xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 78c99ba1)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51 
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55 
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61 
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64 
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67 
68 static cpumask_var_t cpus_hardware_enabled;
69 
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72 
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74 
75 struct dentry *kvm_debugfs_dir;
76 
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 			   unsigned long arg);
79 
80 static bool kvm_rebooting;
81 
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 						      int assigned_dev_id)
85 {
86 	struct list_head *ptr;
87 	struct kvm_assigned_dev_kernel *match;
88 
89 	list_for_each(ptr, head) {
90 		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 		if (match->assigned_dev_id == assigned_dev_id)
92 			return match;
93 	}
94 	return NULL;
95 }
96 
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 				    *assigned_dev, int irq)
99 {
100 	int i, index;
101 	struct msix_entry *host_msix_entries;
102 
103 	host_msix_entries = assigned_dev->host_msix_entries;
104 
105 	index = -1;
106 	for (i = 0; i < assigned_dev->entries_nr; i++)
107 		if (irq == host_msix_entries[i].vector) {
108 			index = i;
109 			break;
110 		}
111 	if (index < 0) {
112 		printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 		return 0;
114 	}
115 
116 	return index;
117 }
118 
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121 	struct kvm_assigned_dev_kernel *assigned_dev;
122 	struct kvm *kvm;
123 	int irq, i;
124 
125 	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 				    interrupt_work);
127 	kvm = assigned_dev->kvm;
128 
129 	/* This is taken to safely inject irq inside the guest. When
130 	 * the interrupt injection (or the ioapic code) uses a
131 	 * finer-grained lock, update this
132 	 */
133 	mutex_lock(&kvm->lock);
134 	spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 		struct kvm_guest_msix_entry *guest_entries =
137 			assigned_dev->guest_msix_entries;
138 		for (i = 0; i < assigned_dev->entries_nr; i++) {
139 			if (!(guest_entries[i].flags &
140 					KVM_ASSIGNED_MSIX_PENDING))
141 				continue;
142 			guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 			kvm_set_irq(assigned_dev->kvm,
144 				    assigned_dev->irq_source_id,
145 				    guest_entries[i].vector, 1);
146 			irq = assigned_dev->host_msix_entries[i].vector;
147 			if (irq != 0)
148 				enable_irq(irq);
149 			assigned_dev->host_irq_disabled = false;
150 		}
151 	} else {
152 		kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153 			    assigned_dev->guest_irq, 1);
154 		if (assigned_dev->irq_requested_type &
155 				KVM_DEV_IRQ_GUEST_MSI) {
156 			enable_irq(assigned_dev->host_irq);
157 			assigned_dev->host_irq_disabled = false;
158 		}
159 	}
160 
161 	spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162 	mutex_unlock(&assigned_dev->kvm->lock);
163 }
164 
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
166 {
167 	unsigned long flags;
168 	struct kvm_assigned_dev_kernel *assigned_dev =
169 		(struct kvm_assigned_dev_kernel *) dev_id;
170 
171 	spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173 		int index = find_index_from_host_irq(assigned_dev, irq);
174 		if (index < 0)
175 			goto out;
176 		assigned_dev->guest_msix_entries[index].flags |=
177 			KVM_ASSIGNED_MSIX_PENDING;
178 	}
179 
180 	schedule_work(&assigned_dev->interrupt_work);
181 
182 	disable_irq_nosync(irq);
183 	assigned_dev->host_irq_disabled = true;
184 
185 out:
186 	spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187 	return IRQ_HANDLED;
188 }
189 
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
192 {
193 	struct kvm_assigned_dev_kernel *dev;
194 	unsigned long flags;
195 
196 	if (kian->gsi == -1)
197 		return;
198 
199 	dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 			   ack_notifier);
201 
202 	kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203 
204 	/* The guest irq may be shared so this ack may be
205 	 * from another device.
206 	 */
207 	spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208 	if (dev->host_irq_disabled) {
209 		enable_irq(dev->host_irq);
210 		dev->host_irq_disabled = false;
211 	}
212 	spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
213 }
214 
215 static void deassign_guest_irq(struct kvm *kvm,
216 			       struct kvm_assigned_dev_kernel *assigned_dev)
217 {
218 	kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219 	assigned_dev->ack_notifier.gsi = -1;
220 
221 	if (assigned_dev->irq_source_id != -1)
222 		kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223 	assigned_dev->irq_source_id = -1;
224 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
225 }
226 
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229 			      struct kvm_assigned_dev_kernel *assigned_dev)
230 {
231 	/*
232 	 * In kvm_free_device_irq, cancel_work_sync return true if:
233 	 * 1. work is scheduled, and then cancelled.
234 	 * 2. work callback is executed.
235 	 *
236 	 * The first one ensured that the irq is disabled and no more events
237 	 * would happen. But for the second one, the irq may be enabled (e.g.
238 	 * for MSI). So we disable irq here to prevent further events.
239 	 *
240 	 * Notice this maybe result in nested disable if the interrupt type is
241 	 * INTx, but it's OK for we are going to free it.
242 	 *
243 	 * If this function is a part of VM destroy, please ensure that till
244 	 * now, the kvm state is still legal for probably we also have to wait
245 	 * interrupt_work done.
246 	 */
247 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248 		int i;
249 		for (i = 0; i < assigned_dev->entries_nr; i++)
250 			disable_irq_nosync(assigned_dev->
251 					   host_msix_entries[i].vector);
252 
253 		cancel_work_sync(&assigned_dev->interrupt_work);
254 
255 		for (i = 0; i < assigned_dev->entries_nr; i++)
256 			free_irq(assigned_dev->host_msix_entries[i].vector,
257 				 (void *)assigned_dev);
258 
259 		assigned_dev->entries_nr = 0;
260 		kfree(assigned_dev->host_msix_entries);
261 		kfree(assigned_dev->guest_msix_entries);
262 		pci_disable_msix(assigned_dev->dev);
263 	} else {
264 		/* Deal with MSI and INTx */
265 		disable_irq_nosync(assigned_dev->host_irq);
266 		cancel_work_sync(&assigned_dev->interrupt_work);
267 
268 		free_irq(assigned_dev->host_irq, (void *)assigned_dev);
269 
270 		if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271 			pci_disable_msi(assigned_dev->dev);
272 	}
273 
274 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
275 }
276 
277 static int kvm_deassign_irq(struct kvm *kvm,
278 			    struct kvm_assigned_dev_kernel *assigned_dev,
279 			    unsigned long irq_requested_type)
280 {
281 	unsigned long guest_irq_type, host_irq_type;
282 
283 	if (!irqchip_in_kernel(kvm))
284 		return -EINVAL;
285 	/* no irq assignment to deassign */
286 	if (!assigned_dev->irq_requested_type)
287 		return -ENXIO;
288 
289 	host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290 	guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
291 
292 	if (host_irq_type)
293 		deassign_host_irq(kvm, assigned_dev);
294 	if (guest_irq_type)
295 		deassign_guest_irq(kvm, assigned_dev);
296 
297 	return 0;
298 }
299 
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301 				  struct kvm_assigned_dev_kernel *assigned_dev)
302 {
303 	kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
304 }
305 
306 static void kvm_free_assigned_device(struct kvm *kvm,
307 				     struct kvm_assigned_dev_kernel
308 				     *assigned_dev)
309 {
310 	kvm_free_assigned_irq(kvm, assigned_dev);
311 
312 	pci_reset_function(assigned_dev->dev);
313 
314 	pci_release_regions(assigned_dev->dev);
315 	pci_disable_device(assigned_dev->dev);
316 	pci_dev_put(assigned_dev->dev);
317 
318 	list_del(&assigned_dev->list);
319 	kfree(assigned_dev);
320 }
321 
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
323 {
324 	struct list_head *ptr, *ptr2;
325 	struct kvm_assigned_dev_kernel *assigned_dev;
326 
327 	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328 		assigned_dev = list_entry(ptr,
329 					  struct kvm_assigned_dev_kernel,
330 					  list);
331 
332 		kvm_free_assigned_device(kvm, assigned_dev);
333 	}
334 }
335 
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337 					    struct kvm_assigned_dev_kernel *dev)
338 {
339 	dev->host_irq = dev->dev->irq;
340 	/* Even though this is PCI, we don't want to use shared
341 	 * interrupts. Sharing host devices with guest-assigned devices
342 	 * on the same interrupt line is not a happy situation: there
343 	 * are going to be long delays in accepting, acking, etc.
