xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 77a87824)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode. */
182 		smp_mb__after_atomic();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	/*
203 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 	 * kvm_make_all_cpus_request.
205 	 */
206 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207 
208 	/*
209 	 * We want to publish modifications to the page tables before reading
210 	 * mode. Pairs with a memory barrier in arch-specific code.
211 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 	 *
215 	 * There is already an smp_mb__after_atomic() before
216 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 	 * barrier here.
218 	 */
219 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 		++kvm->stat.remote_tlb_flush;
221 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225 
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230 
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 	struct page *page;
234 	int r;
235 
236 	mutex_init(&vcpu->mutex);
237 	vcpu->cpu = -1;
238 	vcpu->kvm = kvm;
239 	vcpu->vcpu_id = id;
240 	vcpu->pid = NULL;
241 	init_swait_queue_head(&vcpu->wq);
242 	kvm_async_pf_vcpu_init(vcpu);
243 
244 	vcpu->pre_pcpu = -1;
245 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246 
247 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 	if (!page) {
249 		r = -ENOMEM;
250 		goto fail;
251 	}
252 	vcpu->run = page_address(page);
253 
254 	kvm_vcpu_set_in_spin_loop(vcpu, false);
255 	kvm_vcpu_set_dy_eligible(vcpu, false);
256 	vcpu->preempted = false;
257 
258 	r = kvm_arch_vcpu_init(vcpu);
259 	if (r < 0)
260 		goto fail_free_run;
261 	return 0;
262 
263 fail_free_run:
264 	free_page((unsigned long)vcpu->run);
265 fail:
266 	return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 	put_pid(vcpu->pid);
273 	kvm_arch_vcpu_uninit(vcpu);
274 	free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277 
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 	return container_of(mn, struct kvm, mmu_notifier);
282 }
283 
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 					     struct mm_struct *mm,
286 					     unsigned long address)
287 {
288 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 	int need_tlb_flush, idx;
290 
291 	/*
292 	 * When ->invalidate_page runs, the linux pte has been zapped
293 	 * already but the page is still allocated until
294 	 * ->invalidate_page returns. So if we increase the sequence
295 	 * here the kvm page fault will notice if the spte can't be
296 	 * established because the page is going to be freed. If
297 	 * instead the kvm page fault establishes the spte before
298 	 * ->invalidate_page runs, kvm_unmap_hva will release it
299 	 * before returning.
300 	 *
301 	 * The sequence increase only need to be seen at spin_unlock
302 	 * time, and not at spin_lock time.
303 	 *
304 	 * Increasing the sequence after the spin_unlock would be
305 	 * unsafe because the kvm page fault could then establish the
306 	 * pte after kvm_unmap_hva returned, without noticing the page
307 	 * is going to be freed.
308 	 */
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 
312 	kvm->mmu_notifier_seq++;
313 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 	/* we've to flush the tlb before the pages can be freed */
315 	if (need_tlb_flush)
316 		kvm_flush_remote_tlbs(kvm);
317 
318 	spin_unlock(&kvm->mmu_lock);
319 
320 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321 
322 	srcu_read_unlock(&kvm->srcu, idx);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
473 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
474 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
475 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
476 	.clear_young		= kvm_mmu_notifier_clear_young,
477 	.test_young		= kvm_mmu_notifier_test_young,
478 	.change_pte		= kvm_mmu_notifier_change_pte,
479 	.release		= kvm_mmu_notifier_release,
480 };
481 
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487 
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 	return 0;
493 }
494 
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 	int i;
500 	struct kvm_memslots *slots;
501 
502 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 	if (!slots)
504 		return NULL;
505 
506 	/*
507 	 * Init kvm generation close to the maximum to easily test the
508 	 * code of handling generation number wrap-around.
509 	 */
510 	slots->generation = -150;
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	for (i = 0; i < kvm_debugfs_num_entries; i++)
563 		kfree(kvm->debugfs_stat_data[i]);
564 	kfree(kvm->debugfs_stat_data);
565 }
566 
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 	char dir_name[ITOA_MAX_LEN * 2];
570 	struct kvm_stat_data *stat_data;
571 	struct kvm_stats_debugfs_item *p;
572 
573 	if (!debugfs_initialized())
574 		return 0;
575 
576 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 						 kvm_debugfs_dir);
579 	if (!kvm->debugfs_dentry)
580 		return -ENOMEM;
581 
582 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 					 sizeof(*kvm->debugfs_stat_data),
584 					 GFP_KERNEL);
585 	if (!kvm->debugfs_stat_data)
586 		return -ENOMEM;
587 
588 	for (p = debugfs_entries; p->name; p++) {
589 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 		if (!stat_data)
591 			return -ENOMEM;
592 
593 		stat_data->kvm = kvm;
594 		stat_data->offset = p->offset;
595 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 		if (!debugfs_create_file(p->name, 0444,
597 					 kvm->debugfs_dentry,
598 					 stat_data,
599 					 stat_fops_per_vm[p->kind]))
600 			return -ENOMEM;
601 	}
602 	return 0;
603 }
604 
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 	int r, i;
608 	struct kvm *kvm = kvm_arch_alloc_vm();
609 
610 	if (!kvm)
611 		return ERR_PTR(-ENOMEM);
612 
613 	spin_lock_init(&kvm->mmu_lock);
614 	atomic_inc(&current->mm->mm_count);
615 	kvm->mm = current->mm;
616 	kvm_eventfd_init(kvm);
617 	mutex_init(&kvm->lock);
618 	mutex_init(&kvm->irq_lock);
619 	mutex_init(&kvm->slots_lock);
620 	atomic_set(&kvm->users_count, 1);
621 	INIT_LIST_HEAD(&kvm->devices);
622 
623 	r = kvm_arch_init_vm(kvm, type);
624 	if (r)
625 		goto out_err_no_disable;
626 
627 	r = hardware_enable_all();
628 	if (r)
629 		goto out_err_no_disable;
630 
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634 
635 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636 
637 	r = -ENOMEM;
638 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 		kvm->memslots[i] = kvm_alloc_memslots();
640 		if (!kvm->memslots[i])
641 			goto out_err_no_srcu;
642 	}
643 
644 	if (init_srcu_struct(&kvm->srcu))
645 		goto out_err_no_srcu;
646 	if (init_srcu_struct(&kvm->irq_srcu))
647 		goto out_err_no_irq_srcu;
648 	for (i = 0; i < KVM_NR_BUSES; i++) {
649 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650 					GFP_KERNEL);
651 		if (!kvm->buses[i])
652 			goto out_err;
653 	}
654 
655 	r = kvm_init_mmu_notifier(kvm);
656 	if (r)
657 		goto out_err;
658 
659 	spin_lock(&kvm_lock);
660 	list_add(&kvm->vm_list, &vm_list);
661 	spin_unlock(&kvm_lock);
662 
663 	preempt_notifier_inc();
664 
665 	return kvm;
666 
667 out_err:
668 	cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670 	cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672 	hardware_disable_all();
673 out_err_no_disable:
674 	for (i = 0; i < KVM_NR_BUSES; i++)
675 		kfree(kvm->buses[i]);
676 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 		kvm_free_memslots(kvm, kvm->memslots[i]);
678 	kvm_arch_free_vm(kvm);
679 	mmdrop(current->mm);
680 	return ERR_PTR(r);
681 }
682 
683 /*
684  * Avoid using vmalloc for a small buffer.
685  * Should not be used when the size is statically known.
686  */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689 	if (size > PAGE_SIZE)
690 		return vzalloc(size);
691 	else
692 		return kzalloc(size, GFP_KERNEL);
693 }
694 
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 	struct kvm_device *dev, *tmp;
698 
699 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700 		list_del(&dev->vm_node);
701 		dev->ops->destroy(dev);
702 	}
703 }
704 
705 static void kvm_destroy_vm(struct kvm *kvm)
706 {
707 	int i;
708 	struct mm_struct *mm = kvm->mm;
709 
710 	kvm_destroy_vm_debugfs(kvm);
711 	kvm_arch_sync_events(kvm);
712 	spin_lock(&kvm_lock);
713 	list_del(&kvm->vm_list);
714 	spin_unlock(&kvm_lock);
715 	kvm_free_irq_routing(kvm);
716 	for (i = 0; i < KVM_NR_BUSES; i++)
717 		kvm_io_bus_destroy(kvm->buses[i]);
718 	kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
721 #else
722 	kvm_arch_flush_shadow_all(kvm);
723 #endif
724 	kvm_arch_destroy_vm(kvm);
725 	kvm_destroy_devices(kvm);
726 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727 		kvm_free_memslots(kvm, kvm->memslots[i]);
728 	cleanup_srcu_struct(&kvm->irq_srcu);
729 	cleanup_srcu_struct(&kvm->srcu);
730 	kvm_arch_free_vm(kvm);
731 	preempt_notifier_dec();
732 	hardware_disable_all();
733 	mmdrop(mm);
734 }
735 
736 void kvm_get_kvm(struct kvm *kvm)
737 {
738 	atomic_inc(&kvm->users_count);
739 }
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
741 
742 void kvm_put_kvm(struct kvm *kvm)
743 {
744 	if (atomic_dec_and_test(&kvm->users_count))
745 		kvm_destroy_vm(kvm);
746 }
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
748 
749 
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
751 {
752 	struct kvm *kvm = filp->private_data;
753 
754 	kvm_irqfd_release(kvm);
755 
756 	kvm_put_kvm(kvm);
757 	return 0;
758 }
759 
760 /*
761  * Allocation size is twice as large as the actual dirty bitmap size.
762  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
763  */
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
765 {
766 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
767 
768 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769 	if (!memslot->dirty_bitmap)
770 		return -ENOMEM;
771 
772 	return 0;
773 }
774 
775 /*
776  * Insert memslot and re-sort memslots based on their GFN,
777  * so binary search could be used to lookup GFN.
778  * Sorting algorithm takes advantage of having initially
779  * sorted array and known changed memslot position.
780  */
781 static void update_memslots(struct kvm_memslots *slots,
782 			    struct kvm_memory_slot *new)
783 {
784 	int id = new->id;
785 	int i = slots->id_to_index[id];
786 	struct kvm_memory_slot *mslots = slots->memslots;
787 
788 	WARN_ON(mslots[i].id != id);
789 	if (!new->npages) {
790 		WARN_ON(!mslots[i].npages);
791 		if (mslots[i].npages)
792 			slots->used_slots--;
793 	} else {
794 		if (!mslots[i].npages)
795 			slots->used_slots++;
796 	}
797 
798 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
799 	       new->base_gfn <= mslots[i + 1].base_gfn) {
800 		if (!mslots[i + 1].npages)
801 			break;
802 		mslots[i] = mslots[i + 1];
803 		slots->id_to_index[mslots[i].id] = i;
804 		i++;
805 	}
806 
807 	/*
808 	 * The ">=" is needed when creating a slot with base_gfn == 0,
809 	 * so that it moves before all those with base_gfn == npages == 0.
810 	 *
811 	 * On the other hand, if new->npages is zero, the above loop has
812 	 * already left i pointing to the beginning of the empty part of
813 	 * mslots, and the ">=" would move the hole backwards in this
814 	 * case---which is wrong.  So skip the loop when deleting a slot.
