { 582 int i; 583 struct mm_struct *mm = kvm->mm; 584 585 kvm_arch_sync_events(kvm); 586 spin_lock(&kvm_lock); 587 list_del(&kvm->vm_list); 588 spin_unlock(&kvm_lock); 589 kvm_free_irq_routing(kvm); 590 for (i = 0; i < KVM_NR_BUSES; i++) 591 kvm_io_bus_destroy(kvm->buses[i]); 592 kvm_coalesced_mmio_free(kvm); 593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 594 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 595 #else 596 kvm_arch_flush_shadow_all(kvm); 597 #endif 598 kvm_arch_destroy_vm(kvm); 599 kvm_destroy_devices(kvm); 600 kvm_free_physmem(kvm); 601 cleanup_srcu_struct(&kvm->srcu); 602 kvm_arch_free_vm(kvm); 603 hardware_disable_all(); 604 mmdrop(mm); 605 } 606 607 void kvm_get_kvm(struct kvm *kvm) 608 { 609 atomic_inc(&kvm->users_count); 610 } 611 EXPORT_SYMBOL_GPL(kvm_get_kvm); 612 613 void kvm_put_kvm(struct kvm *kvm) 614 { 615 if (atomic_dec_and_test(&kvm->users_count)) 616 kvm_destroy_vm(kvm); 617 } 618 EXPORT_SYMBOL_GPL(kvm_put_kvm); 619 620 621 static int kvm_vm_release(struct inode *inode, struct file *filp) 622 { 623 struct kvm *kvm = filp->private_data; 624 625 kvm_irqfd_release(kvm); 626 627 kvm_put_kvm(kvm); 628 return 0; 629 } 630 631 /* 632 * Allocation size is twice as large as the actual dirty bitmap size. 633 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 634 */ 635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 636 { 637 #ifndef CONFIG_S390 638 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 639 640 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 641 if (!memslot->dirty_bitmap) 642 return -ENOMEM; 643 644 #endif /* !CONFIG_S390 */ 645 return 0; 646 } 647 648 static int cmp_memslot(const void *slot1, const void *slot2) 649 { 650 struct kvm_memory_slot *s1, *s2; 651 652 s1 = (struct kvm_memory_slot *)slot1; 653 s2 = (struct kvm_memory_slot *)slot2; 654 655 if (s1->npages < s2->npages) 656 return 1; 657 if (s1->npages > s2->npages) 658 return -1; 659 660 return 0; 661 } 662 663 /* 664 * Sort the memslots base on its size, so the larger slots 665 * will get better fit. 666 */ 667 static void sort_memslots(struct kvm_memslots *slots) 668 { 669 int i; 670 671 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 672 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 673 674 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 675 slots->id_to_index[slots->memslots[i].id] = i; 676 } 677 678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 679 u64 last_generation) 680 { 681 if (new) { 682 int id = new->id; 683 struct kvm_memory_slot *old = id_to_memslot(slots, id); 684 unsigned long npages = old->npages; 685 686 *old = *new; 687 if (new->npages != npages) 688 sort_memslots(slots); 689 } 690 691 slots->generation = last_generation + 1; 692 } 693 694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 695 { 696 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 697 698 #ifdef KVM_CAP_READONLY_MEM 699 valid_flags |= KVM_MEM_READONLY; 700 #endif 701 702 if (mem->flags & ~valid_flags) 703 return -EINVAL; 704 705 return 0; 706 } 707 708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 709 struct kvm_memslots *slots, struct kvm_memory_slot *new) 710 { 711 struct kvm_memslots *old_memslots = kvm->memslots; 712 713 update_memslots(slots, new, kvm->memslots->generation); 714 rcu_assign_pointer(kvm->memslots, slots); 715 synchronize_srcu_expedited(&kvm->srcu); 716 717 kvm_arch_memslots_updated(kvm); 718 719 return old_memslots; 720 } 721 722 /* 723 * Allocate some memory and give it an address in the guest physical address 724 * space. 725 * 726 * Discontiguous memory is allowed, mostly for framebuffers. 727 * 728 * Must be called holding mmap_sem for write. 729 */ 730 int __kvm_set_memory_region(struct kvm *kvm, 731 struct kvm_userspace_memory_region *mem) 732 { 733 int r; 734 gfn_t base_gfn; 735 unsigned long npages; 736 struct kvm_memory_slot *slot; 737 struct kvm_memory_slot old, new; 738 struct kvm_memslots *slots = NULL, *old_memslots; 739 enum kvm_mr_change change; 740 741 r = check_memory_region_flags(mem); 742 if (r) 743 goto out; 744 745 r = -EINVAL; 746 /* General sanity checks */ 747 if (mem->memory_size & (PAGE_SIZE - 1)) 748 goto out; 749 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 750 goto out; 751 /* We can read the guest memory with __xxx_user() later on. */ 752 if ((mem->slot < KVM_USER_MEM_SLOTS) && 753 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 754 !access_ok(VERIFY_WRITE, 755 (void __user *)(unsigned long)mem->userspace_addr, 756 mem->memory_size))) 757 goto out; 758 if (mem->slot >= KVM_MEM_SLOTS_NUM) 759 goto out; 760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 761 goto out; 762 763 slot = id_to_memslot(kvm->memslots, mem->slot); 764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 765 npages = mem->memory_size >> PAGE_SHIFT; 766 767 r = -EINVAL; 768 if (npages > KVM_MEM_MAX_NR_PAGES) 769 goto out; 770 771 if (!npages) 772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 773 774 new = old = *slot; 775 776 new.id = mem->slot; 777 new.base_gfn = base_gfn; 778 new.npages = npages; 779 new.flags = mem->flags; 780 781 r = -EINVAL; 782 if (npages) { 783 if (!old.npages) 784 change = KVM_MR_CREATE; 785 else { /* Modify an existing slot. */ 786 if ((mem->userspace_addr != old.userspace_addr) || 787 (npages != old.npages) || 788 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 789 goto out; 790 791 if (base_gfn != old.base_gfn) 792 change = KVM_MR_MOVE; 793 else if (new.flags != old.flags) 794 change = KVM_MR_FLAGS_ONLY; 795 else { /* Nothing to change. */ 796 r = 0; 797 goto out; 798 } 799 } 800 } else if (old.npages) { 801 change = KVM_MR_DELETE; 802 } else /* Modify a non-existent slot: disallowed. */ 803 goto out; 804 805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 806 /* Check for overlaps */ 807 r = -EEXIST; 808 kvm_for_each_memslot(slot, kvm->memslots) { 809 if ((slot->id >= KVM_USER_MEM_SLOTS) || 810 (slot->id == mem->slot)) 811 continue; 812 if (!((base_gfn + npages <= slot->base_gfn) || 813 (base_gfn >= slot->base_gfn + slot->npages))) 814 goto out; 815 } 816 } 817 818 /* Free page dirty bitmap if unneeded */ 819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 820 new.dirty_bitmap = NULL; 821 822 r = -ENOMEM; 823 if (change == KVM_MR_CREATE) { 824 new.userspace_addr = mem->userspace_addr; 825 826 if (kvm_arch_create_memslot(kvm, &new, npages)) 827 goto out_free; 828 } 829 830 /* Allocate page dirty bitmap if needed */ 831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 832 if (kvm_create_dirty_bitmap(&new) < 0) 833 goto out_free; 834 } 835 836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 837 r = -ENOMEM; 838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 839 GFP_KERNEL); 840 if (!slots) 841 goto out_free; 842 slot = id_to_memslot(slots, mem->slot); 843 slot->flags |= KVM_MEMSLOT_INVALID; 844 845 old_memslots = install_new_memslots(kvm, slots, NULL); 846 847 /* slot was deleted or moved, clear iommu mapping */ 848 kvm_iommu_unmap_pages(kvm, &old); 849 /* From this point no new shadow pages pointing to a deleted, 850 * or moved, memslot will be created. 851 * 852 * validation of sp->gfn happens in: 853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 854 * - kvm_is_visible_gfn (mmu_check_roots) 855 */ 856 kvm_arch_flush_shadow_memslot(kvm, slot); 857 slots = old_memslots; 858 } 859 860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 861 if (r) 862 goto out_slots; 863 864 r = -ENOMEM; 865 /* 866 * We can re-use the old_memslots from above, the only difference 867 * from the currently installed memslots is the invalid flag. This 868 * will get overwritten by update_memslots anyway. 869 */ 870 if (!slots) { 871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 872 GFP_KERNEL); 873 if (!slots) 874 goto out_free; 875 } 876 877 /* actual memory is freed via old in kvm_free_physmem_slot below */ 878 if (change == KVM_MR_DELETE) { 879 new.dirty_bitmap = NULL; 880 memset(&new.arch, 0, sizeof(new.arch)); 881 } 882 883 old_memslots = install_new_memslots(kvm, slots, &new); 884 885 kvm_arch_commit_memory_region(kvm, mem, &old, change); 886 887 kvm_free_physmem_slot(kvm, &old, &new); 888 kfree(old_memslots); 889 890 /* 891 * IOMMU mapping: New slots need to be mapped. Old slots need to be 892 * un-mapped and re-mapped if their base changes. Since base change 893 * unmapping is handled above with slot deletion, mapping alone is 894 * needed here. Anything else the iommu might care about for existing 895 * slots (size changes, userspace addr changes and read-only flag 896 * changes) is disallowed above, so any other attribute changes getting 897 * here can be skipped. 