1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 #define KVM_EVENT_CREATE_VM 0 134 #define KVM_EVENT_DESTROY_VM 1 135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 136 static unsigned long long kvm_createvm_count; 137 static unsigned long long kvm_active_vms; 138 139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 140 { 141 if (pfn_valid(pfn)) 142 return PageReserved(pfn_to_page(pfn)); 143 144 return true; 145 } 146 147 /* 148 * Switches to specified vcpu, until a matching vcpu_put() 149 */ 150 int vcpu_load(struct kvm_vcpu *vcpu) 151 { 152 int cpu; 153 154 if (mutex_lock_killable(&vcpu->mutex)) 155 return -EINTR; 156 cpu = get_cpu(); 157 preempt_notifier_register(&vcpu->preempt_notifier); 158 kvm_arch_vcpu_load(vcpu, cpu); 159 put_cpu(); 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(vcpu_load); 163 164 void vcpu_put(struct kvm_vcpu *vcpu) 165 { 166 preempt_disable(); 167 kvm_arch_vcpu_put(vcpu); 168 preempt_notifier_unregister(&vcpu->preempt_notifier); 169 preempt_enable(); 170 mutex_unlock(&vcpu->mutex); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_put); 173 174 /* TODO: merge with kvm_arch_vcpu_should_kick */ 175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 176 { 177 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 178 179 /* 180 * We need to wait for the VCPU to reenable interrupts and get out of 181 * READING_SHADOW_PAGE_TABLES mode. 182 */ 183 if (req & KVM_REQUEST_WAIT) 184 return mode != OUTSIDE_GUEST_MODE; 185 186 /* 187 * Need to kick a running VCPU, but otherwise there is nothing to do. 188 */ 189 return mode == IN_GUEST_MODE; 190 } 191 192 static void ack_flush(void *_completed) 193 { 194 } 195 196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 197 { 198 if (unlikely(!cpus)) 199 cpus = cpu_online_mask; 200 201 if (cpumask_empty(cpus)) 202 return false; 203 204 smp_call_function_many(cpus, ack_flush, NULL, wait); 205 return true; 206 } 207 208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 209 { 210 int i, cpu, me; 211 cpumask_var_t cpus; 212 bool called; 213 struct kvm_vcpu *vcpu; 214 215 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 216 217 me = get_cpu(); 218 kvm_for_each_vcpu(i, vcpu, kvm) { 219 kvm_make_request(req, vcpu); 220 cpu = vcpu->cpu; 221 222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 223 continue; 224 225 if (cpus != NULL && cpu != -1 && cpu != me && 226 kvm_request_needs_ipi(vcpu, req)) 227 __cpumask_set_cpu(cpu, cpus); 228 } 229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 230 put_cpu(); 231 free_cpumask_var(cpus); 232 return called; 233 } 234 235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 236 void kvm_flush_remote_tlbs(struct kvm *kvm) 237 { 238 /* 239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 240 * kvm_make_all_cpus_request. 241 */ 242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 243 244 /* 245 * We want to publish modifications to the page tables before reading 246 * mode. Pairs with a memory barrier in arch-specific code. 247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 248 * and smp_mb in walk_shadow_page_lockless_begin/end. 249 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 250 * 251 * There is already an smp_mb__after_atomic() before 252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 253 * barrier here. 254 */ 255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 256 ++kvm->stat.remote_tlb_flush; 257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 258 } 259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 260 #endif 261 262 void kvm_reload_remote_mmus(struct kvm *kvm) 263 { 264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 265 } 266 267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 268 { 269 struct page *page; 270 int r; 271 272 mutex_init(&vcpu->mutex); 273 vcpu->cpu = -1; 274 vcpu->kvm = kvm; 275 vcpu->vcpu_id = id; 276 vcpu->pid = NULL; 277 init_swait_queue_head(&vcpu->wq); 278 kvm_async_pf_vcpu_init(vcpu); 279 280 vcpu->pre_pcpu = -1; 281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 282 283 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 284 if (!page) { 285 r = -ENOMEM; 286 goto fail; 287 } 288 vcpu->run = page_address(page); 289 290 kvm_vcpu_set_in_spin_loop(vcpu, false); 291 kvm_vcpu_set_dy_eligible(vcpu, false); 292 vcpu->preempted = false; 293 294 r = kvm_arch_vcpu_init(vcpu); 295 if (r < 0) 296 goto fail_free_run; 297 return 0; 298 299 fail_free_run: 300 free_page((unsigned long)vcpu->run); 301 fail: 302 return r; 303 } 304 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 305 306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 307 { 308 /* 309 * no need for rcu_read_lock as VCPU_RUN is the only place that 310 * will change the vcpu->pid pointer and on uninit all file 311 * descriptors are already gone. 312 */ 313 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 314 kvm_arch_vcpu_uninit(vcpu); 315 free_page((unsigned long)vcpu->run); 316 } 317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 318 319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 321 { 322 return container_of(mn, struct kvm, mmu_notifier); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 473 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 474 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 475 .clear_young = kvm_mmu_notifier_clear_young, 476 .test_young = kvm_mmu_notifier_test_young, 477 .change_pte = kvm_mmu_notifier_change_pte, 478 .release = kvm_mmu_notifier_release, 479 }; 480 481 static int kvm_init_mmu_notifier(struct kvm *kvm) 482 { 483 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 484 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 485 } 486 487 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 488 489 static int kvm_init_mmu_notifier(struct kvm *kvm) 490 { 491 return 0; 492 } 493 494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 495 496 static struct kvm_memslots *kvm_alloc_memslots(void) 497 { 498 int i; 499 struct kvm_memslots *slots; 500 501 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 502 if (!slots) 503 return NULL; 504 505 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 506 slots->id_to_index[i] = slots->memslots[i].id = i; 507 508 return slots; 509 } 510 511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 512 { 513 if (!memslot->dirty_bitmap) 514 return; 515 516 kvfree(memslot->dirty_bitmap); 517 memslot->dirty_bitmap = NULL; 518 } 519 520 /* 521 * Free any memory in @free but not in @dont. 522 */ 523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 524 struct kvm_memory_slot *dont) 525 { 526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 527 kvm_destroy_dirty_bitmap(free); 528 529 kvm_arch_free_memslot(kvm, free, dont); 530 531 free->npages = 0; 532 } 533 534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 535 { 536 struct kvm_memory_slot *memslot; 537 538 if (!slots) 539 return; 540 541 kvm_for_each_memslot(memslot, slots) 542 kvm_free_memslot(kvm, memslot, NULL); 543 544 kvfree(slots); 545 } 546 547 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 548 { 549 int i; 550 551 if (!kvm->debugfs_dentry) 552 return; 553 554 debugfs_remove_recursive(kvm->debugfs_dentry); 555 556 if (kvm->debugfs_stat_data) { 557 for (i = 0; i < kvm_debugfs_num_entries; i++) 558 kfree(kvm->debugfs_stat_data[i]); 559 kfree(kvm->debugfs_stat_data); 560 } 561 } 562 563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 564 { 565 char dir_name[ITOA_MAX_LEN * 2]; 566 struct kvm_stat_data *stat_data; 567 struct kvm_stats_debugfs_item *p; 568 569 if (!debugfs_initialized()) 570 return 0; 571 572 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 573 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 574 kvm_debugfs_dir); 575 if (!kvm->debugfs_dentry) 576 return -ENOMEM; 577 578 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 579 sizeof(*kvm->debugfs_stat_data), 580 GFP_KERNEL); 581 if (!kvm->debugfs_stat_data) 582 return -ENOMEM; 583 584 for (p = debugfs_entries; p->name; p++) { 585 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 586 if (!stat_data) 587 return -ENOMEM; 588 589 stat_data->kvm = kvm; 590 stat_data->offset = p->offset; 591 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 592 if (!debugfs_create_file(p->name, 0644, 593 kvm->debugfs_dentry, 594 stat_data, 595 stat_fops_per_vm[p->kind])) 596 return -ENOMEM; 597 } 598 return 0; 599 } 600 601 static struct kvm *kvm_create_vm(unsigned long type) 602 { 603 int r, i; 604 struct kvm *kvm = kvm_arch_alloc_vm(); 605 606 if (!kvm) 607 return ERR_PTR(-ENOMEM); 608 609 spin_lock_init(&kvm->mmu_lock); 610 mmgrab(current->mm); 611 kvm->mm = current->mm; 612 kvm_eventfd_init(kvm); 613 mutex_init(&kvm->lock); 614 mutex_init(&kvm->irq_lock); 615 mutex_init(&kvm->slots_lock); 616 refcount_set(&kvm->users_count, 1); 617 INIT_LIST_HEAD(&kvm->devices); 618 619 r = kvm_arch_init_vm(kvm, type); 620 if (r) 621 goto out_err_no_disable; 622 623 r = hardware_enable_all(); 624 if (r) 625 goto out_err_no_disable; 626 627 #ifdef CONFIG_HAVE_KVM_IRQFD 628 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 629 #endif 630 631 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 632 633 r = -ENOMEM; 634 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 635 struct kvm_memslots *slots = kvm_alloc_memslots(); 636 if (!slots) 637 goto out_err_no_srcu; 638 /* 639 * Generations must be different for each address space. 640 * Init kvm generation close to the maximum to easily test the 641 * code of handling generation number wrap-around. 642 */ 643 slots->generation = i * 2 - 150; 644 rcu_assign_pointer(kvm->memslots[i], slots); 645 } 646 647 if (init_srcu_struct(&kvm->srcu)) 648 goto out_err_no_srcu; 649 if (init_srcu_struct(&kvm->irq_srcu)) 650 goto out_err_no_irq_srcu; 651 for (i = 0; i < KVM_NR_BUSES; i++) { 652 rcu_assign_pointer(kvm->buses[i], 653 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 654 if (!kvm->buses[i]) 655 goto out_err; 656 } 657 658 r = kvm_init_mmu_notifier(kvm); 659 if (r) 660 goto out_err; 661 662 spin_lock(&kvm_lock); 663 list_add(&kvm->vm_list, &vm_list); 664 spin_unlock(&kvm_lock); 665 666 preempt_notifier_inc(); 667 668 return kvm; 669 670 out_err: 671 cleanup_srcu_struct(&kvm->irq_srcu); 672 out_err_no_irq_srcu: 673 cleanup_srcu_struct(&kvm->srcu); 674 out_err_no_srcu: 675 hardware_disable_all(); 676 out_err_no_disable: 677 for (i = 0; i < KVM_NR_BUSES; i++) 678 kfree(kvm_get_bus(kvm, i)); 679 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 680 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 681 kvm_arch_free_vm(kvm); 682 mmdrop(current->mm); 683 return ERR_PTR(r); 684 } 685 686 static void kvm_destroy_devices(struct kvm *kvm) 687 { 688 struct kvm_device *dev, *tmp; 689 690 /* 691 * We do not need to take the kvm->lock here, because nobody else 692 * has a reference to the struct kvm at this point and therefore 693 * cannot access the devices list anyhow. 694 */ 695 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 696 list_del(&dev->vm_node); 697 dev->ops->destroy(dev); 698 } 699 } 700 701 static void kvm_destroy_vm(struct kvm *kvm) 702 { 703 int i; 704 struct mm_struct *mm = kvm->mm; 705 706 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 707 kvm_destroy_vm_debugfs(kvm); 708 kvm_arch_sync_events(kvm); 709 spin_lock(&kvm_lock); 710 list_del(&kvm->vm_list); 711 spin_unlock(&kvm_lock); 712 kvm_free_irq_routing(kvm); 713 for (i = 0; i < KVM_NR_BUSES; i++) { 714 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 715 716 if (bus) 717 kvm_io_bus_destroy(bus); 718 kvm->buses[i] = NULL; 719 } 720 kvm_coalesced_mmio_free(kvm); 721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 722 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 723 #else 724 kvm_arch_flush_shadow_all(kvm); 725 #endif 726 kvm_arch_destroy_vm(kvm); 727 kvm_destroy_devices(kvm); 728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 729 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 730 cleanup_srcu_struct(&kvm->irq_srcu); 731 cleanup_srcu_struct(&kvm->srcu); 732 kvm_arch_free_vm(kvm); 733 preempt_notifier_dec(); 734 hardware_disable_all(); 735 mmdrop(mm); 736 } 737 738 void kvm_get_kvm(struct kvm *kvm) 739 { 740 refcount_inc(&kvm->users_count); 741 } 742 EXPORT_SYMBOL_GPL(kvm_get_kvm); 743 744 void kvm_put_kvm(struct kvm *kvm) 745 { 746 if (refcount_dec_and_test(&kvm->users_count)) 747 kvm_destroy_vm(kvm); 748 } 749 EXPORT_SYMBOL_GPL(kvm_put_kvm); 750 751 752 static int kvm_vm_release(struct inode *inode, struct file *filp) 753 { 754 struct kvm *kvm = filp->private_data; 755 756 kvm_irqfd_release(kvm); 757 758 kvm_put_kvm(kvm); 759 return 0; 760 } 761 762 /* 763 * Allocation size is twice as large as the actual dirty bitmap size. 764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 765 */ 766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 767 { 768 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 769 770 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 771 if (!memslot->dirty_bitmap) 772 return -ENOMEM; 773 774 return 0; 775 } 776 777 /* 778 * Insert memslot and re-sort memslots based on their GFN, 779 * so binary search could be used to lookup GFN. 780 * Sorting algorithm takes advantage of having initially 781 * sorted array and known changed memslot position. 