815 	 */
816 	if (new->npages) {
817 		while (i > 0 &&
818 		       new->base_gfn >= mslots[i - 1].base_gfn) {
819 			mslots[i] = mslots[i - 1];
820 			slots->id_to_index[mslots[i].id] = i;
821 			i--;
822 		}
823 	} else
824 		WARN_ON_ONCE(i != slots->used_slots);
825 
826 	mslots[i] = *new;
827 	slots->id_to_index[mslots[i].id] = i;
828 }
829 
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
831 {
832 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
833 
834 #ifdef __KVM_HAVE_READONLY_MEM
835 	valid_flags |= KVM_MEM_READONLY;
836 #endif
837 
838 	if (mem->flags & ~valid_flags)
839 		return -EINVAL;
840 
841 	return 0;
842 }
843 
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845 		int as_id, struct kvm_memslots *slots)
846 {
847 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
848 
849 	/*
850 	 * Set the low bit in the generation, which disables SPTE caching
851 	 * until the end of synchronize_srcu_expedited.
852 	 */
853 	WARN_ON(old_memslots->generation & 1);
854 	slots->generation = old_memslots->generation + 1;
855 
856 	rcu_assign_pointer(kvm->memslots[as_id], slots);
857 	synchronize_srcu_expedited(&kvm->srcu);
858 
859 	/*
860 	 * Increment the new memslot generation a second time. This prevents
861 	 * vm exits that race with memslot updates from caching a memslot
862 	 * generation that will (potentially) be valid forever.
863 	 */
864 	slots->generation++;
865 
866 	kvm_arch_memslots_updated(kvm, slots);
867 
868 	return old_memslots;
869 }
870 
871 /*
872  * Allocate some memory and give it an address in the guest physical address
873  * space.
874  *
875  * Discontiguous memory is allowed, mostly for framebuffers.
876  *
877  * Must be called holding kvm->slots_lock for write.
878  */
879 int __kvm_set_memory_region(struct kvm *kvm,
880 			    const struct kvm_userspace_memory_region *mem)
881 {
882 	int r;
883 	gfn_t base_gfn;
884 	unsigned long npages;
885 	struct kvm_memory_slot *slot;
886 	struct kvm_memory_slot old, new;
887 	struct kvm_memslots *slots = NULL, *old_memslots;
888 	int as_id, id;
889 	enum kvm_mr_change change;
890 
891 	r = check_memory_region_flags(mem);
892 	if (r)
893 		goto out;
894 
895 	r = -EINVAL;
896 	as_id = mem->slot >> 16;
897 	id = (u16)mem->slot;
898 
899 	/* General sanity checks */
900 	if (mem->memory_size & (PAGE_SIZE - 1))
901 		goto out;
902 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
903 		goto out;
904 	/* We can read the guest memory with __xxx_user() later on. */
905 	if ((id < KVM_USER_MEM_SLOTS) &&
906 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907 	     !access_ok(VERIFY_WRITE,
908 			(void __user *)(unsigned long)mem->userspace_addr,
909 			mem->memory_size)))
910 		goto out;
911 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
912 		goto out;
913 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
914 		goto out;
915 
916 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918 	npages = mem->memory_size >> PAGE_SHIFT;
919 
920 	if (npages > KVM_MEM_MAX_NR_PAGES)
921 		goto out;
922 
923 	new = old = *slot;
924 
925 	new.id = id;
926 	new.base_gfn = base_gfn;
927 	new.npages = npages;
928 	new.flags = mem->flags;
929 
930 	if (npages) {
931 		if (!old.npages)
932 			change = KVM_MR_CREATE;
933 		else { /* Modify an existing slot. */
934 			if ((mem->userspace_addr != old.userspace_addr) ||
935 			    (npages != old.npages) ||
936 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
937 				goto out;
938 
939 			if (base_gfn != old.base_gfn)
940 				change = KVM_MR_MOVE;
941 			else if (new.flags != old.flags)
942 				change = KVM_MR_FLAGS_ONLY;
943 			else { /* Nothing to change. */
944 				r = 0;
945 				goto out;
946 			}
947 		}
948 	} else {
949 		if (!old.npages)
950 			goto out;
951 
952 		change = KVM_MR_DELETE;
953 		new.base_gfn = 0;
954 		new.flags = 0;
955 	}
956 
957 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958 		/* Check for overlaps */
959 		r = -EEXIST;
960 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
962 			    (slot->id == id))
963 				continue;
964 			if (!((base_gfn + npages <= slot->base_gfn) ||
965 			      (base_gfn >= slot->base_gfn + slot->npages)))
966 				goto out;
967 		}
968 	}
969 
970 	/* Free page dirty bitmap if unneeded */
971 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 		new.dirty_bitmap = NULL;
973 
974 	r = -ENOMEM;
975 	if (change == KVM_MR_CREATE) {
976 		new.userspace_addr = mem->userspace_addr;
977 
978 		if (kvm_arch_create_memslot(kvm, &new, npages))
979 			goto out_free;
980 	}
981 
982 	/* Allocate page dirty bitmap if needed */
983 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984 		if (kvm_create_dirty_bitmap(&new) < 0)
985 			goto out_free;
986 	}
987 
988 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
989 	if (!slots)
990 		goto out_free;
991 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
992 
993 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994 		slot = id_to_memslot(slots, id);
995 		slot->flags |= KVM_MEMSLOT_INVALID;
996 
997 		old_memslots = install_new_memslots(kvm, as_id, slots);
998 
999 		/* slot was deleted or moved, clear iommu mapping */
1000 		kvm_iommu_unmap_pages(kvm, &old);
1001 		/* From this point no new shadow pages pointing to a deleted,
1002 		 * or moved, memslot will be created.
1003 		 *
1004 		 * validation of sp->gfn happens in:
1005 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1007 		 */
1008 		kvm_arch_flush_shadow_memslot(kvm, slot);
1009 
1010 		/*
1011 		 * We can re-use the old_memslots from above, the only difference
1012 		 * from the currently installed memslots is the invalid flag.  This
1013 		 * will get overwritten by update_memslots anyway.
1014 		 */
1015 		slots = old_memslots;
1016 	}
1017 
1018 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1019 	if (r)
1020 		goto out_slots;
1021 
1022 	/* actual memory is freed via old in kvm_free_memslot below */
1023 	if (change == KVM_MR_DELETE) {
1024 		new.dirty_bitmap = NULL;
1025 		memset(&new.arch, 0, sizeof(new.arch));
1026 	}
1027 
1028 	update_memslots(slots, &new);
1029 	old_memslots = install_new_memslots(kvm, as_id, slots);
1030 
1031 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1032 
1033 	kvm_free_memslot(kvm, &old, &new);
1034 	kvfree(old_memslots);
1035 
1036 	/*
1037 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1038 	 * un-mapped and re-mapped if their base changes.  Since base change
1039 	 * unmapping is handled above with slot deletion, mapping alone is
1040 	 * needed here.  Anything else the iommu might care about for existing
1041 	 * slots (size changes, userspace addr changes and read-only flag
1042 	 * changes) is disallowed above, so any other attribute changes getting
1043 	 * here can be skipped.
1044 	 */
1045 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 		r = kvm_iommu_map_pages(kvm, &new);
1047 		return r;
1048 	}
1049 
1050 	return 0;
1051 
1052 out_slots:
1053 	kvfree(slots);
1054 out_free:
1055 	kvm_free_memslot(kvm, &new, &old);
1056 out:
1057 	return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060 
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 			  const struct kvm_userspace_memory_region *mem)
1063 {
1064 	int r;
1065 
1066 	mutex_lock(&kvm->slots_lock);
1067 	r = __kvm_set_memory_region(kvm, mem);
1068 	mutex_unlock(&kvm->slots_lock);
1069 	return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072 
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 					  struct kvm_userspace_memory_region *mem)
1075 {
1076 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077 		return -EINVAL;
1078 
1079 	return kvm_set_memory_region(kvm, mem);
1080 }
1081 
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 			struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085 	struct kvm_memslots *slots;
1086 	struct kvm_memory_slot *memslot;
1087 	int r, i, as_id, id;
1088 	unsigned long n;
1089 	unsigned long any = 0;
1090 
1091 	r = -EINVAL;
1092 	as_id = log->slot >> 16;
1093 	id = (u16)log->slot;
1094 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 		goto out;
1096 
1097 	slots = __kvm_memslots(kvm, as_id);
1098 	memslot = id_to_memslot(slots, id);
1099 	r = -ENOENT;
1100 	if (!memslot->dirty_bitmap)
1101 		goto out;
1102 
1103 	n = kvm_dirty_bitmap_bytes(memslot);
1104 
1105 	for (i = 0; !any && i < n/sizeof(long); ++i)
1106 		any = memslot->dirty_bitmap[i];
1107 
1108 	r = -EFAULT;
1109 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110 		goto out;
1111 
1112 	if (any)
1113 		*is_dirty = 1;
1114 
1115 	r = 0;
1116 out:
1117 	return r;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1120 
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1122 /**
1123  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124  *	are dirty write protect them for next write.
1125  * @kvm:	pointer to kvm instance
1126  * @log:	slot id and address to which we copy the log
1127  * @is_dirty:	flag set if any page is dirty
1128  *
1129  * We need to keep it in mind that VCPU threads can write to the bitmap
1130  * concurrently. So, to avoid losing track of dirty pages we keep the
1131  * following order:
1132  *
1133  *    1. Take a snapshot of the bit and clear it if needed.
1134  *    2. Write protect the corresponding page.
1135  *    3. Copy the snapshot to the userspace.
1136  *    4. Upon return caller flushes TLB's if needed.
1137  *
1138  * Between 2 and 4, the guest may write to the page using the remaining TLB
1139  * entry.  This is not a problem because the page is reported dirty using
1140  * the snapshot taken before and step 4 ensures that writes done after
1141  * exiting to userspace will be logged for the next call.
1142  *
1143  */
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145 			struct kvm_dirty_log *log, bool *is_dirty)
1146 {
1147 	struct kvm_memslots *slots;
1148 	struct kvm_memory_slot *memslot;
1149 	int r, i, as_id, id;
1150 	unsigned long n;
1151 	unsigned long *dirty_bitmap;
1152 	unsigned long *dirty_bitmap_buffer;
1153 
1154 	r = -EINVAL;
1155 	as_id = log->slot >> 16;
1156 	id = (u16)log->slot;
1157 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1158 		goto out;
1159 
1160 	slots = __kvm_memslots(kvm, as_id);
1161 	memslot = id_to_memslot(slots, id);
1162 
1163 	dirty_bitmap = memslot->dirty_bitmap;
1164 	r = -ENOENT;
1165 	if (!dirty_bitmap)
1166 		goto out;
1167 
1168 	n = kvm_dirty_bitmap_bytes(memslot);
1169 
1170 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171 	memset(dirty_bitmap_buffer, 0, n);
1172 
1173 	spin_lock(&kvm->mmu_lock);
1174 	*is_dirty = false;
1175 	for (i = 0; i < n / sizeof(long); i++) {
1176 		unsigned long mask;
1177 		gfn_t offset;
1178 
1179 		if (!dirty_bitmap[i])
1180 			continue;
1181 
1182 		*is_dirty = true;
1183 
1184 		mask = xchg(&dirty_bitmap[i], 0);
1185 		dirty_bitmap_buffer[i] = mask;
1186 
1187 		if (mask) {
1188 			offset = i * BITS_PER_LONG;
1189 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1190 								offset, mask);
1191 		}
1192 	}
1193 
1194 	spin_unlock(&kvm->mmu_lock);
1195 
1196 	r = -EFAULT;
1197 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 		goto out;
1199 
1200 	r = 0;
1201 out:
1202 	return r;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206 
1207 bool kvm_largepages_enabled(void)
1208 {
1209 	return largepages_enabled;
1210 }
1211 
1212 void kvm_disable_largepages(void)
1213 {
1214 	largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217 
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223 
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228 
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232 
1233 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 	      memslot->flags & KVM_MEMSLOT_INVALID)
1235 		return false;
1236 
1237 	return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240 
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 	struct vm_area_struct *vma;
1244 	unsigned long addr, size;
1245 
1246 	size = PAGE_SIZE;
1247 
1248 	addr = gfn_to_hva(kvm, gfn);
1249 	if (kvm_is_error_hva(addr))
1250 		return PAGE_SIZE;
1251 
1252 	down_read(&current->mm->mmap_sem);
1253 	vma = find_vma(current->mm, addr);
1254 	if (!vma)
1255 		goto out;
1256 
1257 	size = vma_kernel_pagesize(vma);
1258 
1259 out:
1260 	up_read(&current->mm->mmap_sem);
1261 
1262 	return size;
1263 }
1264 
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 	return slot->flags & KVM_MEM_READONLY;
1268 }
1269 
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 				       gfn_t *nr_pages, bool write)
1272 {
1273 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 		return KVM_HVA_ERR_BAD;
1275 
1276 	if (memslot_is_readonly(slot) && write)
1277 		return KVM_HVA_ERR_RO_BAD;
1278 
1279 	if (nr_pages)
1280 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1281 
1282 	return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284 
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 				     gfn_t *nr_pages)
1287 {
1288 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290 
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 					gfn_t gfn)
1293 {
1294 	return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297 
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303 
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309 
1310 /*
1311  * If writable is set to false, the hva returned by this function is only
1312  * allowed to be read.
