xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 			    struct kvm_memory_slot *new, u64 last_generation);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 		/* The thread running this VCPU changed. */
129 		struct pid *oldpid = vcpu->pid;
130 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 		rcu_assign_pointer(vcpu->pid, newpid);
132 		synchronize_rcu();
133 		put_pid(oldpid);
134 	}
135 	cpu = get_cpu();
136 	preempt_notifier_register(&vcpu->preempt_notifier);
137 	kvm_arch_vcpu_load(vcpu, cpu);
138 	put_cpu();
139 	return 0;
140 }
141 
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 	preempt_disable();
145 	kvm_arch_vcpu_put(vcpu);
146 	preempt_notifier_unregister(&vcpu->preempt_notifier);
147 	preempt_enable();
148 	mutex_unlock(&vcpu->mutex);
149 }
150 
151 static void ack_flush(void *_completed)
152 {
153 }
154 
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 	int i, cpu, me;
158 	cpumask_var_t cpus;
159 	bool called = true;
160 	struct kvm_vcpu *vcpu;
161 
162 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163 
164 	me = get_cpu();
165 	kvm_for_each_vcpu(i, vcpu, kvm) {
166 		kvm_make_request(req, vcpu);
167 		cpu = vcpu->cpu;
168 
169 		/* Set ->requests bit before we read ->mode */
170 		smp_mb();
171 
172 		if (cpus != NULL && cpu != -1 && cpu != me &&
173 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 			cpumask_set_cpu(cpu, cpus);
175 	}
176 	if (unlikely(cpus == NULL))
177 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 	else if (!cpumask_empty(cpus))
179 		smp_call_function_many(cpus, ack_flush, NULL, 1);
180 	else
181 		called = false;
182 	put_cpu();
183 	free_cpumask_var(cpus);
184 	return called;
185 }
186 
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 		++kvm->stat.remote_tlb_flush;
191 	kvm->tlbs_dirty = false;
192 }
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194 
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199 
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204 
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209 
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 	struct page *page;
213 	int r;
214 
215 	mutex_init(&vcpu->mutex);
216 	vcpu->cpu = -1;
217 	vcpu->kvm = kvm;
218 	vcpu->vcpu_id = id;
219 	vcpu->pid = NULL;
220 	init_waitqueue_head(&vcpu->wq);
221 	kvm_async_pf_vcpu_init(vcpu);
222 
223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 	if (!page) {
225 		r = -ENOMEM;
226 		goto fail;
227 	}
228 	vcpu->run = page_address(page);
229 
230 	kvm_vcpu_set_in_spin_loop(vcpu, false);
231 	kvm_vcpu_set_dy_eligible(vcpu, false);
232 	vcpu->preempted = false;
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 
288 	kvm->mmu_notifier_seq++;
289 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 
294 	spin_unlock(&kvm->mmu_lock);
295 	srcu_read_unlock(&kvm->srcu, idx);
296 }
297 
298 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
299 					struct mm_struct *mm,
300 					unsigned long address,
301 					pte_t pte)
302 {
303 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
304 	int idx;
305 
306 	idx = srcu_read_lock(&kvm->srcu);
307 	spin_lock(&kvm->mmu_lock);
308 	kvm->mmu_notifier_seq++;
309 	kvm_set_spte_hva(kvm, address, pte);
310 	spin_unlock(&kvm->mmu_lock);
311 	srcu_read_unlock(&kvm->srcu, idx);
312 }
313 
314 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
315 						    struct mm_struct *mm,
316 						    unsigned long start,
317 						    unsigned long end)
318 {
319 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 	int need_tlb_flush = 0, idx;
321 
322 	idx = srcu_read_lock(&kvm->srcu);
323 	spin_lock(&kvm->mmu_lock);
324 	/*
325 	 * The count increase must become visible at unlock time as no
326 	 * spte can be established without taking the mmu_lock and
327 	 * count is also read inside the mmu_lock critical section.
328 	 */
329 	kvm->mmu_notifier_count++;
330 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
331 	need_tlb_flush |= kvm->tlbs_dirty;
332 	/* we've to flush the tlb before the pages can be freed */
333 	if (need_tlb_flush)
334 		kvm_flush_remote_tlbs(kvm);
335 
336 	spin_unlock(&kvm->mmu_lock);
337 	srcu_read_unlock(&kvm->srcu, idx);
338 }
339 
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 						  struct mm_struct *mm,
342 						  unsigned long start,
343 						  unsigned long end)
344 {
345 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
346 
347 	spin_lock(&kvm->mmu_lock);
348 	/*
349 	 * This sequence increase will notify the kvm page fault that
350 	 * the page that is going to be mapped in the spte could have
351 	 * been freed.
352 	 */
353 	kvm->mmu_notifier_seq++;
354 	smp_wmb();
355 	/*
356 	 * The above sequence increase must be visible before the
357 	 * below count decrease, which is ensured by the smp_wmb above
358 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
359 	 */
360 	kvm->mmu_notifier_count--;
361 	spin_unlock(&kvm->mmu_lock);
362 
363 	BUG_ON(kvm->mmu_notifier_count < 0);
364 }
365 
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 					      struct mm_struct *mm,
368 					      unsigned long address)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 	int young, idx;
372 
373 	idx = srcu_read_lock(&kvm->srcu);
374 	spin_lock(&kvm->mmu_lock);
375 
376 	young = kvm_age_hva(kvm, address);
377 	if (young)
378 		kvm_flush_remote_tlbs(kvm);
379 
380 	spin_unlock(&kvm->mmu_lock);
381 	srcu_read_unlock(&kvm->srcu, idx);
382 
383 	return young;
384 }
385 
386 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
387 				       struct mm_struct *mm,
388 				       unsigned long address)
389 {
390 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
391 	int young, idx;
392 
393 	idx = srcu_read_lock(&kvm->srcu);
394 	spin_lock(&kvm->mmu_lock);
395 	young = kvm_test_age_hva(kvm, address);
396 	spin_unlock(&kvm->mmu_lock);
397 	srcu_read_unlock(&kvm->srcu, idx);
398 
399 	return young;
400 }
401 
402 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
403 				     struct mm_struct *mm)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 	int idx;
407 
408 	idx = srcu_read_lock(&kvm->srcu);
409 	kvm_arch_flush_shadow_all(kvm);
410 	srcu_read_unlock(&kvm->srcu, idx);
411 }
412 
413 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
414 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
415 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
416 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
417 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
418 	.test_young		= kvm_mmu_notifier_test_young,
419 	.change_pte		= kvm_mmu_notifier_change_pte,
420 	.release		= kvm_mmu_notifier_release,
421 };
422 
423 static int kvm_init_mmu_notifier(struct kvm *kvm)
424 {
425 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
426 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
427 }
428 
429 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
430 
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433 	return 0;
434 }
435 
436 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
437 
438 static void kvm_init_memslots_id(struct kvm *kvm)
439 {
440 	int i;
441 	struct kvm_memslots *slots = kvm->memslots;
442 
443 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
444 		slots->id_to_index[i] = slots->memslots[i].id = i;
445 }
446 
447 static struct kvm *kvm_create_vm(unsigned long type)
448 {
449 	int r, i;
450 	struct kvm *kvm = kvm_arch_alloc_vm();
451 
452 	if (!kvm)
453 		return ERR_PTR(-ENOMEM);
454 
455 	r = kvm_arch_init_vm(kvm, type);
456 	if (r)
457 		goto out_err_nodisable;
458 
459 	r = hardware_enable_all();
460 	if (r)
461 		goto out_err_nodisable;
462 
463 #ifdef CONFIG_HAVE_KVM_IRQCHIP
464 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
465 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
466 #endif
467 
468 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
469 
470 	r = -ENOMEM;
471 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
472 	if (!kvm->memslots)
473 		goto out_err_nosrcu;
474 	kvm_init_memslots_id(kvm);
475 	if (init_srcu_struct(&kvm->srcu))
476 		goto out_err_nosrcu;
477 	for (i = 0; i < KVM_NR_BUSES; i++) {
478 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
479 					GFP_KERNEL);
480 		if (!kvm->buses[i])
481 			goto out_err;
482 	}
483 
484 	spin_lock_init(&kvm->mmu_lock);
485 	kvm->mm = current->mm;
486 	atomic_inc(&kvm->mm->mm_count);
487 	kvm_eventfd_init(kvm);
488 	mutex_init(&kvm->lock);
489 	mutex_init(&kvm->irq_lock);
490 	mutex_init(&kvm->slots_lock);
491 	atomic_set(&kvm->users_count, 1);
492 	INIT_LIST_HEAD(&kvm->devices);
493 
494 	r = kvm_init_mmu_notifier(kvm);
495 	if (r)
496 		goto out_err;
497 
498 	spin_lock(&kvm_lock);
499 	list_add(&kvm->vm_list, &vm_list);
500 	spin_unlock(&kvm_lock);
501 
502 	return kvm;
503 
504 out_err:
505 	cleanup_srcu_struct(&kvm->srcu);
506 out_err_nosrcu:
507 	hardware_disable_all();
508 out_err_nodisable:
509 	for (i = 0; i < KVM_NR_BUSES; i++)
510 		kfree(kvm->buses[i]);
511 	kfree(kvm->memslots);
512 	kvm_arch_free_vm(kvm);
513 	return ERR_PTR(r);
514 }
515 
516 /*
517  * Avoid using vmalloc for a small buffer.
518  * Should not be used when the size is statically known.
