xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6dfcd296)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode. */
182 		smp_mb__after_atomic();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	/*
203 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 	 * kvm_make_all_cpus_request.
205 	 */
206 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207 
208 	/*
209 	 * We want to publish modifications to the page tables before reading
210 	 * mode. Pairs with a memory barrier in arch-specific code.
211 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 	 *
215 	 * There is already an smp_mb__after_atomic() before
216 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 	 * barrier here.
218 	 */
219 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 		++kvm->stat.remote_tlb_flush;
221 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225 
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230 
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 	struct page *page;
234 	int r;
235 
236 	mutex_init(&vcpu->mutex);
237 	vcpu->cpu = -1;
238 	vcpu->kvm = kvm;
239 	vcpu->vcpu_id = id;
240 	vcpu->pid = NULL;
241 	init_swait_queue_head(&vcpu->wq);
242 	kvm_async_pf_vcpu_init(vcpu);
243 
244 	vcpu->pre_pcpu = -1;
245 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246 
247 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 	if (!page) {
249 		r = -ENOMEM;
250 		goto fail;
251 	}
252 	vcpu->run = page_address(page);
253 
254 	kvm_vcpu_set_in_spin_loop(vcpu, false);
255 	kvm_vcpu_set_dy_eligible(vcpu, false);
256 	vcpu->preempted = false;
257 
258 	r = kvm_arch_vcpu_init(vcpu);
259 	if (r < 0)
260 		goto fail_free_run;
261 	return 0;
262 
263 fail_free_run:
264 	free_page((unsigned long)vcpu->run);
265 fail:
266 	return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 	put_pid(vcpu->pid);
273 	kvm_arch_vcpu_uninit(vcpu);
274 	free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277 
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 	return container_of(mn, struct kvm, mmu_notifier);
282 }
283 
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 					     struct mm_struct *mm,
286 					     unsigned long address)
287 {
288 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 	int need_tlb_flush, idx;
290 
291 	/*
292 	 * When ->invalidate_page runs, the linux pte has been zapped
293 	 * already but the page is still allocated until
294 	 * ->invalidate_page returns. So if we increase the sequence
295 	 * here the kvm page fault will notice if the spte can't be
296 	 * established because the page is going to be freed. If
297 	 * instead the kvm page fault establishes the spte before
298 	 * ->invalidate_page runs, kvm_unmap_hva will release it
299 	 * before returning.
300 	 *
301 	 * The sequence increase only need to be seen at spin_unlock
302 	 * time, and not at spin_lock time.
303 	 *
304 	 * Increasing the sequence after the spin_unlock would be
305 	 * unsafe because the kvm page fault could then establish the
306 	 * pte after kvm_unmap_hva returned, without noticing the page
307 	 * is going to be freed.
308 	 */
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 
312 	kvm->mmu_notifier_seq++;
313 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 	/* we've to flush the tlb before the pages can be freed */
315 	if (need_tlb_flush)
316 		kvm_flush_remote_tlbs(kvm);
317 
318 	spin_unlock(&kvm->mmu_lock);
319 
320 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321 
322 	srcu_read_unlock(&kvm->srcu, idx);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
473 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
474 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
475 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
476 	.clear_young		= kvm_mmu_notifier_clear_young,
477 	.test_young		= kvm_mmu_notifier_test_young,
478 	.change_pte		= kvm_mmu_notifier_change_pte,
479 	.release		= kvm_mmu_notifier_release,
480 };
481 
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487 
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 	return 0;
493 }
494 
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 	int i;
500 	struct kvm_memslots *slots;
501 
502 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 	if (!slots)
504 		return NULL;
505 
506 	/*
507 	 * Init kvm generation close to the maximum to easily test the
508 	 * code of handling generation number wrap-around.
509 	 */
510 	slots->generation = -150;
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	if (kvm->debugfs_stat_data) {
563 		for (i = 0; i < kvm_debugfs_num_entries; i++)
564 			kfree(kvm->debugfs_stat_data[i]);
565 		kfree(kvm->debugfs_stat_data);
566 	}
567 }
568 
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 	char dir_name[ITOA_MAX_LEN * 2];
572 	struct kvm_stat_data *stat_data;
573 	struct kvm_stats_debugfs_item *p;
574 
575 	if (!debugfs_initialized())
576 		return 0;
577 
578 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 						 kvm_debugfs_dir);
581 	if (!kvm->debugfs_dentry)
582 		return -ENOMEM;
583 
584 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 					 sizeof(*kvm->debugfs_stat_data),
586 					 GFP_KERNEL);
587 	if (!kvm->debugfs_stat_data)
588 		return -ENOMEM;
589 
590 	for (p = debugfs_entries; p->name; p++) {
591 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 		if (!stat_data)
593 			return -ENOMEM;
594 
595 		stat_data->kvm = kvm;
596 		stat_data->offset = p->offset;
597 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 		if (!debugfs_create_file(p->name, 0444,
599 					 kvm->debugfs_dentry,
600 					 stat_data,
601 					 stat_fops_per_vm[p->kind]))
602 			return -ENOMEM;
603 	}
604 	return 0;
605 }
606 
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 	int r, i;
610 	struct kvm *kvm = kvm_arch_alloc_vm();
611 
612 	if (!kvm)
613 		return ERR_PTR(-ENOMEM);
614 
615 	spin_lock_init(&kvm->mmu_lock);
616 	atomic_inc(&current->mm->mm_count);
617 	kvm->mm = current->mm;
618 	kvm_eventfd_init(kvm);
619 	mutex_init(&kvm->lock);
620 	mutex_init(&kvm->irq_lock);
621 	mutex_init(&kvm->slots_lock);
622 	atomic_set(&kvm->users_count, 1);
623 	INIT_LIST_HEAD(&kvm->devices);
624 
625 	r = kvm_arch_init_vm(kvm, type);
626 	if (r)
627 		goto out_err_no_disable;
628 
629 	r = hardware_enable_all();
630 	if (r)
631 		goto out_err_no_disable;
632 
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636 
637 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638 
639 	r = -ENOMEM;
640 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 		kvm->memslots[i] = kvm_alloc_memslots();
642 		if (!kvm->memslots[i])
643 			goto out_err_no_srcu;
644 	}
645 
646 	if (init_srcu_struct(&kvm->srcu))
647 		goto out_err_no_srcu;
648 	if (init_srcu_struct(&kvm->irq_srcu))
649 		goto out_err_no_irq_srcu;
650 	for (i = 0; i < KVM_NR_BUSES; i++) {
651 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652 					GFP_KERNEL);
653 		if (!kvm->buses[i])
654 			goto out_err;
655 	}
656 
657 	r = kvm_init_mmu_notifier(kvm);
658 	if (r)
659 		goto out_err;
660 
661 	spin_lock(&kvm_lock);
662 	list_add(&kvm->vm_list, &vm_list);
663 	spin_unlock(&kvm_lock);
664 
665 	preempt_notifier_inc();
666 
667 	return kvm;
668 
669 out_err:
670 	cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 	cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 	hardware_disable_all();
675 out_err_no_disable:
676 	for (i = 0; i < KVM_NR_BUSES; i++)
677 		kfree(kvm->buses[i]);
678 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679 		kvm_free_memslots(kvm, kvm->memslots[i]);
680 	kvm_arch_free_vm(kvm);
681 	mmdrop(current->mm);
682 	return ERR_PTR(r);
683 }
684 
685 /*
686  * Avoid using vmalloc for a small buffer.
687  * Should not be used when the size is statically known.
688  */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691 	if (size > PAGE_SIZE)
692 		return vzalloc(size);
693 	else
694 		return kzalloc(size, GFP_KERNEL);
695 }
696 
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699 	struct kvm_device *dev, *tmp;
700 
701 	/*
702 	 * We do not need to take the kvm->lock here, because nobody else
703 	 * has a reference to the struct kvm at this point and therefore
704 	 * cannot access the devices list anyhow.
705 	 */
706 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707 		list_del(&dev->vm_node);
708 		dev->ops->destroy(dev);
709 	}
710 }
711 
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714 	int i;
715 	struct mm_struct *mm = kvm->mm;
716 
717 	kvm_destroy_vm_debugfs(kvm);
718 	kvm_arch_sync_events(kvm);
719 	spin_lock(&kvm_lock);
720 	list_del(&kvm->vm_list);
721 	spin_unlock(&kvm_lock);
722 	kvm_free_irq_routing(kvm);
723 	for (i = 0; i < KVM_NR_BUSES; i++)
724 		kvm_io_bus_destroy(kvm->buses[i]);
725 	kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729 	kvm_arch_flush_shadow_all(kvm);
730 #endif
731 	kvm_arch_destroy_vm(kvm);
732 	kvm_destroy_devices(kvm);
733 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734 		kvm_free_memslots(kvm, kvm->memslots[i]);
735 	cleanup_srcu_struct(&kvm->irq_srcu);
736 	cleanup_srcu_struct(&kvm->srcu);
737 	kvm_arch_free_vm(kvm);
738 	preempt_notifier_dec();
739 	hardware_disable_all();
740 	mmdrop(mm);
741 }
742 
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745 	atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748 
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751 	if (atomic_dec_and_test(&kvm->users_count))
752 		kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755 
756 
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759 	struct kvm *kvm = filp->private_data;
760 
761 	kvm_irqfd_release(kvm);
762 
763 	kvm_put_kvm(kvm);
764 	return 0;
765 }
766 
767 /*
768  * Allocation size is twice as large as the actual dirty bitmap size.
769  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770  */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774 
775 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776 	if (!memslot->dirty_bitmap)
777 		return -ENOMEM;
778 
779 	return 0;
780 }
781 
782 /*
783  * Insert memslot and re-sort memslots based on their GFN,
784  * so binary search could be used to lookup GFN.
785  * Sorting algorithm takes advantage of having initially
786  * sorted array and known changed memslot position.
787  */
788 static void update_memslots(struct kvm_memslots *slots,
789 			    struct kvm_memory_slot *new)
790 {
791 	int id = new->id;
792 	int i = slots->id_to_index[id];
793 	struct kvm_memory_slot *mslots = slots->memslots;
794 
795 	WARN_ON(mslots[i].id != id);
796 	if (!new->npages) {
797 		WARN_ON(!mslots[i].npages);
798 		if (mslots[i].npages)
799 			slots->used_slots--;
800 	} else {
801 		if (!mslots[i].npages)
802 			slots->used_slots++;
803 	}
804 
805 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
806 	       new->base_gfn <= mslots[i + 1].base_gfn) {
807 		if (!mslots[i + 1].npages)
808 			break;
809 		mslots[i] = mslots[i + 1];
810 		slots->id_to_index[mslots[i].id] = i;
811 		i++;
812 	}
813 
814 	/*
815 	 * The ">=" is needed when creating a slot with base_gfn == 0,
816 	 * so that it moves before all those with base_gfn == npages == 0.
817 	 *
818 	 * On the other hand, if new->npages is zero, the above loop has
819 	 * already left i pointing to the beginning of the empty part of
820 	 * mslots, and the ">=" would move the hole backwards in this
821 	 * case---which is wrong.  So skip the loop when deleting a slot.
822 	 */
823 	if (new->npages) {
824 		while (i > 0 &&
825 		       new->base_gfn >= mslots[i - 1].base_gfn) {
826 			mslots[i] = mslots[i - 1];
827 			slots->id_to_index[mslots[i].id] = i;
828 			i--;
829 		}
830 	} else
831 		WARN_ON_ONCE(i != slots->used_slots);
832 
833 	mslots[i] = *new;
834 	slots->id_to_index[mslots[i].id] = i;
835 }
836 
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840 
841 #ifdef __KVM_HAVE_READONLY_MEM
842 	valid_flags |= KVM_MEM_READONLY;
843 #endif
844 
845 	if (mem->flags & ~valid_flags)
846 		return -EINVAL;
847 
848 	return 0;
849 }
850 
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852 		int as_id, struct kvm_memslots *slots)
853 {
854 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855 
856 	/*
857 	 * Set the low bit in the generation, which disables SPTE caching
858 	 * until the end of synchronize_srcu_expedited.