344 	 */
345 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346 			0, "kvm_assigned_intx_device", (void *)dev))
347 		return -EIO;
348 	return 0;
349 }
350 
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353 					   struct kvm_assigned_dev_kernel *dev)
354 {
355 	int r;
356 
357 	if (!dev->dev->msi_enabled) {
358 		r = pci_enable_msi(dev->dev);
359 		if (r)
360 			return r;
361 	}
362 
363 	dev->host_irq = dev->dev->irq;
364 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365 			"kvm_assigned_msi_device", (void *)dev)) {
366 		pci_disable_msi(dev->dev);
367 		return -EIO;
368 	}
369 
370 	return 0;
371 }
372 #endif
373 
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376 					    struct kvm_assigned_dev_kernel *dev)
377 {
378 	int i, r = -EINVAL;
379 
380 	/* host_msix_entries and guest_msix_entries should have been
381 	 * initialized */
382 	if (dev->entries_nr == 0)
383 		return r;
384 
385 	r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386 	if (r)
387 		return r;
388 
389 	for (i = 0; i < dev->entries_nr; i++) {
390 		r = request_irq(dev->host_msix_entries[i].vector,
391 				kvm_assigned_dev_intr, 0,
392 				"kvm_assigned_msix_device",
393 				(void *)dev);
394 		/* FIXME: free requested_irq's on failure */
395 		if (r)
396 			return r;
397 	}
398 
399 	return 0;
400 }
401 
402 #endif
403 
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405 				struct kvm_assigned_dev_kernel *dev,
406 				struct kvm_assigned_irq *irq)
407 {
408 	dev->guest_irq = irq->guest_irq;
409 	dev->ack_notifier.gsi = irq->guest_irq;
410 	return 0;
411 }
412 
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415 			struct kvm_assigned_dev_kernel *dev,
416 			struct kvm_assigned_irq *irq)
417 {
418 	dev->guest_irq = irq->guest_irq;
419 	dev->ack_notifier.gsi = -1;
420 	return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 			struct kvm_assigned_dev_kernel *dev,
426 			struct kvm_assigned_irq *irq)
427 {
428 	dev->guest_irq = irq->guest_irq;
429 	dev->ack_notifier.gsi = -1;
430 	return 0;
431 }
432 #endif
433 
434 static int assign_host_irq(struct kvm *kvm,
435 			   struct kvm_assigned_dev_kernel *dev,
436 			   __u32 host_irq_type)
437 {
438 	int r = -EEXIST;
439 
440 	if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441 		return r;
442 
443 	switch (host_irq_type) {
444 	case KVM_DEV_IRQ_HOST_INTX:
445 		r = assigned_device_enable_host_intx(kvm, dev);
446 		break;
447 #ifdef __KVM_HAVE_MSI
448 	case KVM_DEV_IRQ_HOST_MSI:
449 		r = assigned_device_enable_host_msi(kvm, dev);
450 		break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453 	case KVM_DEV_IRQ_HOST_MSIX:
454 		r = assigned_device_enable_host_msix(kvm, dev);
455 		break;
456 #endif
457 	default:
458 		r = -EINVAL;
459 	}
460 
461 	if (!r)
462 		dev->irq_requested_type |= host_irq_type;
463 
464 	return r;
465 }
466 
467 static int assign_guest_irq(struct kvm *kvm,
468 			    struct kvm_assigned_dev_kernel *dev,
469 			    struct kvm_assigned_irq *irq,
470 			    unsigned long guest_irq_type)
471 {
472 	int id;
473 	int r = -EEXIST;
474 
475 	if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476 		return r;
477 
478 	id = kvm_request_irq_source_id(kvm);
479 	if (id < 0)
480 		return id;
481 
482 	dev->irq_source_id = id;
483 
484 	switch (guest_irq_type) {
485 	case KVM_DEV_IRQ_GUEST_INTX:
486 		r = assigned_device_enable_guest_intx(kvm, dev, irq);
487 		break;
488 #ifdef __KVM_HAVE_MSI
489 	case KVM_DEV_IRQ_GUEST_MSI:
490 		r = assigned_device_enable_guest_msi(kvm, dev, irq);
491 		break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494 	case KVM_DEV_IRQ_GUEST_MSIX:
495 		r = assigned_device_enable_guest_msix(kvm, dev, irq);
496 		break;
497 #endif
498 	default:
499 		r = -EINVAL;
500 	}
501 
502 	if (!r) {
503 		dev->irq_requested_type |= guest_irq_type;
504 		kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505 	} else
506 		kvm_free_irq_source_id(kvm, dev->irq_source_id);
507 
508 	return r;
509 }
510 
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513 				   struct kvm_assigned_irq *assigned_irq)
514 {
515 	int r = -EINVAL;
516 	struct kvm_assigned_dev_kernel *match;
517 	unsigned long host_irq_type, guest_irq_type;
518 
519 	if (!capable(CAP_SYS_RAWIO))
520 		return -EPERM;
521 
522 	if (!irqchip_in_kernel(kvm))
523 		return r;
524 
525 	mutex_lock(&kvm->lock);
526 	r = -ENODEV;
527 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528 				      assigned_irq->assigned_dev_id);
529 	if (!match)
530 		goto out;
531 
532 	host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533 	guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
534 
535 	r = -EINVAL;
536 	/* can only assign one type at a time */
537 	if (hweight_long(host_irq_type) > 1)
538 		goto out;
539 	if (hweight_long(guest_irq_type) > 1)
540 		goto out;
541 	if (host_irq_type == 0 && guest_irq_type == 0)
542 		goto out;
543 
544 	r = 0;
545 	if (host_irq_type)
546 		r = assign_host_irq(kvm, match, host_irq_type);
547 	if (r)
548 		goto out;
549 
550 	if (guest_irq_type)
551 		r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553 	mutex_unlock(&kvm->lock);
554 	return r;
555 }
556 
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558 					 struct kvm_assigned_irq
559 					 *assigned_irq)
560 {
561 	int r = -ENODEV;
562 	struct kvm_assigned_dev_kernel *match;
563 
564 	mutex_lock(&kvm->lock);
565 
566 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567 				      assigned_irq->assigned_dev_id);
568 	if (!match)
569 		goto out;
570 
571 	r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573 	mutex_unlock(&kvm->lock);
574 	return r;
575 }
576 
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578 				      struct kvm_assigned_pci_dev *assigned_dev)
579 {
580 	int r = 0;
581 	struct kvm_assigned_dev_kernel *match;
582 	struct pci_dev *dev;
583 
584 	down_read(&kvm->slots_lock);
585 	mutex_lock(&kvm->lock);
586 
587 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588 				      assigned_dev->assigned_dev_id);
589 	if (match) {
590 		/* device already assigned */
591 		r = -EEXIST;
592 		goto out;
593 	}
594 
595 	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596 	if (match == NULL) {
597 		printk(KERN_INFO "%s: Couldn't allocate memory\n",
598 		       __func__);
599 		r = -ENOMEM;
600 		goto out;
601 	}
602 	dev = pci_get_bus_and_slot(assigned_dev->busnr,
603 				   assigned_dev->devfn);
604 	if (!dev) {
605 		printk(KERN_INFO "%s: host device not found\n", __func__);
606 		r = -EINVAL;
607 		goto out_free;
608 	}
609 	if (pci_enable_device(dev)) {
610 		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611 		r = -EBUSY;
612 		goto out_put;
613 	}
614 	r = pci_request_regions(dev, "kvm_assigned_device");
615 	if (r) {
616 		printk(KERN_INFO "%s: Could not get access to device regions\n",
617 		       __func__);
618 		goto out_disable;
619 	}
620 
621 	pci_reset_function(dev);
622 
623 	match->assigned_dev_id = assigned_dev->assigned_dev_id;
624 	match->host_busnr = assigned_dev->busnr;
625 	match->host_devfn = assigned_dev->devfn;
626 	match->flags = assigned_dev->flags;
627 	match->dev = dev;
628 	spin_lock_init(&match->assigned_dev_lock);
629 	match->irq_source_id = -1;
630 	match->kvm = kvm;
631 	match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632 	INIT_WORK(&match->interrupt_work,
633 		  kvm_assigned_dev_interrupt_work_handler);
634 
635 	list_add(&match->list, &kvm->arch.assigned_dev_head);
636 
637 	if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638 		if (!kvm->arch.iommu_domain) {
639 			r = kvm_iommu_map_guest(kvm);
640 			if (r)
641 				goto out_list_del;
642 		}
643 		r = kvm_assign_device(kvm, match);
644 		if (r)
645 			goto out_list_del;
646 	}
647 
648 out:
649 	mutex_unlock(&kvm->lock);
650 	up_read(&kvm->slots_lock);
651 	return r;
652 out_list_del:
653 	list_del(&match->list);
654 	pci_release_regions(dev);
655 out_disable:
656 	pci_disable_device(dev);
657 out_put:
658 	pci_dev_put(dev);
659 out_free:
660 	kfree(match);
661 	mutex_unlock(&kvm->lock);
662 	up_read(&kvm->slots_lock);
663 	return r;
664 }
665 #endif
666 
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669 		struct kvm_assigned_pci_dev *assigned_dev)
670 {
671 	int r = 0;
672 	struct kvm_assigned_dev_kernel *match;
673 
674 	mutex_lock(&kvm->lock);
675 
676 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677 				      assigned_dev->assigned_dev_id);
678 	if (!match) {
679 		printk(KERN_INFO "%s: device hasn't been assigned before, "
680 		  "so cannot be deassigned\n", __func__);
681 		r = -EINVAL;
682 		goto out;
683 	}
684 
685 	if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686 		kvm_deassign_device(kvm, match);
687 
688 	kvm_free_assigned_device(kvm, match);
689 
690 out:
691 	mutex_unlock(&kvm->lock);
692 	return r;
693 }
694 #endif
695 
696 static inline int valid_vcpu(int n)
697 {
698 	return likely(n >= 0 && n < KVM_MAX_VCPUS);
699 }
700 
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
702 {
703 	if (pfn_valid(pfn)) {
704 		struct page *page = compound_head(pfn_to_page(pfn));
705 		return PageReserved(page);
706 	}
707 
708 	return true;
709 }
710 
711 /*
712  * Switches to specified vcpu, until a matching vcpu_put()
713  */
714 void vcpu_load(struct kvm_vcpu *vcpu)
715 {
716 	int cpu;
717 
718 	mutex_lock(&vcpu->mutex);
719 	cpu = get_cpu();
720 	preempt_notifier_register(&vcpu->preempt_notifier);
721 	kvm_arch_vcpu_load(vcpu, cpu);
722 	put_cpu();
723 }
724 
725 void vcpu_put(struct kvm_vcpu *vcpu)
726 {
727 	preempt_disable();
728 	kvm_arch_vcpu_put(vcpu);
729 	preempt_notifier_unregister(&vcpu->preempt_notifier);
730 	preempt_enable();
731 	mutex_unlock(&vcpu->mutex);
732 }
733 
734 static void ack_flush(void *_completed)
735 {
736 }
737 
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
739 {
740 	int i, cpu, me;