519  */
520 void *kvm_kvzalloc(unsigned long size)
521 {
522 	if (size > PAGE_SIZE)
523 		return vzalloc(size);
524 	else
525 		return kzalloc(size, GFP_KERNEL);
526 }
527 
528 void kvm_kvfree(const void *addr)
529 {
530 	if (is_vmalloc_addr(addr))
531 		vfree(addr);
532 	else
533 		kfree(addr);
534 }
535 
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538 	if (!memslot->dirty_bitmap)
539 		return;
540 
541 	kvm_kvfree(memslot->dirty_bitmap);
542 	memslot->dirty_bitmap = NULL;
543 }
544 
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
549 				  struct kvm_memory_slot *dont)
550 {
551 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 		kvm_destroy_dirty_bitmap(free);
553 
554 	kvm_arch_free_memslot(kvm, free, dont);
555 
556 	free->npages = 0;
557 }
558 
559 static void kvm_free_physmem(struct kvm *kvm)
560 {
561 	struct kvm_memslots *slots = kvm->memslots;
562 	struct kvm_memory_slot *memslot;
563 
564 	kvm_for_each_memslot(memslot, slots)
565 		kvm_free_physmem_slot(kvm, memslot, NULL);
566 
567 	kfree(kvm->memslots);
568 }
569 
570 static void kvm_destroy_devices(struct kvm *kvm)
571 {
572 	struct list_head *node, *tmp;
573 
574 	list_for_each_safe(node, tmp, &kvm->devices) {
575 		struct kvm_device *dev =
576 			list_entry(node, struct kvm_device, vm_node);
577 
578 		list_del(node);
579 		dev->ops->destroy(dev);
580 	}
581 }
582 
583 static void kvm_destroy_vm(struct kvm *kvm)
584 {
585 	int i;
586 	struct mm_struct *mm = kvm->mm;
587 
588 	kvm_arch_sync_events(kvm);
589 	spin_lock(&kvm_lock);
590 	list_del(&kvm->vm_list);
591 	spin_unlock(&kvm_lock);
592 	kvm_free_irq_routing(kvm);
593 	for (i = 0; i < KVM_NR_BUSES; i++)
594 		kvm_io_bus_destroy(kvm->buses[i]);
595 	kvm_coalesced_mmio_free(kvm);
596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
597 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
598 #else
599 	kvm_arch_flush_shadow_all(kvm);
600 #endif
601 	kvm_arch_destroy_vm(kvm);
602 	kvm_destroy_devices(kvm);
603 	kvm_free_physmem(kvm);
604 	cleanup_srcu_struct(&kvm->srcu);
605 	kvm_arch_free_vm(kvm);
606 	hardware_disable_all();
607 	mmdrop(mm);
608 }
609 
610 void kvm_get_kvm(struct kvm *kvm)
611 {
612 	atomic_inc(&kvm->users_count);
613 }
614 EXPORT_SYMBOL_GPL(kvm_get_kvm);
615 
616 void kvm_put_kvm(struct kvm *kvm)
617 {
618 	if (atomic_dec_and_test(&kvm->users_count))
619 		kvm_destroy_vm(kvm);
620 }
621 EXPORT_SYMBOL_GPL(kvm_put_kvm);
622 
623 
624 static int kvm_vm_release(struct inode *inode, struct file *filp)
625 {
626 	struct kvm *kvm = filp->private_data;
627 
628 	kvm_irqfd_release(kvm);
629 
630 	kvm_put_kvm(kvm);
631 	return 0;
632 }
633 
634 /*
635  * Allocation size is twice as large as the actual dirty bitmap size.
636  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
637  */
638 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
639 {
640 #ifndef CONFIG_S390
641 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
642 
643 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
644 	if (!memslot->dirty_bitmap)
645 		return -ENOMEM;
646 
647 #endif /* !CONFIG_S390 */
648 	return 0;
649 }
650 
651 static int cmp_memslot(const void *slot1, const void *slot2)
652 {
653 	struct kvm_memory_slot *s1, *s2;
654 
655 	s1 = (struct kvm_memory_slot *)slot1;
656 	s2 = (struct kvm_memory_slot *)slot2;
657 
658 	if (s1->npages < s2->npages)
659 		return 1;
660 	if (s1->npages > s2->npages)
661 		return -1;
662 
663 	return 0;
664 }
665 
666 /*
667  * Sort the memslots base on its size, so the larger slots
668  * will get better fit.
669  */
670 static void sort_memslots(struct kvm_memslots *slots)
671 {
672 	int i;
673 
674 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
675 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
676 
677 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
678 		slots->id_to_index[slots->memslots[i].id] = i;
679 }
680 
681 static void update_memslots(struct kvm_memslots *slots,
682 			    struct kvm_memory_slot *new,
683 			    u64 last_generation)
684 {
685 	if (new) {
686 		int id = new->id;
687 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
688 		unsigned long npages = old->npages;
689 
690 		*old = *new;
691 		if (new->npages != npages)
692 			sort_memslots(slots);
693 	}
694 
695 	slots->generation = last_generation + 1;
696 }
697 
698 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
699 {
700 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
701 
702 #ifdef KVM_CAP_READONLY_MEM
703 	valid_flags |= KVM_MEM_READONLY;
704 #endif
705 
706 	if (mem->flags & ~valid_flags)
707 		return -EINVAL;
708 
709 	return 0;
710 }
711 
712 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
713 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
714 {
715 	struct kvm_memslots *old_memslots = kvm->memslots;
716 
717 	update_memslots(slots, new, kvm->memslots->generation);
718 	rcu_assign_pointer(kvm->memslots, slots);
719 	synchronize_srcu_expedited(&kvm->srcu);
720 
721 	kvm_arch_memslots_updated(kvm);
722 
723 	return old_memslots;
724 }
725 
726 /*
727  * Allocate some memory and give it an address in the guest physical address
728  * space.
729  *
730  * Discontiguous memory is allowed, mostly for framebuffers.
731  *
732  * Must be called holding mmap_sem for write.
733  */
734 int __kvm_set_memory_region(struct kvm *kvm,
735 			    struct kvm_userspace_memory_region *mem)
736 {
737 	int r;
738 	gfn_t base_gfn;
739 	unsigned long npages;
740 	struct kvm_memory_slot *slot;
741 	struct kvm_memory_slot old, new;
742 	struct kvm_memslots *slots = NULL, *old_memslots;
743 	enum kvm_mr_change change;
744 
745 	r = check_memory_region_flags(mem);
746 	if (r)
747 		goto out;
748 
749 	r = -EINVAL;
750 	/* General sanity checks */
751 	if (mem->memory_size & (PAGE_SIZE - 1))
752 		goto out;
753 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
754 		goto out;
755 	/* We can read the guest memory with __xxx_user() later on. */
756 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
757 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
758 	     !access_ok(VERIFY_WRITE,
759 			(void __user *)(unsigned long)mem->userspace_addr,
760 			mem->memory_size)))
761 		goto out;
762 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
763 		goto out;
764 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
765 		goto out;
766 
767 	slot = id_to_memslot(kvm->memslots, mem->slot);
768 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
769 	npages = mem->memory_size >> PAGE_SHIFT;
770 
771 	r = -EINVAL;
772 	if (npages > KVM_MEM_MAX_NR_PAGES)
773 		goto out;
774 
775 	if (!npages)
776 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
777 
778 	new = old = *slot;
779 
780 	new.id = mem->slot;
781 	new.base_gfn = base_gfn;
782 	new.npages = npages;
783 	new.flags = mem->flags;
784 
785 	r = -EINVAL;
786 	if (npages) {
787 		if (!old.npages)
788 			change = KVM_MR_CREATE;
789 		else { /* Modify an existing slot. */
790 			if ((mem->userspace_addr != old.userspace_addr) ||
791 			    (npages != old.npages) ||
792 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
793 				goto out;
794 
795 			if (base_gfn != old.base_gfn)
796 				change = KVM_MR_MOVE;
797 			else if (new.flags != old.flags)
798 				change = KVM_MR_FLAGS_ONLY;
799 			else { /* Nothing to change. */
800 				r = 0;
801 				goto out;
802 			}
803 		}
804 	} else if (old.npages) {
805 		change = KVM_MR_DELETE;
806 	} else /* Modify a non-existent slot: disallowed. */
807 		goto out;
808 
809 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
810 		/* Check for overlaps */
811 		r = -EEXIST;
812 		kvm_for_each_memslot(slot, kvm->memslots) {
813 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
814 			    (slot->id == mem->slot))
815 				continue;
816 			if (!((base_gfn + npages <= slot->base_gfn) ||
817 			      (base_gfn >= slot->base_gfn + slot->npages)))
818 				goto out;
819 		}
820 	}
821 
822 	/* Free page dirty bitmap if unneeded */
823 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
824 		new.dirty_bitmap = NULL;
825 
826 	r = -ENOMEM;
827 	if (change == KVM_MR_CREATE) {
828 		new.userspace_addr = mem->userspace_addr;
829 
830 		if (kvm_arch_create_memslot(kvm, &new, npages))
831 			goto out_free;
832 	}
833 
834 	/* Allocate page dirty bitmap if needed */
835 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
836 		if (kvm_create_dirty_bitmap(&new) < 0)
837 			goto out_free;
838 	}
839 
840 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
841 		r = -ENOMEM;
842 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
843 				GFP_KERNEL);
844 		if (!slots)
845 			goto out_free;
846 		slot = id_to_memslot(slots, mem->slot);
847 		slot->flags |= KVM_MEMSLOT_INVALID;
848 
849 		old_memslots = install_new_memslots(kvm, slots, NULL);
850 
851 		/* slot was deleted or moved, clear iommu mapping */
852 		kvm_iommu_unmap_pages(kvm, &old);
853 		/* From this point no new shadow pages pointing to a deleted,
854 		 * or moved, memslot will be created.
855 		 *
856 		 * validation of sp->gfn happens in:
857 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
858 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
859 		 */
860 		kvm_arch_flush_shadow_memslot(kvm, slot);
861 		slots = old_memslots;
862 	}
863 
864 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
865 	if (r)
866 		goto out_slots;
867 
868 	r = -ENOMEM;
869 	/*
870 	 * We can re-use the old_memslots from above, the only difference
871 	 * from the currently installed memslots is the invalid flag.  This
872 	 * will get overwritten by update_memslots anyway.
873 	 */
874 	if (!slots) {
875 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
876 				GFP_KERNEL);
877 		if (!slots)
878 			goto out_free;
879 	}
880 
881 	/* actual memory is freed via old in kvm_free_physmem_slot below */
882 	if (change == KVM_MR_DELETE) {
883 		new.dirty_bitmap = NULL;
884 		memset(&new.arch, 0, sizeof(new.arch));
885 	}
886 
887 	old_memslots = install_new_memslots(kvm, slots, &new);
888 
889 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
890 
891 	kvm_free_physmem_slot(kvm, &old, &new);
892 	kfree(old_memslots);
893 
894 	/*
895 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
896 	 * un-mapped and re-mapped if their base changes.  Since base change
897 	 * unmapping is handled above with slot deletion, mapping alone is
898 	 * needed here.  Anything else the iommu might care about for existing
899 	 * slots (size changes, userspace addr changes and read-only flag
900 	 * changes) is disallowed above, so any other attribute changes getting
901 	 * here can be skipped.