859 	 */
860 	WARN_ON(old_memslots->generation & 1);
861 	slots->generation = old_memslots->generation + 1;
862 
863 	rcu_assign_pointer(kvm->memslots[as_id], slots);
864 	synchronize_srcu_expedited(&kvm->srcu);
865 
866 	/*
867 	 * Increment the new memslot generation a second time. This prevents
868 	 * vm exits that race with memslot updates from caching a memslot
869 	 * generation that will (potentially) be valid forever.
870 	 */
871 	slots->generation++;
872 
873 	kvm_arch_memslots_updated(kvm, slots);
874 
875 	return old_memslots;
876 }
877 
878 /*
879  * Allocate some memory and give it an address in the guest physical address
880  * space.
881  *
882  * Discontiguous memory is allowed, mostly for framebuffers.
883  *
884  * Must be called holding kvm->slots_lock for write.
885  */
886 int __kvm_set_memory_region(struct kvm *kvm,
887 			    const struct kvm_userspace_memory_region *mem)
888 {
889 	int r;
890 	gfn_t base_gfn;
891 	unsigned long npages;
892 	struct kvm_memory_slot *slot;
893 	struct kvm_memory_slot old, new;
894 	struct kvm_memslots *slots = NULL, *old_memslots;
895 	int as_id, id;
896 	enum kvm_mr_change change;
897 
898 	r = check_memory_region_flags(mem);
899 	if (r)
900 		goto out;
901 
902 	r = -EINVAL;
903 	as_id = mem->slot >> 16;
904 	id = (u16)mem->slot;
905 
906 	/* General sanity checks */
907 	if (mem->memory_size & (PAGE_SIZE - 1))
908 		goto out;
909 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910 		goto out;
911 	/* We can read the guest memory with __xxx_user() later on. */
912 	if ((id < KVM_USER_MEM_SLOTS) &&
913 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914 	     !access_ok(VERIFY_WRITE,
915 			(void __user *)(unsigned long)mem->userspace_addr,
916 			mem->memory_size)))
917 		goto out;
918 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919 		goto out;
920 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921 		goto out;
922 
923 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925 	npages = mem->memory_size >> PAGE_SHIFT;
926 
927 	if (npages > KVM_MEM_MAX_NR_PAGES)
928 		goto out;
929 
930 	new = old = *slot;
931 
932 	new.id = id;
933 	new.base_gfn = base_gfn;
934 	new.npages = npages;
935 	new.flags = mem->flags;
936 
937 	if (npages) {
938 		if (!old.npages)
939 			change = KVM_MR_CREATE;
940 		else { /* Modify an existing slot. */
941 			if ((mem->userspace_addr != old.userspace_addr) ||
942 			    (npages != old.npages) ||
943 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944 				goto out;
945 
946 			if (base_gfn != old.base_gfn)
947 				change = KVM_MR_MOVE;
948 			else if (new.flags != old.flags)
949 				change = KVM_MR_FLAGS_ONLY;
950 			else { /* Nothing to change. */
951 				r = 0;
952 				goto out;
953 			}
954 		}
955 	} else {
956 		if (!old.npages)
957 			goto out;
958 
959 		change = KVM_MR_DELETE;
960 		new.base_gfn = 0;
961 		new.flags = 0;
962 	}
963 
964 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965 		/* Check for overlaps */
966 		r = -EEXIST;
967 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969 			    (slot->id == id))
970 				continue;
971 			if (!((base_gfn + npages <= slot->base_gfn) ||
972 			      (base_gfn >= slot->base_gfn + slot->npages)))
973 				goto out;
974 		}
975 	}
976 
977 	/* Free page dirty bitmap if unneeded */
978 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979 		new.dirty_bitmap = NULL;
980 
981 	r = -ENOMEM;
982 	if (change == KVM_MR_CREATE) {
983 		new.userspace_addr = mem->userspace_addr;
984 
985 		if (kvm_arch_create_memslot(kvm, &new, npages))
986 			goto out_free;
987 	}
988 
989 	/* Allocate page dirty bitmap if needed */
990 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991 		if (kvm_create_dirty_bitmap(&new) < 0)
992 			goto out_free;
993 	}
994 
995 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996 	if (!slots)
997 		goto out_free;
998 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999 
1000 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001 		slot = id_to_memslot(slots, id);
1002 		slot->flags |= KVM_MEMSLOT_INVALID;
1003 
1004 		old_memslots = install_new_memslots(kvm, as_id, slots);
1005 
1006 		/* slot was deleted or moved, clear iommu mapping */
1007 		kvm_iommu_unmap_pages(kvm, &old);
1008 		/* From this point no new shadow pages pointing to a deleted,
1009 		 * or moved, memslot will be created.
1010 		 *
1011 		 * validation of sp->gfn happens in:
1012 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1014 		 */
1015 		kvm_arch_flush_shadow_memslot(kvm, slot);
1016 
1017 		/*
1018 		 * We can re-use the old_memslots from above, the only difference
1019 		 * from the currently installed memslots is the invalid flag.  This
1020 		 * will get overwritten by update_memslots anyway.
1021 		 */
1022 		slots = old_memslots;
1023 	}
1024 
1025 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 	if (r)
1027 		goto out_slots;
1028 
1029 	/* actual memory is freed via old in kvm_free_memslot below */
1030 	if (change == KVM_MR_DELETE) {
1031 		new.dirty_bitmap = NULL;
1032 		memset(&new.arch, 0, sizeof(new.arch));
1033 	}
1034 
1035 	update_memslots(slots, &new);
1036 	old_memslots = install_new_memslots(kvm, as_id, slots);
1037 
1038 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039 
1040 	kvm_free_memslot(kvm, &old, &new);
1041 	kvfree(old_memslots);
1042 
1043 	/*
1044 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045 	 * un-mapped and re-mapped if their base changes.  Since base change
1046 	 * unmapping is handled above with slot deletion, mapping alone is
1047 	 * needed here.  Anything else the iommu might care about for existing
1048 	 * slots (size changes, userspace addr changes and read-only flag
1049 	 * changes) is disallowed above, so any other attribute changes getting
1050 	 * here can be skipped.
1051 	 */
1052 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053 		r = kvm_iommu_map_pages(kvm, &new);
1054 		return r;
1055 	}
1056 
1057 	return 0;
1058 
1059 out_slots:
1060 	kvfree(slots);
1061 out_free:
1062 	kvm_free_memslot(kvm, &new, &old);
1063 out:
1064 	return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067 
1068 int kvm_set_memory_region(struct kvm *kvm,
1069 			  const struct kvm_userspace_memory_region *mem)
1070 {
1071 	int r;
1072 
1073 	mutex_lock(&kvm->slots_lock);
1074 	r = __kvm_set_memory_region(kvm, mem);
1075 	mutex_unlock(&kvm->slots_lock);
1076 	return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079 
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081 					  struct kvm_userspace_memory_region *mem)
1082 {
1083 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084 		return -EINVAL;
1085 
1086 	return kvm_set_memory_region(kvm, mem);
1087 }
1088 
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 			struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092 	struct kvm_memslots *slots;
1093 	struct kvm_memory_slot *memslot;
1094 	int r, i, as_id, id;
1095 	unsigned long n;
1096 	unsigned long any = 0;
1097 
1098 	r = -EINVAL;
1099 	as_id = log->slot >> 16;
1100 	id = (u16)log->slot;
1101 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102 		goto out;
1103 
1104 	slots = __kvm_memslots(kvm, as_id);
1105 	memslot = id_to_memslot(slots, id);
1106 	r = -ENOENT;
1107 	if (!memslot->dirty_bitmap)
1108 		goto out;
1109 
1110 	n = kvm_dirty_bitmap_bytes(memslot);
1111 
1112 	for (i = 0; !any && i < n/sizeof(long); ++i)
1113 		any = memslot->dirty_bitmap[i];
1114 
1115 	r = -EFAULT;
1116 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 		goto out;
1118 
1119 	if (any)
1120 		*is_dirty = 1;
1121 
1122 	r = 0;
1123 out:
1124 	return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127 
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *	are dirty write protect them for next write.
1132  * @kvm:	pointer to kvm instance
1133  * @log:	slot id and address to which we copy the log
1134  * @is_dirty:	flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 			struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 	struct kvm_memslots *slots;
1155 	struct kvm_memory_slot *memslot;
1156 	int r, i, as_id, id;
1157 	unsigned long n;
1158 	unsigned long *dirty_bitmap;
1159 	unsigned long *dirty_bitmap_buffer;
1160 
1161 	r = -EINVAL;
1162 	as_id = log->slot >> 16;
1163 	id = (u16)log->slot;
1164 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165 		goto out;
1166 
1167 	slots = __kvm_memslots(kvm, as_id);
1168 	memslot = id_to_memslot(slots, id);
1169 
1170 	dirty_bitmap = memslot->dirty_bitmap;
1171 	r = -ENOENT;
1172 	if (!dirty_bitmap)
1173 		goto out;
1174 
1175 	n = kvm_dirty_bitmap_bytes(memslot);
1176 
1177 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178 	memset(dirty_bitmap_buffer, 0, n);
1179 
1180 	spin_lock(&kvm->mmu_lock);
1181 	*is_dirty = false;
1182 	for (i = 0; i < n / sizeof(long); i++) {
1183 		unsigned long mask;
1184 		gfn_t offset;
1185 
1186 		if (!dirty_bitmap[i])
1187 			continue;
1188 
1189 		*is_dirty = true;
1190 
1191 		mask = xchg(&dirty_bitmap[i], 0);
1192 		dirty_bitmap_buffer[i] = mask;
1193 
1194 		if (mask) {
1195 			offset = i * BITS_PER_LONG;
1196 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197 								offset, mask);
1198 		}
1199 	}
1200 
1201 	spin_unlock(&kvm->mmu_lock);
1202 
1203 	r = -EFAULT;
1204 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205 		goto out;
1206 
1207 	r = 0;
1208 out:
1209 	return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213 
1214 bool kvm_largepages_enabled(void)
1215 {
1216 	return largepages_enabled;
1217 }
1218 
1219 void kvm_disable_largepages(void)
1220 {
1221 	largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224 
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230 
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235 
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239 
1240 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 	      memslot->flags & KVM_MEMSLOT_INVALID)
1242 		return false;
1243 
1244 	return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247 
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 	struct vm_area_struct *vma;
1251 	unsigned long addr, size;
1252 
1253 	size = PAGE_SIZE;
1254 
1255 	addr = gfn_to_hva(kvm, gfn);
1256 	if (kvm_is_error_hva(addr))
1257 		return PAGE_SIZE;
1258 
1259 	down_read(&current->mm->mmap_sem);
1260 	vma = find_vma(current->mm, addr);
1261 	if (!vma)
1262 		goto out;
1263 
1264 	size = vma_kernel_pagesize(vma);
1265 
1266 out:
1267 	up_read(&current->mm->mmap_sem);
1268 
1269 	return size;
1270 }
1271 
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 	return slot->flags & KVM_MEM_READONLY;
1275 }
1276 
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 				       gfn_t *nr_pages, bool write)
1279 {
1280 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 		return KVM_HVA_ERR_BAD;
1282 
1283 	if (memslot_is_readonly(slot) && write)
1284 		return KVM_HVA_ERR_RO_BAD;
1285 
1286 	if (nr_pages)
1287 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1288 
1289 	return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291 
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 				     gfn_t *nr_pages)
1294 {
1295 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297 
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 					gfn_t gfn)
1300 {
1301 	return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304 
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310 
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316 
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 				      gfn_t gfn, bool *writable)
1323 {
1324 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325 
1326 	if (!kvm_is_error_hva(hva) && writable)
1327 		*writable = !memslot_is_readonly(slot);
1328 
1329 	return hva;
1330 }
1331 
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342 
1343 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345 
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 		struct page **page)
1348 {
1349 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1350 
1351 	if (write)
1352 		flags |= FOLL_WRITE;
1353 
1354 	return __get_user_pages(current, current->mm, start, 1, flags, page,
1355 			NULL, NULL);
1356 }
1357 
1358 static inline int check_user_page_hwpoison(unsigned long addr)
1359 {
1360 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1361 
1362 	rc = __get_user_pages(current, current->mm, addr, 1,
1363 			      flags, NULL, NULL, NULL);
1364 	return rc == -EHWPOISON;
1365 }
1366 
1367 /*
1368  * The atomic path to get the writable pfn which will be stored in @pfn,
1369  * true indicates success, otherwise false is returned.