1313  */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 				      gfn_t gfn, bool *writable)
1316 {
1317 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318 
1319 	if (!kvm_is_error_hva(hva) && writable)
1320 		*writable = !memslot_is_readonly(slot);
1321 
1322 	return hva;
1323 }
1324 
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328 
1329 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331 
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 		struct page **page)
1341 {
1342 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1343 
1344 	if (write)
1345 		flags |= FOLL_WRITE;
1346 
1347 	return __get_user_pages(current, current->mm, start, 1, flags, page,
1348 			NULL, NULL);
1349 }
1350 
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1352 {
1353 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1354 
1355 	rc = __get_user_pages(current, current->mm, addr, 1,
1356 			      flags, NULL, NULL, NULL);
1357 	return rc == -EHWPOISON;
1358 }
1359 
1360 /*
1361  * The atomic path to get the writable pfn which will be stored in @pfn,
1362  * true indicates success, otherwise false is returned.
1363  */
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1366 {
1367 	struct page *page[1];
1368 	int npages;
1369 
1370 	if (!(async || atomic))
1371 		return false;
1372 
1373 	/*
1374 	 * Fast pin a writable pfn only if it is a write fault request
1375 	 * or the caller allows to map a writable pfn for a read fault
1376 	 * request.
1377 	 */
1378 	if (!(write_fault || writable))
1379 		return false;
1380 
1381 	npages = __get_user_pages_fast(addr, 1, 1, page);
1382 	if (npages == 1) {
1383 		*pfn = page_to_pfn(page[0]);
1384 
1385 		if (writable)
1386 			*writable = true;
1387 		return true;
1388 	}
1389 
1390 	return false;
1391 }
1392 
1393 /*
1394  * The slow path to get the pfn of the specified host virtual address,
1395  * 1 indicates success, -errno is returned if error is detected.
1396  */
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398 			   bool *writable, kvm_pfn_t *pfn)
1399 {
1400 	struct page *page[1];
1401 	int npages = 0;
1402 
1403 	might_sleep();
1404 
1405 	if (writable)
1406 		*writable = write_fault;
1407 
1408 	if (async) {
1409 		down_read(&current->mm->mmap_sem);
1410 		npages = get_user_page_nowait(addr, write_fault, page);
1411 		up_read(&current->mm->mmap_sem);
1412 	} else
1413 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414 						   write_fault, 0, page,
1415 						   FOLL_TOUCH|FOLL_HWPOISON);
1416 	if (npages != 1)
1417 		return npages;
1418 
1419 	/* map read fault as writable if possible */
1420 	if (unlikely(!write_fault) && writable) {
1421 		struct page *wpage[1];
1422 
1423 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424 		if (npages == 1) {
1425 			*writable = true;
1426 			put_page(page[0]);
1427 			page[0] = wpage[0];
1428 		}
1429 
1430 		npages = 1;
1431 	}
1432 	*pfn = page_to_pfn(page[0]);
1433 	return npages;
1434 }
1435 
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438 	if (unlikely(!(vma->vm_flags & VM_READ)))
1439 		return false;
1440 
1441 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442 		return false;
1443 
1444 	return true;
1445 }
1446 
1447 /*
1448  * Pin guest page in memory and return its pfn.
1449  * @addr: host virtual address which maps memory to the guest
1450  * @atomic: whether this function can sleep
1451  * @async: whether this function need to wait IO complete if the
1452  *         host page is not in the memory
1453  * @write_fault: whether we should get a writable host page
1454  * @writable: whether it allows to map a writable host page for !@write_fault
1455  *
1456  * The function will map a writable host page for these two cases:
1457  * 1): @write_fault = true
1458  * 2): @write_fault = false && @writable, @writable will tell the caller
1459  *     whether the mapping is writable.
1460  */
1461 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1462 			bool write_fault, bool *writable)
1463 {
1464 	struct vm_area_struct *vma;
1465 	kvm_pfn_t pfn = 0;
1466 	int npages;
1467 
1468 	/* we can do it either atomically or asynchronously, not both */
1469 	BUG_ON(atomic && async);
1470 
1471 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1472 		return pfn;
1473 
1474 	if (atomic)
1475 		return KVM_PFN_ERR_FAULT;
1476 
1477 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1478 	if (npages == 1)
1479 		return pfn;
1480 
1481 	down_read(&current->mm->mmap_sem);
1482 	if (npages == -EHWPOISON ||
1483 	      (!async && check_user_page_hwpoison(addr))) {
1484 		pfn = KVM_PFN_ERR_HWPOISON;
1485 		goto exit;
1486 	}
1487 
1488 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1489 
1490 	if (vma == NULL)
1491 		pfn = KVM_PFN_ERR_FAULT;
1492 	else if ((vma->vm_flags & VM_PFNMAP)) {
1493 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1494 			vma->vm_pgoff;
1495 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1496 	} else {
1497 		if (async && vma_is_valid(vma, write_fault))
1498 			*async = true;
1499 		pfn = KVM_PFN_ERR_FAULT;
1500 	}
1501 exit:
1502 	up_read(&current->mm->mmap_sem);
1503 	return pfn;
1504 }
1505 
1506 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1507 			       bool atomic, bool *async, bool write_fault,
1508 			       bool *writable)
1509 {
1510 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1511 
1512 	if (addr == KVM_HVA_ERR_RO_BAD) {
1513 		if (writable)
1514 			*writable = false;
1515 		return KVM_PFN_ERR_RO_FAULT;
1516 	}
1517 
1518 	if (kvm_is_error_hva(addr)) {
1519 		if (writable)
1520 			*writable = false;
1521 		return KVM_PFN_NOSLOT;
1522 	}
1523 
1524 	/* Do not map writable pfn in the readonly memslot. */
1525 	if (writable && memslot_is_readonly(slot)) {
1526 		*writable = false;
1527 		writable = NULL;
1528 	}
1529 
1530 	return hva_to_pfn(addr, atomic, async, write_fault,
1531 			  writable);
1532 }
1533 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1534 
1535 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1536 		      bool *writable)
1537 {
1538 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1539 				    write_fault, writable);
1540 }
1541 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1542 
1543 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1544 {
1545 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1546 }
1547 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1548 
1549 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1550 {
1551 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1552 }
1553 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1554 
1555 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1556 {
1557 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1558 }
1559 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1560 
1561 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1562 {
1563 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1566 
1567 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1568 {
1569 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1572 
1573 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1574 {
1575 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1576 }
1577 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1578 
1579 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1580 			    struct page **pages, int nr_pages)
1581 {
1582 	unsigned long addr;
1583 	gfn_t entry;
1584 
1585 	addr = gfn_to_hva_many(slot, gfn, &entry);
1586 	if (kvm_is_error_hva(addr))
1587 		return -1;
1588 
1589 	if (entry < nr_pages)
1590 		return 0;
1591 
1592 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1593 }
1594 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1595 
1596 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1597 {
1598 	if (is_error_noslot_pfn(pfn))
1599 		return KVM_ERR_PTR_BAD_PAGE;
1600 
1601 	if (kvm_is_reserved_pfn(pfn)) {
1602 		WARN_ON(1);
1603 		return KVM_ERR_PTR_BAD_PAGE;
1604 	}
1605 
1606 	return pfn_to_page(pfn);
1607 }
1608 
1609 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1610 {
1611 	kvm_pfn_t pfn;
1612 
1613 	pfn = gfn_to_pfn(kvm, gfn);
1614 
1615 	return kvm_pfn_to_page(pfn);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_page);
1618 
1619 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621 	kvm_pfn_t pfn;
1622 
1623 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1624 
1625 	return kvm_pfn_to_page(pfn);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1628 
1629 void kvm_release_page_clean(struct page *page)
1630 {
1631 	WARN_ON(is_error_page(page));
1632 
1633 	kvm_release_pfn_clean(page_to_pfn(page));
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1636 
1637 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1638 {
1639 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1640 		put_page(pfn_to_page(pfn));
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1643 
1644 void kvm_release_page_dirty(struct page *page)
1645 {
1646 	WARN_ON(is_error_page(page));
1647 
1648 	kvm_release_pfn_dirty(page_to_pfn(page));
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1651 
1652 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1653 {
1654 	kvm_set_pfn_dirty(pfn);
1655 	kvm_release_pfn_clean(pfn);
1656 }
1657 
1658 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1659 {
1660 	if (!kvm_is_reserved_pfn(pfn)) {
1661 		struct page *page = pfn_to_page(pfn);
1662 
1663 		if (!PageReserved(page))
1664 			SetPageDirty(page);
1665 	}
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1668 
1669 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1670 {
1671 	if (!kvm_is_reserved_pfn(pfn))
1672 		mark_page_accessed(pfn_to_page(pfn));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1675 
1676 void kvm_get_pfn(kvm_pfn_t pfn)
1677 {
1678 	if (!kvm_is_reserved_pfn(pfn))
1679 		get_page(pfn_to_page(pfn));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1682 
1683 static int next_segment(unsigned long len, int offset)
1684 {
1685 	if (len > PAGE_SIZE - offset)
1686 		return PAGE_SIZE - offset;
1687 	else
1688 		return len;
1689 }
1690 
1691 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1692 				 void *data, int offset, int len)
1693 {
1694 	int r;
1695 	unsigned long addr;
1696 
1697 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1698 	if (kvm_is_error_hva(addr))
1699 		return -EFAULT;
1700 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1701 	if (r)
1702 		return -EFAULT;
1703 	return 0;
1704 }
1705 
1706 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1707 			int len)
1708 {
1709 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710 
1711 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1714 
1715 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1716 			     int offset, int len)
1717 {
1718 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719 
1720 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1723 
1724 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1725 {
1726 	gfn_t gfn = gpa >> PAGE_SHIFT;
1727 	int seg;
1728 	int offset = offset_in_page(gpa);
1729 	int ret;
1730 
1731 	while ((seg = next_segment(len, offset)) != 0) {
1732 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1733 		if (ret < 0)
1734 			return ret;
1735 		offset = 0;
1736 		len -= seg;
1737 		data += seg;
1738 		++gfn;
1739 	}
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest);
1743 
1744 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1745 {
1746 	gfn_t gfn = gpa >> PAGE_SHIFT;
1747 	int seg;
1748 	int offset = offset_in_page(gpa);
1749 	int ret;
1750 
1751 	while ((seg = next_segment(len, offset)) != 0) {
1752 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1753 		if (ret < 0)
1754 			return ret;
1755 		offset = 0;
1756 		len -= seg;
1757 		data += seg;
1758 		++gfn;
1759 	}
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1763 
1764 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1765 			           void *data, int offset, unsigned long len)
1766 {
1767 	int r;
1768 	unsigned long addr;
1769 
1770 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1771 	if (kvm_is_error_hva(addr))
1772 		return -EFAULT;
1773 	pagefault_disable();
1774 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1775 	pagefault_enable();
1776 	if (r)
1777 		return -EFAULT;
1778 	return 0;
1779 }
1780 
1781 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1782 			  unsigned long len)
1783 {
1784 	gfn_t gfn = gpa >> PAGE_SHIFT;
1785 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1786 	int offset = offset_in_page(gpa);
1787 
1788 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1791 
1792 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1793 			       void *data, unsigned long len)
1794 {
1795 	gfn_t gfn = gpa >> PAGE_SHIFT;
1796 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1797 	int offset = offset_in_page(gpa);
1798 
1799 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1802 
1803 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1804 			          const void *data, int offset, int len)
1805 {
1806 	int r;
1807 	unsigned long addr;
1808 
1809 	addr = gfn_to_hva_memslot(memslot, gfn);
1810 	if (kvm_is_error_hva(addr))
1811 		return -EFAULT;
1812 	r = __copy_to_user((void __user *)addr + offset, data, len);
1813 	if (r)
1814 		return -EFAULT;
1815 	mark_page_dirty_in_slot(memslot, gfn);
1816 	return 0;
1817 }
1818 
1819 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1820 			 const void *data, int offset, int len)
1821 {
1822 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823 
1824 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1827 
1828 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1829 			      const void *data, int offset, int len)
1830 {
1831 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1832 
1833 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1836 
1837 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1838 		    unsigned long len)
1839 {
1840 	gfn_t gfn = gpa >> PAGE_SHIFT;
1841 	int seg;
1842 	int offset = offset_in_page(gpa);
1843 	int ret;
1844 
1845 	while ((seg = next_segment(len, offset)) != 0) {
1846 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1847 		if (ret < 0)
1848 			return ret;
1849 		offset = 0;
1850 		len -= seg;
1851 		data += seg;
1852 		++gfn;
1853 	}
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest);
1857 
1858 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1859 		         unsigned long len)
1860 {
1861 	gfn_t gfn = gpa >> PAGE_SHIFT;
1862 	int seg;
1863 	int offset = offset_in_page(gpa);
1864 	int ret;
1865 
1866 	while ((seg = next_segment(len, offset)) != 0) {
1867 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1868 		if (ret < 0)
1869 			return ret;
1870 		offset = 0;
1871 		len -= seg;
1872 		data += seg;
1873 		++gfn;
1874 	}
1875 	return 0;
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1878 
1879 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1880 			      gpa_t gpa, unsigned long len)
1881 {
1882 	struct kvm_memslots *slots = kvm_memslots(kvm);
1883 	int offset = offset_in_page(gpa);
1884 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1885 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1886 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1887 	gfn_t nr_pages_avail;
1888 
1889 	ghc->gpa = gpa;
1890 	ghc->generation = slots->generation;
1891 	ghc->len = len;
1892 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1893 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1894 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1895 		ghc->hva += offset;
1896 	} else {
1897 		/*
1898 		 * If the requested region crosses two memslots, we still
1899 		 * verify that the entire region is valid here.