741 	cpumask_var_t cpus;
742 	bool called = true;
743 	struct kvm_vcpu *vcpu;
744 
745 	if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746 		cpumask_clear(cpus);
747 
748 	me = get_cpu();
749 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
750 		vcpu = kvm->vcpus[i];
751 		if (!vcpu)
752 			continue;
753 		if (test_and_set_bit(req, &vcpu->requests))
754 			continue;
755 		cpu = vcpu->cpu;
756 		if (cpus != NULL && cpu != -1 && cpu != me)
757 			cpumask_set_cpu(cpu, cpus);
758 	}
759 	if (unlikely(cpus == NULL))
760 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
761 	else if (!cpumask_empty(cpus))
762 		smp_call_function_many(cpus, ack_flush, NULL, 1);
763 	else
764 		called = false;
765 	put_cpu();
766 	free_cpumask_var(cpus);
767 	return called;
768 }
769 
770 void kvm_flush_remote_tlbs(struct kvm *kvm)
771 {
772 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
773 		++kvm->stat.remote_tlb_flush;
774 }
775 
776 void kvm_reload_remote_mmus(struct kvm *kvm)
777 {
778 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
779 }
780 
781 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
782 {
783 	struct page *page;
784 	int r;
785 
786 	mutex_init(&vcpu->mutex);
787 	vcpu->cpu = -1;
788 	vcpu->kvm = kvm;
789 	vcpu->vcpu_id = id;
790 	init_waitqueue_head(&vcpu->wq);
791 
792 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
793 	if (!page) {
794 		r = -ENOMEM;
795 		goto fail;
796 	}
797 	vcpu->run = page_address(page);
798 
799 	r = kvm_arch_vcpu_init(vcpu);
800 	if (r < 0)
801 		goto fail_free_run;
802 	return 0;
803 
804 fail_free_run:
805 	free_page((unsigned long)vcpu->run);
806 fail:
807 	return r;
808 }
809 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
810 
811 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
812 {
813 	kvm_arch_vcpu_uninit(vcpu);
814 	free_page((unsigned long)vcpu->run);
815 }
816 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
817 
818 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
819 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
820 {
821 	return container_of(mn, struct kvm, mmu_notifier);
822 }
823 
824 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
825 					     struct mm_struct *mm,
826 					     unsigned long address)
827 {
828 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
829 	int need_tlb_flush;
830 
831 	/*
832 	 * When ->invalidate_page runs, the linux pte has been zapped
833 	 * already but the page is still allocated until
834 	 * ->invalidate_page returns. So if we increase the sequence
835 	 * here the kvm page fault will notice if the spte can't be
836 	 * established because the page is going to be freed. If
837 	 * instead the kvm page fault establishes the spte before
838 	 * ->invalidate_page runs, kvm_unmap_hva will release it
839 	 * before returning.
840 	 *
841 	 * The sequence increase only need to be seen at spin_unlock
842 	 * time, and not at spin_lock time.
843 	 *
844 	 * Increasing the sequence after the spin_unlock would be
845 	 * unsafe because the kvm page fault could then establish the
846 	 * pte after kvm_unmap_hva returned, without noticing the page
847 	 * is going to be freed.
848 	 */
849 	spin_lock(&kvm->mmu_lock);
850 	kvm->mmu_notifier_seq++;
851 	need_tlb_flush = kvm_unmap_hva(kvm, address);
852 	spin_unlock(&kvm->mmu_lock);
853 
854 	/* we've to flush the tlb before the pages can be freed */
855 	if (need_tlb_flush)
856 		kvm_flush_remote_tlbs(kvm);
857 
858 }
859 
860 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
861 						    struct mm_struct *mm,
862 						    unsigned long start,
863 						    unsigned long end)
864 {
865 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
866 	int need_tlb_flush = 0;
867 
868 	spin_lock(&kvm->mmu_lock);
869 	/*
870 	 * The count increase must become visible at unlock time as no
871 	 * spte can be established without taking the mmu_lock and
872 	 * count is also read inside the mmu_lock critical section.
873 	 */
874 	kvm->mmu_notifier_count++;
875 	for (; start < end; start += PAGE_SIZE)
876 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
877 	spin_unlock(&kvm->mmu_lock);
878 
879 	/* we've to flush the tlb before the pages can be freed */
880 	if (need_tlb_flush)
881 		kvm_flush_remote_tlbs(kvm);
882 }
883 
884 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
885 						  struct mm_struct *mm,
886 						  unsigned long start,
887 						  unsigned long end)
888 {
889 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
890 
891 	spin_lock(&kvm->mmu_lock);
892 	/*
893 	 * This sequence increase will notify the kvm page fault that
894 	 * the page that is going to be mapped in the spte could have
895 	 * been freed.
896 	 */
897 	kvm->mmu_notifier_seq++;
898 	/*
899 	 * The above sequence increase must be visible before the
900 	 * below count decrease but both values are read by the kvm
901 	 * page fault under mmu_lock spinlock so we don't need to add
902 	 * a smb_wmb() here in between the two.
903 	 */
904 	kvm->mmu_notifier_count--;
905 	spin_unlock(&kvm->mmu_lock);
906 
907 	BUG_ON(kvm->mmu_notifier_count < 0);
908 }
909 
910 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
911 					      struct mm_struct *mm,
912 					      unsigned long address)
913 {
914 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
915 	int young;
916 
917 	spin_lock(&kvm->mmu_lock);
918 	young = kvm_age_hva(kvm, address);
919 	spin_unlock(&kvm->mmu_lock);
920 
921 	if (young)
922 		kvm_flush_remote_tlbs(kvm);
923 
924 	return young;
925 }
926 
927 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
928 				     struct mm_struct *mm)
929 {
930 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
931 	kvm_arch_flush_shadow(kvm);
932 }
933 
934 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
935 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
936 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
937 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
938 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
939 	.release		= kvm_mmu_notifier_release,
940 };
941 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
942 
943 static struct kvm *kvm_create_vm(void)
944 {
945 	struct kvm *kvm = kvm_arch_create_vm();
946 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
947 	struct page *page;
948 #endif
949 
950 	if (IS_ERR(kvm))
951 		goto out;
952 #ifdef CONFIG_HAVE_KVM_IRQCHIP
953 	INIT_LIST_HEAD(&kvm->irq_routing);
954 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
955 #endif
956 
957 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
958 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
959 	if (!page) {
960 		kfree(kvm);
961 		return ERR_PTR(-ENOMEM);
962 	}
963 	kvm->coalesced_mmio_ring =
964 			(struct kvm_coalesced_mmio_ring *)page_address(page);
965 #endif
966 
967 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
968 	{
969 		int err;
970 		kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
971 		err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
972 		if (err) {
973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
974 			put_page(page);
975 #endif
976 			kfree(kvm);
977 			return ERR_PTR(err);
978 		}
979 	}
980 #endif
981 
982 	kvm->mm = current->mm;
983 	atomic_inc(&kvm->mm->mm_count);
984 	spin_lock_init(&kvm->mmu_lock);
985 	kvm_io_bus_init(&kvm->pio_bus);
986 	mutex_init(&kvm->lock);
987 	kvm_io_bus_init(&kvm->mmio_bus);
988 	init_rwsem(&kvm->slots_lock);
989 	atomic_set(&kvm->users_count, 1);
990 	spin_lock(&kvm_lock);
991 	list_add(&kvm->vm_list, &vm_list);
992 	spin_unlock(&kvm_lock);
993 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
994 	kvm_coalesced_mmio_init(kvm);
995 #endif
996 out:
997 	return kvm;
998 }
999 
1000 /*
1001  * Free any memory in @free but not in @dont.
1002  */
1003 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1004 				  struct kvm_memory_slot *dont)
1005 {
1006 	if (!dont || free->rmap != dont->rmap)
1007 		vfree(free->rmap);
1008 
1009 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1010 		vfree(free->dirty_bitmap);
1011 
1012 	if (!dont || free->lpage_info != dont->lpage_info)
1013 		vfree(free->lpage_info);
1014 
1015 	free->npages = 0;
1016 	free->dirty_bitmap = NULL;
1017 	free->rmap = NULL;
1018 	free->lpage_info = NULL;
1019 }
1020 
1021 void kvm_free_physmem(struct kvm *kvm)
1022 {
1023 	int i;
1024 
1025 	for (i = 0; i < kvm->nmemslots; ++i)
1026 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1027 }
1028 
1029 static void kvm_destroy_vm(struct kvm *kvm)
1030 {
1031 	struct mm_struct *mm = kvm->mm;
1032 
1033 	kvm_arch_sync_events(kvm);
1034 	spin_lock(&kvm_lock);
1035 	list_del(&kvm->vm_list);
1036 	spin_unlock(&kvm_lock);
1037 	kvm_free_irq_routing(kvm);
1038 	kvm_io_bus_destroy(&kvm->pio_bus);
1039 	kvm_io_bus_destroy(&kvm->mmio_bus);
1040 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1041 	if (kvm->coalesced_mmio_ring != NULL)
1042 		free_page((unsigned long)kvm->coalesced_mmio_ring);
1043 #endif
1044 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1045 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1046 #else
1047 	kvm_arch_flush_shadow(kvm);
1048 #endif
1049 	kvm_arch_destroy_vm(kvm);
1050 	mmdrop(mm);
1051 }
1052 
1053 void kvm_get_kvm(struct kvm *kvm)
1054 {
1055 	atomic_inc(&kvm->users_count);
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1058 
1059 void kvm_put_kvm(struct kvm *kvm)
1060 {
1061 	if (atomic_dec_and_test(&kvm->users_count))
1062 		kvm_destroy_vm(kvm);
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1065 
1066 
1067 static int kvm_vm_release(struct inode *inode, struct file *filp)
1068 {
1069 	struct kvm *kvm = filp->private_data;
1070 
1071 	kvm_put_kvm(kvm);
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Allocate some memory and give it an address in the guest physical address
1077  * space.