902 	 */
903 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
904 		r = kvm_iommu_map_pages(kvm, &new);
905 		return r;
906 	}
907 
908 	return 0;
909 
910 out_slots:
911 	kfree(slots);
912 out_free:
913 	kvm_free_physmem_slot(kvm, &new, &old);
914 out:
915 	return r;
916 }
917 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
918 
919 int kvm_set_memory_region(struct kvm *kvm,
920 			  struct kvm_userspace_memory_region *mem)
921 {
922 	int r;
923 
924 	mutex_lock(&kvm->slots_lock);
925 	r = __kvm_set_memory_region(kvm, mem);
926 	mutex_unlock(&kvm->slots_lock);
927 	return r;
928 }
929 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
930 
931 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
932 					  struct kvm_userspace_memory_region *mem)
933 {
934 	if (mem->slot >= KVM_USER_MEM_SLOTS)
935 		return -EINVAL;
936 	return kvm_set_memory_region(kvm, mem);
937 }
938 
939 int kvm_get_dirty_log(struct kvm *kvm,
940 			struct kvm_dirty_log *log, int *is_dirty)
941 {
942 	struct kvm_memory_slot *memslot;
943 	int r, i;
944 	unsigned long n;
945 	unsigned long any = 0;
946 
947 	r = -EINVAL;
948 	if (log->slot >= KVM_USER_MEM_SLOTS)
949 		goto out;
950 
951 	memslot = id_to_memslot(kvm->memslots, log->slot);
952 	r = -ENOENT;
953 	if (!memslot->dirty_bitmap)
954 		goto out;
955 
956 	n = kvm_dirty_bitmap_bytes(memslot);
957 
958 	for (i = 0; !any && i < n/sizeof(long); ++i)
959 		any = memslot->dirty_bitmap[i];
960 
961 	r = -EFAULT;
962 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
963 		goto out;
964 
965 	if (any)
966 		*is_dirty = 1;
967 
968 	r = 0;
969 out:
970 	return r;
971 }
972 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
973 
974 bool kvm_largepages_enabled(void)
975 {
976 	return largepages_enabled;
977 }
978 
979 void kvm_disable_largepages(void)
980 {
981 	largepages_enabled = false;
982 }
983 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
984 
985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
986 {
987 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
988 }
989 EXPORT_SYMBOL_GPL(gfn_to_memslot);
990 
991 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
992 {
993 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
994 
995 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
996 	      memslot->flags & KVM_MEMSLOT_INVALID)
997 		return 0;
998 
999 	return 1;
1000 }
1001 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1002 
1003 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1004 {
1005 	struct vm_area_struct *vma;
1006 	unsigned long addr, size;
1007 
1008 	size = PAGE_SIZE;
1009 
1010 	addr = gfn_to_hva(kvm, gfn);
1011 	if (kvm_is_error_hva(addr))
1012 		return PAGE_SIZE;
1013 
1014 	down_read(&current->mm->mmap_sem);
1015 	vma = find_vma(current->mm, addr);
1016 	if (!vma)
1017 		goto out;
1018 
1019 	size = vma_kernel_pagesize(vma);
1020 
1021 out:
1022 	up_read(&current->mm->mmap_sem);
1023 
1024 	return size;
1025 }
1026 
1027 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1028 {
1029 	return slot->flags & KVM_MEM_READONLY;
1030 }
1031 
1032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1033 				       gfn_t *nr_pages, bool write)
1034 {
1035 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1036 		return KVM_HVA_ERR_BAD;
1037 
1038 	if (memslot_is_readonly(slot) && write)
1039 		return KVM_HVA_ERR_RO_BAD;
1040 
1041 	if (nr_pages)
1042 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1043 
1044 	return __gfn_to_hva_memslot(slot, gfn);
1045 }
1046 
1047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1048 				     gfn_t *nr_pages)
1049 {
1050 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1051 }
1052 
1053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1054 					gfn_t gfn)
1055 {
1056 	return gfn_to_hva_many(slot, gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1059 
1060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1061 {
1062 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1063 }
1064 EXPORT_SYMBOL_GPL(gfn_to_hva);
1065 
1066 /*
1067  * If writable is set to false, the hva returned by this function is only
1068  * allowed to be read.
1069  */
1070 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1071 {
1072 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1073 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1074 
1075 	if (!kvm_is_error_hva(hva) && writable)
1076 		*writable = !memslot_is_readonly(slot);
1077 
1078 	return hva;
1079 }
1080 
1081 static int kvm_read_hva(void *data, void __user *hva, int len)
1082 {
1083 	return __copy_from_user(data, hva, len);
1084 }
1085 
1086 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1087 {
1088 	return __copy_from_user_inatomic(data, hva, len);
1089 }
1090 
1091 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1092 	unsigned long start, int write, struct page **page)
1093 {
1094 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1095 
1096 	if (write)
1097 		flags |= FOLL_WRITE;
1098 
1099 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1100 }
1101 
1102 static inline int check_user_page_hwpoison(unsigned long addr)
1103 {
1104 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1105 
1106 	rc = __get_user_pages(current, current->mm, addr, 1,
1107 			      flags, NULL, NULL, NULL);
1108 	return rc == -EHWPOISON;
1109 }
1110 
1111 /*
1112  * The atomic path to get the writable pfn which will be stored in @pfn,
1113  * true indicates success, otherwise false is returned.
1114  */
1115 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1116 			    bool write_fault, bool *writable, pfn_t *pfn)
1117 {
1118 	struct page *page[1];
1119 	int npages;
1120 
1121 	if (!(async || atomic))
1122 		return false;
1123 
1124 	/*
1125 	 * Fast pin a writable pfn only if it is a write fault request
1126 	 * or the caller allows to map a writable pfn for a read fault
1127 	 * request.
1128 	 */
1129 	if (!(write_fault || writable))
1130 		return false;
1131 
1132 	npages = __get_user_pages_fast(addr, 1, 1, page);
1133 	if (npages == 1) {
1134 		*pfn = page_to_pfn(page[0]);
1135 
1136 		if (writable)
1137 			*writable = true;
1138 		return true;
1139 	}
1140 
1141 	return false;
1142 }
1143 
1144 /*
1145  * The slow path to get the pfn of the specified host virtual address,
1146  * 1 indicates success, -errno is returned if error is detected.
1147  */
1148 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1149 			   bool *writable, pfn_t *pfn)
1150 {
1151 	struct page *page[1];
1152 	int npages = 0;
1153 
1154 	might_sleep();
1155 
1156 	if (writable)
1157 		*writable = write_fault;
1158 
1159 	if (async) {
1160 		down_read(&current->mm->mmap_sem);
1161 		npages = get_user_page_nowait(current, current->mm,
1162 					      addr, write_fault, page);
1163 		up_read(&current->mm->mmap_sem);
1164 	} else
1165 		npages = get_user_pages_fast(addr, 1, write_fault,
1166 					     page);
1167 	if (npages != 1)
1168 		return npages;
1169 
1170 	/* map read fault as writable if possible */
1171 	if (unlikely(!write_fault) && writable) {
1172 		struct page *wpage[1];
1173 
1174 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1175 		if (npages == 1) {
1176 			*writable = true;
1177 			put_page(page[0]);
1178 			page[0] = wpage[0];
1179 		}
1180 
1181 		npages = 1;
1182 	}
1183 	*pfn = page_to_pfn(page[0]);
1184 	return npages;
1185 }
1186 
1187 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1188 {
1189 	if (unlikely(!(vma->vm_flags & VM_READ)))
1190 		return false;
1191 
1192 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 /*
1199  * Pin guest page in memory and return its pfn.
1200  * @addr: host virtual address which maps memory to the guest
1201  * @atomic: whether this function can sleep
1202  * @async: whether this function need to wait IO complete if the
1203  *         host page is not in the memory
1204  * @write_fault: whether we should get a writable host page
1205  * @writable: whether it allows to map a writable host page for !@write_fault
1206  *
1207  * The function will map a writable host page for these two cases:
1208  * 1): @write_fault = true
1209  * 2): @write_fault = false && @writable, @writable will tell the caller
1210  *     whether the mapping is writable.
1211  */
1212 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1213 			bool write_fault, bool *writable)
1214 {
1215 	struct vm_area_struct *vma;
1216 	pfn_t pfn = 0;
1217 	int npages;
1218 
1219 	/* we can do it either atomically or asynchronously, not both */
1220 	BUG_ON(atomic && async);
1221 
1222 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1223 		return pfn;
1224 
1225 	if (atomic)
1226 		return KVM_PFN_ERR_FAULT;
1227 
1228 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1229 	if (npages == 1)
1230 		return pfn;
1231 
1232 	down_read(&current->mm->mmap_sem);
1233 	if (npages == -EHWPOISON ||
1234 	      (!async && check_user_page_hwpoison(addr))) {
1235 		pfn = KVM_PFN_ERR_HWPOISON;
1236 		goto exit;
1237 	}
1238 
1239 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1240 
1241 	if (vma == NULL)
1242 		pfn = KVM_PFN_ERR_FAULT;
1243 	else if ((vma->vm_flags & VM_PFNMAP)) {
1244 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1245 			vma->vm_pgoff;
1246 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1247 	} else {
1248 		if (async && vma_is_valid(vma, write_fault))
1249 			*async = true;
1250 		pfn = KVM_PFN_ERR_FAULT;
1251 	}
1252 exit:
1253 	up_read(&current->mm->mmap_sem);
1254 	return pfn;
1255 }
1256 
1257 static pfn_t
1258 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1259 		     bool *async, bool write_fault, bool *writable)
1260 {
1261 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1262 
1263 	if (addr == KVM_HVA_ERR_RO_BAD)
1264 		return KVM_PFN_ERR_RO_FAULT;
1265 
1266 	if (kvm_is_error_hva(addr))
1267 		return KVM_PFN_NOSLOT;
1268 
1269 	/* Do not map writable pfn in the readonly memslot. */
1270 	if (writable && memslot_is_readonly(slot)) {
1271 		*writable = false;
1272 		writable = NULL;
1273 	}
1274 
1275 	return hva_to_pfn(addr, atomic, async, write_fault,
1276 			  writable);
1277 }
1278 
1279 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1280 			  bool write_fault, bool *writable)
1281 {
1282 	struct kvm_memory_slot *slot;
1283 
1284 	if (async)
1285 		*async = false;
1286 
1287 	slot = gfn_to_memslot(kvm, gfn);
1288 
1289 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1290 				    writable);
1291 }
1292 
1293 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1294 {
1295 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1296 }
1297 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1298 
1299 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1300 		       bool write_fault, bool *writable)
1301 {
1302 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1303 }
1304 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1305 
1306 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1307 {
1308 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1311 
1312 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1313 		      bool *writable)
1314 {
1315 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1316 }
1317 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1318 
1319 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1320 {
1321 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1322 }
1323 
1324 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1325 {
1326 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1327 }
1328 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1329 
1330 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1331 								  int nr_pages)
1332 {
1333 	unsigned long addr;
1334 	gfn_t entry;
1335 
1336 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1337 	if (kvm_is_error_hva(addr))
1338 		return -1;
1339 
1340 	if (entry < nr_pages)
1341 		return 0;
1342 
1343 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1344 }
1345 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1346 
1347 static struct page *kvm_pfn_to_page(pfn_t pfn)
1348 {
1349 	if (is_error_noslot_pfn(pfn))
1350 		return KVM_ERR_PTR_BAD_PAGE;
