xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6b5fc336)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138 
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 	if (pfn_valid(pfn))
142 		return PageReserved(pfn_to_page(pfn));
143 
144 	return true;
145 }
146 
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 	int cpu;
153 
154 	if (mutex_lock_killable(&vcpu->mutex))
155 		return -EINTR;
156 	cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163 
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 	preempt_disable();
167 	kvm_arch_vcpu_put(vcpu);
168 	preempt_notifier_unregister(&vcpu->preempt_notifier);
169 	preempt_enable();
170 	mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173 
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 
179 	/*
180 	 * We need to wait for the VCPU to reenable interrupts and get out of
181 	 * READING_SHADOW_PAGE_TABLES mode.
182 	 */
183 	if (req & KVM_REQUEST_WAIT)
184 		return mode != OUTSIDE_GUEST_MODE;
185 
186 	/*
187 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 	 */
189 	return mode == IN_GUEST_MODE;
190 }
191 
192 static void ack_flush(void *_completed)
193 {
194 }
195 
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 	if (unlikely(!cpus))
199 		cpus = cpu_online_mask;
200 
201 	if (cpumask_empty(cpus))
202 		return false;
203 
204 	smp_call_function_many(cpus, ack_flush, NULL, wait);
205 	return true;
206 }
207 
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 	int i, cpu, me;
211 	cpumask_var_t cpus;
212 	bool called;
213 	struct kvm_vcpu *vcpu;
214 
215 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216 
217 	me = get_cpu();
218 	kvm_for_each_vcpu(i, vcpu, kvm) {
219 		kvm_make_request(req, vcpu);
220 		cpu = vcpu->cpu;
221 
222 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 			continue;
224 
225 		if (cpus != NULL && cpu != -1 && cpu != me &&
226 		    kvm_request_needs_ipi(vcpu, req))
227 			__cpumask_set_cpu(cpu, cpus);
228 	}
229 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 	put_cpu();
231 	free_cpumask_var(cpus);
232 	return called;
233 }
234 
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 	/*
239 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 	 * kvm_make_all_cpus_request.
241 	 */
242 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 
244 	/*
245 	 * We want to publish modifications to the page tables before reading
246 	 * mode. Pairs with a memory barrier in arch-specific code.
247 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 	 *
251 	 * There is already an smp_mb__after_atomic() before
252 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 	 * barrier here.
254 	 */
255 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 		++kvm->stat.remote_tlb_flush;
257 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261 
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266 
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 	struct page *page;
270 	int r;
271 
272 	mutex_init(&vcpu->mutex);
273 	vcpu->cpu = -1;
274 	vcpu->kvm = kvm;
275 	vcpu->vcpu_id = id;
276 	vcpu->pid = NULL;
277 	init_swait_queue_head(&vcpu->wq);
278 	kvm_async_pf_vcpu_init(vcpu);
279 
280 	vcpu->pre_pcpu = -1;
281 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282 
283 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 	if (!page) {
285 		r = -ENOMEM;
286 		goto fail;
287 	}
288 	vcpu->run = page_address(page);
289 
290 	kvm_vcpu_set_in_spin_loop(vcpu, false);
291 	kvm_vcpu_set_dy_eligible(vcpu, false);
292 	vcpu->preempted = false;
293 
294 	r = kvm_arch_vcpu_init(vcpu);
295 	if (r < 0)
296 		goto fail_free_run;
297 	return 0;
298 
299 fail_free_run:
300 	free_page((unsigned long)vcpu->run);
301 fail:
302 	return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305 
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 	/*
309 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 	 * will change the vcpu->pid pointer and on uninit all file
311 	 * descriptors are already gone.
312 	 */
313 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 	kvm_arch_vcpu_uninit(vcpu);
315 	free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318 
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 	return container_of(mn, struct kvm, mmu_notifier);
323 }
324 
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
326 					     struct mm_struct *mm,
327 					     unsigned long address)
328 {
329 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
330 	int need_tlb_flush, idx;
331 
332 	/*
333 	 * When ->invalidate_page runs, the linux pte has been zapped
334 	 * already but the page is still allocated until
335 	 * ->invalidate_page returns. So if we increase the sequence
336 	 * here the kvm page fault will notice if the spte can't be
337 	 * established because the page is going to be freed. If
338 	 * instead the kvm page fault establishes the spte before
339 	 * ->invalidate_page runs, kvm_unmap_hva will release it
340 	 * before returning.
341 	 *
342 	 * The sequence increase only need to be seen at spin_unlock
343 	 * time, and not at spin_lock time.
344 	 *
345 	 * Increasing the sequence after the spin_unlock would be
346 	 * unsafe because the kvm page fault could then establish the
347 	 * pte after kvm_unmap_hva returned, without noticing the page
348 	 * is going to be freed.
349 	 */
350 	idx = srcu_read_lock(&kvm->srcu);
351 	spin_lock(&kvm->mmu_lock);
352 
353 	kvm->mmu_notifier_seq++;
354 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
355 	/* we've to flush the tlb before the pages can be freed */
356 	if (need_tlb_flush)
357 		kvm_flush_remote_tlbs(kvm);
358 
359 	spin_unlock(&kvm->mmu_lock);
360 
361 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
362 
363 	srcu_read_unlock(&kvm->srcu, idx);
364 }
365 
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367 					struct mm_struct *mm,
368 					unsigned long address,
369 					pte_t pte)
370 {
371 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 	int idx;
373 
374 	idx = srcu_read_lock(&kvm->srcu);
375 	spin_lock(&kvm->mmu_lock);
376 	kvm->mmu_notifier_seq++;
377 	kvm_set_spte_hva(kvm, address, pte);
378 	spin_unlock(&kvm->mmu_lock);
379 	srcu_read_unlock(&kvm->srcu, idx);
380 }
381 
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
383 						    struct mm_struct *mm,
384 						    unsigned long start,
385 						    unsigned long end)
386 {
387 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 	int need_tlb_flush = 0, idx;
389 
390 	idx = srcu_read_lock(&kvm->srcu);
391 	spin_lock(&kvm->mmu_lock);
392 	/*
393 	 * The count increase must become visible at unlock time as no
394 	 * spte can be established without taking the mmu_lock and
395 	 * count is also read inside the mmu_lock critical section.
396 	 */
397 	kvm->mmu_notifier_count++;
398 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
399 	need_tlb_flush |= kvm->tlbs_dirty;
400 	/* we've to flush the tlb before the pages can be freed */
401 	if (need_tlb_flush)
402 		kvm_flush_remote_tlbs(kvm);
403 
404 	spin_unlock(&kvm->mmu_lock);
405 	srcu_read_unlock(&kvm->srcu, idx);
406 }
407 
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
409 						  struct mm_struct *mm,
410 						  unsigned long start,
411 						  unsigned long end)
412 {
413 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
414 
415 	spin_lock(&kvm->mmu_lock);
416 	/*
417 	 * This sequence increase will notify the kvm page fault that
418 	 * the page that is going to be mapped in the spte could have
419 	 * been freed.
420 	 */
421 	kvm->mmu_notifier_seq++;
422 	smp_wmb();
423 	/*
424 	 * The above sequence increase must be visible before the
425 	 * below count decrease, which is ensured by the smp_wmb above
426 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
427 	 */
428 	kvm->mmu_notifier_count--;
429 	spin_unlock(&kvm->mmu_lock);
430 
431 	BUG_ON(kvm->mmu_notifier_count < 0);
432 }
433 
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
435 					      struct mm_struct *mm,
436 					      unsigned long start,
437 					      unsigned long end)
438 {
439 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
440 	int young, idx;
441 
442 	idx = srcu_read_lock(&kvm->srcu);
443 	spin_lock(&kvm->mmu_lock);
444 
445 	young = kvm_age_hva(kvm, start, end);
446 	if (young)
447 		kvm_flush_remote_tlbs(kvm);
448 
449 	spin_unlock(&kvm->mmu_lock);
450 	srcu_read_unlock(&kvm->srcu, idx);
451 
452 	return young;
453 }
454 
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
456 					struct mm_struct *mm,
457 					unsigned long start,
458 					unsigned long end)
459 {
460 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 	int young, idx;
462 
463 	idx = srcu_read_lock(&kvm->srcu);
464 	spin_lock(&kvm->mmu_lock);
465 	/*
466 	 * Even though we do not flush TLB, this will still adversely
467 	 * affect performance on pre-Haswell Intel EPT, where there is
468 	 * no EPT Access Bit to clear so that we have to tear down EPT
469 	 * tables instead. If we find this unacceptable, we can always
470 	 * add a parameter to kvm_age_hva so that it effectively doesn't
471 	 * do anything on clear_young.
472 	 *
473 	 * Also note that currently we never issue secondary TLB flushes
474 	 * from clear_young, leaving this job up to the regular system
475 	 * cadence. If we find this inaccurate, we might come up with a
476 	 * more sophisticated heuristic later.
477 	 */
478 	young = kvm_age_hva(kvm, start, end);
479 	spin_unlock(&kvm->mmu_lock);
480 	srcu_read_unlock(&kvm->srcu, idx);
481 
482 	return young;
483 }
484 
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
486 				       struct mm_struct *mm,
487 				       unsigned long address)
488 {
489 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
490 	int young, idx;
491 
492 	idx = srcu_read_lock(&kvm->srcu);
493 	spin_lock(&kvm->mmu_lock);
494 	young = kvm_test_age_hva(kvm, address);
495 	spin_unlock(&kvm->mmu_lock);
496 	srcu_read_unlock(&kvm->srcu, idx);
497 
498 	return young;
499 }
500 
501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
502 				     struct mm_struct *mm)
503 {
504 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
505 	int idx;
506 
507 	idx = srcu_read_lock(&kvm->srcu);
508 	kvm_arch_flush_shadow_all(kvm);
509 	srcu_read_unlock(&kvm->srcu, idx);
510 }
511 
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
513 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
514 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
515 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
516 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
517 	.clear_young		= kvm_mmu_notifier_clear_young,
518 	.test_young		= kvm_mmu_notifier_test_young,
519 	.change_pte		= kvm_mmu_notifier_change_pte,
520 	.release		= kvm_mmu_notifier_release,
521 };
522 
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
526 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
527 }
528 
529 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
530 
531 static int kvm_init_mmu_notifier(struct kvm *kvm)
532 {
533 	return 0;
534 }
535 
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
537 
538 static struct kvm_memslots *kvm_alloc_memslots(void)
539 {
540 	int i;
541 	struct kvm_memslots *slots;
542 
543 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
544 	if (!slots)
545 		return NULL;
546 
547 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
548 		slots->id_to_index[i] = slots->memslots[i].id = i;
549 
550 	return slots;
551 }
552 
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555 	if (!memslot->dirty_bitmap)
556 		return;
557 
558 	kvfree(memslot->dirty_bitmap);
559 	memslot->dirty_bitmap = NULL;
560 }
561 
562 /*
563  * Free any memory in @free but not in @dont.