1078  *
1079  * Discontiguous memory is allowed, mostly for framebuffers.
1080  *
1081  * Must be called holding mmap_sem for write.
1082  */
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084 			    struct kvm_userspace_memory_region *mem,
1085 			    int user_alloc)
1086 {
1087 	int r;
1088 	gfn_t base_gfn;
1089 	unsigned long npages, ugfn;
1090 	unsigned long largepages, i;
1091 	struct kvm_memory_slot *memslot;
1092 	struct kvm_memory_slot old, new;
1093 
1094 	r = -EINVAL;
1095 	/* General sanity checks */
1096 	if (mem->memory_size & (PAGE_SIZE - 1))
1097 		goto out;
1098 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1099 		goto out;
1100 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1101 		goto out;
1102 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1103 		goto out;
1104 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1105 		goto out;
1106 
1107 	memslot = &kvm->memslots[mem->slot];
1108 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1109 	npages = mem->memory_size >> PAGE_SHIFT;
1110 
1111 	if (!npages)
1112 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1113 
1114 	new = old = *memslot;
1115 
1116 	new.base_gfn = base_gfn;
1117 	new.npages = npages;
1118 	new.flags = mem->flags;
1119 
1120 	/* Disallow changing a memory slot's size. */
1121 	r = -EINVAL;
1122 	if (npages && old.npages && npages != old.npages)
1123 		goto out_free;
1124 
1125 	/* Check for overlaps */
1126 	r = -EEXIST;
1127 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1128 		struct kvm_memory_slot *s = &kvm->memslots[i];
1129 
1130 		if (s == memslot || !s->npages)
1131 			continue;
1132 		if (!((base_gfn + npages <= s->base_gfn) ||
1133 		      (base_gfn >= s->base_gfn + s->npages)))
1134 			goto out_free;
1135 	}
1136 
1137 	/* Free page dirty bitmap if unneeded */
1138 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1139 		new.dirty_bitmap = NULL;
1140 
1141 	r = -ENOMEM;
1142 
1143 	/* Allocate if a slot is being created */
1144 #ifndef CONFIG_S390
1145 	if (npages && !new.rmap) {
1146 		new.rmap = vmalloc(npages * sizeof(struct page *));
1147 
1148 		if (!new.rmap)
1149 			goto out_free;
1150 
1151 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
1152 
1153 		new.user_alloc = user_alloc;
1154 		/*
1155 		 * hva_to_rmmap() serialzies with the mmu_lock and to be
1156 		 * safe it has to ignore memslots with !user_alloc &&
1157 		 * !userspace_addr.
1158 		 */
1159 		if (user_alloc)
1160 			new.userspace_addr = mem->userspace_addr;
1161 		else
1162 			new.userspace_addr = 0;
1163 	}
1164 	if (npages && !new.lpage_info) {
1165 		largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1166 		largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1167 
1168 		new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1169 
1170 		if (!new.lpage_info)
1171 			goto out_free;
1172 
1173 		memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1174 
1175 		if (base_gfn % KVM_PAGES_PER_HPAGE)
1176 			new.lpage_info[0].write_count = 1;
1177 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1178 			new.lpage_info[largepages-1].write_count = 1;
1179 		ugfn = new.userspace_addr >> PAGE_SHIFT;
1180 		/*
1181 		 * If the gfn and userspace address are not aligned wrt each
1182 		 * other, disable large page support for this slot
1183 		 */
1184 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1185 			for (i = 0; i < largepages; ++i)
1186 				new.lpage_info[i].write_count = 1;
1187 	}
1188 
1189 	/* Allocate page dirty bitmap if needed */
1190 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1191 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1192 
1193 		new.dirty_bitmap = vmalloc(dirty_bytes);
1194 		if (!new.dirty_bitmap)
1195 			goto out_free;
1196 		memset(new.dirty_bitmap, 0, dirty_bytes);
1197 	}
1198 #endif /* not defined CONFIG_S390 */
1199 
1200 	if (!npages)
1201 		kvm_arch_flush_shadow(kvm);
1202 
1203 	spin_lock(&kvm->mmu_lock);
1204 	if (mem->slot >= kvm->nmemslots)
1205 		kvm->nmemslots = mem->slot + 1;
1206 
1207 	*memslot = new;
1208 	spin_unlock(&kvm->mmu_lock);
1209 
1210 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1211 	if (r) {
1212 		spin_lock(&kvm->mmu_lock);
1213 		*memslot = old;
1214 		spin_unlock(&kvm->mmu_lock);
1215 		goto out_free;
1216 	}
1217 
1218 	kvm_free_physmem_slot(&old, npages ? &new : NULL);
1219 	/* Slot deletion case: we have to update the current slot */
1220 	spin_lock(&kvm->mmu_lock);
1221 	if (!npages)
1222 		*memslot = old;
1223 	spin_unlock(&kvm->mmu_lock);
1224 #ifdef CONFIG_DMAR
1225 	/* map the pages in iommu page table */
1226 	r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1227 	if (r)
1228 		goto out;
1229 #endif
1230 	return 0;
1231 
1232 out_free:
1233 	kvm_free_physmem_slot(&new, &old);
1234 out:
1235 	return r;
1236 
1237 }
1238 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1239 
1240 int kvm_set_memory_region(struct kvm *kvm,
1241 			  struct kvm_userspace_memory_region *mem,
1242 			  int user_alloc)
1243 {
1244 	int r;
1245 
1246 	down_write(&kvm->slots_lock);
1247 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
1248 	up_write(&kvm->slots_lock);
1249 	return r;
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1252 
1253 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1254 				   struct
1255 				   kvm_userspace_memory_region *mem,
1256 				   int user_alloc)
1257 {
1258 	if (mem->slot >= KVM_MEMORY_SLOTS)
1259 		return -EINVAL;
1260 	return kvm_set_memory_region(kvm, mem, user_alloc);
1261 }
1262 
1263 int kvm_get_dirty_log(struct kvm *kvm,
1264 			struct kvm_dirty_log *log, int *is_dirty)
1265 {
1266 	struct kvm_memory_slot *memslot;
1267 	int r, i;
1268 	int n;
1269 	unsigned long any = 0;
1270 
1271 	r = -EINVAL;
1272 	if (log->slot >= KVM_MEMORY_SLOTS)
1273 		goto out;
1274 
1275 	memslot = &kvm->memslots[log->slot];
1276 	r = -ENOENT;
1277 	if (!memslot->dirty_bitmap)
1278 		goto out;
1279 
1280 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1281 
1282 	for (i = 0; !any && i < n/sizeof(long); ++i)
1283 		any = memslot->dirty_bitmap[i];
1284 
1285 	r = -EFAULT;
1286 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1287 		goto out;
1288 
1289 	if (any)
1290 		*is_dirty = 1;
1291 
1292 	r = 0;
1293 out:
1294 	return r;
1295 }
1296 
1297 int is_error_page(struct page *page)
1298 {
1299 	return page == bad_page;
1300 }
1301 EXPORT_SYMBOL_GPL(is_error_page);
1302 
1303 int is_error_pfn(pfn_t pfn)
1304 {
1305 	return pfn == bad_pfn;
1306 }
1307 EXPORT_SYMBOL_GPL(is_error_pfn);
1308 
1309 static inline unsigned long bad_hva(void)
1310 {
1311 	return PAGE_OFFSET;
1312 }
1313 
1314 int kvm_is_error_hva(unsigned long addr)
1315 {
1316 	return addr == bad_hva();
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1319 
1320 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1321 {
1322 	int i;
1323 
1324 	for (i = 0; i < kvm->nmemslots; ++i) {
1325 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1326 
1327 		if (gfn >= memslot->base_gfn
1328 		    && gfn < memslot->base_gfn + memslot->npages)
1329 			return memslot;
1330 	}
1331 	return NULL;
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1334 
1335 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1336 {
1337 	gfn = unalias_gfn(kvm, gfn);
1338 	return gfn_to_memslot_unaliased(kvm, gfn);
1339 }
1340 
1341 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1342 {
1343 	int i;
1344 
1345 	gfn = unalias_gfn(kvm, gfn);
1346 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1347 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1348 
1349 		if (gfn >= memslot->base_gfn
1350 		    && gfn < memslot->base_gfn + memslot->npages)
1351 			return 1;
1352 	}
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1356 
1357 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1358 {
1359 	struct kvm_memory_slot *slot;
1360 
1361 	gfn = unalias_gfn(kvm, gfn);
1362 	slot = gfn_to_memslot_unaliased(kvm, gfn);
1363 	if (!slot)
1364 		return bad_hva();
1365 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1366 }
1367 EXPORT_SYMBOL_GPL(gfn_to_hva);
1368 
1369 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1370 {
1371 	struct page *page[1];
1372 	unsigned long addr;
1373 	int npages;
1374 	pfn_t pfn;
1375 
1376 	might_sleep();
1377 
1378 	addr = gfn_to_hva(kvm, gfn);
1379 	if (kvm_is_error_hva(addr)) {
1380 		get_page(bad_page);
1381 		return page_to_pfn(bad_page);
1382 	}
1383 
1384 	npages = get_user_pages_fast(addr, 1, 1, page);
1385 
