xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 788b041a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 static struct kmem_cache *kvm_vcpu_cache;
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 static bool largepages_enabled = true;
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 		unsigned long start, unsigned long end, bool blockable)
162 {
163 	return 0;
164 }
165 
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 		return false;
176 
177 	return is_zone_device_page(pfn_to_page(pfn));
178 }
179 
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 	/*
183 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 	 * perspective they are "normal" pages, albeit with slightly different
185 	 * usage rules.
186 	 */
187 	if (pfn_valid(pfn))
188 		return PageReserved(pfn_to_page(pfn)) &&
189 		       !is_zero_pfn(pfn) &&
190 		       !kvm_is_zone_device_pfn(pfn);
191 
192 	return true;
193 }
194 
195 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
196 {
197 	struct page *page = pfn_to_page(pfn);
198 
199 	if (!PageTransCompoundMap(page))
200 		return false;
201 
202 	return is_transparent_hugepage(compound_head(page));
203 }
204 
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 	int cpu = get_cpu();
211 
212 	__this_cpu_write(kvm_running_vcpu, vcpu);
213 	preempt_notifier_register(&vcpu->preempt_notifier);
214 	kvm_arch_vcpu_load(vcpu, cpu);
215 	put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218 
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 	preempt_disable();
222 	kvm_arch_vcpu_put(vcpu);
223 	preempt_notifier_unregister(&vcpu->preempt_notifier);
224 	__this_cpu_write(kvm_running_vcpu, NULL);
225 	preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228 
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233 
234 	/*
235 	 * We need to wait for the VCPU to reenable interrupts and get out of
236 	 * READING_SHADOW_PAGE_TABLES mode.
237 	 */
238 	if (req & KVM_REQUEST_WAIT)
239 		return mode != OUTSIDE_GUEST_MODE;
240 
241 	/*
242 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 	 */
244 	return mode == IN_GUEST_MODE;
245 }
246 
247 static void ack_flush(void *_completed)
248 {
249 }
250 
251 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
252 {
253 	if (unlikely(!cpus))
254 		cpus = cpu_online_mask;
255 
256 	if (cpumask_empty(cpus))
257 		return false;
258 
259 	smp_call_function_many(cpus, ack_flush, NULL, wait);
260 	return true;
261 }
262 
263 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
264 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
265 {
266 	int i, cpu, me;
267 	struct kvm_vcpu *vcpu;
268 	bool called;
269 
270 	me = get_cpu();
271 
272 	kvm_for_each_vcpu(i, vcpu, kvm) {
273 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
274 			continue;
275 
276 		kvm_make_request(req, vcpu);
277 		cpu = vcpu->cpu;
278 
279 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 			continue;
281 
282 		if (tmp != NULL && cpu != -1 && cpu != me &&
283 		    kvm_request_needs_ipi(vcpu, req))
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 
287 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288 	put_cpu();
289 
290 	return called;
291 }
292 
293 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
307 void kvm_flush_remote_tlbs(struct kvm *kvm)
308 {
309 	/*
310 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
311 	 * kvm_make_all_cpus_request.
312 	 */
313 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
314 
315 	/*
316 	 * We want to publish modifications to the page tables before reading
317 	 * mode. Pairs with a memory barrier in arch-specific code.
318 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
319 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
320 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
321 	 *
322 	 * There is already an smp_mb__after_atomic() before
323 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
324 	 * barrier here.
325 	 */
326 	if (!kvm_arch_flush_remote_tlb(kvm)
327 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
328 		++kvm->stat.remote_tlb_flush;
329 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
330 }
331 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
332 #endif
333 
334 void kvm_reload_remote_mmus(struct kvm *kvm)
335 {
336 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
337 }
338 
339 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
340 {
341 	mutex_init(&vcpu->mutex);
342 	vcpu->cpu = -1;
343 	vcpu->kvm = kvm;
344 	vcpu->vcpu_id = id;
345 	vcpu->pid = NULL;
346 	init_swait_queue_head(&vcpu->wq);
347 	kvm_async_pf_vcpu_init(vcpu);
348 
349 	vcpu->pre_pcpu = -1;
350 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
351 
352 	kvm_vcpu_set_in_spin_loop(vcpu, false);
353 	kvm_vcpu_set_dy_eligible(vcpu, false);
354 	vcpu->preempted = false;
355 	vcpu->ready = false;
356 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
357 }
358 
359 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
360 {
361 	kvm_arch_vcpu_destroy(vcpu);
362 
363 	/*
364 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
365 	 * the vcpu->pid pointer, and at destruction time all file descriptors
366 	 * are already gone.
367 	 */
368 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
369 
370 	free_page((unsigned long)vcpu->run);
371 	kmem_cache_free(kvm_vcpu_cache, vcpu);
372 }
373 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
374 
375 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
377 {
378 	return container_of(mn, struct kvm, mmu_notifier);
379 }
380 
381 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
382 					struct mm_struct *mm,
383 					unsigned long address,
384 					pte_t pte)
385 {
386 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 	int idx;
388 
389 	idx = srcu_read_lock(&kvm->srcu);
390 	spin_lock(&kvm->mmu_lock);
391 	kvm->mmu_notifier_seq++;
392 
393 	if (kvm_set_spte_hva(kvm, address, pte))
394 		kvm_flush_remote_tlbs(kvm);
395 
396 	spin_unlock(&kvm->mmu_lock);
397 	srcu_read_unlock(&kvm->srcu, idx);
398 }
399 
400 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
401 					const struct mmu_notifier_range *range)
402 {
403 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 	int need_tlb_flush = 0, idx;
405 	int ret;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	spin_lock(&kvm->mmu_lock);
409 	/*
410 	 * The count increase must become visible at unlock time as no
411 	 * spte can be established without taking the mmu_lock and
412 	 * count is also read inside the mmu_lock critical section.
413 	 */
414 	kvm->mmu_notifier_count++;
415 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
416 	need_tlb_flush |= kvm->tlbs_dirty;
417 	/* we've to flush the tlb before the pages can be freed */
418 	if (need_tlb_flush)
419 		kvm_flush_remote_tlbs(kvm);
420 
421 	spin_unlock(&kvm->mmu_lock);
422 
423 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
424 					range->end,
425 					mmu_notifier_range_blockable(range));
426 
427 	srcu_read_unlock(&kvm->srcu, idx);
428 
429 	return ret;
430 }
431 
432 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
433 					const struct mmu_notifier_range *range)
434 {
435 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
436 
437 	spin_lock(&kvm->mmu_lock);
438 	/*
439 	 * This sequence increase will notify the kvm page fault that
440 	 * the page that is going to be mapped in the spte could have
441 	 * been freed.
442 	 */
443 	kvm->mmu_notifier_seq++;
444 	smp_wmb();
445 	/*
446 	 * The above sequence increase must be visible before the
447 	 * below count decrease, which is ensured by the smp_wmb above
448 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
449 	 */
450 	kvm->mmu_notifier_count--;
451 	spin_unlock(&kvm->mmu_lock);
452 
453 	BUG_ON(kvm->mmu_notifier_count < 0);
454 }
455 
456 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
457 					      struct mm_struct *mm,
458 					      unsigned long start,
459 					      unsigned long end)
460 {
461 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
462 	int young, idx;
463 
464 	idx = srcu_read_lock(&kvm->srcu);
465 	spin_lock(&kvm->mmu_lock);
466 
467 	young = kvm_age_hva(kvm, start, end);
468 	if (young)
469 		kvm_flush_remote_tlbs(kvm);
470 
471 	spin_unlock(&kvm->mmu_lock);
472 	srcu_read_unlock(&kvm->srcu, idx);
473 
474 	return young;
475 }
476 
477 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
478 					struct mm_struct *mm,
479 					unsigned long start,
480 					unsigned long end)
481 {
482 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 	int young, idx;
484 
485 	idx = srcu_read_lock(&kvm->srcu);
486 	spin_lock(&kvm->mmu_lock);
487 	/*
488 	 * Even though we do not flush TLB, this will still adversely
489 	 * affect performance on pre-Haswell Intel EPT, where there is
490 	 * no EPT Access Bit to clear so that we have to tear down EPT
491 	 * tables instead. If we find this unacceptable, we can always
492 	 * add a parameter to kvm_age_hva so that it effectively doesn't
493 	 * do anything on clear_young.
494 	 *
495 	 * Also note that currently we never issue secondary TLB flushes
496 	 * from clear_young, leaving this job up to the regular system
497 	 * cadence. If we find this inaccurate, we might come up with a
498 	 * more sophisticated heuristic later.
499 	 */
500 	young = kvm_age_hva(kvm, start, end);
501 	spin_unlock(&kvm->mmu_lock);
502 	srcu_read_unlock(&kvm->srcu, idx);
503 
504 	return young;
505 }
506 
507 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
508 				       struct mm_struct *mm,
509 				       unsigned long address)
510 {
511 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
512 	int young, idx;
513 
514 	idx = srcu_read_lock(&kvm->srcu);
515 	spin_lock(&kvm->mmu_lock);
516 	young = kvm_test_age_hva(kvm, address);
517 	spin_unlock(&kvm->mmu_lock);
518 	srcu_read_unlock(&kvm->srcu, idx);
519 
520 	return young;
521 }
522 
523 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
524 				     struct mm_struct *mm)
525 {
526 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
527 	int idx;
528 
529 	idx = srcu_read_lock(&kvm->srcu);
530 	kvm_arch_flush_shadow_all(kvm);
531 	srcu_read_unlock(&kvm->srcu, idx);
532 }
533 
534 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
535 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
536 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
537 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
538 	.clear_young		= kvm_mmu_notifier_clear_young,
539 	.test_young		= kvm_mmu_notifier_test_young,
540 	.change_pte		= kvm_mmu_notifier_change_pte,
541 	.release		= kvm_mmu_notifier_release,
542 };
543 
544 static int kvm_init_mmu_notifier(struct kvm *kvm)
545 {
546 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
547 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
548 }
549 
550 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
551 
552 static int kvm_init_mmu_notifier(struct kvm *kvm)
553 {
554 	return 0;
555 }
556 
557 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
558 
559 static struct kvm_memslots *kvm_alloc_memslots(void)
560 {
561 	int i;
562 	struct kvm_memslots *slots;
563 
564 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
565 	if (!slots)
566 		return NULL;
567 
568 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
569 		slots->id_to_index[i] = slots->memslots[i].id = i;
570 
571 	return slots;
572 }
573 
574 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
575 {
576 	if (!memslot->dirty_bitmap)
577 		return;
578 
579 	kvfree(memslot->dirty_bitmap);
580 	memslot->dirty_bitmap = NULL;
581 }
582 
583 /*
584  * Free any memory in @free but not in @dont.
585  */
586 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
587 			      struct kvm_memory_slot *dont)
588 {
589 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
590 		kvm_destroy_dirty_bitmap(free);
591 
592 	kvm_arch_free_memslot(kvm, free, dont);
593 
594 	free->npages = 0;
595 }
596 
597 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
598 {
599 	struct kvm_memory_slot *memslot;
600 
601 	if (!slots)
602 		return;
603 
604 	kvm_for_each_memslot(memslot, slots)
605 		kvm_free_memslot(kvm, memslot, NULL);
606 
607 	kvfree(slots);
608 }
609 
610 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
611 {
612 	int i;
613 
614 	if (!kvm->debugfs_dentry)
615 		return;
616 
617 	debugfs_remove_recursive(kvm->debugfs_dentry);
618 
619 	if (kvm->debugfs_stat_data) {
620 		for (i = 0; i < kvm_debugfs_num_entries; i++)
621 			kfree(kvm->debugfs_stat_data[i]);
622 		kfree(kvm->debugfs_stat_data);
623 	}
624 }
625 
626 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
627 {
628 	char dir_name[ITOA_MAX_LEN * 2];
629 	struct kvm_stat_data *stat_data;
630 	struct kvm_stats_debugfs_item *p;
631 
632 	if (!debugfs_initialized())
633 		return 0;
634 
635 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
636 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
637 
638 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
639 					 sizeof(*kvm->debugfs_stat_data),
640 					 GFP_KERNEL_ACCOUNT);
641 	if (!kvm->debugfs_stat_data)
642 		return -ENOMEM;
643 
644 	for (p = debugfs_entries; p->name; p++) {
645 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
646 		if (!stat_data)
647 			return -ENOMEM;
648 
649 		stat_data->kvm = kvm;
650 		stat_data->dbgfs_item = p;
651 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
652 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
653 				    kvm->debugfs_dentry, stat_data,
654 				    &stat_fops_per_vm);
655 	}
656 	return 0;
657 }
658 
659 /*
660  * Called after the VM is otherwise initialized, but just before adding it to
661  * the vm_list.
662  */
663 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
664 {
665 	return 0;
666 }
667 
668 /*
669  * Called just after removing the VM from the vm_list, but before doing any
670  * other destruction.
671  */
672 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
673 {
674 }
675 
676 static struct kvm *kvm_create_vm(unsigned long type)
677 {
678 	struct kvm *kvm = kvm_arch_alloc_vm();
679 	int r = -ENOMEM;
680 	int i;
681 
682 	if (!kvm)
683 		return ERR_PTR(-ENOMEM);
684 
685 	spin_lock_init(&kvm->mmu_lock);
686 	mmgrab(current->mm);
687 	kvm->mm = current->mm;
688 	kvm_eventfd_init(kvm);
689 	mutex_init(&kvm->lock);
690 	mutex_init(&kvm->irq_lock);
691 	mutex_init(&kvm->slots_lock);
692 	INIT_LIST_HEAD(&kvm->devices);
693 
694 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
695 
696 	if (init_srcu_struct(&kvm->srcu))
697 		goto out_err_no_srcu;
698 	if (init_srcu_struct(&kvm->irq_srcu))
699 		goto out_err_no_irq_srcu;
700 
701 	refcount_set(&kvm->users_count, 1);
702 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
703 		struct kvm_memslots *slots = kvm_alloc_memslots();
704 
705 		if (!slots)
706 			goto out_err_no_arch_destroy_vm;
707 		/* Generations must be different for each address space. */
708 		slots->generation = i;
709 		rcu_assign_pointer(kvm->memslots[i], slots);
710 	}
711 
712 	for (i = 0; i < KVM_NR_BUSES; i++) {
713 		rcu_assign_pointer(kvm->buses[i],
714 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
715 		if (!kvm->buses[i])
716 			goto out_err_no_arch_destroy_vm;
717 	}
718 
719 	r = kvm_arch_init_vm(kvm, type);
720 	if (r)
721 		goto out_err_no_arch_destroy_vm;
722 
723 	r = hardware_enable_all();
724 	if (r)
725 		goto out_err_no_disable;
726 
727 #ifdef CONFIG_HAVE_KVM_IRQFD
728 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
729 #endif
730 
731 	r = kvm_init_mmu_notifier(kvm);
732 	if (r)
733 		goto out_err_no_mmu_notifier;
734 
735 	r = kvm_arch_post_init_vm(kvm);
736 	if (r)
737 		goto out_err;
738 
739 	mutex_lock(&kvm_lock);
740 	list_add(&kvm->vm_list, &vm_list);
741 	mutex_unlock(&kvm_lock);
742 
743 	preempt_notifier_inc();
744 
745 	return kvm;
746 
747 out_err:
748 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
749 	if (kvm->mmu_notifier.ops)
750 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
751 #endif
752 out_err_no_mmu_notifier:
753 	hardware_disable_all();
754 out_err_no_disable:
755 	kvm_arch_destroy_vm(kvm);
756 out_err_no_arch_destroy_vm:
757 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
758 	for (i = 0; i < KVM_NR_BUSES; i++)
759 		kfree(kvm_get_bus(kvm, i));
760 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
761 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
762 	cleanup_srcu_struct(&kvm->irq_srcu);
763 out_err_no_irq_srcu:
764 	cleanup_srcu_struct(&kvm->srcu);
765 out_err_no_srcu:
766 	kvm_arch_free_vm(kvm);
767 	mmdrop(current->mm);
768 	return ERR_PTR(r);
769 }
770 
771 static void kvm_destroy_devices(struct kvm *kvm)
772 {
773 	struct kvm_device *dev, *tmp;
774 
775 	/*
776 	 * We do not need to take the kvm->lock here, because nobody else
777 	 * has a reference to the struct kvm at this point and therefore
778 	 * cannot access the devices list anyhow.