782 */ 783 static void update_memslots(struct kvm_memslots *slots, 784 struct kvm_memory_slot *new) 785 { 786 int id = new->id; 787 int i = slots->id_to_index[id]; 788 struct kvm_memory_slot *mslots = slots->memslots; 789 790 WARN_ON(mslots[i].id != id); 791 if (!new->npages) { 792 WARN_ON(!mslots[i].npages); 793 if (mslots[i].npages) 794 slots->used_slots--; 795 } else { 796 if (!mslots[i].npages) 797 slots->used_slots++; 798 } 799 800 while (i < KVM_MEM_SLOTS_NUM - 1 && 801 new->base_gfn <= mslots[i + 1].base_gfn) { 802 if (!mslots[i + 1].npages) 803 break; 804 mslots[i] = mslots[i + 1]; 805 slots->id_to_index[mslots[i].id] = i; 806 i++; 807 } 808 809 /* 810 * The ">=" is needed when creating a slot with base_gfn == 0, 811 * so that it moves before all those with base_gfn == npages == 0. 812 * 813 * On the other hand, if new->npages is zero, the above loop has 814 * already left i pointing to the beginning of the empty part of 815 * mslots, and the ">=" would move the hole backwards in this 816 * case---which is wrong. So skip the loop when deleting a slot. 817 */ 818 if (new->npages) { 819 while (i > 0 && 820 new->base_gfn >= mslots[i - 1].base_gfn) { 821 mslots[i] = mslots[i - 1]; 822 slots->id_to_index[mslots[i].id] = i; 823 i--; 824 } 825 } else 826 WARN_ON_ONCE(i != slots->used_slots); 827 828 mslots[i] = *new; 829 slots->id_to_index[mslots[i].id] = i; 830 } 831 832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 833 { 834 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 835 836 #ifdef __KVM_HAVE_READONLY_MEM 837 valid_flags |= KVM_MEM_READONLY; 838 #endif 839 840 if (mem->flags & ~valid_flags) 841 return -EINVAL; 842 843 return 0; 844 } 845 846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 847 int as_id, struct kvm_memslots *slots) 848 { 849 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 850 851 /* 852 * Set the low bit in the generation, which disables SPTE caching 853 * until the end of synchronize_srcu_expedited. 854 */ 855 WARN_ON(old_memslots->generation & 1); 856 slots->generation = old_memslots->generation + 1; 857 858 rcu_assign_pointer(kvm->memslots[as_id], slots); 859 synchronize_srcu_expedited(&kvm->srcu); 860 861 /* 862 * Increment the new memslot generation a second time. This prevents 863 * vm exits that race with memslot updates from caching a memslot 864 * generation that will (potentially) be valid forever. 865 * 866 * Generations must be unique even across address spaces. We do not need 867 * a global counter for that, instead the generation space is evenly split 868 * across address spaces. For example, with two address spaces, address 869 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 870 * use generations 2, 6, 10, 14, ... 871 */ 872 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 873 874 kvm_arch_memslots_updated(kvm, slots); 875 876 return old_memslots; 877 } 878 879 /* 880 * Allocate some memory and give it an address in the guest physical address 881 * space. 882 * 883 * Discontiguous memory is allowed, mostly for framebuffers. 884 * 885 * Must be called holding kvm->slots_lock for write. 886 */ 887 int __kvm_set_memory_region(struct kvm *kvm, 888 const struct kvm_userspace_memory_region *mem) 889 { 890 int r; 891 gfn_t base_gfn; 892 unsigned long npages; 893 struct kvm_memory_slot *slot; 894 struct kvm_memory_slot old, new; 895 struct kvm_memslots *slots = NULL, *old_memslots; 896 int as_id, id; 897 enum kvm_mr_change change; 898 899 r = check_memory_region_flags(mem); 900 if (r) 901 goto out; 902 903 r = -EINVAL; 904 as_id = mem->slot >> 16; 905 id = (u16)mem->slot; 906 907 /* General sanity checks */ 908 if (mem->memory_size & (PAGE_SIZE - 1)) 909 goto out; 910 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 911 goto out; 912 /* We can read the guest memory with __xxx_user() later on. */ 913 if ((id < KVM_USER_MEM_SLOTS) && 914 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 915 !access_ok(VERIFY_WRITE, 916 (void __user *)(unsigned long)mem->userspace_addr, 917 mem->memory_size))) 918 goto out; 919 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 920 goto out; 921 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 922 goto out; 923 924 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 925 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 926 npages = mem->memory_size >> PAGE_SHIFT; 927 928 if (npages > KVM_MEM_MAX_NR_PAGES) 929 goto out; 930 931 new = old = *slot; 932 933 new.id = id; 934 new.base_gfn = base_gfn; 935 new.npages = npages; 936 new.flags = mem->flags; 937 938 if (npages) { 939 if (!old.npages) 940 change = KVM_MR_CREATE; 941 else { /* Modify an existing slot. */ 942 if ((mem->userspace_addr != old.userspace_addr) || 943 (npages != old.npages) || 944 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 945 goto out; 946 947 if (base_gfn != old.base_gfn) 948 change = KVM_MR_MOVE; 949 else if (new.flags != old.flags) 950 change = KVM_MR_FLAGS_ONLY; 951 else { /* Nothing to change. */ 952 r = 0; 953 goto out; 954 } 955 } 956 } else { 957 if (!old.npages) 958 goto out; 959 960 change = KVM_MR_DELETE; 961 new.base_gfn = 0; 962 new.flags = 0; 963 } 964 965 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 966 /* Check for overlaps */ 967 r = -EEXIST; 968 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 969 if ((slot->id >= KVM_USER_MEM_SLOTS) || 970 (slot->id == id)) 971 continue; 972 if (!((base_gfn + npages <= slot->base_gfn) || 973 (base_gfn >= slot->base_gfn + slot->npages))) 974 goto out; 975 } 976 } 977 978 /* Free page dirty bitmap if unneeded */ 979 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 980 new.dirty_bitmap = NULL; 981 982 r = -ENOMEM; 983 if (change == KVM_MR_CREATE) { 984 new.userspace_addr = mem->userspace_addr; 985 986 if (kvm_arch_create_memslot(kvm, &new, npages)) 987 goto out_free; 988 } 989 990 /* Allocate page dirty bitmap if needed */ 991 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 992 if (kvm_create_dirty_bitmap(&new) < 0) 993 goto out_free; 994 } 995 996 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 997 if (!slots) 998 goto out_free; 999 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1000 1001 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1002 slot = id_to_memslot(slots, id); 1003 slot->flags |= KVM_MEMSLOT_INVALID; 1004 1005 old_memslots = install_new_memslots(kvm, as_id, slots); 1006 1007 /* From this point no new shadow pages pointing to a deleted, 1008 * or moved, memslot will be created. 1009 * 1010 * validation of sp->gfn happens in: 1011 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1012 * - kvm_is_visible_gfn (mmu_check_roots) 1013 */ 1014 kvm_arch_flush_shadow_memslot(kvm, slot); 1015 1016 /* 1017 * We can re-use the old_memslots from above, the only difference 1018 * from the currently installed memslots is the invalid flag. This 1019 * will get overwritten by update_memslots anyway. 1020 */ 1021 slots = old_memslots; 1022 } 1023 1024 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1025 if (r) 1026 goto out_slots; 1027 1028 /* actual memory is freed via old in kvm_free_memslot below */ 1029 if (change == KVM_MR_DELETE) { 1030 new.dirty_bitmap = NULL; 1031 memset(&new.arch, 0, sizeof(new.arch)); 1032 } 1033 1034 update_memslots(slots, &new); 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1038 1039 kvm_free_memslot(kvm, &old, &new); 1040 kvfree(old_memslots); 1041 return 0; 1042 1043 out_slots: 1044 kvfree(slots); 1045 out_free: 1046 kvm_free_memslot(kvm, &new, &old); 1047 out: 1048 return r; 1049 } 1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1051 1052 int kvm_set_memory_region(struct kvm *kvm, 1053 const struct kvm_userspace_memory_region *mem) 1054 { 1055 int r; 1056 1057 mutex_lock(&kvm->slots_lock); 1058 r = __kvm_set_memory_region(kvm, mem); 1059 mutex_unlock(&kvm->slots_lock); 1060 return r; 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1063 1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1065 struct kvm_userspace_memory_region *mem) 1066 { 1067 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1068 return -EINVAL; 1069 1070 return kvm_set_memory_region(kvm, mem); 1071 } 1072 1073 int kvm_get_dirty_log(struct kvm *kvm, 1074 struct kvm_dirty_log *log, int *is_dirty) 1075 { 1076 struct kvm_memslots *slots; 1077 struct kvm_memory_slot *memslot; 1078 int i, as_id, id; 1079 unsigned long n; 1080 unsigned long any = 0; 1081 1082 as_id = log->slot >> 16; 1083 id = (u16)log->slot; 1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1085 return -EINVAL; 1086 1087 slots = __kvm_memslots(kvm, as_id); 1088 memslot = id_to_memslot(slots, id); 1089 if (!memslot->dirty_bitmap) 1090 return -ENOENT; 1091 1092 n = kvm_dirty_bitmap_bytes(memslot); 1093 1094 for (i = 0; !any && i < n/sizeof(long); ++i) 1095 any = memslot->dirty_bitmap[i]; 1096 1097 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1098 return -EFAULT; 1099 1100 if (any) 1101 *is_dirty = 1; 1102 return 0; 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1105 1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1107 /** 1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1109 * are dirty write protect them for next write. 1110 * @kvm: pointer to kvm instance 1111 * @log: slot id and address to which we copy the log 1112 * @is_dirty: flag set if any page is dirty 1113 * 1114 * We need to keep it in mind that VCPU threads can write to the bitmap 1115 * concurrently. So, to avoid losing track of dirty pages we keep the 1116 * following order: 1117 * 1118 * 1. Take a snapshot of the bit and clear it if needed. 1119 * 2. Write protect the corresponding page. 1120 * 3. Copy the snapshot to the userspace. 1121 * 4. Upon return caller flushes TLB's if needed. 1122 * 1123 * Between 2 and 4, the guest may write to the page using the remaining TLB 1124 * entry. This is not a problem because the page is reported dirty using 1125 * the snapshot taken before and step 4 ensures that writes done after 1126 * exiting to userspace will be logged for the next call. 1127 * 1128 */ 1129 int kvm_get_dirty_log_protect(struct kvm *kvm, 1130 struct kvm_dirty_log *log, bool *is_dirty) 1131 { 1132 struct kvm_memslots *slots; 1133 struct kvm_memory_slot *memslot; 1134 int i, as_id, id; 1135 unsigned long n; 1136 unsigned long *dirty_bitmap; 1137 unsigned long *dirty_bitmap_buffer; 1138 1139 as_id = log->slot >> 16; 1140 id = (u16)log->slot; 1141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1142 return -EINVAL; 1143 1144 slots = __kvm_memslots(kvm, as_id); 1145 memslot = id_to_memslot(slots, id); 1146 1147 dirty_bitmap = memslot->dirty_bitmap; 1148 if (!dirty_bitmap) 1149 return -ENOENT; 1150 1151 n = kvm_dirty_bitmap_bytes(memslot); 1152 1153 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1154 memset(dirty_bitmap_buffer, 0, n); 1155 1156 spin_lock(&kvm->mmu_lock); 1157 *is_dirty = false; 1158 for (i = 0; i < n / sizeof(long); i++) { 1159 unsigned long mask; 1160 gfn_t offset; 1161 1162 if (!dirty_bitmap[i]) 1163 continue; 1164 1165 *is_dirty = true; 1166 1167 mask = xchg(&dirty_bitmap[i], 0); 1168 dirty_bitmap_buffer[i] = mask; 1169 1170 if (mask) { 1171 offset = i * BITS_PER_LONG; 1172 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1173 offset, mask); 1174 } 1175 } 1176 1177 spin_unlock(&kvm->mmu_lock); 1178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1179 return -EFAULT; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1183 #endif 1184 1185 bool kvm_largepages_enabled(void) 1186 { 1187 return largepages_enabled; 1188 } 1189 1190 void kvm_disable_largepages(void) 1191 { 1192 largepages_enabled = false; 1193 } 1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1195 1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1197 { 1198 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1199 } 1200 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1201 1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1203 { 1204 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1205 } 1206 1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1208 { 1209 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1210 1211 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1212 memslot->flags & KVM_MEMSLOT_INVALID) 1213 return false; 1214 1215 return true; 1216 } 1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1218 1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1220 { 1221 struct vm_area_struct *vma; 1222 unsigned long addr, size; 1223 1224 size = PAGE_SIZE; 1225 1226 addr = gfn_to_hva(kvm, gfn); 1227 if (kvm_is_error_hva(addr)) 1228 return PAGE_SIZE; 1229 1230 down_read(¤t->mm->mmap_sem); 1231 vma = find_vma(current->mm, addr); 1232 if (!vma) 1233 goto out; 1234 1235 size = vma_kernel_pagesize(vma); 1236 1237 out: 1238 up_read(¤t->mm->mmap_sem); 1239 1240 return size; 1241 } 1242 1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1244 { 1245 return slot->flags & KVM_MEM_READONLY; 1246 } 1247 1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1249 gfn_t *nr_pages, bool write) 1250 { 1251 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1252 return KVM_HVA_ERR_BAD; 1253 1254 if (memslot_is_readonly(slot) && write) 1255 return KVM_HVA_ERR_RO_BAD; 1256 1257 if (nr_pages) 1258 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1259 1260 return __gfn_to_hva_memslot(slot, gfn); 1261 } 1262 1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1264 gfn_t *nr_pages) 1265 { 1266 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1267 } 1268 1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1270 gfn_t gfn) 1271 { 1272 return gfn_to_hva_many(slot, gfn, NULL); 1273 } 1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1275 1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1277 { 1278 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1279 } 1280 EXPORT_SYMBOL_GPL(gfn_to_hva); 1281 1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1283 { 1284 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1285 } 1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1287 1288 /* 1289 * If writable is set to false, the hva returned by this function is only 1290 * allowed to be read. 1291 */ 1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1293 gfn_t gfn, bool *writable) 1294 { 1295 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1296 1297 if (!kvm_is_error_hva(hva) && writable) 1298 *writable = !memslot_is_readonly(slot); 1299 1300 return hva; 1301 } 1302 1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1304 { 1305 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1306 1307 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1308 } 1309 1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1311 { 1312 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1313 1314 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1315 } 1316 1317 static int get_user_page_nowait(unsigned long start, int write, 1318 struct page **page) 1319 { 1320 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1321 1322 if (write) 1323 flags |= FOLL_WRITE; 1324 1325 return get_user_pages(start, 1, flags, page, NULL); 1326 } 1327 1328 static inline int check_user_page_hwpoison(unsigned long addr) 1329 { 1330 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1331 1332 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1333 return rc == -EHWPOISON; 1334 } 1335 1336 /* 1337 * The atomic path to get the writable pfn which will be stored in @pfn, 1338 * true indicates success, otherwise false is returned. 1339 */ 1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1341 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1342 { 1343 struct page *page[1]; 1344 int npages; 1345 1346 if (!(async || atomic)) 1347 return false; 1348 1349 /* 1350 * Fast pin a writable pfn only if it is a write fault request 1351 * or the caller allows to map a writable pfn for a read fault 1352 * request. 1353 */ 1354 if (!(write_fault || writable)) 1355 return false; 1356 1357 npages = __get_user_pages_fast(addr, 1, 1, page); 1358 if (npages == 1) { 1359 *pfn = page_to_pfn(page[0]); 1360 1361 if (writable) 1362 *writable = true; 1363 return true; 1364 } 1365 1366 return false; 1367 } 1368 1369 /* 1370 * The slow path to get the pfn of the specified host virtual address, 1371 * 1 indicates success, -errno is returned if error is detected. 1372 */ 1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1374 bool *writable, kvm_pfn_t *pfn) 1375 { 1376 struct page *page[1]; 1377 int npages = 0; 1378 1379 might_sleep(); 1380 1381 if (writable) 1382 *writable = write_fault; 1383 1384 if (async) { 1385 down_read(¤t->mm->mmap_sem); 1386 npages = get_user_page_nowait(addr, write_fault, page); 1387 up_read(¤t->mm->mmap_sem); 1388 } else { 1389 unsigned int flags = FOLL_HWPOISON; 1390 1391 if (write_fault) 1392 flags |= FOLL_WRITE; 1393 1394 npages = get_user_pages_unlocked(addr, 1, page, flags); 1395 } 1396 if (npages != 1) 1397 return npages; 1398 1399 /* map read fault as writable if possible */ 1400 if (unlikely(!write_fault) && writable) { 1401 struct page *wpage[1]; 1402 1403 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1404 if (npages == 1) { 1405 *writable = true; 1406 put_page(page[0]); 1407 page[0] = wpage[0]; 1408 } 1409 1410 npages = 1; 1411 } 1412 *pfn = page_to_pfn(page[0]); 1413 return npages; 1414 } 1415 1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1417 { 1418 if (unlikely(!(vma->vm_flags & VM_READ))) 1419 return false; 1420 1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1422 return false; 1423 1424 return true; 1425 } 1426 1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1428 unsigned long addr, bool *async, 1429 bool write_fault, kvm_pfn_t *p_pfn) 1430 { 1431 unsigned long pfn; 1432 int r; 1433 1434 r = follow_pfn(vma, addr, &pfn); 1435 if (r) { 1436 /* 1437 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1438 * not call the fault handler, so do it here. 1439 */ 1440 bool unlocked = false; 1441 r = fixup_user_fault(current, current->mm, addr, 1442 (write_fault ? FAULT_FLAG_WRITE : 0), 1443 &unlocked); 1444 if (unlocked) 1445 return -EAGAIN; 1446 if (r) 1447 return r; 1448 1449 r = follow_pfn(vma, addr, &pfn); 1450 if (r) 1451 return r; 1452 1453 } 1454 1455 1456 /* 1457 * Get a reference here because callers of *hva_to_pfn* and 1458 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1459 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1460 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1461 * simply do nothing for reserved pfns. 1462 * 1463 * Whoever called remap_pfn_range is also going to call e.g. 1464 * unmap_mapping_range before the underlying pages are freed, 1465 * causing a call to our MMU notifier. 1466 */ 1467 kvm_get_pfn(pfn); 1468 1469 *p_pfn = pfn; 1470 return 0; 1471 } 1472 1473 /* 1474 * Pin guest page in memory and return its pfn. 1475 * @addr: host virtual address which maps memory to the guest 1476 * @atomic: whether this function can sleep 1477 * @async: whether this function need to wait IO complete if the 1478 * host page is not in the memory 1479 * @write_fault: whether we should get a writable host page 1480 * @writable: whether it allows to map a writable host page for !@write_fault 1481 * 1482 * The function will map a writable host page for these two cases: 1483 * 1): @write_fault = true 1484 * 2): @write_fault = false && @writable, @writable will tell the caller 1485 * whether the mapping is writable. 1486 */ 1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1488 bool write_fault, bool *writable) 1489 { 1490 struct vm_area_struct *vma; 1491 kvm_pfn_t pfn = 0; 1492 int npages, r; 1493 1494 /* we can do it either atomically or asynchronously, not both */ 1495 BUG_ON(atomic && async); 1496 1497 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1498 return pfn; 1499 1500 if (atomic) 1501 return KVM_PFN_ERR_FAULT; 1502 1503 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1504 if (npages == 1) 1505 return pfn; 1506 1507 down_read(¤t->mm->mmap_sem); 1508 if (npages == -EHWPOISON || 1509 (!async && check_user_page_hwpoison(addr))) { 1510 pfn = KVM_PFN_ERR_HWPOISON; 1511 goto exit; 1512 } 1513 1514 retry: 1515 vma = find_vma_intersection(current->mm, addr, addr + 1); 1516 1517 if (vma == NULL) 1518 pfn = KVM_PFN_ERR_FAULT; 1519 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1520 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1521 if (r == -EAGAIN) 1522 goto retry; 1523 if (r < 0) 1524 pfn = KVM_PFN_ERR_FAULT; 1525 } else { 1526 if (async && vma_is_valid(vma, write_fault)) 1527 *async = true; 1528 pfn = KVM_PFN_ERR_FAULT; 1529 } 1530 exit: 1531 up_read(¤t->mm->mmap_sem); 1532 return pfn; 1533 } 1534 1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1536 bool atomic, bool *async, bool write_fault, 1537 bool *writable) 1538 { 1539 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1540 1541 if (addr == KVM_HVA_ERR_RO_BAD) { 1542 if (writable) 1543 *writable = false; 1544 return KVM_PFN_ERR_RO_FAULT; 1545 } 1546 1547 if (kvm_is_error_hva(addr)) { 1548 if (writable) 1549 *writable = false; 1550 return KVM_PFN_NOSLOT; 1551 } 1552 1553 /* Do not map writable pfn in the readonly memslot. */ 1554 if (writable && memslot_is_readonly(slot)) { 1555 *writable = false; 1556 writable = NULL; 1557 } 1558 1559 return hva_to_pfn(addr, atomic, async, write_fault, 1560 writable); 1561 } 1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1563 1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1565 bool *writable) 1566 { 1567 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1568 write_fault, writable); 1569 } 1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1571 1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1573 { 1574 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1575 } 1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1577 1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1579 { 1580 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1581 } 1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1583 1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1585 { 1586 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1587 } 1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1589 1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1591 { 1592 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1593 } 1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1595 1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1597 { 1598 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1599 } 1600 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1601 1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1603 { 1604 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1605 } 1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1607 1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1609 struct page **pages, int nr_pages) 1610 { 1611 unsigned long addr; 1612 gfn_t entry = 0; 1613 1614 addr = gfn_to_hva_many(slot, gfn, &entry); 1615 if (kvm_is_error_hva(addr)) 1616 return -1; 1617 1618 if (entry < nr_pages) 1619 return 0; 1620 1621 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1622 } 1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1624 1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1626 { 1627 if (is_error_noslot_pfn(pfn)) 1628 return KVM_ERR_PTR_BAD_PAGE; 1629 1630 if (kvm_is_reserved_pfn(pfn)) { 1631 WARN_ON(1); 1632 return KVM_ERR_PTR_BAD_PAGE; 1633 } 1634 1635 return pfn_to_page(pfn); 1636 } 1637 1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1639 { 1640 kvm_pfn_t pfn; 1641 1642 pfn = gfn_to_pfn(kvm, gfn); 1643 1644 return kvm_pfn_to_page(pfn); 1645 } 1646 EXPORT_SYMBOL_GPL(gfn_to_page); 1647 1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1649 { 1650 kvm_pfn_t pfn; 1651 1652 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1653 1654 return kvm_pfn_to_page(pfn); 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1657 1658 void kvm_release_page_clean(struct page *page) 1659 { 1660 WARN_ON(is_error_page(page)); 1661 1662 kvm_release_pfn_clean(page_to_pfn(page)); 1663 } 1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1665 1666 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1667 { 1668 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1669 