1386 	if (unlikely(npages != 1)) {
1387 		struct vm_area_struct *vma;
1388 
1389 		down_read(&current->mm->mmap_sem);
1390 		vma = find_vma(current->mm, addr);
1391 
1392 		if (vma == NULL || addr < vma->vm_start ||
1393 		    !(vma->vm_flags & VM_PFNMAP)) {
1394 			up_read(&current->mm->mmap_sem);
1395 			get_page(bad_page);
1396 			return page_to_pfn(bad_page);
1397 		}
1398 
1399 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1400 		up_read(&current->mm->mmap_sem);
1401 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1402 	} else
1403 		pfn = page_to_pfn(page[0]);
1404 
1405 	return pfn;
1406 }
1407 
1408 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1409 
1410 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1411 {
1412 	pfn_t pfn;
1413 
1414 	pfn = gfn_to_pfn(kvm, gfn);
1415 	if (!kvm_is_mmio_pfn(pfn))
1416 		return pfn_to_page(pfn);
1417 
1418 	WARN_ON(kvm_is_mmio_pfn(pfn));
1419 
1420 	get_page(bad_page);
1421 	return bad_page;
1422 }
1423 
1424 EXPORT_SYMBOL_GPL(gfn_to_page);
1425 
1426 void kvm_release_page_clean(struct page *page)
1427 {
1428 	kvm_release_pfn_clean(page_to_pfn(page));
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1431 
1432 void kvm_release_pfn_clean(pfn_t pfn)
1433 {
1434 	if (!kvm_is_mmio_pfn(pfn))
1435 		put_page(pfn_to_page(pfn));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1438 
1439 void kvm_release_page_dirty(struct page *page)
1440 {
1441 	kvm_release_pfn_dirty(page_to_pfn(page));
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1444 
1445 void kvm_release_pfn_dirty(pfn_t pfn)
1446 {
1447 	kvm_set_pfn_dirty(pfn);
1448 	kvm_release_pfn_clean(pfn);
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1451 
1452 void kvm_set_page_dirty(struct page *page)
1453 {
1454 	kvm_set_pfn_dirty(page_to_pfn(page));
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1457 
1458 void kvm_set_pfn_dirty(pfn_t pfn)
1459 {
1460 	if (!kvm_is_mmio_pfn(pfn)) {
1461 		struct page *page = pfn_to_page(pfn);
1462 		if (!PageReserved(page))
1463 			SetPageDirty(page);
1464 	}
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1467 
1468 void kvm_set_pfn_accessed(pfn_t pfn)
1469 {
1470 	if (!kvm_is_mmio_pfn(pfn))
1471 		mark_page_accessed(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1474 
1475 void kvm_get_pfn(pfn_t pfn)
1476 {
1477 	if (!kvm_is_mmio_pfn(pfn))
1478 		get_page(pfn_to_page(pfn));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1481 
1482 static int next_segment(unsigned long len, int offset)
1483 {
1484 	if (len > PAGE_SIZE - offset)
1485 		return PAGE_SIZE - offset;
1486 	else
1487 		return len;
1488 }
1489 
1490 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1491 			int len)
1492 {
1493 	int r;
1494 	unsigned long addr;
1495 
1496 	addr = gfn_to_hva(kvm, gfn);
1497 	if (kvm_is_error_hva(addr))
1498 		return -EFAULT;
1499 	r = copy_from_user(data, (void __user *)addr + offset, len);
1500 	if (r)
1501 		return -EFAULT;
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1505 
1506 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1507 {
1508 	gfn_t gfn = gpa >> PAGE_SHIFT;
1509 	int seg;
1510 	int offset = offset_in_page(gpa);
1511 	int ret;
1512 
1513 	while ((seg = next_segment(len, offset)) != 0) {
1514 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1515 		if (ret < 0)
1516 			return ret;
1517 		offset = 0;
1518 		len -= seg;
1519 		data += seg;
1520 		++gfn;
1521 	}
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest);
1525 
1526 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1527 			  unsigned long len)
1528 {
1529 	int r;
1530 	unsigned long addr;
1531 	gfn_t gfn = gpa >> PAGE_SHIFT;
1532 	int offset = offset_in_page(gpa);
1533 
1534 	addr = gfn_to_hva(kvm, gfn);
1535 	if (kvm_is_error_hva(addr))
1536 		return -EFAULT;
1537 	pagefault_disable();
1538 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1539 	pagefault_enable();
1540 	if (r)
1541 		return -EFAULT;
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(kvm_read_guest_atomic);
1545 
1546 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1547 			 int offset, int len)
1548 {
1549 	int r;
1550 	unsigned long addr;
1551 
1552 	addr = gfn_to_hva(kvm, gfn);
1553 	if (kvm_is_error_hva(addr))
1554 		return -EFAULT;
1555 	r = copy_to_user((void __user *)addr + offset, data, len);
1556 	if (r)
1557 		return -EFAULT;
1558 	mark_page_dirty(kvm, gfn);
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1562 
1563 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1564 		    unsigned long len)
1565 {
1566 	gfn_t gfn = gpa >> PAGE_SHIFT;
1567 	int seg;
1568 	int offset = offset_in_page(gpa);
1569 	int ret;
1570 
1571 	while ((seg = next_segment(len, offset)) != 0) {
1572 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1573 		if (ret < 0)
1574 			return ret;
1575 		offset = 0;
1576 		len -= seg;
1577 		data += seg;
1578 		++gfn;
1579 	}
1580 	return 0;
1581 }
1582 
1583 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1584 {
1585 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1588 
1589 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1590 {
1591 	gfn_t gfn = gpa >> PAGE_SHIFT;
1592 	int seg;
1593 	int offset = offset_in_page(gpa);
1594 	int ret;
1595 
1596         while ((seg = next_segment(len, offset)) != 0) {
1597 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1598 		if (ret < 0)
1599 			return ret;
1600 		offset = 0;
1601 		len -= seg;
1602 		++gfn;
1603 	}
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1607 
1608 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1609 {
1610 	struct kvm_memory_slot *memslot;
1611 
1612 	gfn = unalias_gfn(kvm, gfn);
1613 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1614 	if (memslot && memslot->dirty_bitmap) {
1615 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1616 
1617 		/* avoid RMW */
1618 		if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1619 			set_bit(rel_gfn, memslot->dirty_bitmap);
1620 	}
1621 }
1622 
1623 /*
1624  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1625  */
1626 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1627 {
1628 	DEFINE_WAIT(wait);
1629 
1630 	for (;;) {
1631 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1632 
1633 		if ((kvm_arch_interrupt_allowed(vcpu) &&
1634 					kvm_cpu_has_interrupt(vcpu)) ||
1635 				kvm_arch_vcpu_runnable(vcpu)) {
1636 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1637 			break;
1638 		}
1639 		if (kvm_cpu_has_pending_timer(vcpu))
1640 			break;
1641 		if (signal_pending(current))
1642 			break;
1643 
1644 		vcpu_put(vcpu);
1645 		schedule();
1646 		vcpu_load(vcpu);
1647 	}
1648 
1649 	finish_wait(&vcpu->wq, &wait);
1650 }
1651 
1652 void kvm_resched(struct kvm_vcpu *vcpu)
1653 {
1654 	if (!need_resched())
1655 		return;
1656 	cond_resched();
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_resched);
1659 
1660 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1661 {
1662 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1663 	struct page *page;
1664 
1665 	if (vmf->pgoff == 0)
1666 		page = virt_to_page(vcpu->run);
1667 #ifdef CONFIG_X86
1668 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1669 		page = virt_to_page(vcpu->arch.pio_data);
1670 #endif
1671 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1672 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1673 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1674 #endif
1675 	else
1676 		return VM_FAULT_SIGBUS;
1677 	get_page(page);
1678 	vmf->page = page;
1679 	return 0;
1680 }
1681 
1682 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1683 	.fault = kvm_vcpu_fault,
1684 };
1685 
1686 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1687 {
1688 	vma->vm_ops = &kvm_vcpu_vm_ops;
1689 	return 0;
1690 }
1691 
1692 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1693 {
1694 	struct kvm_vcpu *vcpu = filp->private_data;
1695 
1696 	kvm_put_kvm(vcpu->kvm);
1697 	return 0;
1698 }
1699 
1700 static struct file_operations kvm_vcpu_fops = {
1701 	.release        = kvm_vcpu_release,
1702 	.unlocked_ioctl = kvm_vcpu_ioctl,
1703 	.compat_ioctl   = kvm_vcpu_ioctl,
1704 	.mmap           = kvm_vcpu_mmap,
1705 };
1706 
1707 /*
1708  * Allocates an inode for the vcpu.
1709  */
1710 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1711 {
1712 	int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1713 	if (fd < 0)
1714 		kvm_put_kvm(vcpu->kvm);
1715 	return fd;
1716 }
1717 
1718 /*
1719  * Creates some virtual cpus.  Good luck creating more than one.