779 	 */
780 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
781 		list_del(&dev->vm_node);
782 		dev->ops->destroy(dev);
783 	}
784 }
785 
786 static void kvm_destroy_vm(struct kvm *kvm)
787 {
788 	int i;
789 	struct mm_struct *mm = kvm->mm;
790 
791 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
792 	kvm_destroy_vm_debugfs(kvm);
793 	kvm_arch_sync_events(kvm);
794 	mutex_lock(&kvm_lock);
795 	list_del(&kvm->vm_list);
796 	mutex_unlock(&kvm_lock);
797 	kvm_arch_pre_destroy_vm(kvm);
798 
799 	kvm_free_irq_routing(kvm);
800 	for (i = 0; i < KVM_NR_BUSES; i++) {
801 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
802 
803 		if (bus)
804 			kvm_io_bus_destroy(bus);
805 		kvm->buses[i] = NULL;
806 	}
807 	kvm_coalesced_mmio_free(kvm);
808 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
809 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
810 #else
811 	kvm_arch_flush_shadow_all(kvm);
812 #endif
813 	kvm_arch_destroy_vm(kvm);
814 	kvm_destroy_devices(kvm);
815 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
816 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
817 	cleanup_srcu_struct(&kvm->irq_srcu);
818 	cleanup_srcu_struct(&kvm->srcu);
819 	kvm_arch_free_vm(kvm);
820 	preempt_notifier_dec();
821 	hardware_disable_all();
822 	mmdrop(mm);
823 }
824 
825 void kvm_get_kvm(struct kvm *kvm)
826 {
827 	refcount_inc(&kvm->users_count);
828 }
829 EXPORT_SYMBOL_GPL(kvm_get_kvm);
830 
831 void kvm_put_kvm(struct kvm *kvm)
832 {
833 	if (refcount_dec_and_test(&kvm->users_count))
834 		kvm_destroy_vm(kvm);
835 }
836 EXPORT_SYMBOL_GPL(kvm_put_kvm);
837 
838 /*
839  * Used to put a reference that was taken on behalf of an object associated
840  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
841  * of the new file descriptor fails and the reference cannot be transferred to
842  * its final owner.  In such cases, the caller is still actively using @kvm and
843  * will fail miserably if the refcount unexpectedly hits zero.
844  */
845 void kvm_put_kvm_no_destroy(struct kvm *kvm)
846 {
847 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
848 }
849 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
850 
851 static int kvm_vm_release(struct inode *inode, struct file *filp)
852 {
853 	struct kvm *kvm = filp->private_data;
854 
855 	kvm_irqfd_release(kvm);
856 
857 	kvm_put_kvm(kvm);
858 	return 0;
859 }
860 
861 /*
862  * Allocation size is twice as large as the actual dirty bitmap size.
863  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
864  */
865 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
866 {
867 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
868 
869 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
870 	if (!memslot->dirty_bitmap)
871 		return -ENOMEM;
872 
873 	return 0;
874 }
875 
876 /*
877  * Insert memslot and re-sort memslots based on their GFN,
878  * so binary search could be used to lookup GFN.
879  * Sorting algorithm takes advantage of having initially
880  * sorted array and known changed memslot position.
881  */
882 static void update_memslots(struct kvm_memslots *slots,
883 			    struct kvm_memory_slot *new,
884 			    enum kvm_mr_change change)
885 {
886 	int id = new->id;
887 	int i = slots->id_to_index[id];
888 	struct kvm_memory_slot *mslots = slots->memslots;
889 
890 	WARN_ON(mslots[i].id != id);
891 	switch (change) {
892 	case KVM_MR_CREATE:
893 		slots->used_slots++;
894 		WARN_ON(mslots[i].npages || !new->npages);
895 		break;
896 	case KVM_MR_DELETE:
897 		slots->used_slots--;
898 		WARN_ON(new->npages || !mslots[i].npages);
899 		break;
900 	default:
901 		break;
902 	}
903 
904 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
905 	       new->base_gfn <= mslots[i + 1].base_gfn) {
906 		if (!mslots[i + 1].npages)
907 			break;
908 		mslots[i] = mslots[i + 1];
909 		slots->id_to_index[mslots[i].id] = i;
910 		i++;
911 	}
912 
913 	/*
914 	 * The ">=" is needed when creating a slot with base_gfn == 0,
915 	 * so that it moves before all those with base_gfn == npages == 0.
916 	 *
917 	 * On the other hand, if new->npages is zero, the above loop has
918 	 * already left i pointing to the beginning of the empty part of
919 	 * mslots, and the ">=" would move the hole backwards in this
920 	 * case---which is wrong.  So skip the loop when deleting a slot.
921 	 */
922 	if (new->npages) {
923 		while (i > 0 &&
924 		       new->base_gfn >= mslots[i - 1].base_gfn) {
925 			mslots[i] = mslots[i - 1];
926 			slots->id_to_index[mslots[i].id] = i;
927 			i--;
928 		}
929 	} else
930 		WARN_ON_ONCE(i != slots->used_slots);
931 
932 	mslots[i] = *new;
933 	slots->id_to_index[mslots[i].id] = i;
934 }
935 
936 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
937 {
938 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
939 
940 #ifdef __KVM_HAVE_READONLY_MEM
941 	valid_flags |= KVM_MEM_READONLY;
942 #endif
943 
944 	if (mem->flags & ~valid_flags)
945 		return -EINVAL;
946 
947 	return 0;
948 }
949 
950 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
951 		int as_id, struct kvm_memslots *slots)
952 {
953 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
954 	u64 gen = old_memslots->generation;
955 
956 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
957 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
958 
959 	rcu_assign_pointer(kvm->memslots[as_id], slots);
960 	synchronize_srcu_expedited(&kvm->srcu);
961 
962 	/*
963 	 * Increment the new memslot generation a second time, dropping the
964 	 * update in-progress flag and incrementing the generation based on
965 	 * the number of address spaces.  This provides a unique and easily
966 	 * identifiable generation number while the memslots are in flux.
967 	 */
968 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
969 
970 	/*
971 	 * Generations must be unique even across address spaces.  We do not need
972 	 * a global counter for that, instead the generation space is evenly split
973 	 * across address spaces.  For example, with two address spaces, address
974 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
975 	 * use generations 1, 3, 5, ...
976 	 */
977 	gen += KVM_ADDRESS_SPACE_NUM;
978 
979 	kvm_arch_memslots_updated(kvm, gen);
980 
981 	slots->generation = gen;
982 
983 	return old_memslots;
984 }
985 
986 /*
987  * Allocate some memory and give it an address in the guest physical address
988  * space.
989  *
990  * Discontiguous memory is allowed, mostly for framebuffers.
991  *
992  * Must be called holding kvm->slots_lock for write.
993  */
994 int __kvm_set_memory_region(struct kvm *kvm,
995 			    const struct kvm_userspace_memory_region *mem)
996 {
997 	int r;
998 	gfn_t base_gfn;
999 	unsigned long npages;
1000 	struct kvm_memory_slot *slot;
1001 	struct kvm_memory_slot old, new;
1002 	struct kvm_memslots *slots = NULL, *old_memslots;
1003 	int as_id, id;
1004 	enum kvm_mr_change change;
1005 
1006 	r = check_memory_region_flags(mem);
1007 	if (r)
1008 		goto out;
1009 
1010 	r = -EINVAL;
1011 	as_id = mem->slot >> 16;
1012 	id = (u16)mem->slot;
1013 
1014 	/* General sanity checks */
1015 	if (mem->memory_size & (PAGE_SIZE - 1))
1016 		goto out;
1017 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1018 		goto out;
1019 	/* We can read the guest memory with __xxx_user() later on. */
1020 	if ((id < KVM_USER_MEM_SLOTS) &&
1021 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1022 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1023 			mem->memory_size)))
1024 		goto out;
1025 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1026 		goto out;
1027 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1028 		goto out;
1029 
1030 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1031 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1032 	npages = mem->memory_size >> PAGE_SHIFT;
1033 
1034 	if (npages > KVM_MEM_MAX_NR_PAGES)
1035 		goto out;
1036 
1037 	new = old = *slot;
1038 
1039 	new.id = id;
1040 	new.base_gfn = base_gfn;
1041 	new.npages = npages;
1042 	new.flags = mem->flags;
1043 
1044 	if (npages) {
1045 		if (!old.npages)
1046 			change = KVM_MR_CREATE;
1047 		else { /* Modify an existing slot. */
1048 			if ((mem->userspace_addr != old.userspace_addr) ||
1049 			    (npages != old.npages) ||
1050 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1051 				goto out;
1052 
1053 			if (base_gfn != old.base_gfn)
1054 				change = KVM_MR_MOVE;
1055 			else if (new.flags != old.flags)
1056 				change = KVM_MR_FLAGS_ONLY;
1057 			else { /* Nothing to change. */
1058 				r = 0;
1059 				goto out;
1060 			}
1061 		}
1062 	} else {
1063 		if (!old.npages)
1064 			goto out;
1065 
1066 		change = KVM_MR_DELETE;
1067 		new.base_gfn = 0;
1068 		new.flags = 0;
1069 	}
1070 
1071 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1072 		/* Check for overlaps */
1073 		r = -EEXIST;
1074 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1075 			if (slot->id == id)
1076 				continue;
1077 			if (!((base_gfn + npages <= slot->base_gfn) ||
1078 			      (base_gfn >= slot->base_gfn + slot->npages)))
1079 				goto out;
1080 		}
1081 	}
1082 
1083 	/* Free page dirty bitmap if unneeded */
1084 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1085 		new.dirty_bitmap = NULL;
1086 
1087 	r = -ENOMEM;
1088 	if (change == KVM_MR_CREATE) {
1089 		new.userspace_addr = mem->userspace_addr;
1090 
1091 		if (kvm_arch_create_memslot(kvm, &new, npages))
1092 			goto out_free;
1093 	}
1094 
1095 	/* Allocate page dirty bitmap if needed */
1096 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1097 		if (kvm_create_dirty_bitmap(&new) < 0)
1098 			goto out_free;
1099 	}
1100 
1101 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1102 	if (!slots)
1103 		goto out_free;
1104 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1105 
1106 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1107 		slot = id_to_memslot(slots, id);
1108 		slot->flags |= KVM_MEMSLOT_INVALID;
1109 
1110 		old_memslots = install_new_memslots(kvm, as_id, slots);
1111 
1112 		/* From this point no new shadow pages pointing to a deleted,
1113 		 * or moved, memslot will be created.
1114 		 *
1115 		 * validation of sp->gfn happens in:
1116 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1117 		 *	- kvm_is_visible_gfn (mmu_check_root)
1118 		 */
1119 		kvm_arch_flush_shadow_memslot(kvm, slot);
1120 
1121 		/*
1122 		 * We can re-use the old_memslots from above, the only difference
1123 		 * from the currently installed memslots is the invalid flag.  This
1124 		 * will get overwritten by update_memslots anyway.
1125 		 */
1126 		slots = old_memslots;
1127 	}
1128 
1129 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1130 	if (r)
1131 		goto out_slots;
1132 
1133 	/* actual memory is freed via old in kvm_free_memslot below */
1134 	if (change == KVM_MR_DELETE) {
1135 		new.dirty_bitmap = NULL;
1136 		memset(&new.arch, 0, sizeof(new.arch));
1137 	}
1138 
1139 	update_memslots(slots, &new, change);
1140 	old_memslots = install_new_memslots(kvm, as_id, slots);
1141 
1142 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1143 
1144 	kvm_free_memslot(kvm, &old, &new);
1145 	kvfree(old_memslots);
1146 	return 0;
1147 
1148 out_slots:
1149 	kvfree(slots);
1150 out_free:
1151 	kvm_free_memslot(kvm, &new, &old);
1152 out:
1153 	return r;
1154 }
1155 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1156 
1157 int kvm_set_memory_region(struct kvm *kvm,
1158 			  const struct kvm_userspace_memory_region *mem)
1159 {
1160 	int r;
1161 
1162 	mutex_lock(&kvm->slots_lock);
1163 	r = __kvm_set_memory_region(kvm, mem);
1164 	mutex_unlock(&kvm->slots_lock);
1165 	return r;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1168 
1169 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1170 					  struct kvm_userspace_memory_region *mem)
1171 {
1172 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1173 		return -EINVAL;
1174 
1175 	return kvm_set_memory_region(kvm, mem);
1176 }
1177 
1178 int kvm_get_dirty_log(struct kvm *kvm,
1179 			struct kvm_dirty_log *log, int *is_dirty)
1180 {
1181 	struct kvm_memslots *slots;
1182 	struct kvm_memory_slot *memslot;
1183 	int i, as_id, id;
1184 	unsigned long n;
1185 	unsigned long any = 0;
1186 
1187 	as_id = log->slot >> 16;
1188 	id = (u16)log->slot;
1189 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1190 		return -EINVAL;
1191 
1192 	slots = __kvm_memslots(kvm, as_id);
1193 	memslot = id_to_memslot(slots, id);
1194 	if (!memslot->dirty_bitmap)
1195 		return -ENOENT;
1196 
1197 	n = kvm_dirty_bitmap_bytes(memslot);
1198 
1199 	for (i = 0; !any && i < n/sizeof(long); ++i)
1200 		any = memslot->dirty_bitmap[i];
1201 
1202 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1203 		return -EFAULT;
1204 
1205 	if (any)
1206 		*is_dirty = 1;
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1210 
1211 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1212 /**
1213  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1214  *	and reenable dirty page tracking for the corresponding pages.
1215  * @kvm:	pointer to kvm instance
1216  * @log:	slot id and address to which we copy the log
1217  * @flush:	true if TLB flush is needed by caller
1218  *
1219  * We need to keep it in mind that VCPU threads can write to the bitmap
1220  * concurrently. So, to avoid losing track of dirty pages we keep the
1221  * following order:
1222  *
1223  *    1. Take a snapshot of the bit and clear it if needed.
1224  *    2. Write protect the corresponding page.
1225  *    3. Copy the snapshot to the userspace.
1226  *    4. Upon return caller flushes TLB's if needed.
1227  *
1228  * Between 2 and 4, the guest may write to the page using the remaining TLB
1229  * entry.  This is not a problem because the page is reported dirty using
1230  * the snapshot taken before and step 4 ensures that writes done after
1231  * exiting to userspace will be logged for the next call.