898 */ 899 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 900 r = kvm_iommu_map_pages(kvm, &new); 901 return r; 902 } 903 904 return 0; 905 906 out_slots: 907 kfree(slots); 908 out_free: 909 kvm_free_physmem_slot(kvm, &new, &old); 910 out: 911 return r; 912 } 913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 914 915 int kvm_set_memory_region(struct kvm *kvm, 916 struct kvm_userspace_memory_region *mem) 917 { 918 int r; 919 920 mutex_lock(&kvm->slots_lock); 921 r = __kvm_set_memory_region(kvm, mem); 922 mutex_unlock(&kvm->slots_lock); 923 return r; 924 } 925 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 926 927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 928 struct kvm_userspace_memory_region *mem) 929 { 930 if (mem->slot >= KVM_USER_MEM_SLOTS) 931 return -EINVAL; 932 return kvm_set_memory_region(kvm, mem); 933 } 934 935 int kvm_get_dirty_log(struct kvm *kvm, 936 struct kvm_dirty_log *log, int *is_dirty) 937 { 938 struct kvm_memory_slot *memslot; 939 int r, i; 940 unsigned long n; 941 unsigned long any = 0; 942 943 r = -EINVAL; 944 if (log->slot >= KVM_USER_MEM_SLOTS) 945 goto out; 946 947 memslot = id_to_memslot(kvm->memslots, log->slot); 948 r = -ENOENT; 949 if (!memslot->dirty_bitmap) 950 goto out; 951 952 n = kvm_dirty_bitmap_bytes(memslot); 953 954 for (i = 0; !any && i < n/sizeof(long); ++i) 955 any = memslot->dirty_bitmap[i]; 956 957 r = -EFAULT; 958 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 959 goto out; 960 961 if (any) 962 *is_dirty = 1; 963 964 r = 0; 965 out: 966 return r; 967 } 968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 969 970 bool kvm_largepages_enabled(void) 971 { 972 return largepages_enabled; 973 } 974 975 void kvm_disable_largepages(void) 976 { 977 largepages_enabled = false; 978 } 979 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 980 981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 982 { 983 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 984 } 985 EXPORT_SYMBOL_GPL(gfn_to_memslot); 986 987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 988 { 989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 990 991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 992 memslot->flags & KVM_MEMSLOT_INVALID) 993 return 0; 994 995 return 1; 996 } 997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 998 999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1000 { 1001 struct vm_area_struct *vma; 1002 unsigned long addr, size; 1003 1004 size = PAGE_SIZE; 1005 1006 addr = gfn_to_hva(kvm, gfn); 1007 if (kvm_is_error_hva(addr)) 1008 return PAGE_SIZE; 1009 1010 down_read(¤t->mm->mmap_sem); 1011 vma = find_vma(current->mm, addr); 1012 if (!vma) 1013 goto out; 1014 1015 size = vma_kernel_pagesize(vma); 1016 1017 out: 1018 up_read(¤t->mm->mmap_sem); 1019 1020 return size; 1021 } 1022 1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1024 { 1025 return slot->flags & KVM_MEM_READONLY; 1026 } 1027 1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1029 gfn_t *nr_pages, bool write) 1030 { 1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1032 return KVM_HVA_ERR_BAD; 1033 1034 if (memslot_is_readonly(slot) && write) 1035 return KVM_HVA_ERR_RO_BAD; 1036 1037 if (nr_pages) 1038 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1039 1040 return __gfn_to_hva_memslot(slot, gfn); 1041 } 1042 1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1044 gfn_t *nr_pages) 1045 { 1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1047 } 1048 1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1050 gfn_t gfn) 1051 { 1052 return gfn_to_hva_many(slot, gfn, NULL); 1053 } 1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1055 1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1057 { 1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1059 } 1060 EXPORT_SYMBOL_GPL(gfn_to_hva); 1061 1062 /* 1063 * If writable is set to false, the hva returned by this function is only 1064 * allowed to be read. 1065 */ 1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1067 { 1068 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1070 1071 if (!kvm_is_error_hva(hva) && writable) 1072 *writable = !memslot_is_readonly(slot); 1073 1074 return hva; 1075 } 1076 1077 static int kvm_read_hva(void *data, void __user *hva, int len) 1078 { 1079 return __copy_from_user(data, hva, len); 1080 } 1081 1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1083 { 1084 return __copy_from_user_inatomic(data, hva, len); 1085 } 1086 1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1088 unsigned long start, int write, struct page **page) 1089 { 1090 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1091 1092 if (write) 1093 flags |= FOLL_WRITE; 1094 1095 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1096 } 1097 1098 static inline int check_user_page_hwpoison(unsigned long addr) 1099 { 1100 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1101 1102 rc = __get_user_pages(current, current->mm, addr, 1, 1103 flags, NULL, NULL, NULL); 1104 return rc == -EHWPOISON; 1105 } 1106 1107 /* 1108 * The atomic path to get the writable pfn which will be stored in @pfn, 1109 * true indicates success, otherwise false is returned. 1110 */ 1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1112 bool write_fault, bool *writable, pfn_t *pfn) 1113 { 1114 struct page *page[1]; 1115 int npages; 1116 1117 if (!(async || atomic)) 1118 return false; 1119 1120 /* 1121 * Fast pin a writable pfn only if it is a write fault request 1122 * or the caller allows to map a writable pfn for a read fault 1123 * request. 1124 */ 1125 if (!(write_fault || writable)) 1126 return false; 1127 1128 npages = __get_user_pages_fast(addr, 1, 1, page); 1129 if (npages == 1) { 1130 *pfn = page_to_pfn(page[0]); 1131 1132 if (writable) 1133 *writable = true; 1134 return true; 1135 } 1136 1137 return false; 1138 } 1139 1140 /* 1141 * The slow path to get the pfn of the specified host virtual address, 1142 * 1 indicates success, -errno is returned if error is detected. 1143 */ 1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1145 bool *writable, pfn_t *pfn) 1146 { 1147 struct page *page[1]; 1148 int npages = 0; 1149 1150 might_sleep(); 1151 1152 if (writable) 1153 *writable = write_fault; 1154 1155 if (async) { 1156 down_read(¤t->mm->mmap_sem); 1157 npages = get_user_page_nowait(current, current->mm, 1158 addr, write_fault, page); 1159 up_read(¤t->mm->mmap_sem); 1160 } else 1161 npages = get_user_pages_fast(addr, 1, write_fault, 1162 page); 1163 if (npages != 1) 1164 return npages; 1165 1166 /* map read fault as writable if possible */ 1167 if (unlikely(!write_fault) && writable) { 1168 struct page *wpage[1]; 1169 1170 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1171 if (npages == 1) { 1172 *writable = true; 1173 put_page(page[0]); 1174 page[0] = wpage[0]; 1175 } 1176 1177 npages = 1; 1178 } 1179 *pfn = page_to_pfn(page[0]); 1180 return npages; 1181 } 1182 1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1184 { 1185 if (unlikely(!(vma->vm_flags & VM_READ))) 1186 return false; 1187 1188 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1189 return false; 1190 1191 return true; 1192 } 1193 1194 /* 1195 * Pin guest page in memory and return its pfn. 1196 * @addr: host virtual address which maps memory to the guest 1197 * @atomic: whether this function can sleep 1198 * @async: whether this function need to wait IO complete if the 1199 * host page is not in the memory 1200 * @write_fault: whether we should get a writable host page 1201 * @writable: whether it allows to map a writable host page for !@write_fault 1202 * 1203 * The function will map a writable host page for these two cases: 1204 * 1): @write_fault = true 1205 * 2): @write_fault = false && @writable, @writable will tell the caller 1206 * whether the mapping is writable. 