put_page(pfn_to_page(pfn)); 1670 } 1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1672 1673 void kvm_release_page_dirty(struct page *page) 1674 { 1675 WARN_ON(is_error_page(page)); 1676 1677 kvm_release_pfn_dirty(page_to_pfn(page)); 1678 } 1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1680 1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1682 { 1683 kvm_set_pfn_dirty(pfn); 1684 kvm_release_pfn_clean(pfn); 1685 } 1686 1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1688 { 1689 if (!kvm_is_reserved_pfn(pfn)) { 1690 struct page *page = pfn_to_page(pfn); 1691 1692 if (!PageReserved(page)) 1693 SetPageDirty(page); 1694 } 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1697 1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1699 { 1700 if (!kvm_is_reserved_pfn(pfn)) 1701 mark_page_accessed(pfn_to_page(pfn)); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1704 1705 void kvm_get_pfn(kvm_pfn_t pfn) 1706 { 1707 if (!kvm_is_reserved_pfn(pfn)) 1708 get_page(pfn_to_page(pfn)); 1709 } 1710 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1711 1712 static int next_segment(unsigned long len, int offset) 1713 { 1714 if (len > PAGE_SIZE - offset) 1715 return PAGE_SIZE - offset; 1716 else 1717 return len; 1718 } 1719 1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1721 void *data, int offset, int len) 1722 { 1723 int r; 1724 unsigned long addr; 1725 1726 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1727 if (kvm_is_error_hva(addr)) 1728 return -EFAULT; 1729 r = __copy_from_user(data, (void __user *)addr + offset, len); 1730 if (r) 1731 return -EFAULT; 1732 return 0; 1733 } 1734 1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1736 int len) 1737 { 1738 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1739 1740 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1743 1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1745 int offset, int len) 1746 { 1747 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1748 1749 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1752 1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1754 { 1755 gfn_t gfn = gpa >> PAGE_SHIFT; 1756 int seg; 1757 int offset = offset_in_page(gpa); 1758 int ret; 1759 1760 while ((seg = next_segment(len, offset)) != 0) { 1761 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1762 if (ret < 0) 1763 return ret; 1764 offset = 0; 1765 len -= seg; 1766 data += seg; 1767 ++gfn; 1768 } 1769 return 0; 1770 } 1771 EXPORT_SYMBOL_GPL(kvm_read_guest); 1772 1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1774 { 1775 gfn_t gfn = gpa >> PAGE_SHIFT; 1776 int seg; 1777 int offset = offset_in_page(gpa); 1778 int ret; 1779 1780 while ((seg = next_segment(len, offset)) != 0) { 1781 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1782 if (ret < 0) 1783 return ret; 1784 offset = 0; 1785 len -= seg; 1786 data += seg; 1787 ++gfn; 1788 } 1789 return 0; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1792 1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1794 void *data, int offset, unsigned long len) 1795 { 1796 int r; 1797 unsigned long addr; 1798 1799 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1800 if (kvm_is_error_hva(addr)) 1801 return -EFAULT; 1802 pagefault_disable(); 1803 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1804 pagefault_enable(); 1805 if (r) 1806 return -EFAULT; 1807 return 0; 1808 } 1809 1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1811 unsigned long len) 1812 { 1813 gfn_t gfn = gpa >> PAGE_SHIFT; 1814 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1815 int offset = offset_in_page(gpa); 1816 1817 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1818 } 1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1820 1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1822 void *data, unsigned long len) 1823 { 1824 gfn_t gfn = gpa >> PAGE_SHIFT; 1825 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1826 int offset = offset_in_page(gpa); 1827 1828 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1831 1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1833 const void *data, int offset, int len) 1834 { 1835 int r; 1836 unsigned long addr; 1837 1838 addr = gfn_to_hva_memslot(memslot, gfn); 1839 if (kvm_is_error_hva(addr)) 1840 return -EFAULT; 1841 r = __copy_to_user((void __user *)addr + offset, data, len); 1842 if (r) 1843 return -EFAULT; 1844 mark_page_dirty_in_slot(memslot, gfn); 1845 return 0; 1846 } 1847 1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1849 const void *data, int offset, int len) 1850 { 1851 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1852 1853 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1854 } 1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1856 1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1858 const void *data, int offset, int len) 1859 { 1860 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1861 1862 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1863 } 1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1865 1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1867 unsigned long len) 1868 { 1869 gfn_t gfn = gpa >> PAGE_SHIFT; 1870 int seg; 1871 int offset = offset_in_page(gpa); 1872 int ret; 1873 1874 while ((seg = next_segment(len, offset)) != 0) { 1875 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1876 if (ret < 0) 1877 return ret; 1878 offset = 0; 1879 len -= seg; 1880 data += seg; 1881 ++gfn; 1882 } 1883 return 0; 1884 } 1885 EXPORT_SYMBOL_GPL(kvm_write_guest); 1886 1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1888 unsigned long len) 1889 { 1890 gfn_t gfn = gpa >> PAGE_SHIFT; 1891 int seg; 1892 int offset = offset_in_page(gpa); 1893 int ret; 1894 1895 while ((seg = next_segment(len, offset)) != 0) { 1896 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1897 if (ret < 0) 1898 return ret; 1899 offset = 0; 1900 len -= seg; 1901 data += seg; 1902 ++gfn; 1903 } 1904 return 0; 1905 } 1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1907 1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1909 struct gfn_to_hva_cache *ghc, 1910 gpa_t gpa, unsigned long len) 1911 { 1912 int offset = offset_in_page(gpa); 1913 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1914 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1915 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1916 gfn_t nr_pages_avail; 1917 1918 ghc->gpa = gpa; 1919 ghc->generation = slots->generation; 1920 ghc->len = len; 1921 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1922 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1923 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1924 ghc->hva += offset; 1925 } else { 1926 /* 1927 * If the requested region crosses two memslots, we still 1928 * verify that the entire region is valid here. 1929 */ 1930 while (start_gfn <= end_gfn) { 1931 nr_pages_avail = 0; 1932 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1933 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1934 &nr_pages_avail); 1935 if (kvm_is_error_hva(ghc->hva)) 1936 return -EFAULT; 1937 start_gfn += nr_pages_avail; 1938 } 1939 /* Use the slow path for cross page reads and writes. */ 1940 ghc->memslot = NULL; 1941 } 1942 return 0; 1943 } 1944 1945 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1946 gpa_t gpa, unsigned long len) 1947 { 1948 struct kvm_memslots *slots = kvm_memslots(kvm); 1949 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1952 1953 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1954 void *data, int offset, unsigned long len) 1955 { 1956 struct kvm_memslots *slots = kvm_memslots(kvm); 1957 int r; 1958 gpa_t gpa = ghc->gpa + offset; 1959 1960 BUG_ON(len + offset > ghc->len); 1961 1962 if (slots->generation != ghc->generation) 1963 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1964 1965 if (unlikely(!ghc->memslot)) 1966 return kvm_write_guest(kvm, gpa, data, len); 1967 1968 if (kvm_is_error_hva(ghc->hva)) 1969 return -EFAULT; 1970 1971 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1972 if (r) 1973 return -EFAULT; 1974 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1975 1976 return 0; 1977 } 1978 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1979 1980 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1981 void *data, unsigned long len) 1982 { 1983 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1986 1987 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1988 void *data, unsigned long len) 1989 { 1990 struct kvm_memslots *slots = kvm_memslots(kvm); 1991 int r; 1992 1993 BUG_ON(len > ghc->len); 1994 1995 if (slots->generation != ghc->generation) 1996 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1997 1998 if (unlikely(!ghc->memslot)) 1999 return kvm_read_guest(kvm, ghc->gpa, data, len); 2000 2001 if (kvm_is_error_hva(ghc->hva)) 2002 return -EFAULT; 2003 2004 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2005 if (r) 2006 return -EFAULT; 2007 2008 return 0; 2009 } 2010 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2011 2012 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2013 { 2014 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2015 2016 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2017 } 2018 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2019 2020 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2021 { 2022 gfn_t gfn = gpa >> PAGE_SHIFT; 2023 int seg; 2024 int offset = offset_in_page(gpa); 2025 int ret; 2026 2027 while ((seg = next_segment(len, offset)) != 0) { 2028 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2029 if (ret < 0) 2030 return ret; 2031 offset = 0; 2032 len -= seg; 2033 ++gfn; 2034 } 2035 return 0; 2036 } 2037 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2038 2039 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2040 gfn_t gfn) 2041 { 2042 if (memslot && memslot->dirty_bitmap) { 2043 unsigned long rel_gfn = gfn - memslot->base_gfn; 2044 2045 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2046 } 2047 } 2048 2049 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2050 { 2051 struct kvm_memory_slot *memslot; 2052 2053 memslot = gfn_to_memslot(kvm, gfn); 2054 mark_page_dirty_in_slot(memslot, gfn); 2055 } 2056 EXPORT_SYMBOL_GPL(mark_page_dirty); 2057 2058 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2059 { 2060 struct kvm_memory_slot *memslot; 2061 2062 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2063 mark_page_dirty_in_slot(memslot, gfn); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2066 2067 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2068 { 2069 unsigned int old, val, grow; 2070 2071 old = val = vcpu->halt_poll_ns; 2072 grow = READ_ONCE(halt_poll_ns_grow); 2073 /* 10us base */ 2074 if (val == 0 && grow) 2075 val = 10000; 2076 else 2077 val *= grow; 2078 2079 if (val > halt_poll_ns) 2080 val = halt_poll_ns; 2081 2082 vcpu->halt_poll_ns = val; 2083 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2084 } 2085 2086 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2087 { 2088 unsigned int old, val, shrink; 2089 2090 old = val = vcpu->halt_poll_ns; 2091 shrink = READ_ONCE(halt_poll_ns_shrink); 2092 if (shrink == 0) 2093 val = 0; 2094 else 2095 val /= shrink; 2096 2097 vcpu->halt_poll_ns = val; 2098 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2099 } 2100 2101 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2102 { 2103 if (kvm_arch_vcpu_runnable(vcpu)) { 2104 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2105 return -EINTR; 2106 } 2107 if (kvm_cpu_has_pending_timer(vcpu)) 2108 return -EINTR; 2109 if (signal_pending(current)) 2110 return -EINTR; 2111 2112 return 0; 2113 } 2114 2115 /* 2116 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2117 */ 2118 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2119 { 2120 ktime_t start, cur; 2121 DECLARE_SWAITQUEUE(wait); 2122 bool waited = false; 2123 u64 block_ns; 2124 2125 start = cur = ktime_get(); 2126 if (vcpu->halt_poll_ns) { 2127 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2128 2129 ++vcpu->stat.halt_attempted_poll; 2130 do { 2131 /* 2132 * This sets KVM_REQ_UNHALT if an interrupt 2133 * arrives. 