1351 
1352 	if (kvm_is_mmio_pfn(pfn)) {
1353 		WARN_ON(1);
1354 		return KVM_ERR_PTR_BAD_PAGE;
1355 	}
1356 
1357 	return pfn_to_page(pfn);
1358 }
1359 
1360 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1361 {
1362 	pfn_t pfn;
1363 
1364 	pfn = gfn_to_pfn(kvm, gfn);
1365 
1366 	return kvm_pfn_to_page(pfn);
1367 }
1368 
1369 EXPORT_SYMBOL_GPL(gfn_to_page);
1370 
1371 void kvm_release_page_clean(struct page *page)
1372 {
1373 	WARN_ON(is_error_page(page));
1374 
1375 	kvm_release_pfn_clean(page_to_pfn(page));
1376 }
1377 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1378 
1379 void kvm_release_pfn_clean(pfn_t pfn)
1380 {
1381 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1382 		put_page(pfn_to_page(pfn));
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1385 
1386 void kvm_release_page_dirty(struct page *page)
1387 {
1388 	WARN_ON(is_error_page(page));
1389 
1390 	kvm_release_pfn_dirty(page_to_pfn(page));
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1393 
1394 static void kvm_release_pfn_dirty(pfn_t pfn)
1395 {
1396 	kvm_set_pfn_dirty(pfn);
1397 	kvm_release_pfn_clean(pfn);
1398 }
1399 
1400 void kvm_set_pfn_dirty(pfn_t pfn)
1401 {
1402 	if (!kvm_is_mmio_pfn(pfn)) {
1403 		struct page *page = pfn_to_page(pfn);
1404 		if (!PageReserved(page))
1405 			SetPageDirty(page);
1406 	}
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1409 
1410 void kvm_set_pfn_accessed(pfn_t pfn)
1411 {
1412 	if (!kvm_is_mmio_pfn(pfn))
1413 		mark_page_accessed(pfn_to_page(pfn));
1414 }
1415 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1416 
1417 void kvm_get_pfn(pfn_t pfn)
1418 {
1419 	if (!kvm_is_mmio_pfn(pfn))
1420 		get_page(pfn_to_page(pfn));
1421 }
1422 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1423 
1424 static int next_segment(unsigned long len, int offset)
1425 {
1426 	if (len > PAGE_SIZE - offset)
1427 		return PAGE_SIZE - offset;
1428 	else
1429 		return len;
1430 }
1431 
1432 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1433 			int len)
1434 {
1435 	int r;
1436 	unsigned long addr;
1437 
1438 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1439 	if (kvm_is_error_hva(addr))
1440 		return -EFAULT;
1441 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1442 	if (r)
1443 		return -EFAULT;
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1447 
1448 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1449 {
1450 	gfn_t gfn = gpa >> PAGE_SHIFT;
1451 	int seg;
1452 	int offset = offset_in_page(gpa);
1453 	int ret;
1454 
1455 	while ((seg = next_segment(len, offset)) != 0) {
1456 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1457 		if (ret < 0)
1458 			return ret;
1459 		offset = 0;
1460 		len -= seg;
1461 		data += seg;
1462 		++gfn;
1463 	}
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_read_guest);
1467 
1468 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1469 			  unsigned long len)
1470 {
1471 	int r;
1472 	unsigned long addr;
1473 	gfn_t gfn = gpa >> PAGE_SHIFT;
1474 	int offset = offset_in_page(gpa);
1475 
1476 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1477 	if (kvm_is_error_hva(addr))
1478 		return -EFAULT;
1479 	pagefault_disable();
1480 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1481 	pagefault_enable();
1482 	if (r)
1483 		return -EFAULT;
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL(kvm_read_guest_atomic);
1487 
1488 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1489 			 int offset, int len)
1490 {
1491 	int r;
1492 	unsigned long addr;
1493 
1494 	addr = gfn_to_hva(kvm, gfn);
1495 	if (kvm_is_error_hva(addr))
1496 		return -EFAULT;
1497 	r = __copy_to_user((void __user *)addr + offset, data, len);
1498 	if (r)
1499 		return -EFAULT;
1500 	mark_page_dirty(kvm, gfn);
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1504 
1505 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1506 		    unsigned long len)
1507 {
1508 	gfn_t gfn = gpa >> PAGE_SHIFT;
1509 	int seg;
1510 	int offset = offset_in_page(gpa);
1511 	int ret;
1512 
1513 	while ((seg = next_segment(len, offset)) != 0) {
1514 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1515 		if (ret < 0)
1516 			return ret;
1517 		offset = 0;
1518 		len -= seg;
1519 		data += seg;
1520 		++gfn;
1521 	}
1522 	return 0;
1523 }
1524 
1525 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1526 			      gpa_t gpa, unsigned long len)
1527 {
1528 	struct kvm_memslots *slots = kvm_memslots(kvm);
1529 	int offset = offset_in_page(gpa);
1530 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1531 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1532 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1533 	gfn_t nr_pages_avail;
1534 
1535 	ghc->gpa = gpa;
1536 	ghc->generation = slots->generation;
1537 	ghc->len = len;
1538 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1539 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1540 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1541 		ghc->hva += offset;
1542 	} else {
1543 		/*
1544 		 * If the requested region crosses two memslots, we still
1545 		 * verify that the entire region is valid here.
1546 		 */
1547 		while (start_gfn <= end_gfn) {
1548 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1549 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1550 						   &nr_pages_avail);
1551 			if (kvm_is_error_hva(ghc->hva))
1552 				return -EFAULT;
1553 			start_gfn += nr_pages_avail;
1554 		}
1555 		/* Use the slow path for cross page reads and writes. */
1556 		ghc->memslot = NULL;
1557 	}
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1561 
1562 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1563 			   void *data, unsigned long len)
1564 {
1565 	struct kvm_memslots *slots = kvm_memslots(kvm);
1566 	int r;
1567 
1568 	BUG_ON(len > ghc->len);
1569 
1570 	if (slots->generation != ghc->generation)
1571 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1572 
1573 	if (unlikely(!ghc->memslot))
1574 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1575 
1576 	if (kvm_is_error_hva(ghc->hva))
1577 		return -EFAULT;
1578 
1579 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1580 	if (r)
1581 		return -EFAULT;
1582 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1583 
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1587 
1588 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1589 			   void *data, unsigned long len)
1590 {
1591 	struct kvm_memslots *slots = kvm_memslots(kvm);
1592 	int r;
1593 
1594 	BUG_ON(len > ghc->len);
1595 
1596 	if (slots->generation != ghc->generation)
1597 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1598 
1599 	if (unlikely(!ghc->memslot))
1600 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1601 
1602 	if (kvm_is_error_hva(ghc->hva))
1603 		return -EFAULT;
1604 
1605 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1606 	if (r)
1607 		return -EFAULT;
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1612 
1613 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1614 {
1615 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1616 
1617 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1620 
1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1622 {
1623 	gfn_t gfn = gpa >> PAGE_SHIFT;
1624 	int seg;
1625 	int offset = offset_in_page(gpa);
1626 	int ret;
1627 
1628         while ((seg = next_segment(len, offset)) != 0) {
1629 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1630 		if (ret < 0)
1631 			return ret;
1632 		offset = 0;
1633 		len -= seg;
1634 		++gfn;
1635 	}
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1639 
1640 static void mark_page_dirty_in_slot(struct kvm *kvm,
1641 				    struct kvm_memory_slot *memslot,
1642 				    gfn_t gfn)
1643 {
1644 	if (memslot && memslot->dirty_bitmap) {
1645 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1646 
1647 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1648 	}
1649 }
1650 
1651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1652 {
1653 	struct kvm_memory_slot *memslot;
1654 
1655 	memslot = gfn_to_memslot(kvm, gfn);
1656 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1657 }
1658 EXPORT_SYMBOL_GPL(mark_page_dirty);
1659 
1660 /*
1661  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1662  */
1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1664 {
1665 	DEFINE_WAIT(wait);
1666 
1667 	for (;;) {
1668 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1669 
1670 		if (kvm_arch_vcpu_runnable(vcpu)) {
1671 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1672 			break;
1673 		}
1674 		if (kvm_cpu_has_pending_timer(vcpu))
1675 			break;
1676 		if (signal_pending(current))
1677 			break;
1678 
1679 		schedule();
1680 	}
1681 
1682 	finish_wait(&vcpu->wq, &wait);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1685 
1686 #ifndef CONFIG_S390
1687 /*
1688  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1689  */
1690 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1691 {
1692 	int me;
1693 	int cpu = vcpu->cpu;
1694 	wait_queue_head_t *wqp;
1695 
1696 	wqp = kvm_arch_vcpu_wq(vcpu);
1697 	if (waitqueue_active(wqp)) {
1698 		wake_up_interruptible(wqp);
1699 		++vcpu->stat.halt_wakeup;
1700 	}
1701 
1702 	me = get_cpu();
1703 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1704 		if (kvm_arch_vcpu_should_kick(vcpu))
1705 			smp_send_reschedule(cpu);
1706 	put_cpu();
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1709 #endif /* !CONFIG_S390 */
1710 
1711 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1712 {
1713 	struct pid *pid;
1714 	struct task_struct *task = NULL;
1715 	bool ret = false;
1716 
1717 	rcu_read_lock();
1718 	pid = rcu_dereference(target->pid);
1719 	if (pid)
1720 		task = get_pid_task(target->pid, PIDTYPE_PID);
1721 	rcu_read_unlock();
1722 	if (!task)
1723 		return ret;
1724 	if (task->flags & PF_VCPU) {
1725 		put_task_struct(task);
1726 		return ret;
1727 	}
1728 	ret = yield_to(task, 1);
1729 	put_task_struct(task);
1730 
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1734 
1735 /*
1736  * Helper that checks whether a VCPU is eligible for directed yield.
1737  * Most eligible candidate to yield is decided by following heuristics:
1738  *
1739  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1740  *  (preempted lock holder), indicated by @in_spin_loop.
1741  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1742  *
1743  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1744  *  chance last time (mostly it has become eligible now since we have probably
1745  *  yielded to lockholder in last iteration. This is done by toggling
1746  *  @dy_eligible each time a VCPU checked for eligibility.)
1747  *
1748  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1749  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1750  *  burning. Giving priority for a potential lock-holder increases lock
1751  *  progress.
1752  *
1753  *  Since algorithm is based on heuristics, accessing another VCPU data without
1754  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1755  *  and continue with next VCPU and so on.
1756  */
1757 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1758 {
1759 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1760 	bool eligible;
1761 
1762 	eligible = !vcpu->spin_loop.in_spin_loop ||
1763 			(vcpu->spin_loop.in_spin_loop &&
1764 			 vcpu->spin_loop.dy_eligible);
1765 
1766 	if (vcpu->spin_loop.in_spin_loop)
1767 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1768 
1769 	return eligible;
1770 #else
1771 	return true;
1772 #endif
1773 }
1774 
1775 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1776 {
1777 	struct kvm *kvm = me->kvm;
1778 	struct kvm_vcpu *vcpu;
1779 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1780 	int yielded = 0;
1781 	int try = 3;
1782 	int pass;
1783 	int i;
1784 
1785 	kvm_vcpu_set_in_spin_loop(me, true);
1786 	/*
1787 	 * We boost the priority of a VCPU that is runnable but not
1788 	 * currently running, because it got preempted by something
1789 	 * else and called schedule in __vcpu_run.  Hopefully that
1790 	 * VCPU is holding the lock that we need and will release it.