1207 */ 1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1209 bool write_fault, bool *writable) 1210 { 1211 struct vm_area_struct *vma; 1212 pfn_t pfn = 0; 1213 int npages; 1214 1215 /* we can do it either atomically or asynchronously, not both */ 1216 BUG_ON(atomic && async); 1217 1218 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1219 return pfn; 1220 1221 if (atomic) 1222 return KVM_PFN_ERR_FAULT; 1223 1224 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1225 if (npages == 1) 1226 return pfn; 1227 1228 down_read(¤t->mm->mmap_sem); 1229 if (npages == -EHWPOISON || 1230 (!async && check_user_page_hwpoison(addr))) { 1231 pfn = KVM_PFN_ERR_HWPOISON; 1232 goto exit; 1233 } 1234 1235 vma = find_vma_intersection(current->mm, addr, addr + 1); 1236 1237 if (vma == NULL) 1238 pfn = KVM_PFN_ERR_FAULT; 1239 else if ((vma->vm_flags & VM_PFNMAP)) { 1240 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1241 vma->vm_pgoff; 1242 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1243 } else { 1244 if (async && vma_is_valid(vma, write_fault)) 1245 *async = true; 1246 pfn = KVM_PFN_ERR_FAULT; 1247 } 1248 exit: 1249 up_read(¤t->mm->mmap_sem); 1250 return pfn; 1251 } 1252 1253 static pfn_t 1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1255 bool *async, bool write_fault, bool *writable) 1256 { 1257 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1258 1259 if (addr == KVM_HVA_ERR_RO_BAD) 1260 return KVM_PFN_ERR_RO_FAULT; 1261 1262 if (kvm_is_error_hva(addr)) 1263 return KVM_PFN_NOSLOT; 1264 1265 /* Do not map writable pfn in the readonly memslot. */ 1266 if (writable && memslot_is_readonly(slot)) { 1267 *writable = false; 1268 writable = NULL; 1269 } 1270 1271 return hva_to_pfn(addr, atomic, async, write_fault, 1272 writable); 1273 } 1274 1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1276 bool write_fault, bool *writable) 1277 { 1278 struct kvm_memory_slot *slot; 1279 1280 if (async) 1281 *async = false; 1282 1283 slot = gfn_to_memslot(kvm, gfn); 1284 1285 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1286 writable); 1287 } 1288 1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1290 { 1291 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1292 } 1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1294 1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1296 bool write_fault, bool *writable) 1297 { 1298 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1299 } 1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1301 1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1303 { 1304 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1305 } 1306 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1307 1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1309 bool *writable) 1310 { 1311 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1312 } 1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1314 1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1316 { 1317 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1318 } 1319 1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1321 { 1322 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1323 } 1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1325 1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1327 int nr_pages) 1328 { 1329 unsigned long addr; 1330 gfn_t entry; 1331 1332 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1333 if (kvm_is_error_hva(addr)) 1334 return -1; 1335 1336 if (entry < nr_pages) 1337 return 0; 1338 1339 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1340 } 1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1342 1343 static struct page *kvm_pfn_to_page(pfn_t pfn) 1344 { 1345 if (is_error_noslot_pfn(pfn)) 1346 return KVM_ERR_PTR_BAD_PAGE; 1347 1348 if (kvm_is_mmio_pfn(pfn)) { 1349 WARN_ON(1); 1350 return KVM_ERR_PTR_BAD_PAGE; 1351 } 1352 1353 return pfn_to_page(pfn); 1354 } 1355 1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1357 { 1358 pfn_t pfn; 1359 1360 pfn = gfn_to_pfn(kvm, gfn); 1361 1362 return kvm_pfn_to_page(pfn); 1363 } 1364 1365 EXPORT_SYMBOL_GPL(gfn_to_page); 1366 1367 void kvm_release_page_clean(struct page *page) 1368 { 1369 WARN_ON(is_error_page(page)); 1370 1371 kvm_release_pfn_clean(page_to_pfn(page)); 1372 } 1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1374 1375 void kvm_release_pfn_clean(pfn_t pfn) 1376 { 1377 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1378 put_page(pfn_to_page(pfn)); 1379 } 1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1381 1382 void kvm_release_page_dirty(struct page *page) 1383 { 1384 WARN_ON(is_error_page(page)); 1385 1386 kvm_release_pfn_dirty(page_to_pfn(page)); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1389 1390 void kvm_release_pfn_dirty(pfn_t pfn) 1391 { 1392 kvm_set_pfn_dirty(pfn); 1393 kvm_release_pfn_clean(pfn); 1394 } 1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1396 1397 void kvm_set_page_dirty(struct page *page) 1398 { 1399 kvm_set_pfn_dirty(page_to_pfn(page)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1402 1403 void kvm_set_pfn_dirty(pfn_t pfn) 1404 { 1405 if (!kvm_is_mmio_pfn(pfn)) { 1406 struct page *page = pfn_to_page(pfn); 1407 if (!PageReserved(page)) 1408 SetPageDirty(page); 1409 } 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1412 1413 void kvm_set_pfn_accessed(pfn_t pfn) 1414 { 1415 if (!kvm_is_mmio_pfn(pfn)) 1416 mark_page_accessed(pfn_to_page(pfn)); 1417 } 1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1419 1420 void kvm_get_pfn(pfn_t pfn) 1421 { 1422 if (!kvm_is_mmio_pfn(pfn)) 1423 get_page(pfn_to_page(pfn)); 1424 } 1425 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1426 1427 static int next_segment(unsigned long len, int offset) 1428 { 1429 if (len > PAGE_SIZE - offset) 1430 return PAGE_SIZE - offset; 1431 else 1432 return len; 1433 } 1434 1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1436 int len) 1437 { 1438 int r; 1439 unsigned long addr; 1440 1441 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1442 if (kvm_is_error_hva(addr)) 1443 return -EFAULT; 1444 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1445 if (r) 1446 return -EFAULT; 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1450 1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1452 { 1453 gfn_t gfn = gpa >> PAGE_SHIFT; 1454 int seg; 1455 int offset = offset_in_page(gpa); 1456 int ret; 1457 1458 while ((seg = next_segment(len, offset)) != 0) { 1459 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1460 if (ret < 0) 1461 return ret; 1462 offset = 0; 1463 len -= seg; 1464 data += seg; 1465 ++gfn; 1466 } 1467 return 0; 1468 } 1469 EXPORT_SYMBOL_GPL(kvm_read_guest); 1470 1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1472 unsigned long len) 1473 { 1474 int r; 1475 unsigned long addr; 1476 gfn_t gfn = gpa >> PAGE_SHIFT; 1477 int offset = offset_in_page(gpa); 1478 1479 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1480 if (kvm_is_error_hva(addr)) 1481 return -EFAULT; 1482 pagefault_disable(); 1483 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1484 pagefault_enable(); 1485 if (r) 1486 return -EFAULT; 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(kvm_read_guest_atomic); 1490 1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1492 int offset, int len) 1493 { 1494 int r; 1495 unsigned long addr; 1496 1497 addr = gfn_to_hva(kvm, gfn); 1498 if (kvm_is_error_hva(addr)) 1499 return -EFAULT; 1500 r = __copy_to_user((void __user *)addr + offset, data, len); 1501 if (r) 1502 return -EFAULT; 1503 mark_page_dirty(kvm, gfn); 1504 return 0; 1505 } 1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1507 1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1509 unsigned long len) 1510 { 1511 gfn_t gfn = gpa >> PAGE_SHIFT; 1512 int seg; 1513 int offset = offset_in_page(gpa); 1514 int ret; 1515 1516 while ((seg = next_segment(len, offset)) != 0) { 1517 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1518 if (ret < 0) 1519 return ret; 1520 offset = 0; 1521 len -= seg; 1522 data += seg; 1523 ++gfn; 1524 } 1525 return 0; 1526 } 1527 1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1529 gpa_t gpa, unsigned long len) 1530 { 1531 struct kvm_memslots *slots = kvm_memslots(kvm); 1532 int offset = offset_in_page(gpa); 1533 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1534 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1535 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1536 gfn_t nr_pages_avail; 1537 1538 ghc->gpa = gpa; 1539 ghc->generation = slots->generation; 1540 ghc->len = len; 1541 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1542 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1543 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1544 ghc->hva += offset; 1545 } else { 1546 /* 1547 * If the requested region crosses two memslots, we still 1548 * verify that the entire region is valid here. 1549 */ 1550 while (start_gfn <= end_gfn) { 1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1553 &nr_pages_avail); 1554 if (kvm_is_error_hva(ghc->hva)) 1555 return -EFAULT; 1556 start_gfn += nr_pages_avail; 1557 } 1558 /* Use the slow path for cross page reads and writes. */ 1559 ghc->memslot = NULL; 1560 } 1561 return 0; 1562 } 1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1564 1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1566 void *data, unsigned long len) 1567 { 1568 struct kvm_memslots *slots = kvm_memslots(kvm); 1569 