1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 76 /* Default doubles per-vcpu halt_poll_ns. */ 77 static unsigned int halt_poll_ns_grow = 2; 78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 79 80 /* Default resets per-vcpu halt_poll_ns . */ 81 static unsigned int halt_poll_ns_shrink; 82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 83 84 /* 85 * Ordering of locks: 86 * 87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 88 */ 89 90 DEFINE_SPINLOCK(kvm_lock); 91 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 92 LIST_HEAD(vm_list); 93 94 static cpumask_var_t cpus_hardware_enabled; 95 static int kvm_usage_count; 96 static atomic_t hardware_enable_failed; 97 98 struct kmem_cache *kvm_vcpu_cache; 99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 100 101 static __read_mostly struct preempt_ops kvm_preempt_ops; 102 103 struct dentry *kvm_debugfs_dir; 104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 105 106 static int kvm_debugfs_num_entries; 107 static const struct file_operations *stat_fops_per_vm[]; 108 109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 110 unsigned long arg); 111 #ifdef CONFIG_KVM_COMPAT 112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #endif 115 static int hardware_enable_all(void); 116 static void hardware_disable_all(void); 117 118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 119 120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 122 123 __visible bool kvm_rebooting; 124 EXPORT_SYMBOL_GPL(kvm_rebooting); 125 126 static bool largepages_enabled = true; 127 128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 129 { 130 if (pfn_valid(pfn)) 131 return PageReserved(pfn_to_page(pfn)); 132 133 return true; 134 } 135 136 /* 137 * Switches to specified vcpu, until a matching vcpu_put() 138 */ 139 int vcpu_load(struct kvm_vcpu *vcpu) 140 { 141 int cpu; 142 143 if (mutex_lock_killable(&vcpu->mutex)) 144 return -EINTR; 145 cpu = get_cpu(); 146 preempt_notifier_register(&vcpu->preempt_notifier); 147 kvm_arch_vcpu_load(vcpu, cpu); 148 put_cpu(); 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(vcpu_load); 152 153 void vcpu_put(struct kvm_vcpu *vcpu) 154 { 155 preempt_disable(); 156 kvm_arch_vcpu_put(vcpu); 157 preempt_notifier_unregister(&vcpu->preempt_notifier); 158 preempt_enable(); 159 mutex_unlock(&vcpu->mutex); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_put); 162 163 static void ack_flush(void *_completed) 164 { 165 } 166 167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 168 { 169 int i, cpu, me; 170 cpumask_var_t cpus; 171 bool called = true; 172 struct kvm_vcpu *vcpu; 173 174 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 175 176 me = get_cpu(); 177 kvm_for_each_vcpu(i, vcpu, kvm) { 178 kvm_make_request(req, vcpu); 179 cpu = vcpu->cpu; 180 181 /* Set ->requests bit before we read ->mode. */ 182 smp_mb__after_atomic(); 183 184 if (cpus != NULL && cpu != -1 && cpu != me && 185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 186 cpumask_set_cpu(cpu, cpus); 187 } 188 if (unlikely(cpus == NULL)) 189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 190 else if (!cpumask_empty(cpus)) 191 smp_call_function_many(cpus, ack_flush, NULL, 1); 192 else 193 called = false; 194 put_cpu(); 195 free_cpumask_var(cpus); 196 return called; 197 } 198 199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 /* 203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 204 * kvm_make_all_cpus_request. 205 */ 206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 207 208 /* 209 * We want to publish modifications to the page tables before reading 210 * mode. Pairs with a memory barrier in arch-specific code. 211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 212 * and smp_mb in walk_shadow_page_lockless_begin/end. 213 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 214 * 215 * There is already an smp_mb__after_atomic() before 216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 217 * barrier here. 218 */ 219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 220 ++kvm->stat.remote_tlb_flush; 221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 222 } 223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 224 #endif 225 226 void kvm_reload_remote_mmus(struct kvm *kvm) 227 { 228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 229 } 230 231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 232 { 233 struct page *page; 234 int r; 235 236 mutex_init(&vcpu->mutex); 237 vcpu->cpu = -1; 238 vcpu->kvm = kvm; 239 vcpu->vcpu_id = id; 240 vcpu->pid = NULL; 241 init_swait_queue_head(&vcpu->wq); 242 kvm_async_pf_vcpu_init(vcpu); 243 244 vcpu->pre_pcpu = -1; 245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 246 247 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 248 if (!page) { 249 r = -ENOMEM; 250 goto fail; 251 } 252 vcpu->run = page_address(page); 253 254 kvm_vcpu_set_in_spin_loop(vcpu, false); 255 kvm_vcpu_set_dy_eligible(vcpu, false); 256 vcpu->preempted = false; 257 258 r = kvm_arch_vcpu_init(vcpu); 259 if (r < 0) 260 goto fail_free_run; 261 return 0; 262 263 fail_free_run: 264 free_page((unsigned long)vcpu->run); 265 fail: 266 return r; 267 } 268 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 269 270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 271 { 272 put_pid(vcpu->pid); 273 kvm_arch_vcpu_uninit(vcpu); 274 free_page((unsigned long)vcpu->run); 275 } 276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 277 278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 280 { 281 return container_of(mn, struct kvm, mmu_notifier); 282 } 283 284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 285 struct mm_struct *mm, 286 unsigned long address) 287 { 288 struct kvm *kvm = mmu_notifier_to_kvm(mn); 289 int need_tlb_flush, idx; 290 291 /* 292 * When ->invalidate_page runs, the linux pte has been zapped 293 * already but the page is still allocated until 294 * ->invalidate_page returns. So if we increase the sequence 295 * here the kvm page fault will notice if the spte can't be 296 * established because the page is going to be freed. If 297 * instead the kvm page fault establishes the spte before 298 * ->invalidate_page runs, kvm_unmap_hva will release it 299 * before returning. 300 * 301 * The sequence increase only need to be seen at spin_unlock 302 * time, and not at spin_lock time. 303 * 304 * Increasing the sequence after the spin_unlock would be 305 * unsafe because the kvm page fault could then establish the 306 * pte after kvm_unmap_hva returned, without noticing the page 307 * is going to be freed. 308 */ 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 312 kvm->mmu_notifier_seq++; 313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 314 /* we've to flush the tlb before the pages can be freed */ 315 if (need_tlb_flush) 316 kvm_flush_remote_tlbs(kvm); 317 318 spin_unlock(&kvm->mmu_lock); 319 320 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 321 322 srcu_read_unlock(&kvm->srcu, idx); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_page = kvm_mmu_notifier_invalidate_page, 473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 476 .clear_young = kvm_mmu_notifier_clear_young, 477 .test_young = kvm_mmu_notifier_test_young, 478 .change_pte = kvm_mmu_notifier_change_pte, 479 .release = kvm_mmu_notifier_release, 480 }; 481 482 static int kvm_init_mmu_notifier(struct kvm *kvm) 483 { 484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 486 } 487 488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 489 490 static int kvm_init_mmu_notifier(struct kvm *kvm) 491 { 492 return 0; 493 } 494 495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 496 497 static struct kvm_memslots *kvm_alloc_memslots(void) 498 { 499 int i; 500 struct kvm_memslots *slots; 501 502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 503 if (!slots) 504 return NULL; 505 506 /* 507 * Init kvm generation close to the maximum to easily test the 508 * code of handling generation number wrap-around. 509 */ 510 slots->generation = -150; 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 for (i = 0; i < kvm_debugfs_num_entries; i++) 563 kfree(kvm->debugfs_stat_data[i]); 564 kfree(kvm->debugfs_stat_data); 565 } 566 567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 568 { 569 char dir_name[ITOA_MAX_LEN * 2]; 570 struct kvm_stat_data *stat_data; 571 struct kvm_stats_debugfs_item *p; 572 573 if (!debugfs_initialized()) 574 return 0; 575 576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 577 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 578 kvm_debugfs_dir); 579 if (!kvm->debugfs_dentry) 580 return -ENOMEM; 581 582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 583 sizeof(*kvm->debugfs_stat_data), 584 GFP_KERNEL); 585 if (!kvm->debugfs_stat_data) 586 return -ENOMEM; 587 588 for (p = debugfs_entries; p->name; p++) { 589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 590 if (!stat_data) 591 return -ENOMEM; 592 593 stat_data->kvm = kvm; 594 stat_data->offset = p->offset; 595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 596 if (!debugfs_create_file(p->name, 0444, 597 kvm->debugfs_dentry, 598 stat_data, 599 stat_fops_per_vm[p->kind])) 600 return -ENOMEM; 601 } 602 return 0; 603 } 604 605 static struct kvm *kvm_create_vm(unsigned long type) 606 { 607 int r, i; 608 struct kvm *kvm = kvm_arch_alloc_vm(); 609 610 if (!kvm) 611 return ERR_PTR(-ENOMEM); 612 613 spin_lock_init(&kvm->mmu_lock); 614 atomic_inc(¤t->mm->mm_count); 615 kvm->mm = current->mm; 616 kvm_eventfd_init(kvm); 617 mutex_init(&kvm->lock); 618 mutex_init(&kvm->irq_lock); 619 mutex_init(&kvm->slots_lock); 620 atomic_set(&kvm->users_count, 1); 621 INIT_LIST_HEAD(&kvm->devices); 622 623 r = kvm_arch_init_vm(kvm, type); 624 if (r) 625 goto out_err_no_disable; 626 627 r = hardware_enable_all(); 628 if (r) 629 goto out_err_no_disable; 630 631 #ifdef CONFIG_HAVE_KVM_IRQFD 632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 633 #endif 634 635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 636 637 r = -ENOMEM; 638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 639 kvm->memslots[i] = kvm_alloc_memslots(); 640 if (!kvm->memslots[i]) 641 goto out_err_no_srcu; 642 } 643 644 if (init_srcu_struct(&kvm->srcu)) 645 goto out_err_no_srcu; 646 if (init_srcu_struct(&kvm->irq_srcu)) 647 goto out_err_no_irq_srcu; 648 for (i = 0; i < KVM_NR_BUSES; i++) { 649 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 650 GFP_KERNEL); 651 if (!kvm->buses[i]) 652 goto out_err; 653 } 654 655 r = kvm_init_mmu_notifier(kvm); 656 if (r) 657 goto out_err; 658 659 spin_lock(&kvm_lock); 660 list_add(&kvm->vm_list, &vm_list); 661 spin_unlock(&kvm_lock); 662 663 preempt_notifier_inc(); 664 665 return kvm; 666 667 out_err: 668 cleanup_srcu_struct(&kvm->irq_srcu); 669 out_err_no_irq_srcu: 670 cleanup_srcu_struct(&kvm->srcu); 671 out_err_no_srcu: 672 hardware_disable_all(); 673 out_err_no_disable: 674 for (i = 0; i < KVM_NR_BUSES; i++) 675 kfree(kvm->buses[i]); 676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 677 kvm_free_memslots(kvm, kvm->memslots[i]); 678 kvm_arch_free_vm(kvm); 679 mmdrop(current->mm); 680 return ERR_PTR(r); 681 } 682 683 /* 684 * Avoid using vmalloc for a small buffer. 685 * Should not be used when the size is statically known. 