564  */
565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
566 			      struct kvm_memory_slot *dont)
567 {
568 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569 		kvm_destroy_dirty_bitmap(free);
570 
571 	kvm_arch_free_memslot(kvm, free, dont);
572 
573 	free->npages = 0;
574 }
575 
576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
577 {
578 	struct kvm_memory_slot *memslot;
579 
580 	if (!slots)
581 		return;
582 
583 	kvm_for_each_memslot(memslot, slots)
584 		kvm_free_memslot(kvm, memslot, NULL);
585 
586 	kvfree(slots);
587 }
588 
589 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
590 {
591 	int i;
592 
593 	if (!kvm->debugfs_dentry)
594 		return;
595 
596 	debugfs_remove_recursive(kvm->debugfs_dentry);
597 
598 	if (kvm->debugfs_stat_data) {
599 		for (i = 0; i < kvm_debugfs_num_entries; i++)
600 			kfree(kvm->debugfs_stat_data[i]);
601 		kfree(kvm->debugfs_stat_data);
602 	}
603 }
604 
605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
606 {
607 	char dir_name[ITOA_MAX_LEN * 2];
608 	struct kvm_stat_data *stat_data;
609 	struct kvm_stats_debugfs_item *p;
610 
611 	if (!debugfs_initialized())
612 		return 0;
613 
614 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
615 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
616 						 kvm_debugfs_dir);
617 	if (!kvm->debugfs_dentry)
618 		return -ENOMEM;
619 
620 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
621 					 sizeof(*kvm->debugfs_stat_data),
622 					 GFP_KERNEL);
623 	if (!kvm->debugfs_stat_data)
624 		return -ENOMEM;
625 
626 	for (p = debugfs_entries; p->name; p++) {
627 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
628 		if (!stat_data)
629 			return -ENOMEM;
630 
631 		stat_data->kvm = kvm;
632 		stat_data->offset = p->offset;
633 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
634 		if (!debugfs_create_file(p->name, 0644,
635 					 kvm->debugfs_dentry,
636 					 stat_data,
637 					 stat_fops_per_vm[p->kind]))
638 			return -ENOMEM;
639 	}
640 	return 0;
641 }
642 
643 static struct kvm *kvm_create_vm(unsigned long type)
644 {
645 	int r, i;
646 	struct kvm *kvm = kvm_arch_alloc_vm();
647 
648 	if (!kvm)
649 		return ERR_PTR(-ENOMEM);
650 
651 	spin_lock_init(&kvm->mmu_lock);
652 	mmgrab(current->mm);
653 	kvm->mm = current->mm;
654 	kvm_eventfd_init(kvm);
655 	mutex_init(&kvm->lock);
656 	mutex_init(&kvm->irq_lock);
657 	mutex_init(&kvm->slots_lock);
658 	refcount_set(&kvm->users_count, 1);
659 	INIT_LIST_HEAD(&kvm->devices);
660 
661 	r = kvm_arch_init_vm(kvm, type);
662 	if (r)
663 		goto out_err_no_disable;
664 
665 	r = hardware_enable_all();
666 	if (r)
667 		goto out_err_no_disable;
668 
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
671 #endif
672 
673 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
674 
675 	r = -ENOMEM;
676 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
677 		struct kvm_memslots *slots = kvm_alloc_memslots();
678 		if (!slots)
679 			goto out_err_no_srcu;
680 		/*
681 		 * Generations must be different for each address space.
682 		 * Init kvm generation close to the maximum to easily test the
683 		 * code of handling generation number wrap-around.
684 		 */
685 		slots->generation = i * 2 - 150;
686 		rcu_assign_pointer(kvm->memslots[i], slots);
687 	}
688 
689 	if (init_srcu_struct(&kvm->srcu))
690 		goto out_err_no_srcu;
691 	if (init_srcu_struct(&kvm->irq_srcu))
692 		goto out_err_no_irq_srcu;
693 	for (i = 0; i < KVM_NR_BUSES; i++) {
694 		rcu_assign_pointer(kvm->buses[i],
695 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
696 		if (!kvm->buses[i])
697 			goto out_err;
698 	}
699 
700 	r = kvm_init_mmu_notifier(kvm);
701 	if (r)
702 		goto out_err;
703 
704 	spin_lock(&kvm_lock);
705 	list_add(&kvm->vm_list, &vm_list);
706 	spin_unlock(&kvm_lock);
707 
708 	preempt_notifier_inc();
709 
710 	return kvm;
711 
712 out_err:
713 	cleanup_srcu_struct(&kvm->irq_srcu);
714 out_err_no_irq_srcu:
715 	cleanup_srcu_struct(&kvm->srcu);
716 out_err_no_srcu:
717 	hardware_disable_all();
718 out_err_no_disable:
719 	for (i = 0; i < KVM_NR_BUSES; i++)
720 		kfree(kvm_get_bus(kvm, i));
721 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
722 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
723 	kvm_arch_free_vm(kvm);
724 	mmdrop(current->mm);
725 	return ERR_PTR(r);
726 }
727 
728 static void kvm_destroy_devices(struct kvm *kvm)
729 {
730 	struct kvm_device *dev, *tmp;
731 
732 	/*
733 	 * We do not need to take the kvm->lock here, because nobody else
734 	 * has a reference to the struct kvm at this point and therefore
735 	 * cannot access the devices list anyhow.
736 	 */
737 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
738 		list_del(&dev->vm_node);
739 		dev->ops->destroy(dev);
740 	}
741 }
742 
743 static void kvm_destroy_vm(struct kvm *kvm)
744 {
745 	int i;
746 	struct mm_struct *mm = kvm->mm;
747 
748 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
749 	kvm_destroy_vm_debugfs(kvm);
750 	kvm_arch_sync_events(kvm);
751 	spin_lock(&kvm_lock);
752 	list_del(&kvm->vm_list);
753 	spin_unlock(&kvm_lock);
754 	kvm_free_irq_routing(kvm);
755 	for (i = 0; i < KVM_NR_BUSES; i++) {
756 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
757 
758 		if (bus)
759 			kvm_io_bus_destroy(bus);
760 		kvm->buses[i] = NULL;
761 	}
762 	kvm_coalesced_mmio_free(kvm);
763 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
764 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
765 #else
766 	kvm_arch_flush_shadow_all(kvm);
767 #endif
768 	kvm_arch_destroy_vm(kvm);
769 	kvm_destroy_devices(kvm);
770 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
771 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
772 	cleanup_srcu_struct(&kvm->irq_srcu);
773 	cleanup_srcu_struct(&kvm->srcu);
774 	kvm_arch_free_vm(kvm);
775 	preempt_notifier_dec();
776 	hardware_disable_all();
777 	mmdrop(mm);
778 }
779 
780 void kvm_get_kvm(struct kvm *kvm)
781 {
782 	refcount_inc(&kvm->users_count);
783 }
784 EXPORT_SYMBOL_GPL(kvm_get_kvm);
785 
786 void kvm_put_kvm(struct kvm *kvm)
787 {
788 	if (refcount_dec_and_test(&kvm->users_count))
789 		kvm_destroy_vm(kvm);
790 }
791 EXPORT_SYMBOL_GPL(kvm_put_kvm);
792 
793 
794 static int kvm_vm_release(struct inode *inode, struct file *filp)
795 {
796 	struct kvm *kvm = filp->private_data;
797 
798 	kvm_irqfd_release(kvm);
799 
800 	kvm_put_kvm(kvm);
801 	return 0;
802 }
803 
804 /*
805  * Allocation size is twice as large as the actual dirty bitmap size.
806  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
807  */
808 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
809 {
810 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
811 
812 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
813 	if (!memslot->dirty_bitmap)
814 		return -ENOMEM;
815 
816 	return 0;
817 }
818 
819 /*
820  * Insert memslot and re-sort memslots based on their GFN,
821  * so binary search could be used to lookup GFN.
822  * Sorting algorithm takes advantage of having initially
823  * sorted array and known changed memslot position.
824  */
825 static void update_memslots(struct kvm_memslots *slots,
826 			    struct kvm_memory_slot *new)
827 {
828 	int id = new->id;
829 	int i = slots->id_to_index[id];
830 	struct kvm_memory_slot *mslots = slots->memslots;
831 
832 	WARN_ON(mslots[i].id != id);
833 	if (!new->npages) {
834 		WARN_ON(!mslots[i].npages);
835 		if (mslots[i].npages)
836 			slots->used_slots--;
837 	} else {
838 		if (!mslots[i].npages)
839 			slots->used_slots++;
840 	}
841 
842 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
843 	       new->base_gfn <= mslots[i + 1].base_gfn) {
844 		if (!mslots[i + 1].npages)
845 			break;
846 		mslots[i] = mslots[i + 1];
847 		slots->id_to_index[mslots[i].id] = i;
848 		i++;
849 	}
850 
851 	/*
852 	 * The ">=" is needed when creating a slot with base_gfn == 0,
853 	 * so that it moves before all those with base_gfn == npages == 0.
854 	 *
855 	 * On the other hand, if new->npages is zero, the above loop has
856 	 * already left i pointing to the beginning of the empty part of
857 	 * mslots, and the ">=" would move the hole backwards in this
858 	 * case---which is wrong.  So skip the loop when deleting a slot.
859 	 */
860 	if (new->npages) {
861 		while (i > 0 &&
862 		       new->base_gfn >= mslots[i - 1].base_gfn) {
863 			mslots[i] = mslots[i - 1];
864 			slots->id_to_index[mslots[i].id] = i;
865 			i--;
866 		}
867 	} else
868 		WARN_ON_ONCE(i != slots->used_slots);
869 
870 	mslots[i] = *new;
871 	slots->id_to_index[mslots[i].id] = i;
872 }
873 
874 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
875 {
876 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
877 
878 #ifdef __KVM_HAVE_READONLY_MEM
879 	valid_flags |= KVM_MEM_READONLY;
880 #endif
881 
882 	if (mem->flags & ~valid_flags)
883 		return -EINVAL;
884 
885 	return 0;
886 }
887 
888 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
889 		int as_id, struct kvm_memslots *slots)
890 {
891 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
892 
893 	/*
894 	 * Set the low bit in the generation, which disables SPTE caching
895 	 * until the end of synchronize_srcu_expedited.
896 	 */
897 	WARN_ON(old_memslots->generation & 1);
898 	slots->generation = old_memslots->generation + 1;
899 
900 	rcu_assign_pointer(kvm->memslots[as_id], slots);
901 	synchronize_srcu_expedited(&kvm->srcu);
902 
903 	/*
904 	 * Increment the new memslot generation a second time. This prevents
905 	 * vm exits that race with memslot updates from caching a memslot
906 	 * generation that will (potentially) be valid forever.
907 	 *
908 	 * Generations must be unique even across address spaces.  We do not need
909 	 * a global counter for that, instead the generation space is evenly split
910 	 * across address spaces.  For example, with two address spaces, address
911 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
912 	 * use generations 2, 6, 10, 14, ...