1720  */
1721 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1722 {
1723 	int r;
1724 	struct kvm_vcpu *vcpu;
1725 
1726 	if (!valid_vcpu(n))
1727 		return -EINVAL;
1728 
1729 	vcpu = kvm_arch_vcpu_create(kvm, n);
1730 	if (IS_ERR(vcpu))
1731 		return PTR_ERR(vcpu);
1732 
1733 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1734 
1735 	r = kvm_arch_vcpu_setup(vcpu);
1736 	if (r)
1737 		return r;
1738 
1739 	mutex_lock(&kvm->lock);
1740 	if (kvm->vcpus[n]) {
1741 		r = -EEXIST;
1742 		goto vcpu_destroy;
1743 	}
1744 	kvm->vcpus[n] = vcpu;
1745 	mutex_unlock(&kvm->lock);
1746 
1747 	/* Now it's all set up, let userspace reach it */
1748 	kvm_get_kvm(kvm);
1749 	r = create_vcpu_fd(vcpu);
1750 	if (r < 0)
1751 		goto unlink;
1752 	return r;
1753 
1754 unlink:
1755 	mutex_lock(&kvm->lock);
1756 	kvm->vcpus[n] = NULL;
1757 vcpu_destroy:
1758 	mutex_unlock(&kvm->lock);
1759 	kvm_arch_vcpu_destroy(vcpu);
1760 	return r;
1761 }
1762 
1763 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1764 {
1765 	if (sigset) {
1766 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1767 		vcpu->sigset_active = 1;
1768 		vcpu->sigset = *sigset;
1769 	} else
1770 		vcpu->sigset_active = 0;
1771 	return 0;
1772 }
1773 
1774 #ifdef __KVM_HAVE_MSIX
1775 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1776 				    struct kvm_assigned_msix_nr *entry_nr)
1777 {
1778 	int r = 0;
1779 	struct kvm_assigned_dev_kernel *adev;
1780 
1781 	mutex_lock(&kvm->lock);
1782 
1783 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1784 				      entry_nr->assigned_dev_id);
1785 	if (!adev) {
1786 		r = -EINVAL;
1787 		goto msix_nr_out;
1788 	}
1789 
1790 	if (adev->entries_nr == 0) {
1791 		adev->entries_nr = entry_nr->entry_nr;
1792 		if (adev->entries_nr == 0 ||
1793 		    adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1794 			r = -EINVAL;
1795 			goto msix_nr_out;
1796 		}
1797 
1798 		adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1799 						entry_nr->entry_nr,
1800 						GFP_KERNEL);
1801 		if (!adev->host_msix_entries) {
1802 			r = -ENOMEM;
1803 			goto msix_nr_out;
1804 		}
1805 		adev->guest_msix_entries = kzalloc(
1806 				sizeof(struct kvm_guest_msix_entry) *
1807 				entry_nr->entry_nr, GFP_KERNEL);
1808 		if (!adev->guest_msix_entries) {
1809 			kfree(adev->host_msix_entries);
1810 			r = -ENOMEM;
1811 			goto msix_nr_out;
1812 		}
1813 	} else /* Not allowed set MSI-X number twice */
1814 		r = -EINVAL;
1815 msix_nr_out:
1816 	mutex_unlock(&kvm->lock);
1817 	return r;
1818 }
1819 
1820 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1821 				       struct kvm_assigned_msix_entry *entry)
1822 {
1823 	int r = 0, i;
1824 	struct kvm_assigned_dev_kernel *adev;
1825 
1826 	mutex_lock(&kvm->lock);
1827 
1828 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1829 				      entry->assigned_dev_id);
1830 
1831 	if (!adev) {
1832 		r = -EINVAL;
1833 		goto msix_entry_out;
1834 	}
1835 
1836 	for (i = 0; i < adev->entries_nr; i++)
1837 		if (adev->guest_msix_entries[i].vector == 0 ||
1838 		    adev->guest_msix_entries[i].entry == entry->entry) {
1839 			adev->guest_msix_entries[i].entry = entry->entry;
1840 			adev->guest_msix_entries[i].vector = entry->gsi;
1841 			adev->host_msix_entries[i].entry = entry->entry;
1842 			break;
1843 		}
1844 	if (i == adev->entries_nr) {
1845 		r = -ENOSPC;
1846 		goto msix_entry_out;
1847 	}
1848 
1849 msix_entry_out:
1850 	mutex_unlock(&kvm->lock);
1851 
1852 	return r;
1853 }
1854 #endif
1855 
1856 static long kvm_vcpu_ioctl(struct file *filp,
1857 			   unsigned int ioctl, unsigned long arg)
1858 {
1859 	struct kvm_vcpu *vcpu = filp->private_data;
1860 	void __user *argp = (void __user *)arg;
1861 	int r;
1862 	struct kvm_fpu *fpu = NULL;
1863 	struct kvm_sregs *kvm_sregs = NULL;
1864 
1865 	if (vcpu->kvm->mm != current->mm)
1866 		return -EIO;
1867 	switch (ioctl) {
1868 	case KVM_RUN:
1869 		r = -EINVAL;
1870 		if (arg)
1871 			goto out;
1872 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1873 		break;
1874 	case KVM_GET_REGS: {
1875 		struct kvm_regs *kvm_regs;
1876 
1877 		r = -ENOMEM;
1878 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1879 		if (!kvm_regs)
1880 			goto out;
1881 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1882 		if (r)
1883 			goto out_free1;
1884 		r = -EFAULT;
1885 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1886 			goto out_free1;
1887 		r = 0;
1888 out_free1:
1889 		kfree(kvm_regs);
1890 		break;
1891 	}
1892 	case KVM_SET_REGS: {
1893 		struct kvm_regs *kvm_regs;
1894 
1895 		r = -ENOMEM;
1896 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1897 		if (!kvm_regs)
1898 			goto out;
1899 		r = -EFAULT;
1900 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1901 			goto out_free2;
1902 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1903 		if (r)
1904 			goto out_free2;
1905 		r = 0;
1906 out_free2:
1907 		kfree(kvm_regs);
1908 		break;
1909 	}
1910 	case KVM_GET_SREGS: {
1911 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1912 		r = -ENOMEM;
1913 		if (!kvm_sregs)
1914 			goto out;
1915 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1916 		if (r)
1917 			goto out;
1918 		r = -EFAULT;
1919 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1920 			goto out;
1921 		r = 0;
1922 		break;
1923 	}
1924 	case KVM_SET_SREGS: {
1925 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1926 		r = -ENOMEM;
1927 		if (!kvm_sregs)
1928 			goto out;
1929 		r = -EFAULT;
1930 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1931 			goto out;
1932 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1933 		if (r)
1934 			goto out;
1935 		r = 0;
1936 		break;
1937 	}
1938 	case KVM_GET_MP_STATE: {
1939 		struct kvm_mp_state mp_state;
1940 
1941 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1942 		if (r)
1943 			goto out;
1944 		r = -EFAULT;
1945 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1946 			goto out;
1947 		r = 0;
1948 		break;
1949 	}
1950 	case KVM_SET_MP_STATE: {
1951 		struct kvm_mp_state mp_state;
1952 
1953 		r = -EFAULT;
1954 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1955 			goto out;
1956 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1957 		if (r)
1958 			goto out;
1959 		r = 0;
1960 		break;
1961 	}
1962 	case KVM_TRANSLATE: {
1963 		struct kvm_translation tr;
1964 
1965 		r = -EFAULT;
1966 		if (copy_from_user(&tr, argp, sizeof tr))
1967 			goto out;
1968 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1969 		if (r)
1970 			goto out;
1971 		r = -EFAULT;
1972 		if (copy_to_user(argp, &tr, sizeof tr))
1973 			goto out;
1974 		r = 0;
1975 		break;
1976 	}
1977 	case KVM_SET_GUEST_DEBUG: {
1978 		struct kvm_guest_debug dbg;
1979 
1980 		r = -EFAULT;
1981 		if (copy_from_user(&dbg, argp, sizeof dbg))
1982 			goto out;
1983 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1984 		if (r)
1985 			goto out;
1986 		r = 0;
1987 		break;
1988 	}
1989 	case KVM_SET_SIGNAL_MASK: {
1990 		struct kvm_signal_mask __user *sigmask_arg = argp;
1991 		struct kvm_signal_mask kvm_sigmask;
1992 		sigset_t sigset, *p;
1993 
1994 		p = NULL;
1995 		if (argp) {
1996 			r = -EFAULT;
1997 			if (copy_from_user(&kvm_sigmask, argp,
1998 					   sizeof kvm_sigmask))
1999 				goto out;
2000 			r = -EINVAL;
2001 			if (kvm_sigmask.len != sizeof sigset)
2002 				goto out;
2003 			r = -EFAULT;
2004 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2005 					   sizeof sigset))
2006 				goto out;
2007 			p = &sigset;
2008 		}
2009 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2010 		break;
2011 	}
2012 	case KVM_GET_FPU: {
2013 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2014 		r = -ENOMEM;
2015 		if (!fpu)
2016 			goto out;
2017 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2018 		if (r)
2019 			goto out;
2020 		r = -EFAULT;
2021 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2022 			goto out;
2023 		r = 0;
2024 		break;
2025 	}
2026 	case KVM_SET_FPU: {
2027 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2028 		r = -ENOMEM;
2029 		if (!fpu)
2030 			goto out;
2031 		r = -EFAULT;
2032 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2033 			goto out;
2034 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2035 		if (r)
2036 			goto out;
2037 		r = 0;
2038 		break;
2039 	}
2040 	default:
2041 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2042 	}
2043 out:
2044 	kfree(fpu);
2045 	kfree(kvm_sregs);
2046 	return r;
2047 }
2048 
2049 static long kvm_vm_ioctl(struct file *filp,
2050 			   unsigned int ioctl, unsigned long arg)
2051 {
2052 	struct kvm *kvm = filp->private_data;
2053 	void __user *argp = (void __user *)arg;
2054 	int r;
2055 
2056 	if (kvm->mm != current->mm)
2057 		return -EIO;
2058 	switch (ioctl) {
2059 	case KVM_CREATE_VCPU:
2060 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2061 		if (r < 0)
2062 			goto out;
2063 		break;
2064 	case KVM_SET_USER_MEMORY_REGION: {
2065 		struct kvm_userspace_memory_region kvm_userspace_mem;
2066 
2067 		r = -EFAULT;
2068 		if (copy_from_user(&kvm_userspace_mem, argp,
2069 						sizeof kvm_userspace_mem))
2070 			goto out;
2071 