1232  *
1233  */
1234 int kvm_get_dirty_log_protect(struct kvm *kvm,
1235 			struct kvm_dirty_log *log, bool *flush)
1236 {
1237 	struct kvm_memslots *slots;
1238 	struct kvm_memory_slot *memslot;
1239 	int i, as_id, id;
1240 	unsigned long n;
1241 	unsigned long *dirty_bitmap;
1242 	unsigned long *dirty_bitmap_buffer;
1243 
1244 	as_id = log->slot >> 16;
1245 	id = (u16)log->slot;
1246 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1247 		return -EINVAL;
1248 
1249 	slots = __kvm_memslots(kvm, as_id);
1250 	memslot = id_to_memslot(slots, id);
1251 
1252 	dirty_bitmap = memslot->dirty_bitmap;
1253 	if (!dirty_bitmap)
1254 		return -ENOENT;
1255 
1256 	n = kvm_dirty_bitmap_bytes(memslot);
1257 	*flush = false;
1258 	if (kvm->manual_dirty_log_protect) {
1259 		/*
1260 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1261 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1262 		 * is some code duplication between this function and
1263 		 * kvm_get_dirty_log, but hopefully all architecture
1264 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1265 		 * can be eliminated.
1266 		 */
1267 		dirty_bitmap_buffer = dirty_bitmap;
1268 	} else {
1269 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1270 		memset(dirty_bitmap_buffer, 0, n);
1271 
1272 		spin_lock(&kvm->mmu_lock);
1273 		for (i = 0; i < n / sizeof(long); i++) {
1274 			unsigned long mask;
1275 			gfn_t offset;
1276 
1277 			if (!dirty_bitmap[i])
1278 				continue;
1279 
1280 			*flush = true;
1281 			mask = xchg(&dirty_bitmap[i], 0);
1282 			dirty_bitmap_buffer[i] = mask;
1283 
1284 			offset = i * BITS_PER_LONG;
1285 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286 								offset, mask);
1287 		}
1288 		spin_unlock(&kvm->mmu_lock);
1289 	}
1290 
1291 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1292 		return -EFAULT;
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1296 
1297 /**
1298  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1299  *	and reenable dirty page tracking for the corresponding pages.
1300  * @kvm:	pointer to kvm instance
1301  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1302  * @flush:	true if TLB flush is needed by caller
1303  */
1304 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1305 				struct kvm_clear_dirty_log *log, bool *flush)
1306 {
1307 	struct kvm_memslots *slots;
1308 	struct kvm_memory_slot *memslot;
1309 	int as_id, id;
1310 	gfn_t offset;
1311 	unsigned long i, n;
1312 	unsigned long *dirty_bitmap;
1313 	unsigned long *dirty_bitmap_buffer;
1314 
1315 	as_id = log->slot >> 16;
1316 	id = (u16)log->slot;
1317 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1318 		return -EINVAL;
1319 
1320 	if (log->first_page & 63)
1321 		return -EINVAL;
1322 
1323 	slots = __kvm_memslots(kvm, as_id);
1324 	memslot = id_to_memslot(slots, id);
1325 
1326 	dirty_bitmap = memslot->dirty_bitmap;
1327 	if (!dirty_bitmap)
1328 		return -ENOENT;
1329 
1330 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1331 
1332 	if (log->first_page > memslot->npages ||
1333 	    log->num_pages > memslot->npages - log->first_page ||
1334 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1335 	    return -EINVAL;
1336 
1337 	*flush = false;
1338 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1339 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1340 		return -EFAULT;
1341 
1342 	spin_lock(&kvm->mmu_lock);
1343 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1344 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1345 	     i++, offset += BITS_PER_LONG) {
1346 		unsigned long mask = *dirty_bitmap_buffer++;
1347 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1348 		if (!mask)
1349 			continue;
1350 
1351 		mask &= atomic_long_fetch_andnot(mask, p);
1352 
1353 		/*
1354 		 * mask contains the bits that really have been cleared.  This
1355 		 * never includes any bits beyond the length of the memslot (if
1356 		 * the length is not aligned to 64 pages), therefore it is not
1357 		 * a problem if userspace sets them in log->dirty_bitmap.
1358 		*/
1359 		if (mask) {
1360 			*flush = true;
1361 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1362 								offset, mask);
1363 		}
1364 	}
1365 	spin_unlock(&kvm->mmu_lock);
1366 
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1370 #endif
1371 
1372 bool kvm_largepages_enabled(void)
1373 {
1374 	return largepages_enabled;
1375 }
1376 
1377 void kvm_disable_largepages(void)
1378 {
1379 	largepages_enabled = false;
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1382 
1383 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1384 {
1385 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1388 
1389 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1390 {
1391 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1392 }
1393 
1394 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1395 {
1396 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1397 
1398 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1399 	      memslot->flags & KVM_MEMSLOT_INVALID)
1400 		return false;
1401 
1402 	return true;
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1405 
1406 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1407 {
1408 	struct vm_area_struct *vma;
1409 	unsigned long addr, size;
1410 
1411 	size = PAGE_SIZE;
1412 
1413 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1414 	if (kvm_is_error_hva(addr))
1415 		return PAGE_SIZE;
1416 
1417 	down_read(&current->mm->mmap_sem);
1418 	vma = find_vma(current->mm, addr);
1419 	if (!vma)
1420 		goto out;
1421 
1422 	size = vma_kernel_pagesize(vma);
1423 
1424 out:
1425 	up_read(&current->mm->mmap_sem);
1426 
1427 	return size;
1428 }
1429 
1430 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1431 {
1432 	return slot->flags & KVM_MEM_READONLY;
1433 }
1434 
1435 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1436 				       gfn_t *nr_pages, bool write)
1437 {
1438 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1439 		return KVM_HVA_ERR_BAD;
1440 
1441 	if (memslot_is_readonly(slot) && write)
1442 		return KVM_HVA_ERR_RO_BAD;
1443 
1444 	if (nr_pages)
1445 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1446 
1447 	return __gfn_to_hva_memslot(slot, gfn);
1448 }
1449 
1450 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1451 				     gfn_t *nr_pages)
1452 {
1453 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1454 }
1455 
1456 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1457 					gfn_t gfn)
1458 {
1459 	return gfn_to_hva_many(slot, gfn, NULL);
1460 }
1461 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1462 
1463 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1464 {
1465 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1466 }
1467 EXPORT_SYMBOL_GPL(gfn_to_hva);
1468 
1469 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1470 {
1471 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1474 
1475 /*
1476  * Return the hva of a @gfn and the R/W attribute if possible.
1477  *
1478  * @slot: the kvm_memory_slot which contains @gfn
1479  * @gfn: the gfn to be translated
1480  * @writable: used to return the read/write attribute of the @slot if the hva
1481  * is valid and @writable is not NULL
1482  */
1483 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1484 				      gfn_t gfn, bool *writable)
1485 {
1486 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1487 
1488 	if (!kvm_is_error_hva(hva) && writable)
1489 		*writable = !memslot_is_readonly(slot);
1490 
1491 	return hva;
1492 }
1493 
1494 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1495 {
1496 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1497 
1498 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1499 }
1500 
1501 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1502 {
1503 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1504 
1505 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1506 }
1507 
1508 static inline int check_user_page_hwpoison(unsigned long addr)
1509 {
1510 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1511 
1512 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1513 	return rc == -EHWPOISON;
1514 }
1515 
1516 /*
1517  * The fast path to get the writable pfn which will be stored in @pfn,
1518  * true indicates success, otherwise false is returned.  It's also the
1519  * only part that runs if we can in atomic context.
1520  */
1521 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1522 			    bool *writable, kvm_pfn_t *pfn)
1523 {
1524 	struct page *page[1];
1525 	int npages;
1526 
1527 	/*
1528 	 * Fast pin a writable pfn only if it is a write fault request
1529 	 * or the caller allows to map a writable pfn for a read fault
1530 	 * request.
1531 	 */
1532 	if (!(write_fault || writable))
1533 		return false;
1534 
1535 	npages = __get_user_pages_fast(addr, 1, 1, page);
1536 	if (npages == 1) {
1537 		*pfn = page_to_pfn(page[0]);
1538 
1539 		if (writable)
1540 			*writable = true;
1541 		return true;
1542 	}
1543 
1544 	return false;
1545 }
1546 
1547 /*
1548  * The slow path to get the pfn of the specified host virtual address,
1549  * 1 indicates success, -errno is returned if error is detected.
1550  */
1551 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1552 			   bool *writable, kvm_pfn_t *pfn)
1553 {
1554 	unsigned int flags = FOLL_HWPOISON;
1555 	struct page *page;
1556 	int npages = 0;
1557 
1558 	might_sleep();
1559 
1560 	if (writable)
1561 		*writable = write_fault;
1562 
1563 	if (write_fault)
1564 		flags |= FOLL_WRITE;
1565 	if (async)
1566 		flags |= FOLL_NOWAIT;
1567 
1568 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1569 	if (npages != 1)
1570 		return npages;
1571 
1572 	/* map read fault as writable if possible */
1573 	if (unlikely(!write_fault) && writable) {
1574 		struct page *wpage;
1575 
1576 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1577 			*writable = true;
1578 			put_page(page);
1579 			page = wpage;
1580 		}
1581 	}
1582 	*pfn = page_to_pfn(page);
1583 	return npages;
1584 }
1585 
1586 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1587 {
1588 	if (unlikely(!(vma->vm_flags & VM_READ)))
1589 		return false;
1590 
1591 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1592 		return false;
1593 
1594 	return true;
1595 }
1596 
1597 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1598 			       unsigned long addr, bool *async,
1599 			       bool write_fault, bool *writable,
1600 			       kvm_pfn_t *p_pfn)
1601 {
1602 	unsigned long pfn;
1603 	int r;
1604 
1605 	r = follow_pfn(vma, addr, &pfn);
1606 	if (r) {
1607 		/*
1608 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1609 		 * not call the fault handler, so do it here.
1610 		 */
1611 		bool unlocked = false;
1612 		r = fixup_user_fault(current, current->mm, addr,
1613 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1614 				     &unlocked);
1615 		if (unlocked)
1616 			return -EAGAIN;
1617 		if (r)
1618 			return r;
1619 
1620 		r = follow_pfn(vma, addr, &pfn);
1621 		if (r)
1622 			return r;
1623 
1624 	}
1625 
1626 	if (writable)
1627 		*writable = true;
1628 
1629 	/*
1630 	 * Get a reference here because callers of *hva_to_pfn* and
1631 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1632 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1633 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1634 	 * simply do nothing for reserved pfns.
1635 	 *
1636 	 * Whoever called remap_pfn_range is also going to call e.g.
1637 	 * unmap_mapping_range before the underlying pages are freed,
1638 	 * causing a call to our MMU notifier.
1639 	 */
1640 	kvm_get_pfn(pfn);
1641 
1642 	*p_pfn = pfn;
1643 	return 0;
1644 }
1645 
1646 /*
1647  * Pin guest page in memory and return its pfn.
1648  * @addr: host virtual address which maps memory to the guest
1649  * @atomic: whether this function can sleep
1650  * @async: whether this function need to wait IO complete if the
1651  *         host page is not in the memory
1652  * @write_fault: whether we should get a writable host page
1653  * @writable: whether it allows to map a writable host page for !@write_fault
1654  *
1655  * The function will map a writable host page for these two cases:
1656  * 1): @write_fault = true
1657  * 2): @write_fault = false && @writable, @writable will tell the caller
1658  *     whether the mapping is writable.