1370  */
1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1372 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1373 {
1374 	struct page *page[1];
1375 	int npages;
1376 
1377 	if (!(async || atomic))
1378 		return false;
1379 
1380 	/*
1381 	 * Fast pin a writable pfn only if it is a write fault request
1382 	 * or the caller allows to map a writable pfn for a read fault
1383 	 * request.
1384 	 */
1385 	if (!(write_fault || writable))
1386 		return false;
1387 
1388 	npages = __get_user_pages_fast(addr, 1, 1, page);
1389 	if (npages == 1) {
1390 		*pfn = page_to_pfn(page[0]);
1391 
1392 		if (writable)
1393 			*writable = true;
1394 		return true;
1395 	}
1396 
1397 	return false;
1398 }
1399 
1400 /*
1401  * The slow path to get the pfn of the specified host virtual address,
1402  * 1 indicates success, -errno is returned if error is detected.
1403  */
1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1405 			   bool *writable, kvm_pfn_t *pfn)
1406 {
1407 	struct page *page[1];
1408 	int npages = 0;
1409 
1410 	might_sleep();
1411 
1412 	if (writable)
1413 		*writable = write_fault;
1414 
1415 	if (async) {
1416 		down_read(&current->mm->mmap_sem);
1417 		npages = get_user_page_nowait(addr, write_fault, page);
1418 		up_read(&current->mm->mmap_sem);
1419 	} else
1420 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1421 						   write_fault, 0, page,
1422 						   FOLL_TOUCH|FOLL_HWPOISON);
1423 	if (npages != 1)
1424 		return npages;
1425 
1426 	/* map read fault as writable if possible */
1427 	if (unlikely(!write_fault) && writable) {
1428 		struct page *wpage[1];
1429 
1430 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1431 		if (npages == 1) {
1432 			*writable = true;
1433 			put_page(page[0]);
1434 			page[0] = wpage[0];
1435 		}
1436 
1437 		npages = 1;
1438 	}
1439 	*pfn = page_to_pfn(page[0]);
1440 	return npages;
1441 }
1442 
1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1444 {
1445 	if (unlikely(!(vma->vm_flags & VM_READ)))
1446 		return false;
1447 
1448 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1449 		return false;
1450 
1451 	return true;
1452 }
1453 
1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1455 			       unsigned long addr, bool *async,
1456 			       bool write_fault, kvm_pfn_t *p_pfn)
1457 {
1458 	unsigned long pfn;
1459 	int r;
1460 
1461 	r = follow_pfn(vma, addr, &pfn);
1462 	if (r) {
1463 		/*
1464 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1465 		 * not call the fault handler, so do it here.
1466 		 */
1467 		bool unlocked = false;
1468 		r = fixup_user_fault(current, current->mm, addr,
1469 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1470 				     &unlocked);
1471 		if (unlocked)
1472 			return -EAGAIN;
1473 		if (r)
1474 			return r;
1475 
1476 		r = follow_pfn(vma, addr, &pfn);
1477 		if (r)
1478 			return r;
1479 
1480 	}
1481 
1482 
1483 	/*
1484 	 * Get a reference here because callers of *hva_to_pfn* and
1485 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1486 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1487 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1488 	 * simply do nothing for reserved pfns.
1489 	 *
1490 	 * Whoever called remap_pfn_range is also going to call e.g.
1491 	 * unmap_mapping_range before the underlying pages are freed,
1492 	 * causing a call to our MMU notifier.
1493 	 */
1494 	kvm_get_pfn(pfn);
1495 
1496 	*p_pfn = pfn;
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Pin guest page in memory and return its pfn.
1502  * @addr: host virtual address which maps memory to the guest
1503  * @atomic: whether this function can sleep
1504  * @async: whether this function need to wait IO complete if the
1505  *         host page is not in the memory
1506  * @write_fault: whether we should get a writable host page
1507  * @writable: whether it allows to map a writable host page for !@write_fault
1508  *
1509  * The function will map a writable host page for these two cases:
1510  * 1): @write_fault = true
1511  * 2): @write_fault = false && @writable, @writable will tell the caller
1512  *     whether the mapping is writable.
1513  */
1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1515 			bool write_fault, bool *writable)
1516 {
1517 	struct vm_area_struct *vma;
1518 	kvm_pfn_t pfn = 0;
1519 	int npages, r;
1520 
1521 	/* we can do it either atomically or asynchronously, not both */
1522 	BUG_ON(atomic && async);
1523 
1524 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1525 		return pfn;
1526 
1527 	if (atomic)
1528 		return KVM_PFN_ERR_FAULT;
1529 
1530 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1531 	if (npages == 1)
1532 		return pfn;
1533 
1534 	down_read(&current->mm->mmap_sem);
1535 	if (npages == -EHWPOISON ||
1536 	      (!async && check_user_page_hwpoison(addr))) {
1537 		pfn = KVM_PFN_ERR_HWPOISON;
1538 		goto exit;
1539 	}
1540 
1541 retry:
1542 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1543 
1544 	if (vma == NULL)
1545 		pfn = KVM_PFN_ERR_FAULT;
1546 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1547 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1548 		if (r == -EAGAIN)
1549 			goto retry;
1550 		if (r < 0)
1551 			pfn = KVM_PFN_ERR_FAULT;
1552 	} else {
1553 		if (async && vma_is_valid(vma, write_fault))
1554 			*async = true;
1555 		pfn = KVM_PFN_ERR_FAULT;
1556 	}
1557 exit:
1558 	up_read(&current->mm->mmap_sem);
1559 	return pfn;
1560 }
1561 
1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1563 			       bool atomic, bool *async, bool write_fault,
1564 			       bool *writable)
1565 {
1566 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1567 
1568 	if (addr == KVM_HVA_ERR_RO_BAD) {
1569 		if (writable)
1570 			*writable = false;
1571 		return KVM_PFN_ERR_RO_FAULT;
1572 	}
1573 
1574 	if (kvm_is_error_hva(addr)) {
1575 		if (writable)
1576 			*writable = false;
1577 		return KVM_PFN_NOSLOT;
1578 	}
1579 
1580 	/* Do not map writable pfn in the readonly memslot. */
1581 	if (writable && memslot_is_readonly(slot)) {
1582 		*writable = false;
1583 		writable = NULL;
1584 	}
1585 
1586 	return hva_to_pfn(addr, atomic, async, write_fault,
1587 			  writable);
1588 }
1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1590 
1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1592 		      bool *writable)
1593 {
1594 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1595 				    write_fault, writable);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1598 
1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1600 {
1601 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1604 
1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1610 
1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1612 {
1613 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1616 
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1622 
1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1624 {
1625 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1628 
1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1634 
1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1636 			    struct page **pages, int nr_pages)
1637 {
1638 	unsigned long addr;
1639 	gfn_t entry;
1640 
1641 	addr = gfn_to_hva_many(slot, gfn, &entry);
1642 	if (kvm_is_error_hva(addr))
1643 		return -1;
1644 
1645 	if (entry < nr_pages)
1646 		return 0;
1647 
1648 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1649 }
1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1651 
1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1653 {
1654 	if (is_error_noslot_pfn(pfn))
1655 		return KVM_ERR_PTR_BAD_PAGE;
1656 
1657 	if (kvm_is_reserved_pfn(pfn)) {
1658 		WARN_ON(1);
1659 		return KVM_ERR_PTR_BAD_PAGE;
1660 	}
1661 
1662 	return pfn_to_page(pfn);
1663 }
1664 
1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1666 {
1667 	kvm_pfn_t pfn;
1668 
1669 	pfn = gfn_to_pfn(kvm, gfn);
1670 
1671 	return kvm_pfn_to_page(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_page);
1674 
1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677 	kvm_pfn_t pfn;
1678 
1679 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1680 
1681 	return kvm_pfn_to_page(pfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1684 
1685 void kvm_release_page_clean(struct page *page)
1686 {
1687 	WARN_ON(is_error_page(page));
1688 
1689 	kvm_release_pfn_clean(page_to_pfn(page));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1692 
1693 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1694 {
1695 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1696 		put_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1699 
1700 void kvm_release_page_dirty(struct page *page)
1701 {
1702 	WARN_ON(is_error_page(page));
1703 
1704 	kvm_release_pfn_dirty(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1707 
1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1709 {
1710 	kvm_set_pfn_dirty(pfn);
1711 	kvm_release_pfn_clean(pfn);
1712 }
1713 
1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716 	if (!kvm_is_reserved_pfn(pfn)) {
1717 		struct page *page = pfn_to_page(pfn);
1718 
1719 		if (!PageReserved(page))
1720 			SetPageDirty(page);
1721 	}
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1724 
1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1726 {
1727 	if (!kvm_is_reserved_pfn(pfn))
1728 		mark_page_accessed(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1731 
1732 void kvm_get_pfn(kvm_pfn_t pfn)
1733 {
1734 	if (!kvm_is_reserved_pfn(pfn))
1735 		get_page(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1738 
1739 static int next_segment(unsigned long len, int offset)
1740 {
1741 	if (len > PAGE_SIZE - offset)
1742 		return PAGE_SIZE - offset;
1743 	else
1744 		return len;
1745 }
1746 
1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1748 				 void *data, int offset, int len)
1749 {
1750 	int r;
1751 	unsigned long addr;
1752 
1753 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1754 	if (kvm_is_error_hva(addr))
1755 		return -EFAULT;
1756 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1757 	if (r)
1758 		return -EFAULT;
1759 	return 0;
1760 }
1761 
1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1763 			int len)
1764 {
1765 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1766 
1767 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1770 
1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1772 			     int offset, int len)
1773 {
1774 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775 
1776 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1779 
1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1781 {
1782 	gfn_t gfn = gpa >> PAGE_SHIFT;
1783 	int seg;
1784 	int offset = offset_in_page(gpa);
1785 	int ret;
1786 
1787 	while ((seg = next_segment(len, offset)) != 0) {
1788 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1789 		if (ret < 0)
1790 			return ret;
1791 		offset = 0;
1792 		len -= seg;
1793 		data += seg;
1794 		++gfn;
1795 	}
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_read_guest);
1799 
1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1801 {
1802 	gfn_t gfn = gpa >> PAGE_SHIFT;
1803 	int seg;
1804 	int offset = offset_in_page(gpa);
1805 	int ret;
1806 
1807 	while ((seg = next_segment(len, offset)) != 0) {
1808 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1809 		if (ret < 0)
1810 			return ret;
1811 		offset = 0;
1812 		len -= seg;
1813 		data += seg;
1814 		++gfn;
1815 	}
1816 	return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1819 
1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1821 			           void *data, int offset, unsigned long len)
1822 {
1823 	int r;
1824 	unsigned long addr;
1825 
1826 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1827 	if (kvm_is_error_hva(addr))
1828 		return -EFAULT;
1829 	pagefault_disable();
1830 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1831 	pagefault_enable();
1832 	if (r)
1833 		return -EFAULT;
1834 	return 0;
1835 }
1836 
1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1838 			  unsigned long len)
1839 {
1840 	gfn_t gfn = gpa >> PAGE_SHIFT;
1841 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842 	int offset = offset_in_page(gpa);
1843 
1844 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1847 
1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1849 			       void *data, unsigned long len)
1850 {
1851 	gfn_t gfn = gpa >> PAGE_SHIFT;
1852 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1853 	int offset = offset_in_page(gpa);
1854 
1855 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1858 
1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1860 			          const void *data, int offset, int len)
1861 {
1862 	int r;
1863 	unsigned long addr;
1864 
1865 	addr = gfn_to_hva_memslot(memslot, gfn);
1866 	if (kvm_is_error_hva(addr))
1867 		return -EFAULT;
1868 	r = __copy_to_user((void __user *)addr + offset, data, len);
1869 	if (r)
1870 		return -EFAULT;
1871 	mark_page_dirty_in_slot(memslot, gfn);
1872 	return 0;
1873 }
1874 
1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1876 			 const void *data, int offset, int len)
1877 {
1878 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879 
1880 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1883 
1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1885 			      const void *data, int offset, int len)
1886 {
1887 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1888 
1889 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1892 
1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1894 		    unsigned long len)
1895 {
1896 	gfn_t gfn = gpa >> PAGE_SHIFT;
1897 	int seg;
1898 	int offset = offset_in_page(gpa);
1899 	int ret;
1900 
1901 	while ((seg = next_segment(len, offset)) != 0) {
1902 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1903 		if (ret < 0)
1904 			return ret;
1905 		offset = 0;
1906 		len -= seg;
1907 		data += seg;
1908 		++gfn;
1909 	}
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_write_guest);
1913 
1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1915 		         unsigned long len)
1916 {
1917 	gfn_t gfn = gpa >> PAGE_SHIFT;
1918 	int seg;
1919 	int offset = offset_in_page(gpa);
1920 	int ret;
1921 
1922 	while ((seg = next_segment(len, offset)) != 0) {
1923 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1924 		if (ret < 0)
1925 			return ret;
1926 		offset = 0;
1927 		len -= seg;
1928 		data += seg;
1929 		++gfn;
1930 	}
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1934 
1935 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1936 			      gpa_t gpa, unsigned long len)
1937 {
1938 	struct kvm_memslots *slots = kvm_memslots(kvm);
1939 	int offset = offset_in_page(gpa);
1940 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1941 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1942 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1943 	gfn_t nr_pages_avail;
1944 
1945 	ghc->gpa = gpa;
1946 	ghc->generation = slots->generation;
1947 	ghc->len = len;
1948 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1949 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1950 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1951 		ghc->hva += offset;
1952 	} else {
1953 		/*
1954 		 * If the requested region crosses two memslots, we still
1955 		 * verify that the entire region is valid here.
