1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 76 /* Default doubles per-vcpu halt_poll_ns. */ 77 static unsigned int halt_poll_ns_grow = 2; 78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 79 80 /* Default resets per-vcpu halt_poll_ns . */ 81 static unsigned int halt_poll_ns_shrink; 82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 83 84 /* 85 * Ordering of locks: 86 * 87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 88 */ 89 90 DEFINE_SPINLOCK(kvm_lock); 91 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 92 LIST_HEAD(vm_list); 93 94 static cpumask_var_t cpus_hardware_enabled; 95 static int kvm_usage_count; 96 static atomic_t hardware_enable_failed; 97 98 struct kmem_cache *kvm_vcpu_cache; 99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 100 101 static __read_mostly struct preempt_ops kvm_preempt_ops; 102 103 struct dentry *kvm_debugfs_dir; 104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 105 106 static int kvm_debugfs_num_entries; 107 static const struct file_operations *stat_fops_per_vm[]; 108 109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 110 unsigned long arg); 111 #ifdef CONFIG_KVM_COMPAT 112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #endif 115 static int hardware_enable_all(void); 116 static void hardware_disable_all(void); 117 118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 119 120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 122 123 __visible bool kvm_rebooting; 124 EXPORT_SYMBOL_GPL(kvm_rebooting); 125 126 static bool largepages_enabled = true; 127 128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 129 { 130 if (pfn_valid(pfn)) 131 return PageReserved(pfn_to_page(pfn)); 132 133 return true; 134 } 135 136 /* 137 * Switches to specified vcpu, until a matching vcpu_put() 138 */ 139 int vcpu_load(struct kvm_vcpu *vcpu) 140 { 141 int cpu; 142 143 if (mutex_lock_killable(&vcpu->mutex)) 144 return -EINTR; 145 cpu = get_cpu(); 146 preempt_notifier_register(&vcpu->preempt_notifier); 147 kvm_arch_vcpu_load(vcpu, cpu); 148 put_cpu(); 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(vcpu_load); 152 153 void vcpu_put(struct kvm_vcpu *vcpu) 154 { 155 preempt_disable(); 156 kvm_arch_vcpu_put(vcpu); 157 preempt_notifier_unregister(&vcpu->preempt_notifier); 158 preempt_enable(); 159 mutex_unlock(&vcpu->mutex); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_put); 162 163 static void ack_flush(void *_completed) 164 { 165 } 166 167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 168 { 169 int i, cpu, me; 170 cpumask_var_t cpus; 171 bool called = true; 172 struct kvm_vcpu *vcpu; 173 174 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 175 176 me = get_cpu(); 177 kvm_for_each_vcpu(i, vcpu, kvm) { 178 kvm_make_request(req, vcpu); 179 cpu = vcpu->cpu; 180 181 /* Set ->requests bit before we read ->mode. */ 182 smp_mb__after_atomic(); 183 184 if (cpus != NULL && cpu != -1 && cpu != me && 185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 186 cpumask_set_cpu(cpu, cpus); 187 } 188 if (unlikely(cpus == NULL)) 189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 190 else if (!cpumask_empty(cpus)) 191 smp_call_function_many(cpus, ack_flush, NULL, 1); 192 else 193 called = false; 194 put_cpu(); 195 free_cpumask_var(cpus); 196 return called; 197 } 198 199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 /* 203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 204 * kvm_make_all_cpus_request. 205 */ 206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 207 208 /* 209 * We want to publish modifications to the page tables before reading 210 * mode. Pairs with a memory barrier in arch-specific code. 211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 212 * and smp_mb in walk_shadow_page_lockless_begin/end. 213 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 214 * 215 * There is already an smp_mb__after_atomic() before 216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 217 * barrier here. 218 */ 219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 220 ++kvm->stat.remote_tlb_flush; 221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 222 } 223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 224 #endif 225 226 void kvm_reload_remote_mmus(struct kvm *kvm) 227 { 228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 229 } 230 231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 232 { 233 struct page *page; 234 int r; 235 236 mutex_init(&vcpu->mutex); 237 vcpu->cpu = -1; 238 vcpu->kvm = kvm; 239 vcpu->vcpu_id = id; 240 vcpu->pid = NULL; 241 init_swait_queue_head(&vcpu->wq); 242 kvm_async_pf_vcpu_init(vcpu); 243 244 vcpu->pre_pcpu = -1; 245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 246 247 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 248 if (!page) { 249 r = -ENOMEM; 250 goto fail; 251 } 252 vcpu->run = page_address(page); 253 254 kvm_vcpu_set_in_spin_loop(vcpu, false); 255 kvm_vcpu_set_dy_eligible(vcpu, false); 256 vcpu->preempted = false; 257 258 r = kvm_arch_vcpu_init(vcpu); 259 if (r < 0) 260 goto fail_free_run; 261 return 0; 262 263 fail_free_run: 264 free_page((unsigned long)vcpu->run); 265 fail: 266 return r; 267 } 268 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 269 270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 271 { 272 put_pid(vcpu->pid); 273 kvm_arch_vcpu_uninit(vcpu); 274 free_page((unsigned long)vcpu->run); 275 } 276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 277 278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 280 { 281 return container_of(mn, struct kvm, mmu_notifier); 282 } 283 284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 285 struct mm_struct *mm, 286 unsigned long address) 287 { 288 struct kvm *kvm = mmu_notifier_to_kvm(mn); 289 int need_tlb_flush, idx; 290 291 /* 292 * When ->invalidate_page runs, the linux pte has been zapped 293 * already but the page is still allocated until 294 * ->invalidate_page returns. So if we increase the sequence 295 * here the kvm page fault will notice if the spte can't be 296 * established because the page is going to be freed. If 297 * instead the kvm page fault establishes the spte before 298 * ->invalidate_page runs, kvm_unmap_hva will release it 299 * before returning. 300 * 301 * The sequence increase only need to be seen at spin_unlock 302 * time, and not at spin_lock time. 303 * 304 * Increasing the sequence after the spin_unlock would be 305 * unsafe because the kvm page fault could then establish the 306 * pte after kvm_unmap_hva returned, without noticing the page 307 * is going to be freed. 308 */ 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 312 kvm->mmu_notifier_seq++; 313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 314 /* we've to flush the tlb before the pages can be freed */ 315 if (need_tlb_flush) 316 kvm_flush_remote_tlbs(kvm); 317 318 spin_unlock(&kvm->mmu_lock); 319 320 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 321 322 srcu_read_unlock(&kvm->srcu, idx); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_page = kvm_mmu_notifier_invalidate_page, 473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 476 .clear_young = kvm_mmu_notifier_clear_young, 477 .test_young = kvm_mmu_notifier_test_young, 478 .change_pte = kvm_mmu_notifier_change_pte, 479 .release = kvm_mmu_notifier_release, 480 }; 481 482 static int kvm_init_mmu_notifier(struct kvm *kvm) 483 { 484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 486 } 487 488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 489 490 static int kvm_init_mmu_notifier(struct kvm *kvm) 491 { 492 return 0; 493 } 494 495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 496 497 static struct kvm_memslots *kvm_alloc_memslots(void) 498 { 499 int i; 500 struct kvm_memslots *slots; 501 502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 503 if (!slots) 504 return NULL; 505 506 /* 507 * Init kvm generation close to the maximum to easily test the 508 * code of handling generation number wrap-around. 509 */ 510 slots->generation = -150; 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 if (kvm->debugfs_stat_data) { 563 for (i = 0; i < kvm_debugfs_num_entries; i++) 564 kfree(kvm->debugfs_stat_data[i]); 565 kfree(kvm->debugfs_stat_data); 566 } 567 } 568 569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 570 { 571 char dir_name[ITOA_MAX_LEN * 2]; 572 struct kvm_stat_data *stat_data; 573 struct kvm_stats_debugfs_item *p; 574 575 if (!debugfs_initialized()) 576 return 0; 577 578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 579 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 580 kvm_debugfs_dir); 581 if (!kvm->debugfs_dentry) 582 return -ENOMEM; 583 584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 585 sizeof(*kvm->debugfs_stat_data), 586 GFP_KERNEL); 587 if (!kvm->debugfs_stat_data) 588 return -ENOMEM; 589 590 for (p = debugfs_entries; p->name; p++) { 591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 592 if (!stat_data) 593 return -ENOMEM; 594 595 stat_data->kvm = kvm; 596 stat_data->offset = p->offset; 597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 598 if (!debugfs_create_file(p->name, 0444, 599 kvm->debugfs_dentry, 600 stat_data, 601 stat_fops_per_vm[p->kind])) 602 return -ENOMEM; 603 } 604 return 0; 605 } 606 607 static struct kvm *kvm_create_vm(unsigned long type) 608 { 609 int r, i; 610 struct kvm *kvm = kvm_arch_alloc_vm(); 611 612 if (!kvm) 613 return ERR_PTR(-ENOMEM); 614 615 spin_lock_init(&kvm->mmu_lock); 616 atomic_inc(¤t->mm->mm_count); 617 kvm->mm = current->mm; 618 kvm_eventfd_init(kvm); 619 mutex_init(&kvm->lock); 620 mutex_init(&kvm->irq_lock); 621 mutex_init(&kvm->slots_lock); 622 atomic_set(&kvm->users_count, 1); 623 INIT_LIST_HEAD(&kvm->devices); 624 625 r = kvm_arch_init_vm(kvm, type); 626 if (r) 627 goto out_err_no_disable; 628 629 r = hardware_enable_all(); 630 if (r) 631 goto out_err_no_disable; 632 633 #ifdef CONFIG_HAVE_KVM_IRQFD 634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 635 #endif 636 637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 638 639 r = -ENOMEM; 640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 641 kvm->memslots[i] = kvm_alloc_memslots(); 642 if (!kvm->memslots[i]) 643 goto out_err_no_srcu; 644 } 645 646 if (init_srcu_struct(&kvm->srcu)) 647 goto out_err_no_srcu; 648 if (init_srcu_struct(&kvm->irq_srcu)) 649 goto out_err_no_irq_srcu; 650 for (i = 0; i < KVM_NR_BUSES; i++) { 651 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 652 GFP_KERNEL); 653 if (!kvm->buses[i]) 654 goto out_err; 655 } 656 657 r = kvm_init_mmu_notifier(kvm); 658 if (r) 659 goto out_err; 660 661 spin_lock(&kvm_lock); 662 list_add(&kvm->vm_list, &vm_list); 663 spin_unlock(&kvm_lock); 664 665 preempt_notifier_inc(); 666 667 return kvm; 668 669 out_err: 670 cleanup_srcu_struct(&kvm->irq_srcu); 671 out_err_no_irq_srcu: 672 cleanup_srcu_struct(&kvm->srcu); 673 out_err_no_srcu: 674 hardware_disable_all(); 675 out_err_no_disable: 676 for (i = 0; i < KVM_NR_BUSES; i++) 677 kfree(kvm->buses[i]); 678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 679 kvm_free_memslots(kvm, kvm->memslots[i]); 680 kvm_arch_free_vm(kvm); 681 mmdrop(current->mm); 682 return ERR_PTR(r); 683 } 684 685 /* 686 * Avoid using vmalloc for a small buffer. 687 * Should not be used when the size is statically known. 688 */ 689 void *kvm_kvzalloc(unsigned long size) 690 { 691 if (size > PAGE_SIZE) 692 return vzalloc(size); 693 else 694 return kzalloc(size, GFP_KERNEL); 695 } 696 697 static void kvm_destroy_devices(struct kvm *kvm) 698 { 699 struct kvm_device *dev, *tmp; 700 701 /* 702 * We do not need to take the kvm->lock here, because nobody else 703 * has a reference to the struct kvm at this point and therefore 704 * cannot access the devices list anyhow. 