2134 */ 2135 if (kvm_vcpu_check_block(vcpu) < 0) { 2136 ++vcpu->stat.halt_successful_poll; 2137 if (!vcpu_valid_wakeup(vcpu)) 2138 ++vcpu->stat.halt_poll_invalid; 2139 goto out; 2140 } 2141 cur = ktime_get(); 2142 } while (single_task_running() && ktime_before(cur, stop)); 2143 } 2144 2145 kvm_arch_vcpu_blocking(vcpu); 2146 2147 for (;;) { 2148 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2149 2150 if (kvm_vcpu_check_block(vcpu) < 0) 2151 break; 2152 2153 waited = true; 2154 schedule(); 2155 } 2156 2157 finish_swait(&vcpu->wq, &wait); 2158 cur = ktime_get(); 2159 2160 kvm_arch_vcpu_unblocking(vcpu); 2161 out: 2162 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2163 2164 if (!vcpu_valid_wakeup(vcpu)) 2165 shrink_halt_poll_ns(vcpu); 2166 else if (halt_poll_ns) { 2167 if (block_ns <= vcpu->halt_poll_ns) 2168 ; 2169 /* we had a long block, shrink polling */ 2170 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2171 shrink_halt_poll_ns(vcpu); 2172 /* we had a short halt and our poll time is too small */ 2173 else if (vcpu->halt_poll_ns < halt_poll_ns && 2174 block_ns < halt_poll_ns) 2175 grow_halt_poll_ns(vcpu); 2176 } else 2177 vcpu->halt_poll_ns = 0; 2178 2179 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2180 kvm_arch_vcpu_block_finish(vcpu); 2181 } 2182 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2183 2184 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2185 { 2186 struct swait_queue_head *wqp; 2187 2188 wqp = kvm_arch_vcpu_wq(vcpu); 2189 if (swait_active(wqp)) { 2190 swake_up(wqp); 2191 ++vcpu->stat.halt_wakeup; 2192 return true; 2193 } 2194 2195 return false; 2196 } 2197 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2198 2199 #ifndef CONFIG_S390 2200 /* 2201 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2202 */ 2203 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2204 { 2205 int me; 2206 int cpu = vcpu->cpu; 2207 2208 if (kvm_vcpu_wake_up(vcpu)) 2209 return; 2210 2211 me = get_cpu(); 2212 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2213 if (kvm_arch_vcpu_should_kick(vcpu)) 2214 smp_send_reschedule(cpu); 2215 put_cpu(); 2216 } 2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2218 #endif /* !CONFIG_S390 */ 2219 2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2221 { 2222 struct pid *pid; 2223 struct task_struct *task = NULL; 2224 int ret = 0; 2225 2226 rcu_read_lock(); 2227 pid = rcu_dereference(target->pid); 2228 if (pid) 2229 task = get_pid_task(pid, PIDTYPE_PID); 2230 rcu_read_unlock(); 2231 if (!task) 2232 return ret; 2233 ret = yield_to(task, 1); 2234 put_task_struct(task); 2235 2236 return ret; 2237 } 2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2239 2240 /* 2241 * Helper that checks whether a VCPU is eligible for directed yield. 2242 * Most eligible candidate to yield is decided by following heuristics: 2243 * 2244 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2245 * (preempted lock holder), indicated by @in_spin_loop. 2246 * Set at the beiginning and cleared at the end of interception/PLE handler. 2247 * 2248 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2249 * chance last time (mostly it has become eligible now since we have probably 2250 * yielded to lockholder in last iteration. This is done by toggling 2251 * @dy_eligible each time a VCPU checked for eligibility.) 2252 * 2253 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2254 * to preempted lock-holder could result in wrong VCPU selection and CPU 2255 * burning. Giving priority for a potential lock-holder increases lock 2256 * progress. 2257 * 2258 * Since algorithm is based on heuristics, accessing another VCPU data without 2259 * locking does not harm. It may result in trying to yield to same VCPU, fail 2260 * and continue with next VCPU and so on. 2261 */ 2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2263 { 2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2265 bool eligible; 2266 2267 eligible = !vcpu->spin_loop.in_spin_loop || 2268 vcpu->spin_loop.dy_eligible; 2269 2270 if (vcpu->spin_loop.in_spin_loop) 2271 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2272 2273 return eligible; 2274 #else 2275 return true; 2276 #endif 2277 } 2278 2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2280 { 2281 struct kvm *kvm = me->kvm; 2282 struct kvm_vcpu *vcpu; 2283 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2284 int yielded = 0; 2285 int try = 3; 2286 int pass; 2287 int i; 2288 2289 kvm_vcpu_set_in_spin_loop(me, true); 2290 /* 2291 * We boost the priority of a VCPU that is runnable but not 2292 * currently running, because it got preempted by something 2293 * else and called schedule in __vcpu_run. Hopefully that 2294 * VCPU is holding the lock that we need and will release it. 2295 * We approximate round-robin by starting at the last boosted VCPU. 2296 */ 2297 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2298 kvm_for_each_vcpu(i, vcpu, kvm) { 2299 if (!pass && i <= last_boosted_vcpu) { 2300 i = last_boosted_vcpu; 2301 continue; 2302 } else if (pass && i > last_boosted_vcpu) 2303 break; 2304 if (!ACCESS_ONCE(vcpu->preempted)) 2305 continue; 2306 if (vcpu == me) 2307 continue; 2308 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2309 continue; 2310 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2311 continue; 2312 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2313 continue; 2314 2315 yielded = kvm_vcpu_yield_to(vcpu); 2316 if (yielded > 0) { 2317 kvm->last_boosted_vcpu = i; 2318 break; 2319 } else if (yielded < 0) { 2320 try--; 2321 if (!try) 2322 break; 2323 } 2324 } 2325 } 2326 kvm_vcpu_set_in_spin_loop(me, false); 2327 2328 /* Ensure vcpu is not eligible during next spinloop */ 2329 kvm_vcpu_set_dy_eligible(me, false); 2330 } 2331 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2332 2333 static int kvm_vcpu_fault(struct vm_fault *vmf) 2334 { 2335 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2336 struct page *page; 2337 2338 if (vmf->pgoff == 0) 2339 page = virt_to_page(vcpu->run); 2340 #ifdef CONFIG_X86 2341 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2342 page = virt_to_page(vcpu->arch.pio_data); 2343 #endif 2344 #ifdef CONFIG_KVM_MMIO 2345 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2346 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2347 #endif 2348 else 2349 return kvm_arch_vcpu_fault(vcpu, vmf); 2350 get_page(page); 2351 vmf->page = page; 2352 return 0; 2353 } 2354 2355 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2356 .fault = kvm_vcpu_fault, 2357 }; 2358 2359 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2360 { 2361 vma->vm_ops = &kvm_vcpu_vm_ops; 2362 return 0; 2363 } 2364 2365 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2366 { 2367 struct kvm_vcpu *vcpu = filp->private_data; 2368 2369 debugfs_remove_recursive(vcpu->debugfs_dentry); 2370 kvm_put_kvm(vcpu->kvm); 2371 return 0; 2372 } 2373 2374 static struct file_operations kvm_vcpu_fops = { 2375 .release = kvm_vcpu_release, 2376 .unlocked_ioctl = kvm_vcpu_ioctl, 2377 #ifdef CONFIG_KVM_COMPAT 2378 .compat_ioctl = kvm_vcpu_compat_ioctl, 2379 #endif 2380 .mmap = kvm_vcpu_mmap, 2381 .llseek = noop_llseek, 2382 }; 2383 2384 /* 2385 * Allocates an inode for the vcpu. 2386 */ 2387 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2388 { 2389 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2390 } 2391 2392 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2393 { 2394 char dir_name[ITOA_MAX_LEN * 2]; 2395 int ret; 2396 2397 if (!kvm_arch_has_vcpu_debugfs()) 2398 return 0; 2399 2400 if (!debugfs_initialized()) 2401 return 0; 2402 2403 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2404 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2405 vcpu->kvm->debugfs_dentry); 2406 if (!vcpu->debugfs_dentry) 2407 return -ENOMEM; 2408 2409 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2410 if (ret < 0) { 2411 debugfs_remove_recursive(vcpu->debugfs_dentry); 2412 return ret; 2413 } 2414 2415 return 0; 2416 } 2417 2418 /* 2419 * Creates some virtual cpus. Good luck creating more than one. 2420 */ 2421 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2422 { 2423 int r; 2424 struct kvm_vcpu *vcpu; 2425 2426 if (id >= KVM_MAX_VCPU_ID) 2427 return -EINVAL; 2428 2429 mutex_lock(&kvm->lock); 2430 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2431 mutex_unlock(&kvm->lock); 2432 return -EINVAL; 2433 } 2434 2435 kvm->created_vcpus++; 2436 mutex_unlock(&kvm->lock); 2437 2438 vcpu = kvm_arch_vcpu_create(kvm, id); 2439 if (IS_ERR(vcpu)) { 2440 r = PTR_ERR(vcpu); 2441 goto vcpu_decrement; 2442 } 2443 2444 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2445 2446 r = kvm_arch_vcpu_setup(vcpu); 2447 if (r) 2448 goto vcpu_destroy; 2449 2450 r = kvm_create_vcpu_debugfs(vcpu); 2451 if (r) 2452 goto vcpu_destroy; 2453 2454 mutex_lock(&kvm->lock); 2455 if (kvm_get_vcpu_by_id(kvm, id)) { 2456 r = -EEXIST; 2457 goto unlock_vcpu_destroy; 2458 } 2459 2460 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2461 2462 /* Now it's all set up, let userspace reach it */ 2463 kvm_get_kvm(kvm); 2464 r = create_vcpu_fd(vcpu); 2465 if (r < 0) { 2466 kvm_put_kvm(kvm); 2467 goto unlock_vcpu_destroy; 2468 } 2469 2470 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2471 2472 /* 2473 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2474 * before kvm->online_vcpu's incremented value. 2475 */ 2476 smp_wmb(); 2477 atomic_inc(&kvm->online_vcpus); 2478 2479 mutex_unlock(&kvm->lock); 2480 kvm_arch_vcpu_postcreate(vcpu); 2481 return r; 2482 2483 unlock_vcpu_destroy: 2484 mutex_unlock(&kvm->lock); 2485 debugfs_remove_recursive(vcpu->debugfs_dentry); 2486 vcpu_destroy: 2487 kvm_arch_vcpu_destroy(vcpu); 2488 vcpu_decrement: 2489 mutex_lock(&kvm->lock); 2490 kvm->created_vcpus--; 2491 mutex_unlock(&kvm->lock); 2492 return r; 2493 } 2494 2495 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2496 { 2497 if (sigset) { 2498 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2499 vcpu->sigset_active = 1; 2500 vcpu->sigset = *sigset; 2501 } else 2502 vcpu->sigset_active = 0; 2503 return 0; 2504 } 2505 2506 static long kvm_vcpu_ioctl(struct file *filp, 2507 unsigned int ioctl, unsigned long arg) 2508 { 2509 struct kvm_vcpu *vcpu = filp->private_data; 2510 void __user *argp = (void __user *)arg; 2511 int r; 2512 struct kvm_fpu *fpu = NULL; 2513 struct kvm_sregs *kvm_sregs = NULL; 2514 2515 if (vcpu->kvm->mm != current->mm) 2516 return -EIO; 2517 2518 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2519 return -EINVAL; 2520 2521 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2522 /* 2523 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2524 * so vcpu_load() would break it. 2525 */ 2526 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2527 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2528 #endif 2529 2530 2531 r = vcpu_load(vcpu); 2532 if (r) 2533 return r; 2534 switch (ioctl) { 2535 case KVM_RUN: { 2536 struct pid *oldpid; 2537 r = -EINVAL; 2538 if (arg) 2539 goto out; 2540 oldpid = rcu_access_pointer(vcpu->pid); 2541 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2542 /* The thread running this VCPU changed. */ 2543 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2544 2545 rcu_assign_pointer(vcpu->pid, newpid); 2546 if (oldpid) 2547 synchronize_rcu(); 2548 put_pid(oldpid); 2549 } 2550 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2551 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2552 break; 2553 } 2554 case KVM_GET_REGS: { 2555 struct kvm_regs *kvm_regs; 2556 2557 r = -ENOMEM; 2558 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2559 if (!kvm_regs) 2560 goto out; 2561 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2562 if (r) 2563 goto out_free1; 2564 r = -EFAULT; 2565 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2566 goto out_free1; 2567 r = 0; 2568 out_free1: 2569 kfree(kvm_regs); 2570 break; 2571 } 2572 case KVM_SET_REGS: { 2573 struct kvm_regs *kvm_regs; 2574 2575 r = -ENOMEM; 2576 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2577 if (IS_ERR(kvm_regs)) { 2578 r = PTR_ERR(kvm_regs); 2579 goto out; 2580 } 2581 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2582 kfree(kvm_regs); 2583 break; 2584 } 2585 case KVM_GET_SREGS: { 2586 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2587 r = -ENOMEM; 2588 if (!kvm_sregs) 2589 goto out; 2590 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2591 if (r) 2592 goto out; 2593 r = -EFAULT; 2594 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2595 goto out; 2596 r = 0; 2597 break; 2598 } 2599 case KVM_SET_SREGS: { 2600 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2601 if (IS_ERR(kvm_sregs)) { 2602 r = PTR_ERR(kvm_sregs); 2603 kvm_sregs = NULL; 2604 goto out; 2605 } 2606 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2607 break; 2608 } 2609 case KVM_GET_MP_STATE: { 2610 