686 */ 687 void *kvm_kvzalloc(unsigned long size) 688 { 689 if (size > PAGE_SIZE) 690 return vzalloc(size); 691 else 692 return kzalloc(size, GFP_KERNEL); 693 } 694 695 static void kvm_destroy_devices(struct kvm *kvm) 696 { 697 struct kvm_device *dev, *tmp; 698 699 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 700 list_del(&dev->vm_node); 701 dev->ops->destroy(dev); 702 } 703 } 704 705 static void kvm_destroy_vm(struct kvm *kvm) 706 { 707 int i; 708 struct mm_struct *mm = kvm->mm; 709 710 kvm_destroy_vm_debugfs(kvm); 711 kvm_arch_sync_events(kvm); 712 spin_lock(&kvm_lock); 713 list_del(&kvm->vm_list); 714 spin_unlock(&kvm_lock); 715 kvm_free_irq_routing(kvm); 716 for (i = 0; i < KVM_NR_BUSES; i++) 717 kvm_io_bus_destroy(kvm->buses[i]); 718 kvm_coalesced_mmio_free(kvm); 719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 720 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 721 #else 722 kvm_arch_flush_shadow_all(kvm); 723 #endif 724 kvm_arch_destroy_vm(kvm); 725 kvm_destroy_devices(kvm); 726 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 727 kvm_free_memslots(kvm, kvm->memslots[i]); 728 cleanup_srcu_struct(&kvm->irq_srcu); 729 cleanup_srcu_struct(&kvm->srcu); 730 kvm_arch_free_vm(kvm); 731 preempt_notifier_dec(); 732 hardware_disable_all(); 733 mmdrop(mm); 734 } 735 736 void kvm_get_kvm(struct kvm *kvm) 737 { 738 atomic_inc(&kvm->users_count); 739 } 740 EXPORT_SYMBOL_GPL(kvm_get_kvm); 741 742 void kvm_put_kvm(struct kvm *kvm) 743 { 744 if (atomic_dec_and_test(&kvm->users_count)) 745 kvm_destroy_vm(kvm); 746 } 747 EXPORT_SYMBOL_GPL(kvm_put_kvm); 748 749 750 static int kvm_vm_release(struct inode *inode, struct file *filp) 751 { 752 struct kvm *kvm = filp->private_data; 753 754 kvm_irqfd_release(kvm); 755 756 kvm_put_kvm(kvm); 757 return 0; 758 } 759 760 /* 761 * Allocation size is twice as large as the actual dirty bitmap size. 762 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 763 */ 764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 765 { 766 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 767 768 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 769 if (!memslot->dirty_bitmap) 770 return -ENOMEM; 771 772 return 0; 773 } 774 775 /* 776 * Insert memslot and re-sort memslots based on their GFN, 777 * so binary search could be used to lookup GFN. 778 * Sorting algorithm takes advantage of having initially 779 * sorted array and known changed memslot position. 780 */ 781 static void update_memslots(struct kvm_memslots *slots, 782 struct kvm_memory_slot *new) 783 { 784 int id = new->id; 785 int i = slots->id_to_index[id]; 786 struct kvm_memory_slot *mslots = slots->memslots; 787 788 WARN_ON(mslots[i].id != id); 789 if (!new->npages) { 790 WARN_ON(!mslots[i].npages); 791 if (mslots[i].npages) 792 slots->used_slots--; 793 } else { 794 if (!mslots[i].npages) 795 slots->used_slots++; 796 } 797 798 while (i < KVM_MEM_SLOTS_NUM - 1 && 799 new->base_gfn <= mslots[i + 1].base_gfn) { 800 if (!mslots[i + 1].npages) 801 break; 802 mslots[i] = mslots[i + 1]; 803 slots->id_to_index[mslots[i].id] = i; 804 i++; 805 } 806 807 /* 808 * The ">=" is needed when creating a slot with base_gfn == 0, 809 * so that it moves before all those with base_gfn == npages == 0. 810 * 811 * On the other hand, if new->npages is zero, the above loop has 812 * already left i pointing to the beginning of the empty part of 813 * mslots, and the ">=" would move the hole backwards in this 814 * case---which is wrong. So skip the loop when deleting a slot. 815 */ 816 if (new->npages) { 817 while (i > 0 && 818 new->base_gfn >= mslots[i - 1].base_gfn) { 819 mslots[i] = mslots[i - 1]; 820 slots->id_to_index[mslots[i].id] = i; 821 i--; 822 } 823 } else 824 WARN_ON_ONCE(i != slots->used_slots); 825 826 mslots[i] = *new; 827 slots->id_to_index[mslots[i].id] = i; 828 } 829 830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 831 { 832 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 833 834 #ifdef __KVM_HAVE_READONLY_MEM 835 valid_flags |= KVM_MEM_READONLY; 836 #endif 837 838 if (mem->flags & ~valid_flags) 839 return -EINVAL; 840 841 return 0; 842 } 843 844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 845 int as_id, struct kvm_memslots *slots) 846 { 847 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 848 849 /* 850 * Set the low bit in the generation, which disables SPTE caching 851 * until the end of synchronize_srcu_expedited. 852 */ 853 WARN_ON(old_memslots->generation & 1); 854 slots->generation = old_memslots->generation + 1; 855 856 rcu_assign_pointer(kvm->memslots[as_id], slots); 857 synchronize_srcu_expedited(&kvm->srcu); 858 859 /* 860 * Increment the new memslot generation a second time. This prevents 861 * vm exits that race with memslot updates from caching a memslot 862 * generation that will (potentially) be valid forever. 863 */ 864 slots->generation++; 865 866 kvm_arch_memslots_updated(kvm, slots); 867 868 return old_memslots; 869 } 870 871 /* 872 * Allocate some memory and give it an address in the guest physical address 873 * space. 874 * 875 * Discontiguous memory is allowed, mostly for framebuffers. 876 * 877 * Must be called holding kvm->slots_lock for write. 878 */ 879 int __kvm_set_memory_region(struct kvm *kvm, 880 const struct kvm_userspace_memory_region *mem) 881 { 882 int r; 883 gfn_t base_gfn; 884 unsigned long npages; 885 struct kvm_memory_slot *slot; 886 struct kvm_memory_slot old, new; 887 struct kvm_memslots *slots = NULL, *old_memslots; 888 int as_id, id; 889 enum kvm_mr_change change; 890 891 r = check_memory_region_flags(mem); 892 if (r) 893 goto out; 894 895 r = -EINVAL; 896 as_id = mem->slot >> 16; 897 id = (u16)mem->slot; 898 899 /* General sanity checks */ 900 if (mem->memory_size & (PAGE_SIZE - 1)) 901 goto out; 902 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 903 goto out; 904 /* We can read the guest memory with __xxx_user() later on. */ 905 if ((id < KVM_USER_MEM_SLOTS) && 906 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 907 !access_ok(VERIFY_WRITE, 908 (void __user *)(unsigned long)mem->userspace_addr, 909 mem->memory_size))) 910 goto out; 911 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 912 goto out; 913 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 914 goto out; 915 916 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 917 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 918 npages = mem->memory_size >> PAGE_SHIFT; 919 920 if (npages > KVM_MEM_MAX_NR_PAGES) 921 goto out; 922 923 new = old = *slot; 924 925 new.id = id; 926 new.base_gfn = base_gfn; 927 new.npages = npages; 928 new.flags = mem->flags; 929 930 if (npages) { 931 if (!old.npages) 932 change = KVM_MR_CREATE; 933 else { /* Modify an existing slot. */ 934 if ((mem->userspace_addr != old.userspace_addr) || 935 (npages != old.npages) || 936 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 937 goto out; 938 939 if (base_gfn != old.base_gfn) 940 change = KVM_MR_MOVE; 941 else if (new.flags != old.flags) 942 change = KVM_MR_FLAGS_ONLY; 943 else { /* Nothing to change. */ 944 r = 0; 945 goto out; 946 } 947 } 948 } else { 949 if (!old.npages) 950 goto out; 951 952 change = KVM_MR_DELETE; 953 new.base_gfn = 0; 954 new.flags = 0; 955 } 956 957 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 958 /* Check for overlaps */ 959 r = -EEXIST; 960 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 961 if ((slot->id >= KVM_USER_MEM_SLOTS) || 962 (slot->id == id)) 963 continue; 964 if (!((base_gfn + npages <= slot->base_gfn) || 965 (base_gfn >= slot->base_gfn + slot->npages))) 966 goto out; 967 } 968 } 969 970 /* Free page dirty bitmap if unneeded */ 971 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 972 new.dirty_bitmap = NULL; 973 974 r = -ENOMEM; 975 if (change == KVM_MR_CREATE) { 976 new.userspace_addr = mem->userspace_addr; 977 978 if (kvm_arch_create_memslot(kvm, &new, npages)) 979 goto out_free; 980 } 981 982 /* Allocate page dirty bitmap if needed */ 983 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 984 if (kvm_create_dirty_bitmap(&new) < 0) 985 goto out_free; 986 } 987 988 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 989 if (!slots) 990 goto out_free; 991 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 992 993 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 994 slot = id_to_memslot(slots, id); 995 slot->flags |= KVM_MEMSLOT_INVALID; 996 997 old_memslots = install_new_memslots(kvm, as_id, slots); 998 999 /* slot was deleted or moved, clear iommu mapping */ 1000 kvm_iommu_unmap_pages(kvm, &old); 1001 /* From this point no new shadow pages pointing to a deleted, 1002 * or moved, memslot will be created. 1003 * 1004 * validation of sp->gfn happens in: 1005 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1006 * - kvm_is_visible_gfn (mmu_check_roots) 1007 */ 1008 kvm_arch_flush_shadow_memslot(kvm, slot); 1009 1010 /* 1011 * We can re-use the old_memslots from above, the only difference 1012 * from the currently installed memslots is the invalid flag. This 1013 * will get overwritten by update_memslots anyway. 1014 */ 1015 slots = old_memslots; 1016 } 1017 1018 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1019 if (r) 1020 goto out_slots; 1021 1022 /* actual memory is freed via old in kvm_free_memslot below */ 1023 if (change == KVM_MR_DELETE) { 1024 new.dirty_bitmap = NULL; 1025 memset(&new.arch, 0, sizeof(new.arch)); 1026 } 1027 1028 update_memslots(slots, &new); 1029 old_memslots = install_new_memslots(kvm, as_id, slots); 1030 1031 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1032 1033 kvm_free_memslot(kvm, &old, &new); 1034 kvfree(old_memslots); 1035 1036 /* 1037 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1038 * un-mapped and re-mapped if their base changes. Since base change 1039 * unmapping is handled above with slot deletion, mapping alone is 1040 * needed here. Anything else the iommu might care about for existing 1041 * slots (size changes, userspace addr changes and read-only flag 1042 * changes) is disallowed above, so any other attribute changes getting 1043 * here can be skipped. 1044 */ 1045 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1046 r = kvm_iommu_map_pages(kvm, &new); 1047 return r; 1048 } 1049 1050 return 0; 1051 1052 out_slots: 1053 kvfree(slots); 1054 out_free: 1055 kvm_free_memslot(kvm, &new, &old); 1056 out: 1057 return r; 1058 } 1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1060 1061 int kvm_set_memory_region(struct kvm *kvm, 1062 const struct kvm_userspace_memory_region *mem) 1063 { 1064 int r; 1065 1066 mutex_lock(&kvm->slots_lock); 1067 r = __kvm_set_memory_region(kvm, mem); 1068 mutex_unlock(&kvm->slots_lock); 1069 return r; 1070 } 1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1072 1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1074 struct kvm_userspace_memory_region *mem) 1075 { 1076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1077 return -EINVAL; 1078 1079 return kvm_set_memory_region(kvm, mem); 1080 } 1081 1082 int kvm_get_dirty_log(struct kvm *kvm, 1083 struct kvm_dirty_log *log, int *is_dirty) 1084 { 1085 struct kvm_memslots *slots; 1086 struct kvm_memory_slot *memslot; 1087 int r, i, as_id, id; 1088 unsigned long n; 1089 unsigned long any = 0; 1090 1091 r = -EINVAL; 1092 as_id = log->slot >> 16; 1093 id = (u16)log->slot; 1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1095 goto out; 1096 1097 slots = __kvm_memslots(kvm, as_id); 1098 memslot = id_to_memslot(slots, id); 1099 r = -ENOENT; 1100 if (!memslot->dirty_bitmap) 1101 goto out; 1102 1103 n = kvm_dirty_bitmap_bytes(memslot); 1104 1105 for (i = 0; !any && i < n/sizeof(long); ++i) 1106 any = memslot->dirty_bitmap[i]; 1107 1108 r = -EFAULT; 1109 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1110 goto out; 1111 1112 if (any) 1113 *is_dirty = 1; 1114 1115 r = 0; 1116 out: 1117 return r; 1118 } 1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1120 1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1122 /** 1123 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1124 * are dirty write protect them for next write. 