xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 711aab1d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138 
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 	if (pfn_valid(pfn))
142 		return PageReserved(pfn_to_page(pfn));
143 
144 	return true;
145 }
146 
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 	int cpu;
153 
154 	if (mutex_lock_killable(&vcpu->mutex))
155 		return -EINTR;
156 	cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163 
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 	preempt_disable();
167 	kvm_arch_vcpu_put(vcpu);
168 	preempt_notifier_unregister(&vcpu->preempt_notifier);
169 	preempt_enable();
170 	mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173 
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 
179 	/*
180 	 * We need to wait for the VCPU to reenable interrupts and get out of
181 	 * READING_SHADOW_PAGE_TABLES mode.
182 	 */
183 	if (req & KVM_REQUEST_WAIT)
184 		return mode != OUTSIDE_GUEST_MODE;
185 
186 	/*
187 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 	 */
189 	return mode == IN_GUEST_MODE;
190 }
191 
192 static void ack_flush(void *_completed)
193 {
194 }
195 
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 	if (unlikely(!cpus))
199 		cpus = cpu_online_mask;
200 
201 	if (cpumask_empty(cpus))
202 		return false;
203 
204 	smp_call_function_many(cpus, ack_flush, NULL, wait);
205 	return true;
206 }
207 
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 	int i, cpu, me;
211 	cpumask_var_t cpus;
212 	bool called;
213 	struct kvm_vcpu *vcpu;
214 
215 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216 
217 	me = get_cpu();
218 	kvm_for_each_vcpu(i, vcpu, kvm) {
219 		kvm_make_request(req, vcpu);
220 		cpu = vcpu->cpu;
221 
222 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 			continue;
224 
225 		if (cpus != NULL && cpu != -1 && cpu != me &&
226 		    kvm_request_needs_ipi(vcpu, req))
227 			__cpumask_set_cpu(cpu, cpus);
228 	}
229 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 	put_cpu();
231 	free_cpumask_var(cpus);
232 	return called;
233 }
234 
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 	/*
239 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 	 * kvm_make_all_cpus_request.
241 	 */
242 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 
244 	/*
245 	 * We want to publish modifications to the page tables before reading
246 	 * mode. Pairs with a memory barrier in arch-specific code.
247 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 	 *
251 	 * There is already an smp_mb__after_atomic() before
252 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 	 * barrier here.
254 	 */
255 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 		++kvm->stat.remote_tlb_flush;
257 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261 
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266 
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 	struct page *page;
270 	int r;
271 
272 	mutex_init(&vcpu->mutex);
273 	vcpu->cpu = -1;
274 	vcpu->kvm = kvm;
275 	vcpu->vcpu_id = id;
276 	vcpu->pid = NULL;
277 	init_swait_queue_head(&vcpu->wq);
278 	kvm_async_pf_vcpu_init(vcpu);
279 
280 	vcpu->pre_pcpu = -1;
281 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282 
283 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 	if (!page) {
285 		r = -ENOMEM;
286 		goto fail;
287 	}
288 	vcpu->run = page_address(page);
289 
290 	kvm_vcpu_set_in_spin_loop(vcpu, false);
291 	kvm_vcpu_set_dy_eligible(vcpu, false);
292 	vcpu->preempted = false;
293 
294 	r = kvm_arch_vcpu_init(vcpu);
295 	if (r < 0)
296 		goto fail_free_run;
297 	return 0;
298 
299 fail_free_run:
300 	free_page((unsigned long)vcpu->run);
301 fail:
302 	return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305 
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 	/*
309 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 	 * will change the vcpu->pid pointer and on uninit all file
311 	 * descriptors are already gone.
312 	 */
313 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 	kvm_arch_vcpu_uninit(vcpu);
315 	free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318 
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 	return container_of(mn, struct kvm, mmu_notifier);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
473 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
474 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
475 	.clear_young		= kvm_mmu_notifier_clear_young,
476 	.test_young		= kvm_mmu_notifier_test_young,
477 	.change_pte		= kvm_mmu_notifier_change_pte,
478 	.release		= kvm_mmu_notifier_release,
479 };
480 
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486 
487 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488 
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 	return 0;
492 }
493 
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495 
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498 	int i;
499 	struct kvm_memslots *slots;
500 
501 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502 	if (!slots)
503 		return NULL;
504 
505 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 		slots->id_to_index[i] = slots->memslots[i].id = i;
507 
508 	return slots;
509 }
510 
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513 	if (!memslot->dirty_bitmap)
514 		return;
515 
516 	kvfree(memslot->dirty_bitmap);
517 	memslot->dirty_bitmap = NULL;
518 }
519 
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 			      struct kvm_memory_slot *dont)
525 {
526 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 		kvm_destroy_dirty_bitmap(free);
528 
529 	kvm_arch_free_memslot(kvm, free, dont);
530 
531 	free->npages = 0;
532 }
533 
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536 	struct kvm_memory_slot *memslot;
537 
538 	if (!slots)
539 		return;
540 
541 	kvm_for_each_memslot(memslot, slots)
542 		kvm_free_memslot(kvm, memslot, NULL);
543 
544 	kvfree(slots);
545 }
546 
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549 	int i;
550 
551 	if (!kvm->debugfs_dentry)
552 		return;
553 
554 	debugfs_remove_recursive(kvm->debugfs_dentry);
555 
556 	if (kvm->debugfs_stat_data) {
557 		for (i = 0; i < kvm_debugfs_num_entries; i++)
558 			kfree(kvm->debugfs_stat_data[i]);
559 		kfree(kvm->debugfs_stat_data);
560 	}
561 }
562 
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565 	char dir_name[ITOA_MAX_LEN * 2];
566 	struct kvm_stat_data *stat_data;
567 	struct kvm_stats_debugfs_item *p;
568 
569 	if (!debugfs_initialized())
570 		return 0;
571 
572 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574 						 kvm_debugfs_dir);
575 	if (!kvm->debugfs_dentry)
576 		return -ENOMEM;
577 
578 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 					 sizeof(*kvm->debugfs_stat_data),
580 					 GFP_KERNEL);
581 	if (!kvm->debugfs_stat_data)
582 		return -ENOMEM;
583 
584 	for (p = debugfs_entries; p->name; p++) {
585 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586 		if (!stat_data)
587 			return -ENOMEM;
588 
589 		stat_data->kvm = kvm;
590 		stat_data->offset = p->offset;
591 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 		if (!debugfs_create_file(p->name, 0644,
593 					 kvm->debugfs_dentry,
594 					 stat_data,
595 					 stat_fops_per_vm[p->kind]))
596 			return -ENOMEM;
597 	}
598 	return 0;
599 }
600 
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603 	int r, i;
604 	struct kvm *kvm = kvm_arch_alloc_vm();
605 
606 	if (!kvm)
607 		return ERR_PTR(-ENOMEM);
608 
609 	spin_lock_init(&kvm->mmu_lock);
610 	mmgrab(current->mm);
611 	kvm->mm = current->mm;
612 	kvm_eventfd_init(kvm);
613 	mutex_init(&kvm->lock);
614 	mutex_init(&kvm->irq_lock);
615 	mutex_init(&kvm->slots_lock);
616 	refcount_set(&kvm->users_count, 1);
617 	INIT_LIST_HEAD(&kvm->devices);
618 
619 	r = kvm_arch_init_vm(kvm, type);
620 	if (r)
621 		goto out_err_no_disable;
622 
623 	r = hardware_enable_all();
624 	if (r)
625 		goto out_err_no_disable;
626 
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630 
631 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632 
633 	r = -ENOMEM;
634 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 		struct kvm_memslots *slots = kvm_alloc_memslots();
636 		if (!slots)
637 			goto out_err_no_srcu;
638 		/*
639 		 * Generations must be different for each address space.
640 		 * Init kvm generation close to the maximum to easily test the
641 		 * code of handling generation number wrap-around.
642 		 */
643 		slots->generation = i * 2 - 150;
644 		rcu_assign_pointer(kvm->memslots[i], slots);
645 	}
646 
647 	if (init_srcu_struct(&kvm->srcu))
648 		goto out_err_no_srcu;
649 	if (init_srcu_struct(&kvm->irq_srcu))
650 		goto out_err_no_irq_srcu;
651 	for (i = 0; i < KVM_NR_BUSES; i++) {
652 		rcu_assign_pointer(kvm->buses[i],
653 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654 		if (!kvm->buses[i])
655 			goto out_err;
656 	}
657 
658 	r = kvm_init_mmu_notifier(kvm);
659 	if (r)
660 		goto out_err;
661 
662 	spin_lock(&kvm_lock);
663 	list_add(&kvm->vm_list, &vm_list);
664 	spin_unlock(&kvm_lock);
665 
666 	preempt_notifier_inc();
667 
668 	return kvm;
669 
670 out_err:
671 	cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673 	cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675 	hardware_disable_all();
676 out_err_no_disable:
677 	for (i = 0; i < KVM_NR_BUSES; i++)
678 		kfree(kvm_get_bus(kvm, i));
679 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681 	kvm_arch_free_vm(kvm);
682 	mmdrop(current->mm);
683 	return ERR_PTR(r);
684 }
685 
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688 	struct kvm_device *dev, *tmp;
689 
690 	/*
691 	 * We do not need to take the kvm->lock here, because nobody else
692 	 * has a reference to the struct kvm at this point and therefore
693 	 * cannot access the devices list anyhow.
694 	 */
695 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696 		list_del(&dev->vm_node);
697 		dev->ops->destroy(dev);
698 	}
699 }
700 
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703 	int i;
704 	struct mm_struct *mm = kvm->mm;
705 
706 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707 	kvm_destroy_vm_debugfs(kvm);
708 	kvm_arch_sync_events(kvm);
709 	spin_lock(&kvm_lock);
710 	list_del(&kvm->vm_list);
711 	spin_unlock(&kvm_lock);
712 	kvm_free_irq_routing(kvm);
713 	for (i = 0; i < KVM_NR_BUSES; i++) {
714 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715 
716 		if (bus)
717 			kvm_io_bus_destroy(bus);
718 		kvm->buses[i] = NULL;
719 	}
720 	kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724 	kvm_arch_flush_shadow_all(kvm);
725 #endif
726 	kvm_arch_destroy_vm(kvm);
727 	kvm_destroy_devices(kvm);
728 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730 	cleanup_srcu_struct(&kvm->irq_srcu);
731 	cleanup_srcu_struct(&kvm->srcu);
732 	kvm_arch_free_vm(kvm);
733 	preempt_notifier_dec();
734 	hardware_disable_all();
735 	mmdrop(mm);
736 }
737 
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740 	refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743 
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746 	if (refcount_dec_and_test(&kvm->users_count))
747 		kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750 
751 
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754 	struct kvm *kvm = filp->private_data;
755 
756 	kvm_irqfd_release(kvm);
757 
758 	kvm_put_kvm(kvm);
759 	return 0;
760 }
761 
762 /*
763  * Allocation size is twice as large as the actual dirty bitmap size.
764  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765  */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769 
770 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771 	if (!memslot->dirty_bitmap)
772 		return -ENOMEM;
773 
774 	return 0;
775 }
776 
777 /*
778  * Insert memslot and re-sort memslots based on their GFN,
779  * so binary search could be used to lookup GFN.
780  * Sorting algorithm takes advantage of having initially
781  * sorted array and known changed memslot position.
782  */
783 static void update_memslots(struct kvm_memslots *slots,
784 			    struct kvm_memory_slot *new)
785 {
786 	int id = new->id;
787 	int i = slots->id_to_index[id];
788 	struct kvm_memory_slot *mslots = slots->memslots;
789 
790 	WARN_ON(mslots[i].id != id);
791 	if (!new->npages) {
792 		WARN_ON(!mslots[i].npages);
793 		if (mslots[i].npages)
794 			slots->used_slots--;
795 	} else {
796 		if (!mslots[i].npages)
797 			slots->used_slots++;
798 	}
799 
800 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
801 	       new->base_gfn <= mslots[i + 1].base_gfn) {
802 		if (!mslots[i + 1].npages)
803 			break;
804 		mslots[i] = mslots[i + 1];
805 		slots->id_to_index[mslots[i].id] = i;
806 		i++;
807 	}
808 
809 	/*
810 	 * The ">=" is needed when creating a slot with base_gfn == 0,
811 	 * so that it moves before all those with base_gfn == npages == 0.
812 	 *
813 	 * On the other hand, if new->npages is zero, the above loop has
814 	 * already left i pointing to the beginning of the empty part of
815 	 * mslots, and the ">=" would move the hole backwards in this
816 	 * case---which is wrong.  So skip the loop when deleting a slot.