struct kvm_mp_state mp_state; 2611 2612 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2613 if (r) 2614 goto out; 2615 r = -EFAULT; 2616 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2617 goto out; 2618 r = 0; 2619 break; 2620 } 2621 case KVM_SET_MP_STATE: { 2622 struct kvm_mp_state mp_state; 2623 2624 r = -EFAULT; 2625 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2626 goto out; 2627 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2628 break; 2629 } 2630 case KVM_TRANSLATE: { 2631 struct kvm_translation tr; 2632 2633 r = -EFAULT; 2634 if (copy_from_user(&tr, argp, sizeof(tr))) 2635 goto out; 2636 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2637 if (r) 2638 goto out; 2639 r = -EFAULT; 2640 if (copy_to_user(argp, &tr, sizeof(tr))) 2641 goto out; 2642 r = 0; 2643 break; 2644 } 2645 case KVM_SET_GUEST_DEBUG: { 2646 struct kvm_guest_debug dbg; 2647 2648 r = -EFAULT; 2649 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2650 goto out; 2651 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2652 break; 2653 } 2654 case KVM_SET_SIGNAL_MASK: { 2655 struct kvm_signal_mask __user *sigmask_arg = argp; 2656 struct kvm_signal_mask kvm_sigmask; 2657 sigset_t sigset, *p; 2658 2659 p = NULL; 2660 if (argp) { 2661 r = -EFAULT; 2662 if (copy_from_user(&kvm_sigmask, argp, 2663 sizeof(kvm_sigmask))) 2664 goto out; 2665 r = -EINVAL; 2666 if (kvm_sigmask.len != sizeof(sigset)) 2667 goto out; 2668 r = -EFAULT; 2669 if (copy_from_user(&sigset, sigmask_arg->sigset, 2670 sizeof(sigset))) 2671 goto out; 2672 p = &sigset; 2673 } 2674 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2675 break; 2676 } 2677 case KVM_GET_FPU: { 2678 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2679 r = -ENOMEM; 2680 if (!fpu) 2681 goto out; 2682 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2683 if (r) 2684 goto out; 2685 r = -EFAULT; 2686 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2687 goto out; 2688 r = 0; 2689 break; 2690 } 2691 case KVM_SET_FPU: { 2692 fpu = memdup_user(argp, sizeof(*fpu)); 2693 if (IS_ERR(fpu)) { 2694 r = PTR_ERR(fpu); 2695 fpu = NULL; 2696 goto out; 2697 } 2698 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2699 break; 2700 } 2701 default: 2702 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2703 } 2704 out: 2705 vcpu_put(vcpu); 2706 kfree(fpu); 2707 kfree(kvm_sregs); 2708 return r; 2709 } 2710 2711 #ifdef CONFIG_KVM_COMPAT 2712 static long kvm_vcpu_compat_ioctl(struct file *filp, 2713 unsigned int ioctl, unsigned long arg) 2714 { 2715 struct kvm_vcpu *vcpu = filp->private_data; 2716 void __user *argp = compat_ptr(arg); 2717 int r; 2718 2719 if (vcpu->kvm->mm != current->mm) 2720 return -EIO; 2721 2722 switch (ioctl) { 2723 case KVM_SET_SIGNAL_MASK: { 2724 struct kvm_signal_mask __user *sigmask_arg = argp; 2725 struct kvm_signal_mask kvm_sigmask; 2726 compat_sigset_t csigset; 2727 sigset_t sigset; 2728 2729 if (argp) { 2730 r = -EFAULT; 2731 if (copy_from_user(&kvm_sigmask, argp, 2732 sizeof(kvm_sigmask))) 2733 goto out; 2734 r = -EINVAL; 2735 if (kvm_sigmask.len != sizeof(csigset)) 2736 goto out; 2737 r = -EFAULT; 2738 if (copy_from_user(&csigset, sigmask_arg->sigset, 2739 sizeof(csigset))) 2740 goto out; 2741 sigset_from_compat(&sigset, &csigset); 2742 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2743 } else 2744 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2745 break; 2746 } 2747 default: 2748 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2749 } 2750 2751 out: 2752 return r; 2753 } 2754 #endif 2755 2756 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2757 int (*accessor)(struct kvm_device *dev, 2758 struct kvm_device_attr *attr), 2759 unsigned long arg) 2760 { 2761 struct kvm_device_attr attr; 2762 2763 if (!accessor) 2764 return -EPERM; 2765 2766 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2767 return -EFAULT; 2768 2769 return accessor(dev, &attr); 2770 } 2771 2772 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2773 unsigned long arg) 2774 { 2775 struct kvm_device *dev = filp->private_data; 2776 2777 switch (ioctl) { 2778 case KVM_SET_DEVICE_ATTR: 2779 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2780 case KVM_GET_DEVICE_ATTR: 2781 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2782 case KVM_HAS_DEVICE_ATTR: 2783 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2784 default: 2785 if (dev->ops->ioctl) 2786 return dev->ops->ioctl(dev, ioctl, arg); 2787 2788 return -ENOTTY; 2789 } 2790 } 2791 2792 static int kvm_device_release(struct inode *inode, struct file *filp) 2793 { 2794 struct kvm_device *dev = filp->private_data; 2795 struct kvm *kvm = dev->kvm; 2796 2797 kvm_put_kvm(kvm); 2798 return 0; 2799 } 2800 2801 static const struct file_operations kvm_device_fops = { 2802 .unlocked_ioctl = kvm_device_ioctl, 2803 #ifdef CONFIG_KVM_COMPAT 2804 .compat_ioctl = kvm_device_ioctl, 2805 #endif 2806 .release = kvm_device_release, 2807 }; 2808 2809 struct kvm_device *kvm_device_from_filp(struct file *filp) 2810 { 2811 if (filp->f_op != &kvm_device_fops) 2812 return NULL; 2813 2814 return filp->private_data; 2815 } 2816 2817 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2818 #ifdef CONFIG_KVM_MPIC 2819 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2820 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2821 #endif 2822 }; 2823 2824 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2825 { 2826 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2827 return -ENOSPC; 2828 2829 if (kvm_device_ops_table[type] != NULL) 2830 return -EEXIST; 2831 2832 kvm_device_ops_table[type] = ops; 2833 return 0; 2834 } 2835 2836 void kvm_unregister_device_ops(u32 type) 2837 { 2838 if (kvm_device_ops_table[type] != NULL) 2839 kvm_device_ops_table[type] = NULL; 2840 } 2841 2842 static int kvm_ioctl_create_device(struct kvm *kvm, 2843 struct kvm_create_device *cd) 2844 { 2845 struct kvm_device_ops *ops = NULL; 2846 struct kvm_device *dev; 2847 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2848 int ret; 2849 2850 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2851 return -ENODEV; 2852 2853 ops = kvm_device_ops_table[cd->type]; 2854 if (ops == NULL) 2855 return -ENODEV; 2856 2857 if (test) 2858 return 0; 2859 2860 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2861 if (!dev) 2862 return -ENOMEM; 2863 2864 dev->ops = ops; 2865 dev->kvm = kvm; 2866 2867 mutex_lock(&kvm->lock); 2868 ret = ops->create(dev, cd->type); 2869 if (ret < 0) { 2870 mutex_unlock(&kvm->lock); 2871 kfree(dev); 2872 return ret; 2873 } 2874 list_add(&dev->vm_node, &kvm->devices); 2875 mutex_unlock(&kvm->lock); 2876 2877 if (ops->init) 2878 ops->init(dev); 2879 2880 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2881 if (ret < 0) { 2882 mutex_lock(&kvm->lock); 2883 list_del(&dev->vm_node); 2884 mutex_unlock(&kvm->lock); 2885 ops->destroy(dev); 2886 return ret; 2887 } 2888 2889 kvm_get_kvm(kvm); 2890 cd->fd = ret; 2891 return 0; 2892 } 2893 2894 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2895 { 2896 switch (arg) { 2897 case KVM_CAP_USER_MEMORY: 2898 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2899 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2900 case KVM_CAP_INTERNAL_ERROR_DATA: 2901 #ifdef CONFIG_HAVE_KVM_MSI 2902 case KVM_CAP_SIGNAL_MSI: 2903 #endif 2904 #ifdef CONFIG_HAVE_KVM_IRQFD 2905 case KVM_CAP_IRQFD: 2906 case KVM_CAP_IRQFD_RESAMPLE: 2907 #endif 2908 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2909 case KVM_CAP_CHECK_EXTENSION_VM: 2910 return 1; 2911 #ifdef CONFIG_KVM_MMIO 2912 case KVM_CAP_COALESCED_MMIO: 2913 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2914 #endif 2915 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2916 case KVM_CAP_IRQ_ROUTING: 2917 return KVM_MAX_IRQ_ROUTES; 2918 #endif 2919 #if KVM_ADDRESS_SPACE_NUM > 1 2920 case KVM_CAP_MULTI_ADDRESS_SPACE: 2921 return KVM_ADDRESS_SPACE_NUM; 2922 #endif 2923 case KVM_CAP_MAX_VCPU_ID: 2924 return KVM_MAX_VCPU_ID; 2925 default: 2926 break; 2927 } 2928 return kvm_vm_ioctl_check_extension(kvm, arg); 2929 } 2930 2931 static long kvm_vm_ioctl(struct file *filp, 2932 unsigned int ioctl, unsigned long arg) 2933 { 2934 struct kvm *kvm = filp->private_data; 2935 void __user *argp = (void __user *)arg; 2936 int r; 2937 2938 if (kvm->mm != current->mm) 2939 return -EIO; 2940 switch (ioctl) { 2941 case KVM_CREATE_VCPU: 2942 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2943 break; 2944 case KVM_SET_USER_MEMORY_REGION: { 2945 struct kvm_userspace_memory_region kvm_userspace_mem; 2946 2947 r = -EFAULT; 2948 if (copy_from_user(&kvm_userspace_mem, argp, 2949 sizeof(kvm_userspace_mem))) 2950 goto out; 2951 2952 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2953 break; 2954 } 2955 case KVM_GET_DIRTY_LOG: { 2956 struct kvm_dirty_log log; 2957 2958 r = -EFAULT; 2959 if (copy_from_user(&log, argp, sizeof(log))) 2960 goto out; 2961 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2962 break; 2963 } 2964 #ifdef CONFIG_KVM_MMIO 2965 case KVM_REGISTER_COALESCED_MMIO: { 2966 struct kvm_coalesced_mmio_zone zone; 2967 2968 r = -EFAULT; 2969 if (copy_from_user(&zone, argp, sizeof(zone))) 2970 goto out; 2971 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2972 break; 2973 } 2974 case KVM_UNREGISTER_COALESCED_MMIO: { 2975 struct kvm_coalesced_mmio_zone zone; 2976 2977 r = -EFAULT; 2978 if (copy_from_user(&zone, argp, sizeof(zone))) 2979 goto out; 2980 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2981 break; 2982 } 2983 #endif 2984 case KVM_IRQFD: { 2985 struct kvm_irqfd data; 2986 2987 r = -EFAULT; 2988 if (copy_from_user(&data, argp, sizeof(data))) 2989 goto out; 2990 r = kvm_irqfd(kvm, &data); 2991 break; 2992 } 2993 case KVM_IOEVENTFD: { 2994 struct kvm_ioeventfd data; 2995 2996 r = -EFAULT; 2997 if (copy_from_user(&data, argp, sizeof(data))) 2998 goto out; 2999 r = kvm_ioeventfd(kvm, &data); 3000 break; 3001 } 3002 #ifdef CONFIG_HAVE_KVM_MSI 3003 case KVM_SIGNAL_MSI: { 3004 struct kvm_msi msi; 3005 3006 r = -EFAULT; 3007 if (copy_from_user(&msi, argp, sizeof(msi))) 3008 goto out; 3009 r = kvm_send_userspace_msi(kvm, &msi); 3010 break; 3011 } 3012 #endif 3013 #ifdef __KVM_HAVE_IRQ_LINE 3014 case KVM_IRQ_LINE_STATUS: 3015 case KVM_IRQ_LINE: { 3016 struct kvm_irq_level irq_event; 3017 3018 r = -EFAULT; 3019 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3020 goto out; 3021 3022 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3023 ioctl == KVM_IRQ_LINE_STATUS); 3024 if (r) 3025 goto out; 3026 3027 r = -EFAULT; 3028 if (ioctl == KVM_IRQ_LINE_STATUS) { 3029 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3030 goto out; 3031 } 3032 3033 r = 0; 3034 break; 3035 } 3036 #endif 3037 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3038 case KVM_SET_GSI_ROUTING: { 3039 struct kvm_irq_routing routing; 3040 struct kvm_irq_routing __user *urouting; 3041 struct kvm_irq_routing_entry *entries = NULL; 3042 3043 r = -EFAULT; 3044 if (copy_from_user(&routing, argp, sizeof(routing))) 3045 goto out; 3046 r = -EINVAL; 3047 if (!kvm_arch_can_set_irq_routing(kvm)) 3048 goto out; 3049 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3050 goto out; 3051 if (routing.flags) 3052 goto out; 3053 if (routing.nr) { 3054 r = -ENOMEM; 3055 entries = vmalloc(routing.nr * sizeof(*entries)); 3056 if (!entries) 3057 goto out; 3058 r = -EFAULT; 3059 urouting = argp; 3060 if (copy_from_user(entries, urouting->entries, 3061 routing.nr * sizeof(*entries))) 3062 goto out_free_irq_routing; 3063 } 3064 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3065 routing.flags); 3066 out_free_irq_routing: 3067 vfree(entries); 3068 break; 3069 } 3070 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3071 case KVM_CREATE_DEVICE: { 3072 struct kvm_create_device cd; 3073 3074 r = -EFAULT; 3075 if (copy_from_user(&cd, argp, sizeof(cd))) 3076 goto out; 3077 3078 r = kvm_ioctl_create_device(kvm, &cd); 3079 if (r) 3080 goto out; 3081 3082 r = -EFAULT; 3083 if (copy_to_user(argp, &cd, sizeof(cd))) 3084 goto out; 3085 3086 r = 0; 3087 break; 3088 } 3089 case KVM_CHECK_EXTENSION: 3090 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3091 break; 3092 default: 3093 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3094 } 3095 out: 3096 return r; 3097 } 3098 3099 #ifdef CONFIG_KVM_COMPAT 3100 struct compat_kvm_dirty_log { 3101 __u32 slot; 3102 __u32 padding1; 3103 union { 3104 compat_uptr_t dirty_bitmap; /* one bit per page */ 3105 __u64 padding2; 3106 }; 3107 }; 3108 3109 static long kvm_vm_compat_ioctl(struct