1659  */
1660 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1661 			bool write_fault, bool *writable)
1662 {
1663 	struct vm_area_struct *vma;
1664 	kvm_pfn_t pfn = 0;
1665 	int npages, r;
1666 
1667 	/* we can do it either atomically or asynchronously, not both */
1668 	BUG_ON(atomic && async);
1669 
1670 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1671 		return pfn;
1672 
1673 	if (atomic)
1674 		return KVM_PFN_ERR_FAULT;
1675 
1676 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1677 	if (npages == 1)
1678 		return pfn;
1679 
1680 	down_read(&current->mm->mmap_sem);
1681 	if (npages == -EHWPOISON ||
1682 	      (!async && check_user_page_hwpoison(addr))) {
1683 		pfn = KVM_PFN_ERR_HWPOISON;
1684 		goto exit;
1685 	}
1686 
1687 retry:
1688 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1689 
1690 	if (vma == NULL)
1691 		pfn = KVM_PFN_ERR_FAULT;
1692 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1693 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1694 		if (r == -EAGAIN)
1695 			goto retry;
1696 		if (r < 0)
1697 			pfn = KVM_PFN_ERR_FAULT;
1698 	} else {
1699 		if (async && vma_is_valid(vma, write_fault))
1700 			*async = true;
1701 		pfn = KVM_PFN_ERR_FAULT;
1702 	}
1703 exit:
1704 	up_read(&current->mm->mmap_sem);
1705 	return pfn;
1706 }
1707 
1708 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1709 			       bool atomic, bool *async, bool write_fault,
1710 			       bool *writable)
1711 {
1712 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1713 
1714 	if (addr == KVM_HVA_ERR_RO_BAD) {
1715 		if (writable)
1716 			*writable = false;
1717 		return KVM_PFN_ERR_RO_FAULT;
1718 	}
1719 
1720 	if (kvm_is_error_hva(addr)) {
1721 		if (writable)
1722 			*writable = false;
1723 		return KVM_PFN_NOSLOT;
1724 	}
1725 
1726 	/* Do not map writable pfn in the readonly memslot. */
1727 	if (writable && memslot_is_readonly(slot)) {
1728 		*writable = false;
1729 		writable = NULL;
1730 	}
1731 
1732 	return hva_to_pfn(addr, atomic, async, write_fault,
1733 			  writable);
1734 }
1735 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1736 
1737 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1738 		      bool *writable)
1739 {
1740 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1741 				    write_fault, writable);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1744 
1745 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1746 {
1747 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1748 }
1749 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1750 
1751 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1752 {
1753 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1754 }
1755 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1756 
1757 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1758 {
1759 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1760 }
1761 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1762 
1763 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1764 {
1765 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1768 
1769 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1770 {
1771 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1772 }
1773 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1774 
1775 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1776 {
1777 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1780 
1781 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1782 			    struct page **pages, int nr_pages)
1783 {
1784 	unsigned long addr;
1785 	gfn_t entry = 0;
1786 
1787 	addr = gfn_to_hva_many(slot, gfn, &entry);
1788 	if (kvm_is_error_hva(addr))
1789 		return -1;
1790 
1791 	if (entry < nr_pages)
1792 		return 0;
1793 
1794 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1795 }
1796 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1797 
1798 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1799 {
1800 	if (is_error_noslot_pfn(pfn))
1801 		return KVM_ERR_PTR_BAD_PAGE;
1802 
1803 	if (kvm_is_reserved_pfn(pfn)) {
1804 		WARN_ON(1);
1805 		return KVM_ERR_PTR_BAD_PAGE;
1806 	}
1807 
1808 	return pfn_to_page(pfn);
1809 }
1810 
1811 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1812 {
1813 	kvm_pfn_t pfn;
1814 
1815 	pfn = gfn_to_pfn(kvm, gfn);
1816 
1817 	return kvm_pfn_to_page(pfn);
1818 }
1819 EXPORT_SYMBOL_GPL(gfn_to_page);
1820 
1821 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1822 {
1823 	if (pfn == 0)
1824 		return;
1825 
1826 	if (cache)
1827 		cache->pfn = cache->gfn = 0;
1828 
1829 	if (dirty)
1830 		kvm_release_pfn_dirty(pfn);
1831 	else
1832 		kvm_release_pfn_clean(pfn);
1833 }
1834 
1835 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1836 				 struct gfn_to_pfn_cache *cache, u64 gen)
1837 {
1838 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
1839 
1840 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1841 	cache->gfn = gfn;
1842 	cache->dirty = false;
1843 	cache->generation = gen;
1844 }
1845 
1846 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1847 			 struct kvm_host_map *map,
1848 			 struct gfn_to_pfn_cache *cache,
1849 			 bool atomic)
1850 {
1851 	kvm_pfn_t pfn;
1852 	void *hva = NULL;
1853 	struct page *page = KVM_UNMAPPED_PAGE;
1854 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1855 	u64 gen = slots->generation;
1856 
1857 	if (!map)
1858 		return -EINVAL;
1859 
1860 	if (cache) {
1861 		if (!cache->pfn || cache->gfn != gfn ||
1862 			cache->generation != gen) {
1863 			if (atomic)
1864 				return -EAGAIN;
1865 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1866 		}
1867 		pfn = cache->pfn;
1868 	} else {
1869 		if (atomic)
1870 			return -EAGAIN;
1871 		pfn = gfn_to_pfn_memslot(slot, gfn);
1872 	}
1873 	if (is_error_noslot_pfn(pfn))
1874 		return -EINVAL;
1875 
1876 	if (pfn_valid(pfn)) {
1877 		page = pfn_to_page(pfn);
1878 		if (atomic)
1879 			hva = kmap_atomic(page);
1880 		else
1881 			hva = kmap(page);
1882 #ifdef CONFIG_HAS_IOMEM
1883 	} else if (!atomic) {
1884 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1885 	} else {
1886 		return -EINVAL;
1887 #endif
1888 	}
1889 
1890 	if (!hva)
1891 		return -EFAULT;
1892 
1893 	map->page = page;
1894 	map->hva = hva;
1895 	map->pfn = pfn;
1896 	map->gfn = gfn;
1897 
1898 	return 0;
1899 }
1900 
1901 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1902 		struct gfn_to_pfn_cache *cache, bool atomic)
1903 {
1904 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1905 			cache, atomic);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1908 
1909 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1910 {
1911 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1912 		NULL, false);
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1915 
1916 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1917 			struct kvm_host_map *map,
1918 			struct gfn_to_pfn_cache *cache,
1919 			bool dirty, bool atomic)
1920 {
1921 	if (!map)
1922 		return;
1923 
1924 	if (!map->hva)
1925 		return;
1926 
1927 	if (map->page != KVM_UNMAPPED_PAGE) {
1928 		if (atomic)
1929 			kunmap_atomic(map->hva);
1930 		else
1931 			kunmap(map->page);
1932 	}
1933 #ifdef CONFIG_HAS_IOMEM
1934 	else if (!atomic)
1935 		memunmap(map->hva);
1936 	else
1937 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
1938 #endif
1939 
1940 	if (dirty)
1941 		mark_page_dirty_in_slot(memslot, map->gfn);
1942 
1943 	if (cache)
1944 		cache->dirty |= dirty;
1945 	else
1946 		kvm_release_pfn(map->pfn, dirty, NULL);
1947 
1948 	map->hva = NULL;
1949 	map->page = NULL;
1950 }
1951 
1952 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1953 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1954 {
1955 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1956 			cache, dirty, atomic);
1957 	return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1960 
1961 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1962 {
1963 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1964 			dirty, false);
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1967 
1968 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1969 {
1970 	kvm_pfn_t pfn;
1971 
1972 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1973 
1974 	return kvm_pfn_to_page(pfn);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1977 
1978 void kvm_release_page_clean(struct page *page)
1979 {
1980 	WARN_ON(is_error_page(page));
1981 
1982 	kvm_release_pfn_clean(page_to_pfn(page));
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1985 
1986 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1987 {
1988 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1989 		put_page(pfn_to_page(pfn));
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1992 
1993 void kvm_release_page_dirty(struct page *page)
1994 {
1995 	WARN_ON(is_error_page(page));
1996 
1997 	kvm_release_pfn_dirty(page_to_pfn(page));
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2000 
2001 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2002 {
2003 	kvm_set_pfn_dirty(pfn);
2004 	kvm_release_pfn_clean(pfn);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2007 
2008 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2009 {
2010 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2011 		SetPageDirty(pfn_to_page(pfn));
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2014 
2015 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2016 {
2017 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2018 		mark_page_accessed(pfn_to_page(pfn));
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2021 
2022 void kvm_get_pfn(kvm_pfn_t pfn)
2023 {
2024 	if (!kvm_is_reserved_pfn(pfn))
2025 		get_page(pfn_to_page(pfn));
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2028 
2029 static int next_segment(unsigned long len, int offset)
2030 {
2031 	if (len > PAGE_SIZE - offset)
2032 		return PAGE_SIZE - offset;
2033 	else
2034 		return len;
2035 }
2036 
2037 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2038 				 void *data, int offset, int len)
2039 {
2040 	int r;
2041 	unsigned long addr;
2042 
2043 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044 	if (kvm_is_error_hva(addr))
2045 		return -EFAULT;
2046 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2047 	if (r)
2048 		return -EFAULT;
2049 	return 0;
2050 }
2051 
2052 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2053 			int len)
2054 {
2055 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2056 
2057 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2060 
2061 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2062 			     int offset, int len)
2063 {
2064 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2065 
2066 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2069 
2070 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2071 {
2072 	gfn_t gfn = gpa >> PAGE_SHIFT;
2073 	int seg;
2074 	int offset = offset_in_page(gpa);
2075 	int ret;
2076 
2077 	while ((seg = next_segment(len, offset)) != 0) {
2078 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2079 		if (ret < 0)
2080 			return ret;
2081 		offset = 0;
2082 		len -= seg;
2083 		data += seg;
2084 		++gfn;
2085 	}
2086 	return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(kvm_read_guest);
2089 
2090 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2091 {
2092 	gfn_t gfn = gpa >> PAGE_SHIFT;
2093 	int seg;
2094 	int offset = offset_in_page(gpa);
2095 	int ret;
2096 
2097 	while ((seg = next_segment(len, offset)) != 0) {
2098 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2099 		if (ret < 0)
2100 			return ret;
2101 		offset = 0;
2102 		len -= seg;
2103 		data += seg;
2104 		++gfn;
2105 	}
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2109 
2110 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2111 			           void *data, int offset, unsigned long len)
2112 {
2113 	int r;
2114 	unsigned long addr;
2115 
2116 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2117 	if (kvm_is_error_hva(addr))
2118 		return -EFAULT;
2119 	pagefault_disable();
2120 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2121 	pagefault_enable();
2122 	if (r)
2123 		return -EFAULT;
2124 	return 0;
2125 }
2126 
2127 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2128 			       void *data, unsigned long len)
2129 {
2130 	gfn_t gfn = gpa >> PAGE_SHIFT;
2131 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2132 	int offset = offset_in_page(gpa);
2133 
2134 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2137 
2138 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2139 			          const void *data, int offset, int len)
2140 {
2141 	int r;
2142 	unsigned long addr;
2143 
2144 	addr = gfn_to_hva_memslot(memslot, gfn);
2145 	if (kvm_is_error_hva(addr))
2146 		return -EFAULT;
2147 	r = __copy_to_user((void __user *)addr + offset, data, len);
2148 	if (r)
2149 		return -EFAULT;
2150 	mark_page_dirty_in_slot(memslot, gfn);
2151 	return 0;
2152 }
2153 
2154 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2155 			 const void *data, int offset, int len)
2156 {
2157 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2158 
2159 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2162 
2163 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2164 			      const void *data, int offset, int len)
2165 {
2166 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2167 
2168 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2169 }
2170 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2171 
2172 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2173 		    unsigned long len)
2174 {
2175 	gfn_t gfn = gpa >> PAGE_SHIFT;
2176 	int seg;
2177 	int offset = offset_in_page(gpa);
2178 	int ret;
2179 
2180 	while ((seg = next_segment(len, offset)) != 0) {
2181 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2182 		if (ret < 0)
2183 			return ret;
2184 		offset = 0;
2185 		len -= seg;
2186 		data += seg;
2187 		++gfn;
2188 	}
2189 	return 0;
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_write_guest);
2192 
2193 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2194 		         unsigned long len)
2195 {
2196 	gfn_t gfn = gpa >> PAGE_SHIFT;
2197 	int seg;
2198 	int offset = offset_in_page(gpa);
2199 	int ret;
2200 
2201 	while ((seg = next_segment(len, offset)) != 0) {
2202 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2203 		if (ret < 0)
2204 			return ret;
2205 		offset = 0;
2206 		len -= seg;
2207 		data += seg;
2208 		++gfn;
2209 	}
2210 	return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2213 
2214 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2215 				       struct gfn_to_hva_cache *ghc,
2216 				       gpa_t gpa, unsigned long len)
2217 {
2218 	int offset = offset_in_page(gpa);
2219 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2220 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2221 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2222 	gfn_t nr_pages_avail;
2223 
2224 	/* Update ghc->generation before performing any error checks. */
2225 	ghc->generation = slots->generation;
2226 
2227 	if (start_gfn > end_gfn) {
2228 		ghc->hva = KVM_HVA_ERR_BAD;
2229 		return -EINVAL;
2230 	}
2231 
2232 	/*
2233 	 * If the requested region crosses two memslots, we still
2234 	 * verify that the entire region is valid here.
2235 	 */
2236 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2237 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2238 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2239 					   &nr_pages_avail);
2240 		if (kvm_is_error_hva(ghc->hva))
2241 			return -EFAULT;
2242 	}
2243 
2244 	/* Use the slow path for cross page reads and writes. */
2245 	if (nr_pages_needed == 1)
2246 		ghc->hva += offset;
2247 	else
2248 		ghc->memslot = NULL;
2249 
2250 	ghc->gpa = gpa;
2251 	ghc->len = len;
2252 	return 0;
2253 }
2254 
2255 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2256 			      gpa_t gpa, unsigned long len)
2257 {
2258 	struct kvm_memslots *slots = kvm_memslots(kvm);
2259 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2262 
2263 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2264 				  void *data, unsigned int offset,
2265 				  unsigned long len)
2266 {
2267 	struct kvm_memslots *slots = kvm_memslots(kvm);
2268 	int r;
2269 	gpa_t gpa = ghc->gpa + offset;
2270 
2271 	BUG_ON(len + offset > ghc->len);
2272 
2273 	if (slots->generation != ghc->generation) {
2274 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2275 			return -EFAULT;
2276 	}
2277 
2278 	if (kvm_is_error_hva(ghc->hva))
2279 		return -EFAULT;
2280 
2281 	if (unlikely(!ghc->memslot))
2282 		return kvm_write_guest(kvm, gpa, data, len);
2283 
2284 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2285 	if (r)
2286 		return -EFAULT;
2287 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2288 
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2292 
2293 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2294 			   void *data, unsigned long len)
2295 {
2296 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2299 
2300 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2301 			   void *data, unsigned long len)
2302 {
2303 	struct kvm_memslots *slots = kvm_memslots(kvm);
2304 	int r;
2305 
2306 	BUG_ON(len > ghc->len);
2307 
2308 	if (slots->generation != ghc->generation) {
2309 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2310 			return -EFAULT;
2311 	}
2312 
2313 	if (kvm_is_error_hva(ghc->hva))
2314 		return -EFAULT;
2315 
2316 	if (unlikely(!ghc->memslot))
2317 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2318 
2319 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2320 	if (r)
2321 		return -EFAULT;
2322 
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2326 
2327 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2328 {
2329 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2330 
2331 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2332 }
2333 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2334 
2335 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2336 {
2337 	gfn_t gfn = gpa >> PAGE_SHIFT;
2338 	int seg;
2339 	int offset = offset_in_page(gpa);
2340 	int ret;
2341 
2342 	while ((seg = next_segment(len, offset)) != 0) {
2343 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2344 		if (ret < 0)
2345 			return ret;
2346 		offset = 0;
2347 		len -= seg;
2348 		++gfn;
2349 	}
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2353 
2354 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2355 				    gfn_t gfn)
2356 {
2357 	if (memslot && memslot->dirty_bitmap) {
2358 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2359 
2360 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2361 	}
2362 }
2363 
2364 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2365 {
2366 	struct kvm_memory_slot *memslot;
2367 
2368 	memslot = gfn_to_memslot(kvm, gfn);
2369 	mark_page_dirty_in_slot(memslot, gfn);
2370 }
2371 EXPORT_SYMBOL_GPL(mark_page_dirty);
2372 
2373 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2374 {
2375 	struct kvm_memory_slot *memslot;
2376 
2377 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2378 	mark_page_dirty_in_slot(memslot, gfn);
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2381 
2382 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2383 {
2384 	if (!vcpu->sigset_active)
2385 		return;
2386 
2387 	/*
2388 	 * This does a lockless modification of ->real_blocked, which is fine
2389 	 * because, only current can change ->real_blocked and all readers of
2390 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2391 	 * of ->blocked.
2392 	 */
2393 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2394 }
2395 
2396 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2397 {
2398 	if (!vcpu->sigset_active)
2399 		return;
2400 
2401 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2402 	sigemptyset(&current->real_blocked);
2403 }
2404 
2405 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2406 {
2407 	unsigned int old, val, grow, grow_start;
2408 
2409 	old = val = vcpu->halt_poll_ns;
2410 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2411 	grow = READ_ONCE(halt_poll_ns_grow);
2412 	if (!grow)
2413 		goto out;
2414 
2415 	val *= grow;
2416 	if (val < grow_start)
2417 		val = grow_start;
2418 
2419 	if (val > halt_poll_ns)
2420 		val = halt_poll_ns;
2421 
2422 	vcpu->halt_poll_ns = val;
2423 out:
2424 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2425 }
2426 
2427 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2428 {
2429 	unsigned int old, val, shrink;
2430 
2431 	old = val = vcpu->halt_poll_ns;
2432 	shrink = READ_ONCE(halt_poll_ns_shrink);
2433 	if (shrink == 0)
2434 		val = 0;
2435 	else
2436 		val /= shrink;
2437 
2438 	vcpu->halt_poll_ns = val;
2439 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2440 }
2441 
2442 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2443 {
2444 	int ret = -EINTR;
2445 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2446 
2447 	if (kvm_arch_vcpu_runnable(vcpu)) {
2448 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2449 		goto out;
2450 	}
2451 	if (kvm_cpu_has_pending_timer(vcpu))
2452 		goto out;
2453 	if (signal_pending(current))
2454 		goto out;
2455 
2456 	ret = 0;
2457 out:
2458 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2459 	return ret;
2460 }
2461 
2462 /*
2463  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2464  */
2465 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2466 {
2467 	ktime_t start, cur;
2468 	DECLARE_SWAITQUEUE(wait);
2469 	bool waited = false;
2470 	u64 block_ns;
2471 
2472 	kvm_arch_vcpu_blocking(vcpu);
2473 
2474 	start = cur = ktime_get();
2475 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2476 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2477 
2478 		++vcpu->stat.halt_attempted_poll;
2479 		do {
2480 			/*
2481 			 * This sets KVM_REQ_UNHALT if an interrupt
2482 			 * arrives.