705 */ 706 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 707 list_del(&dev->vm_node); 708 dev->ops->destroy(dev); 709 } 710 } 711 712 static void kvm_destroy_vm(struct kvm *kvm) 713 { 714 int i; 715 struct mm_struct *mm = kvm->mm; 716 717 kvm_destroy_vm_debugfs(kvm); 718 kvm_arch_sync_events(kvm); 719 spin_lock(&kvm_lock); 720 list_del(&kvm->vm_list); 721 spin_unlock(&kvm_lock); 722 kvm_free_irq_routing(kvm); 723 for (i = 0; i < KVM_NR_BUSES; i++) 724 kvm_io_bus_destroy(kvm->buses[i]); 725 kvm_coalesced_mmio_free(kvm); 726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 727 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 728 #else 729 kvm_arch_flush_shadow_all(kvm); 730 #endif 731 kvm_arch_destroy_vm(kvm); 732 kvm_destroy_devices(kvm); 733 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 734 kvm_free_memslots(kvm, kvm->memslots[i]); 735 cleanup_srcu_struct(&kvm->irq_srcu); 736 cleanup_srcu_struct(&kvm->srcu); 737 kvm_arch_free_vm(kvm); 738 preempt_notifier_dec(); 739 hardware_disable_all(); 740 mmdrop(mm); 741 } 742 743 void kvm_get_kvm(struct kvm *kvm) 744 { 745 atomic_inc(&kvm->users_count); 746 } 747 EXPORT_SYMBOL_GPL(kvm_get_kvm); 748 749 void kvm_put_kvm(struct kvm *kvm) 750 { 751 if (atomic_dec_and_test(&kvm->users_count)) 752 kvm_destroy_vm(kvm); 753 } 754 EXPORT_SYMBOL_GPL(kvm_put_kvm); 755 756 757 static int kvm_vm_release(struct inode *inode, struct file *filp) 758 { 759 struct kvm *kvm = filp->private_data; 760 761 kvm_irqfd_release(kvm); 762 763 kvm_put_kvm(kvm); 764 return 0; 765 } 766 767 /* 768 * Allocation size is twice as large as the actual dirty bitmap size. 769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 770 */ 771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 772 { 773 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 774 775 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 776 if (!memslot->dirty_bitmap) 777 return -ENOMEM; 778 779 return 0; 780 } 781 782 /* 783 * Insert memslot and re-sort memslots based on their GFN, 784 * so binary search could be used to lookup GFN. 785 * Sorting algorithm takes advantage of having initially 786 * sorted array and known changed memslot position. 787 */ 788 static void update_memslots(struct kvm_memslots *slots, 789 struct kvm_memory_slot *new) 790 { 791 int id = new->id; 792 int i = slots->id_to_index[id]; 793 struct kvm_memory_slot *mslots = slots->memslots; 794 795 WARN_ON(mslots[i].id != id); 796 if (!new->npages) { 797 WARN_ON(!mslots[i].npages); 798 if (mslots[i].npages) 799 slots->used_slots--; 800 } else { 801 if (!mslots[i].npages) 802 slots->used_slots++; 803 } 804 805 while (i < KVM_MEM_SLOTS_NUM - 1 && 806 new->base_gfn <= mslots[i + 1].base_gfn) { 807 if (!mslots[i + 1].npages) 808 break; 809 mslots[i] = mslots[i + 1]; 810 slots->id_to_index[mslots[i].id] = i; 811 i++; 812 } 813 814 /* 815 * The ">=" is needed when creating a slot with base_gfn == 0, 816 * so that it moves before all those with base_gfn == npages == 0. 817 * 818 * On the other hand, if new->npages is zero, the above loop has 819 * already left i pointing to the beginning of the empty part of 820 * mslots, and the ">=" would move the hole backwards in this 821 * case---which is wrong. So skip the loop when deleting a slot. 822 */ 823 if (new->npages) { 824 while (i > 0 && 825 new->base_gfn >= mslots[i - 1].base_gfn) { 826 mslots[i] = mslots[i - 1]; 827 slots->id_to_index[mslots[i].id] = i; 828 i--; 829 } 830 } else 831 WARN_ON_ONCE(i != slots->used_slots); 832 833 mslots[i] = *new; 834 slots->id_to_index[mslots[i].id] = i; 835 } 836 837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 838 { 839 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 840 841 #ifdef __KVM_HAVE_READONLY_MEM 842 valid_flags |= KVM_MEM_READONLY; 843 #endif 844 845 if (mem->flags & ~valid_flags) 846 return -EINVAL; 847 848 return 0; 849 } 850 851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 852 int as_id, struct kvm_memslots *slots) 853 { 854 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 855 856 /* 857 * Set the low bit in the generation, which disables SPTE caching 858 * until the end of synchronize_srcu_expedited. 859 */ 860 WARN_ON(old_memslots->generation & 1); 861 slots->generation = old_memslots->generation + 1; 862 863 rcu_assign_pointer(kvm->memslots[as_id], slots); 864 synchronize_srcu_expedited(&kvm->srcu); 865 866 /* 867 * Increment the new memslot generation a second time. This prevents 868 * vm exits that race with memslot updates from caching a memslot 869 * generation that will (potentially) be valid forever. 870 */ 871 slots->generation++; 872 873 kvm_arch_memslots_updated(kvm, slots); 874 875 return old_memslots; 876 } 877 878 /* 879 * Allocate some memory and give it an address in the guest physical address 880 * space. 881 * 882 * Discontiguous memory is allowed, mostly for framebuffers. 883 * 884 * Must be called holding kvm->slots_lock for write. 885 */ 886 int __kvm_set_memory_region(struct kvm *kvm, 887 const struct kvm_userspace_memory_region *mem) 888 { 889 int r; 890 gfn_t base_gfn; 891 unsigned long npages; 892 struct kvm_memory_slot *slot; 893 struct kvm_memory_slot old, new; 894 struct kvm_memslots *slots = NULL, *old_memslots; 895 int as_id, id; 896 enum kvm_mr_change change; 897 898 r = check_memory_region_flags(mem); 899 if (r) 900 goto out; 901 902 r = -EINVAL; 903 as_id = mem->slot >> 16; 904 id = (u16)mem->slot; 905 906 /* General sanity checks */ 907 if (mem->memory_size & (PAGE_SIZE - 1)) 908 goto out; 909 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 910 goto out; 911 /* We can read the guest memory with __xxx_user() later on. */ 912 if ((id < KVM_USER_MEM_SLOTS) && 913 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 914 !access_ok(VERIFY_WRITE, 915 (void __user *)(unsigned long)mem->userspace_addr, 916 mem->memory_size))) 917 goto out; 918 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 919 goto out; 920 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 921 goto out; 922 923 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 924 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 925 npages = mem->memory_size >> PAGE_SHIFT; 926 927 if (npages > KVM_MEM_MAX_NR_PAGES) 928 goto out; 929 930 new = old = *slot; 931 932 new.id = id; 933 new.base_gfn = base_gfn; 934 new.npages = npages; 935 new.flags = mem->flags; 936 937 if (npages) { 938 if (!old.npages) 939 change = KVM_MR_CREATE; 940 else { /* Modify an existing slot. */ 941 if ((mem->userspace_addr != old.userspace_addr) || 942 (npages != old.npages) || 943 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 944 goto out; 945 946 if (base_gfn != old.base_gfn) 947 change = KVM_MR_MOVE; 948 else if (new.flags != old.flags) 949 change = KVM_MR_FLAGS_ONLY; 950 else { /* Nothing to change. */ 951 r = 0; 952 goto out; 953 } 954 } 955 } else { 956 if (!old.npages) 957 goto out; 958 959 change = KVM_MR_DELETE; 960 new.base_gfn = 0; 961 new.flags = 0; 962 } 963 964 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 965 /* Check for overlaps */ 966 r = -EEXIST; 967 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 968 if ((slot->id >= KVM_USER_MEM_SLOTS) || 969 (slot->id == id)) 970 continue; 971 if (!((base_gfn + npages <= slot->base_gfn) || 972 (base_gfn >= slot->base_gfn + slot->npages))) 973 goto out; 974 } 975 } 976 977 /* Free page dirty bitmap if unneeded */ 978 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 979 new.dirty_bitmap = NULL; 980 981 r = -ENOMEM; 982 if (change == KVM_MR_CREATE) { 983 new.userspace_addr = mem->userspace_addr; 984 985 if (kvm_arch_create_memslot(kvm, &new, npages)) 986 goto out_free; 987 } 988 989 /* Allocate page dirty bitmap if needed */ 990 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 991 if (kvm_create_dirty_bitmap(&new) < 0) 992 goto out_free; 993 } 994 995 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 996 if (!slots) 997 goto out_free; 998 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 999 1000 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1001 slot = id_to_memslot(slots, id); 1002 slot->flags |= KVM_MEMSLOT_INVALID; 1003 1004 old_memslots = install_new_memslots(kvm, as_id, slots); 1005 1006 /* slot was deleted or moved, clear iommu mapping */ 1007 kvm_iommu_unmap_pages(kvm, &old); 1008 /* From this point no new shadow pages pointing to a deleted, 1009 * or moved, memslot will be created. 1010 * 1011 * validation of sp->gfn happens in: 1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1013 * - kvm_is_visible_gfn (mmu_check_roots) 1014 */ 1015 kvm_arch_flush_shadow_memslot(kvm, slot); 1016 1017 /* 1018 * We can re-use the old_memslots from above, the only difference 1019 * from the currently installed memslots is the invalid flag. This 1020 * will get overwritten by update_memslots anyway. 1021 */ 1022 slots = old_memslots; 1023 } 1024 1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1026 if (r) 1027 goto out_slots; 1028 1029 /* actual memory is freed via old in kvm_free_memslot below */ 1030 if (change == KVM_MR_DELETE) { 1031 new.dirty_bitmap = NULL; 1032 memset(&new.arch, 0, sizeof(new.arch)); 1033 } 1034 1035 update_memslots(slots, &new); 1036 old_memslots = install_new_memslots(kvm, as_id, slots); 1037 1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1039 1040 kvm_free_memslot(kvm, &old, &new); 1041 kvfree(old_memslots); 1042 1043 /* 1044 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1045 * un-mapped and re-mapped if their base changes. Since base change 1046 * unmapping is handled above with slot deletion, mapping alone is 1047 * needed here. Anything else the iommu might care about for existing 1048 * slots (size changes, userspace addr changes and read-only flag 1049 * changes) is disallowed above, so any other attribute changes getting 1050 * here can be skipped. 1051 */ 1052 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1053 r = kvm_iommu_map_pages(kvm, &new); 1054 return r; 1055 } 1056 1057 return 0; 1058 1059 out_slots: 1060 kvfree(slots); 1061 out_free: 1062 kvm_free_memslot(kvm, &new, &old); 1063 out: 1064 return r; 1065 } 1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1067 1068 int kvm_set_memory_region(struct kvm *kvm, 1069 const struct kvm_userspace_memory_region *mem) 1070 { 1071 int r; 1072 1073 mutex_lock(&kvm->slots_lock); 1074 r = __kvm_set_memory_region(kvm, mem); 1075 mutex_unlock(&kvm->slots_lock); 1076 return r; 1077 } 1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1079 1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1081 struct kvm_userspace_memory_region *mem) 1082 { 1083 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1084 return -EINVAL; 1085 1086 return kvm_set_memory_region(kvm, mem); 1087 } 1088 1089 int kvm_get_dirty_log(struct kvm *kvm, 1090 struct kvm_dirty_log *log, int *is_dirty) 1091 { 1092 struct kvm_memslots *slots; 1093 struct kvm_memory_slot *memslot; 1094 int r, i, as_id, id; 1095 unsigned long n; 1096 unsigned long any = 0; 1097 1098 r = -EINVAL; 1099 as_id = log->slot >> 16; 1100 id = (u16)log->slot; 1101 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1102 goto out; 1103 1104 slots = __kvm_memslots(kvm, as_id); 1105 memslot = id_to_memslot(slots, id); 1106 r = -ENOENT; 1107 if (!memslot->dirty_bitmap) 1108 goto out; 1109 1110 n = kvm_dirty_bitmap_bytes(memslot); 1111 1112 for (i = 0; !any && i < n/sizeof(long); ++i) 1113 any = memslot->dirty_bitmap[i]; 1114 1115 r = -EFAULT; 1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1117 goto out; 1118 1119 if (any) 1120 *is_dirty = 1; 1121 1122 r = 0; 1123 out: 1124 return r; 1125 } 1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1127 1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1129 /** 1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1131 * are dirty write protect them for next write. 1132 * @kvm: pointer to kvm instance 1133 * @log: slot id and address to which we copy the log 1134 * @is_dirty: flag set if any page is dirty 1135 * 1136 * We need to keep it in mind that VCPU threads can write to the bitmap 1137 * concurrently. So, to avoid losing track of dirty pages we keep the 1138 * following order: 1139 * 1140 * 1. Take a snapshot of the bit and clear it if needed. 1141 * 2. Write protect the corresponding page. 1142 * 3. Copy the snapshot to the userspace. 1143 * 4. Upon return caller flushes TLB's if needed. 