1791 	 * We approximate round-robin by starting at the last boosted VCPU.
1792 	 */
1793 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1794 		kvm_for_each_vcpu(i, vcpu, kvm) {
1795 			if (!pass && i <= last_boosted_vcpu) {
1796 				i = last_boosted_vcpu;
1797 				continue;
1798 			} else if (pass && i > last_boosted_vcpu)
1799 				break;
1800 			if (!ACCESS_ONCE(vcpu->preempted))
1801 				continue;
1802 			if (vcpu == me)
1803 				continue;
1804 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1805 				continue;
1806 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1807 				continue;
1808 
1809 			yielded = kvm_vcpu_yield_to(vcpu);
1810 			if (yielded > 0) {
1811 				kvm->last_boosted_vcpu = i;
1812 				break;
1813 			} else if (yielded < 0) {
1814 				try--;
1815 				if (!try)
1816 					break;
1817 			}
1818 		}
1819 	}
1820 	kvm_vcpu_set_in_spin_loop(me, false);
1821 
1822 	/* Ensure vcpu is not eligible during next spinloop */
1823 	kvm_vcpu_set_dy_eligible(me, false);
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1826 
1827 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1828 {
1829 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1830 	struct page *page;
1831 
1832 	if (vmf->pgoff == 0)
1833 		page = virt_to_page(vcpu->run);
1834 #ifdef CONFIG_X86
1835 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1836 		page = virt_to_page(vcpu->arch.pio_data);
1837 #endif
1838 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1839 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1840 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1841 #endif
1842 	else
1843 		return kvm_arch_vcpu_fault(vcpu, vmf);
1844 	get_page(page);
1845 	vmf->page = page;
1846 	return 0;
1847 }
1848 
1849 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1850 	.fault = kvm_vcpu_fault,
1851 };
1852 
1853 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1854 {
1855 	vma->vm_ops = &kvm_vcpu_vm_ops;
1856 	return 0;
1857 }
1858 
1859 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1860 {
1861 	struct kvm_vcpu *vcpu = filp->private_data;
1862 
1863 	kvm_put_kvm(vcpu->kvm);
1864 	return 0;
1865 }
1866 
1867 static struct file_operations kvm_vcpu_fops = {
1868 	.release        = kvm_vcpu_release,
1869 	.unlocked_ioctl = kvm_vcpu_ioctl,
1870 #ifdef CONFIG_COMPAT
1871 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1872 #endif
1873 	.mmap           = kvm_vcpu_mmap,
1874 	.llseek		= noop_llseek,
1875 };
1876 
1877 /*
1878  * Allocates an inode for the vcpu.
1879  */
1880 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1881 {
1882 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1883 }
1884 
1885 /*
1886  * Creates some virtual cpus.  Good luck creating more than one.
1887  */
1888 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1889 {
1890 	int r;
1891 	struct kvm_vcpu *vcpu, *v;
1892 
1893 	if (id >= KVM_MAX_VCPUS)
1894 		return -EINVAL;
1895 
1896 	vcpu = kvm_arch_vcpu_create(kvm, id);
1897 	if (IS_ERR(vcpu))
1898 		return PTR_ERR(vcpu);
1899 
1900 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1901 
1902 	r = kvm_arch_vcpu_setup(vcpu);
1903 	if (r)
1904 		goto vcpu_destroy;
1905 
1906 	mutex_lock(&kvm->lock);
1907 	if (!kvm_vcpu_compatible(vcpu)) {
1908 		r = -EINVAL;
1909 		goto unlock_vcpu_destroy;
1910 	}
1911 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1912 		r = -EINVAL;
1913 		goto unlock_vcpu_destroy;
1914 	}
1915 
1916 	kvm_for_each_vcpu(r, v, kvm)
1917 		if (v->vcpu_id == id) {
1918 			r = -EEXIST;
1919 			goto unlock_vcpu_destroy;
1920 		}
1921 
1922 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1923 
1924 	/* Now it's all set up, let userspace reach it */
1925 	kvm_get_kvm(kvm);
1926 	r = create_vcpu_fd(vcpu);
1927 	if (r < 0) {
1928 		kvm_put_kvm(kvm);
1929 		goto unlock_vcpu_destroy;
1930 	}
1931 
1932 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1933 	smp_wmb();
1934 	atomic_inc(&kvm->online_vcpus);
1935 
1936 	mutex_unlock(&kvm->lock);
1937 	kvm_arch_vcpu_postcreate(vcpu);
1938 	return r;
1939 
1940 unlock_vcpu_destroy:
1941 	mutex_unlock(&kvm->lock);
1942 vcpu_destroy:
1943 	kvm_arch_vcpu_destroy(vcpu);
1944 	return r;
1945 }
1946 
1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1948 {
1949 	if (sigset) {
1950 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951 		vcpu->sigset_active = 1;
1952 		vcpu->sigset = *sigset;
1953 	} else
1954 		vcpu->sigset_active = 0;
1955 	return 0;
1956 }
1957 
1958 static long kvm_vcpu_ioctl(struct file *filp,
1959 			   unsigned int ioctl, unsigned long arg)
1960 {
1961 	struct kvm_vcpu *vcpu = filp->private_data;
1962 	void __user *argp = (void __user *)arg;
1963 	int r;
1964 	struct kvm_fpu *fpu = NULL;
1965 	struct kvm_sregs *kvm_sregs = NULL;
1966 
1967 	if (vcpu->kvm->mm != current->mm)
1968 		return -EIO;
1969 
1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1971 	/*
1972 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1973 	 * so vcpu_load() would break it.
1974 	 */
1975 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1977 #endif
1978 
1979 
1980 	r = vcpu_load(vcpu);
1981 	if (r)
1982 		return r;
1983 	switch (ioctl) {
1984 	case KVM_RUN:
1985 		r = -EINVAL;
1986 		if (arg)
1987 			goto out;
1988 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1990 		break;
1991 	case KVM_GET_REGS: {
1992 		struct kvm_regs *kvm_regs;
1993 
1994 		r = -ENOMEM;
1995 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1996 		if (!kvm_regs)
1997 			goto out;
1998 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1999 		if (r)
2000 			goto out_free1;
2001 		r = -EFAULT;
2002 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2003 			goto out_free1;
2004 		r = 0;
2005 out_free1:
2006 		kfree(kvm_regs);
2007 		break;
2008 	}
2009 	case KVM_SET_REGS: {
2010 		struct kvm_regs *kvm_regs;
2011 
2012 		r = -ENOMEM;
2013 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014 		if (IS_ERR(kvm_regs)) {
2015 			r = PTR_ERR(kvm_regs);
2016 			goto out;
2017 		}
2018 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2019 		kfree(kvm_regs);
2020 		break;
2021 	}
2022 	case KVM_GET_SREGS: {
2023 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2024 		r = -ENOMEM;
2025 		if (!kvm_sregs)
2026 			goto out;
2027 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2028 		if (r)
2029 			goto out;
2030 		r = -EFAULT;
2031 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2032 			goto out;
2033 		r = 0;
2034 		break;
2035 	}
2036 	case KVM_SET_SREGS: {
2037 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038 		if (IS_ERR(kvm_sregs)) {
2039 			r = PTR_ERR(kvm_sregs);
2040 			kvm_sregs = NULL;
2041 			goto out;
2042 		}
2043 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2044 		break;
2045 	}
2046 	case KVM_GET_MP_STATE: {
2047 		struct kvm_mp_state mp_state;
2048 
2049 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2050 		if (r)
2051 			goto out;
2052 		r = -EFAULT;
2053 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2054 			goto out;
2055 		r = 0;
2056 		break;
2057 	}
2058 	case KVM_SET_MP_STATE: {
2059 		struct kvm_mp_state mp_state;
2060 
2061 		r = -EFAULT;
2062 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2063 			goto out;
2064 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2065 		break;
2066 	}
2067 	case KVM_TRANSLATE: {
2068 		struct kvm_translation tr;
2069 
2070 		r = -EFAULT;
2071 		if (copy_from_user(&tr, argp, sizeof tr))
2072 			goto out;
2073 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2074 		if (r)
2075 			goto out;
2076 		r = -EFAULT;
2077 		if (copy_to_user(argp, &tr, sizeof tr))
2078 			goto out;
2079 		r = 0;
2080 		break;
2081 	}
2082 	case KVM_SET_GUEST_DEBUG: {
2083 		struct kvm_guest_debug dbg;
2084 
2085 		r = -EFAULT;
2086 		if (copy_from_user(&dbg, argp, sizeof dbg))
2087 			goto out;
2088 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2089 		break;
2090 	}
2091 	case KVM_SET_SIGNAL_MASK: {
2092 		struct kvm_signal_mask __user *sigmask_arg = argp;
2093 		struct kvm_signal_mask kvm_sigmask;
2094 		sigset_t sigset, *p;
2095 
2096 		p = NULL;
2097 		if (argp) {
2098 			r = -EFAULT;
2099 			if (copy_from_user(&kvm_sigmask, argp,
2100 					   sizeof kvm_sigmask))
2101 				goto out;
2102 			r = -EINVAL;
2103 			if (kvm_sigmask.len != sizeof sigset)
2104 				goto out;
2105 			r = -EFAULT;
2106 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2107 					   sizeof sigset))
2108 				goto out;
2109 			p = &sigset;
2110 		}
2111 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2112 		break;
2113 	}
2114 	case KVM_GET_FPU: {
2115 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2116 		r = -ENOMEM;
2117 		if (!fpu)
2118 			goto out;
2119 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2120 		if (r)
2121 			goto out;
2122 		r = -EFAULT;
2123 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2124 			goto out;
2125 		r = 0;
2126 		break;
2127 	}
2128 	case KVM_SET_FPU: {
2129 		fpu = memdup_user(argp, sizeof(*fpu));
2130 		if (IS_ERR(fpu)) {
2131 			r = PTR_ERR(fpu);
2132 			fpu = NULL;
2133 			goto out;
2134 		}
2135 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2136 		break;
2137 	}
2138 	default:
2139 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2140 	}
2141 out:
2142 	vcpu_put(vcpu);
2143 	kfree(fpu);
2144 	kfree(kvm_sregs);
2145 	return r;
2146 }
2147 
2148 #ifdef CONFIG_COMPAT
2149 static long kvm_vcpu_compat_ioctl(struct file *filp,
2150 				  unsigned int ioctl, unsigned long arg)
2151 {
2152 	struct kvm_vcpu *vcpu = filp->private_data;
2153 	void __user *argp = compat_ptr(arg);
2154 	int r;
2155 
2156 	if (vcpu->kvm->mm != current->mm)
2157 		return -EIO;
2158 
