1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_SPINLOCK(kvm_lock); 74 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 75 LIST_HEAD(vm_list); 76 77 static cpumask_var_t cpus_hardware_enabled; 78 static int kvm_usage_count = 0; 79 static atomic_t hardware_enable_failed; 80 81 struct kmem_cache *kvm_vcpu_cache; 82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 83 84 static __read_mostly struct preempt_ops kvm_preempt_ops; 85 86 struct dentry *kvm_debugfs_dir; 87 88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 89 unsigned long arg); 90 #ifdef CONFIG_COMPAT 91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 92 unsigned long arg); 93 #endif 94 static int hardware_enable_all(void); 95 static void hardware_disable_all(void); 96 97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 98 static void update_memslots(struct kvm_memslots *slots, 99 struct kvm_memory_slot *new, u64 last_generation); 100 101 static void kvm_release_pfn_dirty(pfn_t pfn); 102 static void mark_page_dirty_in_slot(struct kvm *kvm, 103 struct kvm_memory_slot *memslot, gfn_t gfn); 104 105 __visible bool kvm_rebooting; 106 EXPORT_SYMBOL_GPL(kvm_rebooting); 107 108 static bool largepages_enabled = true; 109 110 bool kvm_is_mmio_pfn(pfn_t pfn) 111 { 112 if (pfn_valid(pfn)) 113 return PageReserved(pfn_to_page(pfn)); 114 115 return true; 116 } 117 118 /* 119 * Switches to specified vcpu, until a matching vcpu_put() 120 */ 121 int vcpu_load(struct kvm_vcpu *vcpu) 122 { 123 int cpu; 124 125 if (mutex_lock_killable(&vcpu->mutex)) 126 return -EINTR; 127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 128 /* The thread running this VCPU changed. */ 129 struct pid *oldpid = vcpu->pid; 130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 131 rcu_assign_pointer(vcpu->pid, newpid); 132 synchronize_rcu(); 133 put_pid(oldpid); 134 } 135 cpu = get_cpu(); 136 preempt_notifier_register(&vcpu->preempt_notifier); 137 kvm_arch_vcpu_load(vcpu, cpu); 138 put_cpu(); 139 return 0; 140 } 141 142 void vcpu_put(struct kvm_vcpu *vcpu) 143 { 144 preempt_disable(); 145 kvm_arch_vcpu_put(vcpu); 146 preempt_notifier_unregister(&vcpu->preempt_notifier); 147 preempt_enable(); 148 mutex_unlock(&vcpu->mutex); 149 } 150 151 static void ack_flush(void *_completed) 152 { 153 } 154 155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 156 { 157 int i, cpu, me; 158 cpumask_var_t cpus; 159 bool called = true; 160 struct kvm_vcpu *vcpu; 161 162 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 163 164 me = get_cpu(); 165 kvm_for_each_vcpu(i, vcpu, kvm) { 166 kvm_make_request(req, vcpu); 167 cpu = vcpu->cpu; 168 169 /* Set ->requests bit before we read ->mode */ 170 smp_mb(); 171 172 if (cpus != NULL && cpu != -1 && cpu != me && 173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 174 cpumask_set_cpu(cpu, cpus); 175 } 176 if (unlikely(cpus == NULL)) 177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 178 else if (!cpumask_empty(cpus)) 179 smp_call_function_many(cpus, ack_flush, NULL, 1); 180 else 181 called = false; 182 put_cpu(); 183 free_cpumask_var(cpus); 184 return called; 185 } 186 187 void kvm_flush_remote_tlbs(struct kvm *kvm) 188 { 189 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 190 ++kvm->stat.remote_tlb_flush; 191 kvm->tlbs_dirty = false; 192 } 193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 194 195 void kvm_reload_remote_mmus(struct kvm *kvm) 196 { 197 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 198 } 199 200 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 201 { 202 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 203 } 204 205 void kvm_make_scan_ioapic_request(struct kvm *kvm) 206 { 207 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 208 } 209 210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 211 { 212 struct page *page; 213 int r; 214 215 mutex_init(&vcpu->mutex); 216 vcpu->cpu = -1; 217 vcpu->kvm = kvm; 218 vcpu->vcpu_id = id; 219 vcpu->pid = NULL; 220 init_waitqueue_head(&vcpu->wq); 221 kvm_async_pf_vcpu_init(vcpu); 222 223 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 224 if (!page) { 225 r = -ENOMEM; 226 goto fail; 227 } 228 vcpu->run = page_address(page); 229 230 kvm_vcpu_set_in_spin_loop(vcpu, false); 231 kvm_vcpu_set_dy_eligible(vcpu, false); 232 vcpu->preempted = false; 233 234 r = kvm_arch_vcpu_init(vcpu); 235 if (r < 0) 236 goto fail_free_run; 237 return 0; 238 239 fail_free_run: 240 free_page((unsigned long)vcpu->run); 241 fail: 242 return r; 243 } 244 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 245 246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 247 { 248 put_pid(vcpu->pid); 249 kvm_arch_vcpu_uninit(vcpu); 250 free_page((unsigned long)vcpu->run); 251 } 252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 253 254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 256 { 257 return container_of(mn, struct kvm, mmu_notifier); 258 } 259 260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 261 struct mm_struct *mm, 262 unsigned long address) 263 { 264 struct kvm *kvm = mmu_notifier_to_kvm(mn); 265 int need_tlb_flush, idx; 266 267 /* 268 * When ->invalidate_page runs, the linux pte has been zapped 269 * already but the page is still allocated until 270 * ->invalidate_page returns. So if we increase the sequence 271 * here the kvm page fault will notice if the spte can't be 272 * established because the page is going to be freed. If 273 * instead the kvm page fault establishes the spte before 274 * ->invalidate_page runs, kvm_unmap_hva will release it 275 * before returning. 276 * 277 * The sequence increase only need to be seen at spin_unlock 278 * time, and not at spin_lock time. 279 * 280 * Increasing the sequence after the spin_unlock would be 281 * unsafe because the kvm page fault could then establish the 282 * pte after kvm_unmap_hva returned, without noticing the page 283 * is going to be freed. 284 */ 285 idx = srcu_read_lock(&kvm->srcu); 286 spin_lock(&kvm->mmu_lock); 287 288 kvm->mmu_notifier_seq++; 289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 290 /* we've to flush the tlb before the pages can be freed */ 291 if (need_tlb_flush) 292 kvm_flush_remote_tlbs(kvm); 293 294 spin_unlock(&kvm->mmu_lock); 295 srcu_read_unlock(&kvm->srcu, idx); 296 } 297 298 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 299 struct mm_struct *mm, 300 unsigned long address, 301 pte_t pte) 302 { 303 struct kvm *kvm = mmu_notifier_to_kvm(mn); 304 int idx; 305 306 idx = srcu_read_lock(&kvm->srcu); 307 spin_lock(&kvm->mmu_lock); 308 kvm->mmu_notifier_seq++; 309 kvm_set_spte_hva(kvm, address, pte); 310 spin_unlock(&kvm->mmu_lock); 311 srcu_read_unlock(&kvm->srcu, idx); 312 } 313 314 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 315 struct mm_struct *mm, 316 unsigned long start, 317 unsigned long end) 318 { 319 struct kvm *kvm = mmu_notifier_to_kvm(mn); 320 int need_tlb_flush = 0, idx; 321 322 idx = srcu_read_lock(&kvm->srcu); 323 spin_lock(&kvm->mmu_lock); 324 /* 325 * The count increase must become visible at unlock time as no 326 * spte can be established without taking the mmu_lock and 327 * count is also read inside the mmu_lock critical section. 328 */ 329 kvm->mmu_notifier_count++; 330 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 331 need_tlb_flush |= kvm->tlbs_dirty; 332 /* we've to flush the tlb before the pages can be freed */ 333 if (need_tlb_flush) 334 kvm_flush_remote_tlbs(kvm); 335 336 spin_unlock(&kvm->mmu_lock); 337 srcu_read_unlock(&kvm->srcu, idx); 338 } 339 340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 341 struct mm_struct *mm, 342 unsigned long start, 343 unsigned long end) 344 { 345 struct kvm *kvm = mmu_notifier_to_kvm(mn); 346 347 spin_lock(&kvm->mmu_lock); 348 /* 349 * This sequence increase will notify the kvm page fault that 350 * the page that is going to be mapped in the spte could have 351 * been freed. 352 */ 353 kvm->mmu_notifier_seq++; 354 smp_wmb(); 355 /* 356 * The above sequence increase must be visible before the 357 * below count decrease, which is ensured by the smp_wmb above 358 * in conjunction with the smp_rmb in mmu_notifier_retry(). 359 */ 360 kvm->mmu_notifier_count--; 361 spin_unlock(&kvm->mmu_lock); 362 363 BUG_ON(kvm->mmu_notifier_count < 0); 364 } 365 366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 367 struct mm_struct *mm, 368 unsigned long address) 369 { 370 struct kvm *kvm = mmu_notifier_to_kvm(mn); 371 int young, idx; 372 373 idx = srcu_read_lock(&kvm->srcu); 374 spin_lock(&kvm->mmu_lock); 375 376 young = kvm_age_hva(kvm, address); 377 if (young) 378 kvm_flush_remote_tlbs(kvm); 379 380 spin_unlock(&kvm->mmu_lock); 381 srcu_read_unlock(&kvm->srcu, idx); 382 383 return young; 384 } 385 386 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 387 struct mm_struct *mm, 388 unsigned long address) 389 { 390 struct kvm *kvm = mmu_notifier_to_kvm(mn); 391 int young, idx; 392 393 idx = srcu_read_lock(&kvm->srcu); 394 spin_lock(&kvm->mmu_lock); 395 young = kvm_test_age_hva(kvm, address); 396 spin_unlock(&kvm->mmu_lock); 397 srcu_read_unlock(&kvm->srcu, idx); 398 399 return young; 400 } 401 402 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 403 struct mm_struct *mm) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 int idx; 407 408 idx = srcu_read_lock(&kvm->srcu); 409 kvm_arch_flush_shadow_all(kvm); 410 srcu_read_unlock(&kvm->srcu, idx); 411 } 412 413 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 414 .invalidate_page = kvm_mmu_notifier_invalidate_page, 415 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 416 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 417 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 418 .test_young = kvm_mmu_notifier_test_young, 419 .change_pte = kvm_mmu_notifier_change_pte, 420 .release = kvm_mmu_notifier_release, 421 }; 422 423 static int kvm_init_mmu_notifier(struct kvm *kvm) 424 { 425 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 426 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 427 } 428 429 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 430 431 static int kvm_init_mmu_notifier(struct kvm *kvm) 432 { 433 return 0; 434 } 435 436 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 437 438 static void kvm_init_memslots_id(struct kvm *kvm) 439 { 440 int i; 441 struct kvm_memslots *slots = kvm->memslots; 442 443 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 444 slots->id_to_index[i] = slots->memslots[i].id = i; 445 } 446 447 static struct kvm *kvm_create_vm(unsigned long type) 448 { 449 int r, i; 450 struct kvm *kvm = kvm_arch_alloc_vm(); 451 452 if (!kvm) 453 return ERR_PTR(-ENOMEM); 454 455 r = kvm_arch_init_vm(kvm, type); 456 if (r) 457 goto out_err_nodisable; 458 459 r = hardware_enable_all(); 460 if (r) 461 goto out_err_nodisable; 462 463 #ifdef CONFIG_HAVE_KVM_IRQCHIP 464 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 465 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 466 #endif 467 468 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 469 470 r = -ENOMEM; 471 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 472 if (!kvm->memslots) 473 goto out_err_nosrcu; 474 kvm_init_memslots_id(kvm); 475 if (init_srcu_struct(&kvm->srcu)) 476 goto out_err_nosrcu; 477 for (i = 0; i < KVM_NR_BUSES; i++) { 478 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 479 GFP_KERNEL); 480 if (!kvm->buses[i]) 481 goto out_err; 482 } 483 484 spin_lock_init(&kvm->mmu_lock); 485 kvm->mm = current->mm; 486 atomic_inc(&kvm->mm->mm_count); 487 kvm_eventfd_init(kvm); 488 mutex_init(&kvm->lock); 489 mutex_init(&kvm->irq_lock); 490 mutex_init(&kvm->slots_lock); 491 atomic_set(&kvm->users_count, 1); 492 INIT_LIST_HEAD(&kvm->devices); 493 494 r = kvm_init_mmu_notifier(kvm); 495 if (r) 496 goto out_err; 497 498 spin_lock(&kvm_lock); 499 list_add(&kvm->vm_list, &vm_list); 500 spin_unlock(&kvm_lock); 501 502 return kvm; 503 504 out_err: 505 cleanup_srcu_struct(&kvm->srcu); 506 out_err_nosrcu: 507 hardware_disable_all(); 508 out_err_nodisable: 509 for (i = 0; i < KVM_NR_BUSES; i++) 510 kfree(kvm->buses[i]); 511 kfree(kvm->memslots); 512 kvm_arch_free_vm(kvm); 513 return ERR_PTR(r); 514 } 515 516 /* 517 * Avoid using vmalloc for a small buffer. 518 * Should not be used when the size is statically known. 519 */ 520 void *kvm_kvzalloc(unsigned long size) 521 { 522 if (size > PAGE_SIZE) 523 return vzalloc(size); 524 else 525 return kzalloc(size, GFP_KERNEL); 526 } 527 528 void kvm_kvfree(const void *addr) 529 { 530 if (is_vmalloc_addr(addr)) 531 vfree(addr); 532 else 533 kfree(addr); 534 } 535 536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 537 { 538 if (!memslot->dirty_bitmap) 539 return; 540 541 kvm_kvfree(memslot->dirty_bitmap); 542 memslot->dirty_bitmap = NULL; 543 } 544 545 /* 546 * Free any memory in @free but not in @dont. 547 */ 548 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 549 struct kvm_memory_slot *dont) 550 { 551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 552 kvm_destroy_dirty_bitmap(free); 553 554 kvm_arch_free_memslot(kvm, free, dont); 555 556 free->npages = 0; 557 } 558 559 static void kvm_free_physmem(struct kvm *kvm) 560 { 561 struct kvm_memslots *slots = kvm->memslots; 562 struct kvm_memory_slot *memslot; 563 564 kvm_for_each_memslot(memslot, slots) 565 kvm_free_physmem_slot(kvm, memslot, NULL); 566 567 kfree(kvm->memslots); 568 } 569 570 static void kvm_destroy_devices(struct kvm *kvm) 571 { 572 struct list_head *node, *tmp; 573 574 list_for_each_safe(node, tmp, &kvm->devices) { 575 struct kvm_device *dev = 576 list_entry(node, struct kvm_device, vm_node); 577 578 list_del(node); 579 dev->ops->destroy(dev); 580 } 581 } 582 583 static void kvm_destroy_vm(struct kvm *kvm) 584 { 585 int i; 586 struct mm_struct *mm = kvm->mm; 587 588 kvm_arch_sync_events(kvm); 589 spin_lock(&kvm_lock); 590 list_del(&kvm->vm_list); 591 spin_unlock(&kvm_lock); 592 kvm_free_irq_routing(kvm); 593 for (i = 0; i < KVM_NR_BUSES; i++) 594 kvm_io_bus_destroy(kvm->buses[i]); 595 kvm_coalesced_mmio_free(kvm); 596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 597 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 598 #else 599 kvm_arch_flush_shadow_all(kvm); 600 #endif 601 kvm_arch_destroy_vm(kvm); 602 kvm_destroy_devices(kvm); 603 kvm_free_physmem(kvm); 604 cleanup_srcu_struct(&kvm->srcu); 605 kvm_arch_free_vm(kvm); 606 hardware_disable_all(); 607 mmdrop(mm); 608 } 609 610 void kvm_get_kvm(struct kvm *kvm) 611 { 612 atomic_inc(&kvm->users_count); 613 } 614 EXPORT_SYMBOL_GPL(kvm_get_kvm); 615 616 void kvm_put_kvm(struct kvm *kvm) 617 { 618 if (atomic_dec_and_test(&kvm->users_count)) 619 kvm_destroy_vm(kvm); 620 } 621 EXPORT_SYMBOL_GPL(kvm_put_kvm); 622 623 624 static int kvm_vm_release(struct inode *inode, struct file *filp) 625 { 626 struct kvm *kvm = filp->private_data; 627 628 kvm_irqfd_release(kvm); 629 630 kvm_put_kvm(kvm); 631 return 0; 632 } 633 634 /* 635 * Allocation size is twice as large as the actual dirty bitmap size. 636 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 637 */ 638 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 639 { 640 #ifndef CONFIG_S390 641 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 642 643 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 644 if (!memslot->dirty_bitmap) 645 return -ENOMEM; 646 647 #endif /* !CONFIG_S390 */ 648 return 0; 649 } 650 651 static int cmp_memslot(const void *slot1, const void *slot2) 652 { 653 struct kvm_memory_slot *s1, *s2; 654 655 s1 = (struct kvm_memory_slot *)slot1; 656 s2 = (struct kvm_memory_slot *)slot2; 657 658 if (s1->npages < s2->npages) 659 return 1; 660 if (s1->npages > s2->npages) 661 return -1; 662 663 return 0; 664 } 665 666 /* 667 * Sort the memslots base on its size, so the larger slots 668 * will get better fit. 669 */ 670 static void sort_memslots(struct kvm_memslots *slots) 671 { 672 int i; 673 674 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 675 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 676 677 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 678 slots->id_to_index[slots->memslots[i].id] = i; 679 } 680 681 static void update_memslots(struct kvm_memslots *slots, 682 struct kvm_memory_slot *new, 683 u64 last_generation) 684 { 685 if (new) { 686 int id = new->id; 687 struct kvm_memory_slot *old = id_to_memslot(slots, id); 688 unsigned long npages = old->npages; 689 690 *old = *new; 691 if (new->npages != npages) 692 sort_memslots(slots); 693 } 694 695 slots->generation = last_generation + 1; 696 } 697 698 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 699 { 700 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 701 702 #ifdef KVM_CAP_READONLY_MEM 703 valid_flags |= KVM_MEM_READONLY; 704 #endif 705 706 if (mem->flags & ~valid_flags) 707 return -EINVAL; 708 709 return 0; 710 } 711 712 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 713 struct kvm_memslots *slots, struct kvm_memory_slot *new) 714 { 715 struct kvm_memslots *old_memslots = kvm->memslots; 716 717 update_memslots(slots, new, kvm->memslots->generation); 718 rcu_assign_pointer(kvm->memslots, slots); 719 synchronize_srcu_expedited(&kvm->srcu); 720 721 kvm_arch_memslots_updated(kvm); 722 723 return old_memslots; 724 } 725 726 /* 727 * Allocate some memory and give it an address in the guest physical address 728 * space. 729 * 730 * Discontiguous memory is allowed, mostly for framebuffers. 731 * 732 * Must be called holding mmap_sem for write. 733 */ 734 int __kvm_set_memory_region(struct kvm *kvm, 735 struct kvm_userspace_memory_region *mem) 736 { 737 int r; 738 gfn_t base_gfn; 739 unsigned long npages; 740 struct kvm_memory_slot *slot; 741 struct kvm_memory_slot old, new; 742 struct kvm_memslots *slots = NULL, *old_memslots; 743 enum kvm_mr_change change; 744 745 r = check_memory_region_flags(mem); 746 if (r) 747 goto out; 748 749 r = -EINVAL; 750 /* General sanity checks */ 751 if (mem->memory_size & (PAGE_SIZE - 1)) 752 goto out; 753 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 754 goto out; 755 /* We can read the guest memory with __xxx_user() later on. */ 756 if ((mem->slot < KVM_USER_MEM_SLOTS) && 757 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 758 !access_ok(VERIFY_WRITE, 759 (void __user *)(unsigned long)mem->userspace_addr, 760 mem->memory_size))) 761 goto out; 762 if (mem->slot >= KVM_MEM_SLOTS_NUM) 763 goto out; 764 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 765 goto out; 766 767 slot = id_to_memslot(kvm->memslots, mem->slot); 768 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 769 npages = mem->memory_size >> PAGE_SHIFT; 770 771 r = -EINVAL; 772 if (npages > KVM_MEM_MAX_NR_PAGES) 773 goto out; 774 775 if (!npages) 776 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 777 778 new = old = *slot; 779 780 new.id = mem->slot; 781 new.base_gfn = base_gfn; 782 new.npages = npages; 783 new.flags = mem->flags; 784 785 r = -EINVAL; 786 if (npages) { 787 if (!old.npages) 788 change = KVM_MR_CREATE; 789 else { /* Modify an existing slot. */ 790 if ((mem->userspace_addr != old.userspace_addr) || 791 (npages != old.npages) || 792 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 793 goto out; 794 795 if (base_gfn != old.base_gfn) 796 change = KVM_MR_MOVE; 797 else if (new.flags != old.flags) 798 change = KVM_MR_FLAGS_ONLY; 799 else { /* Nothing to change. */ 800 r = 0; 801 goto out; 802 } 803 } 804 } else if (old.npages) { 805 change = KVM_MR_DELETE; 806 } else /* Modify a non-existent slot: disallowed. */ 807 goto out; 808 809 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 810 /* Check for overlaps */ 811 r = -EEXIST; 812 kvm_for_each_memslot(slot, kvm->memslots) { 813 if ((slot->id >= KVM_USER_MEM_SLOTS) || 814 (slot->id == mem->slot)) 815 continue; 816 if (!((base_gfn + npages <= slot->base_gfn) || 817 (base_gfn >= slot->base_gfn + slot->npages))) 818 goto out; 819 } 820 } 821 822 /* Free page dirty bitmap if unneeded */ 823 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 824 new.dirty_bitmap = NULL; 825 826 r = -ENOMEM; 827 if (change == KVM_MR_CREATE) { 828 new.userspace_addr = mem->userspace_addr; 829 830 if (kvm_arch_create_memslot(kvm, &new, npages)) 831 goto out_free; 832 } 833 834 /* Allocate page dirty bitmap if needed */ 835 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 836 if (kvm_create_dirty_bitmap(&new) < 0) 837 goto out_free; 838 } 839 840 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 841 r = -ENOMEM; 842 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 843 GFP_KERNEL); 844 if (!slots) 845 goto out_free; 846 slot = id_to_memslot(slots, mem->slot); 847 slot->flags |= KVM_MEMSLOT_INVALID; 848 849 old_memslots = install_new_memslots(kvm, slots, NULL); 850 851 /* slot was deleted or moved, clear iommu mapping */ 852 kvm_iommu_unmap_pages(kvm, &old); 853 /* From this point no new shadow pages pointing to a deleted, 854 * or moved, memslot will be created. 