1125 * @kvm: pointer to kvm instance 1126 * @log: slot id and address to which we copy the log 1127 * @is_dirty: flag set if any page is dirty 1128 * 1129 * We need to keep it in mind that VCPU threads can write to the bitmap 1130 * concurrently. So, to avoid losing track of dirty pages we keep the 1131 * following order: 1132 * 1133 * 1. Take a snapshot of the bit and clear it if needed. 1134 * 2. Write protect the corresponding page. 1135 * 3. Copy the snapshot to the userspace. 1136 * 4. Upon return caller flushes TLB's if needed. 1137 * 1138 * Between 2 and 4, the guest may write to the page using the remaining TLB 1139 * entry. This is not a problem because the page is reported dirty using 1140 * the snapshot taken before and step 4 ensures that writes done after 1141 * exiting to userspace will be logged for the next call. 1142 * 1143 */ 1144 int kvm_get_dirty_log_protect(struct kvm *kvm, 1145 struct kvm_dirty_log *log, bool *is_dirty) 1146 { 1147 struct kvm_memslots *slots; 1148 struct kvm_memory_slot *memslot; 1149 int r, i, as_id, id; 1150 unsigned long n; 1151 unsigned long *dirty_bitmap; 1152 unsigned long *dirty_bitmap_buffer; 1153 1154 r = -EINVAL; 1155 as_id = log->slot >> 16; 1156 id = (u16)log->slot; 1157 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1158 goto out; 1159 1160 slots = __kvm_memslots(kvm, as_id); 1161 memslot = id_to_memslot(slots, id); 1162 1163 dirty_bitmap = memslot->dirty_bitmap; 1164 r = -ENOENT; 1165 if (!dirty_bitmap) 1166 goto out; 1167 1168 n = kvm_dirty_bitmap_bytes(memslot); 1169 1170 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1171 memset(dirty_bitmap_buffer, 0, n); 1172 1173 spin_lock(&kvm->mmu_lock); 1174 *is_dirty = false; 1175 for (i = 0; i < n / sizeof(long); i++) { 1176 unsigned long mask; 1177 gfn_t offset; 1178 1179 if (!dirty_bitmap[i]) 1180 continue; 1181 1182 *is_dirty = true; 1183 1184 mask = xchg(&dirty_bitmap[i], 0); 1185 dirty_bitmap_buffer[i] = mask; 1186 1187 if (mask) { 1188 offset = i * BITS_PER_LONG; 1189 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1190 offset, mask); 1191 } 1192 } 1193 1194 spin_unlock(&kvm->mmu_lock); 1195 1196 r = -EFAULT; 1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1198 goto out; 1199 1200 r = 0; 1201 out: 1202 return r; 1203 } 1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1205 #endif 1206 1207 bool kvm_largepages_enabled(void) 1208 { 1209 return largepages_enabled; 1210 } 1211 1212 void kvm_disable_largepages(void) 1213 { 1214 largepages_enabled = false; 1215 } 1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1217 1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1219 { 1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1221 } 1222 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1223 1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1225 { 1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1227 } 1228 1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1230 { 1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1232 1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1234 memslot->flags & KVM_MEMSLOT_INVALID) 1235 return false; 1236 1237 return true; 1238 } 1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1240 1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1242 { 1243 struct vm_area_struct *vma; 1244 unsigned long addr, size; 1245 1246 size = PAGE_SIZE; 1247 1248 addr = gfn_to_hva(kvm, gfn); 1249 if (kvm_is_error_hva(addr)) 1250 return PAGE_SIZE; 1251 1252 down_read(¤t->mm->mmap_sem); 1253 vma = find_vma(current->mm, addr); 1254 if (!vma) 1255 goto out; 1256 1257 size = vma_kernel_pagesize(vma); 1258 1259 out: 1260 up_read(¤t->mm->mmap_sem); 1261 1262 return size; 1263 } 1264 1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1266 { 1267 return slot->flags & KVM_MEM_READONLY; 1268 } 1269 1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1271 gfn_t *nr_pages, bool write) 1272 { 1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1274 return KVM_HVA_ERR_BAD; 1275 1276 if (memslot_is_readonly(slot) && write) 1277 return KVM_HVA_ERR_RO_BAD; 1278 1279 if (nr_pages) 1280 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1281 1282 return __gfn_to_hva_memslot(slot, gfn); 1283 } 1284 1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1286 gfn_t *nr_pages) 1287 { 1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1289 } 1290 1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1292 gfn_t gfn) 1293 { 1294 return gfn_to_hva_many(slot, gfn, NULL); 1295 } 1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1297 1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1299 { 1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1301 } 1302 EXPORT_SYMBOL_GPL(gfn_to_hva); 1303 1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1305 { 1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1307 } 1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1309 1310 /* 1311 * If writable is set to false, the hva returned by this function is only 1312 * allowed to be read. 1313 */ 1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1315 gfn_t gfn, bool *writable) 1316 { 1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1318 1319 if (!kvm_is_error_hva(hva) && writable) 1320 *writable = !memslot_is_readonly(slot); 1321 1322 return hva; 1323 } 1324 1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1326 { 1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1328 1329 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1330 } 1331 1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1333 { 1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1335 1336 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1337 } 1338 1339 static int get_user_page_nowait(unsigned long start, int write, 1340 struct page **page) 1341 { 1342 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1343 1344 if (write) 1345 flags |= FOLL_WRITE; 1346 1347 return __get_user_pages(current, current->mm, start, 1, flags, page, 1348 NULL, NULL); 1349 } 1350 1351 static inline int check_user_page_hwpoison(unsigned long addr) 1352 { 1353 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1354 1355 rc = __get_user_pages(current, current->mm, addr, 1, 1356 flags, NULL, NULL, NULL); 1357 return rc == -EHWPOISON; 1358 } 1359 1360 /* 1361 * The atomic path to get the writable pfn which will be stored in @pfn, 1362 * true indicates success, otherwise false is returned. 1363 */ 1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1365 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1366 { 1367 struct page *page[1]; 1368 int npages; 1369 1370 if (!(async || atomic)) 1371 return false; 1372 1373 /* 1374 * Fast pin a writable pfn only if it is a write fault request 1375 * or the caller allows to map a writable pfn for a read fault 1376 * request. 1377 */ 1378 if (!(write_fault || writable)) 1379 return false; 1380 1381 npages = __get_user_pages_fast(addr, 1, 1, page); 1382 if (npages == 1) { 1383 *pfn = page_to_pfn(page[0]); 1384 1385 if (writable) 1386 *writable = true; 1387 return true; 1388 } 1389 1390 return false; 1391 } 1392 1393 /* 1394 * The slow path to get the pfn of the specified host virtual address, 1395 * 1 indicates success, -errno is returned if error is detected. 1396 */ 1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1398 bool *writable, kvm_pfn_t *pfn) 1399 { 1400 struct page *page[1]; 1401 int npages = 0; 1402 1403 might_sleep(); 1404 1405 if (writable) 1406 *writable = write_fault; 1407 1408 if (async) { 1409 down_read(¤t->mm->mmap_sem); 1410 npages = get_user_page_nowait(addr, write_fault, page); 1411 up_read(¤t->mm->mmap_sem); 1412 } else 1413 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1414 write_fault, 0, page, 1415 FOLL_TOUCH|FOLL_HWPOISON); 1416 if (npages != 1) 1417 return npages; 1418 1419 /* map read fault as writable if possible */ 1420 if (unlikely(!write_fault) && writable) { 1421 struct page *wpage[1]; 1422 1423 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1424 if (npages == 1) { 1425 *writable = true; 1426 put_page(page[0]); 1427 page[0] = wpage[0]; 1428 } 1429 1430 npages = 1; 1431 } 1432 *pfn = page_to_pfn(page[0]); 1433 return npages; 1434 } 1435 1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1437 { 1438 if (unlikely(!(vma->vm_flags & VM_READ))) 1439 return false; 1440 1441 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1442 return false; 1443 1444 return true; 1445 } 1446 1447 /* 1448 * Pin guest page in memory and return its pfn. 1449 * @addr: host virtual address which maps memory to the guest 1450 * @atomic: whether this function can sleep 1451 * @async: whether this function need to wait IO complete if the 1452 * host page is not in the memory 1453 * @write_fault: whether we should get a writable host page 1454 * @writable: whether it allows to map a writable host page for !@write_fault 1455 * 1456 * The function will map a writable host page for these two cases: 1457 * 1): @write_fault = true 1458 * 2): @write_fault = false && @writable, @writable will tell the caller 1459 * whether the mapping is writable. 1460 */ 1461 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1462 bool write_fault, bool *writable) 1463 { 1464 struct vm_area_struct *vma; 1465 kvm_pfn_t pfn = 0; 1466 int npages; 1467 1468 /* we can do it either atomically or asynchronously, not both */ 1469 BUG_ON(atomic && async); 1470 1471 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1472 return pfn; 1473 1474 if (atomic) 1475 return KVM_PFN_ERR_FAULT; 1476 1477 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1478 if (npages == 1) 1479 return pfn; 1480 1481 down_read(¤t->mm->mmap_sem); 1482 if (npages == -EHWPOISON || 1483 (!async && check_user_page_hwpoison(addr))) { 1484 pfn = KVM_PFN_ERR_HWPOISON; 1485 goto exit; 1486 } 1487 1488 vma = find_vma_intersection(current->mm, addr, addr + 1); 1489 1490 if (vma == NULL) 1491 pfn = KVM_PFN_ERR_FAULT; 1492 else if ((vma->vm_flags & VM_PFNMAP)) { 1493 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1494 vma->vm_pgoff; 1495 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1496 } else { 1497 if (async && vma_is_valid(vma, write_fault)) 1498 *async = true; 1499 pfn = KVM_PFN_ERR_FAULT; 1500 } 1501 exit: 1502 up_read(¤t->mm->mmap_sem); 1503 return pfn; 1504 } 1505 1506 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1507 bool atomic, bool *async, bool write_fault, 1508 bool *writable) 1509 { 1510 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1511 1512 if (addr == KVM_HVA_ERR_RO_BAD) { 1513 if (writable) 1514 *writable = false; 1515 return KVM_PFN_ERR_RO_FAULT; 1516 } 1517 1518 if (kvm_is_error_hva(addr)) { 1519 if (writable) 1520 *writable = false; 1521 return KVM_PFN_NOSLOT; 1522 } 1523 1524 /* Do not map writable pfn in the readonly memslot. */ 1525 if (writable && memslot_is_readonly(slot)) { 1526 *writable = false; 1527 writable = NULL; 1528 } 1529 1530 return hva_to_pfn(addr, atomic, async, write_fault, 1531 writable); 1532 } 1533 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1534 1535 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1536 bool *writable) 1537 { 1538 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1539 write_fault, writable); 1540 } 1541 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1542 1543 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1544 { 1545 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1546 } 1547 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1548 1549 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1550 { 1551 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1552 } 1553 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1554 1555 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1556 { 1557 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1558 } 1559 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1560 1561 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1562 { 1563 