913 	 */
914 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
915 
916 	kvm_arch_memslots_updated(kvm, slots);
917 
918 	return old_memslots;
919 }
920 
921 /*
922  * Allocate some memory and give it an address in the guest physical address
923  * space.
924  *
925  * Discontiguous memory is allowed, mostly for framebuffers.
926  *
927  * Must be called holding kvm->slots_lock for write.
928  */
929 int __kvm_set_memory_region(struct kvm *kvm,
930 			    const struct kvm_userspace_memory_region *mem)
931 {
932 	int r;
933 	gfn_t base_gfn;
934 	unsigned long npages;
935 	struct kvm_memory_slot *slot;
936 	struct kvm_memory_slot old, new;
937 	struct kvm_memslots *slots = NULL, *old_memslots;
938 	int as_id, id;
939 	enum kvm_mr_change change;
940 
941 	r = check_memory_region_flags(mem);
942 	if (r)
943 		goto out;
944 
945 	r = -EINVAL;
946 	as_id = mem->slot >> 16;
947 	id = (u16)mem->slot;
948 
949 	/* General sanity checks */
950 	if (mem->memory_size & (PAGE_SIZE - 1))
951 		goto out;
952 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
953 		goto out;
954 	/* We can read the guest memory with __xxx_user() later on. */
955 	if ((id < KVM_USER_MEM_SLOTS) &&
956 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
957 	     !access_ok(VERIFY_WRITE,
958 			(void __user *)(unsigned long)mem->userspace_addr,
959 			mem->memory_size)))
960 		goto out;
961 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
962 		goto out;
963 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
964 		goto out;
965 
966 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
967 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
968 	npages = mem->memory_size >> PAGE_SHIFT;
969 
970 	if (npages > KVM_MEM_MAX_NR_PAGES)
971 		goto out;
972 
973 	new = old = *slot;
974 
975 	new.id = id;
976 	new.base_gfn = base_gfn;
977 	new.npages = npages;
978 	new.flags = mem->flags;
979 
980 	if (npages) {
981 		if (!old.npages)
982 			change = KVM_MR_CREATE;
983 		else { /* Modify an existing slot. */
984 			if ((mem->userspace_addr != old.userspace_addr) ||
985 			    (npages != old.npages) ||
986 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
987 				goto out;
988 
989 			if (base_gfn != old.base_gfn)
990 				change = KVM_MR_MOVE;
991 			else if (new.flags != old.flags)
992 				change = KVM_MR_FLAGS_ONLY;
993 			else { /* Nothing to change. */
994 				r = 0;
995 				goto out;
996 			}
997 		}
998 	} else {
999 		if (!old.npages)
1000 			goto out;
1001 
1002 		change = KVM_MR_DELETE;
1003 		new.base_gfn = 0;
1004 		new.flags = 0;
1005 	}
1006 
1007 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1008 		/* Check for overlaps */
1009 		r = -EEXIST;
1010 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1011 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1012 			    (slot->id == id))
1013 				continue;
1014 			if (!((base_gfn + npages <= slot->base_gfn) ||
1015 			      (base_gfn >= slot->base_gfn + slot->npages)))
1016 				goto out;
1017 		}
1018 	}
1019 
1020 	/* Free page dirty bitmap if unneeded */
1021 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1022 		new.dirty_bitmap = NULL;
1023 
1024 	r = -ENOMEM;
1025 	if (change == KVM_MR_CREATE) {
1026 		new.userspace_addr = mem->userspace_addr;
1027 
1028 		if (kvm_arch_create_memslot(kvm, &new, npages))
1029 			goto out_free;
1030 	}
1031 
1032 	/* Allocate page dirty bitmap if needed */
1033 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1034 		if (kvm_create_dirty_bitmap(&new) < 0)
1035 			goto out_free;
1036 	}
1037 
1038 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1039 	if (!slots)
1040 		goto out_free;
1041 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1042 
1043 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1044 		slot = id_to_memslot(slots, id);
1045 		slot->flags |= KVM_MEMSLOT_INVALID;
1046 
1047 		old_memslots = install_new_memslots(kvm, as_id, slots);
1048 
1049 		/* From this point no new shadow pages pointing to a deleted,
1050 		 * or moved, memslot will be created.
1051 		 *
1052 		 * validation of sp->gfn happens in:
1053 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1054 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1055 		 */
1056 		kvm_arch_flush_shadow_memslot(kvm, slot);
1057 
1058 		/*
1059 		 * We can re-use the old_memslots from above, the only difference
1060 		 * from the currently installed memslots is the invalid flag.  This
1061 		 * will get overwritten by update_memslots anyway.
1062 		 */
1063 		slots = old_memslots;
1064 	}
1065 
1066 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1067 	if (r)
1068 		goto out_slots;
1069 
1070 	/* actual memory is freed via old in kvm_free_memslot below */
1071 	if (change == KVM_MR_DELETE) {
1072 		new.dirty_bitmap = NULL;
1073 		memset(&new.arch, 0, sizeof(new.arch));
1074 	}
1075 
1076 	update_memslots(slots, &new);
1077 	old_memslots = install_new_memslots(kvm, as_id, slots);
1078 
1079 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1080 
1081 	kvm_free_memslot(kvm, &old, &new);
1082 	kvfree(old_memslots);
1083 	return 0;
1084 
1085 out_slots:
1086 	kvfree(slots);
1087 out_free:
1088 	kvm_free_memslot(kvm, &new, &old);
1089 out:
1090 	return r;
1091 }
1092 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1093 
1094 int kvm_set_memory_region(struct kvm *kvm,
1095 			  const struct kvm_userspace_memory_region *mem)
1096 {
1097 	int r;
1098 
1099 	mutex_lock(&kvm->slots_lock);
1100 	r = __kvm_set_memory_region(kvm, mem);
1101 	mutex_unlock(&kvm->slots_lock);
1102 	return r;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1105 
1106 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1107 					  struct kvm_userspace_memory_region *mem)
1108 {
1109 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1110 		return -EINVAL;
1111 
1112 	return kvm_set_memory_region(kvm, mem);
1113 }
1114 
1115 int kvm_get_dirty_log(struct kvm *kvm,
1116 			struct kvm_dirty_log *log, int *is_dirty)
1117 {
1118 	struct kvm_memslots *slots;
1119 	struct kvm_memory_slot *memslot;
1120 	int i, as_id, id;
1121 	unsigned long n;
1122 	unsigned long any = 0;
1123 
1124 	as_id = log->slot >> 16;
1125 	id = (u16)log->slot;
1126 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1127 		return -EINVAL;
1128 
1129 	slots = __kvm_memslots(kvm, as_id);
1130 	memslot = id_to_memslot(slots, id);
1131 	if (!memslot->dirty_bitmap)
1132 		return -ENOENT;
1133 
1134 	n = kvm_dirty_bitmap_bytes(memslot);
1135 
1136 	for (i = 0; !any && i < n/sizeof(long); ++i)
1137 		any = memslot->dirty_bitmap[i];
1138 
1139 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1140 		return -EFAULT;
1141 
1142 	if (any)
1143 		*is_dirty = 1;
1144 	return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1147 
1148 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1149 /**
1150  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1151  *	are dirty write protect them for next write.
1152  * @kvm:	pointer to kvm instance
1153  * @log:	slot id and address to which we copy the log
1154  * @is_dirty:	flag set if any page is dirty
1155  *
1156  * We need to keep it in mind that VCPU threads can write to the bitmap
1157  * concurrently. So, to avoid losing track of dirty pages we keep the
1158  * following order:
1159  *
1160  *    1. Take a snapshot of the bit and clear it if needed.
1161  *    2. Write protect the corresponding page.
1162  *    3. Copy the snapshot to the userspace.
1163  *    4. Upon return caller flushes TLB's if needed.
1164  *
1165  * Between 2 and 4, the guest may write to the page using the remaining TLB
1166  * entry.  This is not a problem because the page is reported dirty using
1167  * the snapshot taken before and step 4 ensures that writes done after
1168  * exiting to userspace will be logged for the next call.
1169  *
1170  */
1171 int kvm_get_dirty_log_protect(struct kvm *kvm,
1172 			struct kvm_dirty_log *log, bool *is_dirty)
1173 {
1174 	struct kvm_memslots *slots;
1175 	struct kvm_memory_slot *memslot;
1176 	int i, as_id, id;
1177 	unsigned long n;
1178 	unsigned long *dirty_bitmap;
1179 	unsigned long *dirty_bitmap_buffer;
1180 
1181 	as_id = log->slot >> 16;
1182 	id = (u16)log->slot;
1183 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1184 		return -EINVAL;
1185 
1186 	slots = __kvm_memslots(kvm, as_id);
1187 	memslot = id_to_memslot(slots, id);
1188 
1189 	dirty_bitmap = memslot->dirty_bitmap;
1190 	if (!dirty_bitmap)
1191 		return -ENOENT;
1192 
1193 	n = kvm_dirty_bitmap_bytes(memslot);
1194 
1195 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1196 	memset(dirty_bitmap_buffer, 0, n);
1197 
1198 	spin_lock(&kvm->mmu_lock);
1199 	*is_dirty = false;
1200 	for (i = 0; i < n / sizeof(long); i++) {
1201 		unsigned long mask;
1202 		gfn_t offset;
1203 
1204 		if (!dirty_bitmap[i])
1205 			continue;
1206 
1207 		*is_dirty = true;
1208 
1209 		mask = xchg(&dirty_bitmap[i], 0);
1210 		dirty_bitmap_buffer[i] = mask;
1211 
1212 		if (mask) {
1213 			offset = i * BITS_PER_LONG;
1214 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215 								offset, mask);
1216 		}
1217 	}
1218 
1219 	spin_unlock(&kvm->mmu_lock);
1220 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221 		return -EFAULT;
1222 	return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225 #endif
1226 
1227 bool kvm_largepages_enabled(void)
1228 {
1229 	return largepages_enabled;
1230 }
1231 
1232 void kvm_disable_largepages(void)
1233 {
1234 	largepages_enabled = false;
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1237 
1238 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1239 {
1240 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1241 }
1242 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1243 
1244 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1245 {
1246 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1247 }
1248 
1249 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1250 {
1251 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1252 
1253 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1254 	      memslot->flags & KVM_MEMSLOT_INVALID)
1255 		return false;
1256 
1257 	return true;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1260 
1261 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1262 {
1263 	struct vm_area_struct *vma;
1264 	unsigned long addr, size;
1265 
1266 	size = PAGE_SIZE;
1267 
1268 	addr = gfn_to_hva(kvm, gfn);
1269 	if (kvm_is_error_hva(addr))
1270 		return PAGE_SIZE;
1271 
1272 	down_read(&current->mm->mmap_sem);
1273 	vma = find_vma(current->mm, addr);
1274 	if (!vma)
1275 		goto out;
1276 
1277 	size = vma_kernel_pagesize(vma);
1278 
1279 out:
1280 	up_read(&current->mm->mmap_sem);
1281 
1282 	return size;
1283 }
1284 
1285 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1286 {
1287 	return slot->flags & KVM_MEM_READONLY;
1288 }
1289 
1290 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 				       gfn_t *nr_pages, bool write)
1292 {
1293 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1294 		return KVM_HVA_ERR_BAD;
1295 
1296 	if (memslot_is_readonly(slot) && write)
1297 		return KVM_HVA_ERR_RO_BAD;
1298 
1299 	if (nr_pages)
1300 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1301 
1302 	return __gfn_to_hva_memslot(slot, gfn);
1303 }
1304 
1305 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1306 				     gfn_t *nr_pages)
1307 {
1308 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1309 }
1310 
1311 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1312 					gfn_t gfn)
1313 {
1314 	return gfn_to_hva_many(slot, gfn, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1317 
1318 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1319 {
1320 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_hva);
1323 
1324 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1325 {
1326 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1329 
1330 /*
1331  * If writable is set to false, the hva returned by this function is only
1332  * allowed to be read.