2483 			 */
2484 			if (kvm_vcpu_check_block(vcpu) < 0) {
2485 				++vcpu->stat.halt_successful_poll;
2486 				if (!vcpu_valid_wakeup(vcpu))
2487 					++vcpu->stat.halt_poll_invalid;
2488 				goto out;
2489 			}
2490 			cur = ktime_get();
2491 		} while (single_task_running() && ktime_before(cur, stop));
2492 	}
2493 
2494 	for (;;) {
2495 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2496 
2497 		if (kvm_vcpu_check_block(vcpu) < 0)
2498 			break;
2499 
2500 		waited = true;
2501 		schedule();
2502 	}
2503 
2504 	finish_swait(&vcpu->wq, &wait);
2505 	cur = ktime_get();
2506 out:
2507 	kvm_arch_vcpu_unblocking(vcpu);
2508 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2509 
2510 	if (!kvm_arch_no_poll(vcpu)) {
2511 		if (!vcpu_valid_wakeup(vcpu)) {
2512 			shrink_halt_poll_ns(vcpu);
2513 		} else if (halt_poll_ns) {
2514 			if (block_ns <= vcpu->halt_poll_ns)
2515 				;
2516 			/* we had a long block, shrink polling */
2517 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2518 				shrink_halt_poll_ns(vcpu);
2519 			/* we had a short halt and our poll time is too small */
2520 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2521 				block_ns < halt_poll_ns)
2522 				grow_halt_poll_ns(vcpu);
2523 		} else {
2524 			vcpu->halt_poll_ns = 0;
2525 		}
2526 	}
2527 
2528 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2529 	kvm_arch_vcpu_block_finish(vcpu);
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2532 
2533 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2534 {
2535 	struct swait_queue_head *wqp;
2536 
2537 	wqp = kvm_arch_vcpu_wq(vcpu);
2538 	if (swq_has_sleeper(wqp)) {
2539 		swake_up_one(wqp);
2540 		WRITE_ONCE(vcpu->ready, true);
2541 		++vcpu->stat.halt_wakeup;
2542 		return true;
2543 	}
2544 
2545 	return false;
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2548 
2549 #ifndef CONFIG_S390
2550 /*
2551  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2552  */
2553 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2554 {
2555 	int me;
2556 	int cpu = vcpu->cpu;
2557 
2558 	if (kvm_vcpu_wake_up(vcpu))
2559 		return;
2560 
2561 	me = get_cpu();
2562 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2563 		if (kvm_arch_vcpu_should_kick(vcpu))
2564 			smp_send_reschedule(cpu);
2565 	put_cpu();
2566 }
2567 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2568 #endif /* !CONFIG_S390 */
2569 
2570 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2571 {
2572 	struct pid *pid;
2573 	struct task_struct *task = NULL;
2574 	int ret = 0;
2575 
2576 	rcu_read_lock();
2577 	pid = rcu_dereference(target->pid);
2578 	if (pid)
2579 		task = get_pid_task(pid, PIDTYPE_PID);
2580 	rcu_read_unlock();
2581 	if (!task)
2582 		return ret;
2583 	ret = yield_to(task, 1);
2584 	put_task_struct(task);
2585 
2586 	return ret;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2589 
2590 /*
2591  * Helper that checks whether a VCPU is eligible for directed yield.
2592  * Most eligible candidate to yield is decided by following heuristics:
2593  *
2594  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2595  *  (preempted lock holder), indicated by @in_spin_loop.
2596  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2597  *
2598  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2599  *  chance last time (mostly it has become eligible now since we have probably
2600  *  yielded to lockholder in last iteration. This is done by toggling
2601  *  @dy_eligible each time a VCPU checked for eligibility.)
2602  *
2603  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2604  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2605  *  burning. Giving priority for a potential lock-holder increases lock
2606  *  progress.
2607  *
2608  *  Since algorithm is based on heuristics, accessing another VCPU data without
2609  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2610  *  and continue with next VCPU and so on.
2611  */
2612 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2613 {
2614 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2615 	bool eligible;
2616 
2617 	eligible = !vcpu->spin_loop.in_spin_loop ||
2618 		    vcpu->spin_loop.dy_eligible;
2619 
2620 	if (vcpu->spin_loop.in_spin_loop)
2621 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2622 
2623 	return eligible;
2624 #else
2625 	return true;
2626 #endif
2627 }
2628 
2629 /*
2630  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2631  * a vcpu_load/vcpu_put pair.  However, for most architectures
2632  * kvm_arch_vcpu_runnable does not require vcpu_load.
2633  */
2634 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2635 {
2636 	return kvm_arch_vcpu_runnable(vcpu);
2637 }
2638 
2639 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2640 {
2641 	if (kvm_arch_dy_runnable(vcpu))
2642 		return true;
2643 
2644 #ifdef CONFIG_KVM_ASYNC_PF
2645 	if (!list_empty_careful(&vcpu->async_pf.done))
2646 		return true;
2647 #endif
2648 
2649 	return false;
2650 }
2651 
2652 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2653 {
2654 	struct kvm *kvm = me->kvm;
2655 	struct kvm_vcpu *vcpu;
2656 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2657 	int yielded = 0;
2658 	int try = 3;
2659 	int pass;
2660 	int i;
2661 
2662 	kvm_vcpu_set_in_spin_loop(me, true);
2663 	/*
2664 	 * We boost the priority of a VCPU that is runnable but not
2665 	 * currently running, because it got preempted by something
2666 	 * else and called schedule in __vcpu_run.  Hopefully that
2667 	 * VCPU is holding the lock that we need and will release it.
2668 	 * We approximate round-robin by starting at the last boosted VCPU.
2669 	 */
2670 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2671 		kvm_for_each_vcpu(i, vcpu, kvm) {
2672 			if (!pass && i <= last_boosted_vcpu) {
2673 				i = last_boosted_vcpu;
2674 				continue;
2675 			} else if (pass && i > last_boosted_vcpu)
2676 				break;
2677 			if (!READ_ONCE(vcpu->ready))
2678 				continue;
2679 			if (vcpu == me)
2680 				continue;
2681 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2682 				continue;
2683 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2684 				!kvm_arch_vcpu_in_kernel(vcpu))
2685 				continue;
2686 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2687 				continue;
2688 
2689 			yielded = kvm_vcpu_yield_to(vcpu);
2690 			if (yielded > 0) {
2691 				kvm->last_boosted_vcpu = i;
2692 				break;
2693 			} else if (yielded < 0) {
2694 				try--;
2695 				if (!try)
2696 					break;
2697 			}
2698 		}
2699 	}
2700 	kvm_vcpu_set_in_spin_loop(me, false);
2701 
2702 	/* Ensure vcpu is not eligible during next spinloop */
2703 	kvm_vcpu_set_dy_eligible(me, false);
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2706 
2707 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2708 {
2709 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2710 	struct page *page;
2711 
2712 	if (vmf->pgoff == 0)
2713 		page = virt_to_page(vcpu->run);
2714 #ifdef CONFIG_X86
2715 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2716 		page = virt_to_page(vcpu->arch.pio_data);
2717 #endif
2718 #ifdef CONFIG_KVM_MMIO
2719 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2720 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2721 #endif
2722 	else
2723 		return kvm_arch_vcpu_fault(vcpu, vmf);
2724 	get_page(page);
2725 	vmf->page = page;
2726 	return 0;
2727 }
2728 
2729 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2730 	.fault = kvm_vcpu_fault,
2731 };
2732 
2733 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2734 {
2735 	vma->vm_ops = &kvm_vcpu_vm_ops;
2736 	return 0;
2737 }
2738 
2739 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2740 {
2741 	struct kvm_vcpu *vcpu = filp->private_data;
2742 
2743 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2744 	kvm_put_kvm(vcpu->kvm);
2745 	return 0;
2746 }
2747 
2748 static struct file_operations kvm_vcpu_fops = {
2749 	.release        = kvm_vcpu_release,
2750 	.unlocked_ioctl = kvm_vcpu_ioctl,
2751 	.mmap           = kvm_vcpu_mmap,
2752 	.llseek		= noop_llseek,
2753 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2754 };
2755 
2756 /*
2757  * Allocates an inode for the vcpu.
2758  */
2759 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2760 {
2761 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2762 
2763 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2764 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2765 }
2766 
2767 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2768 {
2769 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2770 	char dir_name[ITOA_MAX_LEN * 2];
2771 
2772 	if (!debugfs_initialized())
2773 		return;
2774 
2775 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2776 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2777 						  vcpu->kvm->debugfs_dentry);
2778 
2779 	kvm_arch_create_vcpu_debugfs(vcpu);
2780 #endif
2781 }
2782 
2783 /*
2784  * Creates some virtual cpus.  Good luck creating more than one.
2785  */
2786 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2787 {
2788 	int r;
2789 	struct kvm_vcpu *vcpu;
2790 	struct page *page;
2791 
2792 	if (id >= KVM_MAX_VCPU_ID)
2793 		return -EINVAL;
2794 
2795 	mutex_lock(&kvm->lock);
2796 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2797 		mutex_unlock(&kvm->lock);
2798 		return -EINVAL;
2799 	}
2800 
2801 	kvm->created_vcpus++;
2802 	mutex_unlock(&kvm->lock);
2803 
2804 	r = kvm_arch_vcpu_precreate(kvm, id);
2805 	if (r)
2806 		goto vcpu_decrement;
2807 
2808 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2809 	if (!vcpu) {
2810 		r = -ENOMEM;
2811 		goto vcpu_decrement;
2812 	}
2813 
2814 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
2815 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2816 	if (!page) {
2817 		r = -ENOMEM;
2818 		goto vcpu_free;
2819 	}
2820 	vcpu->run = page_address(page);
2821 
2822 	kvm_vcpu_init(vcpu, kvm, id);
2823 
2824 	r = kvm_arch_vcpu_create(vcpu);
2825 	if (r)
2826 		goto vcpu_free_run_page;
2827 
2828 	kvm_create_vcpu_debugfs(vcpu);
2829 
2830 	mutex_lock(&kvm->lock);
2831 	if (kvm_get_vcpu_by_id(kvm, id)) {
2832 		r = -EEXIST;
2833 		goto unlock_vcpu_destroy;
2834 	}
2835 
2836 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2837 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2838 
2839 	/* Now it's all set up, let userspace reach it */
2840 	kvm_get_kvm(kvm);
2841 	r = create_vcpu_fd(vcpu);
2842 	if (r < 0) {
2843 		kvm_put_kvm_no_destroy(kvm);
2844 		goto unlock_vcpu_destroy;
2845 	}
2846 
2847 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2848 
2849 	/*
2850 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2851 	 * before kvm->online_vcpu's incremented value.
2852 	 */
2853 	smp_wmb();
2854 	atomic_inc(&kvm->online_vcpus);
2855 
2856 	mutex_unlock(&kvm->lock);
2857 	kvm_arch_vcpu_postcreate(vcpu);
2858 	return r;
2859 
2860 unlock_vcpu_destroy:
2861 	mutex_unlock(&kvm->lock);
2862 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2863 	kvm_arch_vcpu_destroy(vcpu);
2864 vcpu_free_run_page:
2865 	free_page((unsigned long)vcpu->run);
2866 vcpu_free:
2867 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2868 vcpu_decrement:
2869 	mutex_lock(&kvm->lock);
2870 	kvm->created_vcpus--;
2871 	mutex_unlock(&kvm->lock);
2872 	return r;
2873 }
2874 
2875 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2876 {
2877 	if (sigset) {
2878 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2879 		vcpu->sigset_active = 1;
2880 		vcpu->sigset = *sigset;
2881 	} else
2882 		vcpu->sigset_active = 0;
2883 	return 0;
2884 }
2885 
2886 static long kvm_vcpu_ioctl(struct file *filp,
2887 			   unsigned int ioctl, unsigned long arg)
2888 {
2889 	struct kvm_vcpu *vcpu = filp->private_data;
2890 	void __user *argp = (void __user *)arg;
2891 	int r;
2892 	struct kvm_fpu *fpu = NULL;
2893 	struct kvm_sregs *kvm_sregs = NULL;
2894 
2895 	if (vcpu->kvm->mm != current->mm)
2896 		return -EIO;
2897 
2898 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2899 		return -EINVAL;
2900 
2901 	/*
2902 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2903 	 * execution; mutex_lock() would break them.