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1564 } 1565 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1566 1567 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1568 { 1569 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1570 } 1571 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1572 1573 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1574 { 1575 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1576 } 1577 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1578 1579 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1580 struct page **pages, int nr_pages) 1581 { 1582 unsigned long addr; 1583 gfn_t entry; 1584 1585 addr = gfn_to_hva_many(slot, gfn, &entry); 1586 if (kvm_is_error_hva(addr)) 1587 return -1; 1588 1589 if (entry < nr_pages) 1590 return 0; 1591 1592 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1593 } 1594 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1595 1596 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1597 { 1598 if (is_error_noslot_pfn(pfn)) 1599 return KVM_ERR_PTR_BAD_PAGE; 1600 1601 if (kvm_is_reserved_pfn(pfn)) { 1602 WARN_ON(1); 1603 return KVM_ERR_PTR_BAD_PAGE; 1604 } 1605 1606 return pfn_to_page(pfn); 1607 } 1608 1609 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1610 { 1611 kvm_pfn_t pfn; 1612 1613 pfn = gfn_to_pfn(kvm, gfn); 1614 1615 return kvm_pfn_to_page(pfn); 1616 } 1617 EXPORT_SYMBOL_GPL(gfn_to_page); 1618 1619 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1620 { 1621 kvm_pfn_t pfn; 1622 1623 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1624 1625 return kvm_pfn_to_page(pfn); 1626 } 1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1628 1629 void kvm_release_page_clean(struct page *page) 1630 { 1631 WARN_ON(is_error_page(page)); 1632 1633 kvm_release_pfn_clean(page_to_pfn(page)); 1634 } 1635 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1636 1637 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1638 { 1639 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1640 put_page(pfn_to_page(pfn)); 1641 } 1642 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1643 1644 void kvm_release_page_dirty(struct page *page) 1645 { 1646 WARN_ON(is_error_page(page)); 1647 1648 kvm_release_pfn_dirty(page_to_pfn(page)); 1649 } 1650 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1651 1652 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1653 { 1654 kvm_set_pfn_dirty(pfn); 1655 kvm_release_pfn_clean(pfn); 1656 } 1657 1658 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1659 { 1660 if (!kvm_is_reserved_pfn(pfn)) { 1661 struct page *page = pfn_to_page(pfn); 1662 1663 if (!PageReserved(page)) 1664 SetPageDirty(page); 1665 } 1666 } 1667 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1668 1669 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1670 { 1671 if (!kvm_is_reserved_pfn(pfn)) 1672 mark_page_accessed(pfn_to_page(pfn)); 1673 } 1674 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1675 1676 void kvm_get_pfn(kvm_pfn_t pfn) 1677 { 1678 if (!kvm_is_reserved_pfn(pfn)) 1679 get_page(pfn_to_page(pfn)); 1680 } 1681 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1682 1683 static int next_segment(unsigned long len, int offset) 1684 { 1685 if (len > PAGE_SIZE - offset) 1686 return PAGE_SIZE - offset; 1687 else 1688 return len; 1689 } 1690 1691 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1692 void *data, int offset, int len) 1693 { 1694 int r; 1695 unsigned long addr; 1696 1697 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1698 if (kvm_is_error_hva(addr)) 1699 return -EFAULT; 1700 r = __copy_from_user(data, (void __user *)addr + offset, len); 1701 if (r) 1702 return -EFAULT; 1703 return 0; 1704 } 1705 1706 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1707 int len) 1708 { 1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1710 1711 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1714 1715 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1716 int offset, int len) 1717 { 1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1719 1720 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1721 } 1722 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1723 1724 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1725 { 1726 gfn_t gfn = gpa >> PAGE_SHIFT; 1727 int seg; 1728 int offset = offset_in_page(gpa); 1729 int ret; 1730 1731 while ((seg = next_segment(len, offset)) != 0) { 1732 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1733 if (ret < 0) 1734 return ret; 1735 offset = 0; 1736 len -= seg; 1737 data += seg; 1738 ++gfn; 1739 } 1740 return 0; 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_read_guest); 1743 1744 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1745 { 1746 gfn_t gfn = gpa >> PAGE_SHIFT; 1747 int seg; 1748 int offset = offset_in_page(gpa); 1749 int ret; 1750 1751 while ((seg = next_segment(len, offset)) != 0) { 1752 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1753 if (ret < 0) 1754 return ret; 1755 offset = 0; 1756 len -= seg; 1757 data += seg; 1758 ++gfn; 1759 } 1760 return 0; 1761 } 1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1763 1764 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1765 void *data, int offset, unsigned long len) 1766 { 1767 int r; 1768 unsigned long addr; 1769 1770 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1771 if (kvm_is_error_hva(addr)) 1772 return -EFAULT; 1773 pagefault_disable(); 1774 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1775 pagefault_enable(); 1776 if (r) 1777 return -EFAULT; 1778 return 0; 1779 } 1780 1781 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1782 unsigned long len) 1783 { 1784 gfn_t gfn = gpa >> PAGE_SHIFT; 1785 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1786 int offset = offset_in_page(gpa); 1787 1788 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1789 } 1790 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1791 1792 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1793 void *data, unsigned long len) 1794 { 1795 gfn_t gfn = gpa >> PAGE_SHIFT; 1796 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1797 int offset = offset_in_page(gpa); 1798 1799 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1800 } 1801 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1802 1803 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1804 const void *data, int offset, int len) 1805 { 1806 int r; 1807 unsigned long addr; 1808 1809 addr = gfn_to_hva_memslot(memslot, gfn); 1810 if (kvm_is_error_hva(addr)) 1811 return -EFAULT; 1812 r = __copy_to_user((void __user *)addr + offset, data, len); 1813 if (r) 1814 return -EFAULT; 1815 mark_page_dirty_in_slot(memslot, gfn); 1816 return 0; 1817 } 1818 1819 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1820 const void *data, int offset, int len) 1821 { 1822 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1823 1824 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1825 } 1826 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1827 1828 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1829 const void *data, int offset, int len) 1830 { 1831 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1832 1833 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1836 1837 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1838 unsigned long len) 1839 { 1840 gfn_t gfn = gpa >> PAGE_SHIFT; 1841 int seg; 1842 int offset = offset_in_page(gpa); 1843 int ret; 1844 1845 while ((seg = next_segment(len, offset)) != 0) { 1846 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1847 if (ret < 0) 1848 return ret; 1849 offset = 0; 1850 len -= seg; 1851 data += seg; 1852 ++gfn; 1853 } 1854 return 0; 1855 } 1856 EXPORT_SYMBOL_GPL(kvm_write_guest); 1857 1858 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1859 unsigned long len) 1860 { 1861 gfn_t gfn = gpa >> PAGE_SHIFT; 1862 int seg; 1863 int offset = offset_in_page(gpa); 1864 int ret; 1865 1866 while ((seg = next_segment(len, offset)) != 0) { 1867 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1868 if (ret < 0) 1869 return ret; 1870 offset = 0; 1871 len -= seg; 1872 data += seg; 1873 ++gfn; 1874 } 1875 return 0; 1876 } 1877 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1878 1879 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1880 gpa_t gpa, unsigned long len) 1881 { 1882 struct kvm_memslots *slots = kvm_memslots(kvm); 1883 int offset = offset_in_page(gpa); 1884 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1885 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1886 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1887 gfn_t nr_pages_avail; 1888 1889 ghc->gpa = gpa; 1890 ghc->generation = slots->generation; 1891 ghc->len = len; 1892 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1893 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1894 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1895 ghc->hva += offset; 1896 } else { 1897 /* 1898 * If the requested region crosses two memslots, we still 1899 * verify that the entire region is valid here. 1900 */ 1901 while (start_gfn <= end_gfn) { 1902 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1903 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1904 &nr_pages_avail); 1905 if (kvm_is_error_hva(ghc->hva)) 1906 return -EFAULT; 1907 start_gfn += nr_pages_avail; 1908 } 1909 /* Use the slow path for cross page reads and writes. */ 1910 ghc->memslot = NULL; 1911 } 1912 return 0; 1913 } 1914 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1915 1916 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1917 void *data, unsigned long len) 1918 { 1919 struct kvm_memslots *slots = kvm_memslots(kvm); 1920 int r; 1921 1922 BUG_ON(len > ghc->len); 1923 1924 if (slots->generation != ghc->generation) 1925 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1926 1927 if (unlikely(!ghc->memslot)) 1928 return kvm_write_guest(kvm, ghc->gpa, data, len); 1929 1930 if (kvm_is_error_hva(ghc->hva)) 1931 return -EFAULT; 1932 1933 r = __copy_to_user((void __user *)ghc->hva, data, len); 1934 if (r) 1935 return -EFAULT; 1936 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1937 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1941 1942 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1943 void *data, unsigned long len) 1944 { 1945 struct kvm_memslots *slots = kvm_memslots(kvm); 1946 int r; 1947 1948 BUG_ON(len > ghc->len); 1949 1950 if (slots->generation != ghc->generation) 1951 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1952 1953 if (unlikely(!ghc->memslot)) 1954 return kvm_read_guest(kvm, ghc->gpa, data, len); 1955 1956 if (kvm_is_error_hva(ghc->hva)) 1957 return -EFAULT; 1958 1959 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1960 if (r) 1961 return -EFAULT; 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1966 1967 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1968 { 1969 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1970 1971 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1972 } 1973 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1974 1975 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1976 { 1977 gfn_t gfn = gpa >> PAGE_SHIFT; 1978 int seg; 1979 int offset = offset_in_page(gpa); 1980 int ret; 1981 1982 while ((seg = next_segment(len, offset)) != 0) { 1983 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1984 if (ret < 0) 1985 return ret; 1986 offset = 0; 1987 len -= seg; 1988 ++gfn; 1989 } 1990 return 0; 1991 } 1992 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1993 1994 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 1995 gfn_t gfn) 1996 { 1997 if (memslot && memslot->dirty_bitmap) { 1998 unsigned long rel_gfn = gfn - memslot->base_gfn; 1999 2000 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2001 } 2002 } 