1956 		 */
1957 		while (start_gfn <= end_gfn) {
1958 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1959 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1960 						   &nr_pages_avail);
1961 			if (kvm_is_error_hva(ghc->hva))
1962 				return -EFAULT;
1963 			start_gfn += nr_pages_avail;
1964 		}
1965 		/* Use the slow path for cross page reads and writes. */
1966 		ghc->memslot = NULL;
1967 	}
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1971 
1972 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1973 			   void *data, unsigned long len)
1974 {
1975 	struct kvm_memslots *slots = kvm_memslots(kvm);
1976 	int r;
1977 
1978 	BUG_ON(len > ghc->len);
1979 
1980 	if (slots->generation != ghc->generation)
1981 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1982 
1983 	if (unlikely(!ghc->memslot))
1984 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1985 
1986 	if (kvm_is_error_hva(ghc->hva))
1987 		return -EFAULT;
1988 
1989 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1990 	if (r)
1991 		return -EFAULT;
1992 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1993 
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1997 
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999 			   void *data, unsigned long len)
2000 {
2001 	struct kvm_memslots *slots = kvm_memslots(kvm);
2002 	int r;
2003 
2004 	BUG_ON(len > ghc->len);
2005 
2006 	if (slots->generation != ghc->generation)
2007 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2008 
2009 	if (unlikely(!ghc->memslot))
2010 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2011 
2012 	if (kvm_is_error_hva(ghc->hva))
2013 		return -EFAULT;
2014 
2015 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016 	if (r)
2017 		return -EFAULT;
2018 
2019 	return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2022 
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2024 {
2025 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2026 
2027 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2030 
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2032 {
2033 	gfn_t gfn = gpa >> PAGE_SHIFT;
2034 	int seg;
2035 	int offset = offset_in_page(gpa);
2036 	int ret;
2037 
2038 	while ((seg = next_segment(len, offset)) != 0) {
2039 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040 		if (ret < 0)
2041 			return ret;
2042 		offset = 0;
2043 		len -= seg;
2044 		++gfn;
2045 	}
2046 	return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2049 
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051 				    gfn_t gfn)
2052 {
2053 	if (memslot && memslot->dirty_bitmap) {
2054 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2055 
2056 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2057 	}
2058 }
2059 
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2061 {
2062 	struct kvm_memory_slot *memslot;
2063 
2064 	memslot = gfn_to_memslot(kvm, gfn);
2065 	mark_page_dirty_in_slot(memslot, gfn);
2066 }
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2068 
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2070 {
2071 	struct kvm_memory_slot *memslot;
2072 
2073 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074 	mark_page_dirty_in_slot(memslot, gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2077 
2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2079 {
2080 	unsigned int old, val, grow;
2081 
2082 	old = val = vcpu->halt_poll_ns;
2083 	grow = READ_ONCE(halt_poll_ns_grow);
2084 	/* 10us base */
2085 	if (val == 0 && grow)
2086 		val = 10000;
2087 	else
2088 		val *= grow;
2089 
2090 	if (val > halt_poll_ns)
2091 		val = halt_poll_ns;
2092 
2093 	vcpu->halt_poll_ns = val;
2094 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2095 }
2096 
2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2098 {
2099 	unsigned int old, val, shrink;
2100 
2101 	old = val = vcpu->halt_poll_ns;
2102 	shrink = READ_ONCE(halt_poll_ns_shrink);
2103 	if (shrink == 0)
2104 		val = 0;
2105 	else
2106 		val /= shrink;
2107 
2108 	vcpu->halt_poll_ns = val;
2109 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2110 }
2111 
2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2113 {
2114 	if (kvm_arch_vcpu_runnable(vcpu)) {
2115 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2116 		return -EINTR;
2117 	}
2118 	if (kvm_cpu_has_pending_timer(vcpu))
2119 		return -EINTR;
2120 	if (signal_pending(current))
2121 		return -EINTR;
2122 
2123 	return 0;
2124 }
2125 
2126 /*
2127  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2128  */
2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2130 {
2131 	ktime_t start, cur;
2132 	DECLARE_SWAITQUEUE(wait);
2133 	bool waited = false;
2134 	u64 block_ns;
2135 
2136 	start = cur = ktime_get();
2137 	if (vcpu->halt_poll_ns) {
2138 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2139 
2140 		++vcpu->stat.halt_attempted_poll;
2141 		do {
2142 			/*
2143 			 * This sets KVM_REQ_UNHALT if an interrupt
2144 			 * arrives.
2145 			 */
2146 			if (kvm_vcpu_check_block(vcpu) < 0) {
2147 				++vcpu->stat.halt_successful_poll;
2148 				if (!vcpu_valid_wakeup(vcpu))
2149 					++vcpu->stat.halt_poll_invalid;
2150 				goto out;
2151 			}
2152 			cur = ktime_get();
2153 		} while (single_task_running() && ktime_before(cur, stop));
2154 	}
2155 
2156 	kvm_arch_vcpu_blocking(vcpu);
2157 
2158 	for (;;) {
2159 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2160 
2161 		if (kvm_vcpu_check_block(vcpu) < 0)
2162 			break;
2163 
2164 		waited = true;
2165 		schedule();
2166 	}
2167 
2168 	finish_swait(&vcpu->wq, &wait);
2169 	cur = ktime_get();
2170 
2171 	kvm_arch_vcpu_unblocking(vcpu);
2172 out:
2173 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2174 
2175 	if (!vcpu_valid_wakeup(vcpu))
2176 		shrink_halt_poll_ns(vcpu);
2177 	else if (halt_poll_ns) {
2178 		if (block_ns <= vcpu->halt_poll_ns)
2179 			;
2180 		/* we had a long block, shrink polling */
2181 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2182 			shrink_halt_poll_ns(vcpu);
2183 		/* we had a short halt and our poll time is too small */
2184 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2185 			block_ns < halt_poll_ns)
2186 			grow_halt_poll_ns(vcpu);
2187 	} else
2188 		vcpu->halt_poll_ns = 0;
2189 
2190 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2191 	kvm_arch_vcpu_block_finish(vcpu);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2194 
2195 #ifndef CONFIG_S390
2196 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2197 {
2198 	struct swait_queue_head *wqp;
2199 
2200 	wqp = kvm_arch_vcpu_wq(vcpu);
2201 	if (swait_active(wqp)) {
2202 		swake_up(wqp);
2203 		++vcpu->stat.halt_wakeup;
2204 	}
2205 
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2208 
2209 /*
2210  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2211  */
2212 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2213 {
2214 	int me;
2215 	int cpu = vcpu->cpu;
2216 
2217 	kvm_vcpu_wake_up(vcpu);
2218 	me = get_cpu();
2219 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2220 		if (kvm_arch_vcpu_should_kick(vcpu))
2221 			smp_send_reschedule(cpu);
2222 	put_cpu();
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2225 #endif /* !CONFIG_S390 */
2226 
2227 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2228 {
2229 	struct pid *pid;
2230 	struct task_struct *task = NULL;
2231 	int ret = 0;
2232 
2233 	rcu_read_lock();
2234 	pid = rcu_dereference(target->pid);
2235 	if (pid)
2236 		task = get_pid_task(pid, PIDTYPE_PID);
2237 	rcu_read_unlock();
2238 	if (!task)
2239 		return ret;
2240 	ret = yield_to(task, 1);
2241 	put_task_struct(task);
2242 
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2246 
2247 /*
2248  * Helper that checks whether a VCPU is eligible for directed yield.
2249  * Most eligible candidate to yield is decided by following heuristics:
2250  *
2251  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2252  *  (preempted lock holder), indicated by @in_spin_loop.
2253  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2254  *
2255  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2256  *  chance last time (mostly it has become eligible now since we have probably
2257  *  yielded to lockholder in last iteration. This is done by toggling
2258  *  @dy_eligible each time a VCPU checked for eligibility.)
2259  *
2260  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2261  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2262  *  burning. Giving priority for a potential lock-holder increases lock
2263  *  progress.
2264  *
2265  *  Since algorithm is based on heuristics, accessing another VCPU data without
2266  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2267  *  and continue with next VCPU and so on.
2268  */
2269 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2270 {
2271 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2272 	bool eligible;
2273 
2274 	eligible = !vcpu->spin_loop.in_spin_loop ||
2275 		    vcpu->spin_loop.dy_eligible;
2276 
2277 	if (vcpu->spin_loop.in_spin_loop)
2278 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2279 
2280 	return eligible;
2281 #else
2282 	return true;
2283 #endif
2284 }
2285 
2286 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2287 {
2288 	struct kvm *kvm = me->kvm;
2289 	struct kvm_vcpu *vcpu;
2290 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2291 	int yielded = 0;
2292 	int try = 3;
2293 	int pass;
2294 	int i;
2295 
2296 	kvm_vcpu_set_in_spin_loop(me, true);
2297 	/*
2298 	 * We boost the priority of a VCPU that is runnable but not
2299 	 * currently running, because it got preempted by something
2300 	 * else and called schedule in __vcpu_run.  Hopefully that
2301 	 * VCPU is holding the lock that we need and will release it.