855 * 856 * validation of sp->gfn happens in: 857 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 858 * - kvm_is_visible_gfn (mmu_check_roots) 859 */ 860 kvm_arch_flush_shadow_memslot(kvm, slot); 861 slots = old_memslots; 862 } 863 864 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 865 if (r) 866 goto out_slots; 867 868 r = -ENOMEM; 869 /* 870 * We can re-use the old_memslots from above, the only difference 871 * from the currently installed memslots is the invalid flag. This 872 * will get overwritten by update_memslots anyway. 873 */ 874 if (!slots) { 875 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 876 GFP_KERNEL); 877 if (!slots) 878 goto out_free; 879 } 880 881 /* actual memory is freed via old in kvm_free_physmem_slot below */ 882 if (change == KVM_MR_DELETE) { 883 new.dirty_bitmap = NULL; 884 memset(&new.arch, 0, sizeof(new.arch)); 885 } 886 887 old_memslots = install_new_memslots(kvm, slots, &new); 888 889 kvm_arch_commit_memory_region(kvm, mem, &old, change); 890 891 kvm_free_physmem_slot(kvm, &old, &new); 892 kfree(old_memslots); 893 894 /* 895 * IOMMU mapping: New slots need to be mapped. Old slots need to be 896 * un-mapped and re-mapped if their base changes. Since base change 897 * unmapping is handled above with slot deletion, mapping alone is 898 * needed here. Anything else the iommu might care about for existing 899 * slots (size changes, userspace addr changes and read-only flag 900 * changes) is disallowed above, so any other attribute changes getting 901 * here can be skipped. 902 */ 903 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 904 r = kvm_iommu_map_pages(kvm, &new); 905 return r; 906 } 907 908 return 0; 909 910 out_slots: 911 kfree(slots); 912 out_free: 913 kvm_free_physmem_slot(kvm, &new, &old); 914 out: 915 return r; 916 } 917 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 918 919 int kvm_set_memory_region(struct kvm *kvm, 920 struct kvm_userspace_memory_region *mem) 921 { 922 int r; 923 924 mutex_lock(&kvm->slots_lock); 925 r = __kvm_set_memory_region(kvm, mem); 926 mutex_unlock(&kvm->slots_lock); 927 return r; 928 } 929 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 930 931 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 932 struct kvm_userspace_memory_region *mem) 933 { 934 if (mem->slot >= KVM_USER_MEM_SLOTS) 935 return -EINVAL; 936 return kvm_set_memory_region(kvm, mem); 937 } 938 939 int kvm_get_dirty_log(struct kvm *kvm, 940 struct kvm_dirty_log *log, int *is_dirty) 941 { 942 struct kvm_memory_slot *memslot; 943 int r, i; 944 unsigned long n; 945 unsigned long any = 0; 946 947 r = -EINVAL; 948 if (log->slot >= KVM_USER_MEM_SLOTS) 949 goto out; 950 951 memslot = id_to_memslot(kvm->memslots, log->slot); 952 r = -ENOENT; 953 if (!memslot->dirty_bitmap) 954 goto out; 955 956 n = kvm_dirty_bitmap_bytes(memslot); 957 958 for (i = 0; !any && i < n/sizeof(long); ++i) 959 any = memslot->dirty_bitmap[i]; 960 961 r = -EFAULT; 962 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 963 goto out; 964 965 if (any) 966 *is_dirty = 1; 967 968 r = 0; 969 out: 970 return r; 971 } 972 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 973 974 bool kvm_largepages_enabled(void) 975 { 976 return largepages_enabled; 977 } 978 979 void kvm_disable_largepages(void) 980 { 981 largepages_enabled = false; 982 } 983 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 984 985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 986 { 987 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 988 } 989 EXPORT_SYMBOL_GPL(gfn_to_memslot); 990 991 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 992 { 993 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 994 995 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 996 memslot->flags & KVM_MEMSLOT_INVALID) 997 return 0; 998 999 return 1; 1000 } 1001 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1002 1003 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1004 { 1005 struct vm_area_struct *vma; 1006 unsigned long addr, size; 1007 1008 size = PAGE_SIZE; 1009 1010 addr = gfn_to_hva(kvm, gfn); 1011 if (kvm_is_error_hva(addr)) 1012 return PAGE_SIZE; 1013 1014 down_read(¤t->mm->mmap_sem); 1015 vma = find_vma(current->mm, addr); 1016 if (!vma) 1017 goto out; 1018 1019 size = vma_kernel_pagesize(vma); 1020 1021 out: 1022 up_read(¤t->mm->mmap_sem); 1023 1024 return size; 1025 } 1026 1027 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1028 { 1029 return slot->flags & KVM_MEM_READONLY; 1030 } 1031 1032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1033 gfn_t *nr_pages, bool write) 1034 { 1035 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1036 return KVM_HVA_ERR_BAD; 1037 1038 if (memslot_is_readonly(slot) && write) 1039 return KVM_HVA_ERR_RO_BAD; 1040 1041 if (nr_pages) 1042 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1043 1044 return __gfn_to_hva_memslot(slot, gfn); 1045 } 1046 1047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1048 gfn_t *nr_pages) 1049 { 1050 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1051 } 1052 1053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1054 gfn_t gfn) 1055 { 1056 return gfn_to_hva_many(slot, gfn, NULL); 1057 } 1058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1059 1060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1061 { 1062 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1063 } 1064 EXPORT_SYMBOL_GPL(gfn_to_hva); 1065 1066 /* 1067 * If writable is set to false, the hva returned by this function is only 1068 * allowed to be read. 1069 */ 1070 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1071 { 1072 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1073 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1074 1075 if (!kvm_is_error_hva(hva) && writable) 1076 *writable = !memslot_is_readonly(slot); 1077 1078 return hva; 1079 } 1080 1081 static int kvm_read_hva(void *data, void __user *hva, int len) 1082 { 1083 return __copy_from_user(data, hva, len); 1084 } 1085 1086 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1087 { 1088 return __copy_from_user_inatomic(data, hva, len); 1089 } 1090 1091 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1092 unsigned long start, int write, struct page **page) 1093 { 1094 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1095 1096 if (write) 1097 flags |= FOLL_WRITE; 1098 1099 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1100 } 1101 1102 static inline int check_user_page_hwpoison(unsigned long addr) 1103 { 1104 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1105 1106 rc = __get_user_pages(current, current->mm, addr, 1, 1107 flags, NULL, NULL, NULL); 1108 return rc == -EHWPOISON; 1109 } 1110 1111 /* 1112 * The atomic path to get the writable pfn which will be stored in @pfn, 1113 * true indicates success, otherwise false is returned. 1114 */ 1115 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1116 bool write_fault, bool *writable, pfn_t *pfn) 1117 { 1118 struct page *page[1]; 1119 int npages; 1120 1121 if (!(async || atomic)) 1122 return false; 1123 1124 /* 1125 * Fast pin a writable pfn only if it is a write fault request 1126 * or the caller allows to map a writable pfn for a read fault 1127 * request. 1128 */ 1129 if (!(write_fault || writable)) 1130 return false; 1131 1132 npages = __get_user_pages_fast(addr, 1, 1, page); 1133 if (npages == 1) { 1134 *pfn = page_to_pfn(page[0]); 1135 1136 if (writable) 1137 *writable = true; 1138 return true; 1139 } 1140 1141 return false; 1142 } 1143 1144 /* 1145 * The slow path to get the pfn of the specified host virtual address, 1146 * 1 indicates success, -errno is returned if error is detected. 1147 */ 1148 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1149 bool *writable, pfn_t *pfn) 1150 { 1151 struct page *page[1]; 1152 int npages = 0; 1153 1154 might_sleep(); 1155 1156 if (writable) 1157 *writable = write_fault; 1158 1159 if (async) { 1160 down_read(¤t->mm->mmap_sem); 1161 npages = get_user_page_nowait(current, current->mm, 1162 addr, write_fault, page); 1163 up_read(¤t->mm->mmap_sem); 1164 } else 1165 npages = get_user_pages_fast(addr, 1, write_fault, 1166 page); 1167 if (npages != 1) 1168 return npages; 1169 1170 /* map read fault as writable if possible */ 1171 if (unlikely(!write_fault) && writable) { 1172 struct page *wpage[1]; 1173 1174 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1175 if (npages == 1) { 1176 *writable = true; 1177 put_page(page[0]); 1178 page[0] = wpage[0]; 1179 } 1180 1181 npages = 1; 1182 } 1183 *pfn = page_to_pfn(page[0]); 1184 return npages; 1185 } 1186 1187 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1188 { 1189 if (unlikely(!(vma->vm_flags & VM_READ))) 1190 return false; 1191 1192 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 /* 1199 * Pin guest page in memory and return its pfn. 1200 * @addr: host virtual address which maps memory to the guest 1201 * @atomic: whether this function can sleep 1202 * @async: whether this function need to wait IO complete if the 1203 * host page is not in the memory 1204 * @write_fault: whether we should get a writable host page 1205 * @writable: whether it allows to map a writable host page for !@write_fault 1206 * 1207 * The function will map a writable host page for these two cases: 1208 * 1): @write_fault = true 1209 * 2): @write_fault = false && @writable, @writable will tell the caller 1210 * whether the mapping is writable. 