1144 * 1145 * Between 2 and 4, the guest may write to the page using the remaining TLB 1146 * entry. This is not a problem because the page is reported dirty using 1147 * the snapshot taken before and step 4 ensures that writes done after 1148 * exiting to userspace will be logged for the next call. 1149 * 1150 */ 1151 int kvm_get_dirty_log_protect(struct kvm *kvm, 1152 struct kvm_dirty_log *log, bool *is_dirty) 1153 { 1154 struct kvm_memslots *slots; 1155 struct kvm_memory_slot *memslot; 1156 int r, i, as_id, id; 1157 unsigned long n; 1158 unsigned long *dirty_bitmap; 1159 unsigned long *dirty_bitmap_buffer; 1160 1161 r = -EINVAL; 1162 as_id = log->slot >> 16; 1163 id = (u16)log->slot; 1164 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1165 goto out; 1166 1167 slots = __kvm_memslots(kvm, as_id); 1168 memslot = id_to_memslot(slots, id); 1169 1170 dirty_bitmap = memslot->dirty_bitmap; 1171 r = -ENOENT; 1172 if (!dirty_bitmap) 1173 goto out; 1174 1175 n = kvm_dirty_bitmap_bytes(memslot); 1176 1177 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1178 memset(dirty_bitmap_buffer, 0, n); 1179 1180 spin_lock(&kvm->mmu_lock); 1181 *is_dirty = false; 1182 for (i = 0; i < n / sizeof(long); i++) { 1183 unsigned long mask; 1184 gfn_t offset; 1185 1186 if (!dirty_bitmap[i]) 1187 continue; 1188 1189 *is_dirty = true; 1190 1191 mask = xchg(&dirty_bitmap[i], 0); 1192 dirty_bitmap_buffer[i] = mask; 1193 1194 if (mask) { 1195 offset = i * BITS_PER_LONG; 1196 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1197 offset, mask); 1198 } 1199 } 1200 1201 spin_unlock(&kvm->mmu_lock); 1202 1203 r = -EFAULT; 1204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1205 goto out; 1206 1207 r = 0; 1208 out: 1209 return r; 1210 } 1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1212 #endif 1213 1214 bool kvm_largepages_enabled(void) 1215 { 1216 return largepages_enabled; 1217 } 1218 1219 void kvm_disable_largepages(void) 1220 { 1221 largepages_enabled = false; 1222 } 1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1224 1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1226 { 1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1228 } 1229 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1230 1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1232 { 1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1234 } 1235 1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1237 { 1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1239 1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1241 memslot->flags & KVM_MEMSLOT_INVALID) 1242 return false; 1243 1244 return true; 1245 } 1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1247 1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1249 { 1250 struct vm_area_struct *vma; 1251 unsigned long addr, size; 1252 1253 size = PAGE_SIZE; 1254 1255 addr = gfn_to_hva(kvm, gfn); 1256 if (kvm_is_error_hva(addr)) 1257 return PAGE_SIZE; 1258 1259 down_read(¤t->mm->mmap_sem); 1260 vma = find_vma(current->mm, addr); 1261 if (!vma) 1262 goto out; 1263 1264 size = vma_kernel_pagesize(vma); 1265 1266 out: 1267 up_read(¤t->mm->mmap_sem); 1268 1269 return size; 1270 } 1271 1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1273 { 1274 return slot->flags & KVM_MEM_READONLY; 1275 } 1276 1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1278 gfn_t *nr_pages, bool write) 1279 { 1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1281 return KVM_HVA_ERR_BAD; 1282 1283 if (memslot_is_readonly(slot) && write) 1284 return KVM_HVA_ERR_RO_BAD; 1285 1286 if (nr_pages) 1287 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1288 1289 return __gfn_to_hva_memslot(slot, gfn); 1290 } 1291 1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1293 gfn_t *nr_pages) 1294 { 1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1296 } 1297 1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1299 gfn_t gfn) 1300 { 1301 return gfn_to_hva_many(slot, gfn, NULL); 1302 } 1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1304 1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1306 { 1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_hva); 1310 1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1312 { 1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1314 } 1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1316 1317 /* 1318 * If writable is set to false, the hva returned by this function is only 1319 * allowed to be read. 1320 */ 1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1322 gfn_t gfn, bool *writable) 1323 { 1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1325 1326 if (!kvm_is_error_hva(hva) && writable) 1327 *writable = !memslot_is_readonly(slot); 1328 1329 return hva; 1330 } 1331 1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1333 { 1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1335 1336 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1337 } 1338 1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1340 { 1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1342 1343 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1344 } 1345 1346 static int get_user_page_nowait(unsigned long start, int write, 1347 struct page **page) 1348 { 1349 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1350 1351 if (write) 1352 flags |= FOLL_WRITE; 1353 1354 return __get_user_pages(current, current->mm, start, 1, flags, page, 1355 NULL, NULL); 1356 } 1357 1358 static inline int check_user_page_hwpoison(unsigned long addr) 1359 { 1360 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1361 1362 rc = __get_user_pages(current, current->mm, addr, 1, 1363 flags, NULL, NULL, NULL); 1364 return rc == -EHWPOISON; 1365 } 1366 1367 /* 1368 * The atomic path to get the writable pfn which will be stored in @pfn, 1369 * true indicates success, otherwise false is returned. 1370 */ 1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1372 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1373 { 1374 struct page *page[1]; 1375 int npages; 1376 1377 if (!(async || atomic)) 1378 return false; 1379 1380 /* 1381 * Fast pin a writable pfn only if it is a write fault request 1382 * or the caller allows to map a writable pfn for a read fault 1383 * request. 1384 */ 1385 if (!(write_fault || writable)) 1386 return false; 1387 1388 npages = __get_user_pages_fast(addr, 1, 1, page); 1389 if (npages == 1) { 1390 *pfn = page_to_pfn(page[0]); 1391 1392 if (writable) 1393 *writable = true; 1394 return true; 1395 } 1396 1397 return false; 1398 } 1399 1400 /* 1401 * The slow path to get the pfn of the specified host virtual address, 1402 * 1 indicates success, -errno is returned if error is detected. 1403 */ 1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1405 bool *writable, kvm_pfn_t *pfn) 1406 { 1407 struct page *page[1]; 1408 int npages = 0; 1409 1410 might_sleep(); 1411 1412 if (writable) 1413 *writable = write_fault; 1414 1415 if (async) { 1416 down_read(¤t->mm->mmap_sem); 1417 npages = get_user_page_nowait(addr, write_fault, page); 1418 up_read(¤t->mm->mmap_sem); 1419 } else 1420 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1421 write_fault, 0, page, 1422 FOLL_TOUCH|FOLL_HWPOISON); 1423 if (npages != 1) 1424 return npages; 1425 1426 /* map read fault as writable if possible */ 1427 if (unlikely(!write_fault) && writable) { 1428 struct page *wpage[1]; 1429 1430 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1431 if (npages == 1) { 1432 *writable = true; 1433 put_page(page[0]); 1434 page[0] = wpage[0]; 1435 } 1436 1437 npages = 1; 1438 } 1439 *pfn = page_to_pfn(page[0]); 1440 return npages; 1441 } 1442 1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1444 { 1445 if (unlikely(!(vma->vm_flags & VM_READ))) 1446 return false; 1447 1448 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1449 return false; 1450 1451 return true; 1452 } 1453 1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1455 unsigned long addr, bool *async, 1456 bool write_fault, kvm_pfn_t *p_pfn) 1457 { 1458 unsigned long pfn; 1459 int r; 1460 1461 r = follow_pfn(vma, addr, &pfn); 1462 if (r) { 1463 /* 1464 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1465 * not call the fault handler, so do it here. 1466 */ 1467 bool unlocked = false; 1468 r = fixup_user_fault(current, current->mm, addr, 1469 (write_fault ? FAULT_FLAG_WRITE : 0), 1470 &unlocked); 1471 if (unlocked) 1472 return -EAGAIN; 1473 if (r) 1474 return r; 1475 1476 r = follow_pfn(vma, addr, &pfn); 1477 if (r) 1478 return r; 1479 1480 } 1481 1482 1483 /* 1484 * Get a reference here because callers of *hva_to_pfn* and 1485 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1486 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1487 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1488 * simply do nothing for reserved pfns. 1489 * 1490 * Whoever called remap_pfn_range is also going to call e.g. 1491 * unmap_mapping_range before the underlying pages are freed, 1492 * causing a call to our MMU notifier. 1493 */ 1494 kvm_get_pfn(pfn); 1495 1496 *p_pfn = pfn; 1497 return 0; 1498 } 1499 1500 /* 1501 * Pin guest page in memory and return its pfn. 1502 * @addr: host virtual address which maps memory to the guest 1503 * @atomic: whether this function can sleep 1504 * @async: whether this function need to wait IO complete if the 1505 * host page is not in the memory 1506 * @write_fault: whether we should get a writable host page 1507 * @writable: whether it allows to map a writable host page for !@write_fault 1508 * 1509 * The function will map a writable host page for these two cases: 1510 * 1): @write_fault = true 1511 * 2): @write_fault = false && @writable, @writable will tell the caller 1512 * whether the mapping is writable. 1513 */ 1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1515 bool write_fault, bool *writable) 1516 { 1517 struct vm_area_struct *vma; 1518 kvm_pfn_t pfn = 0; 1519 int npages, r; 1520 1521 /* we can do it either atomically or asynchronously, not both */ 1522 BUG_ON(atomic && async); 1523 1524 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1525 return pfn; 1526 1527 if (atomic) 1528 return KVM_PFN_ERR_FAULT; 1529 1530 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1531 if (npages == 1) 1532 return pfn; 1533 1534 down_read(¤t->mm->mmap_sem); 1535 if (npages == -EHWPOISON || 1536 (!async && check_user_page_hwpoison(addr))) { 1537 pfn = KVM_PFN_ERR_HWPOISON; 1538 goto exit; 1539 } 1540 1541 retry: 1542 vma = find_vma_intersection(current->mm, addr, addr + 1); 1543 1544 if (vma == NULL) 1545 pfn = KVM_PFN_ERR_FAULT; 1546 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1547 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1548 if (r == -EAGAIN) 1549 goto retry; 1550 if (r < 0) 1551 pfn = KVM_PFN_ERR_FAULT; 1552 } else { 1553 if (async && vma_is_valid(vma, write_fault)) 1554 *async = true; 1555 pfn = KVM_PFN_ERR_FAULT; 1556 } 1557 exit: 1558 up_read(¤t->mm->mmap_sem); 1559 return pfn; 1560 } 1561 1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1563 bool atomic, bool *async, bool write_fault, 1564 bool *writable) 1565 { 1566 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1567 1568 if (addr == KVM_HVA_ERR_RO_BAD) { 1569 if (writable) 1570 *writable = false; 1571 return KVM_PFN_ERR_RO_FAULT; 1572 } 1573 1574 if (kvm_is_error_hva(addr)) { 1575 if (writable) 1576 *writable = false; 1577 return KVM_PFN_NOSLOT; 1578 } 1579 1580 /* Do not map writable pfn in the readonly memslot. */ 1581 if (writable && memslot_is_readonly(slot)) { 1582 *writable = false; 1583 writable = NULL; 1584 } 1585 1586 return hva_to_pfn(addr, atomic, async, write_fault, 1587 writable); 1588 } 1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1590 1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1592 bool *writable) 1593 { 1594 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1595 write_fault, writable); 1596 } 1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1598 1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1600 { 1601 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1602 } 1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1604 1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1606 { 1607 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1608 } 1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1610 1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1612 { 1613 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1614 } 1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1616 1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1618 { 1619 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1620 } 1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1622 1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1624 { 1625 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1626 } 1627 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1628 1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1630 { 1631 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1632 } 1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1634 1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1636 struct page **pages, int nr_pages) 1637 { 1638 unsigned long addr; 1639 gfn_t entry; 1640 1641 addr = gfn_to_hva_many(slot, gfn, &entry); 1642 if (kvm_is_error_hva(addr)) 1643 return -1; 1644 1645 if (entry < nr_pages) 1646 return 0; 1647 1648 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1649 } 1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1651 1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1653 { 1654 if (is_error_noslot_pfn(pfn)) 1655 return KVM_ERR_PTR_BAD_PAGE; 1656 1657 if (kvm_is_reserved_pfn(pfn)) { 1658 WARN_ON(1); 1659 return KVM_ERR_PTR_BAD_PAGE; 1660 } 1661 1662 return pfn_to_page(pfn); 1663 } 1664 1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1666 { 1667 kvm_pfn_t pfn; 1668 1669 pfn = gfn_to_pfn(kvm, gfn); 1670 1671 return kvm_pfn_to_page(pfn); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_page); 1674 1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1676 { 1677 kvm_pfn_t pfn; 1678 1679 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1680 1681 return kvm_pfn_to_page(pfn); 1682 } 1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1684 1685 void kvm_release_page_clean(struct page *page) 1686 { 1687 WARN_ON(is_error_page(page)); 1688 1689 kvm_release_pfn_clean(page_to_pfn(page)); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1692 1693 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1694 { 1695 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1696 put_page(pfn_to_page(pfn)); 1697 } 1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1699 1700 void kvm_release_page_dirty(struct page *page) 1701 { 1702 WARN_ON(is_error_page(page)); 1703 1704 kvm_release_pfn_dirty(page_to_pfn(page)); 1705 } 1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1707 1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1709 { 1710 kvm_set_pfn_dirty(pfn); 1711 kvm_release_pfn_clean(pfn); 1712 } 1713 1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1715 { 1716 if (!kvm_is_reserved_pfn(pfn)) { 1717 struct page *page = pfn_to_page(pfn); 1718 1719 if (!PageReserved(page)) 1720 SetPageDirty(page); 1721 } 1722 } 1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1724 1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1726 { 1727 if (!kvm_is_reserved_pfn(pfn)) 1728 mark_page_accessed(pfn_to_page(pfn)); 1729 } 1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1731 1732 void kvm_get_pfn(kvm_pfn_t pfn) 1733 { 1734 if (!kvm_is_reserved_pfn(pfn)) 1735 get_page(pfn_to_page(pfn)); 1736 } 1737 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1738 1739 static int next_segment(unsigned long len, int offset) 1740 { 1741 if (len > PAGE_SIZE - offset) 1742 return PAGE_SIZE - offset; 1743 else 1744 return len; 1745 } 1746 1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1748 void *data, int offset, int len) 1749 { 1750 int r; 1751 unsigned long addr; 1752 1753 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1754 if (kvm_is_error_hva(addr)) 1755 return -EFAULT; 1756 r = __copy_from_user(data, (void __user *)addr + offset, len); 1757 if (r) 1758 return -EFAULT; 1759 return 0; 1760 } 1761 1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1763 int len) 1764 { 1765 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1766 1767 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1768 } 1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1770 1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1772 int offset, int len) 1773 { 1774 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1775 1776 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1779 1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1781 { 1782 gfn_t gfn = gpa >> PAGE_SHIFT; 1783 int seg; 1784 int offset = offset_in_page(gpa); 1785 int ret; 1786 1787 while ((seg = next_segment(len, offset)) != 0) { 1788 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1789 if (ret < 0) 1790 return ret; 1791 offset = 0; 1792 len -= seg; 1793 data += seg; 1794 ++gfn; 1795 } 1796 return 0; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_read_guest); 1799 1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1801 { 1802 gfn_t gfn = gpa >> PAGE_SHIFT; 1803 int seg; 1804 int offset = offset_in_page(gpa); 1805 int ret; 1806 1807 while ((seg = next_segment(len, offset)) != 0) { 1808 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1809 if (ret < 0) 1810 return ret; 1811 offset = 0; 1812 len -= seg; 1813 data += seg; 1814 ++gfn; 1815 } 1816 return 0; 1817 } 1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1819 1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1821 void *data, int offset, unsigned long len) 1822 { 1823 int r; 1824 unsigned long addr; 1825 1826 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1827 if (kvm_is_error_hva(addr)) 1828 return -EFAULT; 1829 pagefault_disable(); 1830 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1831 pagefault_enable(); 1832 if (r) 1833 return -EFAULT; 1834 return 0; 1835 } 1836 1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1838 unsigned long len) 1839 { 1840 gfn_t gfn = gpa >> PAGE_SHIFT; 1841 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1842 int offset = offset_in_page(gpa); 1843 1844 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1847 1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1849 void *data, unsigned long len) 1850 { 1851 gfn_t gfn = gpa >> PAGE_SHIFT; 1852 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1853 int offset = offset_in_page(gpa); 1854 1855 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1856 } 1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1858 1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1860 const void *data, int offset, int len) 1861 { 1862 int r; 1863 unsigned long addr; 1864 1865 addr = gfn_to_hva_memslot(memslot, gfn); 1866 if (kvm_is_error_hva(addr)) 1867 return -EFAULT; 1868 r = __copy_to_user((void __user *)addr + offset, data, len); 1869 if (r) 1870 return -EFAULT; 1871 mark_page_dirty_in_slot(memslot, gfn); 1872 return 0; 1873 } 1874 1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1876 const void *data, int offset, int len) 1877 { 1878 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1879 1880 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1881 } 1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1883 1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1885 const void *data, int offset, int len) 1886 { 1887 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1888 1889 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1890 } 1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1892 1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1894 unsigned long len) 1895 { 1896 gfn_t gfn = gpa >> PAGE_SHIFT; 1897 int seg; 1898 int offset = offset_in_page(gpa); 1899 int ret; 1900 1901 while ((seg = next_segment(len, offset)) != 0) { 1902 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1903 if (ret < 0) 1904 return ret; 1905 offset = 0; 1906 len -= seg; 1907 data += seg; 1908 ++gfn; 1909 } 1910 return 0; 1911 } 1912 EXPORT_SYMBOL_GPL(kvm_write_guest); 1913 1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1915 unsigned long len) 1916 { 1917 gfn_t gfn = gpa >> PAGE_SHIFT; 1918 int seg; 1919 int offset = offset_in_page(gpa); 1920 int ret; 1921 1922 while ((seg = next_segment(len, offset)) != 0) { 1923 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1924 if (ret < 0) 1925 return ret; 1926 offset = 0; 1927 len -= seg; 1928 data += seg; 1929 ++gfn; 1930 } 1931 return 0; 1932 } 1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1934 1935 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1936 gpa_t gpa, unsigned long len) 1937 { 1938 struct kvm_memslots *slots = kvm_memslots(kvm); 1939 int offset = offset_in_page(gpa); 1940 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1941 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1942 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1943 gfn_t nr_pages_avail; 1944 1945 ghc->gpa = gpa; 1946 ghc->generation = slots->generation; 1947 ghc->len = len; 1948 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1949 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1950 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1951 ghc->hva += offset; 1952 } else { 1953 /* 1954 * If the requested region crosses two memslots, we still 1955 * verify that the entire region is valid here. 1956 */ 1957 while (start_gfn <= end_gfn) { 1958 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1959 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1960 &nr_pages_avail); 1961 if (kvm_is_error_hva(ghc->hva)) 1962 return -EFAULT; 1963 start_gfn += nr_pages_avail; 1964 } 1965 /* Use the slow path for cross page reads and writes. */ 1966 ghc->memslot = NULL; 1967 } 1968 return 0; 1969 } 1970 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1971 1972 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1973 void *data, unsigned long len) 1974 { 1975 struct kvm_memslots *slots = kvm_memslots(kvm); 1976 int r; 1977 1978 BUG_ON(len > ghc->len); 1979 1980 if (slots->generation != ghc->generation) 1981 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1982 1983 if (unlikely(!ghc->memslot)) 1984 return kvm_write_guest(kvm, ghc->gpa, data, len); 1985 1986 if (kvm_is_error_hva(ghc->hva)) 1987 return -EFAULT; 1988 1989 r = __copy_to_user((void __user *)ghc->hva, data, len); 1990 if (r) 1991 return -EFAULT; 1992 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1993 1994 return 0; 1995 } 1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1997 1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1999 void *data, unsigned long len) 2000 { 2001 struct kvm_memslots *slots = kvm_memslots(kvm); 2002 int r; 2003 2004 BUG_ON(len > ghc->len); 2005 2006 if (slots->generation != ghc->generation) 2007 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 2008 2009 if (unlikely(!ghc->memslot)) 2010 return kvm_read_guest(kvm, ghc->gpa, data, len); 2011 2012 if (kvm_is_error_hva(ghc->hva)) 2013 return -EFAULT; 2014 2015 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2016 if (r) 2017 return -EFAULT; 2018 2019 return 0; 2020 } 2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2022 2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2024 { 2025 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2026 2027 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2030 2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2032 { 2033 gfn_t gfn = gpa >> PAGE_SHIFT; 2034 int seg; 2035 int offset = offset_in_page(gpa); 2036 int ret; 2037 2038 while ((seg = next_segment(len, offset)) != 0) { 2039 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2040 if (ret < 0) 2041 return ret; 2042 offset = 0; 2043 len -= seg; 2044 ++gfn; 2045 } 2046 return 0; 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2049 2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2051 gfn_t gfn) 2052 { 2053 if (memslot && memslot->dirty_bitmap) { 2054 unsigned long rel_gfn = gfn - memslot->base_gfn; 2055 2056 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2057 } 2058 } 2059 2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2061 { 2062 struct kvm_memory_slot *memslot; 2063 2064 memslot = gfn_to_memslot(kvm, gfn); 2065 