2904 	 */
2905 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2906 	if (r != -ENOIOCTLCMD)
2907 		return r;
2908 
2909 	if (mutex_lock_killable(&vcpu->mutex))
2910 		return -EINTR;
2911 	switch (ioctl) {
2912 	case KVM_RUN: {
2913 		struct pid *oldpid;
2914 		r = -EINVAL;
2915 		if (arg)
2916 			goto out;
2917 		oldpid = rcu_access_pointer(vcpu->pid);
2918 		if (unlikely(oldpid != task_pid(current))) {
2919 			/* The thread running this VCPU changed. */
2920 			struct pid *newpid;
2921 
2922 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2923 			if (r)
2924 				break;
2925 
2926 			newpid = get_task_pid(current, PIDTYPE_PID);
2927 			rcu_assign_pointer(vcpu->pid, newpid);
2928 			if (oldpid)
2929 				synchronize_rcu();
2930 			put_pid(oldpid);
2931 		}
2932 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2933 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2934 		break;
2935 	}
2936 	case KVM_GET_REGS: {
2937 		struct kvm_regs *kvm_regs;
2938 
2939 		r = -ENOMEM;
2940 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2941 		if (!kvm_regs)
2942 			goto out;
2943 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2944 		if (r)
2945 			goto out_free1;
2946 		r = -EFAULT;
2947 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2948 			goto out_free1;
2949 		r = 0;
2950 out_free1:
2951 		kfree(kvm_regs);
2952 		break;
2953 	}
2954 	case KVM_SET_REGS: {
2955 		struct kvm_regs *kvm_regs;
2956 
2957 		r = -ENOMEM;
2958 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2959 		if (IS_ERR(kvm_regs)) {
2960 			r = PTR_ERR(kvm_regs);
2961 			goto out;
2962 		}
2963 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2964 		kfree(kvm_regs);
2965 		break;
2966 	}
2967 	case KVM_GET_SREGS: {
2968 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2969 				    GFP_KERNEL_ACCOUNT);
2970 		r = -ENOMEM;
2971 		if (!kvm_sregs)
2972 			goto out;
2973 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2974 		if (r)
2975 			goto out;
2976 		r = -EFAULT;
2977 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2978 			goto out;
2979 		r = 0;
2980 		break;
2981 	}
2982 	case KVM_SET_SREGS: {
2983 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2984 		if (IS_ERR(kvm_sregs)) {
2985 			r = PTR_ERR(kvm_sregs);
2986 			kvm_sregs = NULL;
2987 			goto out;
2988 		}
2989 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2990 		break;
2991 	}
2992 	case KVM_GET_MP_STATE: {
2993 		struct kvm_mp_state mp_state;
2994 
2995 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2996 		if (r)
2997 			goto out;
2998 		r = -EFAULT;
2999 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3000 			goto out;
3001 		r = 0;
3002 		break;
3003 	}
3004 	case KVM_SET_MP_STATE: {
3005 		struct kvm_mp_state mp_state;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3009 			goto out;
3010 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3011 		break;
3012 	}
3013 	case KVM_TRANSLATE: {
3014 		struct kvm_translation tr;
3015 
3016 		r = -EFAULT;
3017 		if (copy_from_user(&tr, argp, sizeof(tr)))
3018 			goto out;
3019 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3020 		if (r)
3021 			goto out;
3022 		r = -EFAULT;
3023 		if (copy_to_user(argp, &tr, sizeof(tr)))
3024 			goto out;
3025 		r = 0;
3026 		break;
3027 	}
3028 	case KVM_SET_GUEST_DEBUG: {
3029 		struct kvm_guest_debug dbg;
3030 
3031 		r = -EFAULT;
3032 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3033 			goto out;
3034 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3035 		break;
3036 	}
3037 	case KVM_SET_SIGNAL_MASK: {
3038 		struct kvm_signal_mask __user *sigmask_arg = argp;
3039 		struct kvm_signal_mask kvm_sigmask;
3040 		sigset_t sigset, *p;
3041 
3042 		p = NULL;
3043 		if (argp) {
3044 			r = -EFAULT;
3045 			if (copy_from_user(&kvm_sigmask, argp,
3046 					   sizeof(kvm_sigmask)))
3047 				goto out;
3048 			r = -EINVAL;
3049 			if (kvm_sigmask.len != sizeof(sigset))
3050 				goto out;
3051 			r = -EFAULT;
3052 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3053 					   sizeof(sigset)))
3054 				goto out;
3055 			p = &sigset;
3056 		}
3057 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3058 		break;
3059 	}
3060 	case KVM_GET_FPU: {
3061 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3062 		r = -ENOMEM;
3063 		if (!fpu)
3064 			goto out;
3065 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3066 		if (r)
3067 			goto out;
3068 		r = -EFAULT;
3069 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3070 			goto out;
3071 		r = 0;
3072 		break;
3073 	}
3074 	case KVM_SET_FPU: {
3075 		fpu = memdup_user(argp, sizeof(*fpu));
3076 		if (IS_ERR(fpu)) {
3077 			r = PTR_ERR(fpu);
3078 			fpu = NULL;
3079 			goto out;
3080 		}
3081 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3082 		break;
3083 	}
3084 	default:
3085 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3086 	}
3087 out:
3088 	mutex_unlock(&vcpu->mutex);
3089 	kfree(fpu);
3090 	kfree(kvm_sregs);
3091 	return r;
3092 }
3093 
3094 #ifdef CONFIG_KVM_COMPAT
3095 static long kvm_vcpu_compat_ioctl(struct file *filp,
3096 				  unsigned int ioctl, unsigned long arg)
3097 {
3098 	struct kvm_vcpu *vcpu = filp->private_data;
3099 	void __user *argp = compat_ptr(arg);
3100 	int r;
3101 
3102 	if (vcpu->kvm->mm != current->mm)
3103 		return -EIO;
3104 
3105 	switch (ioctl) {
3106 	case KVM_SET_SIGNAL_MASK: {
3107 		struct kvm_signal_mask __user *sigmask_arg = argp;
3108 		struct kvm_signal_mask kvm_sigmask;
3109 		sigset_t sigset;
3110 
3111 		if (argp) {
3112 			r = -EFAULT;
3113 			if (copy_from_user(&kvm_sigmask, argp,
3114 					   sizeof(kvm_sigmask)))
3115 				goto out;
3116 			r = -EINVAL;
3117 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3118 				goto out;
3119 			r = -EFAULT;
3120 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3121 				goto out;
3122 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3123 		} else
3124 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3125 		break;
3126 	}
3127 	default:
3128 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3129 	}
3130 
3131 out:
3132 	return r;
3133 }
3134 #endif
3135 
3136 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3137 {
3138 	struct kvm_device *dev = filp->private_data;
3139 
3140 	if (dev->ops->mmap)
3141 		return dev->ops->mmap(dev, vma);
3142 
3143 	return -ENODEV;
3144 }
3145 
3146 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3147 				 int (*accessor)(struct kvm_device *dev,
3148 						 struct kvm_device_attr *attr),
3149 				 unsigned long arg)
3150 {
3151 	struct kvm_device_attr attr;
3152 
3153 	if (!accessor)
3154 		return -EPERM;
3155 
3156 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3157 		return -EFAULT;
3158 
3159 	return accessor(dev, &attr);
3160 }
3161 
3162 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3163 			     unsigned long arg)
3164 {
3165 	struct kvm_device *dev = filp->private_data;
3166 
3167 	if (dev->kvm->mm != current->mm)
3168 		return -EIO;
3169 
3170 	switch (ioctl) {
3171 	case KVM_SET_DEVICE_ATTR:
3172 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3173 	case KVM_GET_DEVICE_ATTR:
3174 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3175 	case KVM_HAS_DEVICE_ATTR:
3176 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3177 	default:
3178 		if (dev->ops->ioctl)
3179 			return dev->ops->ioctl(dev, ioctl, arg);
3180 
3181 		return -ENOTTY;
3182 	}
3183 }
3184 
3185 static int kvm_device_release(struct inode *inode, struct file *filp)
3186 {
3187 	struct kvm_device *dev = filp->private_data;
3188 	struct kvm *kvm = dev->kvm;
3189 
3190 	if (dev->ops->release) {
3191 		mutex_lock(&kvm->lock);
3192 		list_del(&dev->vm_node);
3193 		dev->ops->release(dev);
3194 		mutex_unlock(&kvm->lock);
3195 	}
3196 
3197 	kvm_put_kvm(kvm);
3198 	return 0;
3199 }
3200 
3201 static const struct file_operations kvm_device_fops = {
3202 	.unlocked_ioctl = kvm_device_ioctl,
3203 	.release = kvm_device_release,
3204 	KVM_COMPAT(kvm_device_ioctl),
3205 	.mmap = kvm_device_mmap,
3206 };
3207 
3208 struct kvm_device *kvm_device_from_filp(struct file *filp)
3209 {
3210 	if (filp->f_op != &kvm_device_fops)
3211 		return NULL;
3212 
3213 	return filp->private_data;
3214 }
3215 
3216 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3217 #ifdef CONFIG_KVM_MPIC
3218 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3219 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3220 #endif
3221 };
3222 
3223 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3224 {
3225 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3226 		return -ENOSPC;
3227 
3228 	if (kvm_device_ops_table[type] != NULL)
3229 		return -EEXIST;
3230 
3231 	kvm_device_ops_table[type] = ops;
3232 	return 0;
3233 }
3234 
3235 void kvm_unregister_device_ops(u32 type)
3236 {
3237 	if (kvm_device_ops_table[type] != NULL)
3238 		kvm_device_ops_table[type] = NULL;
3239 }
3240 
3241 static int kvm_ioctl_create_device(struct kvm *kvm,
3242 				   struct kvm_create_device *cd)
3243 {
3244 	const struct kvm_device_ops *ops = NULL;
3245 	struct kvm_device *dev;
3246 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3247 	int type;
3248 	int ret;
3249 
3250 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3251 		return -ENODEV;
3252 
3253 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3254 	ops = kvm_device_ops_table[type];
3255 	if (ops == NULL)
3256 		return -ENODEV;
3257 
3258 	if (test)
3259 		return 0;
3260 
3261 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3262 	if (!dev)
3263 		return -ENOMEM;
3264 
3265 	dev->ops = ops;
3266 	dev->kvm = kvm;
3267 
3268 	mutex_lock(&kvm->lock);
3269 	ret = ops->create(dev, type);
3270 	if (ret < 0) {
3271 		mutex_unlock(&kvm->lock);
3272 		kfree(dev);
3273 		return ret;
3274 	}
3275 	list_add(&dev->vm_node, &kvm->devices);
3276 	mutex_unlock(&kvm->lock);
3277 
3278 	if (ops->init)
3279 		ops->init(dev);
3280 
3281 	kvm_get_kvm(kvm);
3282 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3283 	if (ret < 0) {
3284 		kvm_put_kvm_no_destroy(kvm);
3285 		mutex_lock(&kvm->lock);
3286 		list_del(&dev->vm_node);
3287 		mutex_unlock(&kvm->lock);
3288 		ops->destroy(dev);
3289 		return ret;
3290 	}
3291 
3292 	cd->fd = ret;
3293 	return 0;
3294 }
3295 
3296 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3297 {
3298 	switch (arg) {
3299 	case KVM_CAP_USER_MEMORY:
3300 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3301 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3302 	case KVM_CAP_INTERNAL_ERROR_DATA:
3303 #ifdef CONFIG_HAVE_KVM_MSI
3304 	case KVM_CAP_SIGNAL_MSI:
3305 #endif
3306 #ifdef CONFIG_HAVE_KVM_IRQFD
3307 	case KVM_CAP_IRQFD:
3308 	case KVM_CAP_IRQFD_RESAMPLE:
3309 #endif
3310 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3311 	case KVM_CAP_CHECK_EXTENSION_VM:
3312 	case KVM_CAP_ENABLE_CAP_VM:
3313 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3314 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3315 #endif
3316 		return 1;
3317 #ifdef CONFIG_KVM_MMIO
3318 	case KVM_CAP_COALESCED_MMIO:
3319 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3320 	case KVM_CAP_COALESCED_PIO:
3321 		return 1;
3322 #endif
3323 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3324 	case KVM_CAP_IRQ_ROUTING:
3325 		return KVM_MAX_IRQ_ROUTES;
3326 #endif
3327 #if KVM_ADDRESS_SPACE_NUM > 1
3328 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3329 		return KVM_ADDRESS_SPACE_NUM;
3330 #endif
3331 	case KVM_CAP_NR_MEMSLOTS:
3332 		return KVM_USER_MEM_SLOTS;
3333 	default:
3334 		break;
3335 	}
3336 	return kvm_vm_ioctl_check_extension(kvm, arg);
3337 }
3338 
3339 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3340 						  struct kvm_enable_cap *cap)
3341 {
3342 	return -EINVAL;
3343 }
3344 
3345 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3346 					   struct kvm_enable_cap *cap)
3347 {
3348 	switch (cap->cap) {
3349 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3350 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3351 		if (cap->flags || (cap->args[0] & ~1))
3352 			return -EINVAL;
3353 		kvm->manual_dirty_log_protect = cap->args[0];
3354 		return 0;
3355 #endif
3356 	default:
3357 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3358 	}
3359 }
3360 
3361 static long kvm_vm_ioctl(struct file *filp,
3362 			   unsigned int ioctl, unsigned long arg)
3363 {
3364 	struct kvm *kvm = filp->private_data;
3365 	void __user *argp = (void __user *)arg;
3366 	int r;
3367 
3368 	if (kvm->mm != current->mm)
3369 		return -EIO;
3370 	switch (ioctl) {
3371 	case KVM_CREATE_VCPU:
3372 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3373 		break;
3374 	case KVM_ENABLE_CAP: {
3375 		struct kvm_enable_cap cap;
3376 
3377 		r = -EFAULT;
3378 		if (copy_from_user(&cap, argp, sizeof(cap)))
3379 			goto out;
3380 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3381 		break;
3382 	}
3383 	case KVM_SET_USER_MEMORY_REGION: {
3384 		struct kvm_userspace_memory_region kvm_userspace_mem;
3385 
3386 		r = -EFAULT;
3387 		if (copy_from_user(&kvm_userspace_mem, argp,
3388 						sizeof(kvm_userspace_mem)))
3389 			goto out;
3390 
3391 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3392 		break;
3393 	}
3394 	case KVM_GET_DIRTY_LOG: {
3395 		struct kvm_dirty_log log;
3396 
3397 		r = -EFAULT;
3398 		if (copy_from_user(&log, argp, sizeof(log)))
3399 			goto out;
3400 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3401 		break;
3402 	}
3403 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3404 	case KVM_CLEAR_DIRTY_LOG: {
3405 		struct kvm_clear_dirty_log log;
3406 
3407 		r = -EFAULT;
3408 		if (copy_from_user(&log, argp, sizeof(log)))
3409 			goto out;
3410 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3411 		break;
3412 	}
3413 #endif
3414 #ifdef CONFIG_KVM_MMIO
3415 	case KVM_REGISTER_COALESCED_MMIO: {
3416 		struct kvm_coalesced_mmio_zone zone;
3417 
3418 		r = -EFAULT;
3419 		if (copy_from_user(&zone, argp, sizeof(zone)))
3420 			goto out;
3421 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3422 		break;
3423 	}
3424 	case KVM_UNREGISTER_COALESCED_MMIO: {
3425 		struct kvm_coalesced_mmio_zone zone;
3426 
3427 		r = -EFAULT;
3428 		if (copy_from_user(&zone, argp, sizeof(zone)))
3429 			goto out;
3430 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3431 		break;
3432 	}
3433 #endif
3434 	case KVM_IRQFD: {
3435 		struct kvm_irqfd data;
3436 
3437 		r = -EFAULT;
3438 		if (copy_from_user(&data, argp, sizeof(data)))
3439 			goto out;
3440 		r = kvm_irqfd(kvm, &data);
3441 		break;
3442 	}
3443 	case KVM_IOEVENTFD: {
3444 		struct kvm_ioeventfd data;
3445 
3446 		r = -EFAULT;
3447 		if (copy_from_user(&data, argp, sizeof(data)))
3448 			goto out;
3449 		r = kvm_ioeventfd(kvm, &data);
3450 		break;
3451 	}
3452 #ifdef CONFIG_HAVE_KVM_MSI
3453 	case KVM_SIGNAL_MSI: {
3454 		struct kvm_msi msi;
3455 
3456 		r = -EFAULT;
3457 		if (copy_from_user(&msi, argp, sizeof(msi)))
3458 			goto out;
3459 		r = kvm_send_userspace_msi(kvm, &msi);
3460 		break;
3461 	}
3462 #endif
3463 #ifdef __KVM_HAVE_IRQ_LINE
3464 	case KVM_IRQ_LINE_STATUS:
3465 	case KVM_IRQ_LINE: {
3466 		struct kvm_irq_level irq_event;
3467 
3468 		r = -EFAULT;
3469 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3470 			goto out;
3471 
3472 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3473 					ioctl == KVM_IRQ_LINE_STATUS);
3474 		if (r)
3475 			goto out;
3476 
3477 		r = -EFAULT;
3478 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3479 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3480 				goto out;
3481 		}
3482 
3483 		r = 0;
3484 		break;
3485 	}
3486 #endif
3487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3488 	case KVM_SET_GSI_ROUTING: {
3489 		struct kvm_irq_routing routing;
3490 		struct kvm_irq_routing __user *urouting;
3491 		struct kvm_irq_routing_entry *entries = NULL;
3492 
3493 		r = -EFAULT;
3494 		if (copy_from_user(&routing, argp, sizeof(routing)))
3495 			goto out;
3496 		r = -EINVAL;
3497 		if (!kvm_arch_can_set_irq_routing(kvm))
3498 			goto out;
3499 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3500 			goto out;
3501 		if (routing.flags)
3502 			goto out;
3503 		if (routing.nr) {
3504 			r = -ENOMEM;
3505 			entries = vmalloc(array_size(sizeof(*entries),
3506 						     routing.nr));
3507 			if (!entries)
3508 				goto out;
3509 			r = -EFAULT;
3510 			urouting = argp;
3511 			if (copy_from_user(entries, urouting->entries,
3512 					   routing.nr * sizeof(*entries)))
3513 				goto out_free_irq_routing;
3514 		}
3515 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3516 					routing.flags);
3517 out_free_irq_routing:
3518 		vfree(entries);
3519 		break;
3520 	}
3521 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3522 	case KVM_CREATE_DEVICE: {
3523 		struct kvm_create_device cd;
3524 
3525 		r = -EFAULT;
3526 		if (copy_from_user(&cd, argp, sizeof(cd)))
3527 			goto out;
3528 
3529 		r = kvm_ioctl_create_device(kvm, &cd);
3530 		if (r)
3531 			goto out;
3532 
3533 		r = -EFAULT;
3534 		if (copy_to_user(argp, &cd, sizeof(cd)))
3535 			goto out;
3536 
3537 		r = 0;
3538 		break;
3539 	}
3540 	case KVM_CHECK_EXTENSION:
3541 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3542 		break;
3543 	default:
3544 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3545 	}
3546 out:
3547 	return r;
3548 }
3549 
3550 #ifdef CONFIG_KVM_COMPAT
3551 struct compat_kvm_dirty_log {
3552 	__u32 slot;
3553 	__u32 padding1;
3554 	union {
3555 		compat_uptr_t dirty_bitmap; /* one bit per page */
3556 		__u64 padding2;
3557 	};
3558 };
3559 
3560 static long kvm_vm_compat_ioctl(struct file *filp,
3561 			   unsigned int ioctl, unsigned long arg)
3562 {
3563 	struct kvm *kvm = filp->private_data;
3564 	int r;
3565 
3566 	if (kvm->mm != current->mm)
3567 		return -EIO;
3568 	switch (ioctl) {
3569 	case KVM_GET_DIRTY_LOG: {
3570 		struct compat_kvm_dirty_log compat_log;
3571 		struct kvm_dirty_log log;
3572 
3573 		if (copy_from_user(&compat_log, (void __user *)arg,
3574 				   sizeof(compat_log)))
3575 			return -EFAULT;
3576 		log.slot	 = compat_log.slot;
3577 		log.padding1	 = compat_log.padding1;
3578 		log.padding2	 = compat_log.padding2;
3579 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3580 
3581 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3582 		break;
3583 	}
3584 	default:
3585 		r = kvm_vm_ioctl(filp, ioctl, arg);
3586 	}
3587 	return r;
3588 }
3589 #endif
3590 
3591 static struct file_operations kvm_vm_fops = {
3592 	.release        = kvm_vm_release,
3593 	.unlocked_ioctl = kvm_vm_ioctl,
3594 	.llseek		= noop_llseek,
3595 	KVM_COMPAT(kvm_vm_compat_ioctl),
3596 };
3597 
3598 static int kvm_dev_ioctl_create_vm(unsigned long type)
3599 {
3600 	int r;
3601 	struct kvm *kvm;
3602 	struct file *file;
3603 
3604 	kvm = kvm_create_vm(type);
3605 	if (IS_ERR(kvm))
3606 		return PTR_ERR(kvm);
3607 #ifdef CONFIG_KVM_MMIO
3608 	r = kvm_coalesced_mmio_init(kvm);
3609 	if (r < 0)
3610 		goto put_kvm;
3611 #endif
3612 	r = get_unused_fd_flags(O_CLOEXEC);
3613 	if (r < 0)
3614 		goto put_kvm;
3615 
3616 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3617 	if (IS_ERR(file)) {
3618 		put_unused_fd(r);
3619 		r = PTR_ERR(file);
3620 		goto put_kvm;
3621 	}
3622 
3623 	/*
3624 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3625 	 * already set, with ->release() being kvm_vm_release().  In error
3626 	 * cases it will be called by the final fput(file) and will take
3627 	 * care of doing kvm_put_kvm(kvm).