int r; 1570 1571 BUG_ON(len > ghc->len); 1572 1573 if (slots->generation != ghc->generation) 1574 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1575 1576 if (unlikely(!ghc->memslot)) 1577 return kvm_write_guest(kvm, ghc->gpa, data, len); 1578 1579 if (kvm_is_error_hva(ghc->hva)) 1580 return -EFAULT; 1581 1582 r = __copy_to_user((void __user *)ghc->hva, data, len); 1583 if (r) 1584 return -EFAULT; 1585 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1586 1587 return 0; 1588 } 1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1590 1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1592 void *data, unsigned long len) 1593 { 1594 struct kvm_memslots *slots = kvm_memslots(kvm); 1595 int r; 1596 1597 BUG_ON(len > ghc->len); 1598 1599 if (slots->generation != ghc->generation) 1600 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1601 1602 if (unlikely(!ghc->memslot)) 1603 return kvm_read_guest(kvm, ghc->gpa, data, len); 1604 1605 if (kvm_is_error_hva(ghc->hva)) 1606 return -EFAULT; 1607 1608 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1609 if (r) 1610 return -EFAULT; 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1615 1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1617 { 1618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1619 1620 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1621 } 1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1623 1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1625 { 1626 gfn_t gfn = gpa >> PAGE_SHIFT; 1627 int seg; 1628 int offset = offset_in_page(gpa); 1629 int ret; 1630 1631 while ((seg = next_segment(len, offset)) != 0) { 1632 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1633 if (ret < 0) 1634 return ret; 1635 offset = 0; 1636 len -= seg; 1637 ++gfn; 1638 } 1639 return 0; 1640 } 1641 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1642 1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1644 gfn_t gfn) 1645 { 1646 if (memslot && memslot->dirty_bitmap) { 1647 unsigned long rel_gfn = gfn - memslot->base_gfn; 1648 1649 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1650 } 1651 } 1652 1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1654 { 1655 struct kvm_memory_slot *memslot; 1656 1657 memslot = gfn_to_memslot(kvm, gfn); 1658 mark_page_dirty_in_slot(kvm, memslot, gfn); 1659 } 1660 EXPORT_SYMBOL_GPL(mark_page_dirty); 1661 1662 /* 1663 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1664 */ 1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1666 { 1667 DEFINE_WAIT(wait); 1668 1669 for (;;) { 1670 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1671 1672 if (kvm_arch_vcpu_runnable(vcpu)) { 1673 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1674 break; 1675 } 1676 if (kvm_cpu_has_pending_timer(vcpu)) 1677 break; 1678 if (signal_pending(current)) 1679 break; 1680 1681 schedule(); 1682 } 1683 1684 finish_wait(&vcpu->wq, &wait); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1687 1688 #ifndef CONFIG_S390 1689 /* 1690 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1691 */ 1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1693 { 1694 int me; 1695 int cpu = vcpu->cpu; 1696 wait_queue_head_t *wqp; 1697 1698 wqp = kvm_arch_vcpu_wq(vcpu); 1699 if (waitqueue_active(wqp)) { 1700 wake_up_interruptible(wqp); 1701 ++vcpu->stat.halt_wakeup; 1702 } 1703 1704 me = get_cpu(); 1705 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1706 if (kvm_arch_vcpu_should_kick(vcpu)) 1707 smp_send_reschedule(cpu); 1708 put_cpu(); 1709 } 1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1711 #endif /* !CONFIG_S390 */ 1712 1713 void kvm_resched(struct kvm_vcpu *vcpu) 1714 { 1715 if (!need_resched()) 1716 return; 1717 cond_resched(); 1718 } 1719 EXPORT_SYMBOL_GPL(kvm_resched); 1720 1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1722 { 1723 struct pid *pid; 1724 struct task_struct *task = NULL; 1725 bool ret = false; 1726 1727 rcu_read_lock(); 1728 pid = rcu_dereference(target->pid); 1729 if (pid) 1730 task = get_pid_task(target->pid, PIDTYPE_PID); 1731 rcu_read_unlock(); 1732 if (!task) 1733 return ret; 1734 if (task->flags & PF_VCPU) { 1735 put_task_struct(task); 1736 return ret; 1737 } 1738 ret = yield_to(task, 1); 1739 put_task_struct(task); 1740 1741 return ret; 1742 } 1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1744 1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1746 /* 1747 * Helper that checks whether a VCPU is eligible for directed yield. 1748 * Most eligible candidate to yield is decided by following heuristics: 1749 * 1750 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1751 * (preempted lock holder), indicated by @in_spin_loop. 1752 * Set at the beiginning and cleared at the end of interception/PLE handler. 1753 * 1754 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1755 * chance last time (mostly it has become eligible now since we have probably 1756 * yielded to lockholder in last iteration. This is done by toggling 1757 * @dy_eligible each time a VCPU checked for eligibility.) 1758 * 1759 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1760 * to preempted lock-holder could result in wrong VCPU selection and CPU 1761 * burning. Giving priority for a potential lock-holder increases lock 1762 * progress. 1763 * 1764 * Since algorithm is based on heuristics, accessing another VCPU data without 1765 * locking does not harm. It may result in trying to yield to same VCPU, fail 1766 * and continue with next VCPU and so on. 1767 */ 1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1769 { 1770 bool eligible; 1771 1772 eligible = !vcpu->spin_loop.in_spin_loop || 1773 (vcpu->spin_loop.in_spin_loop && 1774 vcpu->spin_loop.dy_eligible); 1775 1776 if (vcpu->spin_loop.in_spin_loop) 1777 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1778 1779 return eligible; 1780 } 1781 #endif 1782 1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1784 { 1785 struct kvm *kvm = me->kvm; 1786 struct kvm_vcpu *vcpu; 1787 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1788 int yielded = 0; 1789 int try = 3; 1790 int pass; 1791 int i; 1792 1793 kvm_vcpu_set_in_spin_loop(me, true); 1794 /* 1795 * We boost the priority of a VCPU that is runnable but not 1796 * currently running, because it got preempted by something 1797 * else and called schedule in __vcpu_run. Hopefully that 1798 * VCPU is holding the lock that we need and will release it. 1799 * We approximate round-robin by starting at the last boosted VCPU. 1800 */ 1801 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1802 kvm_for_each_vcpu(i, vcpu, kvm) { 1803 if (!pass && i <= last_boosted_vcpu) { 1804 i = last_boosted_vcpu; 1805 continue; 1806 } else if (pass && i > last_boosted_vcpu) 1807 break; 1808 if (!ACCESS_ONCE(vcpu->preempted)) 1809 continue; 1810 if (vcpu == me) 1811 continue; 1812 if (waitqueue_active(&vcpu->wq)) 1813 continue; 1814 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1815 continue; 1816 1817 yielded = kvm_vcpu_yield_to(vcpu); 1818 if (yielded > 0) { 1819 kvm->last_boosted_vcpu = i; 1820 break; 1821 } else if (yielded < 0) { 1822 try--; 1823 if (!try) 1824 break; 1825 } 1826 } 1827 } 1828 kvm_vcpu_set_in_spin_loop(me, false); 1829 1830 /* Ensure vcpu is not eligible during next spinloop */ 1831 kvm_vcpu_set_dy_eligible(me, false); 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1834 1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1836 { 1837 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1838 struct page *page; 1839 1840 if (vmf->pgoff == 0) 1841 page = virt_to_page(vcpu->run); 1842 #ifdef CONFIG_X86 1843 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1844 page = virt_to_page(vcpu->arch.pio_data); 1845 #endif 1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1847 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1848 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1849 #endif 1850 else 1851 return kvm_arch_vcpu_fault(vcpu, vmf); 1852 get_page(page); 1853 vmf->page = page; 1854 return 0; 1855 } 1856 1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1858 .fault = kvm_vcpu_fault, 1859 }; 1860 1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1862 { 1863 vma->vm_ops = &kvm_vcpu_vm_ops; 1864 return 0; 1865 } 1866 1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1868 { 1869 struct kvm_vcpu *vcpu = filp->private_data; 1870 1871 kvm_put_kvm(vcpu->kvm); 1872 return 0; 1873 } 1874 1875 static struct file_operations kvm_vcpu_fops = { 1876 .release = kvm_vcpu_release, 1877 .unlocked_ioctl = kvm_vcpu_ioctl, 1878 #ifdef CONFIG_COMPAT 1879 .compat_ioctl = kvm_vcpu_compat_ioctl, 1880 #endif 1881 .mmap = kvm_vcpu_mmap, 