mark_page_dirty_in_slot(memslot, gfn); 2066 } 2067 EXPORT_SYMBOL_GPL(mark_page_dirty); 2068 2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2070 { 2071 struct kvm_memory_slot *memslot; 2072 2073 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2074 mark_page_dirty_in_slot(memslot, gfn); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2077 2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2079 { 2080 unsigned int old, val, grow; 2081 2082 old = val = vcpu->halt_poll_ns; 2083 grow = READ_ONCE(halt_poll_ns_grow); 2084 /* 10us base */ 2085 if (val == 0 && grow) 2086 val = 10000; 2087 else 2088 val *= grow; 2089 2090 if (val > halt_poll_ns) 2091 val = halt_poll_ns; 2092 2093 vcpu->halt_poll_ns = val; 2094 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2095 } 2096 2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2098 { 2099 unsigned int old, val, shrink; 2100 2101 old = val = vcpu->halt_poll_ns; 2102 shrink = READ_ONCE(halt_poll_ns_shrink); 2103 if (shrink == 0) 2104 val = 0; 2105 else 2106 val /= shrink; 2107 2108 vcpu->halt_poll_ns = val; 2109 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2110 } 2111 2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2113 { 2114 if (kvm_arch_vcpu_runnable(vcpu)) { 2115 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2116 return -EINTR; 2117 } 2118 if (kvm_cpu_has_pending_timer(vcpu)) 2119 return -EINTR; 2120 if (signal_pending(current)) 2121 return -EINTR; 2122 2123 return 0; 2124 } 2125 2126 /* 2127 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2128 */ 2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2130 { 2131 ktime_t start, cur; 2132 DECLARE_SWAITQUEUE(wait); 2133 bool waited = false; 2134 u64 block_ns; 2135 2136 start = cur = ktime_get(); 2137 if (vcpu->halt_poll_ns) { 2138 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2139 2140 ++vcpu->stat.halt_attempted_poll; 2141 do { 2142 /* 2143 * This sets KVM_REQ_UNHALT if an interrupt 2144 * arrives. 2145 */ 2146 if (kvm_vcpu_check_block(vcpu) < 0) { 2147 ++vcpu->stat.halt_successful_poll; 2148 if (!vcpu_valid_wakeup(vcpu)) 2149 ++vcpu->stat.halt_poll_invalid; 2150 goto out; 2151 } 2152 cur = ktime_get(); 2153 } while (single_task_running() && ktime_before(cur, stop)); 2154 } 2155 2156 kvm_arch_vcpu_blocking(vcpu); 2157 2158 for (;;) { 2159 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2160 2161 if (kvm_vcpu_check_block(vcpu) < 0) 2162 break; 2163 2164 waited = true; 2165 schedule(); 2166 } 2167 2168 finish_swait(&vcpu->wq, &wait); 2169 cur = ktime_get(); 2170 2171 kvm_arch_vcpu_unblocking(vcpu); 2172 out: 2173 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2174 2175 if (!vcpu_valid_wakeup(vcpu)) 2176 shrink_halt_poll_ns(vcpu); 2177 else if (halt_poll_ns) { 2178 if (block_ns <= vcpu->halt_poll_ns) 2179 ; 2180 /* we had a long block, shrink polling */ 2181 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2182 shrink_halt_poll_ns(vcpu); 2183 /* we had a short halt and our poll time is too small */ 2184 else if (vcpu->halt_poll_ns < halt_poll_ns && 2185 block_ns < halt_poll_ns) 2186 grow_halt_poll_ns(vcpu); 2187 } else 2188 vcpu->halt_poll_ns = 0; 2189 2190 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2191 kvm_arch_vcpu_block_finish(vcpu); 2192 } 2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2194 2195 #ifndef CONFIG_S390 2196 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2197 { 2198 struct swait_queue_head *wqp; 2199 2200 wqp = kvm_arch_vcpu_wq(vcpu); 2201 if (swait_active(wqp)) { 2202 swake_up(wqp); 2203 ++vcpu->stat.halt_wakeup; 2204 } 2205 2206 } 2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2208 2209 /* 2210 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2211 */ 2212 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2213 { 2214 int me; 2215 int cpu = vcpu->cpu; 2216 2217 kvm_vcpu_wake_up(vcpu); 2218 me = get_cpu(); 2219 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2220 if (kvm_arch_vcpu_should_kick(vcpu)) 2221 smp_send_reschedule(cpu); 2222 put_cpu(); 2223 } 2224 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2225 #endif /* !CONFIG_S390 */ 2226 2227 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2228 { 2229 struct pid *pid; 2230 struct task_struct *task = NULL; 2231 int ret = 0; 2232 2233 rcu_read_lock(); 2234 pid = rcu_dereference(target->pid); 2235 if (pid) 2236 task = get_pid_task(pid, PIDTYPE_PID); 2237 rcu_read_unlock(); 2238 if (!task) 2239 return ret; 2240 ret = yield_to(task, 1); 2241 put_task_struct(task); 2242 2243 return ret; 2244 } 2245 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2246 2247 /* 2248 * Helper that checks whether a VCPU is eligible for directed yield. 2249 * Most eligible candidate to yield is decided by following heuristics: 2250 * 2251 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2252 * (preempted lock holder), indicated by @in_spin_loop. 2253 * Set at the beiginning and cleared at the end of interception/PLE handler. 2254 * 2255 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2256 * chance last time (mostly it has become eligible now since we have probably 2257 * yielded to lockholder in last iteration. This is done by toggling 2258 * @dy_eligible each time a VCPU checked for eligibility.) 2259 * 2260 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2261 * to preempted lock-holder could result in wrong VCPU selection and CPU 2262 * burning. Giving priority for a potential lock-holder increases lock 2263 * progress. 2264 * 2265 * Since algorithm is based on heuristics, accessing another VCPU data without 2266 * locking does not harm. It may result in trying to yield to same VCPU, fail 2267 * and continue with next VCPU and so on. 2268 */ 2269 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2270 { 2271 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2272 bool eligible; 2273 2274 eligible = !vcpu->spin_loop.in_spin_loop || 2275 vcpu->spin_loop.dy_eligible; 2276 2277 if (vcpu->spin_loop.in_spin_loop) 2278 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2279 2280 return eligible; 2281 #else 2282 return true; 2283 #endif 2284 } 2285 2286 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2287 { 2288 struct kvm *kvm = me->kvm; 2289 struct kvm_vcpu *vcpu; 2290 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2291 int yielded = 0; 2292 int try = 3; 2293 int pass; 2294 int i; 2295 2296 kvm_vcpu_set_in_spin_loop(me, true); 2297 /* 2298 * We boost the priority of a VCPU that is runnable but not 2299 * currently running, because it got preempted by something 2300 * else and called schedule in __vcpu_run. Hopefully that 2301 * VCPU is holding the lock that we need and will release it. 2302 * We approximate round-robin by starting at the last boosted VCPU. 2303 */ 2304 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2305 kvm_for_each_vcpu(i, vcpu, kvm) { 2306 if (!pass && i <= last_boosted_vcpu) { 2307 i = last_boosted_vcpu; 2308 continue; 2309 } else if (pass && i > last_boosted_vcpu) 2310 break; 2311 if (!ACCESS_ONCE(vcpu->preempted)) 2312 continue; 2313 if (vcpu == me) 2314 continue; 2315 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2316 continue; 2317 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2318 continue; 2319 2320 yielded = kvm_vcpu_yield_to(vcpu); 2321 if (yielded > 0) { 2322 kvm->last_boosted_vcpu = i; 2323 break; 2324 } else if (yielded < 0) { 2325 try--; 2326 if (!try) 2327 break; 2328 } 2329 } 2330 } 2331 kvm_vcpu_set_in_spin_loop(me, false); 2332 2333 /* Ensure vcpu is not eligible during next spinloop */ 2334 kvm_vcpu_set_dy_eligible(me, false); 2335 } 2336 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2337 2338 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2339 { 2340 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2341 struct page *page; 2342 2343 if (vmf->pgoff == 0) 2344 page = virt_to_page(vcpu->run); 2345 #ifdef CONFIG_X86 2346 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2347 page = virt_to_page(vcpu->arch.pio_data); 2348 #endif 2349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2350 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2351 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2352 #endif 2353 else 2354 return kvm_arch_vcpu_fault(vcpu, vmf); 2355 get_page(page); 2356 vmf->page = page; 2357 return 0; 2358 } 2359 2360 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2361 .fault = kvm_vcpu_fault, 2362 }; 2363 2364 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2365 { 2366 vma->vm_ops = &kvm_vcpu_vm_ops; 2367 return 0; 2368 } 2369 2370 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2371 { 2372 struct kvm_vcpu *vcpu = filp->private_data; 2373 2374 debugfs_remove_recursive(vcpu->debugfs_dentry); 2375 kvm_put_kvm(vcpu->kvm); 2376 return 0; 2377 } 2378 2379 static struct file_operations kvm_vcpu_fops = { 2380 .release = kvm_vcpu_release, 2381 .unlocked_ioctl = kvm_vcpu_ioctl, 2382 #ifdef CONFIG_KVM_COMPAT 2383 .compat_ioctl = kvm_vcpu_compat_ioctl, 2384 #endif 2385 .mmap = kvm_vcpu_mmap, 2386 .llseek = noop_llseek, 2387 }; 2388 2389 /* 2390 * Allocates an inode for the vcpu. 2391 */ 2392 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2393 { 2394 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2395 } 2396 2397 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2398 { 2399 char dir_name[ITOA_MAX_LEN * 2]; 2400 int ret; 2401 2402 if (!kvm_arch_has_vcpu_debugfs()) 2403 return 0; 2404 2405 if (!debugfs_initialized()) 2406 return 0; 2407 2408 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2409 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2410 vcpu->kvm->debugfs_dentry); 2411 if (!vcpu->debugfs_dentry) 2412 return -ENOMEM; 2413 2414 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2415 if (ret < 0) { 2416 debugfs_remove_recursive(vcpu->debugfs_dentry); 2417 return ret; 2418 } 2419 2420 return 0; 2421 } 2422 2423 /* 2424 * Creates some virtual cpus. Good luck creating more than one. 2425 */ 2426 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2427 { 2428 int r; 2429 struct kvm_vcpu *vcpu; 2430 2431 if (id >= KVM_MAX_VCPU_ID) 2432 return -EINVAL; 2433 2434 mutex_lock(&kvm->lock); 2435 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2436 mutex_unlock(&kvm->lock); 2437 return -EINVAL; 2438 } 2439 2440 kvm->created_vcpus++; 2441 mutex_unlock(&kvm->lock); 2442 2443 vcpu = kvm_arch_vcpu_create(kvm, id); 2444 if (IS_ERR(vcpu)) { 2445 r = PTR_ERR(vcpu); 2446 goto vcpu_decrement; 2447 } 2448 2449 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2450 2451 r = kvm_arch_vcpu_setup(vcpu); 2452 if (r) 2453 goto vcpu_destroy; 2454 2455 r = kvm_create_vcpu_debugfs(vcpu); 2456 if (r) 2457 goto vcpu_destroy; 2458 2459 mutex_lock(&kvm->lock); 2460 if (kvm_get_vcpu_by_id(kvm, id)) { 2461 r = -EEXIST; 2462 goto unlock_vcpu_destroy; 2463 } 2464 2465 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2466 2467 /* Now it's all set up, let userspace reach it */ 2468 kvm_get_kvm(kvm); 2469 r = create_vcpu_fd(vcpu); 2470 if (r < 0) { 2471 kvm_put_kvm(kvm); 2472 goto unlock_vcpu_destroy; 2473 } 2474 2475 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2476 2477 /* 2478 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2479 * before kvm->online_vcpu's incremented value. 