817 	 */
818 	if (new->npages) {
819 		while (i > 0 &&
820 		       new->base_gfn >= mslots[i - 1].base_gfn) {
821 			mslots[i] = mslots[i - 1];
822 			slots->id_to_index[mslots[i].id] = i;
823 			i--;
824 		}
825 	} else
826 		WARN_ON_ONCE(i != slots->used_slots);
827 
828 	mslots[i] = *new;
829 	slots->id_to_index[mslots[i].id] = i;
830 }
831 
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835 
836 #ifdef __KVM_HAVE_READONLY_MEM
837 	valid_flags |= KVM_MEM_READONLY;
838 #endif
839 
840 	if (mem->flags & ~valid_flags)
841 		return -EINVAL;
842 
843 	return 0;
844 }
845 
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847 		int as_id, struct kvm_memslots *slots)
848 {
849 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850 
851 	/*
852 	 * Set the low bit in the generation, which disables SPTE caching
853 	 * until the end of synchronize_srcu_expedited.
854 	 */
855 	WARN_ON(old_memslots->generation & 1);
856 	slots->generation = old_memslots->generation + 1;
857 
858 	rcu_assign_pointer(kvm->memslots[as_id], slots);
859 	synchronize_srcu_expedited(&kvm->srcu);
860 
861 	/*
862 	 * Increment the new memslot generation a second time. This prevents
863 	 * vm exits that race with memslot updates from caching a memslot
864 	 * generation that will (potentially) be valid forever.
865 	 *
866 	 * Generations must be unique even across address spaces.  We do not need
867 	 * a global counter for that, instead the generation space is evenly split
868 	 * across address spaces.  For example, with two address spaces, address
869 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870 	 * use generations 2, 6, 10, 14, ...
871 	 */
872 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873 
874 	kvm_arch_memslots_updated(kvm, slots);
875 
876 	return old_memslots;
877 }
878 
879 /*
880  * Allocate some memory and give it an address in the guest physical address
881  * space.
882  *
883  * Discontiguous memory is allowed, mostly for framebuffers.
884  *
885  * Must be called holding kvm->slots_lock for write.
886  */
887 int __kvm_set_memory_region(struct kvm *kvm,
888 			    const struct kvm_userspace_memory_region *mem)
889 {
890 	int r;
891 	gfn_t base_gfn;
892 	unsigned long npages;
893 	struct kvm_memory_slot *slot;
894 	struct kvm_memory_slot old, new;
895 	struct kvm_memslots *slots = NULL, *old_memslots;
896 	int as_id, id;
897 	enum kvm_mr_change change;
898 
899 	r = check_memory_region_flags(mem);
900 	if (r)
901 		goto out;
902 
903 	r = -EINVAL;
904 	as_id = mem->slot >> 16;
905 	id = (u16)mem->slot;
906 
907 	/* General sanity checks */
908 	if (mem->memory_size & (PAGE_SIZE - 1))
909 		goto out;
910 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911 		goto out;
912 	/* We can read the guest memory with __xxx_user() later on. */
913 	if ((id < KVM_USER_MEM_SLOTS) &&
914 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915 	     !access_ok(VERIFY_WRITE,
916 			(void __user *)(unsigned long)mem->userspace_addr,
917 			mem->memory_size)))
918 		goto out;
919 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920 		goto out;
921 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922 		goto out;
923 
924 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926 	npages = mem->memory_size >> PAGE_SHIFT;
927 
928 	if (npages > KVM_MEM_MAX_NR_PAGES)
929 		goto out;
930 
931 	new = old = *slot;
932 
933 	new.id = id;
934 	new.base_gfn = base_gfn;
935 	new.npages = npages;
936 	new.flags = mem->flags;
937 
938 	if (npages) {
939 		if (!old.npages)
940 			change = KVM_MR_CREATE;
941 		else { /* Modify an existing slot. */
942 			if ((mem->userspace_addr != old.userspace_addr) ||
943 			    (npages != old.npages) ||
944 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945 				goto out;
946 
947 			if (base_gfn != old.base_gfn)
948 				change = KVM_MR_MOVE;
949 			else if (new.flags != old.flags)
950 				change = KVM_MR_FLAGS_ONLY;
951 			else { /* Nothing to change. */
952 				r = 0;
953 				goto out;
954 			}
955 		}
956 	} else {
957 		if (!old.npages)
958 			goto out;
959 
960 		change = KVM_MR_DELETE;
961 		new.base_gfn = 0;
962 		new.flags = 0;
963 	}
964 
965 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966 		/* Check for overlaps */
967 		r = -EEXIST;
968 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970 			    (slot->id == id))
971 				continue;
972 			if (!((base_gfn + npages <= slot->base_gfn) ||
973 			      (base_gfn >= slot->base_gfn + slot->npages)))
974 				goto out;
975 		}
976 	}
977 
978 	/* Free page dirty bitmap if unneeded */
979 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980 		new.dirty_bitmap = NULL;
981 
982 	r = -ENOMEM;
983 	if (change == KVM_MR_CREATE) {
984 		new.userspace_addr = mem->userspace_addr;
985 
986 		if (kvm_arch_create_memslot(kvm, &new, npages))
987 			goto out_free;
988 	}
989 
990 	/* Allocate page dirty bitmap if needed */
991 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992 		if (kvm_create_dirty_bitmap(&new) < 0)
993 			goto out_free;
994 	}
995 
996 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997 	if (!slots)
998 		goto out_free;
999 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000 
1001 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002 		slot = id_to_memslot(slots, id);
1003 		slot->flags |= KVM_MEMSLOT_INVALID;
1004 
1005 		old_memslots = install_new_memslots(kvm, as_id, slots);
1006 
1007 		/* From this point no new shadow pages pointing to a deleted,
1008 		 * or moved, memslot will be created.
1009 		 *
1010 		 * validation of sp->gfn happens in:
1011 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1013 		 */
1014 		kvm_arch_flush_shadow_memslot(kvm, slot);
1015 
1016 		/*
1017 		 * We can re-use the old_memslots from above, the only difference
1018 		 * from the currently installed memslots is the invalid flag.  This
1019 		 * will get overwritten by update_memslots anyway.
1020 		 */
1021 		slots = old_memslots;
1022 	}
1023 
1024 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025 	if (r)
1026 		goto out_slots;
1027 
1028 	/* actual memory is freed via old in kvm_free_memslot below */
1029 	if (change == KVM_MR_DELETE) {
1030 		new.dirty_bitmap = NULL;
1031 		memset(&new.arch, 0, sizeof(new.arch));
1032 	}
1033 
1034 	update_memslots(slots, &new);
1035 	old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038 
1039 	kvm_free_memslot(kvm, &old, &new);
1040 	kvfree(old_memslots);
1041 	return 0;
1042 
1043 out_slots:
1044 	kvfree(slots);
1045 out_free:
1046 	kvm_free_memslot(kvm, &new, &old);
1047 out:
1048 	return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051 
1052 int kvm_set_memory_region(struct kvm *kvm,
1053 			  const struct kvm_userspace_memory_region *mem)
1054 {
1055 	int r;
1056 
1057 	mutex_lock(&kvm->slots_lock);
1058 	r = __kvm_set_memory_region(kvm, mem);
1059 	mutex_unlock(&kvm->slots_lock);
1060 	return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063 
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065 					  struct kvm_userspace_memory_region *mem)
1066 {
1067 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068 		return -EINVAL;
1069 
1070 	return kvm_set_memory_region(kvm, mem);
1071 }
1072 
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074 			struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076 	struct kvm_memslots *slots;
1077 	struct kvm_memory_slot *memslot;
1078 	int i, as_id, id;
1079 	unsigned long n;
1080 	unsigned long any = 0;
1081 
1082 	as_id = log->slot >> 16;
1083 	id = (u16)log->slot;
1084 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085 		return -EINVAL;
1086 
1087 	slots = __kvm_memslots(kvm, as_id);
1088 	memslot = id_to_memslot(slots, id);
1089 	if (!memslot->dirty_bitmap)
1090 		return -ENOENT;
1091 
1092 	n = kvm_dirty_bitmap_bytes(memslot);
1093 
1094 	for (i = 0; !any && i < n/sizeof(long); ++i)
1095 		any = memslot->dirty_bitmap[i];
1096 
1097 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098 		return -EFAULT;
1099 
1100 	if (any)
1101 		*is_dirty = 1;
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105 
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109  *	are dirty write protect them for next write.
1110  * @kvm:	pointer to kvm instance
1111  * @log:	slot id and address to which we copy the log
1112  * @is_dirty:	flag set if any page is dirty
1113  *
1114  * We need to keep it in mind that VCPU threads can write to the bitmap
1115  * concurrently. So, to avoid losing track of dirty pages we keep the
1116  * following order:
1117  *
1118  *    1. Take a snapshot of the bit and clear it if needed.
1119  *    2. Write protect the corresponding page.
1120  *    3. Copy the snapshot to the userspace.
1121  *    4. Upon return caller flushes TLB's if needed.
1122  *
1123  * Between 2 and 4, the guest may write to the page using the remaining TLB
1124  * entry.  This is not a problem because the page is reported dirty using
1125  * the snapshot taken before and step 4 ensures that writes done after
1126  * exiting to userspace will be logged for the next call.
1127  *
1128  */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130 			struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132 	struct kvm_memslots *slots;
1133 	struct kvm_memory_slot *memslot;
1134 	int i, as_id, id;
1135 	unsigned long n;
1136 	unsigned long *dirty_bitmap;
1137 	unsigned long *dirty_bitmap_buffer;
1138 
1139 	as_id = log->slot >> 16;
1140 	id = (u16)log->slot;
1141 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142 		return -EINVAL;
1143 
1144 	slots = __kvm_memslots(kvm, as_id);
1145 	memslot = id_to_memslot(slots, id);
1146 
1147 	dirty_bitmap = memslot->dirty_bitmap;
1148 	if (!dirty_bitmap)
1149 		return -ENOENT;
1150 
1151 	n = kvm_dirty_bitmap_bytes(memslot);
1152 
1153 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154 	memset(dirty_bitmap_buffer, 0, n);
1155 
1156 	spin_lock(&kvm->mmu_lock);
1157 	*is_dirty = false;
1158 	for (i = 0; i < n / sizeof(long); i++) {
1159 		unsigned long mask;
1160 		gfn_t offset;
1161 
1162 		if (!dirty_bitmap[i])
1163 			continue;
1164 
1165 		*is_dirty = true;
1166 
1167 		mask = xchg(&dirty_bitmap[i], 0);
1168 		dirty_bitmap_buffer[i] = mask;
1169 
1170 		if (mask) {
1171 			offset = i * BITS_PER_LONG;
1172 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173 								offset, mask);
1174 		}
1175 	}
1176 
1177 	spin_unlock(&kvm->mmu_lock);
1178 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179 		return -EFAULT;
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184 
1185 bool kvm_largepages_enabled(void)
1186 {
1187 	return largepages_enabled;
1188 }
1189 
1190 void kvm_disable_largepages(void)
1191 {
1192 	largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195 
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201 
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206 
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210 
1211 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212 	      memslot->flags & KVM_MEMSLOT_INVALID)
1213 		return false;
1214 
1215 	return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218 
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221 	struct vm_area_struct *vma;
1222 	unsigned long addr, size;
1223 
1224 	size = PAGE_SIZE;
1225 
1226 	addr = gfn_to_hva(kvm, gfn);
1227 	if (kvm_is_error_hva(addr))
1228 		return PAGE_SIZE;
1229 
1230 	down_read(&current->mm->mmap_sem);
1231 	vma = find_vma(current->mm, addr);
1232 	if (!vma)
1233 		goto out;
1234 
1235 	size = vma_kernel_pagesize(vma);
1236 
1237 out:
1238 	up_read(&current->mm->mmap_sem);
1239 
1240 	return size;
1241 }
1242 
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245 	return slot->flags & KVM_MEM_READONLY;
1246 }
1247 
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249 				       gfn_t *nr_pages, bool write)
1250 {
1251 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252 		return KVM_HVA_ERR_BAD;
1253 
1254 	if (memslot_is_readonly(slot) && write)
1255 		return KVM_HVA_ERR_RO_BAD;
1256 
1257 	if (nr_pages)
1258 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1259 
1260 	return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262 
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264 				     gfn_t *nr_pages)
1265 {
1266 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268 
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270 					gfn_t gfn)
1271 {
1272 	return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275 
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281 
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287 
1288 /*
1289  * If writable is set to false, the hva returned by this function is only
1290  * allowed to be read.