1211 */ 1212 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1213 bool write_fault, bool *writable) 1214 { 1215 struct vm_area_struct *vma; 1216 pfn_t pfn = 0; 1217 int npages; 1218 1219 /* we can do it either atomically or asynchronously, not both */ 1220 BUG_ON(atomic && async); 1221 1222 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1223 return pfn; 1224 1225 if (atomic) 1226 return KVM_PFN_ERR_FAULT; 1227 1228 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1229 if (npages == 1) 1230 return pfn; 1231 1232 down_read(¤t->mm->mmap_sem); 1233 if (npages == -EHWPOISON || 1234 (!async && check_user_page_hwpoison(addr))) { 1235 pfn = KVM_PFN_ERR_HWPOISON; 1236 goto exit; 1237 } 1238 1239 vma = find_vma_intersection(current->mm, addr, addr + 1); 1240 1241 if (vma == NULL) 1242 pfn = KVM_PFN_ERR_FAULT; 1243 else if ((vma->vm_flags & VM_PFNMAP)) { 1244 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1245 vma->vm_pgoff; 1246 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1247 } else { 1248 if (async && vma_is_valid(vma, write_fault)) 1249 *async = true; 1250 pfn = KVM_PFN_ERR_FAULT; 1251 } 1252 exit: 1253 up_read(¤t->mm->mmap_sem); 1254 return pfn; 1255 } 1256 1257 static pfn_t 1258 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1259 bool *async, bool write_fault, bool *writable) 1260 { 1261 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1262 1263 if (addr == KVM_HVA_ERR_RO_BAD) 1264 return KVM_PFN_ERR_RO_FAULT; 1265 1266 if (kvm_is_error_hva(addr)) 1267 return KVM_PFN_NOSLOT; 1268 1269 /* Do not map writable pfn in the readonly memslot. */ 1270 if (writable && memslot_is_readonly(slot)) { 1271 *writable = false; 1272 writable = NULL; 1273 } 1274 1275 return hva_to_pfn(addr, atomic, async, write_fault, 1276 writable); 1277 } 1278 1279 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1280 bool write_fault, bool *writable) 1281 { 1282 struct kvm_memory_slot *slot; 1283 1284 if (async) 1285 *async = false; 1286 1287 slot = gfn_to_memslot(kvm, gfn); 1288 1289 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1290 writable); 1291 } 1292 1293 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1294 { 1295 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1296 } 1297 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1298 1299 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1300 bool write_fault, bool *writable) 1301 { 1302 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1303 } 1304 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1305 1306 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1307 { 1308 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1309 } 1310 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1311 1312 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1313 bool *writable) 1314 { 1315 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1316 } 1317 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1318 1319 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1320 { 1321 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1322 } 1323 1324 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1325 { 1326 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1327 } 1328 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1329 1330 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1331 int nr_pages) 1332 { 1333 unsigned long addr; 1334 gfn_t entry; 1335 1336 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1337 if (kvm_is_error_hva(addr)) 1338 return -1; 1339 1340 if (entry < nr_pages) 1341 return 0; 1342 1343 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1344 } 1345 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1346 1347 static struct page *kvm_pfn_to_page(pfn_t pfn) 1348 { 1349 if (is_error_noslot_pfn(pfn)) 1350 return KVM_ERR_PTR_BAD_PAGE; 1351 1352 if (kvm_is_mmio_pfn(pfn)) { 1353 WARN_ON(1); 1354 return KVM_ERR_PTR_BAD_PAGE; 1355 } 1356 1357 return pfn_to_page(pfn); 1358 } 1359 1360 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1361 { 1362 pfn_t pfn; 1363 1364 pfn = gfn_to_pfn(kvm, gfn); 1365 1366 return kvm_pfn_to_page(pfn); 1367 } 1368 1369 EXPORT_SYMBOL_GPL(gfn_to_page); 1370 1371 void kvm_release_page_clean(struct page *page) 1372 { 1373 WARN_ON(is_error_page(page)); 1374 1375 kvm_release_pfn_clean(page_to_pfn(page)); 1376 } 1377 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1378 1379 void kvm_release_pfn_clean(pfn_t pfn) 1380 { 1381 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1382 put_page(pfn_to_page(pfn)); 1383 } 1384 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1385 1386 void kvm_release_page_dirty(struct page *page) 1387 { 1388 WARN_ON(is_error_page(page)); 1389 1390 kvm_release_pfn_dirty(page_to_pfn(page)); 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1393 1394 static void kvm_release_pfn_dirty(pfn_t pfn) 1395 { 1396 kvm_set_pfn_dirty(pfn); 1397 kvm_release_pfn_clean(pfn); 1398 } 1399 1400 void kvm_set_pfn_dirty(pfn_t pfn) 1401 { 1402 if (!kvm_is_mmio_pfn(pfn)) { 1403 struct page *page = pfn_to_page(pfn); 1404 if (!PageReserved(page)) 1405 SetPageDirty(page); 1406 } 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1409 1410 void kvm_set_pfn_accessed(pfn_t pfn) 1411 { 1412 if (!kvm_is_mmio_pfn(pfn)) 1413 mark_page_accessed(pfn_to_page(pfn)); 1414 } 1415 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1416 1417 void kvm_get_pfn(pfn_t pfn) 1418 { 1419 if (!kvm_is_mmio_pfn(pfn)) 1420 get_page(pfn_to_page(pfn)); 1421 } 1422 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1423 1424 static int next_segment(unsigned long len, int offset) 1425 { 1426 if (len > PAGE_SIZE - offset) 1427 return PAGE_SIZE - offset; 1428 else 1429 return len; 1430 } 1431 1432 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1433 int len) 1434 { 1435 int r; 1436 unsigned long addr; 1437 1438 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1439 if (kvm_is_error_hva(addr)) 1440 return -EFAULT; 1441 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1442 if (r) 1443 return -EFAULT; 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1447 1448 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1449 { 1450 gfn_t gfn = gpa >> PAGE_SHIFT; 1451 int seg; 1452 int offset = offset_in_page(gpa); 1453 int ret; 1454 1455 while ((seg = next_segment(len, offset)) != 0) { 1456 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1457 if (ret < 0) 1458 return ret; 1459 offset = 0; 1460 len -= seg; 1461 data += seg; 1462 ++gfn; 1463 } 1464 return 0; 1465 } 1466 EXPORT_SYMBOL_GPL(kvm_read_guest); 1467 1468 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1469 unsigned long len) 1470 { 1471 int r; 1472 unsigned long addr; 1473 gfn_t gfn = gpa >> PAGE_SHIFT; 1474 int offset = offset_in_page(gpa); 1475 1476 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1477 if (kvm_is_error_hva(addr)) 1478 return -EFAULT; 1479 pagefault_disable(); 1480 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1481 pagefault_enable(); 1482 if (r) 1483 return -EFAULT; 1484 return 0; 1485 } 1486 EXPORT_SYMBOL(kvm_read_guest_atomic); 1487 1488 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1489 int offset, int len) 1490 { 1491 int r; 1492 unsigned long addr; 1493 1494 addr = gfn_to_hva(kvm, gfn); 1495 if (kvm_is_error_hva(addr)) 1496 return -EFAULT; 1497 r = __copy_to_user((void __user *)addr + offset, data, len); 1498 if (r) 1499 return -EFAULT; 1500 mark_page_dirty(kvm, gfn); 1501 return 0; 1502 } 1503 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1504 1505 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1506 unsigned long len) 1507 { 1508 gfn_t gfn = gpa >> PAGE_SHIFT; 1509 int seg; 1510 int offset = offset_in_page(gpa); 1511 int ret; 1512 1513 while ((seg = next_segment(len, offset)) != 0) { 1514 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1515 if (ret < 0) 1516 return ret; 1517 offset = 0; 1518 len -= seg; 1519 data += seg; 1520 ++gfn; 1521 } 1522 return 0; 1523 } 1524 1525 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1526 gpa_t gpa, unsigned long len) 1527 { 1528 struct kvm_memslots *slots = kvm_memslots(kvm); 1529 int offset = offset_in_page(gpa); 1530 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1531 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1532 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1533 gfn_t nr_pages_avail; 1534 1535 ghc->gpa = gpa; 1536 ghc->generation = slots->generation; 1537 ghc->len = len; 1538 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1539 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1540 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1541 ghc->hva += offset; 1542 } else { 1543 /* 1544 * If the requested region crosses two memslots, we still 1545 * verify that the entire region is valid here. 1546 */ 1547 while (start_gfn <= end_gfn) { 1548 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1549 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1550 &nr_pages_avail); 1551 if (kvm_is_error_hva(ghc->hva)) 1552 return -EFAULT; 1553 start_gfn += nr_pages_avail; 1554 } 1555 /* Use the slow path for cross page reads and writes. */ 1556 ghc->memslot = NULL; 1557 } 1558 return 0; 1559 } 1560 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1561 1562 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1563 void *data, unsigned long len) 1564 { 1565 struct kvm_memslots *slots = kvm_memslots(kvm); 1566 int r; 1567 1568 BUG_ON(len > ghc->len); 1569 1570 if (slots->generation != ghc->generation) 1571 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1572 1573 if (unlikely(!ghc->memslot)) 1574 return kvm_write_guest(kvm, ghc->gpa, data, len); 1575 1576 if (kvm_is_error_hva(ghc->hva)) 1577 return -EFAULT; 1578 1579 r = __copy_to_user((void __user *)ghc->hva, data, len); 1580 if (r) 1581 return -EFAULT; 1582 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1583 1584 return 0; 1585 } 1586 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1587 1588 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1589 void *data, unsigned long len) 1590 { 1591 struct kvm_memslots *slots = kvm_memslots(kvm); 1592 int r; 1593 1594 BUG_ON(len > ghc->len); 1595 1596 if (slots->generation != ghc->generation) 1597 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1598 1599 if (unlikely(!ghc->memslot)) 1600 return kvm_read_guest(kvm, ghc->gpa, data, len); 1601 1602 if (kvm_is_error_hva(ghc->hva)) 1603 return -EFAULT; 1604 1605 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1606 if (r) 1607 return -EFAULT; 1608 1609 return 0; 1610 } 1611 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1612 1613 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1614 { 1615 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1616 1617 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1618 } 1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1620 1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1622 { 1623 gfn_t gfn = gpa >> PAGE_SHIFT; 1624 int seg; 1625 int offset = offset_in_page(gpa); 1626 int ret; 1627 1628 while ((seg = next_segment(len, offset)) != 0) { 1629 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1630 if (ret < 0) 1631 return ret; 1632 offset = 0; 1633 len -= seg; 1634 ++gfn; 1635 } 1636 return 0; 1637 } 1638 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1639 1640 static void mark_page_dirty_in_slot(struct kvm *kvm, 1641 struct kvm_memory_slot *memslot, 1642 gfn_t gfn) 1643 { 1644 if (memslot && memslot->dirty_bitmap) { 1645 unsigned long rel_gfn = gfn - memslot->base_gfn; 1646 1647 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1648 } 1649 } 1650 1651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1652 { 1653 struct kvm_memory_slot *memslot; 1654 1655 memslot = gfn_to_memslot(kvm, gfn); 1656 mark_page_dirty_in_slot(kvm, memslot, gfn); 1657 } 1658 EXPORT_SYMBOL_GPL(mark_page_dirty); 1659 1660 /* 1661 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1662 */ 1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1664 { 1665 DEFINE_WAIT(wait); 1666 1667 for (;;) { 1668 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1669 1670 if (kvm_arch_vcpu_runnable(vcpu)) { 1671 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1672 break; 1673 } 1674 if (kvm_cpu_has_pending_timer(vcpu)) 1675 break; 1676 if (signal_pending(current)) 1677 break; 1678 1679 schedule(); 1680 } 1681 1682 finish_wait(&vcpu->wq, &wait); 1683 } 1684 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1685 1686 #ifndef CONFIG_S390 1687 /* 1688 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1689 */ 1690 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1691 { 1692 int me; 1693 int cpu = vcpu->cpu; 1694 wait_queue_head_t *wqp; 1695 1696 wqp = kvm_arch_vcpu_wq(vcpu); 1697 if (waitqueue_active(wqp)) { 1698 wake_up_interruptible(wqp); 1699 ++vcpu->stat.halt_wakeup; 1700 } 1701 1702 me = get_cpu(); 1703 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1704 if (kvm_arch_vcpu_should_kick(vcpu)) 1705 smp_send_reschedule(cpu); 1706 put_cpu(); 1707 } 1708 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1709 #endif /* !CONFIG_S390 */ 1710 1711 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1712 { 1713 struct pid *pid; 1714 struct task_struct *task = NULL; 1715 bool ret = false; 1716 1717 rcu_read_lock(); 1718 pid = rcu_dereference(target->pid); 1719 if (pid) 1720 task = get_pid_task(target->pid, PIDTYPE_PID); 1721 rcu_read_unlock(); 1722 if (!task) 1723 return ret; 1724 if (task->flags & PF_VCPU) { 1725 put_task_struct(task); 1726 return ret; 1727 } 1728 ret = yield_to(task, 1); 1729 put_task_struct(task); 1730 1731 return ret; 1732 } 1733 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1734 1735 /* 1736 * Helper that checks whether a VCPU is eligible for directed yield. 1737 * Most eligible candidate to yield is decided by following heuristics: 1738 * 1739 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1740 * (preempted lock holder), indicated by @in_spin_loop. 1741 * Set at the beiginning and cleared at the end of interception/PLE handler. 1742 * 1743 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1744 * chance last time (mostly it has become eligible now since we have probably 1745 * yielded to lockholder in last iteration. This is done by toggling 1746 * @dy_eligible each time a VCPU checked for eligibility.) 1747 * 1748 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1749 * to preempted lock-holder could result in wrong VCPU selection and CPU 1750 * burning. Giving priority for a potential lock-holder increases lock 1751 * progress. 1752 * 1753 * Since algorithm is based on heuristics, accessing another VCPU data without 1754 * locking does not harm. It may result in trying to yield to same VCPU, fail 1755 * and continue with next VCPU and so on. 1756 */ 1757 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1758 { 1759 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1760 bool eligible; 1761 1762 eligible = !vcpu->spin_loop.in_spin_loop || 1763 (vcpu->spin_loop.in_spin_loop && 1764 vcpu->spin_loop.dy_eligible); 1765 1766 if (vcpu->spin_loop.in_spin_loop) 1767 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1768 1769 return eligible; 1770 #else 1771 return true; 1772 #endif 1773 } 1774 1775 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1776 { 1777 struct kvm *kvm = me->kvm; 1778 struct kvm_vcpu *vcpu; 1779 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1780 int yielded = 0; 1781 int try = 3; 1782 int pass; 1783 int i; 1784 1785 kvm_vcpu_set_in_spin_loop(me, true); 1786 /* 1787 * We boost the priority of a VCPU that is runnable but not 1788 * currently running, because it got preempted by something 1789 * else and called schedule in __vcpu_run. Hopefully that 1790 * VCPU is holding the lock that we need and will release it. 1791 * We approximate round-robin by starting at the last boosted VCPU. 1792 */ 1793 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1794 kvm_for_each_vcpu(i, vcpu, kvm) { 1795 if (!pass && i <= last_boosted_vcpu) { 1796 i = last_boosted_vcpu; 1797 continue; 1798 } else if (pass && i > last_boosted_vcpu) 1799 break; 1800 if (!ACCESS_ONCE(vcpu->preempted)) 1801 continue; 1802 if (vcpu == me) 1803 continue; 1804 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 1805 continue; 1806 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1807 continue; 1808 1809 yielded = kvm_vcpu_yield_to(vcpu); 1810 if (yielded > 0) { 1811 kvm->last_boosted_vcpu = i; 1812 break; 1813 } else if (yielded < 0) { 1814 try--; 1815 if (!try) 1816 break; 1817 } 1818 } 1819 } 1820 kvm_vcpu_set_in_spin_loop(me, false); 1821 1822 /* Ensure vcpu is not eligible during next spinloop */ 1823 kvm_vcpu_set_dy_eligible(me, false); 1824 } 1825 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1826 1827 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1828 { 1829 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1830 struct page *page; 1831 1832 if (vmf->pgoff == 0) 1833 page = virt_to_page(vcpu->run); 1834 #ifdef CONFIG_X86 1835 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1836 page = virt_to_page(vcpu->arch.pio_data); 1837 #endif 1838 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1839 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1840 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1841 #endif 1842 else 1843 return kvm_arch_vcpu_fault(vcpu, vmf); 1844 get_page(page); 1845 vmf->page = page; 1846 return 0; 1847 } 1848 1849 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1850 .fault = kvm_vcpu_fault, 1851 }; 1852 1853 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1854 { 1855 vma->vm_ops = &kvm_vcpu_vm_ops; 1856 return 0; 1857 } 1858 1859 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1860 { 1861 struct kvm_vcpu *vcpu = filp->private_data; 1862 1863 kvm_put_kvm(vcpu->kvm); 1864 return 0; 1865 } 1866 1867 static struct file_operations kvm_vcpu_fops = { 1868 .release = kvm_vcpu_release, 1869 .unlocked_ioctl = kvm_vcpu_ioctl, 1870 #ifdef CONFIG_COMPAT 1871 .compat_ioctl = kvm_vcpu_compat_ioctl, 1872 #endif 1873 .mmap = kvm_vcpu_mmap, 1874 .llseek = noop_llseek, 1875 }; 1876 1877 /* 1878 * Allocates an inode for the vcpu. 1879 */ 1880 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1881 { 1882 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1883 } 1884 1885 /* 1886 * Creates some virtual cpus. Good luck creating more than one. 1887 */ 1888 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1889 { 1890 int r; 1891 struct kvm_vcpu *vcpu, *v; 1892 1893 if (id >= KVM_MAX_VCPUS) 1894 return -EINVAL; 1895 1896 vcpu = kvm_arch_vcpu_create(kvm, id); 1897 if (IS_ERR(vcpu)) 1898 return PTR_ERR(vcpu); 1899 1900 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1901 1902 r = kvm_arch_vcpu_setup(vcpu); 1903 if (r) 1904 goto vcpu_destroy; 1905 1906 mutex_lock(&kvm->lock); 1907 if (!kvm_vcpu_compatible(vcpu)) { 1908 r = -EINVAL; 1909 goto unlock_vcpu_destroy; 1910 } 1911 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1912 r = -EINVAL; 1913 goto unlock_vcpu_destroy; 1914 } 1915 1916 kvm_for_each_vcpu(r, v, kvm) 1917 if (v->vcpu_id == id) { 1918 r = -EEXIST; 1919 goto unlock_vcpu_destroy; 1920 } 1921 1922 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1923 1924 /* Now it's all set up, let userspace reach it */ 1925 kvm_get_kvm(kvm); 1926 r = create_vcpu_fd(vcpu); 1927 if (r < 0) { 1928 kvm_put_kvm(kvm); 1929 goto unlock_vcpu_destroy; 1930 } 1931 1932 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1933 smp_wmb(); 1934 atomic_inc(&kvm->online_vcpus); 1935 1936 mutex_unlock(&kvm->lock); 1937 kvm_arch_vcpu_postcreate(vcpu); 1938 return r; 1939 1940 unlock_vcpu_destroy: 1941 mutex_unlock(&kvm->lock); 1942 vcpu_destroy: 1943 kvm_arch_vcpu_destroy(vcpu); 1944 return r; 1945 } 1946 1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1948 { 1949 if (sigset) { 1950 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1951 vcpu->sigset_active = 1; 1952 vcpu->sigset = *sigset; 1953 } else 1954 vcpu->sigset_active = 0; 1955 return 0; 1956 } 1957 1958 static long kvm_vcpu_ioctl(struct file *filp, 1959 unsigned int ioctl, unsigned long arg) 1960 { 1961 struct kvm_vcpu *vcpu = filp->private_data; 1962 void __user *argp = (void __user *)arg; 1963 int r; 1964 struct kvm_fpu *fpu = NULL; 1965 struct kvm_sregs *kvm_sregs = NULL; 1966 1967 if (vcpu->kvm->mm != current->mm) 1968 return -EIO; 1969 1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1971 /* 1972 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1973 * so vcpu_load() would break it. 1974 */ 1975 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1976 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1977 #endif 1978 1979 1980 r = vcpu_load(vcpu); 1981 if (r) 1982 return r; 1983 switch (ioctl) { 1984 case KVM_RUN: 1985 r = -EINVAL; 1986 if (arg) 1987 goto out; 1988 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1989 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1990 break; 1991 case KVM_GET_REGS: { 1992 struct kvm_regs *kvm_regs; 1993 1994 r = -ENOMEM; 1995 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1996 if (!kvm_regs) 1997 goto out; 1998 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1999 if (r) 2000 