2159 	switch (ioctl) {
2160 	case KVM_SET_SIGNAL_MASK: {
2161 		struct kvm_signal_mask __user *sigmask_arg = argp;
2162 		struct kvm_signal_mask kvm_sigmask;
2163 		compat_sigset_t csigset;
2164 		sigset_t sigset;
2165 
2166 		if (argp) {
2167 			r = -EFAULT;
2168 			if (copy_from_user(&kvm_sigmask, argp,
2169 					   sizeof kvm_sigmask))
2170 				goto out;
2171 			r = -EINVAL;
2172 			if (kvm_sigmask.len != sizeof csigset)
2173 				goto out;
2174 			r = -EFAULT;
2175 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2176 					   sizeof csigset))
2177 				goto out;
2178 			sigset_from_compat(&sigset, &csigset);
2179 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2180 		} else
2181 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2182 		break;
2183 	}
2184 	default:
2185 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2186 	}
2187 
2188 out:
2189 	return r;
2190 }
2191 #endif
2192 
2193 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194 				 int (*accessor)(struct kvm_device *dev,
2195 						 struct kvm_device_attr *attr),
2196 				 unsigned long arg)
2197 {
2198 	struct kvm_device_attr attr;
2199 
2200 	if (!accessor)
2201 		return -EPERM;
2202 
2203 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2204 		return -EFAULT;
2205 
2206 	return accessor(dev, &attr);
2207 }
2208 
2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2210 			     unsigned long arg)
2211 {
2212 	struct kvm_device *dev = filp->private_data;
2213 
2214 	switch (ioctl) {
2215 	case KVM_SET_DEVICE_ATTR:
2216 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217 	case KVM_GET_DEVICE_ATTR:
2218 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219 	case KVM_HAS_DEVICE_ATTR:
2220 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2221 	default:
2222 		if (dev->ops->ioctl)
2223 			return dev->ops->ioctl(dev, ioctl, arg);
2224 
2225 		return -ENOTTY;
2226 	}
2227 }
2228 
2229 static int kvm_device_release(struct inode *inode, struct file *filp)
2230 {
2231 	struct kvm_device *dev = filp->private_data;
2232 	struct kvm *kvm = dev->kvm;
2233 
2234 	kvm_put_kvm(kvm);
2235 	return 0;
2236 }
2237 
2238 static const struct file_operations kvm_device_fops = {
2239 	.unlocked_ioctl = kvm_device_ioctl,
2240 #ifdef CONFIG_COMPAT
2241 	.compat_ioctl = kvm_device_ioctl,
2242 #endif
2243 	.release = kvm_device_release,
2244 };
2245 
2246 struct kvm_device *kvm_device_from_filp(struct file *filp)
2247 {
2248 	if (filp->f_op != &kvm_device_fops)
2249 		return NULL;
2250 
2251 	return filp->private_data;
2252 }
2253 
2254 static int kvm_ioctl_create_device(struct kvm *kvm,
2255 				   struct kvm_create_device *cd)
2256 {
2257 	struct kvm_device_ops *ops = NULL;
2258 	struct kvm_device *dev;
2259 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2260 	int ret;
2261 
2262 	switch (cd->type) {
2263 #ifdef CONFIG_KVM_MPIC
2264 	case KVM_DEV_TYPE_FSL_MPIC_20:
2265 	case KVM_DEV_TYPE_FSL_MPIC_42:
2266 		ops = &kvm_mpic_ops;
2267 		break;
2268 #endif
2269 #ifdef CONFIG_KVM_XICS
2270 	case KVM_DEV_TYPE_XICS:
2271 		ops = &kvm_xics_ops;
2272 		break;
2273 #endif
2274 #ifdef CONFIG_KVM_VFIO
2275 	case KVM_DEV_TYPE_VFIO:
2276 		ops = &kvm_vfio_ops;
2277 		break;
2278 #endif
2279 #ifdef CONFIG_KVM_ARM_VGIC
2280 	case KVM_DEV_TYPE_ARM_VGIC_V2:
2281 		ops = &kvm_arm_vgic_v2_ops;
2282 		break;
2283 #endif
2284 #ifdef CONFIG_S390
2285 	case KVM_DEV_TYPE_FLIC:
2286 		ops = &kvm_flic_ops;
2287 		break;
2288 #endif
2289 	default:
2290 		return -ENODEV;
2291 	}
2292 
2293 	if (test)
2294 		return 0;
2295 
2296 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2297 	if (!dev)
2298 		return -ENOMEM;
2299 
2300 	dev->ops = ops;
2301 	dev->kvm = kvm;
2302 
2303 	ret = ops->create(dev, cd->type);
2304 	if (ret < 0) {
2305 		kfree(dev);
2306 		return ret;
2307 	}
2308 
2309 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2310 	if (ret < 0) {
2311 		ops->destroy(dev);
2312 		return ret;
2313 	}
2314 
2315 	list_add(&dev->vm_node, &kvm->devices);
2316 	kvm_get_kvm(kvm);
2317 	cd->fd = ret;
2318 	return 0;
2319 }
2320 
2321 static long kvm_vm_ioctl(struct file *filp,
2322 			   unsigned int ioctl, unsigned long arg)
2323 {
2324 	struct kvm *kvm = filp->private_data;
2325 	void __user *argp = (void __user *)arg;
2326 	int r;
2327 
2328 	if (kvm->mm != current->mm)
2329 		return -EIO;
2330 	switch (ioctl) {
2331 	case KVM_CREATE_VCPU:
2332 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2333 		break;
2334 	case KVM_SET_USER_MEMORY_REGION: {
2335 		struct kvm_userspace_memory_region kvm_userspace_mem;
2336 
2337 		r = -EFAULT;
2338 		if (copy_from_user(&kvm_userspace_mem, argp,
2339 						sizeof kvm_userspace_mem))
2340 			goto out;
2341 
2342 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2343 		break;
2344 	}
2345 	case KVM_GET_DIRTY_LOG: {
2346 		struct kvm_dirty_log log;
2347 
2348 		r = -EFAULT;
2349 		if (copy_from_user(&log, argp, sizeof log))
2350 			goto out;
2351 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2352 		break;
2353 	}
2354 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2355 	case KVM_REGISTER_COALESCED_MMIO: {
2356 		struct kvm_coalesced_mmio_zone zone;
2357 		r = -EFAULT;
2358 		if (copy_from_user(&zone, argp, sizeof zone))
2359 			goto out;
2360 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2361 		break;
2362 	}
2363 	case KVM_UNREGISTER_COALESCED_MMIO: {
2364 		struct kvm_coalesced_mmio_zone zone;
2365 		r = -EFAULT;
2366 		if (copy_from_user(&zone, argp, sizeof zone))
2367 			goto out;
2368 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2369 		break;
2370 	}
2371 #endif
2372 	case KVM_IRQFD: {
2373 		struct kvm_irqfd data;
2374 
2375 		r = -EFAULT;
2376 		if (copy_from_user(&data, argp, sizeof data))
2377 			goto out;
2378 		r = kvm_irqfd(kvm, &data);
2379 		break;
2380 	}
2381 	case KVM_IOEVENTFD: {
2382 		struct kvm_ioeventfd data;
2383 
2384 		r = -EFAULT;
2385 		if (copy_from_user(&data, argp, sizeof data))
2386 			goto out;
2387 		r = kvm_ioeventfd(kvm, &data);
2388 		break;
2389 	}
2390 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2391 	case KVM_SET_BOOT_CPU_ID:
2392 		r = 0;
2393 		mutex_lock(&kvm->lock);
2394 		if (atomic_read(&kvm->online_vcpus) != 0)
2395 			r = -EBUSY;
2396 		else
2397 			kvm->bsp_vcpu_id = arg;
2398 		mutex_unlock(&kvm->lock);
2399 		break;
2400 #endif
2401 #ifdef CONFIG_HAVE_KVM_MSI
2402 	case KVM_SIGNAL_MSI: {
2403 		struct kvm_msi msi;
2404 
2405 		r = -EFAULT;
2406 		if (copy_from_user(&msi, argp, sizeof msi))
2407 			goto out;
2408 		r = kvm_send_userspace_msi(kvm, &msi);
2409 		break;
2410 	}
2411 #endif
2412 #ifdef __KVM_HAVE_IRQ_LINE
2413 	case KVM_IRQ_LINE_STATUS:
2414 	case KVM_IRQ_LINE: {
2415 		struct kvm_irq_level irq_event;
2416 
2417 		r = -EFAULT;
2418 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2419 			goto out;
2420 
2421 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2422 					ioctl == KVM_IRQ_LINE_STATUS);
2423 		if (r)
2424 			goto out;
2425 
2426 		r = -EFAULT;
2427 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2428 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2429 				goto out;
2430 		}
2431 
2432 		r = 0;
2433 		break;
2434 	}
2435 #endif
2436 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2437 	case KVM_SET_GSI_ROUTING: {
2438 		struct kvm_irq_routing routing;
2439 		struct kvm_irq_routing __user *urouting;
2440 		struct kvm_irq_routing_entry *entries;
2441 
2442 		r = -EFAULT;
2443 		if (copy_from_user(&routing, argp, sizeof(routing)))
2444 			goto out;
2445 		r = -EINVAL;
2446 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2447 			goto out;
2448 		if (routing.flags)
2449 			goto out;
2450 		r = -ENOMEM;
2451 		entries = vmalloc(routing.nr * sizeof(*entries));
2452 		if (!entries)
2453 			goto out;
2454 		r = -EFAULT;
2455 		urouting = argp;
2456 		if (copy_from_user(entries, urouting->entries,
2457 				   routing.nr * sizeof(*entries)))
2458 			goto out_free_irq_routing;
2459 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2460 					routing.flags);
2461 	out_free_irq_routing:
2462 		vfree(entries);
2463 		break;
2464 	}
2465 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2466 	case KVM_CREATE_DEVICE: {
2467 		struct kvm_create_device cd;
2468 
2469 		r = -EFAULT;
2470 		if (copy_from_user(&cd, argp, sizeof(cd)))
2471 			goto out;
2472 
2473 		r = kvm_ioctl_create_device(kvm, &cd);
2474 		if (r)
2475 			goto out;
2476 
2477 		r = -EFAULT;
2478 		if (copy_to_user(argp, &cd, sizeof(cd)))
2479 			goto out;
2480 
2481 		r = 0;
2482 		break;
2483 	}
2484 	default:
2485 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2486 		if (r == -ENOTTY)
2487 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2488 	}
2489 out:
2490 	return r;
2491 }
2492 
2493 #ifdef CONFIG_COMPAT
2494 struct compat_kvm_dirty_log {
2495 	__u32 slot;
2496 	__u32 padding1;
2497 	union {
2498 		compat_uptr_t dirty_bitmap; /* one bit per page */
2499 		__u64 padding2;
2500 	};
2501 };
2502 
2503 static long kvm_vm_compat_ioctl(struct file *filp,
2504 			   unsigned int ioctl, unsigned long arg)
2505 {
2506 	struct kvm *kvm = filp->private_data;
2507 	int r;
2508 
2509 	if (kvm->mm != current->mm)
2510 		return -EIO;
2511 	switch (ioctl) {
2512 	case KVM_GET_DIRTY_LOG: {
2513 		struct compat_kvm_dirty_log compat_log;
2514 		struct kvm_dirty_log log;
2515 
2516 		r = -EFAULT;
2517 		if (copy_from_user(&compat_log, (void __user *)arg,
2518 				   sizeof(compat_log)))
2519 			goto out;
2520 		log.slot	 = compat_log.slot;
2521 		log.padding1	 = compat_log.padding1;
2522 		log.padding2	 = compat_log.padding2;
2523 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2524 