1900 		 */
1901 		while (start_gfn <= end_gfn) {
1902 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1903 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1904 						   &nr_pages_avail);
1905 			if (kvm_is_error_hva(ghc->hva))
1906 				return -EFAULT;
1907 			start_gfn += nr_pages_avail;
1908 		}
1909 		/* Use the slow path for cross page reads and writes. */
1910 		ghc->memslot = NULL;
1911 	}
1912 	return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1915 
1916 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1917 			   void *data, unsigned long len)
1918 {
1919 	struct kvm_memslots *slots = kvm_memslots(kvm);
1920 	int r;
1921 
1922 	BUG_ON(len > ghc->len);
1923 
1924 	if (slots->generation != ghc->generation)
1925 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1926 
1927 	if (unlikely(!ghc->memslot))
1928 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1929 
1930 	if (kvm_is_error_hva(ghc->hva))
1931 		return -EFAULT;
1932 
1933 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1934 	if (r)
1935 		return -EFAULT;
1936 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1937 
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1941 
1942 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1943 			   void *data, unsigned long len)
1944 {
1945 	struct kvm_memslots *slots = kvm_memslots(kvm);
1946 	int r;
1947 
1948 	BUG_ON(len > ghc->len);
1949 
1950 	if (slots->generation != ghc->generation)
1951 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1952 
1953 	if (unlikely(!ghc->memslot))
1954 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1955 
1956 	if (kvm_is_error_hva(ghc->hva))
1957 		return -EFAULT;
1958 
1959 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1960 	if (r)
1961 		return -EFAULT;
1962 
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1966 
1967 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1968 {
1969 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1970 
1971 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1974 
1975 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1976 {
1977 	gfn_t gfn = gpa >> PAGE_SHIFT;
1978 	int seg;
1979 	int offset = offset_in_page(gpa);
1980 	int ret;
1981 
1982 	while ((seg = next_segment(len, offset)) != 0) {
1983 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1984 		if (ret < 0)
1985 			return ret;
1986 		offset = 0;
1987 		len -= seg;
1988 		++gfn;
1989 	}
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1993 
1994 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1995 				    gfn_t gfn)
1996 {
1997 	if (memslot && memslot->dirty_bitmap) {
1998 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1999 
2000 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2001 	}
2002 }
2003 
2004 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2005 {
2006 	struct kvm_memory_slot *memslot;
2007 
2008 	memslot = gfn_to_memslot(kvm, gfn);
2009 	mark_page_dirty_in_slot(memslot, gfn);
2010 }
2011 EXPORT_SYMBOL_GPL(mark_page_dirty);
2012 
2013 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2014 {
2015 	struct kvm_memory_slot *memslot;
2016 
2017 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2018 	mark_page_dirty_in_slot(memslot, gfn);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2021 
2022 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2023 {
2024 	unsigned int old, val, grow;
2025 
2026 	old = val = vcpu->halt_poll_ns;
2027 	grow = READ_ONCE(halt_poll_ns_grow);
2028 	/* 10us base */
2029 	if (val == 0 && grow)
2030 		val = 10000;
2031 	else
2032 		val *= grow;
2033 
2034 	if (val > halt_poll_ns)
2035 		val = halt_poll_ns;
2036 
2037 	vcpu->halt_poll_ns = val;
2038 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2039 }
2040 
2041 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2042 {
2043 	unsigned int old, val, shrink;
2044 
2045 	old = val = vcpu->halt_poll_ns;
2046 	shrink = READ_ONCE(halt_poll_ns_shrink);
2047 	if (shrink == 0)
2048 		val = 0;
2049 	else
2050 		val /= shrink;
2051 
2052 	vcpu->halt_poll_ns = val;
2053 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2054 }
2055 
2056 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2057 {
2058 	if (kvm_arch_vcpu_runnable(vcpu)) {
2059 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2060 		return -EINTR;
2061 	}
2062 	if (kvm_cpu_has_pending_timer(vcpu))
2063 		return -EINTR;
2064 	if (signal_pending(current))
2065 		return -EINTR;
2066 
2067 	return 0;
2068 }
2069 
2070 /*
2071  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2072  */
2073 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2074 {
2075 	ktime_t start, cur;
2076 	DECLARE_SWAITQUEUE(wait);
2077 	bool waited = false;
2078 	u64 block_ns;
2079 
2080 	start = cur = ktime_get();
2081 	if (vcpu->halt_poll_ns) {
2082 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2083 
2084 		++vcpu->stat.halt_attempted_poll;
2085 		do {
2086 			/*
2087 			 * This sets KVM_REQ_UNHALT if an interrupt
2088 			 * arrives.
2089 			 */
2090 			if (kvm_vcpu_check_block(vcpu) < 0) {
2091 				++vcpu->stat.halt_successful_poll;
2092 				if (!vcpu_valid_wakeup(vcpu))
2093 					++vcpu->stat.halt_poll_invalid;
2094 				goto out;
2095 			}
2096 			cur = ktime_get();
2097 		} while (single_task_running() && ktime_before(cur, stop));
2098 	}
2099 
2100 	kvm_arch_vcpu_blocking(vcpu);
2101 
2102 	for (;;) {
2103 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2104 
2105 		if (kvm_vcpu_check_block(vcpu) < 0)
2106 			break;
2107 
2108 		waited = true;
2109 		schedule();
2110 	}
2111 
2112 	finish_swait(&vcpu->wq, &wait);
2113 	cur = ktime_get();
2114 
2115 	kvm_arch_vcpu_unblocking(vcpu);
2116 out:
2117 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2118 
2119 	if (!vcpu_valid_wakeup(vcpu))
2120 		shrink_halt_poll_ns(vcpu);
2121 	else if (halt_poll_ns) {
2122 		if (block_ns <= vcpu->halt_poll_ns)
2123 			;
2124 		/* we had a long block, shrink polling */
2125 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2126 			shrink_halt_poll_ns(vcpu);
2127 		/* we had a short halt and our poll time is too small */
2128 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2129 			block_ns < halt_poll_ns)
2130 			grow_halt_poll_ns(vcpu);
2131 	} else
2132 		vcpu->halt_poll_ns = 0;
2133 
2134 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2135 	kvm_arch_vcpu_block_finish(vcpu);
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2138 
2139 #ifndef CONFIG_S390
2140 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2141 {
2142 	struct swait_queue_head *wqp;
2143 
2144 	wqp = kvm_arch_vcpu_wq(vcpu);
2145 	if (swait_active(wqp)) {
2146 		swake_up(wqp);
2147 		++vcpu->stat.halt_wakeup;
2148 	}
2149 
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2152 
2153 /*
2154  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2155  */
2156 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2157 {
2158 	int me;
2159 	int cpu = vcpu->cpu;
2160 
2161 	kvm_vcpu_wake_up(vcpu);
2162 	me = get_cpu();
2163 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2164 		if (kvm_arch_vcpu_should_kick(vcpu))
2165 			smp_send_reschedule(cpu);
2166 	put_cpu();
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2169 #endif /* !CONFIG_S390 */
2170 
2171 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2172 {
2173 	struct pid *pid;
2174 	struct task_struct *task = NULL;
2175 	int ret = 0;
2176 
2177 	rcu_read_lock();
2178 	pid = rcu_dereference(target->pid);
2179 	if (pid)
2180 		task = get_pid_task(pid, PIDTYPE_PID);
2181 	rcu_read_unlock();
2182 	if (!task)
2183 		return ret;
2184 	ret = yield_to(task, 1);
2185 	put_task_struct(task);
2186 
2187 	return ret;
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2190 
2191 /*
2192  * Helper that checks whether a VCPU is eligible for directed yield.
2193  * Most eligible candidate to yield is decided by following heuristics:
2194  *
2195  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2196  *  (preempted lock holder), indicated by @in_spin_loop.
2197  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2198  *
2199  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2200  *  chance last time (mostly it has become eligible now since we have probably
2201  *  yielded to lockholder in last iteration. This is done by toggling
2202  *  @dy_eligible each time a VCPU checked for eligibility.)
2203  *
2204  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2205  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2206  *  burning. Giving priority for a potential lock-holder increases lock
2207  *  progress.
2208  *
2209  *  Since algorithm is based on heuristics, accessing another VCPU data without
2210  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2211  *  and continue with next VCPU and so on.