1291  */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293 				      gfn_t gfn, bool *writable)
1294 {
1295 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296 
1297 	if (!kvm_is_error_hva(hva) && writable)
1298 		*writable = !memslot_is_readonly(slot);
1299 
1300 	return hva;
1301 }
1302 
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306 
1307 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309 
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313 
1314 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316 
1317 static int get_user_page_nowait(unsigned long start, int write,
1318 		struct page **page)
1319 {
1320 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321 
1322 	if (write)
1323 		flags |= FOLL_WRITE;
1324 
1325 	return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327 
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331 
1332 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333 	return rc == -EHWPOISON;
1334 }
1335 
1336 /*
1337  * The atomic path to get the writable pfn which will be stored in @pfn,
1338  * true indicates success, otherwise false is returned.
1339  */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343 	struct page *page[1];
1344 	int npages;
1345 
1346 	if (!(async || atomic))
1347 		return false;
1348 
1349 	/*
1350 	 * Fast pin a writable pfn only if it is a write fault request
1351 	 * or the caller allows to map a writable pfn for a read fault
1352 	 * request.
1353 	 */
1354 	if (!(write_fault || writable))
1355 		return false;
1356 
1357 	npages = __get_user_pages_fast(addr, 1, 1, page);
1358 	if (npages == 1) {
1359 		*pfn = page_to_pfn(page[0]);
1360 
1361 		if (writable)
1362 			*writable = true;
1363 		return true;
1364 	}
1365 
1366 	return false;
1367 }
1368 
1369 /*
1370  * The slow path to get the pfn of the specified host virtual address,
1371  * 1 indicates success, -errno is returned if error is detected.
1372  */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374 			   bool *writable, kvm_pfn_t *pfn)
1375 {
1376 	struct page *page[1];
1377 	int npages = 0;
1378 
1379 	might_sleep();
1380 
1381 	if (writable)
1382 		*writable = write_fault;
1383 
1384 	if (async) {
1385 		down_read(&current->mm->mmap_sem);
1386 		npages = get_user_page_nowait(addr, write_fault, page);
1387 		up_read(&current->mm->mmap_sem);
1388 	} else {
1389 		unsigned int flags = FOLL_HWPOISON;
1390 
1391 		if (write_fault)
1392 			flags |= FOLL_WRITE;
1393 
1394 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1395 	}
1396 	if (npages != 1)
1397 		return npages;
1398 
1399 	/* map read fault as writable if possible */
1400 	if (unlikely(!write_fault) && writable) {
1401 		struct page *wpage[1];
1402 
1403 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404 		if (npages == 1) {
1405 			*writable = true;
1406 			put_page(page[0]);
1407 			page[0] = wpage[0];
1408 		}
1409 
1410 		npages = 1;
1411 	}
1412 	*pfn = page_to_pfn(page[0]);
1413 	return npages;
1414 }
1415 
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418 	if (unlikely(!(vma->vm_flags & VM_READ)))
1419 		return false;
1420 
1421 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 		return false;
1423 
1424 	return true;
1425 }
1426 
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 			       unsigned long addr, bool *async,
1429 			       bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431 	unsigned long pfn;
1432 	int r;
1433 
1434 	r = follow_pfn(vma, addr, &pfn);
1435 	if (r) {
1436 		/*
1437 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438 		 * not call the fault handler, so do it here.
1439 		 */
1440 		bool unlocked = false;
1441 		r = fixup_user_fault(current, current->mm, addr,
1442 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1443 				     &unlocked);
1444 		if (unlocked)
1445 			return -EAGAIN;
1446 		if (r)
1447 			return r;
1448 
1449 		r = follow_pfn(vma, addr, &pfn);
1450 		if (r)
1451 			return r;
1452 
1453 	}
1454 
1455 
1456 	/*
1457 	 * Get a reference here because callers of *hva_to_pfn* and
1458 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1460 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461 	 * simply do nothing for reserved pfns.
1462 	 *
1463 	 * Whoever called remap_pfn_range is also going to call e.g.
1464 	 * unmap_mapping_range before the underlying pages are freed,
1465 	 * causing a call to our MMU notifier.
1466 	 */
1467 	kvm_get_pfn(pfn);
1468 
1469 	*p_pfn = pfn;
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Pin guest page in memory and return its pfn.
1475  * @addr: host virtual address which maps memory to the guest
1476  * @atomic: whether this function can sleep
1477  * @async: whether this function need to wait IO complete if the
1478  *         host page is not in the memory
1479  * @write_fault: whether we should get a writable host page
1480  * @writable: whether it allows to map a writable host page for !@write_fault
1481  *
1482  * The function will map a writable host page for these two cases:
1483  * 1): @write_fault = true
1484  * 2): @write_fault = false && @writable, @writable will tell the caller
1485  *     whether the mapping is writable.
1486  */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488 			bool write_fault, bool *writable)
1489 {
1490 	struct vm_area_struct *vma;
1491 	kvm_pfn_t pfn = 0;
1492 	int npages, r;
1493 
1494 	/* we can do it either atomically or asynchronously, not both */
1495 	BUG_ON(atomic && async);
1496 
1497 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498 		return pfn;
1499 
1500 	if (atomic)
1501 		return KVM_PFN_ERR_FAULT;
1502 
1503 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504 	if (npages == 1)
1505 		return pfn;
1506 
1507 	down_read(&current->mm->mmap_sem);
1508 	if (npages == -EHWPOISON ||
1509 	      (!async && check_user_page_hwpoison(addr))) {
1510 		pfn = KVM_PFN_ERR_HWPOISON;
1511 		goto exit;
1512 	}
1513 
1514 retry:
1515 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1516 
1517 	if (vma == NULL)
1518 		pfn = KVM_PFN_ERR_FAULT;
1519 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521 		if (r == -EAGAIN)
1522 			goto retry;
1523 		if (r < 0)
1524 			pfn = KVM_PFN_ERR_FAULT;
1525 	} else {
1526 		if (async && vma_is_valid(vma, write_fault))
1527 			*async = true;
1528 		pfn = KVM_PFN_ERR_FAULT;
1529 	}
1530 exit:
1531 	up_read(&current->mm->mmap_sem);
1532 	return pfn;
1533 }
1534 
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536 			       bool atomic, bool *async, bool write_fault,
1537 			       bool *writable)
1538 {
1539 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540 
1541 	if (addr == KVM_HVA_ERR_RO_BAD) {
1542 		if (writable)
1543 			*writable = false;
1544 		return KVM_PFN_ERR_RO_FAULT;
1545 	}
1546 
1547 	if (kvm_is_error_hva(addr)) {
1548 		if (writable)
1549 			*writable = false;
1550 		return KVM_PFN_NOSLOT;
1551 	}
1552 
1553 	/* Do not map writable pfn in the readonly memslot. */
1554 	if (writable && memslot_is_readonly(slot)) {
1555 		*writable = false;
1556 		writable = NULL;
1557 	}
1558 
1559 	return hva_to_pfn(addr, atomic, async, write_fault,
1560 			  writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563 
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565 		      bool *writable)
1566 {
1567 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568 				    write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571 
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577 
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583 
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589 
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595 
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601 
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607 
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609 			    struct page **pages, int nr_pages)
1610 {
1611 	unsigned long addr;
1612 	gfn_t entry = 0;
1613 
1614 	addr = gfn_to_hva_many(slot, gfn, &entry);
1615 	if (kvm_is_error_hva(addr))
1616 		return -1;
1617 
1618 	if (entry < nr_pages)
1619 		return 0;
1620 
1621 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624 
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627 	if (is_error_noslot_pfn(pfn))
1628 		return KVM_ERR_PTR_BAD_PAGE;
1629 
1630 	if (kvm_is_reserved_pfn(pfn)) {
1631 		WARN_ON(1);
1632 		return KVM_ERR_PTR_BAD_PAGE;
1633 	}
1634 
1635 	return pfn_to_page(pfn);
1636 }
1637 
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640 	kvm_pfn_t pfn;
1641 
1642 	pfn = gfn_to_pfn(kvm, gfn);
1643 
1644 	return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647 
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650 	kvm_pfn_t pfn;
1651 
1652 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653 
1654 	return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657 
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660 	WARN_ON(is_error_page(page));
1661 
1662 	kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665 
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669 		put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672 
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675 	WARN_ON(is_error_page(page));
1676 
1677 	kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680 
1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683 	kvm_set_pfn_dirty(pfn);
1684 	kvm_release_pfn_clean(pfn);
1685 }
1686 
1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1688 {
1689 	if (!kvm_is_reserved_pfn(pfn)) {
1690 		struct page *page = pfn_to_page(pfn);
1691 
1692 		if (!PageReserved(page))
1693 			SetPageDirty(page);
1694 	}
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1697 
1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1699 {
1700 	if (!kvm_is_reserved_pfn(pfn))
1701 		mark_page_accessed(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1704 
1705 void kvm_get_pfn(kvm_pfn_t pfn)
1706 {
1707 	if (!kvm_is_reserved_pfn(pfn))
1708 		get_page(pfn_to_page(pfn));
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1711 
1712 static int next_segment(unsigned long len, int offset)
1713 {
1714 	if (len > PAGE_SIZE - offset)
1715 		return PAGE_SIZE - offset;
1716 	else
1717 		return len;
1718 }
1719 
1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1721 				 void *data, int offset, int len)
1722 {
1723 	int r;
1724 	unsigned long addr;
1725 
1726 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1727 	if (kvm_is_error_hva(addr))
1728 		return -EFAULT;
1729 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1730 	if (r)
1731 		return -EFAULT;
1732 	return 0;
1733 }
1734 
1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1736 			int len)
1737 {
1738 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1739 
1740 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1743 
1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1745 			     int offset, int len)
1746 {
1747 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1748 
1749 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1752 
1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1754 {
1755 	gfn_t gfn = gpa >> PAGE_SHIFT;
1756 	int seg;
1757 	int offset = offset_in_page(gpa);
1758 	int ret;
1759 
1760 	while ((seg = next_segment(len, offset)) != 0) {
1761 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1762 		if (ret < 0)
1763 			return ret;
1764 		offset = 0;
1765 		len -= seg;
1766 		data += seg;
1767 		++gfn;
1768 	}
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest);
1772 
1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1774 {
1775 	gfn_t gfn = gpa >> PAGE_SHIFT;
1776 	int seg;
1777 	int offset = offset_in_page(gpa);
1778 	int ret;
1779 
1780 	while ((seg = next_segment(len, offset)) != 0) {
1781 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1782 		if (ret < 0)
1783 			return ret;
1784 		offset = 0;
1785 		len -= seg;
1786 		data += seg;
1787 		++gfn;
1788 	}
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1792 
1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1794 			           void *data, int offset, unsigned long len)
1795 {
1796 	int r;
1797 	unsigned long addr;
1798 
1799 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1800 	if (kvm_is_error_hva(addr))
1801 		return -EFAULT;
1802 	pagefault_disable();
1803 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1804 	pagefault_enable();
1805 	if (r)
1806 		return -EFAULT;
1807 	return 0;
1808 }
1809 
1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1811 			  unsigned long len)
1812 {
1813 	gfn_t gfn = gpa >> PAGE_SHIFT;
1814 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1815 	int offset = offset_in_page(gpa);
1816 
1817 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1820 
1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1822 			       void *data, unsigned long len)
1823 {
1824 	gfn_t gfn = gpa >> PAGE_SHIFT;
1825 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1826 	int offset = offset_in_page(gpa);
1827 
1828 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1831 
1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1833 			          const void *data, int offset, int len)
1834 {
1835 	int r;
1836 	unsigned long addr;
1837 
1838 	addr = gfn_to_hva_memslot(memslot, gfn);
1839 	if (kvm_is_error_hva(addr))
1840 		return -EFAULT;
1841 	r = __copy_to_user((void __user *)addr + offset, data, len);
1842 	if (r)
1843 		return -EFAULT;
1844 	mark_page_dirty_in_slot(memslot, gfn);
1845 	return 0;
1846 }
1847 
1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1849 			 const void *data, int offset, int len)
1850 {
1851 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1852 
1853 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1856 
1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1858 			      const void *data, int offset, int len)
1859 {
1860 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861 
1862 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1865 
1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1867 		    unsigned long len)
1868 {
1869 	gfn_t gfn = gpa >> PAGE_SHIFT;
1870 	int seg;
1871 	int offset = offset_in_page(gpa);
1872 	int ret;
1873 
1874 	while ((seg = next_segment(len, offset)) != 0) {
1875 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1876 		if (ret < 0)
1877 			return ret;
1878 		offset = 0;
1879 		len -= seg;
1880 		data += seg;
1881 		++gfn;
1882 	}
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest);
1886 
1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1888 		         unsigned long len)
1889 {
1890 	gfn_t gfn = gpa >> PAGE_SHIFT;
1891 	int seg;
1892 	int offset = offset_in_page(gpa);
1893 	int ret;
1894 
1895 	while ((seg = next_segment(len, offset)) != 0) {
1896 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1897 		if (ret < 0)
1898 			return ret;
1899 		offset = 0;
1900 		len -= seg;
1901 		data += seg;
1902 		++gfn;
1903 	}
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1907 
1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1909 				       struct gfn_to_hva_cache *ghc,
1910 				       gpa_t gpa, unsigned long len)
1911 {
1912 	int offset = offset_in_page(gpa);
1913 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1914 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1915 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1916 	gfn_t nr_pages_avail;
1917 
1918 	ghc->gpa = gpa;
1919 	ghc->generation = slots->generation;
1920 	ghc->len = len;
1921 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1922 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1923 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1924 		ghc->hva += offset;
1925 	} else {
1926 		/*
1927 		 * If the requested region crosses two memslots, we still
1928 		 * verify that the entire region is valid here.