2302 	 * We approximate round-robin by starting at the last boosted VCPU.
2303 	 */
2304 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2305 		kvm_for_each_vcpu(i, vcpu, kvm) {
2306 			if (!pass && i <= last_boosted_vcpu) {
2307 				i = last_boosted_vcpu;
2308 				continue;
2309 			} else if (pass && i > last_boosted_vcpu)
2310 				break;
2311 			if (!ACCESS_ONCE(vcpu->preempted))
2312 				continue;
2313 			if (vcpu == me)
2314 				continue;
2315 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2316 				continue;
2317 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2318 				continue;
2319 
2320 			yielded = kvm_vcpu_yield_to(vcpu);
2321 			if (yielded > 0) {
2322 				kvm->last_boosted_vcpu = i;
2323 				break;
2324 			} else if (yielded < 0) {
2325 				try--;
2326 				if (!try)
2327 					break;
2328 			}
2329 		}
2330 	}
2331 	kvm_vcpu_set_in_spin_loop(me, false);
2332 
2333 	/* Ensure vcpu is not eligible during next spinloop */
2334 	kvm_vcpu_set_dy_eligible(me, false);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2337 
2338 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2339 {
2340 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2341 	struct page *page;
2342 
2343 	if (vmf->pgoff == 0)
2344 		page = virt_to_page(vcpu->run);
2345 #ifdef CONFIG_X86
2346 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2347 		page = virt_to_page(vcpu->arch.pio_data);
2348 #endif
2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2350 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2351 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2352 #endif
2353 	else
2354 		return kvm_arch_vcpu_fault(vcpu, vmf);
2355 	get_page(page);
2356 	vmf->page = page;
2357 	return 0;
2358 }
2359 
2360 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2361 	.fault = kvm_vcpu_fault,
2362 };
2363 
2364 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2365 {
2366 	vma->vm_ops = &kvm_vcpu_vm_ops;
2367 	return 0;
2368 }
2369 
2370 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2371 {
2372 	struct kvm_vcpu *vcpu = filp->private_data;
2373 
2374 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2375 	kvm_put_kvm(vcpu->kvm);
2376 	return 0;
2377 }
2378 
2379 static struct file_operations kvm_vcpu_fops = {
2380 	.release        = kvm_vcpu_release,
2381 	.unlocked_ioctl = kvm_vcpu_ioctl,
2382 #ifdef CONFIG_KVM_COMPAT
2383 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2384 #endif
2385 	.mmap           = kvm_vcpu_mmap,
2386 	.llseek		= noop_llseek,
2387 };
2388 
2389 /*
2390  * Allocates an inode for the vcpu.
2391  */
2392 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2393 {
2394 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2395 }
2396 
2397 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2398 {
2399 	char dir_name[ITOA_MAX_LEN * 2];
2400 	int ret;
2401 
2402 	if (!kvm_arch_has_vcpu_debugfs())
2403 		return 0;
2404 
2405 	if (!debugfs_initialized())
2406 		return 0;
2407 
2408 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2409 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2410 								vcpu->kvm->debugfs_dentry);
2411 	if (!vcpu->debugfs_dentry)
2412 		return -ENOMEM;
2413 
2414 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2415 	if (ret < 0) {
2416 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2417 		return ret;
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 /*
2424  * Creates some virtual cpus.  Good luck creating more than one.
2425  */
2426 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2427 {
2428 	int r;
2429 	struct kvm_vcpu *vcpu;
2430 
2431 	if (id >= KVM_MAX_VCPU_ID)
2432 		return -EINVAL;
2433 
2434 	mutex_lock(&kvm->lock);
2435 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2436 		mutex_unlock(&kvm->lock);
2437 		return -EINVAL;
2438 	}
2439 
2440 	kvm->created_vcpus++;
2441 	mutex_unlock(&kvm->lock);
2442 
2443 	vcpu = kvm_arch_vcpu_create(kvm, id);
2444 	if (IS_ERR(vcpu)) {
2445 		r = PTR_ERR(vcpu);
2446 		goto vcpu_decrement;
2447 	}
2448 
2449 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2450 
2451 	r = kvm_arch_vcpu_setup(vcpu);
2452 	if (r)
2453 		goto vcpu_destroy;
2454 
2455 	r = kvm_create_vcpu_debugfs(vcpu);
2456 	if (r)
2457 		goto vcpu_destroy;
2458 
2459 	mutex_lock(&kvm->lock);
2460 	if (kvm_get_vcpu_by_id(kvm, id)) {
2461 		r = -EEXIST;
2462 		goto unlock_vcpu_destroy;
2463 	}
2464 
2465 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2466 
2467 	/* Now it's all set up, let userspace reach it */
2468 	kvm_get_kvm(kvm);
2469 	r = create_vcpu_fd(vcpu);
2470 	if (r < 0) {
2471 		kvm_put_kvm(kvm);
2472 		goto unlock_vcpu_destroy;
2473 	}
2474 
2475 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2476 
2477 	/*
2478 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2479 	 * before kvm->online_vcpu's incremented value.
2480 	 */
2481 	smp_wmb();
2482 	atomic_inc(&kvm->online_vcpus);
2483 
2484 	mutex_unlock(&kvm->lock);
2485 	kvm_arch_vcpu_postcreate(vcpu);
2486 	return r;
2487 
2488 unlock_vcpu_destroy:
2489 	mutex_unlock(&kvm->lock);
2490 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2491 vcpu_destroy:
2492 	kvm_arch_vcpu_destroy(vcpu);
2493 vcpu_decrement:
2494 	mutex_lock(&kvm->lock);
2495 	kvm->created_vcpus--;
2496 	mutex_unlock(&kvm->lock);
2497 	return r;
2498 }
2499 
2500 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2501 {
2502 	if (sigset) {
2503 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504 		vcpu->sigset_active = 1;
2505 		vcpu->sigset = *sigset;
2506 	} else
2507 		vcpu->sigset_active = 0;
2508 	return 0;
2509 }
2510 
2511 static long kvm_vcpu_ioctl(struct file *filp,
2512 			   unsigned int ioctl, unsigned long arg)
2513 {
2514 	struct kvm_vcpu *vcpu = filp->private_data;
2515 	void __user *argp = (void __user *)arg;
2516 	int r;
2517 	struct kvm_fpu *fpu = NULL;
2518 	struct kvm_sregs *kvm_sregs = NULL;
2519 
2520 	if (vcpu->kvm->mm != current->mm)
2521 		return -EIO;
2522 
2523 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2524 		return -EINVAL;
2525 
2526 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2527 	/*
2528 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2529 	 * so vcpu_load() would break it.
2530 	 */
2531 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2532 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2533 #endif
2534 
2535 
2536 	r = vcpu_load(vcpu);
2537 	if (r)
2538 		return r;
2539 	switch (ioctl) {
2540 	case KVM_RUN:
2541 		r = -EINVAL;
2542 		if (arg)
2543 			goto out;
2544 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2545 			/* The thread running this VCPU changed. */
2546 			struct pid *oldpid = vcpu->pid;
2547 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2548 
2549 			rcu_assign_pointer(vcpu->pid, newpid);
2550 			if (oldpid)
2551 				synchronize_rcu();
2552 			put_pid(oldpid);
2553 		}
2554 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2555 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2556 		break;
2557 	case KVM_GET_REGS: {
2558 		struct kvm_regs *kvm_regs;
2559 
2560 		r = -ENOMEM;
2561 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2562 		if (!kvm_regs)
2563 			goto out;
2564 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2565 		if (r)
2566 			goto out_free1;
2567 		r = -EFAULT;
2568 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2569 			goto out_free1;
2570 		r = 0;
2571 out_free1:
2572 		kfree(kvm_regs);
2573 		break;
2574 	}
2575 	case KVM_SET_REGS: {
2576 		struct kvm_regs *kvm_regs;
2577 
2578 		r = -ENOMEM;
2579 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2580 		if (IS_ERR(kvm_regs)) {
2581 			r = PTR_ERR(kvm_regs);
2582 			goto out;
2583 		}
2584 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2585 		kfree(kvm_regs);
2586 		break;
2587 	}
2588 	case KVM_GET_SREGS: {
2589 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2590 		r = -ENOMEM;
2591 		if (!kvm_sregs)
2592 			goto out;
2593 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2594 		if (r)
2595 			goto out;
2596 		r = -EFAULT;
2597 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2598 			goto out;
2599 		r = 0;
2600 		break;
2601 	}
2602 	case KVM_SET_SREGS: {
2603 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2604 		if (IS_ERR(kvm_sregs)) {
2605 			r = PTR_ERR(kvm_sregs);
2606 			kvm_sregs = NULL;
2607 			goto out;
2608 		}
2609 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2610 		break;
2611 	}
2612 	case KVM_GET_MP_STATE: {
2613 		struct kvm_mp_state mp_state;
2614 
2615 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2616 		if (r)
2617 			goto out;
2618 		r = -EFAULT;
2619 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2620 			goto out;
2621 		r = 0;
2622 		break;
2623 	}
2624 	case KVM_SET_MP_STATE: {
2625 		struct kvm_mp_state mp_state;
2626 
2627 		r = -EFAULT;
2628 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2629 			goto out;
2630 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2631 		break;
2632 	}
2633 	case KVM_TRANSLATE: {
2634 		struct kvm_translation tr;
2635 
2636 		r = -EFAULT;
2637 		if (copy_from_user(&tr, argp, sizeof(tr)))
2638 			goto out;
2639 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2640 		if (r)
2641 			goto out;
2642 		r = -EFAULT;
2643 		if (copy_to_user(argp, &tr, sizeof(tr)))
2644 			goto out;
2645 		r = 0;
2646 		break;
2647 	}
2648 	case KVM_SET_GUEST_DEBUG: {
2649 		struct kvm_guest_debug dbg;
2650 
2651 		r = -EFAULT;
2652 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2653 			goto out;
2654 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2655 		break;
2656 	}
2657 	case KVM_SET_SIGNAL_MASK: {
2658 		struct kvm_signal_mask __user *sigmask_arg = argp;
2659 		struct kvm_signal_mask kvm_sigmask;
2660 		sigset_t sigset, *p;
2661 
2662 		p = NULL;
2663 		if (argp) {
2664 			r = -EFAULT;
2665 			if (copy_from_user(&kvm_sigmask, argp,
2666 					   sizeof(kvm_sigmask)))
2667 				goto out;
2668 			r = -EINVAL;
2669 			if (kvm_sigmask.len != sizeof(sigset))
2670 				goto out;
2671 			r = -EFAULT;
2672 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2673 					   sizeof(sigset)))
2674 				goto out;
2675 			p = &sigset;
2676 		}
2677 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2678 		break;
2679 	}
2680 	case KVM_GET_FPU: {
2681 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2682 		r = -ENOMEM;
2683 		if (!fpu)
2684 			goto out;