1333  */
1334 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1335 				      gfn_t gfn, bool *writable)
1336 {
1337 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1338 
1339 	if (!kvm_is_error_hva(hva) && writable)
1340 		*writable = !memslot_is_readonly(slot);
1341 
1342 	return hva;
1343 }
1344 
1345 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1346 {
1347 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1348 
1349 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1350 }
1351 
1352 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1353 {
1354 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1355 
1356 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1357 }
1358 
1359 static int get_user_page_nowait(unsigned long start, int write,
1360 		struct page **page)
1361 {
1362 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1363 
1364 	if (write)
1365 		flags |= FOLL_WRITE;
1366 
1367 	return get_user_pages(start, 1, flags, page, NULL);
1368 }
1369 
1370 static inline int check_user_page_hwpoison(unsigned long addr)
1371 {
1372 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1373 
1374 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1375 	return rc == -EHWPOISON;
1376 }
1377 
1378 /*
1379  * The atomic path to get the writable pfn which will be stored in @pfn,
1380  * true indicates success, otherwise false is returned.
1381  */
1382 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1383 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1384 {
1385 	struct page *page[1];
1386 	int npages;
1387 
1388 	if (!(async || atomic))
1389 		return false;
1390 
1391 	/*
1392 	 * Fast pin a writable pfn only if it is a write fault request
1393 	 * or the caller allows to map a writable pfn for a read fault
1394 	 * request.
1395 	 */
1396 	if (!(write_fault || writable))
1397 		return false;
1398 
1399 	npages = __get_user_pages_fast(addr, 1, 1, page);
1400 	if (npages == 1) {
1401 		*pfn = page_to_pfn(page[0]);
1402 
1403 		if (writable)
1404 			*writable = true;
1405 		return true;
1406 	}
1407 
1408 	return false;
1409 }
1410 
1411 /*
1412  * The slow path to get the pfn of the specified host virtual address,
1413  * 1 indicates success, -errno is returned if error is detected.
1414  */
1415 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1416 			   bool *writable, kvm_pfn_t *pfn)
1417 {
1418 	struct page *page[1];
1419 	int npages = 0;
1420 
1421 	might_sleep();
1422 
1423 	if (writable)
1424 		*writable = write_fault;
1425 
1426 	if (async) {
1427 		down_read(&current->mm->mmap_sem);
1428 		npages = get_user_page_nowait(addr, write_fault, page);
1429 		up_read(&current->mm->mmap_sem);
1430 	} else {
1431 		unsigned int flags = FOLL_HWPOISON;
1432 
1433 		if (write_fault)
1434 			flags |= FOLL_WRITE;
1435 
1436 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1437 	}
1438 	if (npages != 1)
1439 		return npages;
1440 
1441 	/* map read fault as writable if possible */
1442 	if (unlikely(!write_fault) && writable) {
1443 		struct page *wpage[1];
1444 
1445 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1446 		if (npages == 1) {
1447 			*writable = true;
1448 			put_page(page[0]);
1449 			page[0] = wpage[0];
1450 		}
1451 
1452 		npages = 1;
1453 	}
1454 	*pfn = page_to_pfn(page[0]);
1455 	return npages;
1456 }
1457 
1458 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1459 {
1460 	if (unlikely(!(vma->vm_flags & VM_READ)))
1461 		return false;
1462 
1463 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1464 		return false;
1465 
1466 	return true;
1467 }
1468 
1469 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1470 			       unsigned long addr, bool *async,
1471 			       bool write_fault, kvm_pfn_t *p_pfn)
1472 {
1473 	unsigned long pfn;
1474 	int r;
1475 
1476 	r = follow_pfn(vma, addr, &pfn);
1477 	if (r) {
1478 		/*
1479 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1480 		 * not call the fault handler, so do it here.
1481 		 */
1482 		bool unlocked = false;
1483 		r = fixup_user_fault(current, current->mm, addr,
1484 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1485 				     &unlocked);
1486 		if (unlocked)
1487 			return -EAGAIN;
1488 		if (r)
1489 			return r;
1490 
1491 		r = follow_pfn(vma, addr, &pfn);
1492 		if (r)
1493 			return r;
1494 
1495 	}
1496 
1497 
1498 	/*
1499 	 * Get a reference here because callers of *hva_to_pfn* and
1500 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1501 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1502 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1503 	 * simply do nothing for reserved pfns.
1504 	 *
1505 	 * Whoever called remap_pfn_range is also going to call e.g.
1506 	 * unmap_mapping_range before the underlying pages are freed,
1507 	 * causing a call to our MMU notifier.
1508 	 */
1509 	kvm_get_pfn(pfn);
1510 
1511 	*p_pfn = pfn;
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Pin guest page in memory and return its pfn.
1517  * @addr: host virtual address which maps memory to the guest
1518  * @atomic: whether this function can sleep
1519  * @async: whether this function need to wait IO complete if the
1520  *         host page is not in the memory
1521  * @write_fault: whether we should get a writable host page
1522  * @writable: whether it allows to map a writable host page for !@write_fault
1523  *
1524  * The function will map a writable host page for these two cases:
1525  * 1): @write_fault = true
1526  * 2): @write_fault = false && @writable, @writable will tell the caller
1527  *     whether the mapping is writable.
1528  */
1529 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1530 			bool write_fault, bool *writable)
1531 {
1532 	struct vm_area_struct *vma;
1533 	kvm_pfn_t pfn = 0;
1534 	int npages, r;
1535 
1536 	/* we can do it either atomically or asynchronously, not both */
1537 	BUG_ON(atomic && async);
1538 
1539 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1540 		return pfn;
1541 
1542 	if (atomic)
1543 		return KVM_PFN_ERR_FAULT;
1544 
1545 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1546 	if (npages == 1)
1547 		return pfn;
1548 
1549 	down_read(&current->mm->mmap_sem);
1550 	if (npages == -EHWPOISON ||
1551 	      (!async && check_user_page_hwpoison(addr))) {
1552 		pfn = KVM_PFN_ERR_HWPOISON;
1553 		goto exit;
1554 	}
1555 
1556 retry:
1557 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1558 
1559 	if (vma == NULL)
1560 		pfn = KVM_PFN_ERR_FAULT;
1561 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1562 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1563 		if (r == -EAGAIN)
1564 			goto retry;
1565 		if (r < 0)
1566 			pfn = KVM_PFN_ERR_FAULT;
1567 	} else {
1568 		if (async && vma_is_valid(vma, write_fault))
1569 			*async = true;
1570 		pfn = KVM_PFN_ERR_FAULT;
1571 	}
1572 exit:
1573 	up_read(&current->mm->mmap_sem);
1574 	return pfn;
1575 }
1576 
1577 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1578 			       bool atomic, bool *async, bool write_fault,
1579 			       bool *writable)
1580 {
1581 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1582 
1583 	if (addr == KVM_HVA_ERR_RO_BAD) {
1584 		if (writable)
1585 			*writable = false;
1586 		return KVM_PFN_ERR_RO_FAULT;
1587 	}
1588 
1589 	if (kvm_is_error_hva(addr)) {
1590 		if (writable)
1591 			*writable = false;
1592 		return KVM_PFN_NOSLOT;
1593 	}
1594 
1595 	/* Do not map writable pfn in the readonly memslot. */
1596 	if (writable && memslot_is_readonly(slot)) {
1597 		*writable = false;
1598 		writable = NULL;
1599 	}
1600 
1601 	return hva_to_pfn(addr, atomic, async, write_fault,
1602 			  writable);
1603 }
1604 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1605 
1606 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1607 		      bool *writable)
1608 {
1609 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1610 				    write_fault, writable);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1613 
1614 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1615 {
1616 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1619 
1620 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1621 {
1622 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1625 
1626 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1627 {
1628 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1631 
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1637 
1638 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1639 {
1640 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1641 }
1642 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1643 
1644 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1645 {
1646 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1647 }
1648 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1649 
1650 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1651 			    struct page **pages, int nr_pages)
1652 {
1653 	unsigned long addr;
1654 	gfn_t entry;
1655 
1656 	addr = gfn_to_hva_many(slot, gfn, &entry);
1657 	if (kvm_is_error_hva(addr))
1658 		return -1;
1659 
1660 	if (entry < nr_pages)
1661 		return 0;
1662 
1663 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1666 
1667 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1668 {
1669 	if (is_error_noslot_pfn(pfn))
1670 		return KVM_ERR_PTR_BAD_PAGE;
1671 
1672 	if (kvm_is_reserved_pfn(pfn)) {
1673 		WARN_ON(1);
1674 		return KVM_ERR_PTR_BAD_PAGE;
1675 	}
1676 
1677 	return pfn_to_page(pfn);
1678 }
1679 
1680 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1681 {
1682 	kvm_pfn_t pfn;
1683 
1684 	pfn = gfn_to_pfn(kvm, gfn);
1685 
1686 	return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_page);
1689 
1690 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692 	kvm_pfn_t pfn;
1693 
1694 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1695 
1696 	return kvm_pfn_to_page(pfn);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1699 
1700 void kvm_release_page_clean(struct page *page)
1701 {
1702 	WARN_ON(is_error_page(page));
1703 
1704 	kvm_release_pfn_clean(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1707 
1708 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1709 {
1710 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1711 		put_page(pfn_to_page(pfn));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1714 
1715 void kvm_release_page_dirty(struct page *page)
1716 {
1717 	WARN_ON(is_error_page(page));
1718 
1719 	kvm_release_pfn_dirty(page_to_pfn(page));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1722 
1723 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1724 {
1725 	kvm_set_pfn_dirty(pfn);
1726 	kvm_release_pfn_clean(pfn);
1727 }
1728 
1729 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1730 {
1731 	if (!kvm_is_reserved_pfn(pfn)) {
1732 		struct page *page = pfn_to_page(pfn);
1733 
1734 		if (!PageReserved(page))
1735 			SetPageDirty(page);
1736 	}
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1739 
1740 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1741 {
1742 	if (!kvm_is_reserved_pfn(pfn))
1743 		mark_page_accessed(pfn_to_page(pfn));
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1746 
1747 void kvm_get_pfn(kvm_pfn_t pfn)
1748 {
1749 	if (!kvm_is_reserved_pfn(pfn))
1750 		get_page(pfn_to_page(pfn));