3628 	 */
3629 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3630 		put_unused_fd(r);
3631 		fput(file);
3632 		return -ENOMEM;
3633 	}
3634 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3635 
3636 	fd_install(r, file);
3637 	return r;
3638 
3639 put_kvm:
3640 	kvm_put_kvm(kvm);
3641 	return r;
3642 }
3643 
3644 static long kvm_dev_ioctl(struct file *filp,
3645 			  unsigned int ioctl, unsigned long arg)
3646 {
3647 	long r = -EINVAL;
3648 
3649 	switch (ioctl) {
3650 	case KVM_GET_API_VERSION:
3651 		if (arg)
3652 			goto out;
3653 		r = KVM_API_VERSION;
3654 		break;
3655 	case KVM_CREATE_VM:
3656 		r = kvm_dev_ioctl_create_vm(arg);
3657 		break;
3658 	case KVM_CHECK_EXTENSION:
3659 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3660 		break;
3661 	case KVM_GET_VCPU_MMAP_SIZE:
3662 		if (arg)
3663 			goto out;
3664 		r = PAGE_SIZE;     /* struct kvm_run */
3665 #ifdef CONFIG_X86
3666 		r += PAGE_SIZE;    /* pio data page */
3667 #endif
3668 #ifdef CONFIG_KVM_MMIO
3669 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3670 #endif
3671 		break;
3672 	case KVM_TRACE_ENABLE:
3673 	case KVM_TRACE_PAUSE:
3674 	case KVM_TRACE_DISABLE:
3675 		r = -EOPNOTSUPP;
3676 		break;
3677 	default:
3678 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3679 	}
3680 out:
3681 	return r;
3682 }
3683 
3684 static struct file_operations kvm_chardev_ops = {
3685 	.unlocked_ioctl = kvm_dev_ioctl,
3686 	.llseek		= noop_llseek,
3687 	KVM_COMPAT(kvm_dev_ioctl),
3688 };
3689 
3690 static struct miscdevice kvm_dev = {
3691 	KVM_MINOR,
3692 	"kvm",
3693 	&kvm_chardev_ops,
3694 };
3695 
3696 static void hardware_enable_nolock(void *junk)
3697 {
3698 	int cpu = raw_smp_processor_id();
3699 	int r;
3700 
3701 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3702 		return;
3703 
3704 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3705 
3706 	r = kvm_arch_hardware_enable();
3707 
3708 	if (r) {
3709 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3710 		atomic_inc(&hardware_enable_failed);
3711 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3712 	}
3713 }
3714 
3715 static int kvm_starting_cpu(unsigned int cpu)
3716 {
3717 	raw_spin_lock(&kvm_count_lock);
3718 	if (kvm_usage_count)
3719 		hardware_enable_nolock(NULL);
3720 	raw_spin_unlock(&kvm_count_lock);
3721 	return 0;
3722 }
3723 
3724 static void hardware_disable_nolock(void *junk)
3725 {
3726 	int cpu = raw_smp_processor_id();
3727 
3728 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3729 		return;
3730 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3731 	kvm_arch_hardware_disable();
3732 }
3733 
3734 static int kvm_dying_cpu(unsigned int cpu)
3735 {
3736 	raw_spin_lock(&kvm_count_lock);
3737 	if (kvm_usage_count)
3738 		hardware_disable_nolock(NULL);
3739 	raw_spin_unlock(&kvm_count_lock);
3740 	return 0;
3741 }
3742 
3743 static void hardware_disable_all_nolock(void)
3744 {
3745 	BUG_ON(!kvm_usage_count);
3746 
3747 	kvm_usage_count--;
3748 	if (!kvm_usage_count)
3749 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3750 }
3751 
3752 static void hardware_disable_all(void)
3753 {
3754 	raw_spin_lock(&kvm_count_lock);
3755 	hardware_disable_all_nolock();
3756 	raw_spin_unlock(&kvm_count_lock);
3757 }
3758 
3759 static int hardware_enable_all(void)
3760 {
3761 	int r = 0;
3762 
3763 	raw_spin_lock(&kvm_count_lock);
3764 
3765 	kvm_usage_count++;
3766 	if (kvm_usage_count == 1) {
3767 		atomic_set(&hardware_enable_failed, 0);
3768 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3769 
3770 		if (atomic_read(&hardware_enable_failed)) {
3771 			hardware_disable_all_nolock();
3772 			r = -EBUSY;
3773 		}
3774 	}
3775 
3776 	raw_spin_unlock(&kvm_count_lock);
3777 
3778 	return r;
3779 }
3780 
3781 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3782 		      void *v)
3783 {
3784 	/*
3785 	 * Some (well, at least mine) BIOSes hang on reboot if
3786 	 * in vmx root mode.
3787 	 *
3788 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3789 	 */
3790 	pr_info("kvm: exiting hardware virtualization\n");
3791 	kvm_rebooting = true;
3792 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3793 	return NOTIFY_OK;
3794 }
3795 
3796 static struct notifier_block kvm_reboot_notifier = {
3797 	.notifier_call = kvm_reboot,
3798 	.priority = 0,
3799 };
3800 
3801 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3802 {
3803 	int i;
3804 
3805 	for (i = 0; i < bus->dev_count; i++) {
3806 		struct kvm_io_device *pos = bus->range[i].dev;
3807 
3808 		kvm_iodevice_destructor(pos);
3809 	}
3810 	kfree(bus);
3811 }
3812 
3813 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3814 				 const struct kvm_io_range *r2)
3815 {
3816 	gpa_t addr1 = r1->addr;
3817 	gpa_t addr2 = r2->addr;
3818 
3819 	if (addr1 < addr2)
3820 		return -1;
3821 
3822 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3823 	 * accept any overlapping write.  Any order is acceptable for
3824 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3825 	 * we process all of them.
3826 	 */
3827 	if (r2->len) {
3828 		addr1 += r1->len;
3829 		addr2 += r2->len;
3830 	}
3831 
3832 	if (addr1 > addr2)
3833 		return 1;
3834 
3835 	return 0;
3836 }
3837 
3838 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3839 {
3840 	return kvm_io_bus_cmp(p1, p2);
3841 }
3842 
3843 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3844 			     gpa_t addr, int len)
3845 {
3846 	struct kvm_io_range *range, key;
3847 	int off;
3848 
3849 	key = (struct kvm_io_range) {
3850 		.addr = addr,
3851 		.len = len,
3852 	};
3853 
3854 	range = bsearch(&key, bus->range, bus->dev_count,
3855 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3856 	if (range == NULL)
3857 		return -ENOENT;
3858 
3859 	off = range - bus->range;
3860 
3861 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3862 		off--;
3863 
3864 	return off;
3865 }
3866 
3867 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3868 			      struct kvm_io_range *range, const void *val)
3869 {
3870 	int idx;
3871 
3872 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3873 	if (idx < 0)
3874 		return -EOPNOTSUPP;
3875 
3876 	while (idx < bus->dev_count &&
3877 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3878 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3879 					range->len, val))
3880 			return idx;
3881 		idx++;
3882 	}
3883 
3884 	return -EOPNOTSUPP;
3885 }
3886 
3887 /* kvm_io_bus_write - called under kvm->slots_lock */
3888 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3889 		     int len, const void *val)
3890 {
3891 	struct kvm_io_bus *bus;
3892 	struct kvm_io_range range;
3893 	int r;
3894 
3895 	range = (struct kvm_io_range) {
3896 		.addr = addr,
3897 		.len = len,
3898 	};
3899 
3900 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3901 	if (!bus)
3902 		return -ENOMEM;
3903 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3904 	return r < 0 ? r : 0;
3905 }
3906 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3907 
3908 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3909 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3910 			    gpa_t addr, int len, const void *val, long cookie)
3911 {
3912 	struct kvm_io_bus *bus;
3913 	struct kvm_io_range range;
3914 
3915 	range = (struct kvm_io_range) {
3916 		.addr = addr,
3917 		.len = len,
3918 	};
3919 
3920 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3921 	if (!bus)
3922 		return -ENOMEM;
3923 
3924 	/* First try the device referenced by cookie. */
3925 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3926 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3927 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3928 					val))
3929 			return cookie;
3930 
3931 	/*
3932 	 * cookie contained garbage; fall back to search and return the
3933 	 * correct cookie value.
3934 	 */
3935 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3936 }
3937 
3938 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3939 			     struct kvm_io_range *range, void *val)
3940 {
3941 	int idx;
3942 
3943 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3944 	if (idx < 0)
3945 		return -EOPNOTSUPP;
3946 
3947 	while (idx < bus->dev_count &&
3948 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3949 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3950 				       range->len, val))
3951 			return idx;
3952 		idx++;
3953 	}
3954 
3955 	return -EOPNOTSUPP;
3956 }
3957 
3958 /* kvm_io_bus_read - called under kvm->slots_lock */
3959 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3960 		    int len, void *val)
3961 {
3962 	struct kvm_io_bus *bus;
3963 	struct kvm_io_range range;
3964 	int r;
3965 
3966 	range = (struct kvm_io_range) {
3967 		.addr = addr,
3968 		.len = len,
3969 	};
3970 
3971 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3972 	if (!bus)
3973 		return -ENOMEM;
3974 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3975 	return r < 0 ? r : 0;
3976 }
3977 
3978 /* Caller must hold slots_lock. */
3979 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3980 			    int len, struct kvm_io_device *dev)
3981 {
3982 	int i;
3983 	struct kvm_io_bus *new_bus, *bus;
3984 	struct kvm_io_range range;
3985 
3986 	bus = kvm_get_bus(kvm, bus_idx);
3987 	if (!bus)
3988 		return -ENOMEM;
3989 
3990 	/* exclude ioeventfd which is limited by maximum fd */
3991 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3992 		return -ENOSPC;
3993 
3994 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3995 			  GFP_KERNEL_ACCOUNT);
3996 	if (!new_bus)
3997 		return -ENOMEM;
3998 
3999 	range = (struct kvm_io_range) {
4000 		.addr = addr,
4001 		.len = len,
4002 		.dev = dev,
4003 	};
4004 
4005 	for (i = 0; i < bus->dev_count; i++)
4006 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4007 			break;
4008 
4009 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4010 	new_bus->dev_count++;
4011 	new_bus->range[i] = range;
4012 	memcpy(new_bus->range + i + 1, bus->range + i,
4013 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4014 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4015 	synchronize_srcu_expedited(&kvm->srcu);
4016 	kfree(bus);
4017 
4018 	return 0;
4019 }
4020 
4021 /* Caller must hold slots_lock. */
4022 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4023 			       struct kvm_io_device *dev)
4024 {
4025 	int i;
4026 	struct kvm_io_bus *new_bus, *bus;
4027 
4028 	bus = kvm_get_bus(kvm, bus_idx);
4029 	if (!bus)
4030 		return;
4031 
4032 	for (i = 0; i < bus->dev_count; i++)
4033 		if (bus->range[i].dev == dev) {
4034 			break;
4035 		}
4036 
4037 	if (i == bus->dev_count)
4038 		return;
4039 
4040 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4041 			  GFP_KERNEL_ACCOUNT);
4042 	if (!new_bus)  {
4043 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4044 		goto broken;
4045 	}
4046 
4047 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4048 	new_bus->dev_count--;
4049 	memcpy(new_bus->range + i, bus->range + i + 1,
4050 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4051 
4052 broken:
4053 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4054 	synchronize_srcu_expedited(&kvm->srcu);
4055 	kfree(bus);
4056 	return;
4057 }
4058 
4059 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4060 					 gpa_t addr)
4061 {
4062 	struct kvm_io_bus *bus;
4063 	int dev_idx, srcu_idx;
4064 	struct kvm_io_device *iodev = NULL;
4065 
4066 	srcu_idx = srcu_read_lock(&kvm->srcu);
4067 
4068 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4069 	if (!bus)
4070 		goto out_unlock;
4071 
4072 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4073 	if (dev_idx < 0)
4074 		goto out_unlock;
4075 
4076 	iodev = bus->range[dev_idx].dev;
4077 
4078 out_unlock:
4079 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4080 
4081 	return iodev;
4082 }
4083 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4084 
4085 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4086 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4087 			   const char *fmt)
4088 {
4089 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4090 					  inode->i_private;
4091 
4092 	/* The debugfs files are a reference to the kvm struct which
4093 	 * is still valid when kvm_destroy_vm is called.
4094 	 * To avoid the race between open and the removal of the debugfs
4095 	 * directory we test against the users count.