2525 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2526 		break;
2527 	}
2528 	default:
2529 		r = kvm_vm_ioctl(filp, ioctl, arg);
2530 	}
2531 
2532 out:
2533 	return r;
2534 }
2535 #endif
2536 
2537 static struct file_operations kvm_vm_fops = {
2538 	.release        = kvm_vm_release,
2539 	.unlocked_ioctl = kvm_vm_ioctl,
2540 #ifdef CONFIG_COMPAT
2541 	.compat_ioctl   = kvm_vm_compat_ioctl,
2542 #endif
2543 	.llseek		= noop_llseek,
2544 };
2545 
2546 static int kvm_dev_ioctl_create_vm(unsigned long type)
2547 {
2548 	int r;
2549 	struct kvm *kvm;
2550 
2551 	kvm = kvm_create_vm(type);
2552 	if (IS_ERR(kvm))
2553 		return PTR_ERR(kvm);
2554 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2555 	r = kvm_coalesced_mmio_init(kvm);
2556 	if (r < 0) {
2557 		kvm_put_kvm(kvm);
2558 		return r;
2559 	}
2560 #endif
2561 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2562 	if (r < 0)
2563 		kvm_put_kvm(kvm);
2564 
2565 	return r;
2566 }
2567 
2568 static long kvm_dev_ioctl_check_extension_generic(long arg)
2569 {
2570 	switch (arg) {
2571 	case KVM_CAP_USER_MEMORY:
2572 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2573 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2574 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2575 	case KVM_CAP_SET_BOOT_CPU_ID:
2576 #endif
2577 	case KVM_CAP_INTERNAL_ERROR_DATA:
2578 #ifdef CONFIG_HAVE_KVM_MSI
2579 	case KVM_CAP_SIGNAL_MSI:
2580 #endif
2581 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2582 	case KVM_CAP_IRQFD_RESAMPLE:
2583 #endif
2584 		return 1;
2585 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2586 	case KVM_CAP_IRQ_ROUTING:
2587 		return KVM_MAX_IRQ_ROUTES;
2588 #endif
2589 	default:
2590 		break;
2591 	}
2592 	return kvm_dev_ioctl_check_extension(arg);
2593 }
2594 
2595 static long kvm_dev_ioctl(struct file *filp,
2596 			  unsigned int ioctl, unsigned long arg)
2597 {
2598 	long r = -EINVAL;
2599 
2600 	switch (ioctl) {
2601 	case KVM_GET_API_VERSION:
2602 		r = -EINVAL;
2603 		if (arg)
2604 			goto out;
2605 		r = KVM_API_VERSION;
2606 		break;
2607 	case KVM_CREATE_VM:
2608 		r = kvm_dev_ioctl_create_vm(arg);
2609 		break;
2610 	case KVM_CHECK_EXTENSION:
2611 		r = kvm_dev_ioctl_check_extension_generic(arg);
2612 		break;
2613 	case KVM_GET_VCPU_MMAP_SIZE:
2614 		r = -EINVAL;
2615 		if (arg)
2616 			goto out;
2617 		r = PAGE_SIZE;     /* struct kvm_run */
2618 #ifdef CONFIG_X86
2619 		r += PAGE_SIZE;    /* pio data page */
2620 #endif
2621 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2622 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2623 #endif
2624 		break;
2625 	case KVM_TRACE_ENABLE:
2626 	case KVM_TRACE_PAUSE:
2627 	case KVM_TRACE_DISABLE:
2628 		r = -EOPNOTSUPP;
2629 		break;
2630 	default:
2631 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2632 	}
2633 out:
2634 	return r;
2635 }
2636 
2637 static struct file_operations kvm_chardev_ops = {
2638 	.unlocked_ioctl = kvm_dev_ioctl,
2639 	.compat_ioctl   = kvm_dev_ioctl,
2640 	.llseek		= noop_llseek,
2641 };
2642 
2643 static struct miscdevice kvm_dev = {
2644 	KVM_MINOR,
2645 	"kvm",
2646 	&kvm_chardev_ops,
2647 };
2648 
2649 static void hardware_enable_nolock(void *junk)
2650 {
2651 	int cpu = raw_smp_processor_id();
2652 	int r;
2653 
2654 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2655 		return;
2656 
2657 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2658 
2659 	r = kvm_arch_hardware_enable(NULL);
2660 
2661 	if (r) {
2662 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2663 		atomic_inc(&hardware_enable_failed);
2664 		printk(KERN_INFO "kvm: enabling virtualization on "
2665 				 "CPU%d failed\n", cpu);
2666 	}
2667 }
2668 
2669 static void hardware_enable(void)
2670 {
2671 	raw_spin_lock(&kvm_count_lock);
2672 	if (kvm_usage_count)
2673 		hardware_enable_nolock(NULL);
2674 	raw_spin_unlock(&kvm_count_lock);
2675 }
2676 
2677 static void hardware_disable_nolock(void *junk)
2678 {
2679 	int cpu = raw_smp_processor_id();
2680 
2681 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2682 		return;
2683 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2684 	kvm_arch_hardware_disable(NULL);
2685 }
2686 
2687 static void hardware_disable(void)
2688 {
2689 	raw_spin_lock(&kvm_count_lock);
2690 	if (kvm_usage_count)
2691 		hardware_disable_nolock(NULL);
2692 	raw_spin_unlock(&kvm_count_lock);
2693 }
2694 
2695 static void hardware_disable_all_nolock(void)
2696 {
2697 	BUG_ON(!kvm_usage_count);
2698 
2699 	kvm_usage_count--;
2700 	if (!kvm_usage_count)
2701 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2702 }
2703 
2704 static void hardware_disable_all(void)
2705 {
2706 	raw_spin_lock(&kvm_count_lock);
2707 	hardware_disable_all_nolock();
2708 	raw_spin_unlock(&kvm_count_lock);
2709 }
2710 
2711 static int hardware_enable_all(void)
2712 {
2713 	int r = 0;
2714 
2715 	raw_spin_lock(&kvm_count_lock);
2716 
2717 	kvm_usage_count++;
2718 	if (kvm_usage_count == 1) {
2719 		atomic_set(&hardware_enable_failed, 0);
2720 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2721 
2722 		if (atomic_read(&hardware_enable_failed)) {
2723 			hardware_disable_all_nolock();
2724 			r = -EBUSY;
2725 		}
2726 	}
2727 
2728 	raw_spin_unlock(&kvm_count_lock);
2729 
2730 	return r;
2731 }
2732 
2733 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2734 			   void *v)
2735 {
2736 	int cpu = (long)v;
2737 
2738 	val &= ~CPU_TASKS_FROZEN;
2739 	switch (val) {
2740 	case CPU_DYING:
2741 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2742 		       cpu);
2743 		hardware_disable();
2744 		break;
2745 	case CPU_STARTING:
2746 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2747 		       cpu);
2748 		hardware_enable();
2749 		break;
2750 	}
2751 	return NOTIFY_OK;
2752 }
2753 
2754 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2755 		      void *v)
2756 {
2757 	/*
2758 	 * Some (well, at least mine) BIOSes hang on reboot if
2759 	 * in vmx root mode.
2760 	 *
2761 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2762 	 */
2763 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2764 	kvm_rebooting = true;
2765 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2766 	return NOTIFY_OK;
2767 }
2768 
2769 static struct notifier_block kvm_reboot_notifier = {
2770 	.notifier_call = kvm_reboot,
2771 	.priority = 0,
2772 };
2773 
2774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2775 {
2776 	int i;
2777 
2778 	for (i = 0; i < bus->dev_count; i++) {
2779 		struct kvm_io_device *pos = bus->range[i].dev;
2780 
2781 		kvm_iodevice_destructor(pos);
2782 	}
2783 	kfree(bus);
2784 }
2785 
2786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2787                                  const struct kvm_io_range *r2)
2788 {
2789 	if (r1->addr < r2->addr)
2790 		return -1;
2791 	if (r1->addr + r1->len > r2->addr + r2->len)
2792 		return 1;
2793 	return 0;
2794 }
2795 
2796 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2797 {
2798 	return kvm_io_bus_cmp(p1, p2);
2799 }
2800 
2801 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2802 			  gpa_t addr, int len)
2803 {
2804 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2805 		.addr = addr,
2806 		.len = len,
2807 		.dev = dev,
2808 	};
2809 
2810 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2811 		kvm_io_bus_sort_cmp, NULL);
2812 
2813 	return 0;
2814 }
2815 
2816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2817 			     gpa_t addr, int len)
2818 {
2819 	struct kvm_io_range *range, key;
2820 	int off;
2821 
2822 	key = (struct kvm_io_range) {
2823 		.addr = addr,
2824 		.len = len,
2825 	};
2826 
2827 	range = bsearch(&key, bus->range, bus->dev_count,
2828 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2829 	if (range == NULL)
2830 		return -ENOENT;
2831 
2832 	off = range - bus->range;
2833 
2834 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2835 		off--;
2836 
2837 	return off;
2838 }
2839 
2840 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2841 			      struct kvm_io_range *range, const void *val)
2842 {
2843 	int idx;
2844 
2845 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2846 	if (idx < 0)
2847 		return -EOPNOTSUPP;
2848 
2849 	while (idx < bus->dev_count &&
2850 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2851 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2852 					range->len, val))
2853 			return idx;
2854 		idx++;
2855 	}
2856 
2857 	return -EOPNOTSUPP;
2858 }
2859 
2860 /* kvm_io_bus_write - called under kvm->slots_lock */
2861 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2862 		     int len, const void *val)
2863 {
2864 	struct kvm_io_bus *bus;
2865 	struct kvm_io_range range;
2866 	int r;
2867 
2868 	range = (struct kvm_io_range) {
2869 		.addr = addr,
2870 		.len = len,
2871 	};
2872 
2873 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2874 	r = __kvm_io_bus_write(bus, &range, val);
2875 	return r < 0 ? r : 0;
2876 }
2877 
2878 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2879 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880 			    int len, const void *val, long cookie)
2881 {
2882 	struct kvm_io_bus *bus;
2883 	struct kvm_io_range range;
2884 
2885 	range = (struct kvm_io_range) {
2886 		.addr = addr,
2887 		.len = len,
2888 	};
2889 
2890 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2891 
2892 	/* First try the device referenced by cookie. */
2893 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2894 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2895 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2896 					val))
2897 			return cookie;
2898 
2899 	/*
2900 	 * cookie contained garbage; fall back to search and return the
2901 	 * correct cookie value.