2685 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2686 		if (r)
2687 			goto out;
2688 		r = -EFAULT;
2689 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2690 			goto out;
2691 		r = 0;
2692 		break;
2693 	}
2694 	case KVM_SET_FPU: {
2695 		fpu = memdup_user(argp, sizeof(*fpu));
2696 		if (IS_ERR(fpu)) {
2697 			r = PTR_ERR(fpu);
2698 			fpu = NULL;
2699 			goto out;
2700 		}
2701 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2702 		break;
2703 	}
2704 	default:
2705 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2706 	}
2707 out:
2708 	vcpu_put(vcpu);
2709 	kfree(fpu);
2710 	kfree(kvm_sregs);
2711 	return r;
2712 }
2713 
2714 #ifdef CONFIG_KVM_COMPAT
2715 static long kvm_vcpu_compat_ioctl(struct file *filp,
2716 				  unsigned int ioctl, unsigned long arg)
2717 {
2718 	struct kvm_vcpu *vcpu = filp->private_data;
2719 	void __user *argp = compat_ptr(arg);
2720 	int r;
2721 
2722 	if (vcpu->kvm->mm != current->mm)
2723 		return -EIO;
2724 
2725 	switch (ioctl) {
2726 	case KVM_SET_SIGNAL_MASK: {
2727 		struct kvm_signal_mask __user *sigmask_arg = argp;
2728 		struct kvm_signal_mask kvm_sigmask;
2729 		compat_sigset_t csigset;
2730 		sigset_t sigset;
2731 
2732 		if (argp) {
2733 			r = -EFAULT;
2734 			if (copy_from_user(&kvm_sigmask, argp,
2735 					   sizeof(kvm_sigmask)))
2736 				goto out;
2737 			r = -EINVAL;
2738 			if (kvm_sigmask.len != sizeof(csigset))
2739 				goto out;
2740 			r = -EFAULT;
2741 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2742 					   sizeof(csigset)))
2743 				goto out;
2744 			sigset_from_compat(&sigset, &csigset);
2745 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2746 		} else
2747 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2748 		break;
2749 	}
2750 	default:
2751 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2752 	}
2753 
2754 out:
2755 	return r;
2756 }
2757 #endif
2758 
2759 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2760 				 int (*accessor)(struct kvm_device *dev,
2761 						 struct kvm_device_attr *attr),
2762 				 unsigned long arg)
2763 {
2764 	struct kvm_device_attr attr;
2765 
2766 	if (!accessor)
2767 		return -EPERM;
2768 
2769 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2770 		return -EFAULT;
2771 
2772 	return accessor(dev, &attr);
2773 }
2774 
2775 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2776 			     unsigned long arg)
2777 {
2778 	struct kvm_device *dev = filp->private_data;
2779 
2780 	switch (ioctl) {
2781 	case KVM_SET_DEVICE_ATTR:
2782 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2783 	case KVM_GET_DEVICE_ATTR:
2784 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2785 	case KVM_HAS_DEVICE_ATTR:
2786 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2787 	default:
2788 		if (dev->ops->ioctl)
2789 			return dev->ops->ioctl(dev, ioctl, arg);
2790 
2791 		return -ENOTTY;
2792 	}
2793 }
2794 
2795 static int kvm_device_release(struct inode *inode, struct file *filp)
2796 {
2797 	struct kvm_device *dev = filp->private_data;
2798 	struct kvm *kvm = dev->kvm;
2799 
2800 	kvm_put_kvm(kvm);
2801 	return 0;
2802 }
2803 
2804 static const struct file_operations kvm_device_fops = {
2805 	.unlocked_ioctl = kvm_device_ioctl,
2806 #ifdef CONFIG_KVM_COMPAT
2807 	.compat_ioctl = kvm_device_ioctl,
2808 #endif
2809 	.release = kvm_device_release,
2810 };
2811 
2812 struct kvm_device *kvm_device_from_filp(struct file *filp)
2813 {
2814 	if (filp->f_op != &kvm_device_fops)
2815 		return NULL;
2816 
2817 	return filp->private_data;
2818 }
2819 
2820 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2821 #ifdef CONFIG_KVM_MPIC
2822 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2823 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2824 #endif
2825 
2826 #ifdef CONFIG_KVM_XICS
2827 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2828 #endif
2829 };
2830 
2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2832 {
2833 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834 		return -ENOSPC;
2835 
2836 	if (kvm_device_ops_table[type] != NULL)
2837 		return -EEXIST;
2838 
2839 	kvm_device_ops_table[type] = ops;
2840 	return 0;
2841 }
2842 
2843 void kvm_unregister_device_ops(u32 type)
2844 {
2845 	if (kvm_device_ops_table[type] != NULL)
2846 		kvm_device_ops_table[type] = NULL;
2847 }
2848 
2849 static int kvm_ioctl_create_device(struct kvm *kvm,
2850 				   struct kvm_create_device *cd)
2851 {
2852 	struct kvm_device_ops *ops = NULL;
2853 	struct kvm_device *dev;
2854 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855 	int ret;
2856 
2857 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858 		return -ENODEV;
2859 
2860 	ops = kvm_device_ops_table[cd->type];
2861 	if (ops == NULL)
2862 		return -ENODEV;
2863 
2864 	if (test)
2865 		return 0;
2866 
2867 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868 	if (!dev)
2869 		return -ENOMEM;
2870 
2871 	dev->ops = ops;
2872 	dev->kvm = kvm;
2873 
2874 	mutex_lock(&kvm->lock);
2875 	ret = ops->create(dev, cd->type);
2876 	if (ret < 0) {
2877 		mutex_unlock(&kvm->lock);
2878 		kfree(dev);
2879 		return ret;
2880 	}
2881 	list_add(&dev->vm_node, &kvm->devices);
2882 	mutex_unlock(&kvm->lock);
2883 
2884 	if (ops->init)
2885 		ops->init(dev);
2886 
2887 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888 	if (ret < 0) {
2889 		ops->destroy(dev);
2890 		mutex_lock(&kvm->lock);
2891 		list_del(&dev->vm_node);
2892 		mutex_unlock(&kvm->lock);
2893 		return ret;
2894 	}
2895 
2896 	kvm_get_kvm(kvm);
2897 	cd->fd = ret;
2898 	return 0;
2899 }
2900 
2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2902 {
2903 	switch (arg) {
2904 	case KVM_CAP_USER_MEMORY:
2905 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907 	case KVM_CAP_INTERNAL_ERROR_DATA:
2908 #ifdef CONFIG_HAVE_KVM_MSI
2909 	case KVM_CAP_SIGNAL_MSI:
2910 #endif
2911 #ifdef CONFIG_HAVE_KVM_IRQFD
2912 	case KVM_CAP_IRQFD:
2913 	case KVM_CAP_IRQFD_RESAMPLE:
2914 #endif
2915 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916 	case KVM_CAP_CHECK_EXTENSION_VM:
2917 		return 1;
2918 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2919 	case KVM_CAP_IRQ_ROUTING:
2920 		return KVM_MAX_IRQ_ROUTES;
2921 #endif
2922 #if KVM_ADDRESS_SPACE_NUM > 1
2923 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2924 		return KVM_ADDRESS_SPACE_NUM;
2925 #endif
2926 	case KVM_CAP_MAX_VCPU_ID:
2927 		return KVM_MAX_VCPU_ID;
2928 	default:
2929 		break;
2930 	}
2931 	return kvm_vm_ioctl_check_extension(kvm, arg);
2932 }
2933 
2934 static long kvm_vm_ioctl(struct file *filp,
2935 			   unsigned int ioctl, unsigned long arg)
2936 {
2937 	struct kvm *kvm = filp->private_data;
2938 	void __user *argp = (void __user *)arg;
2939 	int r;
2940 
2941 	if (kvm->mm != current->mm)
2942 		return -EIO;
2943 	switch (ioctl) {
2944 	case KVM_CREATE_VCPU:
2945 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2946 		break;
2947 	case KVM_SET_USER_MEMORY_REGION: {
2948 		struct kvm_userspace_memory_region kvm_userspace_mem;
2949 
2950 		r = -EFAULT;
2951 		if (copy_from_user(&kvm_userspace_mem, argp,
2952 						sizeof(kvm_userspace_mem)))
2953 			goto out;
2954 
2955 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2956 		break;
2957 	}
2958 	case KVM_GET_DIRTY_LOG: {
2959 		struct kvm_dirty_log log;
2960 
2961 		r = -EFAULT;
2962 		if (copy_from_user(&log, argp, sizeof(log)))
2963 			goto out;
2964 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2965 		break;
2966 	}
2967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2968 	case KVM_REGISTER_COALESCED_MMIO: {
2969 		struct kvm_coalesced_mmio_zone zone;
2970 
2971 		r = -EFAULT;
2972 		if (copy_from_user(&zone, argp, sizeof(zone)))
2973 			goto out;
2974 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2975 		break;
2976 	}
2977 	case KVM_UNREGISTER_COALESCED_MMIO: {
2978 		struct kvm_coalesced_mmio_zone zone;
2979 
2980 		r = -EFAULT;
2981 		if (copy_from_user(&zone, argp, sizeof(zone)))
2982 			goto out;
2983 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2984 		break;
2985 	}
2986 #endif
2987 	case KVM_IRQFD: {
2988 		struct kvm_irqfd data;
2989 
2990 		r = -EFAULT;
2991 		if (copy_from_user(&data, argp, sizeof(data)))
2992 			goto out;
2993 		r = kvm_irqfd(kvm, &data);
2994 		break;
2995 	}
2996 	case KVM_IOEVENTFD: {
2997 		struct kvm_ioeventfd data;
2998 
2999 		r = -EFAULT;
3000 		if (copy_from_user(&data, argp, sizeof(data)))
3001 			goto out;
3002 		r = kvm_ioeventfd(kvm, &data);
3003 		break;
3004 	}
3005 #ifdef CONFIG_HAVE_KVM_MSI
3006 	case KVM_SIGNAL_MSI: {
3007 		struct kvm_msi msi;
3008 
3009 		r = -EFAULT;
3010 		if (copy_from_user(&msi, argp, sizeof(msi)))
3011 			goto out;
3012 		r = kvm_send_userspace_msi(kvm, &msi);
3013 		break;
3014 	}
3015 #endif
3016 #ifdef __KVM_HAVE_IRQ_LINE
3017 	case KVM_IRQ_LINE_STATUS:
3018 	case KVM_IRQ_LINE: {
3019 		struct kvm_irq_level irq_event;
3020 
3021 		r = -EFAULT;
3022 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3023 			goto out;
3024 
3025 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3026 					ioctl == KVM_IRQ_LINE_STATUS);
3027 		if (r)
3028 			goto out;
3029 
3030 		r = -EFAULT;
3031 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3032 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3033 				goto out;
3034 		}
3035 
3036 		r = 0;
3037 		break;
3038 	}
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041 	case KVM_SET_GSI_ROUTING: {
3042 		struct kvm_irq_routing routing;
3043 		struct kvm_irq_routing __user *urouting;
3044 		struct kvm_irq_routing_entry *entries = NULL;
3045 
3046 		r = -EFAULT;
3047 		if (copy_from_user(&routing, argp, sizeof(routing)))
3048 			goto out;
3049 		r = -EINVAL;
3050 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051 			goto out;
3052 		if (routing.flags)
3053 			goto out;
3054 		if (routing.nr) {
3055 			r = -ENOMEM;
3056 			entries = vmalloc(routing.nr * sizeof(*entries));
3057 			if (!entries)
3058 				goto out;
3059 			r = -EFAULT;
3060 			urouting = argp;
3061 			if (copy_from_user(entries, urouting->entries,
3062 					   routing.nr * sizeof(*entries)))
3063 				goto out_free_irq_routing;
3064 		}
3065 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066 					routing.flags);
3067 out_free_irq_routing:
3068 		vfree(entries);
3069 		break;
3070 	}
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072 	case KVM_CREATE_DEVICE: {