1882 .llseek = noop_llseek, 1883 }; 1884 1885 /* 1886 * Allocates an inode for the vcpu. 1887 */ 1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1889 { 1890 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1891 } 1892 1893 /* 1894 * Creates some virtual cpus. Good luck creating more than one. 1895 */ 1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1897 { 1898 int r; 1899 struct kvm_vcpu *vcpu, *v; 1900 1901 vcpu = kvm_arch_vcpu_create(kvm, id); 1902 if (IS_ERR(vcpu)) 1903 return PTR_ERR(vcpu); 1904 1905 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1906 1907 r = kvm_arch_vcpu_setup(vcpu); 1908 if (r) 1909 goto vcpu_destroy; 1910 1911 mutex_lock(&kvm->lock); 1912 if (!kvm_vcpu_compatible(vcpu)) { 1913 r = -EINVAL; 1914 goto unlock_vcpu_destroy; 1915 } 1916 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1917 r = -EINVAL; 1918 goto unlock_vcpu_destroy; 1919 } 1920 1921 kvm_for_each_vcpu(r, v, kvm) 1922 if (v->vcpu_id == id) { 1923 r = -EEXIST; 1924 goto unlock_vcpu_destroy; 1925 } 1926 1927 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1928 1929 /* Now it's all set up, let userspace reach it */ 1930 kvm_get_kvm(kvm); 1931 r = create_vcpu_fd(vcpu); 1932 if (r < 0) { 1933 kvm_put_kvm(kvm); 1934 goto unlock_vcpu_destroy; 1935 } 1936 1937 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1938 smp_wmb(); 1939 atomic_inc(&kvm->online_vcpus); 1940 1941 mutex_unlock(&kvm->lock); 1942 kvm_arch_vcpu_postcreate(vcpu); 1943 return r; 1944 1945 unlock_vcpu_destroy: 1946 mutex_unlock(&kvm->lock); 1947 vcpu_destroy: 1948 kvm_arch_vcpu_destroy(vcpu); 1949 return r; 1950 } 1951 1952 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1953 { 1954 if (sigset) { 1955 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1956 vcpu->sigset_active = 1; 1957 vcpu->sigset = *sigset; 1958 } else 1959 vcpu->sigset_active = 0; 1960 return 0; 1961 } 1962 1963 static long kvm_vcpu_ioctl(struct file *filp, 1964 unsigned int ioctl, unsigned long arg) 1965 { 1966 struct kvm_vcpu *vcpu = filp->private_data; 1967 void __user *argp = (void __user *)arg; 1968 int r; 1969 struct kvm_fpu *fpu = NULL; 1970 struct kvm_sregs *kvm_sregs = NULL; 1971 1972 if (vcpu->kvm->mm != current->mm) 1973 return -EIO; 1974 1975 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1976 /* 1977 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1978 * so vcpu_load() would break it. 1979 */ 1980 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1981 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1982 #endif 1983 1984 1985 r = vcpu_load(vcpu); 1986 if (r) 1987 return r; 1988 switch (ioctl) { 1989 case KVM_RUN: 1990 r = -EINVAL; 1991 if (arg) 1992 goto out; 1993 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1994 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1995 break; 1996 case KVM_GET_REGS: { 1997 struct kvm_regs *kvm_regs; 1998 1999 r = -ENOMEM; 2000 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2001 if (!kvm_regs) 2002 goto out; 2003 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2004 if (r) 2005 goto out_free1; 2006 r = -EFAULT; 2007 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2008 goto out_free1; 2009 r = 0; 2010 out_free1: 2011 kfree(kvm_regs); 2012 break; 2013 } 2014 case KVM_SET_REGS: { 2015 struct kvm_regs *kvm_regs; 2016 2017 r = -ENOMEM; 2018 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2019 if (IS_ERR(kvm_regs)) { 2020 r = PTR_ERR(kvm_regs); 2021 goto out; 2022 } 2023 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2024 kfree(kvm_regs); 2025 break; 2026 } 2027 case KVM_GET_SREGS: { 2028 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2029 r = -ENOMEM; 2030 if (!kvm_sregs) 2031 goto out; 2032 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2033 if (r) 2034 goto out; 2035 r = -EFAULT; 2036 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2037 goto out; 2038 r = 0; 2039 break; 2040 } 2041 case KVM_SET_SREGS: { 2042 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2043 if (IS_ERR(kvm_sregs)) { 2044 r = PTR_ERR(kvm_sregs); 2045 kvm_sregs = NULL; 2046 goto out; 2047 } 2048 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2049 break; 2050 } 2051 case KVM_GET_MP_STATE: { 2052 struct kvm_mp_state mp_state; 2053 2054 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2055 if (r) 2056 goto out; 2057 r = -EFAULT; 2058 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2059 goto out; 2060 r = 0; 2061 break; 2062 } 2063 case KVM_SET_MP_STATE: { 2064 struct kvm_mp_state mp_state; 2065 2066 r = -EFAULT; 2067 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2068 goto out; 2069 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2070 break; 2071 } 2072 case KVM_TRANSLATE: { 2073 struct kvm_translation tr; 2074 2075 r = -EFAULT; 2076 if (copy_from_user(&tr, argp, sizeof tr)) 2077 goto out; 2078 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2079 if (r) 2080 goto out; 2081 r = -EFAULT; 2082 if (copy_to_user(argp, &tr, sizeof tr)) 2083 goto out; 2084 r = 0; 2085 break; 2086 } 2087 case KVM_SET_GUEST_DEBUG: { 2088 struct kvm_guest_debug dbg; 2089 2090 r = -EFAULT; 2091 if (copy_from_user(&dbg, argp, sizeof dbg)) 2092 goto out; 2093 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2094 break; 2095 } 2096 case KVM_SET_SIGNAL_MASK: { 2097 struct kvm_signal_mask __user *sigmask_arg = argp; 2098 struct kvm_signal_mask kvm_sigmask; 2099 sigset_t sigset, *p; 2100 2101 p = NULL; 2102 if (argp) { 2103 r = -EFAULT; 2104 if (copy_from_user(&kvm_sigmask, argp, 2105 sizeof kvm_sigmask)) 2106 goto out; 2107 r = -EINVAL; 2108 if (kvm_sigmask.len != sizeof sigset) 2109 goto out; 2110 r = -EFAULT; 2111 if (copy_from_user(&sigset, sigmask_arg->sigset, 2112 sizeof sigset)) 2113 goto out; 2114 p = &sigset; 2115 } 2116 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2117 break; 2118 } 2119 case KVM_GET_FPU: { 2120 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2121 r = -ENOMEM; 2122 if (!fpu) 2123 goto out; 2124 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2125 if (r) 2126 goto out; 2127 r = -EFAULT; 2128 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2129 goto out; 2130 r = 0; 2131 break; 2132 } 2133 case KVM_SET_FPU: { 2134 fpu = memdup_user(argp, sizeof(*fpu)); 2135 if (IS_ERR(fpu)) { 2136 r = PTR_ERR(fpu); 2137 fpu = NULL; 2138 goto out; 2139 } 2140 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2141 break; 2142 } 2143 default: 2144 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2145 } 2146 out: 2147 vcpu_put(vcpu); 2148 kfree(fpu); 2149 kfree(kvm_sregs); 2150 return r; 2151 } 2152 2153 #ifdef CONFIG_COMPAT 2154 static long kvm_vcpu_compat_ioctl(struct file *filp, 2155 unsigned int ioctl, unsigned long arg) 2156 { 2157 struct kvm_vcpu *vcpu = filp->private_data; 2158 void __user *argp = compat_ptr(arg); 2159 int r; 2160 2161 if (vcpu->kvm->mm != current->mm) 2162 return -EIO; 2163 2164 switch (ioctl) { 2165 case KVM_SET_SIGNAL_MASK: { 2166 struct kvm_signal_mask __user *sigmask_arg = argp; 2167 struct kvm_signal_mask kvm_sigmask; 2168 compat_sigset_t csigset; 2169 sigset_t sigset; 2170 2171 if (argp) { 2172 r = -EFAULT; 2173 if (copy_from_user(&kvm_sigmask, argp, 2174 sizeof kvm_sigmask)) 2175 goto out; 2176 r = -EINVAL; 2177 if (kvm_sigmask.len != sizeof csigset) 2178 goto out; 2179 r = -EFAULT; 2180 if (copy_from_user(&csigset, sigmask_arg->sigset, 2181 sizeof csigset)) 2182 goto out; 2183 sigset_from_compat(&sigset, &csigset); 2184 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2185 } else 2186 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2187 break; 2188 } 2189 default: 2190 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2191 } 2192 2193 out: 2194 return r; 2195 } 2196 #endif 2197 2198 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2199 int (*accessor)(struct kvm_device *dev, 2200 struct kvm_device_attr *attr), 2201 unsigned long arg) 2202 { 2203 struct kvm_device_attr attr; 2204 2205 if (!accessor) 2206 return -EPERM; 2207 2208 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2209 return -EFAULT; 2210 2211 return accessor(dev, &attr); 2212 } 2213 2214 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2215 unsigned long arg) 2216 { 2217 struct kvm_device *dev = filp->private_data; 2218 2219 switch (ioctl) { 2220 case KVM_SET_DEVICE_ATTR: 2221 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2222 case KVM_GET_DEVICE_ATTR: 2223 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2224 case KVM_HAS_DEVICE_ATTR: 2225 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2226 default: 2227 if (dev->ops->ioctl) 2228 return dev->ops->ioctl(dev, ioctl, arg); 2229 2230 