2003 2004 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2005 { 2006 struct kvm_memory_slot *memslot; 2007 2008 memslot = gfn_to_memslot(kvm, gfn); 2009 mark_page_dirty_in_slot(memslot, gfn); 2010 } 2011 EXPORT_SYMBOL_GPL(mark_page_dirty); 2012 2013 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2014 { 2015 struct kvm_memory_slot *memslot; 2016 2017 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2018 mark_page_dirty_in_slot(memslot, gfn); 2019 } 2020 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2021 2022 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2023 { 2024 unsigned int old, val, grow; 2025 2026 old = val = vcpu->halt_poll_ns; 2027 grow = READ_ONCE(halt_poll_ns_grow); 2028 /* 10us base */ 2029 if (val == 0 && grow) 2030 val = 10000; 2031 else 2032 val *= grow; 2033 2034 if (val > halt_poll_ns) 2035 val = halt_poll_ns; 2036 2037 vcpu->halt_poll_ns = val; 2038 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2039 } 2040 2041 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2042 { 2043 unsigned int old, val, shrink; 2044 2045 old = val = vcpu->halt_poll_ns; 2046 shrink = READ_ONCE(halt_poll_ns_shrink); 2047 if (shrink == 0) 2048 val = 0; 2049 else 2050 val /= shrink; 2051 2052 vcpu->halt_poll_ns = val; 2053 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2054 } 2055 2056 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2057 { 2058 if (kvm_arch_vcpu_runnable(vcpu)) { 2059 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2060 return -EINTR; 2061 } 2062 if (kvm_cpu_has_pending_timer(vcpu)) 2063 return -EINTR; 2064 if (signal_pending(current)) 2065 return -EINTR; 2066 2067 return 0; 2068 } 2069 2070 /* 2071 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2072 */ 2073 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2074 { 2075 ktime_t start, cur; 2076 DECLARE_SWAITQUEUE(wait); 2077 bool waited = false; 2078 u64 block_ns; 2079 2080 start = cur = ktime_get(); 2081 if (vcpu->halt_poll_ns) { 2082 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2083 2084 ++vcpu->stat.halt_attempted_poll; 2085 do { 2086 /* 2087 * This sets KVM_REQ_UNHALT if an interrupt 2088 * arrives. 2089 */ 2090 if (kvm_vcpu_check_block(vcpu) < 0) { 2091 ++vcpu->stat.halt_successful_poll; 2092 if (!vcpu_valid_wakeup(vcpu)) 2093 ++vcpu->stat.halt_poll_invalid; 2094 goto out; 2095 } 2096 cur = ktime_get(); 2097 } while (single_task_running() && ktime_before(cur, stop)); 2098 } 2099 2100 kvm_arch_vcpu_blocking(vcpu); 2101 2102 for (;;) { 2103 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2104 2105 if (kvm_vcpu_check_block(vcpu) < 0) 2106 break; 2107 2108 waited = true; 2109 schedule(); 2110 } 2111 2112 finish_swait(&vcpu->wq, &wait); 2113 cur = ktime_get(); 2114 2115 kvm_arch_vcpu_unblocking(vcpu); 2116 out: 2117 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2118 2119 if (!vcpu_valid_wakeup(vcpu)) 2120 shrink_halt_poll_ns(vcpu); 2121 else if (halt_poll_ns) { 2122 if (block_ns <= vcpu->halt_poll_ns) 2123 ; 2124 /* we had a long block, shrink polling */ 2125 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2126 shrink_halt_poll_ns(vcpu); 2127 /* we had a short halt and our poll time is too small */ 2128 else if (vcpu->halt_poll_ns < halt_poll_ns && 2129 block_ns < halt_poll_ns) 2130 grow_halt_poll_ns(vcpu); 2131 } else 2132 vcpu->halt_poll_ns = 0; 2133 2134 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2135 kvm_arch_vcpu_block_finish(vcpu); 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2138 2139 #ifndef CONFIG_S390 2140 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2141 { 2142 struct swait_queue_head *wqp; 2143 2144 wqp = kvm_arch_vcpu_wq(vcpu); 2145 if (swait_active(wqp)) { 2146 swake_up(wqp); 2147 ++vcpu->stat.halt_wakeup; 2148 } 2149 2150 } 2151 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2152 2153 /* 2154 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2155 */ 2156 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2157 { 2158 int me; 2159 int cpu = vcpu->cpu; 2160 2161 kvm_vcpu_wake_up(vcpu); 2162 me = get_cpu(); 2163 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2164 if (kvm_arch_vcpu_should_kick(vcpu)) 2165 smp_send_reschedule(cpu); 2166 put_cpu(); 2167 } 2168 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2169 #endif /* !CONFIG_S390 */ 2170 2171 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2172 { 2173 struct pid *pid; 2174 struct task_struct *task = NULL; 2175 int ret = 0; 2176 2177 rcu_read_lock(); 2178 pid = rcu_dereference(target->pid); 2179 if (pid) 2180 task = get_pid_task(pid, PIDTYPE_PID); 2181 rcu_read_unlock(); 2182 if (!task) 2183 return ret; 2184 ret = yield_to(task, 1); 2185 put_task_struct(task); 2186 2187 return ret; 2188 } 2189 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2190 2191 /* 2192 * Helper that checks whether a VCPU is eligible for directed yield. 2193 * Most eligible candidate to yield is decided by following heuristics: 2194 * 2195 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2196 * (preempted lock holder), indicated by @in_spin_loop. 2197 * Set at the beiginning and cleared at the end of interception/PLE handler. 2198 * 2199 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2200 * chance last time (mostly it has become eligible now since we have probably 2201 * yielded to lockholder in last iteration. This is done by toggling 2202 * @dy_eligible each time a VCPU checked for eligibility.) 2203 * 2204 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2205 * to preempted lock-holder could result in wrong VCPU selection and CPU 2206 * burning. Giving priority for a potential lock-holder increases lock 2207 * progress. 2208 * 2209 * Since algorithm is based on heuristics, accessing another VCPU data without 2210 * locking does not harm. It may result in trying to yield to same VCPU, fail 2211 * and continue with next VCPU and so on. 2212 */ 2213 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2214 { 2215 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2216 bool eligible; 2217 2218 eligible = !vcpu->spin_loop.in_spin_loop || 2219 vcpu->spin_loop.dy_eligible; 2220 2221 if (vcpu->spin_loop.in_spin_loop) 2222 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2223 2224 return eligible; 2225 #else 2226 return true; 2227 #endif 2228 } 2229 2230 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2231 { 2232 struct kvm *kvm = me->kvm; 2233 struct kvm_vcpu *vcpu; 2234 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2235 int yielded = 0; 2236 int try = 3; 2237 int pass; 2238 int i; 2239 2240 kvm_vcpu_set_in_spin_loop(me, true); 2241 /* 2242 * We boost the priority of a VCPU that is runnable but not 2243 * currently running, because it got preempted by something 2244 * else and called schedule in __vcpu_run. Hopefully that 2245 * VCPU is holding the lock that we need and will release it. 2246 * We approximate round-robin by starting at the last boosted VCPU. 2247 */ 2248 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2249 kvm_for_each_vcpu(i, vcpu, kvm) { 2250 if (!pass && i <= last_boosted_vcpu) { 2251 i = last_boosted_vcpu; 2252 continue; 2253 } else if (pass && i > last_boosted_vcpu) 2254 break; 2255 if (!ACCESS_ONCE(vcpu->preempted)) 2256 continue; 2257 if (vcpu == me) 2258 continue; 2259 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2260 continue; 2261 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2262 continue; 2263 2264 yielded = kvm_vcpu_yield_to(vcpu); 2265 if (yielded > 0) { 2266 kvm->last_boosted_vcpu = i; 2267 break; 2268 } else if (yielded < 0) { 2269 try--; 2270 if (!try) 2271 break; 2272 } 2273 } 2274 } 2275 kvm_vcpu_set_in_spin_loop(me, false); 2276 2277 /* Ensure vcpu is not eligible during next spinloop */ 2278 kvm_vcpu_set_dy_eligible(me, false); 2279 } 2280 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2281 2282 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2283 { 2284 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2285 struct page *page; 2286 2287 if (vmf->pgoff == 0) 2288 page = virt_to_page(vcpu->run); 2289 #ifdef CONFIG_X86 2290 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2291 page = virt_to_page(vcpu->arch.pio_data); 2292 #endif 2293 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2294 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2295 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2296 #endif 2297 else 2298 return kvm_arch_vcpu_fault(vcpu, vmf); 2299 get_page(page); 2300 vmf->page = page; 2301 return 0; 2302 } 2303 2304 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2305 .fault = kvm_vcpu_fault, 2306 }; 2307 2308 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2309 { 2310 vma->vm_ops = &kvm_vcpu_vm_ops; 2311 return 0; 2312 } 2313 2314 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2315 { 2316 struct kvm_vcpu *vcpu = filp->private_data; 2317 2318 kvm_put_kvm(vcpu->kvm); 2319 return 0; 2320 } 2321 2322 static struct file_operations kvm_vcpu_fops = { 2323 .release = kvm_vcpu_release, 2324 .unlocked_ioctl = kvm_vcpu_ioctl, 2325 #ifdef CONFIG_KVM_COMPAT 2326 .compat_ioctl = kvm_vcpu_compat_ioctl, 2327 #endif 2328 .mmap = kvm_vcpu_mmap, 2329 .llseek = noop_llseek, 2330 }; 2331 2332 /* 2333 * Allocates an inode for the vcpu. 2334 */ 2335 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2336 { 2337 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2338 } 2339 2340 /* 2341 * Creates some virtual cpus. Good luck creating more than one. 2342 */ 2343 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2344 { 2345 int r; 2346 struct kvm_vcpu *vcpu; 2347 2348 if (id >= KVM_MAX_VCPU_ID) 2349 return -EINVAL; 2350 2351 vcpu = kvm_arch_vcpu_create(kvm, id); 2352 if (IS_ERR(vcpu)) 2353 return PTR_ERR(vcpu); 2354 2355 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2356 2357 r = kvm_arch_vcpu_setup(vcpu); 2358 if (r) 2359 goto vcpu_destroy; 2360 2361 mutex_lock(&kvm->lock); 2362 if (!kvm_vcpu_compatible(vcpu)) { 2363 r = -EINVAL; 2364 goto unlock_vcpu_destroy; 2365 } 2366 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2367 r = -EINVAL; 2368 goto unlock_vcpu_destroy; 2369 } 2370 if (kvm_get_vcpu_by_id(kvm, id)) { 2371 r = -EEXIST; 2372 goto unlock_vcpu_destroy; 2373 } 2374 2375 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2376 2377 /* Now it's all set up, let userspace reach it */ 2378 kvm_get_kvm(kvm); 2379 r = create_vcpu_fd(vcpu); 2380 if (r < 0) { 2381 kvm_put_kvm(kvm); 2382 goto unlock_vcpu_destroy; 2383 } 2384 2385 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2386 2387 /* 2388 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2389 * before kvm->online_vcpu's incremented value. 