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1753 
1754 static int next_segment(unsigned long len, int offset)
1755 {
1756 	if (len > PAGE_SIZE - offset)
1757 		return PAGE_SIZE - offset;
1758 	else
1759 		return len;
1760 }
1761 
1762 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1763 				 void *data, int offset, int len)
1764 {
1765 	int r;
1766 	unsigned long addr;
1767 
1768 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1769 	if (kvm_is_error_hva(addr))
1770 		return -EFAULT;
1771 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1772 	if (r)
1773 		return -EFAULT;
1774 	return 0;
1775 }
1776 
1777 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1778 			int len)
1779 {
1780 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1781 
1782 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1785 
1786 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1787 			     int offset, int len)
1788 {
1789 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1790 
1791 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1794 
1795 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1796 {
1797 	gfn_t gfn = gpa >> PAGE_SHIFT;
1798 	int seg;
1799 	int offset = offset_in_page(gpa);
1800 	int ret;
1801 
1802 	while ((seg = next_segment(len, offset)) != 0) {
1803 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1804 		if (ret < 0)
1805 			return ret;
1806 		offset = 0;
1807 		len -= seg;
1808 		data += seg;
1809 		++gfn;
1810 	}
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_read_guest);
1814 
1815 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1816 {
1817 	gfn_t gfn = gpa >> PAGE_SHIFT;
1818 	int seg;
1819 	int offset = offset_in_page(gpa);
1820 	int ret;
1821 
1822 	while ((seg = next_segment(len, offset)) != 0) {
1823 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1824 		if (ret < 0)
1825 			return ret;
1826 		offset = 0;
1827 		len -= seg;
1828 		data += seg;
1829 		++gfn;
1830 	}
1831 	return 0;
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1834 
1835 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1836 			           void *data, int offset, unsigned long len)
1837 {
1838 	int r;
1839 	unsigned long addr;
1840 
1841 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1842 	if (kvm_is_error_hva(addr))
1843 		return -EFAULT;
1844 	pagefault_disable();
1845 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1846 	pagefault_enable();
1847 	if (r)
1848 		return -EFAULT;
1849 	return 0;
1850 }
1851 
1852 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1853 			  unsigned long len)
1854 {
1855 	gfn_t gfn = gpa >> PAGE_SHIFT;
1856 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1857 	int offset = offset_in_page(gpa);
1858 
1859 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1862 
1863 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1864 			       void *data, unsigned long len)
1865 {
1866 	gfn_t gfn = gpa >> PAGE_SHIFT;
1867 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1868 	int offset = offset_in_page(gpa);
1869 
1870 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1873 
1874 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1875 			          const void *data, int offset, int len)
1876 {
1877 	int r;
1878 	unsigned long addr;
1879 
1880 	addr = gfn_to_hva_memslot(memslot, gfn);
1881 	if (kvm_is_error_hva(addr))
1882 		return -EFAULT;
1883 	r = __copy_to_user((void __user *)addr + offset, data, len);
1884 	if (r)
1885 		return -EFAULT;
1886 	mark_page_dirty_in_slot(memslot, gfn);
1887 	return 0;
1888 }
1889 
1890 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1891 			 const void *data, int offset, int len)
1892 {
1893 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1894 
1895 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1898 
1899 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1900 			      const void *data, int offset, int len)
1901 {
1902 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1903 
1904 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1907 
1908 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1909 		    unsigned long len)
1910 {
1911 	gfn_t gfn = gpa >> PAGE_SHIFT;
1912 	int seg;
1913 	int offset = offset_in_page(gpa);
1914 	int ret;
1915 
1916 	while ((seg = next_segment(len, offset)) != 0) {
1917 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1918 		if (ret < 0)
1919 			return ret;
1920 		offset = 0;
1921 		len -= seg;
1922 		data += seg;
1923 		++gfn;
1924 	}
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(kvm_write_guest);
1928 
1929 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1930 		         unsigned long len)
1931 {
1932 	gfn_t gfn = gpa >> PAGE_SHIFT;
1933 	int seg;
1934 	int offset = offset_in_page(gpa);
1935 	int ret;
1936 
1937 	while ((seg = next_segment(len, offset)) != 0) {
1938 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1939 		if (ret < 0)
1940 			return ret;
1941 		offset = 0;
1942 		len -= seg;
1943 		data += seg;
1944 		++gfn;
1945 	}
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1949 
1950 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1951 				       struct gfn_to_hva_cache *ghc,
1952 				       gpa_t gpa, unsigned long len)
1953 {
1954 	int offset = offset_in_page(gpa);
1955 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1956 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1957 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1958 	gfn_t nr_pages_avail;
1959 
1960 	ghc->gpa = gpa;
1961 	ghc->generation = slots->generation;
1962 	ghc->len = len;
1963 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1964 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1965 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1966 		ghc->hva += offset;
1967 	} else {
1968 		/*
1969 		 * If the requested region crosses two memslots, we still
1970 		 * verify that the entire region is valid here.
1971 		 */
1972 		while (start_gfn <= end_gfn) {
1973 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1974 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1975 						   &nr_pages_avail);
1976 			if (kvm_is_error_hva(ghc->hva))
1977 				return -EFAULT;
1978 			start_gfn += nr_pages_avail;
1979 		}
1980 		/* Use the slow path for cross page reads and writes. */
1981 		ghc->memslot = NULL;
1982 	}
1983 	return 0;
1984 }
1985 
1986 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987 			      gpa_t gpa, unsigned long len)
1988 {
1989 	struct kvm_memslots *slots = kvm_memslots(kvm);
1990 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1993 
1994 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995 			   void *data, int offset, unsigned long len)
1996 {
1997 	struct kvm_memslots *slots = kvm_memslots(kvm);
1998 	int r;
1999 	gpa_t gpa = ghc->gpa + offset;
2000 
2001 	BUG_ON(len + offset > ghc->len);
2002 
2003 	if (slots->generation != ghc->generation)
2004 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005 
2006 	if (unlikely(!ghc->memslot))
2007 		return kvm_write_guest(kvm, gpa, data, len);
2008 
2009 	if (kvm_is_error_hva(ghc->hva))
2010 		return -EFAULT;
2011 
2012 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2013 	if (r)
2014 		return -EFAULT;
2015 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2016 
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2020 
2021 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2022 			   void *data, unsigned long len)
2023 {
2024 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2027 
2028 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2029 			   void *data, unsigned long len)
2030 {
2031 	struct kvm_memslots *slots = kvm_memslots(kvm);
2032 	int r;
2033 
2034 	BUG_ON(len > ghc->len);
2035 
2036 	if (slots->generation != ghc->generation)
2037 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2038 
2039 	if (unlikely(!ghc->memslot))
2040 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2041 
2042 	if (kvm_is_error_hva(ghc->hva))
2043 		return -EFAULT;
2044 
2045 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2046 	if (r)
2047 		return -EFAULT;
2048 
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2052 
2053 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2054 {
2055 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2056 
2057 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2060 
2061 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2062 {
2063 	gfn_t gfn = gpa >> PAGE_SHIFT;
2064 	int seg;
2065 	int offset = offset_in_page(gpa);
2066 	int ret;
2067 
2068 	while ((seg = next_segment(len, offset)) != 0) {
2069 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2070 		if (ret < 0)
2071 			return ret;
2072 		offset = 0;
2073 		len -= seg;
2074 		++gfn;
2075 	}
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2079 
2080 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2081 				    gfn_t gfn)
2082 {
2083 	if (memslot && memslot->dirty_bitmap) {
2084 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2085 
2086 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2087 	}
2088 }
2089 
2090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2091 {
2092 	struct kvm_memory_slot *memslot;
2093 
2094 	memslot = gfn_to_memslot(kvm, gfn);
2095 	mark_page_dirty_in_slot(memslot, gfn);
2096 }
2097 EXPORT_SYMBOL_GPL(mark_page_dirty);
2098 
2099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2100 {
2101 	struct kvm_memory_slot *memslot;
2102 
2103 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104 	mark_page_dirty_in_slot(memslot, gfn);
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2107 
2108 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110 	unsigned int old, val, grow;
2111 
2112 	old = val = vcpu->halt_poll_ns;
2113 	grow = READ_ONCE(halt_poll_ns_grow);
2114 	/* 10us base */
2115 	if (val == 0 && grow)
2116 		val = 10000;
2117 	else
2118 		val *= grow;
2119 
2120 	if (val > halt_poll_ns)
2121 		val = halt_poll_ns;
2122 
2123 	vcpu->halt_poll_ns = val;
2124 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2125 }
2126 
2127 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2128 {
2129 	unsigned int old, val, shrink;
2130 
2131 	old = val = vcpu->halt_poll_ns;
2132 	shrink = READ_ONCE(halt_poll_ns_shrink);
2133 	if (shrink == 0)
2134 		val = 0;
2135 	else
2136 		val /= shrink;
2137 
2138 	vcpu->halt_poll_ns = val;
2139 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2140 }
2141 
2142 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2143 {
2144 	if (kvm_arch_vcpu_runnable(vcpu)) {
2145 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2146 		return -EINTR;
2147 	}
2148 	if (kvm_cpu_has_pending_timer(vcpu))
2149 		return -EINTR;
2150 	if (signal_pending(current))
2151 		return -EINTR;
2152 
2153 	return 0;
2154 }
2155 
2156 /*
2157  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2158  */
2159 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2160 {
2161 	ktime_t start, cur;
2162 	DECLARE_SWAITQUEUE(wait);
2163 	bool waited = false;
2164 	u64 block_ns;
2165 
2166 	start = cur = ktime_get();
2167 	if (vcpu->halt_poll_ns) {
2168 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2169 
2170 		++vcpu->stat.halt_attempted_poll;
2171 		do {
2172 			/*
2173 			 * This sets KVM_REQ_UNHALT if an interrupt
2174 			 * arrives.