2480 */ 2481 smp_wmb(); 2482 atomic_inc(&kvm->online_vcpus); 2483 2484 mutex_unlock(&kvm->lock); 2485 kvm_arch_vcpu_postcreate(vcpu); 2486 return r; 2487 2488 unlock_vcpu_destroy: 2489 mutex_unlock(&kvm->lock); 2490 debugfs_remove_recursive(vcpu->debugfs_dentry); 2491 vcpu_destroy: 2492 kvm_arch_vcpu_destroy(vcpu); 2493 vcpu_decrement: 2494 mutex_lock(&kvm->lock); 2495 kvm->created_vcpus--; 2496 mutex_unlock(&kvm->lock); 2497 return r; 2498 } 2499 2500 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2501 { 2502 if (sigset) { 2503 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2504 vcpu->sigset_active = 1; 2505 vcpu->sigset = *sigset; 2506 } else 2507 vcpu->sigset_active = 0; 2508 return 0; 2509 } 2510 2511 static long kvm_vcpu_ioctl(struct file *filp, 2512 unsigned int ioctl, unsigned long arg) 2513 { 2514 struct kvm_vcpu *vcpu = filp->private_data; 2515 void __user *argp = (void __user *)arg; 2516 int r; 2517 struct kvm_fpu *fpu = NULL; 2518 struct kvm_sregs *kvm_sregs = NULL; 2519 2520 if (vcpu->kvm->mm != current->mm) 2521 return -EIO; 2522 2523 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2524 return -EINVAL; 2525 2526 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2527 /* 2528 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2529 * so vcpu_load() would break it. 2530 */ 2531 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2532 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2533 #endif 2534 2535 2536 r = vcpu_load(vcpu); 2537 if (r) 2538 return r; 2539 switch (ioctl) { 2540 case KVM_RUN: 2541 r = -EINVAL; 2542 if (arg) 2543 goto out; 2544 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2545 /* The thread running this VCPU changed. */ 2546 struct pid *oldpid = vcpu->pid; 2547 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2548 2549 rcu_assign_pointer(vcpu->pid, newpid); 2550 if (oldpid) 2551 synchronize_rcu(); 2552 put_pid(oldpid); 2553 } 2554 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2555 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2556 break; 2557 case KVM_GET_REGS: { 2558 struct kvm_regs *kvm_regs; 2559 2560 r = -ENOMEM; 2561 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2562 if (!kvm_regs) 2563 goto out; 2564 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2565 if (r) 2566 goto out_free1; 2567 r = -EFAULT; 2568 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2569 goto out_free1; 2570 r = 0; 2571 out_free1: 2572 kfree(kvm_regs); 2573 break; 2574 } 2575 case KVM_SET_REGS: { 2576 struct kvm_regs *kvm_regs; 2577 2578 r = -ENOMEM; 2579 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2580 if (IS_ERR(kvm_regs)) { 2581 r = PTR_ERR(kvm_regs); 2582 goto out; 2583 } 2584 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2585 kfree(kvm_regs); 2586 break; 2587 } 2588 case KVM_GET_SREGS: { 2589 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2590 r = -ENOMEM; 2591 if (!kvm_sregs) 2592 goto out; 2593 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2594 if (r) 2595 goto out; 2596 r = -EFAULT; 2597 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2598 goto out; 2599 r = 0; 2600 break; 2601 } 2602 case KVM_SET_SREGS: { 2603 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2604 if (IS_ERR(kvm_sregs)) { 2605 r = PTR_ERR(kvm_sregs); 2606 kvm_sregs = NULL; 2607 goto out; 2608 } 2609 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2610 break; 2611 } 2612 case KVM_GET_MP_STATE: { 2613 struct kvm_mp_state mp_state; 2614 2615 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2616 if (r) 2617 goto out; 2618 r = -EFAULT; 2619 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2620 goto out; 2621 r = 0; 2622 break; 2623 } 2624 case KVM_SET_MP_STATE: { 2625 struct kvm_mp_state mp_state; 2626 2627 r = -EFAULT; 2628 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2629 goto out; 2630 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2631 break; 2632 } 2633 case KVM_TRANSLATE: { 2634 struct kvm_translation tr; 2635 2636 r = -EFAULT; 2637 if (copy_from_user(&tr, argp, sizeof(tr))) 2638 goto out; 2639 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2640 if (r) 2641 goto out; 2642 r = -EFAULT; 2643 if (copy_to_user(argp, &tr, sizeof(tr))) 2644 goto out; 2645 r = 0; 2646 break; 2647 } 2648 case KVM_SET_GUEST_DEBUG: { 2649 struct kvm_guest_debug dbg; 2650 2651 r = -EFAULT; 2652 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2653 goto out; 2654 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2655 break; 2656 } 2657 case KVM_SET_SIGNAL_MASK: { 2658 struct kvm_signal_mask __user *sigmask_arg = argp; 2659 struct kvm_signal_mask kvm_sigmask; 2660 sigset_t sigset, *p; 2661 2662 p = NULL; 2663 if (argp) { 2664 r = -EFAULT; 2665 if (copy_from_user(&kvm_sigmask, argp, 2666 sizeof(kvm_sigmask))) 2667 goto out; 2668 r = -EINVAL; 2669 if (kvm_sigmask.len != sizeof(sigset)) 2670 goto out; 2671 r = -EFAULT; 2672 if (copy_from_user(&sigset, sigmask_arg->sigset, 2673 sizeof(sigset))) 2674 goto out; 2675 p = &sigset; 2676 } 2677 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2678 break; 2679 } 2680 case KVM_GET_FPU: { 2681 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2682 r = -ENOMEM; 2683 if (!fpu) 2684 goto out; 2685 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2686 if (r) 2687 goto out; 2688 r = -EFAULT; 2689 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2690 goto out; 2691 r = 0; 2692 break; 2693 } 2694 case KVM_SET_FPU: { 2695 fpu = memdup_user(argp, sizeof(*fpu)); 2696 if (IS_ERR(fpu)) { 2697 r = PTR_ERR(fpu); 2698 fpu = NULL; 2699 goto out; 2700 } 2701 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2702 break; 2703 } 2704 default: 2705 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2706 } 2707 out: 2708 vcpu_put(vcpu); 2709 kfree(fpu); 2710 kfree(kvm_sregs); 2711 return r; 2712 } 2713 2714 #ifdef CONFIG_KVM_COMPAT 2715 static long kvm_vcpu_compat_ioctl(struct file *filp, 2716 unsigned int ioctl, unsigned long arg) 2717 { 2718 struct kvm_vcpu *vcpu = filp->private_data; 2719 void __user *argp = compat_ptr(arg); 2720 int r; 2721 2722 if (vcpu->kvm->mm != current->mm) 2723 return -EIO; 2724 2725 switch (ioctl) { 2726 case KVM_SET_SIGNAL_MASK: { 2727 struct kvm_signal_mask __user *sigmask_arg = argp; 2728 struct kvm_signal_mask kvm_sigmask; 2729 compat_sigset_t csigset; 2730 sigset_t sigset; 2731 2732 if (argp) { 2733 r = -EFAULT; 2734 if (copy_from_user(&kvm_sigmask, argp, 2735 sizeof(kvm_sigmask))) 2736 goto out; 2737 r = -EINVAL; 2738 if (kvm_sigmask.len != sizeof(csigset)) 2739 goto out; 2740 r = -EFAULT; 2741 if (copy_from_user(&csigset, sigmask_arg->sigset, 2742 sizeof(csigset))) 2743 goto out; 2744 sigset_from_compat(&sigset, &csigset); 2745 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2746 } else 2747 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2748 break; 2749 } 2750 default: 2751 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2752 } 2753 2754 out: 2755 return r; 2756 } 2757 #endif 2758 2759 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2760 int (*accessor)(struct kvm_device *dev, 2761 struct kvm_device_attr *attr), 2762 unsigned long arg) 2763 { 2764 struct kvm_device_attr attr; 2765 2766 if (!accessor) 2767 return -EPERM; 2768 2769 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2770 return -EFAULT; 2771 2772 return accessor(dev, &attr); 2773 } 2774 2775 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2776 unsigned long arg) 2777 { 2778 struct kvm_device *dev = filp->private_data; 2779 2780 switch (ioctl) { 2781 case KVM_SET_DEVICE_ATTR: 2782 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2783 case KVM_GET_DEVICE_ATTR: 2784 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2785 case KVM_HAS_DEVICE_ATTR: 2786 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2787 default: 2788 if (dev->ops->ioctl) 2789 return dev->ops->ioctl(dev, ioctl, arg); 2790 2791 return -ENOTTY; 2792 } 2793 } 2794 2795 static int kvm_device_release(struct inode *inode, struct file *filp) 2796 { 2797 struct kvm_device *dev = filp->private_data; 2798 struct kvm *kvm = dev->kvm; 2799 2800 kvm_put_kvm(kvm); 2801 return 0; 2802 } 2803 2804 static const struct file_operations kvm_device_fops = { 2805 .unlocked_ioctl = kvm_device_ioctl, 2806 #ifdef CONFIG_KVM_COMPAT 2807 .compat_ioctl = kvm_device_ioctl, 2808 #endif 2809 .release = kvm_device_release, 2810 }; 2811 2812 struct kvm_device *kvm_device_from_filp(struct file *filp) 2813 { 2814 if (filp->f_op != &kvm_device_fops) 2815 return NULL; 2816 2817 return filp->private_data; 2818 } 2819 2820 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2821 #ifdef CONFIG_KVM_MPIC 2822 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2823 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2824 #endif 2825 2826 #ifdef CONFIG_KVM_XICS 2827 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2828 #endif 2829 }; 2830 2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2832 { 2833 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2834 return -ENOSPC; 2835 2836 if (kvm_device_ops_table[type] != NULL) 2837 return -EEXIST; 2838 2839 kvm_device_ops_table[type] = ops; 2840 return 0; 2841 } 2842 2843 void kvm_unregister_device_ops(u32 type) 2844 { 2845 if (kvm_device_ops_table[type] != NULL) 2846 kvm_device_ops_table[type] = NULL; 2847 } 2848 2849 static int kvm_ioctl_create_device(struct kvm *kvm, 2850 struct kvm_create_device *cd) 2851 { 2852 struct kvm_device_ops *ops = NULL; 2853 struct kvm_device *dev; 2854 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2855 int ret; 2856 2857 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2858 return -ENODEV; 2859 2860 ops = kvm_device_ops_table[cd->type]; 2861 if (ops == NULL) 2862 return -ENODEV; 2863 2864 if (test) 2865 return 0; 2866 2867 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2868 if (!dev) 2869 return -ENOMEM; 2870 2871 dev->ops = ops; 2872 dev->kvm = kvm; 2873 2874 mutex_lock(&kvm->lock); 2875 ret = ops->create(dev, cd->type); 2876 if (ret < 0) { 2877 mutex_unlock(&kvm->lock); 2878 kfree(dev); 2879 return ret; 2880 } 2881 list_add(&dev->vm_node, &kvm->devices); 2882 mutex_unlock(&kvm->lock); 2883 2884 if (ops->init) 2885 ops->init(dev); 2886 2887 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2888 if (ret < 0) { 2889 ops->destroy(dev); 2890 mutex_lock(&kvm->lock); 2891 list_del(&dev->vm_node); 2892 mutex_unlock(&kvm->lock); 2893 return ret; 2894 } 2895 2896 kvm_get_kvm(kvm); 2897 cd->fd = ret; 2898 return 0; 2899 } 2900 2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2902 { 2903 switch (arg) { 2904 case KVM_CAP_USER_MEMORY: 2905 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2906 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2907 case KVM_CAP_INTERNAL_ERROR_DATA: 2908 #ifdef CONFIG_HAVE_KVM_MSI 2909 case KVM_CAP_SIGNAL_MSI: 2910 #endif 2911 #ifdef CONFIG_HAVE_KVM_IRQFD 2912 case KVM_CAP_IRQFD: 2913 case KVM_CAP_IRQFD_RESAMPLE: 2914 #endif 2915 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2916 case KVM_CAP_CHECK_EXTENSION_VM: 2917 return 1; 2918 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2919 case KVM_CAP_IRQ_ROUTING: 2920 return KVM_MAX_IRQ_ROUTES; 2921 #endif 2922 #if KVM_ADDRESS_SPACE_NUM > 1 2923 case KVM_CAP_MULTI_ADDRESS_SPACE: 2924 return KVM_ADDRESS_SPACE_NUM; 2925 #endif 2926 case KVM_CAP_MAX_VCPU_ID: 2927 return KVM_MAX_VCPU_ID; 2928 default: 2929 break; 2930 } 2931 return kvm_vm_ioctl_check_extension(kvm, arg); 2932 } 2933 2934 static long kvm_vm_ioctl(struct file *filp, 2935 unsigned int ioctl, unsigned long arg) 2936 { 2937 struct kvm *kvm = filp->private_data; 2938 void __user *argp = (void __user *)arg; 2939 int r; 2940 2941 if (kvm->mm != current->mm) 2942 return -EIO; 2943 switch (ioctl) { 2944 case KVM_CREATE_VCPU: 2945 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2946 break; 2947 case KVM_SET_USER_MEMORY_REGION: { 2948 struct kvm_userspace_memory_region kvm_userspace_mem; 2949 2950 r = -EFAULT; 2951 if (copy_from_user(&kvm_userspace_mem, argp, 2952 sizeof(kvm_userspace_mem))) 2953 goto out; 2954 2955 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2956 break; 2957 } 2958 case KVM_GET_DIRTY_LOG: { 2959 struct kvm_dirty_log log; 2960 2961 r = -EFAULT; 2962 if (copy_from_user(&log, argp, sizeof(log))) 2963 goto out; 2964 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2965 break; 2966 } 2967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2968 case KVM_REGISTER_COALESCED_MMIO: { 2969 struct kvm_coalesced_mmio_zone zone; 2970 2971 r = -EFAULT; 2972 if (copy_from_user(&zone, argp, sizeof(zone))) 2973 goto out; 2974 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2975 break; 2976 } 2977 case KVM_UNREGISTER_COALESCED_MMIO: { 2978 struct kvm_coalesced_mmio_zone zone; 2979 2980 r = -EFAULT; 2981 if (copy_from_user(&zone, argp, sizeof(zone))) 2982 goto out; 2983 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2984 break; 2985 } 2986 #endif 2987 case KVM_IRQFD: { 2988 struct