2902 	 */
2903 	return __kvm_io_bus_write(bus, &range, val);
2904 }
2905 
2906 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2907 			     void *val)
2908 {
2909 	int idx;
2910 
2911 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2912 	if (idx < 0)
2913 		return -EOPNOTSUPP;
2914 
2915 	while (idx < bus->dev_count &&
2916 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2917 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2918 				       range->len, val))
2919 			return idx;
2920 		idx++;
2921 	}
2922 
2923 	return -EOPNOTSUPP;
2924 }
2925 
2926 /* kvm_io_bus_read - called under kvm->slots_lock */
2927 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2928 		    int len, void *val)
2929 {
2930 	struct kvm_io_bus *bus;
2931 	struct kvm_io_range range;
2932 	int r;
2933 
2934 	range = (struct kvm_io_range) {
2935 		.addr = addr,
2936 		.len = len,
2937 	};
2938 
2939 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2940 	r = __kvm_io_bus_read(bus, &range, val);
2941 	return r < 0 ? r : 0;
2942 }
2943 
2944 
2945 /* Caller must hold slots_lock. */
2946 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2947 			    int len, struct kvm_io_device *dev)
2948 {
2949 	struct kvm_io_bus *new_bus, *bus;
2950 
2951 	bus = kvm->buses[bus_idx];
2952 	/* exclude ioeventfd which is limited by maximum fd */
2953 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2954 		return -ENOSPC;
2955 
2956 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2957 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2958 	if (!new_bus)
2959 		return -ENOMEM;
2960 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2961 	       sizeof(struct kvm_io_range)));
2962 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2963 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2964 	synchronize_srcu_expedited(&kvm->srcu);
2965 	kfree(bus);
2966 
2967 	return 0;
2968 }
2969 
2970 /* Caller must hold slots_lock. */
2971 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2972 			      struct kvm_io_device *dev)
2973 {
2974 	int i, r;
2975 	struct kvm_io_bus *new_bus, *bus;
2976 
2977 	bus = kvm->buses[bus_idx];
2978 	r = -ENOENT;
2979 	for (i = 0; i < bus->dev_count; i++)
2980 		if (bus->range[i].dev == dev) {
2981 			r = 0;
2982 			break;
2983 		}
2984 
2985 	if (r)
2986 		return r;
2987 
2988 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2989 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2990 	if (!new_bus)
2991 		return -ENOMEM;
2992 
2993 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2994 	new_bus->dev_count--;
2995 	memcpy(new_bus->range + i, bus->range + i + 1,
2996 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2997 
2998 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2999 	synchronize_srcu_expedited(&kvm->srcu);
3000 	kfree(bus);
3001 	return r;
3002 }
3003 
3004 static struct notifier_block kvm_cpu_notifier = {
3005 	.notifier_call = kvm_cpu_hotplug,
3006 };
3007 
3008 static int vm_stat_get(void *_offset, u64 *val)
3009 {
3010 	unsigned offset = (long)_offset;
3011 	struct kvm *kvm;
3012 
3013 	*val = 0;
3014 	spin_lock(&kvm_lock);
3015 	list_for_each_entry(kvm, &vm_list, vm_list)
3016 		*val += *(u32 *)((void *)kvm + offset);
3017 	spin_unlock(&kvm_lock);
3018 	return 0;
3019 }
3020 
3021 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3022 
3023 static int vcpu_stat_get(void *_offset, u64 *val)
3024 {
3025 	unsigned offset = (long)_offset;
3026 	struct kvm *kvm;
3027 	struct kvm_vcpu *vcpu;
3028 	int i;
3029 
3030 	*val = 0;
3031 	spin_lock(&kvm_lock);
3032 	list_for_each_entry(kvm, &vm_list, vm_list)
3033 		kvm_for_each_vcpu(i, vcpu, kvm)
3034 			*val += *(u32 *)((void *)vcpu + offset);
3035 
3036 	spin_unlock(&kvm_lock);
3037 	return 0;
3038 }
3039 
3040 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3041 
3042 static const struct file_operations *stat_fops[] = {
3043 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3044 	[KVM_STAT_VM]   = &vm_stat_fops,
3045 };
3046 
3047 static int kvm_init_debug(void)
3048 {
3049 	int r = -EEXIST;
3050 	struct kvm_stats_debugfs_item *p;
3051 
3052 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3053 	if (kvm_debugfs_dir == NULL)
3054 		goto out;
3055 
3056 	for (p = debugfs_entries; p->name; ++p) {
3057 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3058 						(void *)(long)p->offset,
3059 						stat_fops[p->kind]);
3060 		if (p->dentry == NULL)
3061 			goto out_dir;
3062 	}
3063 
3064 	return 0;
3065 
3066 out_dir:
3067 	debugfs_remove_recursive(kvm_debugfs_dir);
3068 out:
3069 	return r;
3070 }
3071 
3072 static void kvm_exit_debug(void)
3073 {
3074 	struct kvm_stats_debugfs_item *p;
3075 
3076 	for (p = debugfs_entries; p->name; ++p)
3077 		debugfs_remove(p->dentry);
3078 	debugfs_remove(kvm_debugfs_dir);
3079 }
3080 
3081 static int kvm_suspend(void)
3082 {
3083 	if (kvm_usage_count)
3084 		hardware_disable_nolock(NULL);
3085 	return 0;
3086 }
3087 
3088 static void kvm_resume(void)
3089 {
3090 	if (kvm_usage_count) {
3091 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3092 		hardware_enable_nolock(NULL);
3093 	}
3094 }
3095 
3096 static struct syscore_ops kvm_syscore_ops = {
3097 	.suspend = kvm_suspend,
3098 	.resume = kvm_resume,
3099 };
3100 
3101 static inline
3102 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3103 {
3104 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3105 }
3106 
3107 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3108 {
3109 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3110 	if (vcpu->preempted)
3111 		vcpu->preempted = false;
3112 
3113 	kvm_arch_vcpu_load(vcpu, cpu);
3114 }
3115 
3116 static void kvm_sched_out(struct preempt_notifier *pn,
3117 			  struct task_struct *next)
3118 {
3119 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3120 
3121 	if (current->state == TASK_RUNNING)
3122 		vcpu->preempted = true;
3123 	kvm_arch_vcpu_put(vcpu);
3124 }
3125 
3126 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3127 		  struct module *module)
3128 {
3129 	int r;
3130 	int cpu;
3131 
3132 	r = kvm_arch_init(opaque);
3133 	if (r)
3134 		goto out_fail;
3135 
3136 	/*
3137 	 * kvm_arch_init makes sure there's at most one caller
3138 	 * for architectures that support multiple implementations,
3139 	 * like intel and amd on x86.
3140 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3141 	 * conflicts in case kvm is already setup for another implementation.
3142 	 */
3143 	r = kvm_irqfd_init();
3144 	if (r)
3145 		goto out_irqfd;
3146 
3147 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3148 		r = -ENOMEM;
3149 		goto out_free_0;
3150 	}
3151 
3152 	r = kvm_arch_hardware_setup();
3153 	if (r < 0)
3154 		goto out_free_0a;
3155 
3156 	for_each_online_cpu(cpu) {
3157 		smp_call_function_single(cpu,
3158 				kvm_arch_check_processor_compat,
3159 				&r, 1);
3160 		if (r < 0)
3161 			goto out_free_1;
3162 	}
3163 
3164 	r = register_cpu_notifier(&kvm_cpu_notifier);
3165 	if (r)
3166 		goto out_free_2;
3167 	register_reboot_notifier(&kvm_reboot_notifier);
3168 
3169 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3170 	if (!vcpu_align)
3171 		vcpu_align = __alignof__(struct kvm_vcpu);
3172 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3173 					   0, NULL);
3174 	if (!kvm_vcpu_cache) {
3175 		r = -ENOMEM;
3176 		goto out_free_3;
3177 	}
3178 
3179 	r = kvm_async_pf_init();
3180 	if (r)
3181 		goto out_free;
3182 
3183 	kvm_chardev_ops.owner = module;
3184 	kvm_vm_fops.owner = module;
3185 	kvm_vcpu_fops.owner = module;
3186 
3187 	r = misc_register(&kvm_dev);
3188 	if (r) {
3189 		printk(KERN_ERR "kvm: misc device register failed\n");
3190 		goto out_unreg;
3191 	}
3192 
3193 	register_syscore_ops(&kvm_syscore_ops);
3194 
3195 	kvm_preempt_ops.sched_in = kvm_sched_in;
3196 	kvm_preempt_ops.sched_out = kvm_sched_out;
3197 
3198 	r = kvm_init_debug();
3199 	if (r) {
3200 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3201 		goto out_undebugfs;
3202 	}
3203 
3204 	return 0;
3205 
3206 out_undebugfs:
3207 	unregister_syscore_ops(&kvm_syscore_ops);
3208 	misc_deregister(&kvm_dev);
3209 out_unreg:
3210 	kvm_async_pf_deinit();
3211 out_free:
3212 	kmem_cache_destroy(kvm_vcpu_cache);
3213 out_free_3:
3214 	unregister_reboot_notifier(&kvm_reboot_notifier);
3215 	unregister_cpu_notifier(&kvm_cpu_notifier);
3216 out_free_2:
3217 out_free_1:
3218 	kvm_arch_hardware_unsetup();
3219 out_free_0a:
3220 	free_cpumask_var(cpus_hardware_enabled);
3221 out_free_0:
3222 	kvm_irqfd_exit();
3223 out_irqfd:
3224 	kvm_arch_exit();
3225 out_fail:
3226 	return r;
3227 }
3228 EXPORT_SYMBOL_GPL(kvm_init);
3229 
3230 void kvm_exit(void)
3231 {
3232 	kvm_exit_debug();
3233 	misc_deregister(&kvm_dev);
3234 	kmem_cache_destroy(kvm_vcpu_cache);
3235 	kvm_async_pf_deinit();
3236 	unregister_syscore_ops(&kvm_syscore_ops);
3237 	unregister_reboot_notifier(&kvm_reboot_notifier);
3238 	unregister_cpu_notifier(&kvm_cpu_notifier);
3239 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3240 	kvm_arch_hardware_unsetup();
3241 	kvm_arch_exit();
3242 	kvm_irqfd_exit();
3243 	free_cpumask_var(cpus_hardware_enabled);
3244 }
3245 EXPORT_SYMBOL_GPL(kvm_exit);
3246