return -ENOTTY; 2231 } 2232 } 2233 2234 static int kvm_device_release(struct inode *inode, struct file *filp) 2235 { 2236 struct kvm_device *dev = filp->private_data; 2237 struct kvm *kvm = dev->kvm; 2238 2239 kvm_put_kvm(kvm); 2240 return 0; 2241 } 2242 2243 static const struct file_operations kvm_device_fops = { 2244 .unlocked_ioctl = kvm_device_ioctl, 2245 #ifdef CONFIG_COMPAT 2246 .compat_ioctl = kvm_device_ioctl, 2247 #endif 2248 .release = kvm_device_release, 2249 }; 2250 2251 struct kvm_device *kvm_device_from_filp(struct file *filp) 2252 { 2253 if (filp->f_op != &kvm_device_fops) 2254 return NULL; 2255 2256 return filp->private_data; 2257 } 2258 2259 static int kvm_ioctl_create_device(struct kvm *kvm, 2260 struct kvm_create_device *cd) 2261 { 2262 struct kvm_device_ops *ops = NULL; 2263 struct kvm_device *dev; 2264 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2265 int ret; 2266 2267 switch (cd->type) { 2268 #ifdef CONFIG_KVM_MPIC 2269 case KVM_DEV_TYPE_FSL_MPIC_20: 2270 case KVM_DEV_TYPE_FSL_MPIC_42: 2271 ops = &kvm_mpic_ops; 2272 break; 2273 #endif 2274 #ifdef CONFIG_KVM_XICS 2275 case KVM_DEV_TYPE_XICS: 2276 ops = &kvm_xics_ops; 2277 break; 2278 #endif 2279 #ifdef CONFIG_KVM_VFIO 2280 case KVM_DEV_TYPE_VFIO: 2281 ops = &kvm_vfio_ops; 2282 break; 2283 #endif 2284 default: 2285 return -ENODEV; 2286 } 2287 2288 if (test) 2289 return 0; 2290 2291 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2292 if (!dev) 2293 return -ENOMEM; 2294 2295 dev->ops = ops; 2296 dev->kvm = kvm; 2297 2298 ret = ops->create(dev, cd->type); 2299 if (ret < 0) { 2300 kfree(dev); 2301 return ret; 2302 } 2303 2304 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2305 if (ret < 0) { 2306 ops->destroy(dev); 2307 return ret; 2308 } 2309 2310 list_add(&dev->vm_node, &kvm->devices); 2311 kvm_get_kvm(kvm); 2312 cd->fd = ret; 2313 return 0; 2314 } 2315 2316 static long kvm_vm_ioctl(struct file *filp, 2317 unsigned int ioctl, unsigned long arg) 2318 { 2319 struct kvm *kvm = filp->private_data; 2320 void __user *argp = (void __user *)arg; 2321 int r; 2322 2323 if (kvm->mm != current->mm) 2324 return -EIO; 2325 switch (ioctl) { 2326 case KVM_CREATE_VCPU: 2327 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2328 break; 2329 case KVM_SET_USER_MEMORY_REGION: { 2330 struct kvm_userspace_memory_region kvm_userspace_mem; 2331 2332 r = -EFAULT; 2333 if (copy_from_user(&kvm_userspace_mem, argp, 2334 sizeof kvm_userspace_mem)) 2335 goto out; 2336 2337 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2338 break; 2339 } 2340 case KVM_GET_DIRTY_LOG: { 2341 struct kvm_dirty_log log; 2342 2343 r = -EFAULT; 2344 if (copy_from_user(&log, argp, sizeof log)) 2345 goto out; 2346 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2347 break; 2348 } 2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2350 case KVM_REGISTER_COALESCED_MMIO: { 2351 struct kvm_coalesced_mmio_zone zone; 2352 r = -EFAULT; 2353 if (copy_from_user(&zone, argp, sizeof zone)) 2354 goto out; 2355 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2356 break; 2357 } 2358 case KVM_UNREGISTER_COALESCED_MMIO: { 2359 struct kvm_coalesced_mmio_zone zone; 2360 r = -EFAULT; 2361 if (copy_from_user(&zone, argp, sizeof zone)) 2362 goto out; 2363 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2364 break; 2365 } 2366 #endif 2367 case KVM_IRQFD: { 2368 struct kvm_irqfd data; 2369 2370 r = -EFAULT; 2371 if (copy_from_user(&data, argp, sizeof data)) 2372 goto out; 2373 r = kvm_irqfd(kvm, &data); 2374 break; 2375 } 2376 case KVM_IOEVENTFD: { 2377 struct kvm_ioeventfd data; 2378 2379 r = -EFAULT; 2380 if (copy_from_user(&data, argp, sizeof data)) 2381 goto out; 2382 r = kvm_ioeventfd(kvm, &data); 2383 break; 2384 } 2385 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2386 case KVM_SET_BOOT_CPU_ID: 2387 r = 0; 2388 mutex_lock(&kvm->lock); 2389 if (atomic_read(&kvm->online_vcpus) != 0) 2390 r = -EBUSY; 2391 else 2392 kvm->bsp_vcpu_id = arg; 2393 mutex_unlock(&kvm->lock); 2394 break; 2395 #endif 2396 #ifdef CONFIG_HAVE_KVM_MSI 2397 case KVM_SIGNAL_MSI: { 2398 struct kvm_msi msi; 2399 2400 r = -EFAULT; 2401 if (copy_from_user(&msi, argp, sizeof msi)) 2402 goto out; 2403 r = kvm_send_userspace_msi(kvm, &msi); 2404 break; 2405 } 2406 #endif 2407 #ifdef __KVM_HAVE_IRQ_LINE 2408 case KVM_IRQ_LINE_STATUS: 2409 case KVM_IRQ_LINE: { 2410 struct kvm_irq_level irq_event; 2411 2412 r = -EFAULT; 2413 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2414 goto out; 2415 2416 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2417 ioctl == KVM_IRQ_LINE_STATUS); 2418 if (r) 2419 goto out; 2420 2421 r = -EFAULT; 2422 if (ioctl == KVM_IRQ_LINE_STATUS) { 2423 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2424 goto out; 2425 } 2426 2427 r = 0; 2428 break; 2429 } 2430 #endif 2431 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2432 case KVM_SET_GSI_ROUTING: { 2433 struct kvm_irq_routing routing; 2434 struct kvm_irq_routing __user *urouting; 2435 struct kvm_irq_routing_entry *entries; 2436 2437 r = -EFAULT; 2438 if (copy_from_user(&routing, argp, sizeof(routing))) 2439 goto out; 2440 r = -EINVAL; 2441 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2442 goto out; 2443 if (routing.flags) 2444 goto out; 2445 r = -ENOMEM; 2446 entries = vmalloc(routing.nr * sizeof(*entries)); 2447 if (!entries) 2448 goto out; 2449 r = -EFAULT; 2450 urouting = argp; 2451 if (copy_from_user(entries, urouting->entries, 2452 routing.nr * sizeof(*entries))) 2453 goto out_free_irq_routing; 2454 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2455 routing.flags); 2456 out_free_irq_routing: 2457 vfree(entries); 2458 break; 2459 } 2460 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2461 case KVM_CREATE_DEVICE: { 2462 struct kvm_create_device cd; 2463 2464 r = -EFAULT; 2465 if (copy_from_user(&cd, argp, sizeof(cd))) 2466 goto out; 2467 2468 r = kvm_ioctl_create_device(kvm, &cd); 2469 if (r) 2470 goto out; 2471 2472 r = -EFAULT; 2473 if (copy_to_user(argp, &cd, sizeof(cd))) 2474 goto out; 2475 2476 r = 0; 2477 break; 2478 } 2479 default: 2480 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2481 if (r == -ENOTTY) 2482 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2483 } 2484 out: 2485 return r; 2486 } 2487 2488 #ifdef CONFIG_COMPAT 2489 struct compat_kvm_dirty_log { 2490 __u32 slot; 2491 __u32 padding1; 2492 union { 2493 compat_uptr_t dirty_bitmap; /* one bit per page */ 2494 __u64 padding2; 2495 }; 2496 }; 2497 2498 static long kvm_vm_compat_ioctl(struct file *filp, 2499 unsigned int ioctl, unsigned long arg) 2500 { 2501 struct kvm *kvm = filp->private_data; 2502 int r; 2503 2504 if (kvm->mm != current->mm) 2505 return -EIO; 2506 switch (ioctl) { 2507 case KVM_GET_DIRTY_LOG: { 2508 struct compat_kvm_dirty_log compat_log; 2509 struct kvm_dirty_log log; 2510 2511 r = -EFAULT; 2512 if (copy_from_user(&compat_log, (void __user *)arg, 2513 sizeof(compat_log))) 2514 goto out; 2515 log.slot = compat_log.slot; 2516 log.padding1 = compat_log.padding1; 2517 log.padding2 = compat_log.padding2; 2518 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2519 2520 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2521 break; 2522 } 2523 default: 2524 r = kvm_vm_ioctl(filp, ioctl, arg); 2525 } 2526 2527 out: 2528 return r; 2529 } 2530 #endif 2531 2532 static struct file_operations kvm_vm_fops = { 2533 .release = kvm_vm_release, 2534 .unlocked_ioctl = kvm_vm_ioctl, 2535 #ifdef CONFIG_COMPAT 2536 .compat_ioctl = kvm_vm_compat_ioctl, 2537 #endif 2538 .llseek = noop_llseek, 2539 }; 2540 2541 static int kvm_dev_ioctl_create_vm(unsigned long type) 2542 { 2543 int r; 2544 struct kvm *kvm; 2545 2546 kvm = kvm_create_vm(type); 2547 if (IS_ERR(kvm)) 2548 return PTR_ERR(kvm); 2549 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2550 r = kvm_coalesced_mmio_init(kvm); 2551 if (r < 0) { 2552 kvm_put_kvm(kvm); 2553 return r; 2554 } 2555 #endif 2556 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2557 if (r < 0) 2558 kvm_put_kvm(kvm); 2559 2560 return r; 2561 } 2562 2563 static long kvm_dev_ioctl_check_extension_generic(long arg) 2564 { 2565 switch (arg) { 2566 case KVM_CAP_USER_MEMORY: 2567 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2568 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2569 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2570 case KVM_CAP_SET_BOOT_CPU_ID: 2571 #endif 2572 case KVM_CAP_INTERNAL_ERROR_DATA: 2573 #ifdef CONFIG_HAVE_KVM_MSI 2574 case KVM_CAP_SIGNAL_MSI: 2575 #endif 2576 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2577 case KVM_CAP_IRQFD_RESAMPLE: 2578 #endif 2579 return 1; 2580 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2581 