2175 			 */
2176 			if (kvm_vcpu_check_block(vcpu) < 0) {
2177 				++vcpu->stat.halt_successful_poll;
2178 				if (!vcpu_valid_wakeup(vcpu))
2179 					++vcpu->stat.halt_poll_invalid;
2180 				goto out;
2181 			}
2182 			cur = ktime_get();
2183 		} while (single_task_running() && ktime_before(cur, stop));
2184 	}
2185 
2186 	kvm_arch_vcpu_blocking(vcpu);
2187 
2188 	for (;;) {
2189 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2190 
2191 		if (kvm_vcpu_check_block(vcpu) < 0)
2192 			break;
2193 
2194 		waited = true;
2195 		schedule();
2196 	}
2197 
2198 	finish_swait(&vcpu->wq, &wait);
2199 	cur = ktime_get();
2200 
2201 	kvm_arch_vcpu_unblocking(vcpu);
2202 out:
2203 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2204 
2205 	if (!vcpu_valid_wakeup(vcpu))
2206 		shrink_halt_poll_ns(vcpu);
2207 	else if (halt_poll_ns) {
2208 		if (block_ns <= vcpu->halt_poll_ns)
2209 			;
2210 		/* we had a long block, shrink polling */
2211 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2212 			shrink_halt_poll_ns(vcpu);
2213 		/* we had a short halt and our poll time is too small */
2214 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2215 			block_ns < halt_poll_ns)
2216 			grow_halt_poll_ns(vcpu);
2217 	} else
2218 		vcpu->halt_poll_ns = 0;
2219 
2220 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2221 	kvm_arch_vcpu_block_finish(vcpu);
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2224 
2225 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2226 {
2227 	struct swait_queue_head *wqp;
2228 
2229 	wqp = kvm_arch_vcpu_wq(vcpu);
2230 	if (swait_active(wqp)) {
2231 		swake_up(wqp);
2232 		++vcpu->stat.halt_wakeup;
2233 		return true;
2234 	}
2235 
2236 	return false;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2239 
2240 #ifndef CONFIG_S390
2241 /*
2242  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2243  */
2244 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2245 {
2246 	int me;
2247 	int cpu = vcpu->cpu;
2248 
2249 	if (kvm_vcpu_wake_up(vcpu))
2250 		return;
2251 
2252 	me = get_cpu();
2253 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2254 		if (kvm_arch_vcpu_should_kick(vcpu))
2255 			smp_send_reschedule(cpu);
2256 	put_cpu();
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2259 #endif /* !CONFIG_S390 */
2260 
2261 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2262 {
2263 	struct pid *pid;
2264 	struct task_struct *task = NULL;
2265 	int ret = 0;
2266 
2267 	rcu_read_lock();
2268 	pid = rcu_dereference(target->pid);
2269 	if (pid)
2270 		task = get_pid_task(pid, PIDTYPE_PID);
2271 	rcu_read_unlock();
2272 	if (!task)
2273 		return ret;
2274 	ret = yield_to(task, 1);
2275 	put_task_struct(task);
2276 
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2280 
2281 /*
2282  * Helper that checks whether a VCPU is eligible for directed yield.
2283  * Most eligible candidate to yield is decided by following heuristics:
2284  *
2285  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2286  *  (preempted lock holder), indicated by @in_spin_loop.
2287  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2288  *
2289  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2290  *  chance last time (mostly it has become eligible now since we have probably
2291  *  yielded to lockholder in last iteration. This is done by toggling
2292  *  @dy_eligible each time a VCPU checked for eligibility.)
2293  *
2294  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2295  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2296  *  burning. Giving priority for a potential lock-holder increases lock
2297  *  progress.
2298  *
2299  *  Since algorithm is based on heuristics, accessing another VCPU data without
2300  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2301  *  and continue with next VCPU and so on.
2302  */
2303 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2304 {
2305 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2306 	bool eligible;
2307 
2308 	eligible = !vcpu->spin_loop.in_spin_loop ||
2309 		    vcpu->spin_loop.dy_eligible;
2310 
2311 	if (vcpu->spin_loop.in_spin_loop)
2312 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2313 
2314 	return eligible;
2315 #else
2316 	return true;
2317 #endif
2318 }
2319 
2320 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2321 {
2322 	struct kvm *kvm = me->kvm;
2323 	struct kvm_vcpu *vcpu;
2324 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2325 	int yielded = 0;
2326 	int try = 3;
2327 	int pass;
2328 	int i;
2329 
2330 	kvm_vcpu_set_in_spin_loop(me, true);
2331 	/*
2332 	 * We boost the priority of a VCPU that is runnable but not
2333 	 * currently running, because it got preempted by something
2334 	 * else and called schedule in __vcpu_run.  Hopefully that
2335 	 * VCPU is holding the lock that we need and will release it.
2336 	 * We approximate round-robin by starting at the last boosted VCPU.
2337 	 */
2338 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2339 		kvm_for_each_vcpu(i, vcpu, kvm) {
2340 			if (!pass && i <= last_boosted_vcpu) {
2341 				i = last_boosted_vcpu;
2342 				continue;
2343 			} else if (pass && i > last_boosted_vcpu)
2344 				break;
2345 			if (!ACCESS_ONCE(vcpu->preempted))
2346 				continue;
2347 			if (vcpu == me)
2348 				continue;
2349 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2350 				continue;
2351 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2352 				continue;
2353 
2354 			yielded = kvm_vcpu_yield_to(vcpu);
2355 			if (yielded > 0) {
2356 				kvm->last_boosted_vcpu = i;
2357 				break;
2358 			} else if (yielded < 0) {
2359 				try--;
2360 				if (!try)
2361 					break;
2362 			}
2363 		}
2364 	}
2365 	kvm_vcpu_set_in_spin_loop(me, false);
2366 
2367 	/* Ensure vcpu is not eligible during next spinloop */
2368 	kvm_vcpu_set_dy_eligible(me, false);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2371 
2372 static int kvm_vcpu_fault(struct vm_fault *vmf)
2373 {
2374 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2375 	struct page *page;
2376 
2377 	if (vmf->pgoff == 0)
2378 		page = virt_to_page(vcpu->run);
2379 #ifdef CONFIG_X86
2380 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2381 		page = virt_to_page(vcpu->arch.pio_data);
2382 #endif
2383 #ifdef CONFIG_KVM_MMIO
2384 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2385 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2386 #endif
2387 	else
2388 		return kvm_arch_vcpu_fault(vcpu, vmf);
2389 	get_page(page);
2390 	vmf->page = page;
2391 	return 0;
2392 }
2393 
2394 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2395 	.fault = kvm_vcpu_fault,
2396 };
2397 
2398 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2399 {
2400 	vma->vm_ops = &kvm_vcpu_vm_ops;
2401 	return 0;
2402 }
2403 
2404 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2405 {
2406 	struct kvm_vcpu *vcpu = filp->private_data;
2407 
2408 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2409 	kvm_put_kvm(vcpu->kvm);
2410 	return 0;
2411 }
2412 
2413 static struct file_operations kvm_vcpu_fops = {
2414 	.release        = kvm_vcpu_release,
2415 	.unlocked_ioctl = kvm_vcpu_ioctl,
2416 #ifdef CONFIG_KVM_COMPAT
2417 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2418 #endif
2419 	.mmap           = kvm_vcpu_mmap,
2420 	.llseek		= noop_llseek,
2421 };
2422 
2423 /*
2424  * Allocates an inode for the vcpu.
2425  */
2426 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2427 {
2428 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2429 }
2430 
2431 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2432 {
2433 	char dir_name[ITOA_MAX_LEN * 2];
2434 	int ret;
2435 
2436 	if (!kvm_arch_has_vcpu_debugfs())
2437 		return 0;
2438 
2439 	if (!debugfs_initialized())
2440 		return 0;
2441 
2442 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2443 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2444 								vcpu->kvm->debugfs_dentry);
2445 	if (!vcpu->debugfs_dentry)
2446 		return -ENOMEM;
2447 
2448 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2449 	if (ret < 0) {
2450 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2451 		return ret;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Creates some virtual cpus.  Good luck creating more than one.
2459  */
2460 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2461 {
2462 	int r;
2463 	struct kvm_vcpu *vcpu;
2464 
2465 	if (id >= KVM_MAX_VCPU_ID)
2466 		return -EINVAL;
2467 
2468 	mutex_lock(&kvm->lock);
2469 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2470 		mutex_unlock(&kvm->lock);
2471 		return -EINVAL;
2472 	}
2473 
2474 	kvm->created_vcpus++;
2475 	mutex_unlock(&kvm->lock);
2476 
2477 	vcpu = kvm_arch_vcpu_create(kvm, id);
2478 	if (IS_ERR(vcpu)) {
2479 		r = PTR_ERR(vcpu);
2480 		goto vcpu_decrement;
2481 	}
2482 
2483 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2484 
2485 	r = kvm_arch_vcpu_setup(vcpu);
2486 	if (r)
2487 		goto vcpu_destroy;
2488 
2489 	r = kvm_create_vcpu_debugfs(vcpu);
2490 	if (r)
2491 		goto vcpu_destroy;
2492 
2493 	mutex_lock(&kvm->lock);
2494 	if (kvm_get_vcpu_by_id(kvm, id)) {
2495 		r = -EEXIST;
2496 		goto unlock_vcpu_destroy;
2497 	}
2498 
2499 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2500 
2501 	/* Now it's all set up, let userspace reach it */
2502 	kvm_get_kvm(kvm);
2503 	r = create_vcpu_fd(vcpu);
2504 	if (r < 0) {
2505 		kvm_put_kvm(kvm);
2506 		goto unlock_vcpu_destroy;
2507 	}
2508 
2509 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2510 
2511 	/*
2512 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2513 	 * before kvm->online_vcpu's incremented value.
2514 	 */
2515 	smp_wmb();
2516 	atomic_inc(&kvm->online_vcpus);
2517 
2518 	mutex_unlock(&kvm->lock);
2519 	kvm_arch_vcpu_postcreate(vcpu);
2520 	return r;
2521 
2522 unlock_vcpu_destroy:
2523 	mutex_unlock(&kvm->lock);
2524 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2525 vcpu_destroy:
2526 	kvm_arch_vcpu_destroy(vcpu);
2527 vcpu_decrement:
2528 	mutex_lock(&kvm->lock);
2529 	kvm->created_vcpus--;
2530 	mutex_unlock(&kvm->lock);
2531 	return r;
2532 }
2533 
2534 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2535 {
2536 	if (sigset) {
2537 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2538 		vcpu->sigset_active = 1;
2539 		vcpu->sigset = *sigset;
2540 	} else
2541 		vcpu->sigset_active = 0;
2542 	return 0;
2543 }
2544 
2545 static long kvm_vcpu_ioctl(struct file *filp,
2546 			   unsigned int ioctl, unsigned long arg)
2547 {
2548 	struct kvm_vcpu *vcpu = filp->private_data;
2549 	void __user *argp = (void __user *)arg;
2550 	int r;
2551 	struct kvm_fpu *fpu = NULL;
2552 	struct kvm_sregs *kvm_sregs = NULL;
2553 
2554 	if (vcpu->kvm->mm != current->mm)
2555 		return -EIO;
2556 
2557 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2558 		return -EINVAL;
2559 
2560 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2561 	/*
2562 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2563 	 * so vcpu_load() would break it.