goto out_free1; 2001 r = -EFAULT; 2002 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2003 goto out_free1; 2004 r = 0; 2005 out_free1: 2006 kfree(kvm_regs); 2007 break; 2008 } 2009 case KVM_SET_REGS: { 2010 struct kvm_regs *kvm_regs; 2011 2012 r = -ENOMEM; 2013 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2014 if (IS_ERR(kvm_regs)) { 2015 r = PTR_ERR(kvm_regs); 2016 goto out; 2017 } 2018 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2019 kfree(kvm_regs); 2020 break; 2021 } 2022 case KVM_GET_SREGS: { 2023 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2024 r = -ENOMEM; 2025 if (!kvm_sregs) 2026 goto out; 2027 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2028 if (r) 2029 goto out; 2030 r = -EFAULT; 2031 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2032 goto out; 2033 r = 0; 2034 break; 2035 } 2036 case KVM_SET_SREGS: { 2037 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2038 if (IS_ERR(kvm_sregs)) { 2039 r = PTR_ERR(kvm_sregs); 2040 kvm_sregs = NULL; 2041 goto out; 2042 } 2043 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2044 break; 2045 } 2046 case KVM_GET_MP_STATE: { 2047 struct kvm_mp_state mp_state; 2048 2049 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2050 if (r) 2051 goto out; 2052 r = -EFAULT; 2053 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2054 goto out; 2055 r = 0; 2056 break; 2057 } 2058 case KVM_SET_MP_STATE: { 2059 struct kvm_mp_state mp_state; 2060 2061 r = -EFAULT; 2062 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2063 goto out; 2064 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2065 break; 2066 } 2067 case KVM_TRANSLATE: { 2068 struct kvm_translation tr; 2069 2070 r = -EFAULT; 2071 if (copy_from_user(&tr, argp, sizeof tr)) 2072 goto out; 2073 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2074 if (r) 2075 goto out; 2076 r = -EFAULT; 2077 if (copy_to_user(argp, &tr, sizeof tr)) 2078 goto out; 2079 r = 0; 2080 break; 2081 } 2082 case KVM_SET_GUEST_DEBUG: { 2083 struct kvm_guest_debug dbg; 2084 2085 r = -EFAULT; 2086 if (copy_from_user(&dbg, argp, sizeof dbg)) 2087 goto out; 2088 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2089 break; 2090 } 2091 case KVM_SET_SIGNAL_MASK: { 2092 struct kvm_signal_mask __user *sigmask_arg = argp; 2093 struct kvm_signal_mask kvm_sigmask; 2094 sigset_t sigset, *p; 2095 2096 p = NULL; 2097 if (argp) { 2098 r = -EFAULT; 2099 if (copy_from_user(&kvm_sigmask, argp, 2100 sizeof kvm_sigmask)) 2101 goto out; 2102 r = -EINVAL; 2103 if (kvm_sigmask.len != sizeof sigset) 2104 goto out; 2105 r = -EFAULT; 2106 if (copy_from_user(&sigset, sigmask_arg->sigset, 2107 sizeof sigset)) 2108 goto out; 2109 p = &sigset; 2110 } 2111 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2112 break; 2113 } 2114 case KVM_GET_FPU: { 2115 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2116 r = -ENOMEM; 2117 if (!fpu) 2118 goto out; 2119 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2120 if (r) 2121 goto out; 2122 r = -EFAULT; 2123 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2124 goto out; 2125 r = 0; 2126 break; 2127 } 2128 case KVM_SET_FPU: { 2129 fpu = memdup_user(argp, sizeof(*fpu)); 2130 if (IS_ERR(fpu)) { 2131 r = PTR_ERR(fpu); 2132 fpu = NULL; 2133 goto out; 2134 } 2135 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2136 break; 2137 } 2138 default: 2139 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2140 } 2141 out: 2142 vcpu_put(vcpu); 2143 kfree(fpu); 2144 kfree(kvm_sregs); 2145 return r; 2146 } 2147 2148 #ifdef CONFIG_COMPAT 2149 static long kvm_vcpu_compat_ioctl(struct file *filp, 2150 unsigned int ioctl, unsigned long arg) 2151 { 2152 struct kvm_vcpu *vcpu = filp->private_data; 2153 void __user *argp = compat_ptr(arg); 2154 int r; 2155 2156 if (vcpu->kvm->mm != current->mm) 2157 return -EIO; 2158 2159 switch (ioctl) { 2160 case KVM_SET_SIGNAL_MASK: { 2161 struct kvm_signal_mask __user *sigmask_arg = argp; 2162 struct kvm_signal_mask kvm_sigmask; 2163 compat_sigset_t csigset; 2164 sigset_t sigset; 2165 2166 if (argp) { 2167 r = -EFAULT; 2168 if (copy_from_user(&kvm_sigmask, argp, 2169 sizeof kvm_sigmask)) 2170 goto out; 2171 r = -EINVAL; 2172 if (kvm_sigmask.len != sizeof csigset) 2173 goto out; 2174 r = -EFAULT; 2175 if (copy_from_user(&csigset, sigmask_arg->sigset, 2176 sizeof csigset)) 2177 goto out; 2178 sigset_from_compat(&sigset, &csigset); 2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2180 } else 2181 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2182 break; 2183 } 2184 default: 2185 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2186 } 2187 2188 out: 2189 return r; 2190 } 2191 #endif 2192 2193 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2194 int (*accessor)(struct kvm_device *dev, 2195 struct kvm_device_attr *attr), 2196 unsigned long arg) 2197 { 2198 struct kvm_device_attr attr; 2199 2200 if (!accessor) 2201 return -EPERM; 2202 2203 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2204 return -EFAULT; 2205 2206 return accessor(dev, &attr); 2207 } 2208 2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2210 unsigned long arg) 2211 { 2212 struct kvm_device *dev = filp->private_data; 2213 2214 switch (ioctl) { 2215 case KVM_SET_DEVICE_ATTR: 2216 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2217 case KVM_GET_DEVICE_ATTR: 2218 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2219 case KVM_HAS_DEVICE_ATTR: 2220 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2221 default: 2222 if (dev->ops->ioctl) 2223 return dev->ops->ioctl(dev, ioctl, arg); 2224 2225 return -ENOTTY; 2226 } 2227 } 2228 2229 static int kvm_device_release(struct inode *inode, struct file *filp) 2230 { 2231 struct kvm_device *dev = filp->private_data; 2232 struct kvm *kvm = dev->kvm; 2233 2234 kvm_put_kvm(kvm); 2235 return 0; 2236 } 2237 2238 static const struct file_operations kvm_device_fops = { 2239 .unlocked_ioctl = kvm_device_ioctl, 2240 #ifdef CONFIG_COMPAT 2241 .compat_ioctl = kvm_device_ioctl, 2242 #endif 2243 .release = kvm_device_release, 2244 }; 2245 2246 struct kvm_device *kvm_device_from_filp(struct file *filp) 2247 { 2248 if (filp->f_op != &kvm_device_fops) 2249 return NULL; 2250 2251 return filp->private_data; 2252 } 2253 2254 static int kvm_ioctl_create_device(struct kvm *kvm, 2255 struct kvm_create_device *cd) 2256 { 2257 struct kvm_device_ops *ops = NULL; 2258 struct kvm_device *dev; 2259 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2260 int ret; 2261 2262 switch (cd->type) { 2263 #ifdef CONFIG_KVM_MPIC 2264 case KVM_DEV_TYPE_FSL_MPIC_20: 2265 case KVM_DEV_TYPE_FSL_MPIC_42: 2266 ops = &kvm_mpic_ops; 2267 break; 2268 #endif 2269 #ifdef CONFIG_KVM_XICS 2270 case KVM_DEV_TYPE_XICS: 2271 ops = &kvm_xics_ops; 2272 break; 2273 #endif 2274 #ifdef CONFIG_KVM_VFIO 2275 case KVM_DEV_TYPE_VFIO: 2276 ops = &kvm_vfio_ops; 2277 break; 2278 #endif 2279 #ifdef CONFIG_KVM_ARM_VGIC 2280 case KVM_DEV_TYPE_ARM_VGIC_V2: 2281 ops = &kvm_arm_vgic_v2_ops; 2282 break; 2283 #endif 2284 #ifdef CONFIG_S390 2285 case KVM_DEV_TYPE_FLIC: 2286 ops = &kvm_flic_ops; 2287 break; 2288 #endif 2289 default: 2290 return -ENODEV; 2291 } 2292 2293 if (test) 2294 return 0; 2295 2296 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2297 if (!dev) 2298 return -ENOMEM; 2299 2300 dev->ops = ops; 2301 dev->kvm = kvm; 2302 2303 ret = ops->create(dev, cd->type); 2304 if (ret < 0) { 2305 kfree(dev); 2306 return ret; 2307 } 2308 2309 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2310 if (ret < 0) { 2311 ops->destroy(dev); 2312 return ret; 2313 } 2314 2315 list_add(&dev->vm_node, &kvm->devices); 2316 kvm_get_kvm(kvm); 2317 cd->fd = ret; 2318 return 0; 2319 } 2320 2321 static long kvm_vm_ioctl(struct file *filp, 2322 unsigned int ioctl, unsigned long arg) 2323 { 2324 struct kvm *kvm = filp->private_data; 2325 void __user *argp = (void __user *)arg; 2326 int r; 2327 2328 if (kvm->mm != current->mm) 2329 return -EIO; 2330 switch (ioctl) { 2331 case KVM_CREATE_VCPU: 2332 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2333 break; 2334 case KVM_SET_USER_MEMORY_REGION: { 2335 struct kvm_userspace_memory_region kvm_userspace_mem; 2336 2337 r = -EFAULT; 2338 if (copy_from_user(&kvm_userspace_mem, argp, 2339 sizeof kvm_userspace_mem)) 2340 goto out; 2341 2342 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2343 break; 2344 } 2345 case KVM_GET_DIRTY_LOG: { 2346 struct kvm_dirty_log log; 2347 2348 r = -EFAULT; 2349 if (copy_from_user(&log, argp, sizeof log)) 2350 goto out; 2351 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2352 break; 2353 } 2354 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2355 case KVM_REGISTER_COALESCED_MMIO: { 2356 struct kvm_coalesced_mmio_zone zone; 2357 r = -EFAULT; 2358 if (copy_from_user(&zone, argp, sizeof zone)) 2359 goto out; 2360 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2361 break; 2362 } 2363 case KVM_UNREGISTER_COALESCED_MMIO: { 2364 struct kvm_coalesced_mmio_zone zone; 2365 r = -EFAULT; 2366 if (copy_from_user(&zone, argp, sizeof zone)) 2367 goto out; 2368 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2369 break; 2370 } 2371 #endif 2372 case KVM_IRQFD: { 2373 struct kvm_irqfd data; 2374 2375 r = -EFAULT; 2376 if (copy_from_user(&data, argp, sizeof data)) 2377 goto out; 2378 r = kvm_irqfd(kvm, &data); 2379 break; 2380 } 2381 case KVM_IOEVENTFD: { 2382 struct kvm_ioeventfd data; 2383 2384 r = -EFAULT; 2385 if (copy_from_user(&data, argp, sizeof data)) 2386 goto out; 2387 r = kvm_ioeventfd(kvm, &data); 2388 break; 2389 } 2390 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2391 case KVM_SET_BOOT_CPU_ID: 2392 r = 0; 2393 mutex_lock(&kvm->lock); 2394 if (atomic_read(&kvm->online_vcpus) != 0) 2395 r = -EBUSY; 2396 else 2397 kvm->bsp_vcpu_id = arg; 2398 mutex_unlock(&kvm->lock); 2399 break; 2400 #endif 2401 #ifdef CONFIG_HAVE_KVM_MSI 2402 case KVM_SIGNAL_MSI: { 2403 struct kvm_msi msi; 2404 2405 r = -EFAULT; 2406 if (copy_from_user(&msi, argp, sizeof msi)) 2407 goto out; 2408 r = kvm_send_userspace_msi(kvm, &msi); 2409 break; 2410 } 2411 #endif 2412 #ifdef __KVM_HAVE_IRQ_LINE 2413 case KVM_IRQ_LINE_STATUS: 2414 case KVM_IRQ_LINE: { 2415 struct kvm_irq_level irq_event; 2416 2417 r = -EFAULT; 2418 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2419 goto out; 2420 2421 