kvm_irqfd data; 2989 2990 r = -EFAULT; 2991 if (copy_from_user(&data, argp, sizeof(data))) 2992 goto out; 2993 r = kvm_irqfd(kvm, &data); 2994 break; 2995 } 2996 case KVM_IOEVENTFD: { 2997 struct kvm_ioeventfd data; 2998 2999 r = -EFAULT; 3000 if (copy_from_user(&data, argp, sizeof(data))) 3001 goto out; 3002 r = kvm_ioeventfd(kvm, &data); 3003 break; 3004 } 3005 #ifdef CONFIG_HAVE_KVM_MSI 3006 case KVM_SIGNAL_MSI: { 3007 struct kvm_msi msi; 3008 3009 r = -EFAULT; 3010 if (copy_from_user(&msi, argp, sizeof(msi))) 3011 goto out; 3012 r = kvm_send_userspace_msi(kvm, &msi); 3013 break; 3014 } 3015 #endif 3016 #ifdef __KVM_HAVE_IRQ_LINE 3017 case KVM_IRQ_LINE_STATUS: 3018 case KVM_IRQ_LINE: { 3019 struct kvm_irq_level irq_event; 3020 3021 r = -EFAULT; 3022 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3023 goto out; 3024 3025 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3026 ioctl == KVM_IRQ_LINE_STATUS); 3027 if (r) 3028 goto out; 3029 3030 r = -EFAULT; 3031 if (ioctl == KVM_IRQ_LINE_STATUS) { 3032 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3033 goto out; 3034 } 3035 3036 r = 0; 3037 break; 3038 } 3039 #endif 3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3041 case KVM_SET_GSI_ROUTING: { 3042 struct kvm_irq_routing routing; 3043 struct kvm_irq_routing __user *urouting; 3044 struct kvm_irq_routing_entry *entries = NULL; 3045 3046 r = -EFAULT; 3047 if (copy_from_user(&routing, argp, sizeof(routing))) 3048 goto out; 3049 r = -EINVAL; 3050 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3051 goto out; 3052 if (routing.flags) 3053 goto out; 3054 if (routing.nr) { 3055 r = -ENOMEM; 3056 entries = vmalloc(routing.nr * sizeof(*entries)); 3057 if (!entries) 3058 goto out; 3059 r = -EFAULT; 3060 urouting = argp; 3061 if (copy_from_user(entries, urouting->entries, 3062 routing.nr * sizeof(*entries))) 3063 goto out_free_irq_routing; 3064 } 3065 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3066 routing.flags); 3067 out_free_irq_routing: 3068 vfree(entries); 3069 break; 3070 } 3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3072 case KVM_CREATE_DEVICE: { 3073 struct kvm_create_device cd; 3074 3075 r = -EFAULT; 3076 if (copy_from_user(&cd, argp, sizeof(cd))) 3077 goto out; 3078 3079 r = kvm_ioctl_create_device(kvm, &cd); 3080 if (r) 3081 goto out; 3082 3083 r = -EFAULT; 3084 if (copy_to_user(argp, &cd, sizeof(cd))) 3085 goto out; 3086 3087 r = 0; 3088 break; 3089 } 3090 case KVM_CHECK_EXTENSION: 3091 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3092 break; 3093 default: 3094 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3095 } 3096 out: 3097 return r; 3098 } 3099 3100 #ifdef CONFIG_KVM_COMPAT 3101 struct compat_kvm_dirty_log { 3102 __u32 slot; 3103 __u32 padding1; 3104 union { 3105 compat_uptr_t dirty_bitmap; /* one bit per page */ 3106 __u64 padding2; 3107 }; 3108 }; 3109 3110 static long kvm_vm_compat_ioctl(struct file *filp, 3111 unsigned int ioctl, unsigned long arg) 3112 { 3113 struct kvm *kvm = filp->private_data; 3114 int r; 3115 3116 if (kvm->mm != current->mm) 3117 return -EIO; 3118 switch (ioctl) { 3119 case KVM_GET_DIRTY_LOG: { 3120 struct compat_kvm_dirty_log compat_log; 3121 struct kvm_dirty_log log; 3122 3123 r = -EFAULT; 3124 if (copy_from_user(&compat_log, (void __user *)arg, 3125 sizeof(compat_log))) 3126 goto out; 3127 log.slot = compat_log.slot; 3128 log.padding1 = compat_log.padding1; 3129 log.padding2 = compat_log.padding2; 3130 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3131 3132 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3133 break; 3134 } 3135 default: 3136 r = kvm_vm_ioctl(filp, ioctl, arg); 3137 } 3138 3139 out: 3140 return r; 3141 } 3142 #endif 3143 3144 static struct file_operations kvm_vm_fops = { 3145 .release = kvm_vm_release, 3146 .unlocked_ioctl = kvm_vm_ioctl, 3147 #ifdef CONFIG_KVM_COMPAT 3148 .compat_ioctl = kvm_vm_compat_ioctl, 3149 #endif 3150 .llseek = noop_llseek, 3151 }; 3152 3153 static int kvm_dev_ioctl_create_vm(unsigned long type) 3154 { 3155 int r; 3156 struct kvm *kvm; 3157 struct file *file; 3158 3159 kvm = kvm_create_vm(type); 3160 if (IS_ERR(kvm)) 3161 return PTR_ERR(kvm); 3162 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3163 r = kvm_coalesced_mmio_init(kvm); 3164 if (r < 0) { 3165 kvm_put_kvm(kvm); 3166 return r; 3167 } 3168 #endif 3169 r = get_unused_fd_flags(O_CLOEXEC); 3170 if (r < 0) { 3171 kvm_put_kvm(kvm); 3172 return r; 3173 } 3174 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3175 if (IS_ERR(file)) { 3176 put_unused_fd(r); 3177 kvm_put_kvm(kvm); 3178 return PTR_ERR(file); 3179 } 3180 3181 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3182 put_unused_fd(r); 3183 fput(file); 3184 return -ENOMEM; 3185 } 3186 3187 fd_install(r, file); 3188 return r; 3189 } 3190 3191 static long kvm_dev_ioctl(struct file *filp, 3192 unsigned int ioctl, unsigned long arg) 3193 { 3194 long r = -EINVAL; 3195 3196 switch (ioctl) { 3197 case KVM_GET_API_VERSION: 3198 if (arg) 3199 goto out; 3200 r = KVM_API_VERSION; 3201 break; 3202 case KVM_CREATE_VM: 3203 r = kvm_dev_ioctl_create_vm(arg); 3204 break; 3205 case KVM_CHECK_EXTENSION: 3206 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3207 break; 3208 case KVM_GET_VCPU_MMAP_SIZE: 3209 if (arg) 3210 goto out; 3211 r = PAGE_SIZE; /* struct kvm_run */ 3212 #ifdef CONFIG_X86 3213 r += PAGE_SIZE; /* pio data page */ 3214 #endif 3215 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3216 r += PAGE_SIZE; /* coalesced mmio ring page */ 3217 #endif 3218 break; 3219 case KVM_TRACE_ENABLE: 3220 case KVM_TRACE_PAUSE: 3221 case KVM_TRACE_DISABLE: 3222 r = -EOPNOTSUPP; 3223 break; 3224 default: 3225 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3226 } 3227 out: 3228 return r; 3229 } 3230 3231 static struct file_operations kvm_chardev_ops = { 3232 .unlocked_ioctl = kvm_dev_ioctl, 3233 .compat_ioctl = kvm_dev_ioctl, 3234 .llseek = noop_llseek, 3235 }; 3236 3237 static struct miscdevice kvm_dev = { 3238 KVM_MINOR, 3239 "kvm", 3240 &kvm_chardev_ops, 3241 }; 3242 3243 static void hardware_enable_nolock(void *junk) 3244 { 3245 int cpu = raw_smp_processor_id(); 3246 int r; 3247 3248 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3249 return; 3250 3251 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3252 3253 r = kvm_arch_hardware_enable(); 3254 3255 if (r) { 3256 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3257 atomic_inc(&hardware_enable_failed); 3258 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3259 } 3260 } 3261 3262 static int kvm_starting_cpu(unsigned int cpu) 3263 { 3264 raw_spin_lock(&kvm_count_lock); 3265 if (kvm_usage_count) 3266 hardware_enable_nolock(NULL); 3267 raw_spin_unlock(&kvm_count_lock); 3268 return 0; 3269 } 3270 3271 static void hardware_disable_nolock(void *junk) 3272 { 3273 int cpu = raw_smp_processor_id(); 3274 3275 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3276 return; 3277 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3278 kvm_arch_hardware_disable(); 3279 } 3280 3281 static int kvm_dying_cpu(unsigned int cpu) 3282 { 3283 raw_spin_lock(&kvm_count_lock); 3284 if (kvm_usage_count) 3285 hardware_disable_nolock(NULL); 3286 raw_spin_unlock(&kvm_count_lock); 3287 return 0; 3288 } 3289 3290 static void hardware_disable_all_nolock(void) 3291 { 3292 BUG_ON(!kvm_usage_count); 3293 3294 kvm_usage_count--; 3295 if (!kvm_usage_count) 3296 on_each_cpu(hardware_disable_nolock, NULL, 1); 3297 } 3298 3299 static void hardware_disable_all(void) 3300 { 3301 raw_spin_lock(&kvm_count_lock); 3302 hardware_disable_all_nolock(); 3303 raw_spin_unlock(&kvm_count_lock); 3304 } 3305 3306 static int hardware_enable_all(void) 3307 { 3308 int r = 0; 3309 3310 raw_spin_lock(&kvm_count_lock); 3311 3312 kvm_usage_count++; 3313 if (kvm_usage_count == 1) { 3314 atomic_set(&hardware_enable_failed, 0); 3315 on_each_cpu(hardware_enable_nolock, NULL, 1); 3316 3317 if (atomic_read(&hardware_enable_failed)) { 3318 hardware_disable_all_nolock(); 3319 r = -EBUSY; 3320 } 3321 } 3322 3323 raw_spin_unlock(&kvm_count_lock); 3324 3325 return r; 3326 } 3327 3328 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3329 void *v) 3330 { 3331 /* 3332 * Some (well, at least mine) BIOSes hang on reboot if 3333 * in vmx root mode. 3334 * 3335 * And Intel TXT required VMX off for all cpu when system shutdown. 3336 */ 3337 pr_info("kvm: exiting hardware virtualization\n"); 3338 kvm_rebooting = true; 3339 on_each_cpu(hardware_disable_nolock, NULL, 1); 3340 return NOTIFY_OK; 3341 } 3342 3343 static struct notifier_block kvm_reboot_notifier = { 3344 .notifier_call = kvm_reboot, 3345 .priority = 0, 3346 }; 3347 3348 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3349 { 3350 int i; 3351 3352 for (i = 0; i < bus->dev_count; i++) { 3353 struct kvm_io_device *pos = bus->range[i].dev; 3354 3355 kvm_iodevice_destructor(pos); 3356 } 3357 kfree(bus); 3358 } 3359 3360 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3361 const struct kvm_io_range *r2) 3362 { 3363 gpa_t addr1 = r1->addr; 3364 gpa_t addr2 = r2->addr; 3365 3366 if (addr1 < addr2) 3367 return -1; 3368 3369 /* If r2->len == 0, match the exact address. If r2->len != 0, 3370 * accept any overlapping write. Any order is acceptable for 3371 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3372 * we process all of them. 3373 */ 3374 if (r2->len) { 3375 addr1 += r1->len; 3376 addr2 += r2->len; 3377 } 3378 3379 if (addr1 > addr2) 3380 return 1; 3381 3382 return 0; 3383 } 3384 3385 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3386 { 3387 return kvm_io_bus_cmp(p1, p2); 3388 } 3389 3390 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3391 gpa_t addr, int len) 3392 { 3393 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3394 .addr = addr, 3395 .len = len, 3396 .dev = dev, 3397 }; 3398 3399 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3400 kvm_io_bus_sort_cmp, NULL); 3401 3402 return 0; 3403 } 3404 3405 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3406 gpa_t addr, int len) 3407 { 3408 struct kvm_io_range *range, key; 3409 int off; 3410 3411 key = (struct kvm_io_range) { 3412 .addr = addr, 3413 .len = len, 3414 }; 3415 3416 range = bsearch(&key, bus->range, bus->dev_count, 3417 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3418 if (range == NULL) 3419 return -ENOENT; 3420 3421 off = range - bus->range; 3422 3423 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3424 off--; 3425 3426 return off; 3427 } 3428 3429 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3430 struct kvm_io_range *range, const void *val) 3431 { 3432 int idx; 3433 3434 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3435 if (idx < 0) 3436 return -EOPNOTSUPP; 3437 3438 while (idx < bus->dev_count && 3439 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3440 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3441 range->len, val)) 3442 return idx; 3443 idx++; 3444 } 3445 3446 return -EOPNOTSUPP; 3447 } 3448 3449 /* kvm_io_bus_write - called under kvm->slots_lock */ 3450 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3451 int len, const void *val) 3452 { 3453 struct kvm_io_bus *bus; 3454 struct kvm_io_range range; 3455 int r; 3456 3457 range = (struct kvm_io_range) { 3458 .addr = addr, 3459 .len = len, 3460 }; 3461 3462 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3463 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3464 return r < 0 ? r : 0; 3465 } 3466 3467 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3468 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3469 gpa_t addr, int len, const void *val, long cookie) 3470 { 3471 struct kvm_io_bus *bus; 3472 struct kvm_io_range range; 3473 3474 range = (struct kvm_io_range) { 3475 .addr = addr, 3476 .len = len, 3477 }; 3478 3479 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3480 3481 /* First try the device referenced by cookie. */ 3482 if ((cookie >= 0) && (cookie < bus->dev_count) && 3483 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3484 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3485 val)) 3486 return cookie; 3487 3488 /* 3489 * cookie contained garbage; fall back to search and return the 3490 * correct cookie value. 