2564 	 */
2565 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2566 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2567 #endif
2568 
2569 
2570 	r = vcpu_load(vcpu);
2571 	if (r)
2572 		return r;
2573 	switch (ioctl) {
2574 	case KVM_RUN: {
2575 		struct pid *oldpid;
2576 		r = -EINVAL;
2577 		if (arg)
2578 			goto out;
2579 		oldpid = rcu_access_pointer(vcpu->pid);
2580 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2581 			/* The thread running this VCPU changed. */
2582 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2583 
2584 			rcu_assign_pointer(vcpu->pid, newpid);
2585 			if (oldpid)
2586 				synchronize_rcu();
2587 			put_pid(oldpid);
2588 		}
2589 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2590 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2591 		break;
2592 	}
2593 	case KVM_GET_REGS: {
2594 		struct kvm_regs *kvm_regs;
2595 
2596 		r = -ENOMEM;
2597 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2598 		if (!kvm_regs)
2599 			goto out;
2600 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2601 		if (r)
2602 			goto out_free1;
2603 		r = -EFAULT;
2604 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2605 			goto out_free1;
2606 		r = 0;
2607 out_free1:
2608 		kfree(kvm_regs);
2609 		break;
2610 	}
2611 	case KVM_SET_REGS: {
2612 		struct kvm_regs *kvm_regs;
2613 
2614 		r = -ENOMEM;
2615 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2616 		if (IS_ERR(kvm_regs)) {
2617 			r = PTR_ERR(kvm_regs);
2618 			goto out;
2619 		}
2620 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2621 		kfree(kvm_regs);
2622 		break;
2623 	}
2624 	case KVM_GET_SREGS: {
2625 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2626 		r = -ENOMEM;
2627 		if (!kvm_sregs)
2628 			goto out;
2629 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2630 		if (r)
2631 			goto out;
2632 		r = -EFAULT;
2633 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2634 			goto out;
2635 		r = 0;
2636 		break;
2637 	}
2638 	case KVM_SET_SREGS: {
2639 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2640 		if (IS_ERR(kvm_sregs)) {
2641 			r = PTR_ERR(kvm_sregs);
2642 			kvm_sregs = NULL;
2643 			goto out;
2644 		}
2645 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2646 		break;
2647 	}
2648 	case KVM_GET_MP_STATE: {
2649 		struct kvm_mp_state mp_state;
2650 
2651 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2652 		if (r)
2653 			goto out;
2654 		r = -EFAULT;
2655 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	}
2660 	case KVM_SET_MP_STATE: {
2661 		struct kvm_mp_state mp_state;
2662 
2663 		r = -EFAULT;
2664 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2665 			goto out;
2666 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2667 		break;
2668 	}
2669 	case KVM_TRANSLATE: {
2670 		struct kvm_translation tr;
2671 
2672 		r = -EFAULT;
2673 		if (copy_from_user(&tr, argp, sizeof(tr)))
2674 			goto out;
2675 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2676 		if (r)
2677 			goto out;
2678 		r = -EFAULT;
2679 		if (copy_to_user(argp, &tr, sizeof(tr)))
2680 			goto out;
2681 		r = 0;
2682 		break;
2683 	}
2684 	case KVM_SET_GUEST_DEBUG: {
2685 		struct kvm_guest_debug dbg;
2686 
2687 		r = -EFAULT;
2688 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2689 			goto out;
2690 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2691 		break;
2692 	}
2693 	case KVM_SET_SIGNAL_MASK: {
2694 		struct kvm_signal_mask __user *sigmask_arg = argp;
2695 		struct kvm_signal_mask kvm_sigmask;
2696 		sigset_t sigset, *p;
2697 
2698 		p = NULL;
2699 		if (argp) {
2700 			r = -EFAULT;
2701 			if (copy_from_user(&kvm_sigmask, argp,
2702 					   sizeof(kvm_sigmask)))
2703 				goto out;
2704 			r = -EINVAL;
2705 			if (kvm_sigmask.len != sizeof(sigset))
2706 				goto out;
2707 			r = -EFAULT;
2708 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2709 					   sizeof(sigset)))
2710 				goto out;
2711 			p = &sigset;
2712 		}
2713 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2714 		break;
2715 	}
2716 	case KVM_GET_FPU: {
2717 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2718 		r = -ENOMEM;
2719 		if (!fpu)
2720 			goto out;
2721 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2722 		if (r)
2723 			goto out;
2724 		r = -EFAULT;
2725 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2726 			goto out;
2727 		r = 0;
2728 		break;
2729 	}
2730 	case KVM_SET_FPU: {
2731 		fpu = memdup_user(argp, sizeof(*fpu));
2732 		if (IS_ERR(fpu)) {
2733 			r = PTR_ERR(fpu);
2734 			fpu = NULL;
2735 			goto out;
2736 		}
2737 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2738 		break;
2739 	}
2740 	default:
2741 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2742 	}
2743 out:
2744 	vcpu_put(vcpu);
2745 	kfree(fpu);
2746 	kfree(kvm_sregs);
2747 	return r;
2748 }
2749 
2750 #ifdef CONFIG_KVM_COMPAT
2751 static long kvm_vcpu_compat_ioctl(struct file *filp,
2752 				  unsigned int ioctl, unsigned long arg)
2753 {
2754 	struct kvm_vcpu *vcpu = filp->private_data;
2755 	void __user *argp = compat_ptr(arg);
2756 	int r;
2757 
2758 	if (vcpu->kvm->mm != current->mm)
2759 		return -EIO;
2760 
2761 	switch (ioctl) {
2762 	case KVM_SET_SIGNAL_MASK: {
2763 		struct kvm_signal_mask __user *sigmask_arg = argp;
2764 		struct kvm_signal_mask kvm_sigmask;
2765 		compat_sigset_t csigset;
2766 		sigset_t sigset;
2767 
2768 		if (argp) {
2769 			r = -EFAULT;
2770 			if (copy_from_user(&kvm_sigmask, argp,
2771 					   sizeof(kvm_sigmask)))
2772 				goto out;
2773 			r = -EINVAL;
2774 			if (kvm_sigmask.len != sizeof(csigset))
2775 				goto out;
2776 			r = -EFAULT;
2777 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2778 					   sizeof(csigset)))
2779 				goto out;
2780 			sigset_from_compat(&sigset, &csigset);
2781 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2782 		} else
2783 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2784 		break;
2785 	}
2786 	default:
2787 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2788 	}
2789 
2790 out:
2791 	return r;
2792 }
2793 #endif
2794 
2795 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2796 				 int (*accessor)(struct kvm_device *dev,
2797 						 struct kvm_device_attr *attr),
2798 				 unsigned long arg)
2799 {
2800 	struct kvm_device_attr attr;
2801 
2802 	if (!accessor)
2803 		return -EPERM;
2804 
2805 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2806 		return -EFAULT;
2807 
2808 	return accessor(dev, &attr);
2809 }
2810 
2811 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2812 			     unsigned long arg)
2813 {
2814 	struct kvm_device *dev = filp->private_data;
2815 
2816 	switch (ioctl) {
2817 	case KVM_SET_DEVICE_ATTR:
2818 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2819 	case KVM_GET_DEVICE_ATTR:
2820 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2821 	case KVM_HAS_DEVICE_ATTR:
2822 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2823 	default:
2824 		if (dev->ops->ioctl)
2825 			return dev->ops->ioctl(dev, ioctl, arg);
2826 
2827 		return -ENOTTY;
2828 	}
2829 }
2830 
2831 static int kvm_device_release(struct inode *inode, struct file *filp)
2832 {
2833 	struct kvm_device *dev = filp->private_data;
2834 	struct kvm *kvm = dev->kvm;
2835 
2836 	kvm_put_kvm(kvm);
2837 	return 0;
2838 }
2839 
2840 static const struct file_operations kvm_device_fops = {
2841 	.unlocked_ioctl = kvm_device_ioctl,
2842 #ifdef CONFIG_KVM_COMPAT
2843 	.compat_ioctl = kvm_device_ioctl,
2844 #endif
2845 	.release = kvm_device_release,
2846 };
2847 
2848 struct kvm_device *kvm_device_from_filp(struct file *filp)
2849 {
2850 	if (filp->f_op != &kvm_device_fops)
2851 		return NULL;
2852 
2853 	return filp->private_data;
2854 }
2855 
2856 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2857 #ifdef CONFIG_KVM_MPIC
2858 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2859 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2860 #endif
2861 };
2862 
2863 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2864 {
2865 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2866 		return -ENOSPC;
2867 
2868 	if (kvm_device_ops_table[type] != NULL)
2869 		return -EEXIST;
2870 
2871 	kvm_device_ops_table[type] = ops;
2872 	return 0;
2873 }
2874 
2875 void kvm_unregister_device_ops(u32 type)
2876 {
2877 	if (kvm_device_ops_table[type] != NULL)
2878 		kvm_device_ops_table[type] = NULL;
2879 }
2880 
2881 static int kvm_ioctl_create_device(struct kvm *kvm,
2882 				   struct kvm_create_device *cd)
2883 {
2884 	struct kvm_device_ops *ops = NULL;
2885 	struct kvm_device *dev;
2886 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2887 	int ret;
2888 
2889 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2890 		return -ENODEV;
2891 
2892 	ops = kvm_device_ops_table[cd->type];
2893 	if (ops == NULL)
2894 		return -ENODEV;
2895 
2896 	if (test)
2897 		return 0;
2898 
2899 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2900 	if (!dev)
2901 		return -ENOMEM;
2902 
2903 	dev->ops = ops;
2904 	dev->kvm = kvm;
2905 
2906 	mutex_lock(&kvm->lock);
2907 	ret = ops->create(dev, cd->type);
2908 	if (ret < 0) {
2909 		mutex_unlock(&kvm->lock);
2910 		kfree(dev);
2911 		return ret;
2912 	}
2913 	list_add(&dev->vm_node, &kvm->devices);
2914 	mutex_unlock(&kvm->lock);
2915 
2916 	if (ops->init)
2917 		ops->init(dev);
2918 
2919 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2920 	if (ret < 0) {
2921 		mutex_lock(&kvm->lock);
2922 		list_del(&dev->vm_node);
2923 		mutex_unlock(&kvm->lock);
2924 		ops->destroy(dev);
2925 		return ret;
2926 	}
2927 
2928 	kvm_get_kvm(kvm);