2390 */ 2391 smp_wmb(); 2392 atomic_inc(&kvm->online_vcpus); 2393 2394 mutex_unlock(&kvm->lock); 2395 kvm_arch_vcpu_postcreate(vcpu); 2396 return r; 2397 2398 unlock_vcpu_destroy: 2399 mutex_unlock(&kvm->lock); 2400 vcpu_destroy: 2401 kvm_arch_vcpu_destroy(vcpu); 2402 return r; 2403 } 2404 2405 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2406 { 2407 if (sigset) { 2408 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2409 vcpu->sigset_active = 1; 2410 vcpu->sigset = *sigset; 2411 } else 2412 vcpu->sigset_active = 0; 2413 return 0; 2414 } 2415 2416 static long kvm_vcpu_ioctl(struct file *filp, 2417 unsigned int ioctl, unsigned long arg) 2418 { 2419 struct kvm_vcpu *vcpu = filp->private_data; 2420 void __user *argp = (void __user *)arg; 2421 int r; 2422 struct kvm_fpu *fpu = NULL; 2423 struct kvm_sregs *kvm_sregs = NULL; 2424 2425 if (vcpu->kvm->mm != current->mm) 2426 return -EIO; 2427 2428 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2429 return -EINVAL; 2430 2431 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2432 /* 2433 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2434 * so vcpu_load() would break it. 2435 */ 2436 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2437 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2438 #endif 2439 2440 2441 r = vcpu_load(vcpu); 2442 if (r) 2443 return r; 2444 switch (ioctl) { 2445 case KVM_RUN: 2446 r = -EINVAL; 2447 if (arg) 2448 goto out; 2449 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2450 /* The thread running this VCPU changed. */ 2451 struct pid *oldpid = vcpu->pid; 2452 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2453 2454 rcu_assign_pointer(vcpu->pid, newpid); 2455 if (oldpid) 2456 synchronize_rcu(); 2457 put_pid(oldpid); 2458 } 2459 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2460 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2461 break; 2462 case KVM_GET_REGS: { 2463 struct kvm_regs *kvm_regs; 2464 2465 r = -ENOMEM; 2466 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2467 if (!kvm_regs) 2468 goto out; 2469 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2470 if (r) 2471 goto out_free1; 2472 r = -EFAULT; 2473 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2474 goto out_free1; 2475 r = 0; 2476 out_free1: 2477 kfree(kvm_regs); 2478 break; 2479 } 2480 case KVM_SET_REGS: { 2481 struct kvm_regs *kvm_regs; 2482 2483 r = -ENOMEM; 2484 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2485 if (IS_ERR(kvm_regs)) { 2486 r = PTR_ERR(kvm_regs); 2487 goto out; 2488 } 2489 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2490 kfree(kvm_regs); 2491 break; 2492 } 2493 case KVM_GET_SREGS: { 2494 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2495 r = -ENOMEM; 2496 if (!kvm_sregs) 2497 goto out; 2498 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2499 if (r) 2500 goto out; 2501 r = -EFAULT; 2502 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2503 goto out; 2504 r = 0; 2505 break; 2506 } 2507 case KVM_SET_SREGS: { 2508 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2509 if (IS_ERR(kvm_sregs)) { 2510 r = PTR_ERR(kvm_sregs); 2511 kvm_sregs = NULL; 2512 goto out; 2513 } 2514 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2515 break; 2516 } 2517 case KVM_GET_MP_STATE: { 2518 struct kvm_mp_state mp_state; 2519 2520 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2521 if (r) 2522 goto out; 2523 r = -EFAULT; 2524 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2525 goto out; 2526 r = 0; 2527 break; 2528 } 2529 case KVM_SET_MP_STATE: { 2530 struct kvm_mp_state mp_state; 2531 2532 r = -EFAULT; 2533 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2534 goto out; 2535 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2536 break; 2537 } 2538 case KVM_TRANSLATE: { 2539 struct kvm_translation tr; 2540 2541 r = -EFAULT; 2542 if (copy_from_user(&tr, argp, sizeof(tr))) 2543 goto out; 2544 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2545 if (r) 2546 goto out; 2547 r = -EFAULT; 2548 if (copy_to_user(argp, &tr, sizeof(tr))) 2549 goto out; 2550 r = 0; 2551 break; 2552 } 2553 case KVM_SET_GUEST_DEBUG: { 2554 struct kvm_guest_debug dbg; 2555 2556 r = -EFAULT; 2557 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2558 goto out; 2559 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2560 break; 2561 } 2562 case KVM_SET_SIGNAL_MASK: { 2563 struct kvm_signal_mask __user *sigmask_arg = argp; 2564 struct kvm_signal_mask kvm_sigmask; 2565 sigset_t sigset, *p; 2566 2567 p = NULL; 2568 if (argp) { 2569 r = -EFAULT; 2570 if (copy_from_user(&kvm_sigmask, argp, 2571 sizeof(kvm_sigmask))) 2572 goto out; 2573 r = -EINVAL; 2574 if (kvm_sigmask.len != sizeof(sigset)) 2575 goto out; 2576 r = -EFAULT; 2577 if (copy_from_user(&sigset, sigmask_arg->sigset, 2578 sizeof(sigset))) 2579 goto out; 2580 p = &sigset; 2581 } 2582 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2583 break; 2584 } 2585 case KVM_GET_FPU: { 2586 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2587 r = -ENOMEM; 2588 if (!fpu) 2589 goto out; 2590 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2591 if (r) 2592 goto out; 2593 r = -EFAULT; 2594 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2595 goto out; 2596 r = 0; 2597 break; 2598 } 2599 case KVM_SET_FPU: { 2600 fpu = memdup_user(argp, sizeof(*fpu)); 2601 if (IS_ERR(fpu)) { 2602 r = PTR_ERR(fpu); 2603 fpu = NULL; 2604 goto out; 2605 } 2606 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2607 break; 2608 } 2609 default: 2610 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2611 } 2612 out: 2613 vcpu_put(vcpu); 2614 kfree(fpu); 2615 kfree(kvm_sregs); 2616 return r; 2617 } 2618 2619 #ifdef CONFIG_KVM_COMPAT 2620 static long kvm_vcpu_compat_ioctl(struct file *filp, 2621 unsigned int ioctl, unsigned long arg) 2622 { 2623 struct kvm_vcpu *vcpu = filp->private_data; 2624 void __user *argp = compat_ptr(arg); 2625 int r; 2626 2627 if (vcpu->kvm->mm != current->mm) 2628 return -EIO; 2629 2630 switch (ioctl) { 2631 case KVM_SET_SIGNAL_MASK: { 2632 struct kvm_signal_mask __user *sigmask_arg = argp; 2633 struct kvm_signal_mask kvm_sigmask; 2634 compat_sigset_t csigset; 2635 sigset_t sigset; 2636 2637 if (argp) { 2638 r = -EFAULT; 2639 if (copy_from_user(&kvm_sigmask, argp, 2640 sizeof(kvm_sigmask))) 2641 goto out; 2642 r = -EINVAL; 2643 if (kvm_sigmask.len != sizeof(csigset)) 2644 goto out; 2645 r = -EFAULT; 2646 if (copy_from_user(&csigset, sigmask_arg->sigset, 2647 sizeof(csigset))) 2648 goto out; 2649 sigset_from_compat(&sigset, &csigset); 2650 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2651 } else 2652 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2653 break; 2654 } 2655 default: 2656 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2657 } 2658 2659 out: 2660 return r; 2661 } 2662 #endif 2663 2664 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2665 int (*accessor)(struct kvm_device *dev, 2666 struct kvm_device_attr *attr), 2667 unsigned long arg) 2668 { 2669 struct kvm_device_attr attr; 2670 2671 if (!accessor) 2672 return -EPERM; 2673 2674 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2675 return -EFAULT; 2676 2677 return accessor(dev, &attr); 2678 } 2679 2680 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2681 unsigned long arg) 2682 { 2683 struct kvm_device *dev = filp->private_data; 2684 2685 switch (ioctl) { 2686 case KVM_SET_DEVICE_ATTR: 2687 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2688 case KVM_GET_DEVICE_ATTR: 2689 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2690 case KVM_HAS_DEVICE_ATTR: 2691 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2692 default: 2693 if (dev->ops->ioctl) 2694 return dev->ops->ioctl(dev, ioctl, arg); 2695 2696 return -ENOTTY; 2697 } 2698 } 2699 2700 static int kvm_device_release(struct inode *inode, struct file *filp) 2701 { 2702 struct kvm_device *dev = filp->private_data; 2703 struct kvm *kvm = dev->kvm; 2704 2705 kvm_put_kvm(kvm); 2706 return 0; 2707 } 2708 2709 static const struct file_operations kvm_device_fops = { 2710 .unlocked_ioctl = kvm_device_ioctl, 2711 #ifdef CONFIG_KVM_COMPAT 2712 .compat_ioctl = kvm_device_ioctl, 2713 #endif 2714 .release = kvm_device_release, 2715 }; 2716 2717 struct kvm_device *kvm_device_from_filp(struct file *filp) 2718 { 2719 if (filp->f_op != &kvm_device_fops) 2720 return NULL; 2721 2722 return filp->private_data; 2723 } 2724 2725 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2726 #ifdef CONFIG_KVM_MPIC 2727 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2728 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2729 #endif 2730 2731 #ifdef CONFIG_KVM_XICS 2732 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2733 #endif 2734 }; 2735 2736 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2737 { 2738 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2739 return -ENOSPC; 2740 2741 if (kvm_device_ops_table[type] != NULL) 2742 return -EEXIST; 2743 2744 kvm_device_ops_table[type] = ops; 2745 return 0; 2746 } 2747 2748 void kvm_unregister_device_ops(u32 type) 2749 { 2750 if (kvm_device_ops_table[type] != NULL) 2751 kvm_device_ops_table[type] = NULL; 2752 } 2753 2754 static int kvm_ioctl_create_device(struct kvm *kvm, 2755 struct kvm_create_device *cd) 2756 { 2757 struct kvm_device_ops *ops = NULL; 2758 struct kvm_device *dev; 2759 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2760 int ret; 2761 2762 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2763 return -ENODEV; 2764 2765 ops = kvm_device_ops_table[cd->type]; 2766 if (ops == NULL) 2767 return -ENODEV; 2768 2769 if (test) 2770 return 0; 2771 2772 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2773 if (!dev) 2774 return -ENOMEM; 2775 2776 dev->ops = ops; 2777 dev->kvm = kvm; 2778 2779 ret = ops->create(dev, cd->type); 2780 if (ret < 0) { 2781 kfree(dev); 2782 return ret; 2783 } 2784 2785 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2786 if (ret < 0) { 2787 ops->destroy(dev); 2788 return ret; 2789 } 2790 2791 list_add(&dev->vm_node, &kvm->devices); 2792 kvm_get_kvm(kvm); 2793 cd->fd = ret; 2794 return 0; 2795 } 2796 2797 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2798 { 2799 switch (arg) { 2800 case KVM_CAP_USER_MEMORY: 2801 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2802 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2803 case KVM_CAP_INTERNAL_ERROR_DATA: 2804 #ifdef CONFIG_HAVE_KVM_MSI 2805 case KVM_CAP_SIGNAL_MSI: 2806 #endif 2807 #ifdef CONFIG_HAVE_KVM_IRQFD 2808 case KVM_CAP_IRQFD: 2809 case KVM_CAP_IRQFD_RESAMPLE: 2810 #endif 2811 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2812 case KVM_CAP_CHECK_EXTENSION_VM: 2813 return 1; 2814 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2815 case KVM_CAP_IRQ_ROUTING: 2816 return KVM_MAX_IRQ_ROUTES; 2817 #endif 2818 #if KVM_ADDRESS_SPACE_NUM > 1 2819 case KVM_CAP_MULTI_ADDRESS_SPACE: 2820 return KVM_ADDRESS_SPACE_NUM; 2821 #endif 2822 case KVM_CAP_MAX_VCPU_ID: 2823 return KVM_MAX_VCPU_ID; 2824 default: 2825 break; 2826 } 2827 return kvm_vm_ioctl_check_extension(kvm, arg); 2828 } 2829 2830 static long kvm_vm_ioctl(struct file *filp, 2831 unsigned int ioctl, unsigned long arg) 2832 { 2833 struct kvm *kvm = filp->private_data; 2834 void __user *argp = (void __user *)arg; 2835 int r; 2836 2837 if (kvm->mm != current->mm) 2838 return -EIO; 2839 switch (ioctl) { 2840 case KVM_CREATE_VCPU: 2841 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2842 break; 2843 case KVM_SET_USER_MEMORY_REGION: { 2844 struct kvm_userspace_memory_region kvm_userspace_mem; 2845 2846 r = -EFAULT; 2847 if (copy_from_user(&kvm_userspace_mem, argp, 2848 sizeof(kvm_userspace_mem))) 2849 goto out; 2850 2851 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2852 break; 2853 } 2854 case KVM_GET_DIRTY_LOG: { 2855 struct kvm_dirty_log log; 2856 2857 r = -EFAULT; 2858 if (copy_from_user(&log, argp, sizeof(log))) 2859 goto out; 2860 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2861 break; 2862 } 2863 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2864 case KVM_REGISTER_COALESCED_MMIO: { 2865 struct kvm_coalesced_mmio_zone zone; 2866 2867 r = -EFAULT; 2868 if (copy_from_user(&zone, argp, sizeof(zone))) 2869 goto out; 2870 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2871 break; 2872 } 2873 case KVM_UNREGISTER_COALESCED_MMIO: { 2874 struct kvm_coalesced_mmio_zone zone; 2875 2876 r = -EFAULT; 2877 if (copy_from_user(&zone, argp, sizeof(zone))) 2878 goto out; 2879 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2880 break; 2881 } 2882 #endif 2883 case KVM_IRQFD: { 2884 struct kvm_irqfd data; 2885 2886 r = -EFAULT; 2887 if (copy_from_user(&data, argp, sizeof(data))) 2888 goto out; 2889 r = kvm_irqfd(kvm, &data); 2890 break; 2891 } 2892 case KVM_IOEVENTFD: { 2893 struct kvm_ioeventfd data; 2894 2895 r = -EFAULT; 2896 if (copy_from_user(&data, argp, sizeof(data))) 2897 