2072 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2073 		if (r)
2074 			goto out;
2075 		break;
2076 	}
2077 	case KVM_GET_DIRTY_LOG: {
2078 		struct kvm_dirty_log log;
2079 
2080 		r = -EFAULT;
2081 		if (copy_from_user(&log, argp, sizeof log))
2082 			goto out;
2083 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2084 		if (r)
2085 			goto out;
2086 		break;
2087 	}
2088 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2089 	case KVM_REGISTER_COALESCED_MMIO: {
2090 		struct kvm_coalesced_mmio_zone zone;
2091 		r = -EFAULT;
2092 		if (copy_from_user(&zone, argp, sizeof zone))
2093 			goto out;
2094 		r = -ENXIO;
2095 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2096 		if (r)
2097 			goto out;
2098 		r = 0;
2099 		break;
2100 	}
2101 	case KVM_UNREGISTER_COALESCED_MMIO: {
2102 		struct kvm_coalesced_mmio_zone zone;
2103 		r = -EFAULT;
2104 		if (copy_from_user(&zone, argp, sizeof zone))
2105 			goto out;
2106 		r = -ENXIO;
2107 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2108 		if (r)
2109 			goto out;
2110 		r = 0;
2111 		break;
2112 	}
2113 #endif
2114 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2115 	case KVM_ASSIGN_PCI_DEVICE: {
2116 		struct kvm_assigned_pci_dev assigned_dev;
2117 
2118 		r = -EFAULT;
2119 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2120 			goto out;
2121 		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2122 		if (r)
2123 			goto out;
2124 		break;
2125 	}
2126 	case KVM_ASSIGN_IRQ: {
2127 		r = -EOPNOTSUPP;
2128 		break;
2129 	}
2130 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2131 	case KVM_ASSIGN_DEV_IRQ: {
2132 		struct kvm_assigned_irq assigned_irq;
2133 
2134 		r = -EFAULT;
2135 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2136 			goto out;
2137 		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2138 		if (r)
2139 			goto out;
2140 		break;
2141 	}
2142 	case KVM_DEASSIGN_DEV_IRQ: {
2143 		struct kvm_assigned_irq assigned_irq;
2144 
2145 		r = -EFAULT;
2146 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2147 			goto out;
2148 		r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2149 		if (r)
2150 			goto out;
2151 		break;
2152 	}
2153 #endif
2154 #endif
2155 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2156 	case KVM_DEASSIGN_PCI_DEVICE: {
2157 		struct kvm_assigned_pci_dev assigned_dev;
2158 
2159 		r = -EFAULT;
2160 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2161 			goto out;
2162 		r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2163 		if (r)
2164 			goto out;
2165 		break;
2166 	}
2167 #endif
2168 #ifdef KVM_CAP_IRQ_ROUTING
2169 	case KVM_SET_GSI_ROUTING: {
2170 		struct kvm_irq_routing routing;
2171 		struct kvm_irq_routing __user *urouting;
2172 		struct kvm_irq_routing_entry *entries;
2173 
2174 		r = -EFAULT;
2175 		if (copy_from_user(&routing, argp, sizeof(routing)))
2176 			goto out;
2177 		r = -EINVAL;
2178 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2179 			goto out;
2180 		if (routing.flags)
2181 			goto out;
2182 		r = -ENOMEM;
2183 		entries = vmalloc(routing.nr * sizeof(*entries));
2184 		if (!entries)
2185 			goto out;
2186 		r = -EFAULT;
2187 		urouting = argp;
2188 		if (copy_from_user(entries, urouting->entries,
2189 				   routing.nr * sizeof(*entries)))
2190 			goto out_free_irq_routing;
2191 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2192 					routing.flags);
2193 	out_free_irq_routing:
2194 		vfree(entries);
2195 		break;
2196 	}
2197 #ifdef __KVM_HAVE_MSIX
2198 	case KVM_ASSIGN_SET_MSIX_NR: {
2199 		struct kvm_assigned_msix_nr entry_nr;
2200 		r = -EFAULT;
2201 		if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2202 			goto out;
2203 		r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2204 		if (r)
2205 			goto out;
2206 		break;
2207 	}
2208 	case KVM_ASSIGN_SET_MSIX_ENTRY: {
2209 		struct kvm_assigned_msix_entry entry;
2210 		r = -EFAULT;
2211 		if (copy_from_user(&entry, argp, sizeof entry))
2212 			goto out;
2213 		r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2214 		if (r)
2215 			goto out;
2216 		break;
2217 	}
2218 #endif
2219 #endif /* KVM_CAP_IRQ_ROUTING */
2220 	default:
2221 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2222 	}
2223 out:
2224 	return r;
2225 }
2226 
2227 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2228 {
2229 	struct page *page[1];
2230 	unsigned long addr;
2231 	int npages;
2232 	gfn_t gfn = vmf->pgoff;
2233 	struct kvm *kvm = vma->vm_file->private_data;
2234 
2235 	addr = gfn_to_hva(kvm, gfn);
2236 	if (kvm_is_error_hva(addr))
2237 		return VM_FAULT_SIGBUS;
2238 
2239 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2240 				NULL);
2241 	if (unlikely(npages != 1))
2242 		return VM_FAULT_SIGBUS;
2243 
2244 	vmf->page = page[0];
2245 	return 0;
2246 }
2247 
2248 static struct vm_operations_struct kvm_vm_vm_ops = {
2249 	.fault = kvm_vm_fault,
2250 };
2251 
2252 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2253 {
2254 	vma->vm_ops = &kvm_vm_vm_ops;
2255 	return 0;
2256 }
2257 
2258 static struct file_operations kvm_vm_fops = {
2259 	.release        = kvm_vm_release,
2260 	.unlocked_ioctl = kvm_vm_ioctl,
2261 	.compat_ioctl   = kvm_vm_ioctl,
2262 	.mmap           = kvm_vm_mmap,
2263 };
2264 
2265 static int kvm_dev_ioctl_create_vm(void)
2266 {
2267 	int fd;
2268 	struct kvm *kvm;
2269 
2270 	kvm = kvm_create_vm();
2271 	if (IS_ERR(kvm))
2272 		return PTR_ERR(kvm);
2273 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2274 	if (fd < 0)
2275 		kvm_put_kvm(kvm);
2276 
2277 	return fd;
2278 }
2279 
2280 static long kvm_dev_ioctl_check_extension_generic(long arg)
2281 {
2282 	switch (arg) {
2283 	case KVM_CAP_USER_MEMORY:
2284 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2285 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2286 		return 1;
2287 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2288 	case KVM_CAP_IRQ_ROUTING:
2289 		return KVM_MAX_IRQ_ROUTES;
2290 #endif
2291 	default:
2292 		break;
2293 	}
2294 	return kvm_dev_ioctl_check_extension(arg);
2295 }
2296 
2297 static long kvm_dev_ioctl(struct file *filp,
2298 			  unsigned int ioctl, unsigned long arg)
2299 {
2300 	long r = -EINVAL;
2301 
2302 	switch (ioctl) {
2303 	case KVM_GET_API_VERSION:
2304 		r = -EINVAL;
2305 		if (arg)
2306 			goto out;
2307 		r = KVM_API_VERSION;
2308 		break;
2309 	case KVM_CREATE_VM:
2310 		r = -EINVAL;
2311 		if (arg)
2312 			goto out;
2313 		r = kvm_dev_ioctl_create_vm();
2314 		break;
2315 	case KVM_CHECK_EXTENSION:
2316 		r = kvm_dev_ioctl_check_extension_generic(arg);
2317 		break;
2318 	case KVM_GET_VCPU_MMAP_SIZE:
2319 		r = -EINVAL;
2320 		if (arg)
2321 			goto out;
2322 		r = PAGE_SIZE;     /* struct kvm_run */
2323 #ifdef CONFIG_X86
2324 		r += PAGE_SIZE;    /* pio data page */
2325 #endif
2326 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2327 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2328 #endif
2329 		break;
2330 	case KVM_TRACE_ENABLE:
2331 	case KVM_TRACE_PAUSE:
2332 	case KVM_TRACE_DISABLE:
2333 		r = kvm_trace_ioctl(ioctl, arg);
2334 		break;
2335 	default:
2336 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2337 	}
2338 out:
2339 	return r;
2340 }
2341 
2342 static struct file_operations kvm_chardev_ops = {
2343 	.unlocked_ioctl = kvm_dev_ioctl,
2344 	.compat_ioctl   = kvm_dev_ioctl,
2345 };
2346 
2347 static struct miscdevice kvm_dev = {
2348 	KVM_MINOR,
2349 	"kvm",
2350 	&kvm_chardev_ops,
2351 };
2352 
2353 static void hardware_enable(void *junk)
2354 {
2355 	int cpu = raw_smp_processor_id();
2356 
2357 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2358 		return;
2359 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2360 	kvm_arch_hardware_enable(NULL);
2361 }
2362 
2363 static void hardware_disable(void *junk)
2364 {
2365 	int cpu = raw_smp_processor_id();
2366 
2367 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2368 		return;
2369 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2370 	kvm_arch_hardware_disable(NULL);
2371 }
2372 
2373 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2374 			   void *v)
2375 {
2376 	int cpu = (long)v;
2377 
2378 	val &= ~CPU_TASKS_FROZEN;
2379 	switch (val) {
2380 	case CPU_DYING:
2381 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2382 		       cpu);
2383 		hardware_disable(NULL);
2384 		break;
2385 	case CPU_UP_CANCELED:
2386 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 		       cpu);
2388 		smp_call_function_single(cpu, hardware_disable, NULL, 1);
2389 		break;
2390 	case CPU_ONLINE:
2391 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2392 		       cpu);
2393 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
2394 		break;
2395 	}
2396 	return NOTIFY_OK;
2397 }
2398 
2399 
2400 asmlinkage void kvm_handle_fault_on_reboot(void)
2401 {
2402 	if (kvm_rebooting)
2403 		/* spin while reset goes on */
2404 		while (true)
2405 			;
2406 	/* Fault while not rebooting.  We want the trace. */
2407 	BUG();
2408 }
2409 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2410 
2411 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2412 		      void *v)
2413 {
2414 	/*
2415 	 * Some (well, at least mine) BIOSes hang on reboot if
2416 	 * in vmx root mode.