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2422 ioctl == KVM_IRQ_LINE_STATUS); 2423 if (r) 2424 goto out; 2425 2426 r = -EFAULT; 2427 if (ioctl == KVM_IRQ_LINE_STATUS) { 2428 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2429 goto out; 2430 } 2431 2432 r = 0; 2433 break; 2434 } 2435 #endif 2436 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2437 case KVM_SET_GSI_ROUTING: { 2438 struct kvm_irq_routing routing; 2439 struct kvm_irq_routing __user *urouting; 2440 struct kvm_irq_routing_entry *entries; 2441 2442 r = -EFAULT; 2443 if (copy_from_user(&routing, argp, sizeof(routing))) 2444 goto out; 2445 r = -EINVAL; 2446 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2447 goto out; 2448 if (routing.flags) 2449 goto out; 2450 r = -ENOMEM; 2451 entries = vmalloc(routing.nr * sizeof(*entries)); 2452 if (!entries) 2453 goto out; 2454 r = -EFAULT; 2455 urouting = argp; 2456 if (copy_from_user(entries, urouting->entries, 2457 routing.nr * sizeof(*entries))) 2458 goto out_free_irq_routing; 2459 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2460 routing.flags); 2461 out_free_irq_routing: 2462 vfree(entries); 2463 break; 2464 } 2465 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2466 case KVM_CREATE_DEVICE: { 2467 struct kvm_create_device cd; 2468 2469 r = -EFAULT; 2470 if (copy_from_user(&cd, argp, sizeof(cd))) 2471 goto out; 2472 2473 r = kvm_ioctl_create_device(kvm, &cd); 2474 if (r) 2475 goto out; 2476 2477 r = -EFAULT; 2478 if (copy_to_user(argp, &cd, sizeof(cd))) 2479 goto out; 2480 2481 r = 0; 2482 break; 2483 } 2484 default: 2485 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2486 if (r == -ENOTTY) 2487 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2488 } 2489 out: 2490 return r; 2491 } 2492 2493 #ifdef CONFIG_COMPAT 2494 struct compat_kvm_dirty_log { 2495 __u32 slot; 2496 __u32 padding1; 2497 union { 2498 compat_uptr_t dirty_bitmap; /* one bit per page */ 2499 __u64 padding2; 2500 }; 2501 }; 2502 2503 static long kvm_vm_compat_ioctl(struct file *filp, 2504 unsigned int ioctl, unsigned long arg) 2505 { 2506 struct kvm *kvm = filp->private_data; 2507 int r; 2508 2509 if (kvm->mm != current->mm) 2510 return -EIO; 2511 switch (ioctl) { 2512 case KVM_GET_DIRTY_LOG: { 2513 struct compat_kvm_dirty_log compat_log; 2514 struct kvm_dirty_log log; 2515 2516 r = -EFAULT; 2517 if (copy_from_user(&compat_log, (void __user *)arg, 2518 sizeof(compat_log))) 2519 goto out; 2520 log.slot = compat_log.slot; 2521 log.padding1 = compat_log.padding1; 2522 log.padding2 = compat_log.padding2; 2523 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2524 2525 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2526 break; 2527 } 2528 default: 2529 r = kvm_vm_ioctl(filp, ioctl, arg); 2530 } 2531 2532 out: 2533 return r; 2534 } 2535 #endif 2536 2537 static struct file_operations kvm_vm_fops = { 2538 .release = kvm_vm_release, 2539 .unlocked_ioctl = kvm_vm_ioctl, 2540 #ifdef CONFIG_COMPAT 2541 .compat_ioctl = kvm_vm_compat_ioctl, 2542 #endif 2543 .llseek = noop_llseek, 2544 }; 2545 2546 static int kvm_dev_ioctl_create_vm(unsigned long type) 2547 { 2548 int r; 2549 struct kvm *kvm; 2550 2551 kvm = kvm_create_vm(type); 2552 if (IS_ERR(kvm)) 2553 return PTR_ERR(kvm); 2554 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2555 r = kvm_coalesced_mmio_init(kvm); 2556 if (r < 0) { 2557 kvm_put_kvm(kvm); 2558 return r; 2559 } 2560 #endif 2561 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2562 if (r < 0) 2563 kvm_put_kvm(kvm); 2564 2565 return r; 2566 } 2567 2568 static long kvm_dev_ioctl_check_extension_generic(long arg) 2569 { 2570 switch (arg) { 2571 case KVM_CAP_USER_MEMORY: 2572 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2573 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2574 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2575 case KVM_CAP_SET_BOOT_CPU_ID: 2576 #endif 2577 case KVM_CAP_INTERNAL_ERROR_DATA: 2578 #ifdef CONFIG_HAVE_KVM_MSI 2579 case KVM_CAP_SIGNAL_MSI: 2580 #endif 2581 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2582 case KVM_CAP_IRQFD_RESAMPLE: 2583 #endif 2584 return 1; 2585 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2586 case KVM_CAP_IRQ_ROUTING: 2587 return KVM_MAX_IRQ_ROUTES; 2588 #endif 2589 default: 2590 break; 2591 } 2592 return kvm_dev_ioctl_check_extension(arg); 2593 } 2594 2595 static long kvm_dev_ioctl(struct file *filp, 2596 unsigned int ioctl, unsigned long arg) 2597 { 2598 long r = -EINVAL; 2599 2600 switch (ioctl) { 2601 case KVM_GET_API_VERSION: 2602 r = -EINVAL; 2603 if (arg) 2604 goto out; 2605 r = KVM_API_VERSION; 2606 break; 2607 case KVM_CREATE_VM: 2608 r = kvm_dev_ioctl_create_vm(arg); 2609 break; 2610 case KVM_CHECK_EXTENSION: 2611 r = kvm_dev_ioctl_check_extension_generic(arg); 2612 break; 2613 case KVM_GET_VCPU_MMAP_SIZE: 2614 r = -EINVAL; 2615 if (arg) 2616 goto out; 2617 r = PAGE_SIZE; /* struct kvm_run */ 2618 #ifdef CONFIG_X86 2619 r += PAGE_SIZE; /* pio data page */ 2620 #endif 2621 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2622 r += PAGE_SIZE; /* coalesced mmio ring page */ 2623 #endif 2624 break; 2625 case KVM_TRACE_ENABLE: 2626 case KVM_TRACE_PAUSE: 2627 case KVM_TRACE_DISABLE: 2628 r = -EOPNOTSUPP; 2629 break; 2630 default: 2631 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2632 } 2633 out: 2634 return r; 2635 } 2636 2637 static struct file_operations kvm_chardev_ops = { 2638 .unlocked_ioctl = kvm_dev_ioctl, 2639 .compat_ioctl = kvm_dev_ioctl, 2640 .llseek = noop_llseek, 2641 }; 2642 2643 static struct miscdevice kvm_dev = { 2644 KVM_MINOR, 2645 "kvm", 2646 &kvm_chardev_ops, 2647 }; 2648 2649 static void hardware_enable_nolock(void *junk) 2650 { 2651 int cpu = raw_smp_processor_id(); 2652 int r; 2653 2654 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2655 return; 2656 2657 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2658 2659 r = kvm_arch_hardware_enable(NULL); 2660 2661 if (r) { 2662 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2663 atomic_inc(&hardware_enable_failed); 2664 printk(KERN_INFO "kvm: enabling virtualization on " 2665 "CPU%d failed\n", cpu); 2666 } 2667 } 2668 2669 static void hardware_enable(void) 2670 { 2671 raw_spin_lock(&kvm_count_lock); 2672 if (kvm_usage_count) 2673 hardware_enable_nolock(NULL); 2674 raw_spin_unlock(&kvm_count_lock); 2675 } 2676 2677 static void hardware_disable_nolock(void *junk) 2678 { 2679 int cpu = raw_smp_processor_id(); 2680 2681 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2682 return; 2683 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2684 kvm_arch_hardware_disable(NULL); 2685 } 2686 2687 static void hardware_disable(void) 2688 { 2689 raw_spin_lock(&kvm_count_lock); 2690 if (kvm_usage_count) 2691 hardware_disable_nolock(NULL); 2692 raw_spin_unlock(&kvm_count_lock); 2693 } 2694 2695 static void hardware_disable_all_nolock(void) 2696 { 2697 BUG_ON(!kvm_usage_count); 2698 2699 kvm_usage_count--; 2700 if (!kvm_usage_count) 2701 on_each_cpu(hardware_disable_nolock, NULL, 1); 2702 } 2703 2704 static void hardware_disable_all(void) 2705 { 2706 raw_spin_lock(&kvm_count_lock); 2707 hardware_disable_all_nolock(); 2708 raw_spin_unlock(&kvm_count_lock); 2709 } 2710 2711 static int hardware_enable_all(void) 2712 { 2713 int r = 0; 2714 2715 raw_spin_lock(&kvm_count_lock); 2716 2717 kvm_usage_count++; 2718 if (kvm_usage_count == 1) { 2719 atomic_set(&hardware_enable_failed, 0); 2720 on_each_cpu(hardware_enable_nolock, NULL, 1); 2721 2722 if (atomic_read(&hardware_enable_failed)) { 2723 hardware_disable_all_nolock(); 2724 r = -EBUSY; 2725 } 2726 } 2727 2728 raw_spin_unlock(&kvm_count_lock); 2729 2730 return r; 2731 } 2732 2733 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2734 void *v) 2735 { 2736 int cpu = (long)v; 2737 2738 val &= ~CPU_TASKS_FROZEN; 2739 switch (val) { 2740 case CPU_DYING: 2741 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2742 cpu); 2743 hardware_disable(); 2744 break; 2745 case CPU_STARTING: 2746 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2747 cpu); 2748 hardware_enable(); 2749 break; 2750 } 2751 return NOTIFY_OK; 2752 } 2753 2754 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2755 void *v) 2756 { 2757 /* 2758 * Some (well, at least mine) BIOSes hang on reboot if 2759 * in vmx root mode. 2760 * 2761 * And Intel TXT required VMX off for all cpu when system shutdown. 2762 */ 2763 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2764 kvm_rebooting = true; 2765 on_each_cpu(hardware_disable_nolock, NULL, 1); 2766 return NOTIFY_OK; 2767 } 2768 2769 static struct notifier_block kvm_reboot_notifier = { 2770 .notifier_call = kvm_reboot, 2771 .priority = 0, 2772 }; 2773 2774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2775 { 2776 int i; 2777 2778 for (i = 0; i < bus->dev_count; i++) { 2779 struct kvm_io_device *pos = bus->range[i].dev; 2780 2781 kvm_iodevice_destructor(pos); 2782 } 2783 kfree(bus); 2784 } 2785 2786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2787 const struct kvm_io_range *r2) 2788 { 2789 if (r1->addr < r2->addr) 2790 return -1; 2791 if (r1->addr + r1->len > r2->addr + r2->len) 2792 return 1; 2793 return 0; 2794 } 2795 2796 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2797 { 2798 return kvm_io_bus_cmp(p1, p2); 2799 } 2800 2801 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2802 gpa_t addr, int len) 2803 { 2804 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2805 .addr = addr, 2806 .len = len, 2807 .dev = dev, 2808 }; 2809 2810 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2811 kvm_io_bus_sort_cmp, NULL); 2812 2813 return 0; 2814 } 2815 2816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2817 gpa_t addr, int len) 2818 { 2819 struct kvm_io_range *range, key; 2820 int off; 2821 2822 key = (struct kvm_io_range) { 2823 .addr = addr, 2824 .len = len, 2825 }; 2826 2827 range = bsearch(&key, bus->range, bus->dev_count, 2828 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2829 if (range == NULL) 2830 return -ENOENT; 2831 2832 off = range - bus->range; 2833 2834 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2835 off--; 2836 2837 return off; 2838 } 2839 2840 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2841 struct kvm_io_range *range, const void *val) 2842 { 2843 int idx; 2844 2845 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2846 if (idx < 0) 2847 return -EOPNOTSUPP; 2848 2849 while (idx < bus->dev_count && 2850 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2851 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2852 range->len, val)) 2853 return idx; 2854 idx++; 2855 } 2856 2857 return -EOPNOTSUPP; 2858 } 2859 2860 /* kvm_io_bus_write - called under kvm->slots_lock */ 2861 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2862 int len, const void *val) 2863 { 2864 struct kvm_io_bus *bus; 2865 struct kvm_io_range range; 2866 int r; 2867 2868 range = (struct kvm_io_range) { 2869 .addr = addr, 2870 .len = len, 2871 }; 2872 2873 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2874 r = __kvm_io_bus_write(bus, &range, val); 2875 return r < 0 ? r : 0; 2876 } 2877 2878 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2879 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2880 int len, const void *val, long cookie) 2881 { 2882 struct kvm_io_bus *bus; 2883 struct kvm_io_range range; 2884 2885 range = (struct kvm_io_range) { 2886 .addr = addr, 2887 .len = len, 2888 }; 2889 2890 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2891 2892 /* First try the device referenced by cookie. */ 2893 if ((cookie >= 0) && (cookie < bus->dev_count) && 2894 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2895 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2896 val)) 2897 return cookie; 2898 2899 /* 2900 * cookie contained garbage; fall back to search and return the 2901 * correct cookie value. 