1929 		 */
1930 		while (start_gfn <= end_gfn) {
1931 			nr_pages_avail = 0;
1932 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1934 						   &nr_pages_avail);
1935 			if (kvm_is_error_hva(ghc->hva))
1936 				return -EFAULT;
1937 			start_gfn += nr_pages_avail;
1938 		}
1939 		/* Use the slow path for cross page reads and writes. */
1940 		ghc->memslot = NULL;
1941 	}
1942 	return 0;
1943 }
1944 
1945 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1946 			      gpa_t gpa, unsigned long len)
1947 {
1948 	struct kvm_memslots *slots = kvm_memslots(kvm);
1949 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1952 
1953 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954 			   void *data, int offset, unsigned long len)
1955 {
1956 	struct kvm_memslots *slots = kvm_memslots(kvm);
1957 	int r;
1958 	gpa_t gpa = ghc->gpa + offset;
1959 
1960 	BUG_ON(len + offset > ghc->len);
1961 
1962 	if (slots->generation != ghc->generation)
1963 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1964 
1965 	if (unlikely(!ghc->memslot))
1966 		return kvm_write_guest(kvm, gpa, data, len);
1967 
1968 	if (kvm_is_error_hva(ghc->hva))
1969 		return -EFAULT;
1970 
1971 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1972 	if (r)
1973 		return -EFAULT;
1974 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1979 
1980 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1981 			   void *data, unsigned long len)
1982 {
1983 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1986 
1987 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1988 			   void *data, unsigned long len)
1989 {
1990 	struct kvm_memslots *slots = kvm_memslots(kvm);
1991 	int r;
1992 
1993 	BUG_ON(len > ghc->len);
1994 
1995 	if (slots->generation != ghc->generation)
1996 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1997 
1998 	if (unlikely(!ghc->memslot))
1999 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2000 
2001 	if (kvm_is_error_hva(ghc->hva))
2002 		return -EFAULT;
2003 
2004 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2005 	if (r)
2006 		return -EFAULT;
2007 
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2011 
2012 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2013 {
2014 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2015 
2016 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2019 
2020 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2021 {
2022 	gfn_t gfn = gpa >> PAGE_SHIFT;
2023 	int seg;
2024 	int offset = offset_in_page(gpa);
2025 	int ret;
2026 
2027 	while ((seg = next_segment(len, offset)) != 0) {
2028 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2029 		if (ret < 0)
2030 			return ret;
2031 		offset = 0;
2032 		len -= seg;
2033 		++gfn;
2034 	}
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2038 
2039 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2040 				    gfn_t gfn)
2041 {
2042 	if (memslot && memslot->dirty_bitmap) {
2043 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2044 
2045 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2046 	}
2047 }
2048 
2049 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2050 {
2051 	struct kvm_memory_slot *memslot;
2052 
2053 	memslot = gfn_to_memslot(kvm, gfn);
2054 	mark_page_dirty_in_slot(memslot, gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(mark_page_dirty);
2057 
2058 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2059 {
2060 	struct kvm_memory_slot *memslot;
2061 
2062 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2063 	mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2066 
2067 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2068 {
2069 	unsigned int old, val, grow;
2070 
2071 	old = val = vcpu->halt_poll_ns;
2072 	grow = READ_ONCE(halt_poll_ns_grow);
2073 	/* 10us base */
2074 	if (val == 0 && grow)
2075 		val = 10000;
2076 	else
2077 		val *= grow;
2078 
2079 	if (val > halt_poll_ns)
2080 		val = halt_poll_ns;
2081 
2082 	vcpu->halt_poll_ns = val;
2083 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2084 }
2085 
2086 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2087 {
2088 	unsigned int old, val, shrink;
2089 
2090 	old = val = vcpu->halt_poll_ns;
2091 	shrink = READ_ONCE(halt_poll_ns_shrink);
2092 	if (shrink == 0)
2093 		val = 0;
2094 	else
2095 		val /= shrink;
2096 
2097 	vcpu->halt_poll_ns = val;
2098 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2099 }
2100 
2101 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2102 {
2103 	if (kvm_arch_vcpu_runnable(vcpu)) {
2104 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2105 		return -EINTR;
2106 	}
2107 	if (kvm_cpu_has_pending_timer(vcpu))
2108 		return -EINTR;
2109 	if (signal_pending(current))
2110 		return -EINTR;
2111 
2112 	return 0;
2113 }
2114 
2115 /*
2116  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2117  */
2118 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2119 {
2120 	ktime_t start, cur;
2121 	DECLARE_SWAITQUEUE(wait);
2122 	bool waited = false;
2123 	u64 block_ns;
2124 
2125 	start = cur = ktime_get();
2126 	if (vcpu->halt_poll_ns) {
2127 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2128 
2129 		++vcpu->stat.halt_attempted_poll;
2130 		do {
2131 			/*
2132 			 * This sets KVM_REQ_UNHALT if an interrupt
2133 			 * arrives.
2134 			 */
2135 			if (kvm_vcpu_check_block(vcpu) < 0) {
2136 				++vcpu->stat.halt_successful_poll;
2137 				if (!vcpu_valid_wakeup(vcpu))
2138 					++vcpu->stat.halt_poll_invalid;
2139 				goto out;
2140 			}
2141 			cur = ktime_get();
2142 		} while (single_task_running() && ktime_before(cur, stop));
2143 	}
2144 
2145 	kvm_arch_vcpu_blocking(vcpu);
2146 
2147 	for (;;) {
2148 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2149 
2150 		if (kvm_vcpu_check_block(vcpu) < 0)
2151 			break;
2152 
2153 		waited = true;
2154 		schedule();
2155 	}
2156 
2157 	finish_swait(&vcpu->wq, &wait);
2158 	cur = ktime_get();
2159 
2160 	kvm_arch_vcpu_unblocking(vcpu);
2161 out:
2162 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2163 
2164 	if (!vcpu_valid_wakeup(vcpu))
2165 		shrink_halt_poll_ns(vcpu);
2166 	else if (halt_poll_ns) {
2167 		if (block_ns <= vcpu->halt_poll_ns)
2168 			;
2169 		/* we had a long block, shrink polling */
2170 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2171 			shrink_halt_poll_ns(vcpu);
2172 		/* we had a short halt and our poll time is too small */
2173 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2174 			block_ns < halt_poll_ns)
2175 			grow_halt_poll_ns(vcpu);
2176 	} else
2177 		vcpu->halt_poll_ns = 0;
2178 
2179 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2180 	kvm_arch_vcpu_block_finish(vcpu);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2183 
2184 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2185 {
2186 	struct swait_queue_head *wqp;
2187 
2188 	wqp = kvm_arch_vcpu_wq(vcpu);
2189 	if (swait_active(wqp)) {
2190 		swake_up(wqp);
2191 		++vcpu->stat.halt_wakeup;
2192 		return true;
2193 	}
2194 
2195 	return false;
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2198 
2199 #ifndef CONFIG_S390
2200 /*
2201  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2202  */
2203 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2204 {
2205 	int me;
2206 	int cpu = vcpu->cpu;
2207 
2208 	if (kvm_vcpu_wake_up(vcpu))
2209 		return;
2210 
2211 	me = get_cpu();
2212 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213 		if (kvm_arch_vcpu_should_kick(vcpu))
2214 			smp_send_reschedule(cpu);
2215 	put_cpu();
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2219 
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2221 {
2222 	struct pid *pid;
2223 	struct task_struct *task = NULL;
2224 	int ret = 0;
2225 
2226 	rcu_read_lock();
2227 	pid = rcu_dereference(target->pid);
2228 	if (pid)
2229 		task = get_pid_task(pid, PIDTYPE_PID);
2230 	rcu_read_unlock();
2231 	if (!task)
2232 		return ret;
2233 	ret = yield_to(task, 1);
2234 	put_task_struct(task);
2235 
2236 	return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2239 
2240 /*
2241  * Helper that checks whether a VCPU is eligible for directed yield.
2242  * Most eligible candidate to yield is decided by following heuristics:
2243  *
2244  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245  *  (preempted lock holder), indicated by @in_spin_loop.
2246  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2247  *
2248  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249  *  chance last time (mostly it has become eligible now since we have probably
2250  *  yielded to lockholder in last iteration. This is done by toggling
2251  *  @dy_eligible each time a VCPU checked for eligibility.)
2252  *
2253  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2255  *  burning. Giving priority for a potential lock-holder increases lock
2256  *  progress.
2257  *
2258  *  Since algorithm is based on heuristics, accessing another VCPU data without
2259  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2260  *  and continue with next VCPU and so on.
2261  */
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2263 {
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2265 	bool eligible;
2266 
2267 	eligible = !vcpu->spin_loop.in_spin_loop ||
2268 		    vcpu->spin_loop.dy_eligible;
2269 
2270 	if (vcpu->spin_loop.in_spin_loop)
2271 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2272 
2273 	return eligible;
2274 #else
2275 	return true;
2276 #endif
2277 }
2278 
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2280 {
2281 	struct kvm *kvm = me->kvm;
2282 	struct kvm_vcpu *vcpu;
2283 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2284 	int yielded = 0;
2285 	int try = 3;
2286 	int pass;
2287 	int i;
2288 
2289 	kvm_vcpu_set_in_spin_loop(me, true);
2290 	/*
2291 	 * We boost the priority of a VCPU that is runnable but not
2292 	 * currently running, because it got preempted by something
2293 	 * else and called schedule in __vcpu_run.  Hopefully that
2294 	 * VCPU is holding the lock that we need and will release it.
2295 	 * We approximate round-robin by starting at the last boosted VCPU.
2296 	 */
2297 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298 		kvm_for_each_vcpu(i, vcpu, kvm) {
2299 			if (!pass && i <= last_boosted_vcpu) {
2300 				i = last_boosted_vcpu;
2301 				continue;
2302 			} else if (pass && i > last_boosted_vcpu)
2303 				break;
2304 			if (!ACCESS_ONCE(vcpu->preempted))
2305 				continue;
2306 			if (vcpu == me)
2307 				continue;
2308 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2309 				continue;
2310 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2311 				continue;
2312 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2313 				continue;
2314 
2315 			yielded = kvm_vcpu_yield_to(vcpu);
2316 			if (yielded > 0) {
2317 				kvm->last_boosted_vcpu = i;
2318 				break;
2319 			} else if (yielded < 0) {
2320 				try--;
2321 				if (!try)
2322 					break;
2323 			}
2324 		}
2325 	}
2326 	kvm_vcpu_set_in_spin_loop(me, false);
2327 
2328 	/* Ensure vcpu is not eligible during next spinloop */
2329 	kvm_vcpu_set_dy_eligible(me, false);
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2332 
2333 static int kvm_vcpu_fault(struct vm_fault *vmf)
2334 {
2335 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2336 	struct page *page;
2337 
2338 	if (vmf->pgoff == 0)
2339 		page = virt_to_page(vcpu->run);
2340 #ifdef CONFIG_X86
2341 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2342 		page = virt_to_page(vcpu->arch.pio_data);
2343 #endif
2344 #ifdef CONFIG_KVM_MMIO
2345 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2346 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2347 #endif
2348 	else
2349 		return kvm_arch_vcpu_fault(vcpu, vmf);
2350 	get_page(page);
2351 	vmf->page = page;
2352 	return 0;
2353 }
2354 
2355 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2356 	.fault = kvm_vcpu_fault,
2357 };
2358 
2359 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2360 {
2361 	vma->vm_ops = &kvm_vcpu_vm_ops;
2362 	return 0;
2363 }
2364 
2365 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2366 {
2367 	struct kvm_vcpu *vcpu = filp->private_data;
2368 
2369 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2370 	kvm_put_kvm(vcpu->kvm);
2371 	return 0;
2372 }
2373 
2374 static struct file_operations kvm_vcpu_fops = {
2375 	.release        = kvm_vcpu_release,
2376 	.unlocked_ioctl = kvm_vcpu_ioctl,
2377 #ifdef CONFIG_KVM_COMPAT
2378 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2379 #endif
2380 	.mmap           = kvm_vcpu_mmap,
2381 	.llseek		= noop_llseek,
2382 };
2383 
2384 /*
2385  * Allocates an inode for the vcpu.