4096 	 */
4097 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4098 		return -ENOENT;
4099 
4100 	if (simple_attr_open(inode, file, get,
4101 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4102 		    ? set : NULL,
4103 		    fmt)) {
4104 		kvm_put_kvm(stat_data->kvm);
4105 		return -ENOMEM;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4112 {
4113 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4114 					  inode->i_private;
4115 
4116 	simple_attr_release(inode, file);
4117 	kvm_put_kvm(stat_data->kvm);
4118 
4119 	return 0;
4120 }
4121 
4122 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4123 {
4124 	*val = *(ulong *)((void *)kvm + offset);
4125 
4126 	return 0;
4127 }
4128 
4129 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4130 {
4131 	*(ulong *)((void *)kvm + offset) = 0;
4132 
4133 	return 0;
4134 }
4135 
4136 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4137 {
4138 	int i;
4139 	struct kvm_vcpu *vcpu;
4140 
4141 	*val = 0;
4142 
4143 	kvm_for_each_vcpu(i, vcpu, kvm)
4144 		*val += *(u64 *)((void *)vcpu + offset);
4145 
4146 	return 0;
4147 }
4148 
4149 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4150 {
4151 	int i;
4152 	struct kvm_vcpu *vcpu;
4153 
4154 	kvm_for_each_vcpu(i, vcpu, kvm)
4155 		*(u64 *)((void *)vcpu + offset) = 0;
4156 
4157 	return 0;
4158 }
4159 
4160 static int kvm_stat_data_get(void *data, u64 *val)
4161 {
4162 	int r = -EFAULT;
4163 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4164 
4165 	switch (stat_data->dbgfs_item->kind) {
4166 	case KVM_STAT_VM:
4167 		r = kvm_get_stat_per_vm(stat_data->kvm,
4168 					stat_data->dbgfs_item->offset, val);
4169 		break;
4170 	case KVM_STAT_VCPU:
4171 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4172 					  stat_data->dbgfs_item->offset, val);
4173 		break;
4174 	}
4175 
4176 	return r;
4177 }
4178 
4179 static int kvm_stat_data_clear(void *data, u64 val)
4180 {
4181 	int r = -EFAULT;
4182 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4183 
4184 	if (val)
4185 		return -EINVAL;
4186 
4187 	switch (stat_data->dbgfs_item->kind) {
4188 	case KVM_STAT_VM:
4189 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4190 					  stat_data->dbgfs_item->offset);
4191 		break;
4192 	case KVM_STAT_VCPU:
4193 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4194 					    stat_data->dbgfs_item->offset);
4195 		break;
4196 	}
4197 
4198 	return r;
4199 }
4200 
4201 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4202 {
4203 	__simple_attr_check_format("%llu\n", 0ull);
4204 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4205 				kvm_stat_data_clear, "%llu\n");
4206 }
4207 
4208 static const struct file_operations stat_fops_per_vm = {
4209 	.owner = THIS_MODULE,
4210 	.open = kvm_stat_data_open,
4211 	.release = kvm_debugfs_release,
4212 	.read = simple_attr_read,
4213 	.write = simple_attr_write,
4214 	.llseek = no_llseek,
4215 };
4216 
4217 static int vm_stat_get(void *_offset, u64 *val)
4218 {
4219 	unsigned offset = (long)_offset;
4220 	struct kvm *kvm;
4221 	u64 tmp_val;
4222 
4223 	*val = 0;
4224 	mutex_lock(&kvm_lock);
4225 	list_for_each_entry(kvm, &vm_list, vm_list) {
4226 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4227 		*val += tmp_val;
4228 	}
4229 	mutex_unlock(&kvm_lock);
4230 	return 0;
4231 }
4232 
4233 static int vm_stat_clear(void *_offset, u64 val)
4234 {
4235 	unsigned offset = (long)_offset;
4236 	struct kvm *kvm;
4237 
4238 	if (val)
4239 		return -EINVAL;
4240 
4241 	mutex_lock(&kvm_lock);
4242 	list_for_each_entry(kvm, &vm_list, vm_list) {
4243 		kvm_clear_stat_per_vm(kvm, offset);
4244 	}
4245 	mutex_unlock(&kvm_lock);
4246 
4247 	return 0;
4248 }
4249 
4250 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4251 
4252 static int vcpu_stat_get(void *_offset, u64 *val)
4253 {
4254 	unsigned offset = (long)_offset;
4255 	struct kvm *kvm;
4256 	u64 tmp_val;
4257 
4258 	*val = 0;
4259 	mutex_lock(&kvm_lock);
4260 	list_for_each_entry(kvm, &vm_list, vm_list) {
4261 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4262 		*val += tmp_val;
4263 	}
4264 	mutex_unlock(&kvm_lock);
4265 	return 0;
4266 }
4267 
4268 static int vcpu_stat_clear(void *_offset, u64 val)
4269 {
4270 	unsigned offset = (long)_offset;
4271 	struct kvm *kvm;
4272 
4273 	if (val)
4274 		return -EINVAL;
4275 
4276 	mutex_lock(&kvm_lock);
4277 	list_for_each_entry(kvm, &vm_list, vm_list) {
4278 		kvm_clear_stat_per_vcpu(kvm, offset);
4279 	}
4280 	mutex_unlock(&kvm_lock);
4281 
4282 	return 0;
4283 }
4284 
4285 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4286 			"%llu\n");
4287 
4288 static const struct file_operations *stat_fops[] = {
4289 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4290 	[KVM_STAT_VM]   = &vm_stat_fops,
4291 };
4292 
4293 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4294 {
4295 	struct kobj_uevent_env *env;
4296 	unsigned long long created, active;
4297 
4298 	if (!kvm_dev.this_device || !kvm)
4299 		return;
4300 
4301 	mutex_lock(&kvm_lock);
4302 	if (type == KVM_EVENT_CREATE_VM) {
4303 		kvm_createvm_count++;
4304 		kvm_active_vms++;
4305 	} else if (type == KVM_EVENT_DESTROY_VM) {
4306 		kvm_active_vms--;
4307 	}
4308 	created = kvm_createvm_count;
4309 	active = kvm_active_vms;
4310 	mutex_unlock(&kvm_lock);
4311 
4312 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4313 	if (!env)
4314 		return;
4315 
4316 	add_uevent_var(env, "CREATED=%llu", created);
4317 	add_uevent_var(env, "COUNT=%llu", active);
4318 
4319 	if (type == KVM_EVENT_CREATE_VM) {
4320 		add_uevent_var(env, "EVENT=create");
4321 		kvm->userspace_pid = task_pid_nr(current);
4322 	} else if (type == KVM_EVENT_DESTROY_VM) {
4323 		add_uevent_var(env, "EVENT=destroy");
4324 	}
4325 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4326 
4327 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4328 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4329 
4330 		if (p) {
4331 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4332 			if (!IS_ERR(tmp))
4333 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4334 			kfree(p);
4335 		}
4336 	}
4337 	/* no need for checks, since we are adding at most only 5 keys */
4338 	env->envp[env->envp_idx++] = NULL;
4339 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4340 	kfree(env);
4341 }
4342 
4343 static void kvm_init_debug(void)
4344 {
4345 	struct kvm_stats_debugfs_item *p;
4346 
4347 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4348 
4349 	kvm_debugfs_num_entries = 0;
4350 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4351 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4352 				    kvm_debugfs_dir, (void *)(long)p->offset,
4353 				    stat_fops[p->kind]);
4354 	}
4355 }
4356 
4357 static int kvm_suspend(void)
4358 {
4359 	if (kvm_usage_count)
4360 		hardware_disable_nolock(NULL);
4361 	return 0;
4362 }
4363 
4364 static void kvm_resume(void)
4365 {
4366 	if (kvm_usage_count) {
4367 #ifdef CONFIG_LOCKDEP
4368 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4369 #endif
4370 		hardware_enable_nolock(NULL);
4371 	}
4372 }
4373 
4374 static struct syscore_ops kvm_syscore_ops = {
4375 	.suspend = kvm_suspend,
4376 	.resume = kvm_resume,
4377 };
4378 
4379 static inline
4380 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4381 {
4382 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4383 }
4384 
4385 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4386 {
4387 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4388 
4389 	WRITE_ONCE(vcpu->preempted, false);
4390 	WRITE_ONCE(vcpu->ready, false);
4391 
4392 	__this_cpu_write(kvm_running_vcpu, vcpu);
4393 	kvm_arch_sched_in(vcpu, cpu);
4394 	kvm_arch_vcpu_load(vcpu, cpu);
4395 }
4396 
4397 static void kvm_sched_out(struct preempt_notifier *pn,
4398 			  struct task_struct *next)
4399 {
4400 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4401 
4402 	if (current->state == TASK_RUNNING) {
4403 		WRITE_ONCE(vcpu->preempted, true);
4404 		WRITE_ONCE(vcpu->ready, true);
4405 	}
4406 	kvm_arch_vcpu_put(vcpu);
4407 	__this_cpu_write(kvm_running_vcpu, NULL);
4408 }
4409 
4410 /**
4411  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4412  * Thanks to preempt notifiers, this can also be called from
4413  * preemptible context.
4414  */
4415 struct kvm_vcpu *kvm_get_running_vcpu(void)
4416 {
4417         return __this_cpu_read(kvm_running_vcpu);
4418 }
4419 
4420 /**
4421  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4422  */
4423 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4424 {
4425         return &kvm_running_vcpu;
4426 }
4427 
4428 static void check_processor_compat(void *rtn)
4429 {
4430 	*(int *)rtn = kvm_arch_check_processor_compat();
4431 }
4432 
4433 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4434 		  struct module *module)
4435 {
4436 	int r;
4437 	int cpu;
4438 
4439 	r = kvm_arch_init(opaque);
4440 	if (r)
4441 		goto out_fail;
4442 
4443 	/*
4444 	 * kvm_arch_init makes sure there's at most one caller
4445 	 * for architectures that support multiple implementations,
4446 	 * like intel and amd on x86.
4447 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4448 	 * conflicts in case kvm is already setup for another implementation.
4449 	 */
4450 	r = kvm_irqfd_init();
4451 	if (r)
4452 		goto out_irqfd;
4453 
4454 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4455 		r = -ENOMEM;
4456 		goto out_free_0;
4457 	}
4458 
4459 	r = kvm_arch_hardware_setup();
4460 	if (r < 0)
4461 		goto out_free_1;
4462 
4463 	for_each_online_cpu(cpu) {
4464 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4465 		if (r < 0)
4466 			goto out_free_2;
4467 	}
4468 
4469 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4470 				      kvm_starting_cpu, kvm_dying_cpu);
4471 	if (r)
4472 		goto out_free_2;
4473 	register_reboot_notifier(&kvm_reboot_notifier);
4474 
4475 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4476 	if (!vcpu_align)
4477 		vcpu_align = __alignof__(struct kvm_vcpu);
4478 	kvm_vcpu_cache =
4479 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4480 					   SLAB_ACCOUNT,
4481 					   offsetof(struct kvm_vcpu, arch),
4482 					   sizeof_field(struct kvm_vcpu, arch),
4483 					   NULL);
4484 	if (!kvm_vcpu_cache) {
4485 		r = -ENOMEM;
4486 		goto out_free_3;
4487 	}
4488 
4489 	r = kvm_async_pf_init();
4490 	if (r)
4491 		goto out_free;
4492 
4493 	kvm_chardev_ops.owner = module;
4494 	kvm_vm_fops.owner = module;
4495 	kvm_vcpu_fops.owner = module;
4496 
4497 	r = misc_register(&kvm_dev);
4498 	if (r) {
4499 		pr_err("kvm: misc device register failed\n");
4500 		goto out_unreg;
4501 	}
4502 
4503 	register_syscore_ops(&kvm_syscore_ops);
4504 
4505 	kvm_preempt_ops.sched_in = kvm_sched_in;
4506 	kvm_preempt_ops.sched_out = kvm_sched_out;
4507 
4508 	kvm_init_debug();
4509 
4510 	r = kvm_vfio_ops_init();
4511 	WARN_ON(r);
4512 
4513 	return 0;
4514 
4515 out_unreg:
4516 	kvm_async_pf_deinit();
4517 out_free:
4518 	kmem_cache_destroy(kvm_vcpu_cache);
4519 out_free_3:
4520 	unregister_reboot_notifier(&kvm_reboot_notifier);
4521 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4522 out_free_2:
4523 	kvm_arch_hardware_unsetup();
4524 out_free_1:
4525 	free_cpumask_var(cpus_hardware_enabled);
4526 out_free_0:
4527 	kvm_irqfd_exit();
4528 out_irqfd:
4529 	kvm_arch_exit();
4530 out_fail:
4531 	return r;
4532 }
4533 EXPORT_SYMBOL_GPL(kvm_init);
4534 
4535 void kvm_exit(void)
4536 {
4537 	debugfs_remove_recursive(kvm_debugfs_dir);
4538 	misc_deregister(&kvm_dev);
4539 	kmem_cache_destroy(kvm_vcpu_cache);
4540 	kvm_async_pf_deinit();
4541 	unregister_syscore_ops(&kvm_syscore_ops);
4542 	unregister_reboot_notifier(&kvm_reboot_notifier);
4543 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4544 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4545 	kvm_arch_hardware_unsetup();
4546 	kvm_arch_exit();
4547 	kvm_irqfd_exit();
4548 	free_cpumask_var(cpus_hardware_enabled);
4549 	kvm_vfio_ops_exit();
4550 }
4551 EXPORT_SYMBOL_GPL(kvm_exit);
4552 
4553 struct kvm_vm_worker_thread_context {
4554 	struct kvm *kvm;
4555 	struct task_struct *parent;
4556 	struct completion init_done;
4557 	kvm_vm_thread_fn_t thread_fn;
4558 	uintptr_t data;
4559 	int err;
4560 };
4561 
4562 static int kvm_vm_worker_thread(void *context)
4563 {
4564 	/*
4565 	 * The init_context is allocated on the stack of the parent thread, so
4566 	 * we have to locally copy anything that is needed beyond initialization
4567 	 */
4568 	struct kvm_vm_worker_thread_context *init_context = context;
4569 	struct kvm *kvm = init_context->kvm;
4570 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4571 	uintptr_t data = init_context->data;
4572 	int err;
4573 
4574 	err = kthread_park(current);
4575 	/* kthread_park(current) is never supposed to return an error */
4576 	WARN_ON(err != 0);
4577 	if (err)
4578 		goto init_complete;
4579 
4580 	err = cgroup_attach_task_all(init_context->parent, current);
4581 	if (err) {
4582 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4583 			__func__, err);
4584 		goto init_complete;
4585 	}
4586 
4587 	set_user_nice(current, task_nice(init_context->parent));
4588 
4589 init_complete:
4590 	init_context->err = err;
4591 	complete(&init_context->init_done);
4592 	init_context = NULL;
4593 
4594 	if (err)
4595 		return err;
4596 
4597 	/* Wait to be woken up by the spawner before proceeding. */
4598 	kthread_parkme();
4599 
4600 	if (!kthread_should_stop())
4601 		err = thread_fn(kvm, data);
4602 
4603 	return err;
4604 }
4605 
4606 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4607 				uintptr_t data, const char *name,
4608 				struct task_struct **thread_ptr)
4609 {
4610 	struct kvm_vm_worker_thread_context init_context = {};
4611 	struct task_struct *thread;
4612 
4613 	*thread_ptr = NULL;
4614 	init_context.kvm = kvm;
4615 	init_context.parent = current;
4616 	init_context.thread_fn = thread_fn;
4617 	init_context.data = data;
4618 	init_completion(&init_context.init_done);
4619 
4620 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4621 			     "%s-%d", name, task_pid_nr(current));
4622 	if (IS_ERR(thread))
4623 		return PTR_ERR(thread);
4624 
4625 	/* kthread_run is never supposed to return NULL */
4626 	WARN_ON(thread == NULL);
4627 
4628 	wait_for_completion(&init_context.init_done);
4629 
4630 	if (!init_context.err)
4631 		*thread_ptr = thread;
4632 
4633 	return init_context.err;
4634 }
4635