goto out; 2898 r = kvm_ioeventfd(kvm, &data); 2899 break; 2900 } 2901 #ifdef CONFIG_HAVE_KVM_MSI 2902 case KVM_SIGNAL_MSI: { 2903 struct kvm_msi msi; 2904 2905 r = -EFAULT; 2906 if (copy_from_user(&msi, argp, sizeof(msi))) 2907 goto out; 2908 r = kvm_send_userspace_msi(kvm, &msi); 2909 break; 2910 } 2911 #endif 2912 #ifdef __KVM_HAVE_IRQ_LINE 2913 case KVM_IRQ_LINE_STATUS: 2914 case KVM_IRQ_LINE: { 2915 struct kvm_irq_level irq_event; 2916 2917 r = -EFAULT; 2918 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2919 goto out; 2920 2921 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2922 ioctl == KVM_IRQ_LINE_STATUS); 2923 if (r) 2924 goto out; 2925 2926 r = -EFAULT; 2927 if (ioctl == KVM_IRQ_LINE_STATUS) { 2928 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2929 goto out; 2930 } 2931 2932 r = 0; 2933 break; 2934 } 2935 #endif 2936 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2937 case KVM_SET_GSI_ROUTING: { 2938 struct kvm_irq_routing routing; 2939 struct kvm_irq_routing __user *urouting; 2940 struct kvm_irq_routing_entry *entries = NULL; 2941 2942 r = -EFAULT; 2943 if (copy_from_user(&routing, argp, sizeof(routing))) 2944 goto out; 2945 r = -EINVAL; 2946 if (routing.nr > KVM_MAX_IRQ_ROUTES) 2947 goto out; 2948 if (routing.flags) 2949 goto out; 2950 if (routing.nr) { 2951 r = -ENOMEM; 2952 entries = vmalloc(routing.nr * sizeof(*entries)); 2953 if (!entries) 2954 goto out; 2955 r = -EFAULT; 2956 urouting = argp; 2957 if (copy_from_user(entries, urouting->entries, 2958 routing.nr * sizeof(*entries))) 2959 goto out_free_irq_routing; 2960 } 2961 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2962 routing.flags); 2963 out_free_irq_routing: 2964 vfree(entries); 2965 break; 2966 } 2967 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2968 case KVM_CREATE_DEVICE: { 2969 struct kvm_create_device cd; 2970 2971 r = -EFAULT; 2972 if (copy_from_user(&cd, argp, sizeof(cd))) 2973 goto out; 2974 2975 r = kvm_ioctl_create_device(kvm, &cd); 2976 if (r) 2977 goto out; 2978 2979 r = -EFAULT; 2980 if (copy_to_user(argp, &cd, sizeof(cd))) 2981 goto out; 2982 2983 r = 0; 2984 break; 2985 } 2986 case KVM_CHECK_EXTENSION: 2987 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2988 break; 2989 default: 2990 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2991 } 2992 out: 2993 return r; 2994 } 2995 2996 #ifdef CONFIG_KVM_COMPAT 2997 struct compat_kvm_dirty_log { 2998 __u32 slot; 2999 __u32 padding1; 3000 union { 3001 compat_uptr_t dirty_bitmap; /* one bit per page */ 3002 __u64 padding2; 3003 }; 3004 }; 3005 3006 static long kvm_vm_compat_ioctl(struct file *filp, 3007 unsigned int ioctl, unsigned long arg) 3008 { 3009 struct kvm *kvm = filp->private_data; 3010 int r; 3011 3012 if (kvm->mm != current->mm) 3013 return -EIO; 3014 switch (ioctl) { 3015 case KVM_GET_DIRTY_LOG: { 3016 struct compat_kvm_dirty_log compat_log; 3017 struct kvm_dirty_log log; 3018 3019 r = -EFAULT; 3020 if (copy_from_user(&compat_log, (void __user *)arg, 3021 sizeof(compat_log))) 3022 goto out; 3023 log.slot = compat_log.slot; 3024 log.padding1 = compat_log.padding1; 3025 log.padding2 = compat_log.padding2; 3026 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3027 3028 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3029 break; 3030 } 3031 default: 3032 r = kvm_vm_ioctl(filp, ioctl, arg); 3033 } 3034 3035 out: 3036 return r; 3037 } 3038 #endif 3039 3040 static struct file_operations kvm_vm_fops = { 3041 .release = kvm_vm_release, 3042 .unlocked_ioctl = kvm_vm_ioctl, 3043 #ifdef CONFIG_KVM_COMPAT 3044 .compat_ioctl = kvm_vm_compat_ioctl, 3045 #endif 3046 .llseek = noop_llseek, 3047 }; 3048 3049 static int kvm_dev_ioctl_create_vm(unsigned long type) 3050 { 3051 int r; 3052 struct kvm *kvm; 3053 struct file *file; 3054 3055 kvm = kvm_create_vm(type); 3056 if (IS_ERR(kvm)) 3057 return PTR_ERR(kvm); 3058 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3059 r = kvm_coalesced_mmio_init(kvm); 3060 if (r < 0) { 3061 kvm_put_kvm(kvm); 3062 return r; 3063 } 3064 #endif 3065 r = get_unused_fd_flags(O_CLOEXEC); 3066 if (r < 0) { 3067 kvm_put_kvm(kvm); 3068 return r; 3069 } 3070 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3071 if (IS_ERR(file)) { 3072 put_unused_fd(r); 3073 kvm_put_kvm(kvm); 3074 return PTR_ERR(file); 3075 } 3076 3077 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3078 put_unused_fd(r); 3079 fput(file); 3080 return -ENOMEM; 3081 } 3082 3083 fd_install(r, file); 3084 return r; 3085 } 3086 3087 static long kvm_dev_ioctl(struct file *filp, 3088 unsigned int ioctl, unsigned long arg) 3089 { 3090 long r = -EINVAL; 3091 3092 switch (ioctl) { 3093 case KVM_GET_API_VERSION: 3094 if (arg) 3095 goto out; 3096 r = KVM_API_VERSION; 3097 break; 3098 case KVM_CREATE_VM: 3099 r = kvm_dev_ioctl_create_vm(arg); 3100 break; 3101 case KVM_CHECK_EXTENSION: 3102 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3103 break; 3104 case KVM_GET_VCPU_MMAP_SIZE: 3105 if (arg) 3106 goto out; 3107 r = PAGE_SIZE; /* struct kvm_run */ 3108 #ifdef CONFIG_X86 3109 r += PAGE_SIZE; /* pio data page */ 3110 #endif 3111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3112 r += PAGE_SIZE; /* coalesced mmio ring page */ 3113 #endif 3114 break; 3115 case KVM_TRACE_ENABLE: 3116 case KVM_TRACE_PAUSE: 3117 case KVM_TRACE_DISABLE: 3118 r = -EOPNOTSUPP; 3119 break; 3120 default: 3121 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3122 } 3123 out: 3124 return r; 3125 } 3126 3127 static struct file_operations kvm_chardev_ops = { 3128 .unlocked_ioctl = kvm_dev_ioctl, 3129 .compat_ioctl = kvm_dev_ioctl, 3130 .llseek = noop_llseek, 3131 }; 3132 3133 static struct miscdevice kvm_dev = { 3134 KVM_MINOR, 3135 "kvm", 3136 &kvm_chardev_ops, 3137 }; 3138 3139 static void hardware_enable_nolock(void *junk) 3140 { 3141 int cpu = raw_smp_processor_id(); 3142 int r; 3143 3144 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3145 return; 3146 3147 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3148 3149 r = kvm_arch_hardware_enable(); 3150 3151 if (r) { 3152 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3153 atomic_inc(&hardware_enable_failed); 3154 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3155 } 3156 } 3157 3158 static int kvm_starting_cpu(unsigned int cpu) 3159 { 3160 raw_spin_lock(&kvm_count_lock); 3161 if (kvm_usage_count) 3162 hardware_enable_nolock(NULL); 3163 raw_spin_unlock(&kvm_count_lock); 3164 return 0; 3165 } 3166 3167 static void hardware_disable_nolock(void *junk) 3168 { 3169 int cpu = raw_smp_processor_id(); 3170 3171 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3172 return; 3173 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3174 kvm_arch_hardware_disable(); 3175 } 3176 3177 static int kvm_dying_cpu(unsigned int cpu) 3178 { 3179 raw_spin_lock(&kvm_count_lock); 3180 if (kvm_usage_count) 3181 hardware_disable_nolock(NULL); 3182 raw_spin_unlock(&kvm_count_lock); 3183 return 0; 3184 } 3185 3186 static void hardware_disable_all_nolock(void) 3187 { 3188 BUG_ON(!kvm_usage_count); 3189 3190 kvm_usage_count--; 3191 if (!kvm_usage_count) 3192 on_each_cpu(hardware_disable_nolock, NULL, 1); 3193 } 3194 3195 static void hardware_disable_all(void) 3196 { 3197 raw_spin_lock(&kvm_count_lock); 3198 hardware_disable_all_nolock(); 3199 raw_spin_unlock(&kvm_count_lock); 3200 } 3201 3202 static int hardware_enable_all(void) 3203 { 3204 int r = 0; 3205 3206 raw_spin_lock(&kvm_count_lock); 3207 3208 kvm_usage_count++; 3209 if (kvm_usage_count == 1) { 3210 atomic_set(&hardware_enable_failed, 0); 3211 on_each_cpu(hardware_enable_nolock, NULL, 1); 3212 3213 if (atomic_read(&hardware_enable_failed)) { 3214 hardware_disable_all_nolock(); 3215 r = -EBUSY; 3216 } 3217 } 3218 3219 raw_spin_unlock(&kvm_count_lock); 3220 3221 return r; 3222 } 3223 3224 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3225 void *v) 3226 { 3227 /* 3228 * Some (well, at least mine) BIOSes hang on reboot if 3229 * in vmx root mode. 3230 * 3231 * And Intel TXT required VMX off for all cpu when system shutdown. 3232 */ 3233 pr_info("kvm: exiting hardware virtualization\n"); 3234 kvm_rebooting = true; 3235 on_each_cpu(hardware_disable_nolock, NULL, 1); 3236 return NOTIFY_OK; 3237 } 3238 3239 static struct notifier_block kvm_reboot_notifier = { 3240 .notifier_call = kvm_reboot, 3241 .priority = 0, 3242 }; 3243 3244 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3245 { 3246 int i; 3247 3248 for (i = 0; i < bus->dev_count; i++) { 3249 struct kvm_io_device *pos = bus->range[i].dev; 3250 3251 kvm_iodevice_destructor(pos); 3252 } 3253 kfree(bus); 3254 } 3255 3256 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3257 const struct kvm_io_range *r2) 3258 { 3259 gpa_t addr1 = r1->addr; 3260 gpa_t addr2 = r2->addr; 3261 3262 if (addr1 < addr2) 3263 return -1; 3264 3265 /* If r2->len == 0, match the exact address. If r2->len != 0, 3266 * accept any overlapping write. Any order is acceptable for 3267 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3268 * we process all of them. 3269 */ 3270 if (r2->len) { 3271 addr1 += r1->len; 3272 addr2 += r2->len; 3273 } 3274 3275 if (addr1 > addr2) 3276 return 1; 3277 3278 return 0; 3279 } 3280 3281 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3282 { 3283 return kvm_io_bus_cmp(p1, p2); 3284 } 3285 3286 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3287 gpa_t addr, int len) 3288 { 3289 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3290 .addr = addr, 3291 .len = len, 3292 .dev = dev, 3293 }; 3294 3295 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3296 kvm_io_bus_sort_cmp, NULL); 3297 3298 return 0; 3299 } 3300 3301 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3302 gpa_t addr, int len) 3303 { 3304 struct kvm_io_range *range, key; 3305 int off; 3306 3307 key = (struct kvm_io_range) { 3308 .addr = addr, 3309 .len = len, 3310 }; 3311 3312 range = bsearch(&key, bus->range, bus->dev_count, 3313 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3314 if (range == NULL) 3315 return -ENOENT; 3316 3317 off = range - bus->range; 3318 3319 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3320 off--; 3321 3322 return off; 3323 } 3324 3325 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3326 struct kvm_io_range *range, const void *val) 3327 { 3328 int idx; 3329 3330 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3331 if (idx < 0) 3332 return -EOPNOTSUPP; 3333 3334 while (idx < bus->dev_count && 3335 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3336 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3337 range->len, val)) 3338 return idx; 3339 idx++; 3340 } 3341 3342 return -EOPNOTSUPP; 3343 } 3344 3345 /* kvm_io_bus_write - called under kvm->slots_lock */ 3346 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3347 int len, const void *val) 3348 { 3349 struct kvm_io_bus *bus; 3350 struct kvm_io_range range; 3351 int r; 3352 3353 range = (struct kvm_io_range) { 3354 .addr = addr, 3355 .len = len, 3356 }; 3357 3358 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3359 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3360 return r < 0 ? r : 0; 3361 } 3362 3363 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3364 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3365 gpa_t addr, int len, const void *val, long cookie) 3366 { 3367 struct kvm_io_bus *bus; 3368 struct kvm_io_range range; 3369 3370 range = (struct kvm_io_range) { 3371 .addr = addr, 3372 .len = len, 3373 }; 3374 3375 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3376 3377 /* First try the device referenced by cookie. */ 3378 if ((cookie >= 0) && (cookie < bus->dev_count) && 3379 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3380 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3381 val)) 3382 return cookie; 3383 3384 /* 3385 * cookie contained garbage; fall back to search and return the 3386 * correct cookie value. 