2386  */
2387 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2388 {
2389 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2390 }
2391 
2392 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2393 {
2394 	char dir_name[ITOA_MAX_LEN * 2];
2395 	int ret;
2396 
2397 	if (!kvm_arch_has_vcpu_debugfs())
2398 		return 0;
2399 
2400 	if (!debugfs_initialized())
2401 		return 0;
2402 
2403 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2404 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2405 								vcpu->kvm->debugfs_dentry);
2406 	if (!vcpu->debugfs_dentry)
2407 		return -ENOMEM;
2408 
2409 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2410 	if (ret < 0) {
2411 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2412 		return ret;
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 /*
2419  * Creates some virtual cpus.  Good luck creating more than one.
2420  */
2421 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2422 {
2423 	int r;
2424 	struct kvm_vcpu *vcpu;
2425 
2426 	if (id >= KVM_MAX_VCPU_ID)
2427 		return -EINVAL;
2428 
2429 	mutex_lock(&kvm->lock);
2430 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2431 		mutex_unlock(&kvm->lock);
2432 		return -EINVAL;
2433 	}
2434 
2435 	kvm->created_vcpus++;
2436 	mutex_unlock(&kvm->lock);
2437 
2438 	vcpu = kvm_arch_vcpu_create(kvm, id);
2439 	if (IS_ERR(vcpu)) {
2440 		r = PTR_ERR(vcpu);
2441 		goto vcpu_decrement;
2442 	}
2443 
2444 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2445 
2446 	r = kvm_arch_vcpu_setup(vcpu);
2447 	if (r)
2448 		goto vcpu_destroy;
2449 
2450 	r = kvm_create_vcpu_debugfs(vcpu);
2451 	if (r)
2452 		goto vcpu_destroy;
2453 
2454 	mutex_lock(&kvm->lock);
2455 	if (kvm_get_vcpu_by_id(kvm, id)) {
2456 		r = -EEXIST;
2457 		goto unlock_vcpu_destroy;
2458 	}
2459 
2460 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2461 
2462 	/* Now it's all set up, let userspace reach it */
2463 	kvm_get_kvm(kvm);
2464 	r = create_vcpu_fd(vcpu);
2465 	if (r < 0) {
2466 		kvm_put_kvm(kvm);
2467 		goto unlock_vcpu_destroy;
2468 	}
2469 
2470 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2471 
2472 	/*
2473 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2474 	 * before kvm->online_vcpu's incremented value.
2475 	 */
2476 	smp_wmb();
2477 	atomic_inc(&kvm->online_vcpus);
2478 
2479 	mutex_unlock(&kvm->lock);
2480 	kvm_arch_vcpu_postcreate(vcpu);
2481 	return r;
2482 
2483 unlock_vcpu_destroy:
2484 	mutex_unlock(&kvm->lock);
2485 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2486 vcpu_destroy:
2487 	kvm_arch_vcpu_destroy(vcpu);
2488 vcpu_decrement:
2489 	mutex_lock(&kvm->lock);
2490 	kvm->created_vcpus--;
2491 	mutex_unlock(&kvm->lock);
2492 	return r;
2493 }
2494 
2495 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2496 {
2497 	if (sigset) {
2498 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2499 		vcpu->sigset_active = 1;
2500 		vcpu->sigset = *sigset;
2501 	} else
2502 		vcpu->sigset_active = 0;
2503 	return 0;
2504 }
2505 
2506 static long kvm_vcpu_ioctl(struct file *filp,
2507 			   unsigned int ioctl, unsigned long arg)
2508 {
2509 	struct kvm_vcpu *vcpu = filp->private_data;
2510 	void __user *argp = (void __user *)arg;
2511 	int r;
2512 	struct kvm_fpu *fpu = NULL;
2513 	struct kvm_sregs *kvm_sregs = NULL;
2514 
2515 	if (vcpu->kvm->mm != current->mm)
2516 		return -EIO;
2517 
2518 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2519 		return -EINVAL;
2520 
2521 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2522 	/*
2523 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2524 	 * so vcpu_load() would break it.
2525 	 */
2526 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2527 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2528 #endif
2529 
2530 
2531 	r = vcpu_load(vcpu);
2532 	if (r)
2533 		return r;
2534 	switch (ioctl) {
2535 	case KVM_RUN: {
2536 		struct pid *oldpid;
2537 		r = -EINVAL;
2538 		if (arg)
2539 			goto out;
2540 		oldpid = rcu_access_pointer(vcpu->pid);
2541 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2542 			/* The thread running this VCPU changed. */
2543 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2544 
2545 			rcu_assign_pointer(vcpu->pid, newpid);
2546 			if (oldpid)
2547 				synchronize_rcu();
2548 			put_pid(oldpid);
2549 		}
2550 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2551 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2552 		break;
2553 	}
2554 	case KVM_GET_REGS: {
2555 		struct kvm_regs *kvm_regs;
2556 
2557 		r = -ENOMEM;
2558 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2559 		if (!kvm_regs)
2560 			goto out;
2561 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2562 		if (r)
2563 			goto out_free1;
2564 		r = -EFAULT;
2565 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2566 			goto out_free1;
2567 		r = 0;
2568 out_free1:
2569 		kfree(kvm_regs);
2570 		break;
2571 	}
2572 	case KVM_SET_REGS: {
2573 		struct kvm_regs *kvm_regs;
2574 
2575 		r = -ENOMEM;
2576 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2577 		if (IS_ERR(kvm_regs)) {
2578 			r = PTR_ERR(kvm_regs);
2579 			goto out;
2580 		}
2581 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2582 		kfree(kvm_regs);
2583 		break;
2584 	}
2585 	case KVM_GET_SREGS: {
2586 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2587 		r = -ENOMEM;
2588 		if (!kvm_sregs)
2589 			goto out;
2590 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2591 		if (r)
2592 			goto out;
2593 		r = -EFAULT;
2594 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2595 			goto out;
2596 		r = 0;
2597 		break;
2598 	}
2599 	case KVM_SET_SREGS: {
2600 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2601 		if (IS_ERR(kvm_sregs)) {
2602 			r = PTR_ERR(kvm_sregs);
2603 			kvm_sregs = NULL;
2604 			goto out;
2605 		}
2606 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2607 		break;
2608 	}
2609 	case KVM_GET_MP_STATE: {
2610 		struct kvm_mp_state mp_state;
2611 
2612 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2613 		if (r)
2614 			goto out;
2615 		r = -EFAULT;
2616 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2617 			goto out;
2618 		r = 0;
2619 		break;
2620 	}
2621 	case KVM_SET_MP_STATE: {
2622 		struct kvm_mp_state mp_state;
2623 
2624 		r = -EFAULT;
2625 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2626 			goto out;
2627 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2628 		break;
2629 	}
2630 	case KVM_TRANSLATE: {
2631 		struct kvm_translation tr;
2632 
2633 		r = -EFAULT;
2634 		if (copy_from_user(&tr, argp, sizeof(tr)))
2635 			goto out;
2636 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2637 		if (r)
2638 			goto out;
2639 		r = -EFAULT;
2640 		if (copy_to_user(argp, &tr, sizeof(tr)))
2641 			goto out;
2642 		r = 0;
2643 		break;
2644 	}
2645 	case KVM_SET_GUEST_DEBUG: {
2646 		struct kvm_guest_debug dbg;
2647 
2648 		r = -EFAULT;
2649 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2650 			goto out;
2651 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2652 		break;
2653 	}
2654 	case KVM_SET_SIGNAL_MASK: {
2655 		struct kvm_signal_mask __user *sigmask_arg = argp;
2656 		struct kvm_signal_mask kvm_sigmask;
2657 		sigset_t sigset, *p;
2658 
2659 		p = NULL;
2660 		if (argp) {
2661 			r = -EFAULT;
2662 			if (copy_from_user(&kvm_sigmask, argp,
2663 					   sizeof(kvm_sigmask)))
2664 				goto out;
2665 			r = -EINVAL;
2666 			if (kvm_sigmask.len != sizeof(sigset))
2667 				goto out;
2668 			r = -EFAULT;
2669 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2670 					   sizeof(sigset)))
2671 				goto out;
2672 			p = &sigset;
2673 		}
2674 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2675 		break;
2676 	}
2677 	case KVM_GET_FPU: {
2678 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2679 		r = -ENOMEM;
2680 		if (!fpu)
2681 			goto out;
2682 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2683 		if (r)
2684 			goto out;
2685 		r = -EFAULT;
2686 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2687 			goto out;
2688 		r = 0;
2689 		break;
2690 	}
2691 	case KVM_SET_FPU: {
2692 		fpu = memdup_user(argp, sizeof(*fpu));
2693 		if (IS_ERR(fpu)) {
2694 			r = PTR_ERR(fpu);
2695 			fpu = NULL;
2696 			goto out;
2697 		}
2698 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2699 		break;
2700 	}
2701 	default:
2702 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2703 	}
2704 out:
2705 	vcpu_put(vcpu);
2706 	kfree(fpu);
2707 	kfree(kvm_sregs);
2708 	return r;
2709 }
2710 
2711 #ifdef CONFIG_KVM_COMPAT
2712 static long kvm_vcpu_compat_ioctl(struct file *filp,
2713 				  unsigned int ioctl, unsigned long arg)
2714 {
2715 	struct kvm_vcpu *vcpu = filp->private_data;
2716 	void __user *argp = compat_ptr(arg);
2717 	int r;
2718 
2719 	if (vcpu->kvm->mm != current->mm)
2720 		return -EIO;
2721 
2722 	switch (ioctl) {
2723 	case KVM_SET_SIGNAL_MASK: {
2724 		struct kvm_signal_mask __user *sigmask_arg = argp;
2725 		struct kvm_signal_mask kvm_sigmask;
2726 		compat_sigset_t csigset;
2727 		sigset_t sigset;
2728 
2729 		if (argp) {
2730 			r = -EFAULT;
2731 			if (copy_from_user(&kvm_sigmask, argp,
2732 					   sizeof(kvm_sigmask)))
2733 				goto out;
2734 			r = -EINVAL;
2735 			if (kvm_sigmask.len != sizeof(csigset))
2736 				goto out;
2737 			r = -EFAULT;
2738 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2739 					   sizeof(csigset)))
2740 				goto out;
2741 			sigset_from_compat(&sigset, &csigset);
2742 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2743 		} else
2744 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2745 		break;
2746 	}
2747 	default:
2748 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2749 	}
2750 
2751 out:
2752 	return r;
2753 }
2754 #endif
2755 
2756 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2757 				 int (*accessor)(struct kvm_device *dev,
2758 						 struct kvm_device_attr *attr),
2759 				 unsigned long arg)
2760 {
2761 	struct kvm_device_attr attr;
2762 
2763 	if (!accessor)
2764 		return -EPERM;
2765 
2766 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2767 		return -EFAULT;
2768 
2769 	return accessor(dev, &attr);
2770 }
2771 
2772 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2773 			     unsigned long arg)
2774 {
2775 	struct kvm_device *dev = filp->private_data;
2776 
2777 	switch (ioctl) {
2778 	case KVM_SET_DEVICE_ATTR:
2779 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2780 	case KVM_GET_DEVICE_ATTR:
2781 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2782 	case KVM_HAS_DEVICE_ATTR:
2783 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2784 	default:
2785 		if (dev->ops->ioctl)
2786 			return dev->ops->ioctl(dev, ioctl, arg);
2787 
2788 		return -ENOTTY;
2789 	}
2790 }
2791 
2792 static int kvm_device_release(struct inode *inode, struct file *filp)
2793 {
2794 	struct kvm_device *dev = filp->private_data;
2795 	struct kvm *kvm = dev->kvm;
2796 
2797 	kvm_put_kvm(kvm);
2798 	return 0;
2799 }
2800 
2801 static const struct file_operations kvm_device_fops = {
2802 	.unlocked_ioctl = kvm_device_ioctl,
2803 #ifdef CONFIG_KVM_COMPAT
2804 	.compat_ioctl = kvm_device_ioctl,
2805 #endif
2806 	.release = kvm_device_release,
2807 };
2808 
2809 struct kvm_device *kvm_device_from_filp(struct file *filp)
2810 {
2811 	if (filp->f_op != &kvm_device_fops)
2812 		return NULL;
2813 
2814 	return filp->private_data;
2815 }
2816 
2817 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2818 #ifdef CONFIG_KVM_MPIC
2819 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2820 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2821 #endif
2822 };
2823 
2824 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2825 {
2826 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2827 		return -ENOSPC;
2828 
2829 	if (kvm_device_ops_table[type] != NULL)
2830 		return -EEXIST;
2831 
2832 	kvm_device_ops_table[type] = ops;
2833 	return 0;
2834 }
2835 
2836 void kvm_unregister_device_ops(u32 type)
2837 {
2838 	if (kvm_device_ops_table[type] != NULL)
2839 		kvm_device_ops_table[type] = NULL;
2840 }
2841 
2842 static int kvm_ioctl_create_device(struct kvm *kvm,
2843 				   struct kvm_create_device *cd)
2844 {
2845 	struct kvm_device_ops *ops = NULL;
2846 	struct kvm_device *dev;
2847 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2848 	int ret;
2849 
2850 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2851 		return -ENODEV;
2852 
2853 	ops = kvm_device_ops_table[cd->type];
2854 	if (ops == NULL)
2855 		return -ENODEV;
2856 
2857 	if (test)
2858 		return 0;
2859 
2860 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2861 	if (!dev)
2862 		return -ENOMEM;
2863 
2864 	dev->ops = ops;
2865 	dev->kvm = kvm;
2866 
2867 	mutex_lock(&kvm->lock);
2868 	ret = ops->create(dev, cd->type);
2869 	if (ret < 0) {
2870 		mutex_unlock(&kvm->lock);
2871 		kfree(dev);
2872 		return ret;
2873 	}
2874 	list_add(&dev->vm_node, &kvm->devices);
2875 	mutex_unlock(&kvm->lock);
2876 
2877 	if (ops->init)
2878 		ops->init(dev);
2879 
2880 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2881 	if (ret < 0) {
2882 		mutex_lock(&kvm->lock);
2883 		list_del(&dev->vm_node);
2884 		mutex_unlock(&kvm->lock);
2885 		ops->destroy(dev);
2886 		return ret;
2887 	}
2888 
2889 	kvm_get_kvm(kvm);
2890 	cd->fd = ret;
2891 	return 0;
2892 }
2893 
2894 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2895 {
2896 	switch (arg) {
2897 	case KVM_CAP_USER_MEMORY:
2898 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2899 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2900 	case KVM_CAP_INTERNAL_ERROR_DATA:
2901 #ifdef CONFIG_HAVE_KVM_MSI
2902 	case KVM_CAP_SIGNAL_MSI:
2903 #endif
2904 #ifdef CONFIG_HAVE_KVM_IRQFD
2905 	case KVM_CAP_IRQFD:
2906 	case KVM_CAP_IRQFD_RESAMPLE:
2907 #endif
2908 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2909 	case KVM_CAP_CHECK_EXTENSION_VM:
2910 		return 1;
2911 #ifdef CONFIG_KVM_MMIO
2912 	case KVM_CAP_COALESCED_MMIO:
2913 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2914 #endif
2915 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2916 	case KVM_CAP_IRQ_ROUTING:
2917 		return KVM_MAX_IRQ_ROUTES;
2918 #endif
2919 #if KVM_ADDRESS_SPACE_NUM > 1
2920 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2921 		return KVM_ADDRESS_SPACE_NUM;
2922 #endif
2923 	case KVM_CAP_MAX_VCPU_ID:
2924 		return KVM_MAX_VCPU_ID;
2925 	default:
2926 		break;
2927 	}
2928 	return kvm_vm_ioctl_check_extension(kvm, arg);
2929 }
2930 
2931 static long kvm_vm_ioctl(struct file *filp,
2932 			   unsigned int ioctl, unsigned long arg)
2933 {
2934 	struct kvm *kvm = filp->private_data;
2935 	void __user *argp = (void __user *)arg;
2936 	int r;
2937 
2938 	if (kvm->mm != current->mm)
2939 		return -EIO;
2940 	switch (ioctl) {
2941 	case KVM_CREATE_VCPU:
2942 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2943 		break;
2944 	case KVM_SET_USER_MEMORY_REGION: {
2945 		struct kvm_userspace_memory_region kvm_userspace_mem;
2946 
2947 		r = -EFAULT;
2948 		if (copy_from_user(&kvm_userspace_mem, argp,
2949 						sizeof(kvm_userspace_mem)))
2950 			goto out;
2951 
2952 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2953 		break;
2954 	}
2955 	case KVM_GET_DIRTY_LOG: {
2956 		struct kvm_dirty_log log;
2957 
2958 		r = -EFAULT;
2959 		if (copy_from_user(&log, argp, sizeof(log)))
2960 			goto out;
2961 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2962 		break;
2963 	}
2964 #ifdef CONFIG_KVM_MMIO
2965 	case KVM_REGISTER_COALESCED_MMIO: {
2966 		struct kvm_coalesced_mmio_zone zone;
2967 
2968 		r = -EFAULT;
2969 		if (copy_from_user(&zone, argp, sizeof(zone)))
2970 			goto out;
2971 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2972 		break;
2973 	}
2974 	case KVM_UNREGISTER_COALESCED_MMIO: {
2975 		struct kvm_coalesced_mmio_zone zone;
2976 
2977 		r = -EFAULT;
2978 		if (copy_from_user(&zone, argp, sizeof(zone)))
2979 			goto out;
2980 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2981 		break;
2982 	}
2983 #endif
2984 	case KVM_IRQFD: {
2985 		struct kvm_irqfd data;
2986 
2987 		r = -EFAULT;
2988 		if (copy_from_user(&data, argp, sizeof(data)))
2989 			goto out;
2990 		r = kvm_irqfd(kvm, &data);
2991 		break;
2992 	}
2993 	case KVM_IOEVENTFD: {
2994 		struct kvm_ioeventfd data;
2995 
2996 		r = -EFAULT;
2997 		if (copy_from_user(&data, argp, sizeof(data)))
2998 			goto out;
2999 		r = kvm_ioeventfd(kvm, &data);
3000 		break;
3001 	}
3002 #ifdef CONFIG_HAVE_KVM_MSI
3003 	case KVM_SIGNAL_MSI: {
3004 		struct kvm_msi msi;
3005 
3006 		r = -EFAULT;
3007 		if (copy_from_user(&msi, argp, sizeof(msi)))
3008 			goto out;
3009 		r = kvm_send_userspace_msi(kvm, &msi);
3010 		break;
3011 	}
3012 #endif
3013 #ifdef __KVM_HAVE_IRQ_LINE
3014 	case KVM_IRQ_LINE_STATUS:
3015 	case KVM_IRQ_LINE: {
3016 		struct kvm_irq_level irq_event;
3017 
3018 		r = -EFAULT;
3019 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3020 			goto out;
3021 
3022 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3023 					ioctl == KVM_IRQ_LINE_STATUS);
3024 		if (r)
3025 			goto out;
3026 
3027 		r = -EFAULT;
3028 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3029 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3030 				goto out;
3031 		}
3032 
3033 		r = 0;
3034 		break;
3035 	}
3036 #endif
3037 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3038 	case KVM_SET_GSI_ROUTING: {
3039 		struct kvm_irq_routing routing;
3040 		struct kvm_irq_routing __user *urouting;
3041 		struct kvm_irq_routing_entry *entries = NULL;
3042 
3043 		r = -EFAULT;
3044 		if (copy_from_user(&routing, argp, sizeof(routing)))
3045 			goto out;
3046 		r = -EINVAL;
3047 		if (!kvm_arch_can_set_irq_routing(kvm))
3048 			goto out;
3049 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3050 			goto out;
3051 		if (routing.flags)
3052 			goto out;
3053 		if (routing.nr) {
3054 			r = -ENOMEM;
3055 			entries = vmalloc(routing.nr * sizeof(*entries));
3056 			if (!entries)
3057 				goto out;
3058 			r = -EFAULT;
3059 			urouting = argp;
3060 			if (copy_from_user(entries, urouting->entries,
3061 					   routing.nr * sizeof(*entries)))
3062 				goto out_free_irq_routing;
3063 		}
3064 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3065 					routing.flags);
3066 out_free_irq_routing:
3067 		vfree(entries);
3068 		break;
3069 	}
3070 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3071 	case KVM_CREATE_DEVICE: {
3072 		struct kvm_create_device cd;
3073 
3074 		r = -EFAULT;
3075 		if (copy_from_user(&cd, argp, sizeof(cd)))
3076 			goto out;
3077 
3078 		r = kvm_ioctl_create_device(kvm, &cd);
3079 		if (r)
3080 			goto out;
3081 
3082 		r = -EFAULT;
3083 		if (copy_to_user(argp, &cd, sizeof(cd)))
3084 			goto out;
3085 
3086 		r = 0;
3087 		break;
3088 	}
3089 	case KVM_CHECK_EXTENSION:
3090 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3091 		break;
3092 	default:
3093 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3094 	}
3095 out:
3096 	return r;
3097 }
3098 
3099 #ifdef CONFIG_KVM_COMPAT
3100 struct compat_kvm_dirty_log {
3101 	__u32 slot;
3102 	__u32 padding1;
3103 	union {
3104 		compat_uptr_t dirty_bitmap; /* one bit per page */
3105 		__u64 padding2;
3106 	};
3107 };
3108 
3109 static long kvm_vm_compat_ioctl(struct file *filp,
3110 			   unsigned int ioctl, unsigned long arg)
3111 {
3112 	struct kvm *kvm = filp->private_data;
3113 	int r;
3114 
3115 	if (kvm->mm != current->mm)
3116 		return -EIO;
3117 	switch (ioctl) {
3118 	case KVM_GET_DIRTY_LOG: {
3119 		struct compat_kvm_dirty_log compat_log;
3120 		struct kvm_dirty_log log;
3121 
3122 		if (copy_from_user(&compat_log, (void __user *)arg,
3123 				   sizeof(compat_log)))
3124 			return -EFAULT;
3125 		log.slot	 = compat_log.slot;
3126 		log.padding1	 = compat_log.padding1;
3127 		log.padding2	 = compat_log.padding2;
3128 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3129 
3130 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3131 		break;
3132 	}
3133 	default:
3134 		r = kvm_vm_ioctl(filp, ioctl, arg);
3135 	}
3136 	return r;
3137 }
3138 #endif
3139 
3140 static struct file_operations kvm_vm_fops = {
3141 	.release        = kvm_vm_release,
3142 	.unlocked_ioctl = kvm_vm_ioctl,
3143 #ifdef CONFIG_KVM_COMPAT
3144 	.compat_ioctl   = kvm_vm_compat_ioctl,
3145 #endif
3146 	.llseek		= noop_llseek,
3147 };
3148 
3149 static int kvm_dev_ioctl_create_vm(unsigned long type)
3150 {
3151 	int r;
3152 	struct kvm *kvm;
3153 	struct file *file;
3154 
3155 	kvm = kvm_create_vm(type);
3156 	if (IS_ERR(kvm))
3157 		return PTR_ERR(kvm);
3158 #ifdef CONFIG_KVM_MMIO
3159 	r = kvm_coalesced_mmio_init(kvm);
3160 	if (r < 0) {
3161 		kvm_put_kvm(kvm);
3162 		return r;
3163 	}
3164 #endif
3165 	r = get_unused_fd_flags(O_CLOEXEC);
3166 	if (r < 0) {
3167 		kvm_put_kvm(kvm);
3168 		return r;
3169 	}
3170 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3171 	if (IS_ERR(file)) {
3172 		put_unused_fd(r);
3173 		kvm_put_kvm(kvm);
3174 		return PTR_ERR(file);
3175 	}
3176 
3177 	/*
3178 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3179 	 * already set, with ->release() being kvm_vm_release().  In error
3180 	 * cases it will be called by the final fput(file) and will take
3181 	 * care of doing kvm_put_kvm(kvm).