file *filp, 3110 unsigned int ioctl, unsigned long arg) 3111 { 3112 struct kvm *kvm = filp->private_data; 3113 int r; 3114 3115 if (kvm->mm != current->mm) 3116 return -EIO; 3117 switch (ioctl) { 3118 case KVM_GET_DIRTY_LOG: { 3119 struct compat_kvm_dirty_log compat_log; 3120 struct kvm_dirty_log log; 3121 3122 if (copy_from_user(&compat_log, (void __user *)arg, 3123 sizeof(compat_log))) 3124 return -EFAULT; 3125 log.slot = compat_log.slot; 3126 log.padding1 = compat_log.padding1; 3127 log.padding2 = compat_log.padding2; 3128 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3129 3130 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3131 break; 3132 } 3133 default: 3134 r = kvm_vm_ioctl(filp, ioctl, arg); 3135 } 3136 return r; 3137 } 3138 #endif 3139 3140 static struct file_operations kvm_vm_fops = { 3141 .release = kvm_vm_release, 3142 .unlocked_ioctl = kvm_vm_ioctl, 3143 #ifdef CONFIG_KVM_COMPAT 3144 .compat_ioctl = kvm_vm_compat_ioctl, 3145 #endif 3146 .llseek = noop_llseek, 3147 }; 3148 3149 static int kvm_dev_ioctl_create_vm(unsigned long type) 3150 { 3151 int r; 3152 struct kvm *kvm; 3153 struct file *file; 3154 3155 kvm = kvm_create_vm(type); 3156 if (IS_ERR(kvm)) 3157 return PTR_ERR(kvm); 3158 #ifdef CONFIG_KVM_MMIO 3159 r = kvm_coalesced_mmio_init(kvm); 3160 if (r < 0) { 3161 kvm_put_kvm(kvm); 3162 return r; 3163 } 3164 #endif 3165 r = get_unused_fd_flags(O_CLOEXEC); 3166 if (r < 0) { 3167 kvm_put_kvm(kvm); 3168 return r; 3169 } 3170 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3171 if (IS_ERR(file)) { 3172 put_unused_fd(r); 3173 kvm_put_kvm(kvm); 3174 return PTR_ERR(file); 3175 } 3176 3177 /* 3178 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3179 * already set, with ->release() being kvm_vm_release(). In error 3180 * cases it will be called by the final fput(file) and will take 3181 * care of doing kvm_put_kvm(kvm). 3182 */ 3183 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3184 put_unused_fd(r); 3185 fput(file); 3186 return -ENOMEM; 3187 } 3188 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3189 3190 fd_install(r, file); 3191 return r; 3192 } 3193 3194 static long kvm_dev_ioctl(struct file *filp, 3195 unsigned int ioctl, unsigned long arg) 3196 { 3197 long r = -EINVAL; 3198 3199 switch (ioctl) { 3200 case KVM_GET_API_VERSION: 3201 if (arg) 3202 goto out; 3203 r = KVM_API_VERSION; 3204 break; 3205 case KVM_CREATE_VM: 3206 r = kvm_dev_ioctl_create_vm(arg); 3207 break; 3208 case KVM_CHECK_EXTENSION: 3209 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3210 break; 3211 case KVM_GET_VCPU_MMAP_SIZE: 3212 if (arg) 3213 goto out; 3214 r = PAGE_SIZE; /* struct kvm_run */ 3215 #ifdef CONFIG_X86 3216 r += PAGE_SIZE; /* pio data page */ 3217 #endif 3218 #ifdef CONFIG_KVM_MMIO 3219 r += PAGE_SIZE; /* coalesced mmio ring page */ 3220 #endif 3221 break; 3222 case KVM_TRACE_ENABLE: 3223 case KVM_TRACE_PAUSE: 3224 case KVM_TRACE_DISABLE: 3225 r = -EOPNOTSUPP; 3226 break; 3227 default: 3228 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3229 } 3230 out: 3231 return r; 3232 } 3233 3234 static struct file_operations kvm_chardev_ops = { 3235 .unlocked_ioctl = kvm_dev_ioctl, 3236 .compat_ioctl = kvm_dev_ioctl, 3237 .llseek = noop_llseek, 3238 }; 3239 3240 static struct miscdevice kvm_dev = { 3241 KVM_MINOR, 3242 "kvm", 3243 &kvm_chardev_ops, 3244 }; 3245 3246 static void hardware_enable_nolock(void *junk) 3247 { 3248 int cpu = raw_smp_processor_id(); 3249 int r; 3250 3251 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3252 return; 3253 3254 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3255 3256 r = kvm_arch_hardware_enable(); 3257 3258 if (r) { 3259 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3260 atomic_inc(&hardware_enable_failed); 3261 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3262 } 3263 } 3264 3265 static int kvm_starting_cpu(unsigned int cpu) 3266 { 3267 raw_spin_lock(&kvm_count_lock); 3268 if (kvm_usage_count) 3269 hardware_enable_nolock(NULL); 3270 raw_spin_unlock(&kvm_count_lock); 3271 return 0; 3272 } 3273 3274 static void hardware_disable_nolock(void *junk) 3275 { 3276 int cpu = raw_smp_processor_id(); 3277 3278 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3279 return; 3280 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3281 kvm_arch_hardware_disable(); 3282 } 3283 3284 static int kvm_dying_cpu(unsigned int cpu) 3285 { 3286 raw_spin_lock(&kvm_count_lock); 3287 if (kvm_usage_count) 3288 hardware_disable_nolock(NULL); 3289 raw_spin_unlock(&kvm_count_lock); 3290 return 0; 3291 } 3292 3293 static void hardware_disable_all_nolock(void) 3294 { 3295 BUG_ON(!kvm_usage_count); 3296 3297 kvm_usage_count--; 3298 if (!kvm_usage_count) 3299 on_each_cpu(hardware_disable_nolock, NULL, 1); 3300 } 3301 3302 static void hardware_disable_all(void) 3303 { 3304 raw_spin_lock(&kvm_count_lock); 3305 hardware_disable_all_nolock(); 3306 raw_spin_unlock(&kvm_count_lock); 3307 } 3308 3309 static int hardware_enable_all(void) 3310 { 3311 int r = 0; 3312 3313 raw_spin_lock(&kvm_count_lock); 3314 3315 kvm_usage_count++; 3316 if (kvm_usage_count == 1) { 3317 atomic_set(&hardware_enable_failed, 0); 3318 on_each_cpu(hardware_enable_nolock, NULL, 1); 3319 3320 if (atomic_read(&hardware_enable_failed)) { 3321 hardware_disable_all_nolock(); 3322 r = -EBUSY; 3323 } 3324 } 3325 3326 raw_spin_unlock(&kvm_count_lock); 3327 3328 return r; 3329 } 3330 3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3332 void *v) 3333 { 3334 /* 3335 * Some (well, at least mine) BIOSes hang on reboot if 3336 * in vmx root mode. 3337 * 3338 * And Intel TXT required VMX off for all cpu when system shutdown. 3339 */ 3340 pr_info("kvm: exiting hardware virtualization\n"); 3341 kvm_rebooting = true; 3342 on_each_cpu(hardware_disable_nolock, NULL, 1); 3343 return NOTIFY_OK; 3344 } 3345 3346 static struct notifier_block kvm_reboot_notifier = { 3347 .notifier_call = kvm_reboot, 3348 .priority = 0, 3349 }; 3350 3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3352 { 3353 int i; 3354 3355 for (i = 0; i < bus->dev_count; i++) { 3356 struct kvm_io_device *pos = bus->range[i].dev; 3357 3358 kvm_iodevice_destructor(pos); 3359 } 3360 kfree(bus); 3361 } 3362 3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3364 const struct kvm_io_range *r2) 3365 { 3366 gpa_t addr1 = r1->addr; 3367 gpa_t addr2 = r2->addr; 3368 3369 if (addr1 < addr2) 3370 return -1; 3371 3372 /* If r2->len == 0, match the exact address. If r2->len != 0, 3373 * accept any overlapping write. Any order is acceptable for 3374 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3375 * we process all of them. 3376 */ 3377 if (r2->len) { 3378 addr1 += r1->len; 3379 addr2 += r2->len; 3380 } 3381 3382 if (addr1 > addr2) 3383 return 1; 3384 3385 return 0; 3386 } 3387 3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3389 { 3390 return kvm_io_bus_cmp(p1, p2); 3391 } 3392 3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3394 gpa_t addr, int len) 3395 { 3396 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3397 .addr = addr, 3398 .len = len, 3399 .dev = dev, 3400 }; 3401 3402 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3403 kvm_io_bus_sort_cmp, NULL); 3404 3405 return 0; 3406 } 3407 3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3409 gpa_t addr, int len) 3410 { 3411 struct kvm_io_range *range, key; 3412 int off; 3413 3414 key = (struct kvm_io_range) { 3415 .addr = addr, 3416 .len = len, 3417 }; 3418 3419 range = bsearch(&key, bus->range, bus->dev_count, 3420 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3421 if (range == NULL) 3422 return -ENOENT; 3423 3424 off = range - bus->range; 3425 3426 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3427 off--; 3428 3429 return off; 3430 } 3431 3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3433 struct kvm_io_range *range, const void *val) 3434 { 3435 int idx; 3436 3437 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3438 if (idx < 0) 3439 return -EOPNOTSUPP; 3440 3441 while (idx < bus->dev_count && 3442 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3443 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3444 range->len, val)) 3445 return idx; 3446 idx++; 3447 } 3448 3449 return -EOPNOTSUPP; 3450 } 3451 3452 /* kvm_io_bus_write - called under kvm->slots_lock */ 3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3454 int len, const void *val) 3455 { 3456 struct kvm_io_bus *bus; 3457 struct kvm_io_range range; 3458 int r; 3459 3460 range = (struct kvm_io_range) { 3461 .addr = addr, 3462 .len = len, 3463 }; 3464 3465 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3466 if (!bus) 3467 return -ENOMEM; 3468 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3469 return r < 0 ? r : 0; 3470 } 3471 3472 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3473 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3474 gpa_t addr, int len, const void *val, long cookie) 3475 { 3476 struct kvm_io_bus *bus; 3477 struct kvm_io_range range; 3478 3479 range = (struct kvm_io_range) { 3480 .addr = addr, 3481 .len = len, 3482 }; 3483 3484 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3485 if (!bus) 3486 return -ENOMEM; 3487 3488 /* First try the device referenced by cookie. */ 3489 if ((cookie >= 0) && (cookie < bus->dev_count) && 3490 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3491 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3492 val)) 3493 return cookie; 3494 3495 /* 3496 * cookie contained garbage; fall back to search and return the 3497 * correct cookie value. 3498 */ 3499 return __kvm_io_bus_write(vcpu, bus, &range, val); 3500 } 3501 3502 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3503 struct kvm_io_range *range, void *val) 3504 { 3505 int idx; 3506 3507 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3508 if (idx < 0) 3509 return -EOPNOTSUPP; 3510 3511 while (idx < bus->dev_count && 3512 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3513 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3514 range->len, val)) 3515 return idx; 3516 idx++; 3517 } 3518 3519 return -EOPNOTSUPP; 3520 } 3521 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3522 3523 /* kvm_io_bus_read - called under kvm->slots_lock */ 3524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3525 int len, void *val) 3526 { 3527 struct kvm_io_bus *bus; 3528 struct kvm_io_range range; 3529 int r; 3530 3531 range = (struct kvm_io_range) { 3532 .addr = addr, 3533 .len = len, 3534 }; 3535 3536 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3537 if (!bus) 3538 return -ENOMEM; 3539 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3540 return r < 0 ? r : 0; 3541 } 3542 3543 3544 /* Caller must hold slots_lock. */ 3545 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3546 int len, struct kvm_io_device *dev) 3547 { 3548 struct kvm_io_bus *new_bus, *bus; 3549 3550 bus = kvm_get_bus(kvm, bus_idx); 3551 if (!bus) 3552 return -ENOMEM; 3553 3554 /* exclude ioeventfd which is limited by maximum fd */ 3555 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3556 return -ENOSPC; 3557 3558 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3559 sizeof(struct kvm_io_range)), GFP_KERNEL); 3560 if (!new_bus) 3561 return -ENOMEM; 3562 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3563 sizeof(struct kvm_io_range))); 3564 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3565 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3566 synchronize_srcu_expedited(&kvm->srcu); 3567 kfree(bus); 3568 3569 return 0; 3570 } 3571 3572 /* Caller must hold slots_lock. */ 3573 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3574 struct kvm_io_device *dev) 3575 { 3576 int i; 3577 struct kvm_io_bus *new_bus, *bus; 3578 3579 bus = kvm_get_bus(kvm, bus_idx); 3580 if (!bus) 3581 return; 3582 3583 for (i = 0; i < bus->dev_count; i++) 3584 if (bus->range[i].dev == dev) { 3585 break; 3586 } 3587 3588 if (i == bus->dev_count) 3589 return; 3590 3591 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3592 sizeof(struct kvm_io_range)), GFP_KERNEL); 3593 if (!new_bus) { 3594 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3595 goto broken; 3596 } 3597 3598 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3599 new_bus->dev_count--; 3600 memcpy(new_bus->range + i, bus->range + i + 1, 3601 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3602 3603 broken: 3604 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3605 synchronize_srcu_expedited(&kvm->srcu); 3606 kfree(bus); 3607 return; 3608 } 3609 3610 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3611 gpa_t addr) 3612 { 3613 struct kvm_io_bus *bus; 3614 int dev_idx, srcu_idx; 3615 struct kvm_io_device *iodev = NULL; 3616 3617 srcu_idx = srcu_read_lock(&kvm->srcu); 3618 3619 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3620 if (!bus) 3621 goto out_unlock; 3622 3623 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3624 if (dev_idx < 0) 3625 goto out_unlock; 3626 3627 iodev = bus->range[dev_idx].dev; 3628 3629 out_unlock: 3630 srcu_read_unlock(&kvm->srcu, srcu_idx); 3631 3632 return iodev; 3633 } 3634 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3635 3636 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3637 int (*get)(void *, u64 *), int (*set)(void *, u64), 3638 const char *fmt) 3639 { 3640 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3641 inode->i_private; 3642 3643 /* The debugfs files are a reference to the kvm struct which 3644 * is still valid when kvm_destroy_vm is called. 