2212  */
2213 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2214 {
2215 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2216 	bool eligible;
2217 
2218 	eligible = !vcpu->spin_loop.in_spin_loop ||
2219 		    vcpu->spin_loop.dy_eligible;
2220 
2221 	if (vcpu->spin_loop.in_spin_loop)
2222 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2223 
2224 	return eligible;
2225 #else
2226 	return true;
2227 #endif
2228 }
2229 
2230 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2231 {
2232 	struct kvm *kvm = me->kvm;
2233 	struct kvm_vcpu *vcpu;
2234 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2235 	int yielded = 0;
2236 	int try = 3;
2237 	int pass;
2238 	int i;
2239 
2240 	kvm_vcpu_set_in_spin_loop(me, true);
2241 	/*
2242 	 * We boost the priority of a VCPU that is runnable but not
2243 	 * currently running, because it got preempted by something
2244 	 * else and called schedule in __vcpu_run.  Hopefully that
2245 	 * VCPU is holding the lock that we need and will release it.
2246 	 * We approximate round-robin by starting at the last boosted VCPU.
2247 	 */
2248 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2249 		kvm_for_each_vcpu(i, vcpu, kvm) {
2250 			if (!pass && i <= last_boosted_vcpu) {
2251 				i = last_boosted_vcpu;
2252 				continue;
2253 			} else if (pass && i > last_boosted_vcpu)
2254 				break;
2255 			if (!ACCESS_ONCE(vcpu->preempted))
2256 				continue;
2257 			if (vcpu == me)
2258 				continue;
2259 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2260 				continue;
2261 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2262 				continue;
2263 
2264 			yielded = kvm_vcpu_yield_to(vcpu);
2265 			if (yielded > 0) {
2266 				kvm->last_boosted_vcpu = i;
2267 				break;
2268 			} else if (yielded < 0) {
2269 				try--;
2270 				if (!try)
2271 					break;
2272 			}
2273 		}
2274 	}
2275 	kvm_vcpu_set_in_spin_loop(me, false);
2276 
2277 	/* Ensure vcpu is not eligible during next spinloop */
2278 	kvm_vcpu_set_dy_eligible(me, false);
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2281 
2282 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2283 {
2284 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2285 	struct page *page;
2286 
2287 	if (vmf->pgoff == 0)
2288 		page = virt_to_page(vcpu->run);
2289 #ifdef CONFIG_X86
2290 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2291 		page = virt_to_page(vcpu->arch.pio_data);
2292 #endif
2293 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2294 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2295 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2296 #endif
2297 	else
2298 		return kvm_arch_vcpu_fault(vcpu, vmf);
2299 	get_page(page);
2300 	vmf->page = page;
2301 	return 0;
2302 }
2303 
2304 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2305 	.fault = kvm_vcpu_fault,
2306 };
2307 
2308 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2309 {
2310 	vma->vm_ops = &kvm_vcpu_vm_ops;
2311 	return 0;
2312 }
2313 
2314 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2315 {
2316 	struct kvm_vcpu *vcpu = filp->private_data;
2317 
2318 	kvm_put_kvm(vcpu->kvm);
2319 	return 0;
2320 }
2321 
2322 static struct file_operations kvm_vcpu_fops = {
2323 	.release        = kvm_vcpu_release,
2324 	.unlocked_ioctl = kvm_vcpu_ioctl,
2325 #ifdef CONFIG_KVM_COMPAT
2326 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2327 #endif
2328 	.mmap           = kvm_vcpu_mmap,
2329 	.llseek		= noop_llseek,
2330 };
2331 
2332 /*
2333  * Allocates an inode for the vcpu.
2334  */
2335 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2336 {
2337 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2338 }
2339 
2340 /*
2341  * Creates some virtual cpus.  Good luck creating more than one.
2342  */
2343 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2344 {
2345 	int r;
2346 	struct kvm_vcpu *vcpu;
2347 
2348 	if (id >= KVM_MAX_VCPU_ID)
2349 		return -EINVAL;
2350 
2351 	vcpu = kvm_arch_vcpu_create(kvm, id);
2352 	if (IS_ERR(vcpu))
2353 		return PTR_ERR(vcpu);
2354 
2355 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2356 
2357 	r = kvm_arch_vcpu_setup(vcpu);
2358 	if (r)
2359 		goto vcpu_destroy;
2360 
2361 	mutex_lock(&kvm->lock);
2362 	if (!kvm_vcpu_compatible(vcpu)) {
2363 		r = -EINVAL;
2364 		goto unlock_vcpu_destroy;
2365 	}
2366 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2367 		r = -EINVAL;
2368 		goto unlock_vcpu_destroy;
2369 	}
2370 	if (kvm_get_vcpu_by_id(kvm, id)) {
2371 		r = -EEXIST;
2372 		goto unlock_vcpu_destroy;
2373 	}
2374 
2375 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2376 
2377 	/* Now it's all set up, let userspace reach it */
2378 	kvm_get_kvm(kvm);
2379 	r = create_vcpu_fd(vcpu);
2380 	if (r < 0) {
2381 		kvm_put_kvm(kvm);
2382 		goto unlock_vcpu_destroy;
2383 	}
2384 
2385 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2386 
2387 	/*
2388 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2389 	 * before kvm->online_vcpu's incremented value.
2390 	 */
2391 	smp_wmb();
2392 	atomic_inc(&kvm->online_vcpus);
2393 
2394 	mutex_unlock(&kvm->lock);
2395 	kvm_arch_vcpu_postcreate(vcpu);
2396 	return r;
2397 
2398 unlock_vcpu_destroy:
2399 	mutex_unlock(&kvm->lock);
2400 vcpu_destroy:
2401 	kvm_arch_vcpu_destroy(vcpu);
2402 	return r;
2403 }
2404 
2405 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2406 {
2407 	if (sigset) {
2408 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2409 		vcpu->sigset_active = 1;
2410 		vcpu->sigset = *sigset;
2411 	} else
2412 		vcpu->sigset_active = 0;
2413 	return 0;
2414 }
2415 
2416 static long kvm_vcpu_ioctl(struct file *filp,
2417 			   unsigned int ioctl, unsigned long arg)
2418 {
2419 	struct kvm_vcpu *vcpu = filp->private_data;
2420 	void __user *argp = (void __user *)arg;
2421 	int r;
2422 	struct kvm_fpu *fpu = NULL;
2423 	struct kvm_sregs *kvm_sregs = NULL;
2424 
2425 	if (vcpu->kvm->mm != current->mm)
2426 		return -EIO;
2427 
2428 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2429 		return -EINVAL;
2430 
2431 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2432 	/*
2433 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2434 	 * so vcpu_load() would break it.
2435 	 */
2436 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2437 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2438 #endif
2439 
2440 
2441 	r = vcpu_load(vcpu);
2442 	if (r)
2443 		return r;
2444 	switch (ioctl) {
2445 	case KVM_RUN:
2446 		r = -EINVAL;
2447 		if (arg)
2448 			goto out;
2449 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2450 			/* The thread running this VCPU changed. */
2451 			struct pid *oldpid = vcpu->pid;
2452 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2453 
2454 			rcu_assign_pointer(vcpu->pid, newpid);
2455 			if (oldpid)
2456 				synchronize_rcu();
2457 			put_pid(oldpid);
2458 		}
2459 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2460 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2461 		break;
2462 	case KVM_GET_REGS: {
2463 		struct kvm_regs *kvm_regs;
2464 
2465 		r = -ENOMEM;
2466 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2467 		if (!kvm_regs)
2468 			goto out;
2469 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2470 		if (r)
2471 			goto out_free1;
2472 		r = -EFAULT;
2473 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2474 			goto out_free1;
2475 		r = 0;
2476 out_free1:
2477 		kfree(kvm_regs);
2478 		break;
2479 	}
2480 	case KVM_SET_REGS: {
2481 		struct kvm_regs *kvm_regs;
2482 
2483 		r = -ENOMEM;
2484 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2485 		if (IS_ERR(kvm_regs)) {
2486 			r = PTR_ERR(kvm_regs);
2487 			goto out;
2488 		}
2489 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2490 		kfree(kvm_regs);
2491 		break;
2492 	}
2493 	case KVM_GET_SREGS: {
2494 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2495 		r = -ENOMEM;
2496 		if (!kvm_sregs)
2497 			goto out;
2498 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2499 		if (r)
2500 			goto out;
2501 		r = -EFAULT;
2502 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2503 			goto out;
2504 		r = 0;
2505 		break;
2506 	}
2507 	case KVM_SET_SREGS: {
2508 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2509 		if (IS_ERR(kvm_sregs)) {
2510 			r = PTR_ERR(kvm_sregs);
2511 			kvm_sregs = NULL;
2512 			goto out;
2513 		}
2514 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2515 		break;
2516 	}
2517 	case KVM_GET_MP_STATE: {
2518 		struct kvm_mp_state mp_state;
2519 
2520 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2521 		if (r)
2522 			goto out;
2523 		r = -EFAULT;
2524 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2525 			goto out;
2526 		r = 0;
2527 		break;
2528 	}
2529 	case KVM_SET_MP_STATE: {
2530 		struct kvm_mp_state mp_state;
2531 
2532 		r = -EFAULT;
2533 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2534 			goto out;
2535 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2536 		break;
2537 	}
2538 	case KVM_TRANSLATE: {
2539 		struct kvm_translation tr;
2540 
2541 		r = -EFAULT;
2542 		if (copy_from_user(&tr, argp, sizeof(tr)))
2543 			goto out;
2544 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2545 		if (r)
2546 			goto out;
2547 		r = -EFAULT;
2548 		if (copy_to_user(argp, &tr, sizeof(tr)))
2549 			goto out;
2550 		r = 0;
2551 		break;
2552 	}
2553 	case KVM_SET_GUEST_DEBUG: {
2554 		struct kvm_guest_debug dbg;
2555 
2556 		r = -EFAULT;
2557 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2558 			goto out;
2559 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2560 		break;
2561 	}
2562 	case KVM_SET_SIGNAL_MASK: {
2563 		struct kvm_signal_mask __user *sigmask_arg = argp;
2564 		struct kvm_signal_mask kvm_sigmask;
2565 		sigset_t sigset, *p;
2566 
2567 		p = NULL;
2568 		if (argp) {
2569 			r = -EFAULT;
2570 			if (copy_from_user(&kvm_sigmask, argp,
2571 					   sizeof(kvm_sigmask)))
2572 				goto out;
2573 			r = -EINVAL;
2574 			if (kvm_sigmask.len != sizeof(sigset))
2575 				goto out;
2576 			r = -EFAULT;
2577 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2578 					   sizeof(sigset)))
2579 				goto out;
2580 			p = &sigset;
2581 		}
2582 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2583 		break;
2584 	}
2585 	case KVM_GET_FPU: {
2586 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2587 		r = -ENOMEM;
2588 		if (!fpu)
2589 			goto out;