3182 	 */
3183 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3184 		put_unused_fd(r);
3185 		fput(file);
3186 		return -ENOMEM;
3187 	}
3188 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3189 
3190 	fd_install(r, file);
3191 	return r;
3192 }
3193 
3194 static long kvm_dev_ioctl(struct file *filp,
3195 			  unsigned int ioctl, unsigned long arg)
3196 {
3197 	long r = -EINVAL;
3198 
3199 	switch (ioctl) {
3200 	case KVM_GET_API_VERSION:
3201 		if (arg)
3202 			goto out;
3203 		r = KVM_API_VERSION;
3204 		break;
3205 	case KVM_CREATE_VM:
3206 		r = kvm_dev_ioctl_create_vm(arg);
3207 		break;
3208 	case KVM_CHECK_EXTENSION:
3209 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3210 		break;
3211 	case KVM_GET_VCPU_MMAP_SIZE:
3212 		if (arg)
3213 			goto out;
3214 		r = PAGE_SIZE;     /* struct kvm_run */
3215 #ifdef CONFIG_X86
3216 		r += PAGE_SIZE;    /* pio data page */
3217 #endif
3218 #ifdef CONFIG_KVM_MMIO
3219 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3220 #endif
3221 		break;
3222 	case KVM_TRACE_ENABLE:
3223 	case KVM_TRACE_PAUSE:
3224 	case KVM_TRACE_DISABLE:
3225 		r = -EOPNOTSUPP;
3226 		break;
3227 	default:
3228 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3229 	}
3230 out:
3231 	return r;
3232 }
3233 
3234 static struct file_operations kvm_chardev_ops = {
3235 	.unlocked_ioctl = kvm_dev_ioctl,
3236 	.compat_ioctl   = kvm_dev_ioctl,
3237 	.llseek		= noop_llseek,
3238 };
3239 
3240 static struct miscdevice kvm_dev = {
3241 	KVM_MINOR,
3242 	"kvm",
3243 	&kvm_chardev_ops,
3244 };
3245 
3246 static void hardware_enable_nolock(void *junk)
3247 {
3248 	int cpu = raw_smp_processor_id();
3249 	int r;
3250 
3251 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3252 		return;
3253 
3254 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3255 
3256 	r = kvm_arch_hardware_enable();
3257 
3258 	if (r) {
3259 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3260 		atomic_inc(&hardware_enable_failed);
3261 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3262 	}
3263 }
3264 
3265 static int kvm_starting_cpu(unsigned int cpu)
3266 {
3267 	raw_spin_lock(&kvm_count_lock);
3268 	if (kvm_usage_count)
3269 		hardware_enable_nolock(NULL);
3270 	raw_spin_unlock(&kvm_count_lock);
3271 	return 0;
3272 }
3273 
3274 static void hardware_disable_nolock(void *junk)
3275 {
3276 	int cpu = raw_smp_processor_id();
3277 
3278 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3279 		return;
3280 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3281 	kvm_arch_hardware_disable();
3282 }
3283 
3284 static int kvm_dying_cpu(unsigned int cpu)
3285 {
3286 	raw_spin_lock(&kvm_count_lock);
3287 	if (kvm_usage_count)
3288 		hardware_disable_nolock(NULL);
3289 	raw_spin_unlock(&kvm_count_lock);
3290 	return 0;
3291 }
3292 
3293 static void hardware_disable_all_nolock(void)
3294 {
3295 	BUG_ON(!kvm_usage_count);
3296 
3297 	kvm_usage_count--;
3298 	if (!kvm_usage_count)
3299 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3300 }
3301 
3302 static void hardware_disable_all(void)
3303 {
3304 	raw_spin_lock(&kvm_count_lock);
3305 	hardware_disable_all_nolock();
3306 	raw_spin_unlock(&kvm_count_lock);
3307 }
3308 
3309 static int hardware_enable_all(void)
3310 {
3311 	int r = 0;
3312 
3313 	raw_spin_lock(&kvm_count_lock);
3314 
3315 	kvm_usage_count++;
3316 	if (kvm_usage_count == 1) {
3317 		atomic_set(&hardware_enable_failed, 0);
3318 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3319 
3320 		if (atomic_read(&hardware_enable_failed)) {
3321 			hardware_disable_all_nolock();
3322 			r = -EBUSY;
3323 		}
3324 	}
3325 
3326 	raw_spin_unlock(&kvm_count_lock);
3327 
3328 	return r;
3329 }
3330 
3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3332 		      void *v)
3333 {
3334 	/*
3335 	 * Some (well, at least mine) BIOSes hang on reboot if
3336 	 * in vmx root mode.
3337 	 *
3338 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3339 	 */
3340 	pr_info("kvm: exiting hardware virtualization\n");
3341 	kvm_rebooting = true;
3342 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3343 	return NOTIFY_OK;
3344 }
3345 
3346 static struct notifier_block kvm_reboot_notifier = {
3347 	.notifier_call = kvm_reboot,
3348 	.priority = 0,
3349 };
3350 
3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3352 {
3353 	int i;
3354 
3355 	for (i = 0; i < bus->dev_count; i++) {
3356 		struct kvm_io_device *pos = bus->range[i].dev;
3357 
3358 		kvm_iodevice_destructor(pos);
3359 	}
3360 	kfree(bus);
3361 }
3362 
3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3364 				 const struct kvm_io_range *r2)
3365 {
3366 	gpa_t addr1 = r1->addr;
3367 	gpa_t addr2 = r2->addr;
3368 
3369 	if (addr1 < addr2)
3370 		return -1;
3371 
3372 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3373 	 * accept any overlapping write.  Any order is acceptable for
3374 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3375 	 * we process all of them.
3376 	 */
3377 	if (r2->len) {
3378 		addr1 += r1->len;
3379 		addr2 += r2->len;
3380 	}
3381 
3382 	if (addr1 > addr2)
3383 		return 1;
3384 
3385 	return 0;
3386 }
3387 
3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3389 {
3390 	return kvm_io_bus_cmp(p1, p2);
3391 }
3392 
3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3394 			  gpa_t addr, int len)
3395 {
3396 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3397 		.addr = addr,
3398 		.len = len,
3399 		.dev = dev,
3400 	};
3401 
3402 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3403 		kvm_io_bus_sort_cmp, NULL);
3404 
3405 	return 0;
3406 }
3407 
3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3409 			     gpa_t addr, int len)
3410 {
3411 	struct kvm_io_range *range, key;
3412 	int off;
3413 
3414 	key = (struct kvm_io_range) {
3415 		.addr = addr,
3416 		.len = len,
3417 	};
3418 
3419 	range = bsearch(&key, bus->range, bus->dev_count,
3420 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3421 	if (range == NULL)
3422 		return -ENOENT;
3423 
3424 	off = range - bus->range;
3425 
3426 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3427 		off--;
3428 
3429 	return off;
3430 }
3431 
3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3433 			      struct kvm_io_range *range, const void *val)
3434 {
3435 	int idx;
3436 
3437 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3438 	if (idx < 0)
3439 		return -EOPNOTSUPP;
3440 
3441 	while (idx < bus->dev_count &&
3442 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3443 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3444 					range->len, val))
3445 			return idx;
3446 		idx++;
3447 	}
3448 
3449 	return -EOPNOTSUPP;
3450 }
3451 
3452 /* kvm_io_bus_write - called under kvm->slots_lock */
3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3454 		     int len, const void *val)
3455 {
3456 	struct kvm_io_bus *bus;
3457 	struct kvm_io_range range;
3458 	int r;
3459 
3460 	range = (struct kvm_io_range) {
3461 		.addr = addr,
3462 		.len = len,
3463 	};
3464 
3465 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3466 	if (!bus)
3467 		return -ENOMEM;
3468 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3469 	return r < 0 ? r : 0;
3470 }
3471 
3472 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3473 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3474 			    gpa_t addr, int len, const void *val, long cookie)
3475 {
3476 	struct kvm_io_bus *bus;
3477 	struct kvm_io_range range;
3478 
3479 	range = (struct kvm_io_range) {
3480 		.addr = addr,
3481 		.len = len,
3482 	};
3483 
3484 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3485 	if (!bus)
3486 		return -ENOMEM;
3487 
3488 	/* First try the device referenced by cookie. */
3489 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3490 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3491 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3492 					val))
3493 			return cookie;
3494 
3495 	/*
3496 	 * cookie contained garbage; fall back to search and return the
3497 	 * correct cookie value.
3498 	 */
3499 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3500 }
3501 
3502 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3503 			     struct kvm_io_range *range, void *val)
3504 {
3505 	int idx;
3506 
3507 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3508 	if (idx < 0)
3509 		return -EOPNOTSUPP;
3510 
3511 	while (idx < bus->dev_count &&
3512 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3513 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3514 				       range->len, val))
3515 			return idx;
3516 		idx++;
3517 	}
3518 
3519 	return -EOPNOTSUPP;
3520 }
3521 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3522 
3523 /* kvm_io_bus_read - called under kvm->slots_lock */
3524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3525 		    int len, void *val)
3526 {
3527 	struct kvm_io_bus *bus;
3528 	struct kvm_io_range range;
3529 	int r;
3530 
3531 	range = (struct kvm_io_range) {
3532 		.addr = addr,
3533 		.len = len,
3534 	};
3535 
3536 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3537 	if (!bus)
3538 		return -ENOMEM;
3539 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3540 	return r < 0 ? r : 0;
3541 }
3542 
3543 
3544 /* Caller must hold slots_lock. */
3545 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3546 			    int len, struct kvm_io_device *dev)
3547 {
3548 	struct kvm_io_bus *new_bus, *bus;
3549 
3550 	bus = kvm_get_bus(kvm, bus_idx);
3551 	if (!bus)
3552 		return -ENOMEM;
3553 
3554 	/* exclude ioeventfd which is limited by maximum fd */
3555 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3556 		return -ENOSPC;
3557 
3558 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3559 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3560 	if (!new_bus)
3561 		return -ENOMEM;
3562 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3563 	       sizeof(struct kvm_io_range)));
3564 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3565 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3566 	synchronize_srcu_expedited(&kvm->srcu);
3567 	kfree(bus);
3568 
3569 	return 0;
3570 }
3571 
3572 /* Caller must hold slots_lock. */
3573 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3574 			       struct kvm_io_device *dev)
3575 {
3576 	int i;
3577 	struct kvm_io_bus *new_bus, *bus;
3578 
3579 	bus = kvm_get_bus(kvm, bus_idx);
3580 	if (!bus)
3581 		return;
3582 
3583 	for (i = 0; i < bus->dev_count; i++)
3584 		if (bus->range[i].dev == dev) {
3585 			break;
3586 		}
3587 
3588 	if (i == bus->dev_count)
3589 		return;
3590 
3591 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 	if (!new_bus)  {
3594 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3595 		goto broken;
3596 	}
3597 
3598 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3599 	new_bus->dev_count--;
3600 	memcpy(new_bus->range + i, bus->range + i + 1,
3601 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3602 
3603 broken:
3604 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605 	synchronize_srcu_expedited(&kvm->srcu);
3606 	kfree(bus);
3607 	return;
3608 }
3609 
3610 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3611 					 gpa_t addr)
3612 {
3613 	struct kvm_io_bus *bus;
3614 	int dev_idx, srcu_idx;
3615 	struct kvm_io_device *iodev = NULL;
3616 
3617 	srcu_idx = srcu_read_lock(&kvm->srcu);
3618 
3619 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3620 	if (!bus)
3621 		goto out_unlock;
3622 
3623 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3624 	if (dev_idx < 0)
3625 		goto out_unlock;
3626 
3627 	iodev = bus->range[dev_idx].dev;
3628 
3629 out_unlock:
3630 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3631 
3632 	return iodev;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3635 
3636 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3637 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3638 			   const char *fmt)
3639 {
3640 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3641 					  inode->i_private;
3642 
3643 	/* The debugfs files are a reference to the kvm struct which
3644 	 * is still valid when kvm_destroy_vm is called.
3645 	 * To avoid the race between open and the removal of the debugfs
3646 	 * directory we test against the users count.