3387 */ 3388 return __kvm_io_bus_write(vcpu, bus, &range, val); 3389 } 3390 3391 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3392 struct kvm_io_range *range, void *val) 3393 { 3394 int idx; 3395 3396 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3397 if (idx < 0) 3398 return -EOPNOTSUPP; 3399 3400 while (idx < bus->dev_count && 3401 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3402 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3403 range->len, val)) 3404 return idx; 3405 idx++; 3406 } 3407 3408 return -EOPNOTSUPP; 3409 } 3410 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3411 3412 /* kvm_io_bus_read - called under kvm->slots_lock */ 3413 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3414 int len, void *val) 3415 { 3416 struct kvm_io_bus *bus; 3417 struct kvm_io_range range; 3418 int r; 3419 3420 range = (struct kvm_io_range) { 3421 .addr = addr, 3422 .len = len, 3423 }; 3424 3425 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3426 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3427 return r < 0 ? r : 0; 3428 } 3429 3430 3431 /* Caller must hold slots_lock. */ 3432 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3433 int len, struct kvm_io_device *dev) 3434 { 3435 struct kvm_io_bus *new_bus, *bus; 3436 3437 bus = kvm->buses[bus_idx]; 3438 /* exclude ioeventfd which is limited by maximum fd */ 3439 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3440 return -ENOSPC; 3441 3442 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3443 sizeof(struct kvm_io_range)), GFP_KERNEL); 3444 if (!new_bus) 3445 return -ENOMEM; 3446 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3447 sizeof(struct kvm_io_range))); 3448 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3449 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3450 synchronize_srcu_expedited(&kvm->srcu); 3451 kfree(bus); 3452 3453 return 0; 3454 } 3455 3456 /* Caller must hold slots_lock. */ 3457 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3458 struct kvm_io_device *dev) 3459 { 3460 int i, r; 3461 struct kvm_io_bus *new_bus, *bus; 3462 3463 bus = kvm->buses[bus_idx]; 3464 r = -ENOENT; 3465 for (i = 0; i < bus->dev_count; i++) 3466 if (bus->range[i].dev == dev) { 3467 r = 0; 3468 break; 3469 } 3470 3471 if (r) 3472 return r; 3473 3474 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3475 sizeof(struct kvm_io_range)), GFP_KERNEL); 3476 if (!new_bus) 3477 return -ENOMEM; 3478 3479 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3480 new_bus->dev_count--; 3481 memcpy(new_bus->range + i, bus->range + i + 1, 3482 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3483 3484 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3485 synchronize_srcu_expedited(&kvm->srcu); 3486 kfree(bus); 3487 return r; 3488 } 3489 3490 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3491 int (*get)(void *, u64 *), int (*set)(void *, u64), 3492 const char *fmt) 3493 { 3494 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3495 inode->i_private; 3496 3497 /* The debugfs files are a reference to the kvm struct which 3498 * is still valid when kvm_destroy_vm is called. 3499 * To avoid the race between open and the removal of the debugfs 3500 * directory we test against the users count. 3501 */ 3502 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3503 return -ENOENT; 3504 3505 if (simple_attr_open(inode, file, get, set, fmt)) { 3506 kvm_put_kvm(stat_data->kvm); 3507 return -ENOMEM; 3508 } 3509 3510 return 0; 3511 } 3512 3513 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3514 { 3515 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3516 inode->i_private; 3517 3518 simple_attr_release(inode, file); 3519 kvm_put_kvm(stat_data->kvm); 3520 3521 return 0; 3522 } 3523 3524 static int vm_stat_get_per_vm(void *data, u64 *val) 3525 { 3526 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3527 3528 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset); 3529 3530 return 0; 3531 } 3532 3533 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3534 { 3535 __simple_attr_check_format("%llu\n", 0ull); 3536 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3537 NULL, "%llu\n"); 3538 } 3539 3540 static const struct file_operations vm_stat_get_per_vm_fops = { 3541 .owner = THIS_MODULE, 3542 .open = vm_stat_get_per_vm_open, 3543 .release = kvm_debugfs_release, 3544 .read = simple_attr_read, 3545 .write = simple_attr_write, 3546 .llseek = generic_file_llseek, 3547 }; 3548 3549 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3550 { 3551 int i; 3552 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3553 struct kvm_vcpu *vcpu; 3554 3555 *val = 0; 3556 3557 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3558 *val += *(u32 *)((void *)vcpu + stat_data->offset); 3559 3560 return 0; 3561 } 3562 3563 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3564 { 3565 __simple_attr_check_format("%llu\n", 0ull); 3566 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3567 NULL, "%llu\n"); 3568 } 3569 3570 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3571 .owner = THIS_MODULE, 3572 .open = vcpu_stat_get_per_vm_open, 3573 .release = kvm_debugfs_release, 3574 .read = simple_attr_read, 3575 .write = simple_attr_write, 3576 .llseek = generic_file_llseek, 3577 }; 3578 3579 static const struct file_operations *stat_fops_per_vm[] = { 3580 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3581 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3582 }; 3583 3584 static int vm_stat_get(void *_offset, u64 *val) 3585 { 3586 unsigned offset = (long)_offset; 3587 struct kvm *kvm; 3588 struct kvm_stat_data stat_tmp = {.offset = offset}; 3589 u64 tmp_val; 3590 3591 *val = 0; 3592 spin_lock(&kvm_lock); 3593 list_for_each_entry(kvm, &vm_list, vm_list) { 3594 stat_tmp.kvm = kvm; 3595 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3596 *val += tmp_val; 3597 } 3598 spin_unlock(&kvm_lock); 3599 return 0; 3600 } 3601 3602 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3603 3604 static int vcpu_stat_get(void *_offset, u64 *val) 3605 { 3606 unsigned offset = (long)_offset; 3607 struct kvm *kvm; 3608 struct kvm_stat_data stat_tmp = {.offset = offset}; 3609 u64 tmp_val; 3610 3611 *val = 0; 3612 spin_lock(&kvm_lock); 3613 list_for_each_entry(kvm, &vm_list, vm_list) { 3614 stat_tmp.kvm = kvm; 3615 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3616 *val += tmp_val; 3617 } 3618 spin_unlock(&kvm_lock); 3619 return 0; 3620 } 3621 3622 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3623 3624 static const struct file_operations *stat_fops[] = { 3625 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3626 [KVM_STAT_VM] = &vm_stat_fops, 3627 }; 3628 3629 static int kvm_init_debug(void) 3630 { 3631 int r = -EEXIST; 3632 struct kvm_stats_debugfs_item *p; 3633 3634 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3635 if (kvm_debugfs_dir == NULL) 3636 goto out; 3637 3638 kvm_debugfs_num_entries = 0; 3639 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3640 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3641 (void *)(long)p->offset, 3642 stat_fops[p->kind])) 3643 goto out_dir; 3644 } 3645 3646 return 0; 3647 3648 out_dir: 3649 debugfs_remove_recursive(kvm_debugfs_dir); 3650 out: 3651 return r; 3652 } 3653 3654 static int kvm_suspend(void) 3655 { 3656 if (kvm_usage_count) 3657 hardware_disable_nolock(NULL); 3658 return 0; 3659 } 3660 3661 static void kvm_resume(void) 3662 { 3663 if (kvm_usage_count) { 3664 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3665 hardware_enable_nolock(NULL); 3666 } 3667 } 3668 3669 static struct syscore_ops kvm_syscore_ops = { 3670 .suspend = kvm_suspend, 3671 .resume = kvm_resume, 3672 }; 3673 3674 static inline 3675 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3676 { 3677 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3678 } 3679 3680 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3681 { 3682 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3683 3684 if (vcpu->preempted) 3685 vcpu->preempted = false; 3686 3687 kvm_arch_sched_in(vcpu, cpu); 3688 3689 kvm_arch_vcpu_load(vcpu, cpu); 3690 } 3691 3692 static void kvm_sched_out(struct preempt_notifier *pn, 3693 struct task_struct *next) 3694 { 3695 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3696 3697 if (current->state == TASK_RUNNING) 3698 vcpu->preempted = true; 3699 kvm_arch_vcpu_put(vcpu); 3700 } 3701 3702 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3703 struct module *module) 3704 { 3705 int r; 3706 int cpu; 3707 3708 r = kvm_arch_init(opaque); 3709 if (r) 3710 goto out_fail; 3711 3712 /* 3713 * kvm_arch_init makes sure there's at most one caller 3714 * for architectures that support multiple implementations, 3715 * like intel and amd on x86. 3716 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3717 * conflicts in case kvm is already setup for another implementation. 3718 */ 3719 r = kvm_irqfd_init(); 3720 if (r) 3721 goto out_irqfd; 3722 3723 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3724 r = -ENOMEM; 3725 goto out_free_0; 3726 } 3727 3728 r = kvm_arch_hardware_setup(); 3729 if (r < 0) 3730 goto out_free_0a; 3731 3732 for_each_online_cpu(cpu) { 3733 smp_call_function_single(cpu, 3734 kvm_arch_check_processor_compat, 3735 &r, 1); 3736 if (r < 0) 3737 goto out_free_1; 3738 } 3739 3740 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3741 kvm_starting_cpu, kvm_dying_cpu); 3742 if (r) 3743 goto out_free_2; 3744 register_reboot_notifier(&kvm_reboot_notifier); 3745 3746 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3747 if (!vcpu_align) 3748 vcpu_align = __alignof__(struct kvm_vcpu); 3749 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3750 0, NULL); 3751 if (!kvm_vcpu_cache) { 3752 r = -ENOMEM; 3753 goto out_free_3; 3754 } 3755 3756 r = kvm_async_pf_init(); 3757 if (r) 3758 goto out_free; 3759 3760 kvm_chardev_ops.owner = module; 3761 kvm_vm_fops.owner = module; 3762 kvm_vcpu_fops.owner = module; 3763 3764 r = misc_register(&kvm_dev); 3765 if (r) { 3766 pr_err("kvm: misc device register failed\n"); 3767 goto out_unreg; 3768 } 3769 3770 register_syscore_ops(&kvm_syscore_ops); 3771 3772 kvm_preempt_ops.sched_in = kvm_sched_in; 3773 kvm_preempt_ops.sched_out = kvm_sched_out; 3774 3775 r = kvm_init_debug(); 3776 if (r) { 3777 pr_err("kvm: create debugfs files failed\n"); 3778 goto out_undebugfs; 3779 } 3780 3781 r = kvm_vfio_ops_init(); 3782 WARN_ON(r); 3783 3784 return 0; 3785 3786 out_undebugfs: 3787 unregister_syscore_ops(&kvm_syscore_ops); 3788 misc_deregister(&kvm_dev); 3789 out_unreg: 3790 kvm_async_pf_deinit(); 3791 out_free: 3792 kmem_cache_destroy(kvm_vcpu_cache); 3793 out_free_3: 3794 unregister_reboot_notifier(&kvm_reboot_notifier); 3795 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3796 out_free_2: 3797 out_free_1: 3798 kvm_arch_hardware_unsetup(); 3799 out_free_0a: 3800 free_cpumask_var(cpus_hardware_enabled); 3801 out_free_0: 3802 kvm_irqfd_exit(); 3803 out_irqfd: 3804 kvm_arch_exit(); 3805 out_fail: 3806 return r; 3807 } 3808 EXPORT_SYMBOL_GPL(kvm_init); 3809 3810 void kvm_exit(void) 3811 { 3812 debugfs_remove_recursive(kvm_debugfs_dir); 3813 misc_deregister(&kvm_dev); 3814 kmem_cache_destroy(kvm_vcpu_cache); 3815 kvm_async_pf_deinit(); 3816 unregister_syscore_ops(&kvm_syscore_ops); 3817 unregister_reboot_notifier(&kvm_reboot_notifier); 3818 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3819 on_each_cpu(hardware_disable_nolock, NULL, 1); 3820 kvm_arch_hardware_unsetup(); 3821 kvm_arch_exit(); 3822 kvm_irqfd_exit(); 3823 free_cpumask_var(cpus_hardware_enabled); 3824 kvm_vfio_ops_exit(); 3825 } 3826 EXPORT_SYMBOL_GPL(kvm_exit); 3827