3073 		struct kvm_create_device cd;
3074 
3075 		r = -EFAULT;
3076 		if (copy_from_user(&cd, argp, sizeof(cd)))
3077 			goto out;
3078 
3079 		r = kvm_ioctl_create_device(kvm, &cd);
3080 		if (r)
3081 			goto out;
3082 
3083 		r = -EFAULT;
3084 		if (copy_to_user(argp, &cd, sizeof(cd)))
3085 			goto out;
3086 
3087 		r = 0;
3088 		break;
3089 	}
3090 	case KVM_CHECK_EXTENSION:
3091 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092 		break;
3093 	default:
3094 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095 	}
3096 out:
3097 	return r;
3098 }
3099 
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102 	__u32 slot;
3103 	__u32 padding1;
3104 	union {
3105 		compat_uptr_t dirty_bitmap; /* one bit per page */
3106 		__u64 padding2;
3107 	};
3108 };
3109 
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111 			   unsigned int ioctl, unsigned long arg)
3112 {
3113 	struct kvm *kvm = filp->private_data;
3114 	int r;
3115 
3116 	if (kvm->mm != current->mm)
3117 		return -EIO;
3118 	switch (ioctl) {
3119 	case KVM_GET_DIRTY_LOG: {
3120 		struct compat_kvm_dirty_log compat_log;
3121 		struct kvm_dirty_log log;
3122 
3123 		r = -EFAULT;
3124 		if (copy_from_user(&compat_log, (void __user *)arg,
3125 				   sizeof(compat_log)))
3126 			goto out;
3127 		log.slot	 = compat_log.slot;
3128 		log.padding1	 = compat_log.padding1;
3129 		log.padding2	 = compat_log.padding2;
3130 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3131 
3132 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3133 		break;
3134 	}
3135 	default:
3136 		r = kvm_vm_ioctl(filp, ioctl, arg);
3137 	}
3138 
3139 out:
3140 	return r;
3141 }
3142 #endif
3143 
3144 static struct file_operations kvm_vm_fops = {
3145 	.release        = kvm_vm_release,
3146 	.unlocked_ioctl = kvm_vm_ioctl,
3147 #ifdef CONFIG_KVM_COMPAT
3148 	.compat_ioctl   = kvm_vm_compat_ioctl,
3149 #endif
3150 	.llseek		= noop_llseek,
3151 };
3152 
3153 static int kvm_dev_ioctl_create_vm(unsigned long type)
3154 {
3155 	int r;
3156 	struct kvm *kvm;
3157 	struct file *file;
3158 
3159 	kvm = kvm_create_vm(type);
3160 	if (IS_ERR(kvm))
3161 		return PTR_ERR(kvm);
3162 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3163 	r = kvm_coalesced_mmio_init(kvm);
3164 	if (r < 0) {
3165 		kvm_put_kvm(kvm);
3166 		return r;
3167 	}
3168 #endif
3169 	r = get_unused_fd_flags(O_CLOEXEC);
3170 	if (r < 0) {
3171 		kvm_put_kvm(kvm);
3172 		return r;
3173 	}
3174 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175 	if (IS_ERR(file)) {
3176 		put_unused_fd(r);
3177 		kvm_put_kvm(kvm);
3178 		return PTR_ERR(file);
3179 	}
3180 
3181 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3182 		put_unused_fd(r);
3183 		fput(file);
3184 		return -ENOMEM;
3185 	}
3186 
3187 	fd_install(r, file);
3188 	return r;
3189 }
3190 
3191 static long kvm_dev_ioctl(struct file *filp,
3192 			  unsigned int ioctl, unsigned long arg)
3193 {
3194 	long r = -EINVAL;
3195 
3196 	switch (ioctl) {
3197 	case KVM_GET_API_VERSION:
3198 		if (arg)
3199 			goto out;
3200 		r = KVM_API_VERSION;
3201 		break;
3202 	case KVM_CREATE_VM:
3203 		r = kvm_dev_ioctl_create_vm(arg);
3204 		break;
3205 	case KVM_CHECK_EXTENSION:
3206 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207 		break;
3208 	case KVM_GET_VCPU_MMAP_SIZE:
3209 		if (arg)
3210 			goto out;
3211 		r = PAGE_SIZE;     /* struct kvm_run */
3212 #ifdef CONFIG_X86
3213 		r += PAGE_SIZE;    /* pio data page */
3214 #endif
3215 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3216 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3217 #endif
3218 		break;
3219 	case KVM_TRACE_ENABLE:
3220 	case KVM_TRACE_PAUSE:
3221 	case KVM_TRACE_DISABLE:
3222 		r = -EOPNOTSUPP;
3223 		break;
3224 	default:
3225 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226 	}
3227 out:
3228 	return r;
3229 }
3230 
3231 static struct file_operations kvm_chardev_ops = {
3232 	.unlocked_ioctl = kvm_dev_ioctl,
3233 	.compat_ioctl   = kvm_dev_ioctl,
3234 	.llseek		= noop_llseek,
3235 };
3236 
3237 static struct miscdevice kvm_dev = {
3238 	KVM_MINOR,
3239 	"kvm",
3240 	&kvm_chardev_ops,
3241 };
3242 
3243 static void hardware_enable_nolock(void *junk)
3244 {
3245 	int cpu = raw_smp_processor_id();
3246 	int r;
3247 
3248 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249 		return;
3250 
3251 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252 
3253 	r = kvm_arch_hardware_enable();
3254 
3255 	if (r) {
3256 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257 		atomic_inc(&hardware_enable_failed);
3258 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259 	}
3260 }
3261 
3262 static int kvm_starting_cpu(unsigned int cpu)
3263 {
3264 	raw_spin_lock(&kvm_count_lock);
3265 	if (kvm_usage_count)
3266 		hardware_enable_nolock(NULL);
3267 	raw_spin_unlock(&kvm_count_lock);
3268 	return 0;
3269 }
3270 
3271 static void hardware_disable_nolock(void *junk)
3272 {
3273 	int cpu = raw_smp_processor_id();
3274 
3275 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276 		return;
3277 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278 	kvm_arch_hardware_disable();
3279 }
3280 
3281 static int kvm_dying_cpu(unsigned int cpu)
3282 {
3283 	raw_spin_lock(&kvm_count_lock);
3284 	if (kvm_usage_count)
3285 		hardware_disable_nolock(NULL);
3286 	raw_spin_unlock(&kvm_count_lock);
3287 	return 0;
3288 }
3289 
3290 static void hardware_disable_all_nolock(void)
3291 {
3292 	BUG_ON(!kvm_usage_count);
3293 
3294 	kvm_usage_count--;
3295 	if (!kvm_usage_count)
3296 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3297 }
3298 
3299 static void hardware_disable_all(void)
3300 {
3301 	raw_spin_lock(&kvm_count_lock);
3302 	hardware_disable_all_nolock();
3303 	raw_spin_unlock(&kvm_count_lock);
3304 }
3305 
3306 static int hardware_enable_all(void)
3307 {
3308 	int r = 0;
3309 
3310 	raw_spin_lock(&kvm_count_lock);
3311 
3312 	kvm_usage_count++;
3313 	if (kvm_usage_count == 1) {
3314 		atomic_set(&hardware_enable_failed, 0);
3315 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3316 
3317 		if (atomic_read(&hardware_enable_failed)) {
3318 			hardware_disable_all_nolock();
3319 			r = -EBUSY;
3320 		}
3321 	}
3322 
3323 	raw_spin_unlock(&kvm_count_lock);
3324 
3325 	return r;
3326 }
3327 
3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329 		      void *v)
3330 {
3331 	/*
3332 	 * Some (well, at least mine) BIOSes hang on reboot if
3333 	 * in vmx root mode.
3334 	 *
3335 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3336 	 */
3337 	pr_info("kvm: exiting hardware virtualization\n");
3338 	kvm_rebooting = true;
3339 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3340 	return NOTIFY_OK;
3341 }
3342 
3343 static struct notifier_block kvm_reboot_notifier = {
3344 	.notifier_call = kvm_reboot,
3345 	.priority = 0,
3346 };
3347 
3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349 {
3350 	int i;
3351 
3352 	for (i = 0; i < bus->dev_count; i++) {
3353 		struct kvm_io_device *pos = bus->range[i].dev;
3354 
3355 		kvm_iodevice_destructor(pos);
3356 	}
3357 	kfree(bus);
3358 }
3359 
3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361 				 const struct kvm_io_range *r2)
3362 {
3363 	gpa_t addr1 = r1->addr;
3364 	gpa_t addr2 = r2->addr;
3365 
3366 	if (addr1 < addr2)
3367 		return -1;
3368 
3369 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3370 	 * accept any overlapping write.  Any order is acceptable for
3371 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372 	 * we process all of them.
3373 	 */
3374 	if (r2->len) {
3375 		addr1 += r1->len;
3376 		addr2 += r2->len;
3377 	}
3378 
3379 	if (addr1 > addr2)
3380 		return 1;
3381 
3382 	return 0;
3383 }
3384 
3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386 {
3387 	return kvm_io_bus_cmp(p1, p2);
3388 }
3389 
3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391 			  gpa_t addr, int len)
3392 {
3393 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394 		.addr = addr,
3395 		.len = len,
3396 		.dev = dev,
3397 	};
3398 
3399 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400 		kvm_io_bus_sort_cmp, NULL);
3401 
3402 	return 0;
3403 }
3404 
3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406 			     gpa_t addr, int len)
3407 {
3408 	struct kvm_io_range *range, key;
3409 	int off;
3410 
3411 	key = (struct kvm_io_range) {
3412 		.addr = addr,
3413 		.len = len,
3414 	};
3415 
3416 	range = bsearch(&key, bus->range, bus->dev_count,
3417 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418 	if (range == NULL)
3419 		return -ENOENT;
3420 
3421 	off = range - bus->range;
3422 
3423 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424 		off--;
3425 
3426 	return off;
3427 }
3428 
3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430 			      struct kvm_io_range *range, const void *val)
3431 {
3432 	int idx;
3433 
3434 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435 	if (idx < 0)
3436 		return -EOPNOTSUPP;
3437 
3438 	while (idx < bus->dev_count &&
3439 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441 					range->len, val))
3442 			return idx;
3443 		idx++;
3444 	}
3445 
3446 	return -EOPNOTSUPP;
3447 }
3448 
3449 /* kvm_io_bus_write - called under kvm->slots_lock */
3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451 		     int len, const void *val)
3452 {
3453 	struct kvm_io_bus *bus;
3454 	struct kvm_io_range range;
3455 	int r;
3456 
3457 	range = (struct kvm_io_range) {
3458 		.addr = addr,
3459 		.len = len,
3460 	};
3461 
3462 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3464 	return r < 0 ? r : 0;
3465 }
3466 
3467 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3468 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3469 			    gpa_t addr, int len, const void *val, long cookie)
3470 {
3471 	struct kvm_io_bus *bus;
3472 	struct kvm_io_range range;
3473 
3474 	range = (struct kvm_io_range) {
3475 		.addr = addr,
3476 		.len = len,
3477 	};
3478 
3479 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3480 
3481 	/* First try the device referenced by cookie. */
3482 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3483 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3484 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3485 					val))
3486 			return cookie;
3487 
3488 	/*
3489 	 * cookie contained garbage; fall back to search and return the
3490 	 * correct cookie value.