2590 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2591 		if (r)
2592 			goto out;
2593 		r = -EFAULT;
2594 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2595 			goto out;
2596 		r = 0;
2597 		break;
2598 	}
2599 	case KVM_SET_FPU: {
2600 		fpu = memdup_user(argp, sizeof(*fpu));
2601 		if (IS_ERR(fpu)) {
2602 			r = PTR_ERR(fpu);
2603 			fpu = NULL;
2604 			goto out;
2605 		}
2606 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2607 		break;
2608 	}
2609 	default:
2610 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2611 	}
2612 out:
2613 	vcpu_put(vcpu);
2614 	kfree(fpu);
2615 	kfree(kvm_sregs);
2616 	return r;
2617 }
2618 
2619 #ifdef CONFIG_KVM_COMPAT
2620 static long kvm_vcpu_compat_ioctl(struct file *filp,
2621 				  unsigned int ioctl, unsigned long arg)
2622 {
2623 	struct kvm_vcpu *vcpu = filp->private_data;
2624 	void __user *argp = compat_ptr(arg);
2625 	int r;
2626 
2627 	if (vcpu->kvm->mm != current->mm)
2628 		return -EIO;
2629 
2630 	switch (ioctl) {
2631 	case KVM_SET_SIGNAL_MASK: {
2632 		struct kvm_signal_mask __user *sigmask_arg = argp;
2633 		struct kvm_signal_mask kvm_sigmask;
2634 		compat_sigset_t csigset;
2635 		sigset_t sigset;
2636 
2637 		if (argp) {
2638 			r = -EFAULT;
2639 			if (copy_from_user(&kvm_sigmask, argp,
2640 					   sizeof(kvm_sigmask)))
2641 				goto out;
2642 			r = -EINVAL;
2643 			if (kvm_sigmask.len != sizeof(csigset))
2644 				goto out;
2645 			r = -EFAULT;
2646 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2647 					   sizeof(csigset)))
2648 				goto out;
2649 			sigset_from_compat(&sigset, &csigset);
2650 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2651 		} else
2652 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2653 		break;
2654 	}
2655 	default:
2656 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2657 	}
2658 
2659 out:
2660 	return r;
2661 }
2662 #endif
2663 
2664 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2665 				 int (*accessor)(struct kvm_device *dev,
2666 						 struct kvm_device_attr *attr),
2667 				 unsigned long arg)
2668 {
2669 	struct kvm_device_attr attr;
2670 
2671 	if (!accessor)
2672 		return -EPERM;
2673 
2674 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2675 		return -EFAULT;
2676 
2677 	return accessor(dev, &attr);
2678 }
2679 
2680 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2681 			     unsigned long arg)
2682 {
2683 	struct kvm_device *dev = filp->private_data;
2684 
2685 	switch (ioctl) {
2686 	case KVM_SET_DEVICE_ATTR:
2687 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2688 	case KVM_GET_DEVICE_ATTR:
2689 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2690 	case KVM_HAS_DEVICE_ATTR:
2691 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2692 	default:
2693 		if (dev->ops->ioctl)
2694 			return dev->ops->ioctl(dev, ioctl, arg);
2695 
2696 		return -ENOTTY;
2697 	}
2698 }
2699 
2700 static int kvm_device_release(struct inode *inode, struct file *filp)
2701 {
2702 	struct kvm_device *dev = filp->private_data;
2703 	struct kvm *kvm = dev->kvm;
2704 
2705 	kvm_put_kvm(kvm);
2706 	return 0;
2707 }
2708 
2709 static const struct file_operations kvm_device_fops = {
2710 	.unlocked_ioctl = kvm_device_ioctl,
2711 #ifdef CONFIG_KVM_COMPAT
2712 	.compat_ioctl = kvm_device_ioctl,
2713 #endif
2714 	.release = kvm_device_release,
2715 };
2716 
2717 struct kvm_device *kvm_device_from_filp(struct file *filp)
2718 {
2719 	if (filp->f_op != &kvm_device_fops)
2720 		return NULL;
2721 
2722 	return filp->private_data;
2723 }
2724 
2725 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2726 #ifdef CONFIG_KVM_MPIC
2727 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2728 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2729 #endif
2730 
2731 #ifdef CONFIG_KVM_XICS
2732 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2733 #endif
2734 };
2735 
2736 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2737 {
2738 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2739 		return -ENOSPC;
2740 
2741 	if (kvm_device_ops_table[type] != NULL)
2742 		return -EEXIST;
2743 
2744 	kvm_device_ops_table[type] = ops;
2745 	return 0;
2746 }
2747 
2748 void kvm_unregister_device_ops(u32 type)
2749 {
2750 	if (kvm_device_ops_table[type] != NULL)
2751 		kvm_device_ops_table[type] = NULL;
2752 }
2753 
2754 static int kvm_ioctl_create_device(struct kvm *kvm,
2755 				   struct kvm_create_device *cd)
2756 {
2757 	struct kvm_device_ops *ops = NULL;
2758 	struct kvm_device *dev;
2759 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2760 	int ret;
2761 
2762 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2763 		return -ENODEV;
2764 
2765 	ops = kvm_device_ops_table[cd->type];
2766 	if (ops == NULL)
2767 		return -ENODEV;
2768 
2769 	if (test)
2770 		return 0;
2771 
2772 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2773 	if (!dev)
2774 		return -ENOMEM;
2775 
2776 	dev->ops = ops;
2777 	dev->kvm = kvm;
2778 
2779 	ret = ops->create(dev, cd->type);
2780 	if (ret < 0) {
2781 		kfree(dev);
2782 		return ret;
2783 	}
2784 
2785 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2786 	if (ret < 0) {
2787 		ops->destroy(dev);
2788 		return ret;
2789 	}
2790 
2791 	list_add(&dev->vm_node, &kvm->devices);
2792 	kvm_get_kvm(kvm);
2793 	cd->fd = ret;
2794 	return 0;
2795 }
2796 
2797 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2798 {
2799 	switch (arg) {
2800 	case KVM_CAP_USER_MEMORY:
2801 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2802 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2803 	case KVM_CAP_INTERNAL_ERROR_DATA:
2804 #ifdef CONFIG_HAVE_KVM_MSI
2805 	case KVM_CAP_SIGNAL_MSI:
2806 #endif
2807 #ifdef CONFIG_HAVE_KVM_IRQFD
2808 	case KVM_CAP_IRQFD:
2809 	case KVM_CAP_IRQFD_RESAMPLE:
2810 #endif
2811 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2812 	case KVM_CAP_CHECK_EXTENSION_VM:
2813 		return 1;
2814 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2815 	case KVM_CAP_IRQ_ROUTING:
2816 		return KVM_MAX_IRQ_ROUTES;
2817 #endif
2818 #if KVM_ADDRESS_SPACE_NUM > 1
2819 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2820 		return KVM_ADDRESS_SPACE_NUM;
2821 #endif
2822 	case KVM_CAP_MAX_VCPU_ID:
2823 		return KVM_MAX_VCPU_ID;
2824 	default:
2825 		break;
2826 	}
2827 	return kvm_vm_ioctl_check_extension(kvm, arg);
2828 }
2829 
2830 static long kvm_vm_ioctl(struct file *filp,
2831 			   unsigned int ioctl, unsigned long arg)
2832 {
2833 	struct kvm *kvm = filp->private_data;
2834 	void __user *argp = (void __user *)arg;
2835 	int r;
2836 
2837 	if (kvm->mm != current->mm)
2838 		return -EIO;
2839 	switch (ioctl) {
2840 	case KVM_CREATE_VCPU:
2841 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2842 		break;
2843 	case KVM_SET_USER_MEMORY_REGION: {
2844 		struct kvm_userspace_memory_region kvm_userspace_mem;
2845 
2846 		r = -EFAULT;
2847 		if (copy_from_user(&kvm_userspace_mem, argp,
2848 						sizeof(kvm_userspace_mem)))
2849 			goto out;
2850 
2851 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2852 		break;
2853 	}
2854 	case KVM_GET_DIRTY_LOG: {
2855 		struct kvm_dirty_log log;
2856 
2857 		r = -EFAULT;
2858 		if (copy_from_user(&log, argp, sizeof(log)))
2859 			goto out;
2860 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2861 		break;
2862 	}
2863 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2864 	case KVM_REGISTER_COALESCED_MMIO: {
2865 		struct kvm_coalesced_mmio_zone zone;
2866 
2867 		r = -EFAULT;
2868 		if (copy_from_user(&zone, argp, sizeof(zone)))
2869 			goto out;
2870 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2871 		break;
2872 	}
2873 	case KVM_UNREGISTER_COALESCED_MMIO: {
2874 		struct kvm_coalesced_mmio_zone zone;
2875 
2876 		r = -EFAULT;
2877 		if (copy_from_user(&zone, argp, sizeof(zone)))
2878 			goto out;
2879 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2880 		break;
2881 	}
2882 #endif
2883 	case KVM_IRQFD: {
2884 		struct kvm_irqfd data;
2885 
2886 		r = -EFAULT;
2887 		if (copy_from_user(&data, argp, sizeof(data)))
2888 			goto out;
2889 		r = kvm_irqfd(kvm, &data);
2890 		break;
2891 	}
2892 	case KVM_IOEVENTFD: {
2893 		struct kvm_ioeventfd data;
2894 
2895 		r = -EFAULT;
2896 		if (copy_from_user(&data, argp, sizeof(data)))
2897 			goto out;
2898 		r = kvm_ioeventfd(kvm, &data);
2899 		break;
2900 	}
2901 #ifdef CONFIG_HAVE_KVM_MSI
2902 	case KVM_SIGNAL_MSI: {
2903 		struct kvm_msi msi;
2904 
2905 		r = -EFAULT;
2906 		if (copy_from_user(&msi, argp, sizeof(msi)))
2907 			goto out;
2908 		r = kvm_send_userspace_msi(kvm, &msi);
2909 		break;
2910 	}
2911 #endif
2912 #ifdef __KVM_HAVE_IRQ_LINE
2913 	case KVM_IRQ_LINE_STATUS:
2914 	case KVM_IRQ_LINE: {
2915 		struct kvm_irq_level irq_event;
2916 
2917 		r = -EFAULT;
2918 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2919 			goto out;
2920 
2921 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2922 					ioctl == KVM_IRQ_LINE_STATUS);
2923 		if (r)
2924 			goto out;
2925 
2926 		r = -EFAULT;
2927 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2928 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2929 				goto out;
2930 		}
2931 
2932 		r = 0;
2933 		break;
2934 	}
2935 #endif
2936 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2937 	case KVM_SET_GSI_ROUTING: {
2938 		struct kvm_irq_routing routing;
2939 		struct kvm_irq_routing __user *urouting;
2940 		struct kvm_irq_routing_entry *entries = NULL;
2941 
2942 		r = -EFAULT;
2943 		if (copy_from_user(&routing, argp, sizeof(routing)))
2944 			goto out;
2945 		r = -EINVAL;
2946 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
2947 			goto out;
2948 		if (routing.flags)
2949 			goto out;
2950 		if (routing.nr) {
2951 			r = -ENOMEM;
2952 			entries = vmalloc(routing.nr * sizeof(*entries));
2953 			if (!entries)
2954 				goto out;
2955 			r = -EFAULT;
2956 			urouting = argp;
2957 			if (copy_from_user(entries, urouting->entries,
2958 					   routing.nr * sizeof(*entries)))
2959 				goto out_free_irq_routing;
2960 		}
2961 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2962 					routing.flags);
2963 out_free_irq_routing:
2964 		vfree(entries);
2965 		break;
2966 	}
2967 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2968 	case KVM_CREATE_DEVICE: {
2969 		struct kvm_create_device cd;
2970 
2971 		r = -EFAULT;
2972 		if (copy_from_user(&cd, argp, sizeof(cd)))
2973 			goto out;
2974 
2975 		r = kvm_ioctl_create_device(kvm, &cd);