case KVM_CAP_IRQ_ROUTING: 2582 return KVM_MAX_IRQ_ROUTES; 2583 #endif 2584 default: 2585 break; 2586 } 2587 return kvm_dev_ioctl_check_extension(arg); 2588 } 2589 2590 static long kvm_dev_ioctl(struct file *filp, 2591 unsigned int ioctl, unsigned long arg) 2592 { 2593 long r = -EINVAL; 2594 2595 switch (ioctl) { 2596 case KVM_GET_API_VERSION: 2597 r = -EINVAL; 2598 if (arg) 2599 goto out; 2600 r = KVM_API_VERSION; 2601 break; 2602 case KVM_CREATE_VM: 2603 r = kvm_dev_ioctl_create_vm(arg); 2604 break; 2605 case KVM_CHECK_EXTENSION: 2606 r = kvm_dev_ioctl_check_extension_generic(arg); 2607 break; 2608 case KVM_GET_VCPU_MMAP_SIZE: 2609 r = -EINVAL; 2610 if (arg) 2611 goto out; 2612 r = PAGE_SIZE; /* struct kvm_run */ 2613 #ifdef CONFIG_X86 2614 r += PAGE_SIZE; /* pio data page */ 2615 #endif 2616 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2617 r += PAGE_SIZE; /* coalesced mmio ring page */ 2618 #endif 2619 break; 2620 case KVM_TRACE_ENABLE: 2621 case KVM_TRACE_PAUSE: 2622 case KVM_TRACE_DISABLE: 2623 r = -EOPNOTSUPP; 2624 break; 2625 default: 2626 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2627 } 2628 out: 2629 return r; 2630 } 2631 2632 static struct file_operations kvm_chardev_ops = { 2633 .unlocked_ioctl = kvm_dev_ioctl, 2634 .compat_ioctl = kvm_dev_ioctl, 2635 .llseek = noop_llseek, 2636 }; 2637 2638 static struct miscdevice kvm_dev = { 2639 KVM_MINOR, 2640 "kvm", 2641 &kvm_chardev_ops, 2642 }; 2643 2644 static void hardware_enable_nolock(void *junk) 2645 { 2646 int cpu = raw_smp_processor_id(); 2647 int r; 2648 2649 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2650 return; 2651 2652 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2653 2654 r = kvm_arch_hardware_enable(NULL); 2655 2656 if (r) { 2657 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2658 atomic_inc(&hardware_enable_failed); 2659 printk(KERN_INFO "kvm: enabling virtualization on " 2660 "CPU%d failed\n", cpu); 2661 } 2662 } 2663 2664 static void hardware_enable(void) 2665 { 2666 raw_spin_lock(&kvm_count_lock); 2667 if (kvm_usage_count) 2668 hardware_enable_nolock(NULL); 2669 raw_spin_unlock(&kvm_count_lock); 2670 } 2671 2672 static void hardware_disable_nolock(void *junk) 2673 { 2674 int cpu = raw_smp_processor_id(); 2675 2676 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2677 return; 2678 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2679 kvm_arch_hardware_disable(NULL); 2680 } 2681 2682 static void hardware_disable(void) 2683 { 2684 raw_spin_lock(&kvm_count_lock); 2685 if (kvm_usage_count) 2686 hardware_disable_nolock(NULL); 2687 raw_spin_unlock(&kvm_count_lock); 2688 } 2689 2690 static void hardware_disable_all_nolock(void) 2691 { 2692 BUG_ON(!kvm_usage_count); 2693 2694 kvm_usage_count--; 2695 if (!kvm_usage_count) 2696 on_each_cpu(hardware_disable_nolock, NULL, 1); 2697 } 2698 2699 static void hardware_disable_all(void) 2700 { 2701 raw_spin_lock(&kvm_count_lock); 2702 hardware_disable_all_nolock(); 2703 raw_spin_unlock(&kvm_count_lock); 2704 } 2705 2706 static int hardware_enable_all(void) 2707 { 2708 int r = 0; 2709 2710 raw_spin_lock(&kvm_count_lock); 2711 2712 kvm_usage_count++; 2713 if (kvm_usage_count == 1) { 2714 atomic_set(&hardware_enable_failed, 0); 2715 on_each_cpu(hardware_enable_nolock, NULL, 1); 2716 2717 if (atomic_read(&hardware_enable_failed)) { 2718 hardware_disable_all_nolock(); 2719 r = -EBUSY; 2720 } 2721 } 2722 2723 raw_spin_unlock(&kvm_count_lock); 2724 2725 return r; 2726 } 2727 2728 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2729 void *v) 2730 { 2731 int cpu = (long)v; 2732 2733 val &= ~CPU_TASKS_FROZEN; 2734 switch (val) { 2735 case CPU_DYING: 2736 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2737 cpu); 2738 hardware_disable(); 2739 break; 2740 case CPU_STARTING: 2741 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2742 cpu); 2743 hardware_enable(); 2744 break; 2745 } 2746 return NOTIFY_OK; 2747 } 2748 2749 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2750 void *v) 2751 { 2752 /* 2753 * Some (well, at least mine) BIOSes hang on reboot if 2754 * in vmx root mode. 2755 * 2756 * And Intel TXT required VMX off for all cpu when system shutdown. 2757 */ 2758 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2759 kvm_rebooting = true; 2760 on_each_cpu(hardware_disable_nolock, NULL, 1); 2761 return NOTIFY_OK; 2762 } 2763 2764 static struct notifier_block kvm_reboot_notifier = { 2765 .notifier_call = kvm_reboot, 2766 .priority = 0, 2767 }; 2768 2769 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2770 { 2771 int i; 2772 2773 for (i = 0; i < bus->dev_count; i++) { 2774 struct kvm_io_device *pos = bus->range[i].dev; 2775 2776 kvm_iodevice_destructor(pos); 2777 } 2778 kfree(bus); 2779 } 2780 2781 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2782 const struct kvm_io_range *r2) 2783 { 2784 if (r1->addr < r2->addr) 2785 return -1; 2786 if (r1->addr + r1->len > r2->addr + r2->len) 2787 return 1; 2788 return 0; 2789 } 2790 2791 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2792 { 2793 return kvm_io_bus_cmp(p1, p2); 2794 } 2795 2796 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2797 gpa_t addr, int len) 2798 { 2799 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2800 .addr = addr, 2801 .len = len, 2802 .dev = dev, 2803 }; 2804 2805 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2806 kvm_io_bus_sort_cmp, NULL); 2807 2808 return 0; 2809 } 2810 2811 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2812 gpa_t addr, int len) 2813 { 2814 struct kvm_io_range *range, key; 2815 int off; 2816 2817 key = (struct kvm_io_range) { 2818 .addr = addr, 2819 .len = len, 2820 }; 2821 2822 range = bsearch(&key, bus->range, bus->dev_count, 2823 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2824 if (range == NULL) 2825 return -ENOENT; 2826 2827 off = range - bus->range; 2828 2829 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2830 off--; 2831 2832 return off; 2833 } 2834 2835 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2836 struct kvm_io_range *range, const void *val) 2837 { 2838 int idx; 2839 2840 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2841 if (idx < 0) 2842 return -EOPNOTSUPP; 2843 2844 while (idx < bus->dev_count && 2845 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2846 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2847 range->len, val)) 2848 return idx; 2849 idx++; 2850 } 2851 2852 return -EOPNOTSUPP; 2853 } 2854 2855 /* kvm_io_bus_write - called under kvm->slots_lock */ 2856 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2857 int len, const void *val) 2858 { 2859 struct kvm_io_bus *bus; 2860 struct kvm_io_range range; 2861 int r; 2862 2863 range = (struct kvm_io_range) { 2864 .addr = addr, 2865 .len = len, 2866 }; 2867 2868 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2869 r = __kvm_io_bus_write(bus, &range, val); 2870 return r < 0 ? r : 0; 2871 } 2872 2873 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2874 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2875 int len, const void *val, long cookie) 2876 { 2877 struct kvm_io_bus *bus; 2878 struct kvm_io_range range; 2879 2880 range = (struct kvm_io_range) { 2881 .addr = addr, 2882 .len = len, 2883 }; 2884 2885 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2886 2887 /* First try the device referenced by cookie. */ 2888 if ((cookie >= 0) && (cookie < bus->dev_count) && 2889 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2890 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2891 val)) 2892 return cookie; 2893 2894 /* 2895 * cookie contained garbage; fall back to search and return the 2896 * correct cookie value. 2897 */ 2898 return __kvm_io_bus_write(bus, &range, val); 2899 } 2900 2901 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2902 void *val) 2903 { 2904 int idx; 2905 2906 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2907 if (idx < 0) 2908 return -EOPNOTSUPP; 2909 2910 while (idx < bus->dev_count && 2911 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2912 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2913 range->len, val)) 2914 return idx; 2915 idx++; 2916 } 2917 2918 return -EOPNOTSUPP; 2919 } 2920 2921 /* kvm_io_bus_read - called under kvm->slots_lock */ 2922 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2923 int len, void *val) 2924 { 2925 struct kvm_io_bus *bus; 2926 struct kvm_io_range range; 2927 int r; 2928 2929 range = (struct kvm_io_range) { 2930 .addr = addr, 2931 .len = len, 2932 }; 2933 2934 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2935 r = __kvm_io_bus_read(bus, &range, val); 2936 return r < 0 ? r : 0; 2937 } 2938 2939 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */ 2940 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2941 int len, void *val, long cookie) 2942 { 2943 struct kvm_io_bus *bus; 2944 struct kvm_io_range range; 2945 2946 range = (struct kvm_io_range) { 2947 .addr = addr, 2948 .len = len, 2949 }; 2950 2951 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2952 2953 /* First try the device referenced by cookie. */ 2954 if ((cookie >= 0) && (cookie < bus->dev_count) && 2955 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2956 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len, 2957 val)) 2958 return cookie; 2959 2960 /* 2961 * cookie contained garbage; fall back to search and return the 2962 * correct cookie value. 