3491 */ 3492 return __kvm_io_bus_write(vcpu, bus, &range, val); 3493 } 3494 3495 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3496 struct kvm_io_range *range, void *val) 3497 { 3498 int idx; 3499 3500 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3501 if (idx < 0) 3502 return -EOPNOTSUPP; 3503 3504 while (idx < bus->dev_count && 3505 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3506 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3507 range->len, val)) 3508 return idx; 3509 idx++; 3510 } 3511 3512 return -EOPNOTSUPP; 3513 } 3514 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3515 3516 /* kvm_io_bus_read - called under kvm->slots_lock */ 3517 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3518 int len, void *val) 3519 { 3520 struct kvm_io_bus *bus; 3521 struct kvm_io_range range; 3522 int r; 3523 3524 range = (struct kvm_io_range) { 3525 .addr = addr, 3526 .len = len, 3527 }; 3528 3529 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3530 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3531 return r < 0 ? r : 0; 3532 } 3533 3534 3535 /* Caller must hold slots_lock. */ 3536 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3537 int len, struct kvm_io_device *dev) 3538 { 3539 struct kvm_io_bus *new_bus, *bus; 3540 3541 bus = kvm->buses[bus_idx]; 3542 /* exclude ioeventfd which is limited by maximum fd */ 3543 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3544 return -ENOSPC; 3545 3546 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3547 sizeof(struct kvm_io_range)), GFP_KERNEL); 3548 if (!new_bus) 3549 return -ENOMEM; 3550 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3551 sizeof(struct kvm_io_range))); 3552 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3553 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3554 synchronize_srcu_expedited(&kvm->srcu); 3555 kfree(bus); 3556 3557 return 0; 3558 } 3559 3560 /* Caller must hold slots_lock. */ 3561 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3562 struct kvm_io_device *dev) 3563 { 3564 int i, r; 3565 struct kvm_io_bus *new_bus, *bus; 3566 3567 bus = kvm->buses[bus_idx]; 3568 r = -ENOENT; 3569 for (i = 0; i < bus->dev_count; i++) 3570 if (bus->range[i].dev == dev) { 3571 r = 0; 3572 break; 3573 } 3574 3575 if (r) 3576 return r; 3577 3578 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3579 sizeof(struct kvm_io_range)), GFP_KERNEL); 3580 if (!new_bus) 3581 return -ENOMEM; 3582 3583 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3584 new_bus->dev_count--; 3585 memcpy(new_bus->range + i, bus->range + i + 1, 3586 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3587 3588 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3589 synchronize_srcu_expedited(&kvm->srcu); 3590 kfree(bus); 3591 return r; 3592 } 3593 3594 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3595 gpa_t addr) 3596 { 3597 struct kvm_io_bus *bus; 3598 int dev_idx, srcu_idx; 3599 struct kvm_io_device *iodev = NULL; 3600 3601 srcu_idx = srcu_read_lock(&kvm->srcu); 3602 3603 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3604 3605 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3606 if (dev_idx < 0) 3607 goto out_unlock; 3608 3609 iodev = bus->range[dev_idx].dev; 3610 3611 out_unlock: 3612 srcu_read_unlock(&kvm->srcu, srcu_idx); 3613 3614 return iodev; 3615 } 3616 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3617 3618 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3619 int (*get)(void *, u64 *), int (*set)(void *, u64), 3620 const char *fmt) 3621 { 3622 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3623 inode->i_private; 3624 3625 /* The debugfs files are a reference to the kvm struct which 3626 * is still valid when kvm_destroy_vm is called. 3627 * To avoid the race between open and the removal of the debugfs 3628 * directory we test against the users count. 3629 */ 3630 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3631 return -ENOENT; 3632 3633 if (simple_attr_open(inode, file, get, set, fmt)) { 3634 kvm_put_kvm(stat_data->kvm); 3635 return -ENOMEM; 3636 } 3637 3638 return 0; 3639 } 3640 3641 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3642 { 3643 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3644 inode->i_private; 3645 3646 simple_attr_release(inode, file); 3647 kvm_put_kvm(stat_data->kvm); 3648 3649 return 0; 3650 } 3651 3652 static int vm_stat_get_per_vm(void *data, u64 *val) 3653 { 3654 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3655 3656 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3657 3658 return 0; 3659 } 3660 3661 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3662 { 3663 __simple_attr_check_format("%llu\n", 0ull); 3664 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3665 NULL, "%llu\n"); 3666 } 3667 3668 static const struct file_operations vm_stat_get_per_vm_fops = { 3669 .owner = THIS_MODULE, 3670 .open = vm_stat_get_per_vm_open, 3671 .release = kvm_debugfs_release, 3672 .read = simple_attr_read, 3673 .write = simple_attr_write, 3674 .llseek = generic_file_llseek, 3675 }; 3676 3677 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3678 { 3679 int i; 3680 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3681 struct kvm_vcpu *vcpu; 3682 3683 *val = 0; 3684 3685 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3686 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3687 3688 return 0; 3689 } 3690 3691 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3692 { 3693 __simple_attr_check_format("%llu\n", 0ull); 3694 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3695 NULL, "%llu\n"); 3696 } 3697 3698 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3699 .owner = THIS_MODULE, 3700 .open = vcpu_stat_get_per_vm_open, 3701 .release = kvm_debugfs_release, 3702 .read = simple_attr_read, 3703 .write = simple_attr_write, 3704 .llseek = generic_file_llseek, 3705 }; 3706 3707 static const struct file_operations *stat_fops_per_vm[] = { 3708 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3709 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3710 }; 3711 3712 static int vm_stat_get(void *_offset, u64 *val) 3713 { 3714 unsigned offset = (long)_offset; 3715 struct kvm *kvm; 3716 struct kvm_stat_data stat_tmp = {.offset = offset}; 3717 u64 tmp_val; 3718 3719 *val = 0; 3720 spin_lock(&kvm_lock); 3721 list_for_each_entry(kvm, &vm_list, vm_list) { 3722 stat_tmp.kvm = kvm; 3723 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3724 *val += tmp_val; 3725 } 3726 spin_unlock(&kvm_lock); 3727 return 0; 3728 } 3729 3730 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3731 3732 static int vcpu_stat_get(void *_offset, u64 *val) 3733 { 3734 unsigned offset = (long)_offset; 3735 struct kvm *kvm; 3736 struct kvm_stat_data stat_tmp = {.offset = offset}; 3737 u64 tmp_val; 3738 3739 *val = 0; 3740 spin_lock(&kvm_lock); 3741 list_for_each_entry(kvm, &vm_list, vm_list) { 3742 stat_tmp.kvm = kvm; 3743 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3744 *val += tmp_val; 3745 } 3746 spin_unlock(&kvm_lock); 3747 return 0; 3748 } 3749 3750 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3751 3752 static const struct file_operations *stat_fops[] = { 3753 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3754 [KVM_STAT_VM] = &vm_stat_fops, 3755 }; 3756 3757 static int kvm_init_debug(void) 3758 { 3759 int r = -EEXIST; 3760 struct kvm_stats_debugfs_item *p; 3761 3762 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3763 if (kvm_debugfs_dir == NULL) 3764 goto out; 3765 3766 kvm_debugfs_num_entries = 0; 3767 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3768 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3769 (void *)(long)p->offset, 3770 stat_fops[p->kind])) 3771 goto out_dir; 3772 } 3773 3774 return 0; 3775 3776 out_dir: 3777 debugfs_remove_recursive(kvm_debugfs_dir); 3778 out: 3779 return r; 3780 } 3781 3782 static int kvm_suspend(void) 3783 { 3784 if (kvm_usage_count) 3785 hardware_disable_nolock(NULL); 3786 return 0; 3787 } 3788 3789 static void kvm_resume(void) 3790 { 3791 if (kvm_usage_count) { 3792 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3793 hardware_enable_nolock(NULL); 3794 } 3795 } 3796 3797 static struct syscore_ops kvm_syscore_ops = { 3798 .suspend = kvm_suspend, 3799 .resume = kvm_resume, 3800 }; 3801 3802 static inline 3803 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3804 { 3805 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3806 } 3807 3808 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3809 { 3810 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3811 3812 if (vcpu->preempted) 3813 vcpu->preempted = false; 3814 3815 kvm_arch_sched_in(vcpu, cpu); 3816 3817 kvm_arch_vcpu_load(vcpu, cpu); 3818 } 3819 3820 static void kvm_sched_out(struct preempt_notifier *pn, 3821 struct task_struct *next) 3822 { 3823 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3824 3825 if (current->state == TASK_RUNNING) 3826 vcpu->preempted = true; 3827 kvm_arch_vcpu_put(vcpu); 3828 } 3829 3830 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3831 struct module *module) 3832 { 3833 int r; 3834 int cpu; 3835 3836 r = kvm_arch_init(opaque); 3837 if (r) 3838 goto out_fail; 3839 3840 /* 3841 * kvm_arch_init makes sure there's at most one caller 3842 * for architectures that support multiple implementations, 3843 * like intel and amd on x86. 3844 */ 3845 3846 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3847 r = -ENOMEM; 3848 goto out_free_0; 3849 } 3850 3851 r = kvm_arch_hardware_setup(); 3852 if (r < 0) 3853 goto out_free_0a; 3854 3855 for_each_online_cpu(cpu) { 3856 smp_call_function_single(cpu, 3857 kvm_arch_check_processor_compat, 3858 &r, 1); 3859 if (r < 0) 3860 goto out_free_1; 3861 } 3862 3863 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3864 kvm_starting_cpu, kvm_dying_cpu); 3865 if (r) 3866 goto out_free_2; 3867 register_reboot_notifier(&kvm_reboot_notifier); 3868 3869 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3870 if (!vcpu_align) 3871 vcpu_align = __alignof__(struct kvm_vcpu); 3872 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3873 0, NULL); 3874 if (!kvm_vcpu_cache) { 3875 r = -ENOMEM; 3876 goto out_free_3; 3877 } 3878 3879 r = kvm_async_pf_init(); 3880 if (r) 3881 goto out_free; 3882 3883 kvm_chardev_ops.owner = module; 3884 kvm_vm_fops.owner = module; 3885 kvm_vcpu_fops.owner = module; 3886 3887 r = misc_register(&kvm_dev); 3888 if (r) { 3889 pr_err("kvm: misc device register failed\n"); 3890 goto out_unreg; 3891 } 3892 3893 register_syscore_ops(&kvm_syscore_ops); 3894 3895 kvm_preempt_ops.sched_in = kvm_sched_in; 3896 kvm_preempt_ops.sched_out = kvm_sched_out; 3897 3898 r = kvm_init_debug(); 3899 if (r) { 3900 pr_err("kvm: create debugfs files failed\n"); 3901 goto out_undebugfs; 3902 } 3903 3904 r = kvm_vfio_ops_init(); 3905 WARN_ON(r); 3906 3907 return 0; 3908 3909 out_undebugfs: 3910 unregister_syscore_ops(&kvm_syscore_ops); 3911 misc_deregister(&kvm_dev); 3912 out_unreg: 3913 kvm_async_pf_deinit(); 3914 out_free: 3915 kmem_cache_destroy(kvm_vcpu_cache); 3916 out_free_3: 3917 unregister_reboot_notifier(&kvm_reboot_notifier); 3918 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3919 out_free_2: 3920 out_free_1: 3921 kvm_arch_hardware_unsetup(); 3922 out_free_0a: 3923 free_cpumask_var(cpus_hardware_enabled); 3924 out_free_0: 3925 kvm_irqfd_exit(); 3926 kvm_arch_exit(); 3927 out_fail: 3928 return r; 3929 } 3930 EXPORT_SYMBOL_GPL(kvm_init); 3931 3932 void kvm_exit(void) 3933 { 3934 debugfs_remove_recursive(kvm_debugfs_dir); 3935 misc_deregister(&kvm_dev); 3936 kmem_cache_destroy(kvm_vcpu_cache); 3937 kvm_async_pf_deinit(); 3938 unregister_syscore_ops(&kvm_syscore_ops); 3939 unregister_reboot_notifier(&kvm_reboot_notifier); 3940 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3941 on_each_cpu(hardware_disable_nolock, NULL, 1); 3942 kvm_arch_hardware_unsetup(); 3943 kvm_arch_exit(); 3944 kvm_irqfd_exit(); 3945 free_cpumask_var(cpus_hardware_enabled); 3946 kvm_vfio_ops_exit(); 3947 } 3948 EXPORT_SYMBOL_GPL(kvm_exit); 3949