2976 		if (r)
2977 			goto out;
2978 
2979 		r = -EFAULT;
2980 		if (copy_to_user(argp, &cd, sizeof(cd)))
2981 			goto out;
2982 
2983 		r = 0;
2984 		break;
2985 	}
2986 	case KVM_CHECK_EXTENSION:
2987 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2988 		break;
2989 	default:
2990 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2991 	}
2992 out:
2993 	return r;
2994 }
2995 
2996 #ifdef CONFIG_KVM_COMPAT
2997 struct compat_kvm_dirty_log {
2998 	__u32 slot;
2999 	__u32 padding1;
3000 	union {
3001 		compat_uptr_t dirty_bitmap; /* one bit per page */
3002 		__u64 padding2;
3003 	};
3004 };
3005 
3006 static long kvm_vm_compat_ioctl(struct file *filp,
3007 			   unsigned int ioctl, unsigned long arg)
3008 {
3009 	struct kvm *kvm = filp->private_data;
3010 	int r;
3011 
3012 	if (kvm->mm != current->mm)
3013 		return -EIO;
3014 	switch (ioctl) {
3015 	case KVM_GET_DIRTY_LOG: {
3016 		struct compat_kvm_dirty_log compat_log;
3017 		struct kvm_dirty_log log;
3018 
3019 		r = -EFAULT;
3020 		if (copy_from_user(&compat_log, (void __user *)arg,
3021 				   sizeof(compat_log)))
3022 			goto out;
3023 		log.slot	 = compat_log.slot;
3024 		log.padding1	 = compat_log.padding1;
3025 		log.padding2	 = compat_log.padding2;
3026 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3027 
3028 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3029 		break;
3030 	}
3031 	default:
3032 		r = kvm_vm_ioctl(filp, ioctl, arg);
3033 	}
3034 
3035 out:
3036 	return r;
3037 }
3038 #endif
3039 
3040 static struct file_operations kvm_vm_fops = {
3041 	.release        = kvm_vm_release,
3042 	.unlocked_ioctl = kvm_vm_ioctl,
3043 #ifdef CONFIG_KVM_COMPAT
3044 	.compat_ioctl   = kvm_vm_compat_ioctl,
3045 #endif
3046 	.llseek		= noop_llseek,
3047 };
3048 
3049 static int kvm_dev_ioctl_create_vm(unsigned long type)
3050 {
3051 	int r;
3052 	struct kvm *kvm;
3053 	struct file *file;
3054 
3055 	kvm = kvm_create_vm(type);
3056 	if (IS_ERR(kvm))
3057 		return PTR_ERR(kvm);
3058 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3059 	r = kvm_coalesced_mmio_init(kvm);
3060 	if (r < 0) {
3061 		kvm_put_kvm(kvm);
3062 		return r;
3063 	}
3064 #endif
3065 	r = get_unused_fd_flags(O_CLOEXEC);
3066 	if (r < 0) {
3067 		kvm_put_kvm(kvm);
3068 		return r;
3069 	}
3070 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3071 	if (IS_ERR(file)) {
3072 		put_unused_fd(r);
3073 		kvm_put_kvm(kvm);
3074 		return PTR_ERR(file);
3075 	}
3076 
3077 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3078 		put_unused_fd(r);
3079 		fput(file);
3080 		return -ENOMEM;
3081 	}
3082 
3083 	fd_install(r, file);
3084 	return r;
3085 }
3086 
3087 static long kvm_dev_ioctl(struct file *filp,
3088 			  unsigned int ioctl, unsigned long arg)
3089 {
3090 	long r = -EINVAL;
3091 
3092 	switch (ioctl) {
3093 	case KVM_GET_API_VERSION:
3094 		if (arg)
3095 			goto out;
3096 		r = KVM_API_VERSION;
3097 		break;
3098 	case KVM_CREATE_VM:
3099 		r = kvm_dev_ioctl_create_vm(arg);
3100 		break;
3101 	case KVM_CHECK_EXTENSION:
3102 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3103 		break;
3104 	case KVM_GET_VCPU_MMAP_SIZE:
3105 		if (arg)
3106 			goto out;
3107 		r = PAGE_SIZE;     /* struct kvm_run */
3108 #ifdef CONFIG_X86
3109 		r += PAGE_SIZE;    /* pio data page */
3110 #endif
3111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3112 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3113 #endif
3114 		break;
3115 	case KVM_TRACE_ENABLE:
3116 	case KVM_TRACE_PAUSE:
3117 	case KVM_TRACE_DISABLE:
3118 		r = -EOPNOTSUPP;
3119 		break;
3120 	default:
3121 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3122 	}
3123 out:
3124 	return r;
3125 }
3126 
3127 static struct file_operations kvm_chardev_ops = {
3128 	.unlocked_ioctl = kvm_dev_ioctl,
3129 	.compat_ioctl   = kvm_dev_ioctl,
3130 	.llseek		= noop_llseek,
3131 };
3132 
3133 static struct miscdevice kvm_dev = {
3134 	KVM_MINOR,
3135 	"kvm",
3136 	&kvm_chardev_ops,
3137 };
3138 
3139 static void hardware_enable_nolock(void *junk)
3140 {
3141 	int cpu = raw_smp_processor_id();
3142 	int r;
3143 
3144 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3145 		return;
3146 
3147 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3148 
3149 	r = kvm_arch_hardware_enable();
3150 
3151 	if (r) {
3152 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3153 		atomic_inc(&hardware_enable_failed);
3154 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3155 	}
3156 }
3157 
3158 static int kvm_starting_cpu(unsigned int cpu)
3159 {
3160 	raw_spin_lock(&kvm_count_lock);
3161 	if (kvm_usage_count)
3162 		hardware_enable_nolock(NULL);
3163 	raw_spin_unlock(&kvm_count_lock);
3164 	return 0;
3165 }
3166 
3167 static void hardware_disable_nolock(void *junk)
3168 {
3169 	int cpu = raw_smp_processor_id();
3170 
3171 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3172 		return;
3173 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3174 	kvm_arch_hardware_disable();
3175 }
3176 
3177 static int kvm_dying_cpu(unsigned int cpu)
3178 {
3179 	raw_spin_lock(&kvm_count_lock);
3180 	if (kvm_usage_count)
3181 		hardware_disable_nolock(NULL);
3182 	raw_spin_unlock(&kvm_count_lock);
3183 	return 0;
3184 }
3185 
3186 static void hardware_disable_all_nolock(void)
3187 {
3188 	BUG_ON(!kvm_usage_count);
3189 
3190 	kvm_usage_count--;
3191 	if (!kvm_usage_count)
3192 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3193 }
3194 
3195 static void hardware_disable_all(void)
3196 {
3197 	raw_spin_lock(&kvm_count_lock);
3198 	hardware_disable_all_nolock();
3199 	raw_spin_unlock(&kvm_count_lock);
3200 }
3201 
3202 static int hardware_enable_all(void)
3203 {
3204 	int r = 0;
3205 
3206 	raw_spin_lock(&kvm_count_lock);
3207 
3208 	kvm_usage_count++;
3209 	if (kvm_usage_count == 1) {
3210 		atomic_set(&hardware_enable_failed, 0);
3211 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3212 
3213 		if (atomic_read(&hardware_enable_failed)) {
3214 			hardware_disable_all_nolock();
3215 			r = -EBUSY;
3216 		}
3217 	}
3218 
3219 	raw_spin_unlock(&kvm_count_lock);
3220 
3221 	return r;
3222 }
3223 
3224 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3225 		      void *v)
3226 {
3227 	/*
3228 	 * Some (well, at least mine) BIOSes hang on reboot if
3229 	 * in vmx root mode.
3230 	 *
3231 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3232 	 */
3233 	pr_info("kvm: exiting hardware virtualization\n");
3234 	kvm_rebooting = true;
3235 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3236 	return NOTIFY_OK;
3237 }
3238 
3239 static struct notifier_block kvm_reboot_notifier = {
3240 	.notifier_call = kvm_reboot,
3241 	.priority = 0,
3242 };
3243 
3244 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3245 {
3246 	int i;
3247 
3248 	for (i = 0; i < bus->dev_count; i++) {
3249 		struct kvm_io_device *pos = bus->range[i].dev;
3250 
3251 		kvm_iodevice_destructor(pos);
3252 	}
3253 	kfree(bus);
3254 }
3255 
3256 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3257 				 const struct kvm_io_range *r2)
3258 {
3259 	gpa_t addr1 = r1->addr;
3260 	gpa_t addr2 = r2->addr;
3261 
3262 	if (addr1 < addr2)
3263 		return -1;
3264 
3265 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3266 	 * accept any overlapping write.  Any order is acceptable for
3267 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3268 	 * we process all of them.
3269 	 */
3270 	if (r2->len) {
3271 		addr1 += r1->len;
3272 		addr2 += r2->len;
3273 	}
3274 
3275 	if (addr1 > addr2)
3276 		return 1;
3277 
3278 	return 0;
3279 }
3280 
3281 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3282 {
3283 	return kvm_io_bus_cmp(p1, p2);
3284 }
3285 
3286 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3287 			  gpa_t addr, int len)
3288 {
3289 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3290 		.addr = addr,
3291 		.len = len,
3292 		.dev = dev,
3293 	};
3294 
3295 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3296 		kvm_io_bus_sort_cmp, NULL);
3297 
3298 	return 0;
3299 }
3300 
3301 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3302 			     gpa_t addr, int len)
3303 {
3304 	struct kvm_io_range *range, key;
3305 	int off;
3306 
3307 	key = (struct kvm_io_range) {
3308 		.addr = addr,
3309 		.len = len,
3310 	};
3311 
3312 	range = bsearch(&key, bus->range, bus->dev_count,
3313 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3314 	if (range == NULL)
3315 		return -ENOENT;
3316 
3317 	off = range - bus->range;
3318 
3319 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3320 		off--;
3321 
3322 	return off;
3323 }
3324 
3325 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3326 			      struct kvm_io_range *range, const void *val)
3327 {
3328 	int idx;
3329 
3330 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3331 	if (idx < 0)
3332 		return -EOPNOTSUPP;
3333 
3334 	while (idx < bus->dev_count &&
3335 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3336 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3337 					range->len, val))
3338 			return idx;
3339 		idx++;
3340 	}
3341 
3342 	return -EOPNOTSUPP;
3343 }
3344 
3345 /* kvm_io_bus_write - called under kvm->slots_lock */
3346 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3347 		     int len, const void *val)
3348 {
3349 	struct kvm_io_bus *bus;
3350 	struct kvm_io_range range;
3351 	int r;
3352 
3353 	range = (struct kvm_io_range) {
3354 		.addr = addr,
3355 		.len = len,
3356 	};
3357 
3358 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3359 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3360 	return r < 0 ? r : 0;
3361 }
3362 
3363 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3364 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3365 			    gpa_t addr, int len, const void *val, long cookie)
3366 {
3367 	struct kvm_io_bus *bus;
3368 	struct kvm_io_range range;
3369 
3370 	range = (struct kvm_io_range) {
3371 		.addr = addr,
3372 		.len = len,
3373 	};
3374 
3375 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3376 
3377 	/* First try the device referenced by cookie. */
3378 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3379 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3380 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3381 					val))
3382 			return cookie;
3383 
3384 	/*
3385 	 * cookie contained garbage; fall back to search and return the
3386 	 * correct cookie value.