2417 	 *
2418 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2419 	 */
2420 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2421 	kvm_rebooting = true;
2422 	on_each_cpu(hardware_disable, NULL, 1);
2423 	return NOTIFY_OK;
2424 }
2425 
2426 static struct notifier_block kvm_reboot_notifier = {
2427 	.notifier_call = kvm_reboot,
2428 	.priority = 0,
2429 };
2430 
2431 void kvm_io_bus_init(struct kvm_io_bus *bus)
2432 {
2433 	memset(bus, 0, sizeof(*bus));
2434 }
2435 
2436 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < bus->dev_count; i++) {
2441 		struct kvm_io_device *pos = bus->devs[i];
2442 
2443 		kvm_iodevice_destructor(pos);
2444 	}
2445 }
2446 
2447 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2448 					  gpa_t addr, int len, int is_write)
2449 {
2450 	int i;
2451 
2452 	for (i = 0; i < bus->dev_count; i++) {
2453 		struct kvm_io_device *pos = bus->devs[i];
2454 
2455 		if (pos->in_range(pos, addr, len, is_write))
2456 			return pos;
2457 	}
2458 
2459 	return NULL;
2460 }
2461 
2462 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2463 {
2464 	BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2465 
2466 	bus->devs[bus->dev_count++] = dev;
2467 }
2468 
2469 static struct notifier_block kvm_cpu_notifier = {
2470 	.notifier_call = kvm_cpu_hotplug,
2471 	.priority = 20, /* must be > scheduler priority */
2472 };
2473 
2474 static int vm_stat_get(void *_offset, u64 *val)
2475 {
2476 	unsigned offset = (long)_offset;
2477 	struct kvm *kvm;
2478 
2479 	*val = 0;
2480 	spin_lock(&kvm_lock);
2481 	list_for_each_entry(kvm, &vm_list, vm_list)
2482 		*val += *(u32 *)((void *)kvm + offset);
2483 	spin_unlock(&kvm_lock);
2484 	return 0;
2485 }
2486 
2487 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2488 
2489 static int vcpu_stat_get(void *_offset, u64 *val)
2490 {
2491 	unsigned offset = (long)_offset;
2492 	struct kvm *kvm;
2493 	struct kvm_vcpu *vcpu;
2494 	int i;
2495 
2496 	*val = 0;
2497 	spin_lock(&kvm_lock);
2498 	list_for_each_entry(kvm, &vm_list, vm_list)
2499 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2500 			vcpu = kvm->vcpus[i];
2501 			if (vcpu)
2502 				*val += *(u32 *)((void *)vcpu + offset);
2503 		}
2504 	spin_unlock(&kvm_lock);
2505 	return 0;
2506 }
2507 
2508 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2509 
2510 static struct file_operations *stat_fops[] = {
2511 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2512 	[KVM_STAT_VM]   = &vm_stat_fops,
2513 };
2514 
2515 static void kvm_init_debug(void)
2516 {
2517 	struct kvm_stats_debugfs_item *p;
2518 
2519 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2520 	for (p = debugfs_entries; p->name; ++p)
2521 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2522 						(void *)(long)p->offset,
2523 						stat_fops[p->kind]);
2524 }
2525 
2526 static void kvm_exit_debug(void)
2527 {
2528 	struct kvm_stats_debugfs_item *p;
2529 
2530 	for (p = debugfs_entries; p->name; ++p)
2531 		debugfs_remove(p->dentry);
2532 	debugfs_remove(kvm_debugfs_dir);
2533 }
2534 
2535 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2536 {
2537 	hardware_disable(NULL);
2538 	return 0;
2539 }
2540 
2541 static int kvm_resume(struct sys_device *dev)
2542 {
2543 	hardware_enable(NULL);
2544 	return 0;
2545 }
2546 
2547 static struct sysdev_class kvm_sysdev_class = {
2548 	.name = "kvm",
2549 	.suspend = kvm_suspend,
2550 	.resume = kvm_resume,
2551 };
2552 
2553 static struct sys_device kvm_sysdev = {
2554 	.id = 0,
2555 	.cls = &kvm_sysdev_class,
2556 };
2557 
2558 struct page *bad_page;
2559 pfn_t bad_pfn;
2560 
2561 static inline
2562 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2563 {
2564 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2565 }
2566 
2567 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2568 {
2569 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2570 
2571 	kvm_arch_vcpu_load(vcpu, cpu);
2572 }
2573 
2574 static void kvm_sched_out(struct preempt_notifier *pn,
2575 			  struct task_struct *next)
2576 {
2577 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2578 
2579 	kvm_arch_vcpu_put(vcpu);
2580 }
2581 
2582 int kvm_init(void *opaque, unsigned int vcpu_size,
2583 		  struct module *module)
2584 {
2585 	int r;
2586 	int cpu;
2587 
2588 	kvm_init_debug();
2589 
2590 	r = kvm_arch_init(opaque);
2591 	if (r)
2592 		goto out_fail;
2593 
2594 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2595 
2596 	if (bad_page == NULL) {
2597 		r = -ENOMEM;
2598 		goto out;
2599 	}
2600 
2601 	bad_pfn = page_to_pfn(bad_page);
2602 
2603 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2604 		r = -ENOMEM;
2605 		goto out_free_0;
2606 	}
2607 	cpumask_clear(cpus_hardware_enabled);
2608 
2609 	r = kvm_arch_hardware_setup();
2610 	if (r < 0)
2611 		goto out_free_0a;
2612 
2613 	for_each_online_cpu(cpu) {
2614 		smp_call_function_single(cpu,
2615 				kvm_arch_check_processor_compat,
2616 				&r, 1);
2617 		if (r < 0)
2618 			goto out_free_1;
2619 	}
2620 
2621 	on_each_cpu(hardware_enable, NULL, 1);
2622 	r = register_cpu_notifier(&kvm_cpu_notifier);
2623 	if (r)
2624 		goto out_free_2;
2625 	register_reboot_notifier(&kvm_reboot_notifier);
2626 
2627 	r = sysdev_class_register(&kvm_sysdev_class);
2628 	if (r)
2629 		goto out_free_3;
2630 
2631 	r = sysdev_register(&kvm_sysdev);
2632 	if (r)
2633 		goto out_free_4;
2634 
2635 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2636 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2637 					   __alignof__(struct kvm_vcpu),
2638 					   0, NULL);
2639 	if (!kvm_vcpu_cache) {
2640 		r = -ENOMEM;
2641 		goto out_free_5;
2642 	}
2643 
2644 	kvm_chardev_ops.owner = module;
2645 	kvm_vm_fops.owner = module;
2646 	kvm_vcpu_fops.owner = module;
2647 
2648 	r = misc_register(&kvm_dev);
2649 	if (r) {
2650 		printk(KERN_ERR "kvm: misc device register failed\n");
2651 		goto out_free;
2652 	}
2653 
2654 	kvm_preempt_ops.sched_in = kvm_sched_in;
2655 	kvm_preempt_ops.sched_out = kvm_sched_out;
2656 
2657 	return 0;
2658 
2659 out_free:
2660 	kmem_cache_destroy(kvm_vcpu_cache);
2661 out_free_5:
2662 	sysdev_unregister(&kvm_sysdev);
2663 out_free_4:
2664 	sysdev_class_unregister(&kvm_sysdev_class);
2665 out_free_3:
2666 	unregister_reboot_notifier(&kvm_reboot_notifier);
2667 	unregister_cpu_notifier(&kvm_cpu_notifier);
2668 out_free_2:
2669 	on_each_cpu(hardware_disable, NULL, 1);
2670 out_free_1:
2671 	kvm_arch_hardware_unsetup();
2672 out_free_0a:
2673 	free_cpumask_var(cpus_hardware_enabled);
2674 out_free_0:
2675 	__free_page(bad_page);
2676 out:
2677 	kvm_arch_exit();
2678 	kvm_exit_debug();
2679 out_fail:
2680 	return r;
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_init);
2683 
2684 void kvm_exit(void)
2685 {
2686 	kvm_trace_cleanup();
2687 	misc_deregister(&kvm_dev);
2688 	kmem_cache_destroy(kvm_vcpu_cache);
2689 	sysdev_unregister(&kvm_sysdev);
2690 	sysdev_class_unregister(&kvm_sysdev_class);
2691 	unregister_reboot_notifier(&kvm_reboot_notifier);
2692 	unregister_cpu_notifier(&kvm_cpu_notifier);
2693 	on_each_cpu(hardware_disable, NULL, 1);
2694 	kvm_arch_hardware_unsetup();
2695 	kvm_arch_exit();
2696 	kvm_exit_debug();
2697 	free_cpumask_var(cpus_hardware_enabled);
2698 	__free_page(bad_page);
2699 }
2700 EXPORT_SYMBOL_GPL(kvm_exit);
2701