2902 */ 2903 return __kvm_io_bus_write(bus, &range, val); 2904 } 2905 2906 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2907 void *val) 2908 { 2909 int idx; 2910 2911 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2912 if (idx < 0) 2913 return -EOPNOTSUPP; 2914 2915 while (idx < bus->dev_count && 2916 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2917 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2918 range->len, val)) 2919 return idx; 2920 idx++; 2921 } 2922 2923 return -EOPNOTSUPP; 2924 } 2925 2926 /* kvm_io_bus_read - called under kvm->slots_lock */ 2927 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2928 int len, void *val) 2929 { 2930 struct kvm_io_bus *bus; 2931 struct kvm_io_range range; 2932 int r; 2933 2934 range = (struct kvm_io_range) { 2935 .addr = addr, 2936 .len = len, 2937 }; 2938 2939 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2940 r = __kvm_io_bus_read(bus, &range, val); 2941 return r < 0 ? r : 0; 2942 } 2943 2944 2945 /* Caller must hold slots_lock. */ 2946 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2947 int len, struct kvm_io_device *dev) 2948 { 2949 struct kvm_io_bus *new_bus, *bus; 2950 2951 bus = kvm->buses[bus_idx]; 2952 /* exclude ioeventfd which is limited by maximum fd */ 2953 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2954 return -ENOSPC; 2955 2956 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2957 sizeof(struct kvm_io_range)), GFP_KERNEL); 2958 if (!new_bus) 2959 return -ENOMEM; 2960 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2961 sizeof(struct kvm_io_range))); 2962 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2963 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2964 synchronize_srcu_expedited(&kvm->srcu); 2965 kfree(bus); 2966 2967 return 0; 2968 } 2969 2970 /* Caller must hold slots_lock. */ 2971 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2972 struct kvm_io_device *dev) 2973 { 2974 int i, r; 2975 struct kvm_io_bus *new_bus, *bus; 2976 2977 bus = kvm->buses[bus_idx]; 2978 r = -ENOENT; 2979 for (i = 0; i < bus->dev_count; i++) 2980 if (bus->range[i].dev == dev) { 2981 r = 0; 2982 break; 2983 } 2984 2985 if (r) 2986 return r; 2987 2988 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 2989 sizeof(struct kvm_io_range)), GFP_KERNEL); 2990 if (!new_bus) 2991 return -ENOMEM; 2992 2993 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 2994 new_bus->dev_count--; 2995 memcpy(new_bus->range + i, bus->range + i + 1, 2996 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 2997 2998 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2999 synchronize_srcu_expedited(&kvm->srcu); 3000 kfree(bus); 3001 return r; 3002 } 3003 3004 static struct notifier_block kvm_cpu_notifier = { 3005 .notifier_call = kvm_cpu_hotplug, 3006 }; 3007 3008 static int vm_stat_get(void *_offset, u64 *val) 3009 { 3010 unsigned offset = (long)_offset; 3011 struct kvm *kvm; 3012 3013 *val = 0; 3014 spin_lock(&kvm_lock); 3015 list_for_each_entry(kvm, &vm_list, vm_list) 3016 *val += *(u32 *)((void *)kvm + offset); 3017 spin_unlock(&kvm_lock); 3018 return 0; 3019 } 3020 3021 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3022 3023 static int vcpu_stat_get(void *_offset, u64 *val) 3024 { 3025 unsigned offset = (long)_offset; 3026 struct kvm *kvm; 3027 struct kvm_vcpu *vcpu; 3028 int i; 3029 3030 *val = 0; 3031 spin_lock(&kvm_lock); 3032 list_for_each_entry(kvm, &vm_list, vm_list) 3033 kvm_for_each_vcpu(i, vcpu, kvm) 3034 *val += *(u32 *)((void *)vcpu + offset); 3035 3036 spin_unlock(&kvm_lock); 3037 return 0; 3038 } 3039 3040 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3041 3042 static const struct file_operations *stat_fops[] = { 3043 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3044 [KVM_STAT_VM] = &vm_stat_fops, 3045 }; 3046 3047 static int kvm_init_debug(void) 3048 { 3049 int r = -EEXIST; 3050 struct kvm_stats_debugfs_item *p; 3051 3052 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3053 if (kvm_debugfs_dir == NULL) 3054 goto out; 3055 3056 for (p = debugfs_entries; p->name; ++p) { 3057 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3058 (void *)(long)p->offset, 3059 stat_fops[p->kind]); 3060 if (p->dentry == NULL) 3061 goto out_dir; 3062 } 3063 3064 return 0; 3065 3066 out_dir: 3067 debugfs_remove_recursive(kvm_debugfs_dir); 3068 out: 3069 return r; 3070 } 3071 3072 static void kvm_exit_debug(void) 3073 { 3074 struct kvm_stats_debugfs_item *p; 3075 3076 for (p = debugfs_entries; p->name; ++p) 3077 debugfs_remove(p->dentry); 3078 debugfs_remove(kvm_debugfs_dir); 3079 } 3080 3081 static int kvm_suspend(void) 3082 { 3083 if (kvm_usage_count) 3084 hardware_disable_nolock(NULL); 3085 return 0; 3086 } 3087 3088 static void kvm_resume(void) 3089 { 3090 if (kvm_usage_count) { 3091 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3092 hardware_enable_nolock(NULL); 3093 } 3094 } 3095 3096 static struct syscore_ops kvm_syscore_ops = { 3097 .suspend = kvm_suspend, 3098 .resume = kvm_resume, 3099 }; 3100 3101 static inline 3102 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3103 { 3104 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3105 } 3106 3107 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3108 { 3109 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3110 if (vcpu->preempted) 3111 vcpu->preempted = false; 3112 3113 kvm_arch_vcpu_load(vcpu, cpu); 3114 } 3115 3116 static void kvm_sched_out(struct preempt_notifier *pn, 3117 struct task_struct *next) 3118 { 3119 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3120 3121 if (current->state == TASK_RUNNING) 3122 vcpu->preempted = true; 3123 kvm_arch_vcpu_put(vcpu); 3124 } 3125 3126 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3127 struct module *module) 3128 { 3129 int r; 3130 int cpu; 3131 3132 r = kvm_arch_init(opaque); 3133 if (r) 3134 goto out_fail; 3135 3136 /* 3137 * kvm_arch_init makes sure there's at most one caller 3138 * for architectures that support multiple implementations, 3139 * like intel and amd on x86. 3140 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3141 * conflicts in case kvm is already setup for another implementation. 3142 */ 3143 r = kvm_irqfd_init(); 3144 if (r) 3145 goto out_irqfd; 3146 3147 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3148 r = -ENOMEM; 3149 goto out_free_0; 3150 } 3151 3152 r = kvm_arch_hardware_setup(); 3153 if (r < 0) 3154 goto out_free_0a; 3155 3156 for_each_online_cpu(cpu) { 3157 smp_call_function_single(cpu, 3158 kvm_arch_check_processor_compat, 3159 &r, 1); 3160 if (r < 0) 3161 goto out_free_1; 3162 } 3163 3164 r = register_cpu_notifier(&kvm_cpu_notifier); 3165 if (r) 3166 goto out_free_2; 3167 register_reboot_notifier(&kvm_reboot_notifier); 3168 3169 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3170 if (!vcpu_align) 3171 vcpu_align = __alignof__(struct kvm_vcpu); 3172 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3173 0, NULL); 3174 if (!kvm_vcpu_cache) { 3175 r = -ENOMEM; 3176 goto out_free_3; 3177 } 3178 3179 r = kvm_async_pf_init(); 3180 if (r) 3181 goto out_free; 3182 3183 kvm_chardev_ops.owner = module; 3184 kvm_vm_fops.owner = module; 3185 kvm_vcpu_fops.owner = module; 3186 3187 r = misc_register(&kvm_dev); 3188 if (r) { 3189 printk(KERN_ERR "kvm: misc device register failed\n"); 3190 goto out_unreg; 3191 } 3192 3193 register_syscore_ops(&kvm_syscore_ops); 3194 3195 kvm_preempt_ops.sched_in = kvm_sched_in; 3196 kvm_preempt_ops.sched_out = kvm_sched_out; 3197 3198 r = kvm_init_debug(); 3199 if (r) { 3200 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3201 goto out_undebugfs; 3202 } 3203 3204 return 0; 3205 3206 out_undebugfs: 3207 unregister_syscore_ops(&kvm_syscore_ops); 3208 misc_deregister(&kvm_dev); 3209 out_unreg: 3210 kvm_async_pf_deinit(); 3211 out_free: 3212 kmem_cache_destroy(kvm_vcpu_cache); 3213 out_free_3: 3214 unregister_reboot_notifier(&kvm_reboot_notifier); 3215 unregister_cpu_notifier(&kvm_cpu_notifier); 3216 out_free_2: 3217 out_free_1: 3218 kvm_arch_hardware_unsetup(); 3219 out_free_0a: 3220 free_cpumask_var(cpus_hardware_enabled); 3221 out_free_0: 3222 kvm_irqfd_exit(); 3223 out_irqfd: 3224 kvm_arch_exit(); 3225 out_fail: 3226 return r; 3227 } 3228 EXPORT_SYMBOL_GPL(kvm_init); 3229 3230 void kvm_exit(void) 3231 { 3232 kvm_exit_debug(); 3233 misc_deregister(&kvm_dev); 3234 kmem_cache_destroy(kvm_vcpu_cache); 3235 kvm_async_pf_deinit(); 3236 unregister_syscore_ops(&kvm_syscore_ops); 3237 unregister_reboot_notifier(&kvm_reboot_notifier); 3238 unregister_cpu_notifier(&kvm_cpu_notifier); 3239 on_each_cpu(hardware_disable_nolock, NULL, 1); 3240 kvm_arch_hardware_unsetup(); 3241 kvm_arch_exit(); 3242 kvm_irqfd_exit(); 3243 free_cpumask_var(cpus_hardware_enabled); 3244 } 3245 EXPORT_SYMBOL_GPL(kvm_exit); 3246