3647 	 */
3648 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3649 		return -ENOENT;
3650 
3651 	if (simple_attr_open(inode, file, get, set, fmt)) {
3652 		kvm_put_kvm(stat_data->kvm);
3653 		return -ENOMEM;
3654 	}
3655 
3656 	return 0;
3657 }
3658 
3659 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3660 {
3661 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3662 					  inode->i_private;
3663 
3664 	simple_attr_release(inode, file);
3665 	kvm_put_kvm(stat_data->kvm);
3666 
3667 	return 0;
3668 }
3669 
3670 static int vm_stat_get_per_vm(void *data, u64 *val)
3671 {
3672 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3673 
3674 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3675 
3676 	return 0;
3677 }
3678 
3679 static int vm_stat_clear_per_vm(void *data, u64 val)
3680 {
3681 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3682 
3683 	if (val)
3684 		return -EINVAL;
3685 
3686 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3687 
3688 	return 0;
3689 }
3690 
3691 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3692 {
3693 	__simple_attr_check_format("%llu\n", 0ull);
3694 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3695 				vm_stat_clear_per_vm, "%llu\n");
3696 }
3697 
3698 static const struct file_operations vm_stat_get_per_vm_fops = {
3699 	.owner   = THIS_MODULE,
3700 	.open    = vm_stat_get_per_vm_open,
3701 	.release = kvm_debugfs_release,
3702 	.read    = simple_attr_read,
3703 	.write   = simple_attr_write,
3704 	.llseek  = no_llseek,
3705 };
3706 
3707 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3708 {
3709 	int i;
3710 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3711 	struct kvm_vcpu *vcpu;
3712 
3713 	*val = 0;
3714 
3715 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3716 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3717 
3718 	return 0;
3719 }
3720 
3721 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3722 {
3723 	int i;
3724 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3725 	struct kvm_vcpu *vcpu;
3726 
3727 	if (val)
3728 		return -EINVAL;
3729 
3730 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3731 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3732 
3733 	return 0;
3734 }
3735 
3736 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3737 {
3738 	__simple_attr_check_format("%llu\n", 0ull);
3739 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3740 				 vcpu_stat_clear_per_vm, "%llu\n");
3741 }
3742 
3743 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3744 	.owner   = THIS_MODULE,
3745 	.open    = vcpu_stat_get_per_vm_open,
3746 	.release = kvm_debugfs_release,
3747 	.read    = simple_attr_read,
3748 	.write   = simple_attr_write,
3749 	.llseek  = no_llseek,
3750 };
3751 
3752 static const struct file_operations *stat_fops_per_vm[] = {
3753 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3754 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3755 };
3756 
3757 static int vm_stat_get(void *_offset, u64 *val)
3758 {
3759 	unsigned offset = (long)_offset;
3760 	struct kvm *kvm;
3761 	struct kvm_stat_data stat_tmp = {.offset = offset};
3762 	u64 tmp_val;
3763 
3764 	*val = 0;
3765 	spin_lock(&kvm_lock);
3766 	list_for_each_entry(kvm, &vm_list, vm_list) {
3767 		stat_tmp.kvm = kvm;
3768 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3769 		*val += tmp_val;
3770 	}
3771 	spin_unlock(&kvm_lock);
3772 	return 0;
3773 }
3774 
3775 static int vm_stat_clear(void *_offset, u64 val)
3776 {
3777 	unsigned offset = (long)_offset;
3778 	struct kvm *kvm;
3779 	struct kvm_stat_data stat_tmp = {.offset = offset};
3780 
3781 	if (val)
3782 		return -EINVAL;
3783 
3784 	spin_lock(&kvm_lock);
3785 	list_for_each_entry(kvm, &vm_list, vm_list) {
3786 		stat_tmp.kvm = kvm;
3787 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3788 	}
3789 	spin_unlock(&kvm_lock);
3790 
3791 	return 0;
3792 }
3793 
3794 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3795 
3796 static int vcpu_stat_get(void *_offset, u64 *val)
3797 {
3798 	unsigned offset = (long)_offset;
3799 	struct kvm *kvm;
3800 	struct kvm_stat_data stat_tmp = {.offset = offset};
3801 	u64 tmp_val;
3802 
3803 	*val = 0;
3804 	spin_lock(&kvm_lock);
3805 	list_for_each_entry(kvm, &vm_list, vm_list) {
3806 		stat_tmp.kvm = kvm;
3807 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808 		*val += tmp_val;
3809 	}
3810 	spin_unlock(&kvm_lock);
3811 	return 0;
3812 }
3813 
3814 static int vcpu_stat_clear(void *_offset, u64 val)
3815 {
3816 	unsigned offset = (long)_offset;
3817 	struct kvm *kvm;
3818 	struct kvm_stat_data stat_tmp = {.offset = offset};
3819 
3820 	if (val)
3821 		return -EINVAL;
3822 
3823 	spin_lock(&kvm_lock);
3824 	list_for_each_entry(kvm, &vm_list, vm_list) {
3825 		stat_tmp.kvm = kvm;
3826 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3827 	}
3828 	spin_unlock(&kvm_lock);
3829 
3830 	return 0;
3831 }
3832 
3833 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3834 			"%llu\n");
3835 
3836 static const struct file_operations *stat_fops[] = {
3837 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3838 	[KVM_STAT_VM]   = &vm_stat_fops,
3839 };
3840 
3841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3842 {
3843 	struct kobj_uevent_env *env;
3844 	unsigned long long created, active;
3845 
3846 	if (!kvm_dev.this_device || !kvm)
3847 		return;
3848 
3849 	spin_lock(&kvm_lock);
3850 	if (type == KVM_EVENT_CREATE_VM) {
3851 		kvm_createvm_count++;
3852 		kvm_active_vms++;
3853 	} else if (type == KVM_EVENT_DESTROY_VM) {
3854 		kvm_active_vms--;
3855 	}
3856 	created = kvm_createvm_count;
3857 	active = kvm_active_vms;
3858 	spin_unlock(&kvm_lock);
3859 
3860 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3861 	if (!env)
3862 		return;
3863 
3864 	add_uevent_var(env, "CREATED=%llu", created);
3865 	add_uevent_var(env, "COUNT=%llu", active);
3866 
3867 	if (type == KVM_EVENT_CREATE_VM) {
3868 		add_uevent_var(env, "EVENT=create");
3869 		kvm->userspace_pid = task_pid_nr(current);
3870 	} else if (type == KVM_EVENT_DESTROY_VM) {
3871 		add_uevent_var(env, "EVENT=destroy");
3872 	}
3873 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3874 
3875 	if (kvm->debugfs_dentry) {
3876 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3877 
3878 		if (p) {
3879 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3880 			if (!IS_ERR(tmp))
3881 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3882 			kfree(p);
3883 		}
3884 	}
3885 	/* no need for checks, since we are adding at most only 5 keys */
3886 	env->envp[env->envp_idx++] = NULL;
3887 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3888 	kfree(env);
3889 }
3890 
3891 static int kvm_init_debug(void)
3892 {
3893 	int r = -EEXIST;
3894 	struct kvm_stats_debugfs_item *p;
3895 
3896 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3897 	if (kvm_debugfs_dir == NULL)
3898 		goto out;
3899 
3900 	kvm_debugfs_num_entries = 0;
3901 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3902 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3903 					 (void *)(long)p->offset,
3904 					 stat_fops[p->kind]))
3905 			goto out_dir;
3906 	}
3907 
3908 	return 0;
3909 
3910 out_dir:
3911 	debugfs_remove_recursive(kvm_debugfs_dir);
3912 out:
3913 	return r;
3914 }
3915 
3916 static int kvm_suspend(void)
3917 {
3918 	if (kvm_usage_count)
3919 		hardware_disable_nolock(NULL);
3920 	return 0;
3921 }
3922 
3923 static void kvm_resume(void)
3924 {
3925 	if (kvm_usage_count) {
3926 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3927 		hardware_enable_nolock(NULL);
3928 	}
3929 }
3930 
3931 static struct syscore_ops kvm_syscore_ops = {
3932 	.suspend = kvm_suspend,
3933 	.resume = kvm_resume,
3934 };
3935 
3936 static inline
3937 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3938 {
3939 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3940 }
3941 
3942 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3943 {
3944 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3945 
3946 	if (vcpu->preempted)
3947 		vcpu->preempted = false;
3948 
3949 	kvm_arch_sched_in(vcpu, cpu);
3950 
3951 	kvm_arch_vcpu_load(vcpu, cpu);
3952 }
3953 
3954 static void kvm_sched_out(struct preempt_notifier *pn,
3955 			  struct task_struct *next)
3956 {
3957 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3958 
3959 	if (current->state == TASK_RUNNING)
3960 		vcpu->preempted = true;
3961 	kvm_arch_vcpu_put(vcpu);
3962 }
3963 
3964 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3965 		  struct module *module)
3966 {
3967 	int r;
3968 	int cpu;
3969 
3970 	r = kvm_arch_init(opaque);
3971 	if (r)
3972 		goto out_fail;
3973 
3974 	/*
3975 	 * kvm_arch_init makes sure there's at most one caller
3976 	 * for architectures that support multiple implementations,
3977 	 * like intel and amd on x86.
3978 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3979 	 * conflicts in case kvm is already setup for another implementation.
3980 	 */
3981 	r = kvm_irqfd_init();
3982 	if (r)
3983 		goto out_irqfd;
3984 
3985 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3986 		r = -ENOMEM;
3987 		goto out_free_0;
3988 	}
3989 
3990 	r = kvm_arch_hardware_setup();
3991 	if (r < 0)
3992 		goto out_free_0a;
3993 
3994 	for_each_online_cpu(cpu) {
3995 		smp_call_function_single(cpu,
3996 				kvm_arch_check_processor_compat,
3997 				&r, 1);
3998 		if (r < 0)
3999 			goto out_free_1;
4000 	}
4001 
4002 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4003 				      kvm_starting_cpu, kvm_dying_cpu);
4004 	if (r)
4005 		goto out_free_2;
4006 	register_reboot_notifier(&kvm_reboot_notifier);
4007 
4008 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4009 	if (!vcpu_align)
4010 		vcpu_align = __alignof__(struct kvm_vcpu);
4011 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4012 					   0, NULL);
4013 	if (!kvm_vcpu_cache) {
4014 		r = -ENOMEM;
4015 		goto out_free_3;
4016 	}
4017 
4018 	r = kvm_async_pf_init();
4019 	if (r)
4020 		goto out_free;
4021 
4022 	kvm_chardev_ops.owner = module;
4023 	kvm_vm_fops.owner = module;
4024 	kvm_vcpu_fops.owner = module;
4025 
4026 	r = misc_register(&kvm_dev);
4027 	if (r) {
4028 		pr_err("kvm: misc device register failed\n");
4029 		goto out_unreg;
4030 	}
4031 
4032 	register_syscore_ops(&kvm_syscore_ops);
4033 
4034 	kvm_preempt_ops.sched_in = kvm_sched_in;
4035 	kvm_preempt_ops.sched_out = kvm_sched_out;
4036 
4037 	r = kvm_init_debug();
4038 	if (r) {
4039 		pr_err("kvm: create debugfs files failed\n");
4040 		goto out_undebugfs;
4041 	}
4042 
4043 	r = kvm_vfio_ops_init();
4044 	WARN_ON(r);
4045 
4046 	return 0;
4047 
4048 out_undebugfs:
4049 	unregister_syscore_ops(&kvm_syscore_ops);
4050 	misc_deregister(&kvm_dev);
4051 out_unreg:
4052 	kvm_async_pf_deinit();
4053 out_free:
4054 	kmem_cache_destroy(kvm_vcpu_cache);
4055 out_free_3:
4056 	unregister_reboot_notifier(&kvm_reboot_notifier);
4057 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4058 out_free_2:
4059 out_free_1:
4060 	kvm_arch_hardware_unsetup();
4061 out_free_0a:
4062 	free_cpumask_var(cpus_hardware_enabled);
4063 out_free_0:
4064 	kvm_irqfd_exit();
4065 out_irqfd:
4066 	kvm_arch_exit();
4067 out_fail:
4068 	return r;
4069 }
4070 EXPORT_SYMBOL_GPL(kvm_init);
4071 
4072 void kvm_exit(void)
4073 {
4074 	debugfs_remove_recursive(kvm_debugfs_dir);
4075 	misc_deregister(&kvm_dev);
4076 	kmem_cache_destroy(kvm_vcpu_cache);
4077 	kvm_async_pf_deinit();
4078 	unregister_syscore_ops(&kvm_syscore_ops);
4079 	unregister_reboot_notifier(&kvm_reboot_notifier);
4080 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4081 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4082 	kvm_arch_hardware_unsetup();
4083 	kvm_arch_exit();
4084 	kvm_irqfd_exit();
4085 	free_cpumask_var(cpus_hardware_enabled);
4086 	kvm_vfio_ops_exit();
4087 }
4088 EXPORT_SYMBOL_GPL(kvm_exit);
4089