3491 	 */
3492 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3493 }
3494 
3495 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3496 			     struct kvm_io_range *range, void *val)
3497 {
3498 	int idx;
3499 
3500 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3501 	if (idx < 0)
3502 		return -EOPNOTSUPP;
3503 
3504 	while (idx < bus->dev_count &&
3505 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3506 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3507 				       range->len, val))
3508 			return idx;
3509 		idx++;
3510 	}
3511 
3512 	return -EOPNOTSUPP;
3513 }
3514 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3515 
3516 /* kvm_io_bus_read - called under kvm->slots_lock */
3517 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3518 		    int len, void *val)
3519 {
3520 	struct kvm_io_bus *bus;
3521 	struct kvm_io_range range;
3522 	int r;
3523 
3524 	range = (struct kvm_io_range) {
3525 		.addr = addr,
3526 		.len = len,
3527 	};
3528 
3529 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3530 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3531 	return r < 0 ? r : 0;
3532 }
3533 
3534 
3535 /* Caller must hold slots_lock. */
3536 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3537 			    int len, struct kvm_io_device *dev)
3538 {
3539 	struct kvm_io_bus *new_bus, *bus;
3540 
3541 	bus = kvm->buses[bus_idx];
3542 	/* exclude ioeventfd which is limited by maximum fd */
3543 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3544 		return -ENOSPC;
3545 
3546 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3547 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3548 	if (!new_bus)
3549 		return -ENOMEM;
3550 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3551 	       sizeof(struct kvm_io_range)));
3552 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3553 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3554 	synchronize_srcu_expedited(&kvm->srcu);
3555 	kfree(bus);
3556 
3557 	return 0;
3558 }
3559 
3560 /* Caller must hold slots_lock. */
3561 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3562 			      struct kvm_io_device *dev)
3563 {
3564 	int i, r;
3565 	struct kvm_io_bus *new_bus, *bus;
3566 
3567 	bus = kvm->buses[bus_idx];
3568 	r = -ENOENT;
3569 	for (i = 0; i < bus->dev_count; i++)
3570 		if (bus->range[i].dev == dev) {
3571 			r = 0;
3572 			break;
3573 		}
3574 
3575 	if (r)
3576 		return r;
3577 
3578 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3579 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3580 	if (!new_bus)
3581 		return -ENOMEM;
3582 
3583 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3584 	new_bus->dev_count--;
3585 	memcpy(new_bus->range + i, bus->range + i + 1,
3586 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3587 
3588 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3589 	synchronize_srcu_expedited(&kvm->srcu);
3590 	kfree(bus);
3591 	return r;
3592 }
3593 
3594 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3595 					 gpa_t addr)
3596 {
3597 	struct kvm_io_bus *bus;
3598 	int dev_idx, srcu_idx;
3599 	struct kvm_io_device *iodev = NULL;
3600 
3601 	srcu_idx = srcu_read_lock(&kvm->srcu);
3602 
3603 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3604 
3605 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3606 	if (dev_idx < 0)
3607 		goto out_unlock;
3608 
3609 	iodev = bus->range[dev_idx].dev;
3610 
3611 out_unlock:
3612 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3613 
3614 	return iodev;
3615 }
3616 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3617 
3618 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3619 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3620 			   const char *fmt)
3621 {
3622 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3623 					  inode->i_private;
3624 
3625 	/* The debugfs files are a reference to the kvm struct which
3626 	 * is still valid when kvm_destroy_vm is called.
3627 	 * To avoid the race between open and the removal of the debugfs
3628 	 * directory we test against the users count.
3629 	 */
3630 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3631 		return -ENOENT;
3632 
3633 	if (simple_attr_open(inode, file, get, set, fmt)) {
3634 		kvm_put_kvm(stat_data->kvm);
3635 		return -ENOMEM;
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3642 {
3643 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3644 					  inode->i_private;
3645 
3646 	simple_attr_release(inode, file);
3647 	kvm_put_kvm(stat_data->kvm);
3648 
3649 	return 0;
3650 }
3651 
3652 static int vm_stat_get_per_vm(void *data, u64 *val)
3653 {
3654 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3655 
3656 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3657 
3658 	return 0;
3659 }
3660 
3661 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3662 {
3663 	__simple_attr_check_format("%llu\n", 0ull);
3664 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3665 				NULL, "%llu\n");
3666 }
3667 
3668 static const struct file_operations vm_stat_get_per_vm_fops = {
3669 	.owner   = THIS_MODULE,
3670 	.open    = vm_stat_get_per_vm_open,
3671 	.release = kvm_debugfs_release,
3672 	.read    = simple_attr_read,
3673 	.write   = simple_attr_write,
3674 	.llseek  = generic_file_llseek,
3675 };
3676 
3677 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3678 {
3679 	int i;
3680 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3681 	struct kvm_vcpu *vcpu;
3682 
3683 	*val = 0;
3684 
3685 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3686 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3687 
3688 	return 0;
3689 }
3690 
3691 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3692 {
3693 	__simple_attr_check_format("%llu\n", 0ull);
3694 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3695 				 NULL, "%llu\n");
3696 }
3697 
3698 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3699 	.owner   = THIS_MODULE,
3700 	.open    = vcpu_stat_get_per_vm_open,
3701 	.release = kvm_debugfs_release,
3702 	.read    = simple_attr_read,
3703 	.write   = simple_attr_write,
3704 	.llseek  = generic_file_llseek,
3705 };
3706 
3707 static const struct file_operations *stat_fops_per_vm[] = {
3708 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3709 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3710 };
3711 
3712 static int vm_stat_get(void *_offset, u64 *val)
3713 {
3714 	unsigned offset = (long)_offset;
3715 	struct kvm *kvm;
3716 	struct kvm_stat_data stat_tmp = {.offset = offset};
3717 	u64 tmp_val;
3718 
3719 	*val = 0;
3720 	spin_lock(&kvm_lock);
3721 	list_for_each_entry(kvm, &vm_list, vm_list) {
3722 		stat_tmp.kvm = kvm;
3723 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3724 		*val += tmp_val;
3725 	}
3726 	spin_unlock(&kvm_lock);
3727 	return 0;
3728 }
3729 
3730 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3731 
3732 static int vcpu_stat_get(void *_offset, u64 *val)
3733 {
3734 	unsigned offset = (long)_offset;
3735 	struct kvm *kvm;
3736 	struct kvm_stat_data stat_tmp = {.offset = offset};
3737 	u64 tmp_val;
3738 
3739 	*val = 0;
3740 	spin_lock(&kvm_lock);
3741 	list_for_each_entry(kvm, &vm_list, vm_list) {
3742 		stat_tmp.kvm = kvm;
3743 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3744 		*val += tmp_val;
3745 	}
3746 	spin_unlock(&kvm_lock);
3747 	return 0;
3748 }
3749 
3750 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3751 
3752 static const struct file_operations *stat_fops[] = {
3753 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3754 	[KVM_STAT_VM]   = &vm_stat_fops,
3755 };
3756 
3757 static int kvm_init_debug(void)
3758 {
3759 	int r = -EEXIST;
3760 	struct kvm_stats_debugfs_item *p;
3761 
3762 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3763 	if (kvm_debugfs_dir == NULL)
3764 		goto out;
3765 
3766 	kvm_debugfs_num_entries = 0;
3767 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3768 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3769 					 (void *)(long)p->offset,
3770 					 stat_fops[p->kind]))
3771 			goto out_dir;
3772 	}
3773 
3774 	return 0;
3775 
3776 out_dir:
3777 	debugfs_remove_recursive(kvm_debugfs_dir);
3778 out:
3779 	return r;
3780 }
3781 
3782 static int kvm_suspend(void)
3783 {
3784 	if (kvm_usage_count)
3785 		hardware_disable_nolock(NULL);
3786 	return 0;
3787 }
3788 
3789 static void kvm_resume(void)
3790 {
3791 	if (kvm_usage_count) {
3792 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3793 		hardware_enable_nolock(NULL);
3794 	}
3795 }
3796 
3797 static struct syscore_ops kvm_syscore_ops = {
3798 	.suspend = kvm_suspend,
3799 	.resume = kvm_resume,
3800 };
3801 
3802 static inline
3803 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3804 {
3805 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3806 }
3807 
3808 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3809 {
3810 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3811 
3812 	if (vcpu->preempted)
3813 		vcpu->preempted = false;
3814 
3815 	kvm_arch_sched_in(vcpu, cpu);
3816 
3817 	kvm_arch_vcpu_load(vcpu, cpu);
3818 }
3819 
3820 static void kvm_sched_out(struct preempt_notifier *pn,
3821 			  struct task_struct *next)
3822 {
3823 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3824 
3825 	if (current->state == TASK_RUNNING)
3826 		vcpu->preempted = true;
3827 	kvm_arch_vcpu_put(vcpu);
3828 }
3829 
3830 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3831 		  struct module *module)
3832 {
3833 	int r;
3834 	int cpu;
3835 
3836 	r = kvm_arch_init(opaque);
3837 	if (r)
3838 		goto out_fail;
3839 
3840 	/*
3841 	 * kvm_arch_init makes sure there's at most one caller
3842 	 * for architectures that support multiple implementations,
3843 	 * like intel and amd on x86.
3844 	 */
3845 
3846 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3847 		r = -ENOMEM;
3848 		goto out_free_0;
3849 	}
3850 
3851 	r = kvm_arch_hardware_setup();
3852 	if (r < 0)
3853 		goto out_free_0a;
3854 
3855 	for_each_online_cpu(cpu) {
3856 		smp_call_function_single(cpu,
3857 				kvm_arch_check_processor_compat,
3858 				&r, 1);
3859 		if (r < 0)
3860 			goto out_free_1;
3861 	}
3862 
3863 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3864 				      kvm_starting_cpu, kvm_dying_cpu);
3865 	if (r)
3866 		goto out_free_2;
3867 	register_reboot_notifier(&kvm_reboot_notifier);
3868 
3869 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3870 	if (!vcpu_align)
3871 		vcpu_align = __alignof__(struct kvm_vcpu);
3872 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3873 					   0, NULL);
3874 	if (!kvm_vcpu_cache) {
3875 		r = -ENOMEM;
3876 		goto out_free_3;
3877 	}
3878 
3879 	r = kvm_async_pf_init();
3880 	if (r)
3881 		goto out_free;
3882 
3883 	kvm_chardev_ops.owner = module;
3884 	kvm_vm_fops.owner = module;
3885 	kvm_vcpu_fops.owner = module;
3886 
3887 	r = misc_register(&kvm_dev);
3888 	if (r) {
3889 		pr_err("kvm: misc device register failed\n");
3890 		goto out_unreg;
3891 	}
3892 
3893 	register_syscore_ops(&kvm_syscore_ops);
3894 
3895 	kvm_preempt_ops.sched_in = kvm_sched_in;
3896 	kvm_preempt_ops.sched_out = kvm_sched_out;
3897 
3898 	r = kvm_init_debug();
3899 	if (r) {
3900 		pr_err("kvm: create debugfs files failed\n");
3901 		goto out_undebugfs;
3902 	}
3903 
3904 	r = kvm_vfio_ops_init();
3905 	WARN_ON(r);
3906 
3907 	return 0;
3908 
3909 out_undebugfs:
3910 	unregister_syscore_ops(&kvm_syscore_ops);
3911 	misc_deregister(&kvm_dev);
3912 out_unreg:
3913 	kvm_async_pf_deinit();
3914 out_free:
3915 	kmem_cache_destroy(kvm_vcpu_cache);
3916 out_free_3:
3917 	unregister_reboot_notifier(&kvm_reboot_notifier);
3918 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3919 out_free_2:
3920 out_free_1:
3921 	kvm_arch_hardware_unsetup();
3922 out_free_0a:
3923 	free_cpumask_var(cpus_hardware_enabled);
3924 out_free_0:
3925 	kvm_irqfd_exit();
3926 	kvm_arch_exit();
3927 out_fail:
3928 	return r;
3929 }
3930 EXPORT_SYMBOL_GPL(kvm_init);
3931 
3932 void kvm_exit(void)
3933 {
3934 	debugfs_remove_recursive(kvm_debugfs_dir);
3935 	misc_deregister(&kvm_dev);
3936 	kmem_cache_destroy(kvm_vcpu_cache);
3937 	kvm_async_pf_deinit();
3938 	unregister_syscore_ops(&kvm_syscore_ops);
3939 	unregister_reboot_notifier(&kvm_reboot_notifier);
3940 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3941 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3942 	kvm_arch_hardware_unsetup();
3943 	kvm_arch_exit();
3944 	kvm_irqfd_exit();
3945 	free_cpumask_var(cpus_hardware_enabled);
3946 	kvm_vfio_ops_exit();
3947 }
3948 EXPORT_SYMBOL_GPL(kvm_exit);
3949