3645 * To avoid the race between open and the removal of the debugfs 3646 * directory we test against the users count. 3647 */ 3648 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3649 return -ENOENT; 3650 3651 if (simple_attr_open(inode, file, get, set, fmt)) { 3652 kvm_put_kvm(stat_data->kvm); 3653 return -ENOMEM; 3654 } 3655 3656 return 0; 3657 } 3658 3659 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3660 { 3661 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3662 inode->i_private; 3663 3664 simple_attr_release(inode, file); 3665 kvm_put_kvm(stat_data->kvm); 3666 3667 return 0; 3668 } 3669 3670 static int vm_stat_get_per_vm(void *data, u64 *val) 3671 { 3672 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3673 3674 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3675 3676 return 0; 3677 } 3678 3679 static int vm_stat_clear_per_vm(void *data, u64 val) 3680 { 3681 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3682 3683 if (val) 3684 return -EINVAL; 3685 3686 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3687 3688 return 0; 3689 } 3690 3691 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3692 { 3693 __simple_attr_check_format("%llu\n", 0ull); 3694 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3695 vm_stat_clear_per_vm, "%llu\n"); 3696 } 3697 3698 static const struct file_operations vm_stat_get_per_vm_fops = { 3699 .owner = THIS_MODULE, 3700 .open = vm_stat_get_per_vm_open, 3701 .release = kvm_debugfs_release, 3702 .read = simple_attr_read, 3703 .write = simple_attr_write, 3704 .llseek = no_llseek, 3705 }; 3706 3707 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3708 { 3709 int i; 3710 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3711 struct kvm_vcpu *vcpu; 3712 3713 *val = 0; 3714 3715 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3716 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3717 3718 return 0; 3719 } 3720 3721 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3722 { 3723 int i; 3724 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3725 struct kvm_vcpu *vcpu; 3726 3727 if (val) 3728 return -EINVAL; 3729 3730 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3731 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3732 3733 return 0; 3734 } 3735 3736 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3737 { 3738 __simple_attr_check_format("%llu\n", 0ull); 3739 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3740 vcpu_stat_clear_per_vm, "%llu\n"); 3741 } 3742 3743 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3744 .owner = THIS_MODULE, 3745 .open = vcpu_stat_get_per_vm_open, 3746 .release = kvm_debugfs_release, 3747 .read = simple_attr_read, 3748 .write = simple_attr_write, 3749 .llseek = no_llseek, 3750 }; 3751 3752 static const struct file_operations *stat_fops_per_vm[] = { 3753 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3754 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3755 }; 3756 3757 static int vm_stat_get(void *_offset, u64 *val) 3758 { 3759 unsigned offset = (long)_offset; 3760 struct kvm *kvm; 3761 struct kvm_stat_data stat_tmp = {.offset = offset}; 3762 u64 tmp_val; 3763 3764 *val = 0; 3765 spin_lock(&kvm_lock); 3766 list_for_each_entry(kvm, &vm_list, vm_list) { 3767 stat_tmp.kvm = kvm; 3768 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3769 *val += tmp_val; 3770 } 3771 spin_unlock(&kvm_lock); 3772 return 0; 3773 } 3774 3775 static int vm_stat_clear(void *_offset, u64 val) 3776 { 3777 unsigned offset = (long)_offset; 3778 struct kvm *kvm; 3779 struct kvm_stat_data stat_tmp = {.offset = offset}; 3780 3781 if (val) 3782 return -EINVAL; 3783 3784 spin_lock(&kvm_lock); 3785 list_for_each_entry(kvm, &vm_list, vm_list) { 3786 stat_tmp.kvm = kvm; 3787 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3788 } 3789 spin_unlock(&kvm_lock); 3790 3791 return 0; 3792 } 3793 3794 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3795 3796 static int vcpu_stat_get(void *_offset, u64 *val) 3797 { 3798 unsigned offset = (long)_offset; 3799 struct kvm *kvm; 3800 struct kvm_stat_data stat_tmp = {.offset = offset}; 3801 u64 tmp_val; 3802 3803 *val = 0; 3804 spin_lock(&kvm_lock); 3805 list_for_each_entry(kvm, &vm_list, vm_list) { 3806 stat_tmp.kvm = kvm; 3807 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3808 *val += tmp_val; 3809 } 3810 spin_unlock(&kvm_lock); 3811 return 0; 3812 } 3813 3814 static int vcpu_stat_clear(void *_offset, u64 val) 3815 { 3816 unsigned offset = (long)_offset; 3817 struct kvm *kvm; 3818 struct kvm_stat_data stat_tmp = {.offset = offset}; 3819 3820 if (val) 3821 return -EINVAL; 3822 3823 spin_lock(&kvm_lock); 3824 list_for_each_entry(kvm, &vm_list, vm_list) { 3825 stat_tmp.kvm = kvm; 3826 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3827 } 3828 spin_unlock(&kvm_lock); 3829 3830 return 0; 3831 } 3832 3833 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3834 "%llu\n"); 3835 3836 static const struct file_operations *stat_fops[] = { 3837 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3838 [KVM_STAT_VM] = &vm_stat_fops, 3839 }; 3840 3841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3842 { 3843 struct kobj_uevent_env *env; 3844 unsigned long long created, active; 3845 3846 if (!kvm_dev.this_device || !kvm) 3847 return; 3848 3849 spin_lock(&kvm_lock); 3850 if (type == KVM_EVENT_CREATE_VM) { 3851 kvm_createvm_count++; 3852 kvm_active_vms++; 3853 } else if (type == KVM_EVENT_DESTROY_VM) { 3854 kvm_active_vms--; 3855 } 3856 created = kvm_createvm_count; 3857 active = kvm_active_vms; 3858 spin_unlock(&kvm_lock); 3859 3860 env = kzalloc(sizeof(*env), GFP_KERNEL); 3861 if (!env) 3862 return; 3863 3864 add_uevent_var(env, "CREATED=%llu", created); 3865 add_uevent_var(env, "COUNT=%llu", active); 3866 3867 if (type == KVM_EVENT_CREATE_VM) { 3868 add_uevent_var(env, "EVENT=create"); 3869 kvm->userspace_pid = task_pid_nr(current); 3870 } else if (type == KVM_EVENT_DESTROY_VM) { 3871 add_uevent_var(env, "EVENT=destroy"); 3872 } 3873 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3874 3875 if (kvm->debugfs_dentry) { 3876 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3877 3878 if (p) { 3879 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3880 if (!IS_ERR(tmp)) 3881 add_uevent_var(env, "STATS_PATH=%s", tmp); 3882 kfree(p); 3883 } 3884 } 3885 /* no need for checks, since we are adding at most only 5 keys */ 3886 env->envp[env->envp_idx++] = NULL; 3887 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3888 kfree(env); 3889 } 3890 3891 static int kvm_init_debug(void) 3892 { 3893 int r = -EEXIST; 3894 struct kvm_stats_debugfs_item *p; 3895 3896 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3897 if (kvm_debugfs_dir == NULL) 3898 goto out; 3899 3900 kvm_debugfs_num_entries = 0; 3901 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3902 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3903 (void *)(long)p->offset, 3904 stat_fops[p->kind])) 3905 goto out_dir; 3906 } 3907 3908 return 0; 3909 3910 out_dir: 3911 debugfs_remove_recursive(kvm_debugfs_dir); 3912 out: 3913 return r; 3914 } 3915 3916 static int kvm_suspend(void) 3917 { 3918 if (kvm_usage_count) 3919 hardware_disable_nolock(NULL); 3920 return 0; 3921 } 3922 3923 static void kvm_resume(void) 3924 { 3925 if (kvm_usage_count) { 3926 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3927 hardware_enable_nolock(NULL); 3928 } 3929 } 3930 3931 static struct syscore_ops kvm_syscore_ops = { 3932 .suspend = kvm_suspend, 3933 .resume = kvm_resume, 3934 }; 3935 3936 static inline 3937 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3938 { 3939 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3940 } 3941 3942 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3943 { 3944 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3945 3946 if (vcpu->preempted) 3947 vcpu->preempted = false; 3948 3949 kvm_arch_sched_in(vcpu, cpu); 3950 3951 kvm_arch_vcpu_load(vcpu, cpu); 3952 } 3953 3954 static void kvm_sched_out(struct preempt_notifier *pn, 3955 struct task_struct *next) 3956 { 3957 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3958 3959 if (current->state == TASK_RUNNING) 3960 vcpu->preempted = true; 3961 kvm_arch_vcpu_put(vcpu); 3962 } 3963 3964 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3965 struct module *module) 3966 { 3967 int r; 3968 int cpu; 3969 3970 r = kvm_arch_init(opaque); 3971 if (r) 3972 goto out_fail; 3973 3974 /* 3975 * kvm_arch_init makes sure there's at most one caller 3976 * for architectures that support multiple implementations, 3977 * like intel and amd on x86. 3978 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3979 * conflicts in case kvm is already setup for another implementation. 3980 */ 3981 r = kvm_irqfd_init(); 3982 if (r) 3983 goto out_irqfd; 3984 3985 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3986 r = -ENOMEM; 3987 goto out_free_0; 3988 } 3989 3990 r = kvm_arch_hardware_setup(); 3991 if (r < 0) 3992 goto out_free_0a; 3993 3994 for_each_online_cpu(cpu) { 3995 smp_call_function_single(cpu, 3996 kvm_arch_check_processor_compat, 3997 &r, 1); 3998 if (r < 0) 3999 goto out_free_1; 4000 } 4001 4002 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4003 kvm_starting_cpu, kvm_dying_cpu); 4004 if (r) 4005 goto out_free_2; 4006 register_reboot_notifier(&kvm_reboot_notifier); 4007 4008 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4009 if (!vcpu_align) 4010 vcpu_align = __alignof__(struct kvm_vcpu); 4011 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 4012 0, NULL); 4013 if (!kvm_vcpu_cache) { 4014 r = -ENOMEM; 4015 goto out_free_3; 4016 } 4017 4018 r = kvm_async_pf_init(); 4019 if (r) 4020 goto out_free; 4021 4022 kvm_chardev_ops.owner = module; 4023 kvm_vm_fops.owner = module; 4024 kvm_vcpu_fops.owner = module; 4025 4026 r = misc_register(&kvm_dev); 4027 if (r) { 4028 pr_err("kvm: misc device register failed\n"); 4029 goto out_unreg; 4030 } 4031 4032 register_syscore_ops(&kvm_syscore_ops); 4033 4034 kvm_preempt_ops.sched_in = kvm_sched_in; 4035 kvm_preempt_ops.sched_out = kvm_sched_out; 4036 4037 r = kvm_init_debug(); 4038 if (r) { 4039 pr_err("kvm: create debugfs files failed\n"); 4040 goto out_undebugfs; 4041 } 4042 4043 r = kvm_vfio_ops_init(); 4044 WARN_ON(r); 4045 4046 return 0; 4047 4048 out_undebugfs: 4049 unregister_syscore_ops(&kvm_syscore_ops); 4050 misc_deregister(&kvm_dev); 4051 out_unreg: 4052 kvm_async_pf_deinit(); 4053 out_free: 4054 kmem_cache_destroy(kvm_vcpu_cache); 4055 out_free_3: 4056 unregister_reboot_notifier(&kvm_reboot_notifier); 4057 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4058 out_free_2: 4059 out_free_1: 4060 kvm_arch_hardware_unsetup(); 4061 out_free_0a: 4062 free_cpumask_var(cpus_hardware_enabled); 4063 out_free_0: 4064 kvm_irqfd_exit(); 4065 out_irqfd: 4066 kvm_arch_exit(); 4067 out_fail: 4068 return r; 4069 } 4070 EXPORT_SYMBOL_GPL(kvm_init); 4071 4072 void kvm_exit(void) 4073 { 4074 debugfs_remove_recursive(kvm_debugfs_dir); 4075 misc_deregister(&kvm_dev); 4076 kmem_cache_destroy(kvm_vcpu_cache); 4077 kvm_async_pf_deinit(); 4078 unregister_syscore_ops(&kvm_syscore_ops); 4079 unregister_reboot_notifier(&kvm_reboot_notifier); 4080 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4081 on_each_cpu(hardware_disable_nolock, NULL, 1); 4082 kvm_arch_hardware_unsetup(); 4083 kvm_arch_exit(); 4084 kvm_irqfd_exit(); 4085 free_cpumask_var(cpus_hardware_enabled); 4086 kvm_vfio_ops_exit(); 4087 } 4088 EXPORT_SYMBOL_GPL(kvm_exit); 4089