2963 */ 2964 return __kvm_io_bus_read(bus, &range, val); 2965 } 2966 2967 /* Caller must hold slots_lock. */ 2968 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2969 int len, struct kvm_io_device *dev) 2970 { 2971 struct kvm_io_bus *new_bus, *bus; 2972 2973 bus = kvm->buses[bus_idx]; 2974 /* exclude ioeventfd which is limited by maximum fd */ 2975 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2976 return -ENOSPC; 2977 2978 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2979 sizeof(struct kvm_io_range)), GFP_KERNEL); 2980 if (!new_bus) 2981 return -ENOMEM; 2982 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2983 sizeof(struct kvm_io_range))); 2984 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2985 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2986 synchronize_srcu_expedited(&kvm->srcu); 2987 kfree(bus); 2988 2989 return 0; 2990 } 2991 2992 /* Caller must hold slots_lock. */ 2993 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2994 struct kvm_io_device *dev) 2995 { 2996 int i, r; 2997 struct kvm_io_bus *new_bus, *bus; 2998 2999 bus = kvm->buses[bus_idx]; 3000 r = -ENOENT; 3001 for (i = 0; i < bus->dev_count; i++) 3002 if (bus->range[i].dev == dev) { 3003 r = 0; 3004 break; 3005 } 3006 3007 if (r) 3008 return r; 3009 3010 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3011 sizeof(struct kvm_io_range)), GFP_KERNEL); 3012 if (!new_bus) 3013 return -ENOMEM; 3014 3015 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3016 new_bus->dev_count--; 3017 memcpy(new_bus->range + i, bus->range + i + 1, 3018 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3019 3020 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3021 synchronize_srcu_expedited(&kvm->srcu); 3022 kfree(bus); 3023 return r; 3024 } 3025 3026 static struct notifier_block kvm_cpu_notifier = { 3027 .notifier_call = kvm_cpu_hotplug, 3028 }; 3029 3030 static int vm_stat_get(void *_offset, u64 *val) 3031 { 3032 unsigned offset = (long)_offset; 3033 struct kvm *kvm; 3034 3035 *val = 0; 3036 spin_lock(&kvm_lock); 3037 list_for_each_entry(kvm, &vm_list, vm_list) 3038 *val += *(u32 *)((void *)kvm + offset); 3039 spin_unlock(&kvm_lock); 3040 return 0; 3041 } 3042 3043 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3044 3045 static int vcpu_stat_get(void *_offset, u64 *val) 3046 { 3047 unsigned offset = (long)_offset; 3048 struct kvm *kvm; 3049 struct kvm_vcpu *vcpu; 3050 int i; 3051 3052 *val = 0; 3053 spin_lock(&kvm_lock); 3054 list_for_each_entry(kvm, &vm_list, vm_list) 3055 kvm_for_each_vcpu(i, vcpu, kvm) 3056 *val += *(u32 *)((void *)vcpu + offset); 3057 3058 spin_unlock(&kvm_lock); 3059 return 0; 3060 } 3061 3062 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3063 3064 static const struct file_operations *stat_fops[] = { 3065 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3066 [KVM_STAT_VM] = &vm_stat_fops, 3067 }; 3068 3069 static int kvm_init_debug(void) 3070 { 3071 int r = -EEXIST; 3072 struct kvm_stats_debugfs_item *p; 3073 3074 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3075 if (kvm_debugfs_dir == NULL) 3076 goto out; 3077 3078 for (p = debugfs_entries; p->name; ++p) { 3079 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3080 (void *)(long)p->offset, 3081 stat_fops[p->kind]); 3082 if (p->dentry == NULL) 3083 goto out_dir; 3084 } 3085 3086 return 0; 3087 3088 out_dir: 3089 debugfs_remove_recursive(kvm_debugfs_dir); 3090 out: 3091 return r; 3092 } 3093 3094 static void kvm_exit_debug(void) 3095 { 3096 struct kvm_stats_debugfs_item *p; 3097 3098 for (p = debugfs_entries; p->name; ++p) 3099 debugfs_remove(p->dentry); 3100 debugfs_remove(kvm_debugfs_dir); 3101 } 3102 3103 static int kvm_suspend(void) 3104 { 3105 if (kvm_usage_count) 3106 hardware_disable_nolock(NULL); 3107 return 0; 3108 } 3109 3110 static void kvm_resume(void) 3111 { 3112 if (kvm_usage_count) { 3113 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3114 hardware_enable_nolock(NULL); 3115 } 3116 } 3117 3118 static struct syscore_ops kvm_syscore_ops = { 3119 .suspend = kvm_suspend, 3120 .resume = kvm_resume, 3121 }; 3122 3123 static inline 3124 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3125 { 3126 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3127 } 3128 3129 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3130 { 3131 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3132 if (vcpu->preempted) 3133 vcpu->preempted = false; 3134 3135 kvm_arch_vcpu_load(vcpu, cpu); 3136 } 3137 3138 static void kvm_sched_out(struct preempt_notifier *pn, 3139 struct task_struct *next) 3140 { 3141 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3142 3143 if (current->state == TASK_RUNNING) 3144 vcpu->preempted = true; 3145 kvm_arch_vcpu_put(vcpu); 3146 } 3147 3148 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3149 struct module *module) 3150 { 3151 int r; 3152 int cpu; 3153 3154 r = kvm_arch_init(opaque); 3155 if (r) 3156 goto out_fail; 3157 3158 /* 3159 * kvm_arch_init makes sure there's at most one caller 3160 * for architectures that support multiple implementations, 3161 * like intel and amd on x86. 3162 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3163 * conflicts in case kvm is already setup for another implementation. 3164 */ 3165 r = kvm_irqfd_init(); 3166 if (r) 3167 goto out_irqfd; 3168 3169 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3170 r = -ENOMEM; 3171 goto out_free_0; 3172 } 3173 3174 r = kvm_arch_hardware_setup(); 3175 if (r < 0) 3176 goto out_free_0a; 3177 3178 for_each_online_cpu(cpu) { 3179 smp_call_function_single(cpu, 3180 kvm_arch_check_processor_compat, 3181 &r, 1); 3182 if (r < 0) 3183 goto out_free_1; 3184 } 3185 3186 r = register_cpu_notifier(&kvm_cpu_notifier); 3187 if (r) 3188 goto out_free_2; 3189 register_reboot_notifier(&kvm_reboot_notifier); 3190 3191 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3192 if (!vcpu_align) 3193 vcpu_align = __alignof__(struct kvm_vcpu); 3194 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3195 0, NULL); 3196 if (!kvm_vcpu_cache) { 3197 r = -ENOMEM; 3198 goto out_free_3; 3199 } 3200 3201 r = kvm_async_pf_init(); 3202 if (r) 3203 goto out_free; 3204 3205 kvm_chardev_ops.owner = module; 3206 kvm_vm_fops.owner = module; 3207 kvm_vcpu_fops.owner = module; 3208 3209 r = misc_register(&kvm_dev); 3210 if (r) { 3211 printk(KERN_ERR "kvm: misc device register failed\n"); 3212 goto out_unreg; 3213 } 3214 3215 register_syscore_ops(&kvm_syscore_ops); 3216 3217 kvm_preempt_ops.sched_in = kvm_sched_in; 3218 kvm_preempt_ops.sched_out = kvm_sched_out; 3219 3220 r = kvm_init_debug(); 3221 if (r) { 3222 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3223 goto out_undebugfs; 3224 } 3225 3226 return 0; 3227 3228 out_undebugfs: 3229 unregister_syscore_ops(&kvm_syscore_ops); 3230 misc_deregister(&kvm_dev); 3231 out_unreg: 3232 kvm_async_pf_deinit(); 3233 out_free: 3234 kmem_cache_destroy(kvm_vcpu_cache); 3235 out_free_3: 3236 unregister_reboot_notifier(&kvm_reboot_notifier); 3237 unregister_cpu_notifier(&kvm_cpu_notifier); 3238 out_free_2: 3239 out_free_1: 3240 kvm_arch_hardware_unsetup(); 3241 out_free_0a: 3242 free_cpumask_var(cpus_hardware_enabled); 3243 out_free_0: 3244 kvm_irqfd_exit(); 3245 out_irqfd: 3246 kvm_arch_exit(); 3247 out_fail: 3248 return r; 3249 } 3250 EXPORT_SYMBOL_GPL(kvm_init); 3251 3252 void kvm_exit(void) 3253 { 3254 kvm_exit_debug(); 3255 misc_deregister(&kvm_dev); 3256 kmem_cache_destroy(kvm_vcpu_cache); 3257 kvm_async_pf_deinit(); 3258 unregister_syscore_ops(&kvm_syscore_ops); 3259 unregister_reboot_notifier(&kvm_reboot_notifier); 3260 unregister_cpu_notifier(&kvm_cpu_notifier); 3261 on_each_cpu(hardware_disable_nolock, NULL, 1); 3262 kvm_arch_hardware_unsetup(); 3263 kvm_arch_exit(); 3264 kvm_irqfd_exit(); 3265 free_cpumask_var(cpus_hardware_enabled); 3266 } 3267 EXPORT_SYMBOL_GPL(kvm_exit); 3268