3387 	 */
3388 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3389 }
3390 
3391 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3392 			     struct kvm_io_range *range, void *val)
3393 {
3394 	int idx;
3395 
3396 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3397 	if (idx < 0)
3398 		return -EOPNOTSUPP;
3399 
3400 	while (idx < bus->dev_count &&
3401 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3402 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3403 				       range->len, val))
3404 			return idx;
3405 		idx++;
3406 	}
3407 
3408 	return -EOPNOTSUPP;
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3411 
3412 /* kvm_io_bus_read - called under kvm->slots_lock */
3413 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3414 		    int len, void *val)
3415 {
3416 	struct kvm_io_bus *bus;
3417 	struct kvm_io_range range;
3418 	int r;
3419 
3420 	range = (struct kvm_io_range) {
3421 		.addr = addr,
3422 		.len = len,
3423 	};
3424 
3425 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3426 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3427 	return r < 0 ? r : 0;
3428 }
3429 
3430 
3431 /* Caller must hold slots_lock. */
3432 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3433 			    int len, struct kvm_io_device *dev)
3434 {
3435 	struct kvm_io_bus *new_bus, *bus;
3436 
3437 	bus = kvm->buses[bus_idx];
3438 	/* exclude ioeventfd which is limited by maximum fd */
3439 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3440 		return -ENOSPC;
3441 
3442 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3443 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3444 	if (!new_bus)
3445 		return -ENOMEM;
3446 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3447 	       sizeof(struct kvm_io_range)));
3448 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3449 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3450 	synchronize_srcu_expedited(&kvm->srcu);
3451 	kfree(bus);
3452 
3453 	return 0;
3454 }
3455 
3456 /* Caller must hold slots_lock. */
3457 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3458 			      struct kvm_io_device *dev)
3459 {
3460 	int i, r;
3461 	struct kvm_io_bus *new_bus, *bus;
3462 
3463 	bus = kvm->buses[bus_idx];
3464 	r = -ENOENT;
3465 	for (i = 0; i < bus->dev_count; i++)
3466 		if (bus->range[i].dev == dev) {
3467 			r = 0;
3468 			break;
3469 		}
3470 
3471 	if (r)
3472 		return r;
3473 
3474 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3475 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3476 	if (!new_bus)
3477 		return -ENOMEM;
3478 
3479 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3480 	new_bus->dev_count--;
3481 	memcpy(new_bus->range + i, bus->range + i + 1,
3482 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3483 
3484 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3485 	synchronize_srcu_expedited(&kvm->srcu);
3486 	kfree(bus);
3487 	return r;
3488 }
3489 
3490 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3491 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3492 			   const char *fmt)
3493 {
3494 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3495 					  inode->i_private;
3496 
3497 	/* The debugfs files are a reference to the kvm struct which
3498 	 * is still valid when kvm_destroy_vm is called.
3499 	 * To avoid the race between open and the removal of the debugfs
3500 	 * directory we test against the users count.
3501 	 */
3502 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3503 		return -ENOENT;
3504 
3505 	if (simple_attr_open(inode, file, get, set, fmt)) {
3506 		kvm_put_kvm(stat_data->kvm);
3507 		return -ENOMEM;
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3514 {
3515 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3516 					  inode->i_private;
3517 
3518 	simple_attr_release(inode, file);
3519 	kvm_put_kvm(stat_data->kvm);
3520 
3521 	return 0;
3522 }
3523 
3524 static int vm_stat_get_per_vm(void *data, u64 *val)
3525 {
3526 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3527 
3528 	*val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3529 
3530 	return 0;
3531 }
3532 
3533 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3534 {
3535 	__simple_attr_check_format("%llu\n", 0ull);
3536 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3537 				NULL, "%llu\n");
3538 }
3539 
3540 static const struct file_operations vm_stat_get_per_vm_fops = {
3541 	.owner   = THIS_MODULE,
3542 	.open    = vm_stat_get_per_vm_open,
3543 	.release = kvm_debugfs_release,
3544 	.read    = simple_attr_read,
3545 	.write   = simple_attr_write,
3546 	.llseek  = generic_file_llseek,
3547 };
3548 
3549 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3550 {
3551 	int i;
3552 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3553 	struct kvm_vcpu *vcpu;
3554 
3555 	*val = 0;
3556 
3557 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3558 		*val += *(u32 *)((void *)vcpu + stat_data->offset);
3559 
3560 	return 0;
3561 }
3562 
3563 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3564 {
3565 	__simple_attr_check_format("%llu\n", 0ull);
3566 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3567 				 NULL, "%llu\n");
3568 }
3569 
3570 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3571 	.owner   = THIS_MODULE,
3572 	.open    = vcpu_stat_get_per_vm_open,
3573 	.release = kvm_debugfs_release,
3574 	.read    = simple_attr_read,
3575 	.write   = simple_attr_write,
3576 	.llseek  = generic_file_llseek,
3577 };
3578 
3579 static const struct file_operations *stat_fops_per_vm[] = {
3580 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3581 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3582 };
3583 
3584 static int vm_stat_get(void *_offset, u64 *val)
3585 {
3586 	unsigned offset = (long)_offset;
3587 	struct kvm *kvm;
3588 	struct kvm_stat_data stat_tmp = {.offset = offset};
3589 	u64 tmp_val;
3590 
3591 	*val = 0;
3592 	spin_lock(&kvm_lock);
3593 	list_for_each_entry(kvm, &vm_list, vm_list) {
3594 		stat_tmp.kvm = kvm;
3595 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3596 		*val += tmp_val;
3597 	}
3598 	spin_unlock(&kvm_lock);
3599 	return 0;
3600 }
3601 
3602 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3603 
3604 static int vcpu_stat_get(void *_offset, u64 *val)
3605 {
3606 	unsigned offset = (long)_offset;
3607 	struct kvm *kvm;
3608 	struct kvm_stat_data stat_tmp = {.offset = offset};
3609 	u64 tmp_val;
3610 
3611 	*val = 0;
3612 	spin_lock(&kvm_lock);
3613 	list_for_each_entry(kvm, &vm_list, vm_list) {
3614 		stat_tmp.kvm = kvm;
3615 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3616 		*val += tmp_val;
3617 	}
3618 	spin_unlock(&kvm_lock);
3619 	return 0;
3620 }
3621 
3622 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3623 
3624 static const struct file_operations *stat_fops[] = {
3625 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3626 	[KVM_STAT_VM]   = &vm_stat_fops,
3627 };
3628 
3629 static int kvm_init_debug(void)
3630 {
3631 	int r = -EEXIST;
3632 	struct kvm_stats_debugfs_item *p;
3633 
3634 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3635 	if (kvm_debugfs_dir == NULL)
3636 		goto out;
3637 
3638 	kvm_debugfs_num_entries = 0;
3639 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3640 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3641 					 (void *)(long)p->offset,
3642 					 stat_fops[p->kind]))
3643 			goto out_dir;
3644 	}
3645 
3646 	return 0;
3647 
3648 out_dir:
3649 	debugfs_remove_recursive(kvm_debugfs_dir);
3650 out:
3651 	return r;
3652 }
3653 
3654 static int kvm_suspend(void)
3655 {
3656 	if (kvm_usage_count)
3657 		hardware_disable_nolock(NULL);
3658 	return 0;
3659 }
3660 
3661 static void kvm_resume(void)
3662 {
3663 	if (kvm_usage_count) {
3664 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3665 		hardware_enable_nolock(NULL);
3666 	}
3667 }
3668 
3669 static struct syscore_ops kvm_syscore_ops = {
3670 	.suspend = kvm_suspend,
3671 	.resume = kvm_resume,
3672 };
3673 
3674 static inline
3675 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3676 {
3677 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3678 }
3679 
3680 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3681 {
3682 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3683 
3684 	if (vcpu->preempted)
3685 		vcpu->preempted = false;
3686 
3687 	kvm_arch_sched_in(vcpu, cpu);
3688 
3689 	kvm_arch_vcpu_load(vcpu, cpu);
3690 }
3691 
3692 static void kvm_sched_out(struct preempt_notifier *pn,
3693 			  struct task_struct *next)
3694 {
3695 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3696 
3697 	if (current->state == TASK_RUNNING)
3698 		vcpu->preempted = true;
3699 	kvm_arch_vcpu_put(vcpu);
3700 }
3701 
3702 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3703 		  struct module *module)
3704 {
3705 	int r;
3706 	int cpu;
3707 
3708 	r = kvm_arch_init(opaque);
3709 	if (r)
3710 		goto out_fail;
3711 
3712 	/*
3713 	 * kvm_arch_init makes sure there's at most one caller
3714 	 * for architectures that support multiple implementations,
3715 	 * like intel and amd on x86.
3716 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3717 	 * conflicts in case kvm is already setup for another implementation.
3718 	 */
3719 	r = kvm_irqfd_init();
3720 	if (r)
3721 		goto out_irqfd;
3722 
3723 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3724 		r = -ENOMEM;
3725 		goto out_free_0;
3726 	}
3727 
3728 	r = kvm_arch_hardware_setup();
3729 	if (r < 0)
3730 		goto out_free_0a;
3731 
3732 	for_each_online_cpu(cpu) {
3733 		smp_call_function_single(cpu,
3734 				kvm_arch_check_processor_compat,
3735 				&r, 1);
3736 		if (r < 0)
3737 			goto out_free_1;
3738 	}
3739 
3740 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3741 				      kvm_starting_cpu, kvm_dying_cpu);
3742 	if (r)
3743 		goto out_free_2;
3744 	register_reboot_notifier(&kvm_reboot_notifier);
3745 
3746 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3747 	if (!vcpu_align)
3748 		vcpu_align = __alignof__(struct kvm_vcpu);
3749 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3750 					   0, NULL);
3751 	if (!kvm_vcpu_cache) {
3752 		r = -ENOMEM;
3753 		goto out_free_3;
3754 	}
3755 
3756 	r = kvm_async_pf_init();
3757 	if (r)
3758 		goto out_free;
3759 
3760 	kvm_chardev_ops.owner = module;
3761 	kvm_vm_fops.owner = module;
3762 	kvm_vcpu_fops.owner = module;
3763 
3764 	r = misc_register(&kvm_dev);
3765 	if (r) {
3766 		pr_err("kvm: misc device register failed\n");
3767 		goto out_unreg;
3768 	}
3769 
3770 	register_syscore_ops(&kvm_syscore_ops);
3771 
3772 	kvm_preempt_ops.sched_in = kvm_sched_in;
3773 	kvm_preempt_ops.sched_out = kvm_sched_out;
3774 
3775 	r = kvm_init_debug();
3776 	if (r) {
3777 		pr_err("kvm: create debugfs files failed\n");
3778 		goto out_undebugfs;
3779 	}
3780 
3781 	r = kvm_vfio_ops_init();
3782 	WARN_ON(r);
3783 
3784 	return 0;
3785 
3786 out_undebugfs:
3787 	unregister_syscore_ops(&kvm_syscore_ops);
3788 	misc_deregister(&kvm_dev);
3789 out_unreg:
3790 	kvm_async_pf_deinit();
3791 out_free:
3792 	kmem_cache_destroy(kvm_vcpu_cache);
3793 out_free_3:
3794 	unregister_reboot_notifier(&kvm_reboot_notifier);
3795 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3796 out_free_2:
3797 out_free_1:
3798 	kvm_arch_hardware_unsetup();
3799 out_free_0a:
3800 	free_cpumask_var(cpus_hardware_enabled);
3801 out_free_0:
3802 	kvm_irqfd_exit();
3803 out_irqfd:
3804 	kvm_arch_exit();
3805 out_fail:
3806 	return r;
3807 }
3808 EXPORT_SYMBOL_GPL(kvm_init);
3809 
3810 void kvm_exit(void)
3811 {
3812 	debugfs_remove_recursive(kvm_debugfs_dir);
3813 	misc_deregister(&kvm_dev);
3814 	kmem_cache_destroy(kvm_vcpu_cache);
3815 	kvm_async_pf_deinit();
3816 	unregister_syscore_ops(&kvm_syscore_ops);
3817 	unregister_reboot_notifier(&kvm_reboot_notifier);
3818 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3819 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3820 	kvm_arch_hardware_unsetup();
3821 	kvm_arch_exit();
3822 	kvm_irqfd_exit();
3823 	free_cpumask_var(cpus_hardware_enabled);
3824 	kvm_vfio_ops_exit();
3825 }
3826 EXPORT_SYMBOL_GPL(kvm_exit);
3827