2929 	cd->fd = ret;
2930 	return 0;
2931 }
2932 
2933 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2934 {
2935 	switch (arg) {
2936 	case KVM_CAP_USER_MEMORY:
2937 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2938 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2939 	case KVM_CAP_INTERNAL_ERROR_DATA:
2940 #ifdef CONFIG_HAVE_KVM_MSI
2941 	case KVM_CAP_SIGNAL_MSI:
2942 #endif
2943 #ifdef CONFIG_HAVE_KVM_IRQFD
2944 	case KVM_CAP_IRQFD:
2945 	case KVM_CAP_IRQFD_RESAMPLE:
2946 #endif
2947 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2948 	case KVM_CAP_CHECK_EXTENSION_VM:
2949 		return 1;
2950 #ifdef CONFIG_KVM_MMIO
2951 	case KVM_CAP_COALESCED_MMIO:
2952 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2953 #endif
2954 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2955 	case KVM_CAP_IRQ_ROUTING:
2956 		return KVM_MAX_IRQ_ROUTES;
2957 #endif
2958 #if KVM_ADDRESS_SPACE_NUM > 1
2959 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2960 		return KVM_ADDRESS_SPACE_NUM;
2961 #endif
2962 	case KVM_CAP_MAX_VCPU_ID:
2963 		return KVM_MAX_VCPU_ID;
2964 	default:
2965 		break;
2966 	}
2967 	return kvm_vm_ioctl_check_extension(kvm, arg);
2968 }
2969 
2970 static long kvm_vm_ioctl(struct file *filp,
2971 			   unsigned int ioctl, unsigned long arg)
2972 {
2973 	struct kvm *kvm = filp->private_data;
2974 	void __user *argp = (void __user *)arg;
2975 	int r;
2976 
2977 	if (kvm->mm != current->mm)
2978 		return -EIO;
2979 	switch (ioctl) {
2980 	case KVM_CREATE_VCPU:
2981 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2982 		break;
2983 	case KVM_SET_USER_MEMORY_REGION: {
2984 		struct kvm_userspace_memory_region kvm_userspace_mem;
2985 
2986 		r = -EFAULT;
2987 		if (copy_from_user(&kvm_userspace_mem, argp,
2988 						sizeof(kvm_userspace_mem)))
2989 			goto out;
2990 
2991 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2992 		break;
2993 	}
2994 	case KVM_GET_DIRTY_LOG: {
2995 		struct kvm_dirty_log log;
2996 
2997 		r = -EFAULT;
2998 		if (copy_from_user(&log, argp, sizeof(log)))
2999 			goto out;
3000 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3001 		break;
3002 	}
3003 #ifdef CONFIG_KVM_MMIO
3004 	case KVM_REGISTER_COALESCED_MMIO: {
3005 		struct kvm_coalesced_mmio_zone zone;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&zone, argp, sizeof(zone)))
3009 			goto out;
3010 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3011 		break;
3012 	}
3013 	case KVM_UNREGISTER_COALESCED_MMIO: {
3014 		struct kvm_coalesced_mmio_zone zone;
3015 
3016 		r = -EFAULT;
3017 		if (copy_from_user(&zone, argp, sizeof(zone)))
3018 			goto out;
3019 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3020 		break;
3021 	}
3022 #endif
3023 	case KVM_IRQFD: {
3024 		struct kvm_irqfd data;
3025 
3026 		r = -EFAULT;
3027 		if (copy_from_user(&data, argp, sizeof(data)))
3028 			goto out;
3029 		r = kvm_irqfd(kvm, &data);
3030 		break;
3031 	}
3032 	case KVM_IOEVENTFD: {
3033 		struct kvm_ioeventfd data;
3034 
3035 		r = -EFAULT;
3036 		if (copy_from_user(&data, argp, sizeof(data)))
3037 			goto out;
3038 		r = kvm_ioeventfd(kvm, &data);
3039 		break;
3040 	}
3041 #ifdef CONFIG_HAVE_KVM_MSI
3042 	case KVM_SIGNAL_MSI: {
3043 		struct kvm_msi msi;
3044 
3045 		r = -EFAULT;
3046 		if (copy_from_user(&msi, argp, sizeof(msi)))
3047 			goto out;
3048 		r = kvm_send_userspace_msi(kvm, &msi);
3049 		break;
3050 	}
3051 #endif
3052 #ifdef __KVM_HAVE_IRQ_LINE
3053 	case KVM_IRQ_LINE_STATUS:
3054 	case KVM_IRQ_LINE: {
3055 		struct kvm_irq_level irq_event;
3056 
3057 		r = -EFAULT;
3058 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3059 			goto out;
3060 
3061 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3062 					ioctl == KVM_IRQ_LINE_STATUS);
3063 		if (r)
3064 			goto out;
3065 
3066 		r = -EFAULT;
3067 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3068 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3069 				goto out;
3070 		}
3071 
3072 		r = 0;
3073 		break;
3074 	}
3075 #endif
3076 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3077 	case KVM_SET_GSI_ROUTING: {
3078 		struct kvm_irq_routing routing;
3079 		struct kvm_irq_routing __user *urouting;
3080 		struct kvm_irq_routing_entry *entries = NULL;
3081 
3082 		r = -EFAULT;
3083 		if (copy_from_user(&routing, argp, sizeof(routing)))
3084 			goto out;
3085 		r = -EINVAL;
3086 		if (!kvm_arch_can_set_irq_routing(kvm))
3087 			goto out;
3088 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3089 			goto out;
3090 		if (routing.flags)
3091 			goto out;
3092 		if (routing.nr) {
3093 			r = -ENOMEM;
3094 			entries = vmalloc(routing.nr * sizeof(*entries));
3095 			if (!entries)
3096 				goto out;
3097 			r = -EFAULT;
3098 			urouting = argp;
3099 			if (copy_from_user(entries, urouting->entries,
3100 					   routing.nr * sizeof(*entries)))
3101 				goto out_free_irq_routing;
3102 		}
3103 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3104 					routing.flags);
3105 out_free_irq_routing:
3106 		vfree(entries);
3107 		break;
3108 	}
3109 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3110 	case KVM_CREATE_DEVICE: {
3111 		struct kvm_create_device cd;
3112 
3113 		r = -EFAULT;
3114 		if (copy_from_user(&cd, argp, sizeof(cd)))
3115 			goto out;
3116 
3117 		r = kvm_ioctl_create_device(kvm, &cd);
3118 		if (r)
3119 			goto out;
3120 
3121 		r = -EFAULT;
3122 		if (copy_to_user(argp, &cd, sizeof(cd)))
3123 			goto out;
3124 
3125 		r = 0;
3126 		break;
3127 	}
3128 	case KVM_CHECK_EXTENSION:
3129 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3130 		break;
3131 	default:
3132 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3133 	}
3134 out:
3135 	return r;
3136 }
3137 
3138 #ifdef CONFIG_KVM_COMPAT
3139 struct compat_kvm_dirty_log {
3140 	__u32 slot;
3141 	__u32 padding1;
3142 	union {
3143 		compat_uptr_t dirty_bitmap; /* one bit per page */
3144 		__u64 padding2;
3145 	};
3146 };
3147 
3148 static long kvm_vm_compat_ioctl(struct file *filp,
3149 			   unsigned int ioctl, unsigned long arg)
3150 {
3151 	struct kvm *kvm = filp->private_data;
3152 	int r;
3153 
3154 	if (kvm->mm != current->mm)
3155 		return -EIO;
3156 	switch (ioctl) {
3157 	case KVM_GET_DIRTY_LOG: {
3158 		struct compat_kvm_dirty_log compat_log;
3159 		struct kvm_dirty_log log;
3160 
3161 		if (copy_from_user(&compat_log, (void __user *)arg,
3162 				   sizeof(compat_log)))
3163 			return -EFAULT;
3164 		log.slot	 = compat_log.slot;
3165 		log.padding1	 = compat_log.padding1;
3166 		log.padding2	 = compat_log.padding2;
3167 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3168 
3169 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3170 		break;
3171 	}
3172 	default:
3173 		r = kvm_vm_ioctl(filp, ioctl, arg);
3174 	}
3175 	return r;
3176 }
3177 #endif
3178 
3179 static struct file_operations kvm_vm_fops = {
3180 	.release        = kvm_vm_release,
3181 	.unlocked_ioctl = kvm_vm_ioctl,
3182 #ifdef CONFIG_KVM_COMPAT
3183 	.compat_ioctl   = kvm_vm_compat_ioctl,
3184 #endif
3185 	.llseek		= noop_llseek,
3186 };
3187 
3188 static int kvm_dev_ioctl_create_vm(unsigned long type)
3189 {
3190 	int r;
3191 	struct kvm *kvm;
3192 	struct file *file;
3193 
3194 	kvm = kvm_create_vm(type);
3195 	if (IS_ERR(kvm))
3196 		return PTR_ERR(kvm);
3197 #ifdef CONFIG_KVM_MMIO
3198 	r = kvm_coalesced_mmio_init(kvm);
3199 	if (r < 0) {
3200 		kvm_put_kvm(kvm);
3201 		return r;
3202 	}
3203 #endif
3204 	r = get_unused_fd_flags(O_CLOEXEC);
3205 	if (r < 0) {
3206 		kvm_put_kvm(kvm);
3207 		return r;
3208 	}
3209 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3210 	if (IS_ERR(file)) {
3211 		put_unused_fd(r);
3212 		kvm_put_kvm(kvm);
3213 		return PTR_ERR(file);
3214 	}
3215 
3216 	/*
3217 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218 	 * already set, with ->release() being kvm_vm_release().  In error
3219 	 * cases it will be called by the final fput(file) and will take
3220 	 * care of doing kvm_put_kvm(kvm).
3221 	 */
3222 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3223 		put_unused_fd(r);
3224 		fput(file);
3225 		return -ENOMEM;
3226 	}
3227 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3228 
3229 	fd_install(r, file);
3230 	return r;
3231 }
3232 
3233 static long kvm_dev_ioctl(struct file *filp,
3234 			  unsigned int ioctl, unsigned long arg)
3235 {
3236 	long r = -EINVAL;
3237 
3238 	switch (ioctl) {
3239 	case KVM_GET_API_VERSION:
3240 		if (arg)
3241 			goto out;
3242 		r = KVM_API_VERSION;
3243 		break;
3244 	case KVM_CREATE_VM:
3245 		r = kvm_dev_ioctl_create_vm(arg);
3246 		break;
3247 	case KVM_CHECK_EXTENSION:
3248 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3249 		break;
3250 	case KVM_GET_VCPU_MMAP_SIZE:
3251 		if (arg)
3252 			goto out;
3253 		r = PAGE_SIZE;     /* struct kvm_run */
3254 #ifdef CONFIG_X86
3255 		r += PAGE_SIZE;    /* pio data page */
3256 #endif
3257 #ifdef CONFIG_KVM_MMIO
3258 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3259 #endif
3260 		break;
3261 	case KVM_TRACE_ENABLE:
3262 	case KVM_TRACE_PAUSE:
3263 	case KVM_TRACE_DISABLE:
3264 		r = -EOPNOTSUPP;
3265 		break;
3266 	default:
3267 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3268 	}
3269 out:
3270 	return r;
3271 }
3272 
3273 static struct file_operations kvm_chardev_ops = {
3274 	.unlocked_ioctl = kvm_dev_ioctl,
3275 	.compat_ioctl   = kvm_dev_ioctl,
3276 	.llseek		= noop_llseek,
3277 };
3278 
3279 static struct miscdevice kvm_dev = {
3280 	KVM_MINOR,
3281 	"kvm",
3282 	&kvm_chardev_ops,
3283 };
3284 
3285 static void hardware_enable_nolock(void *junk)
3286 {
3287 	int cpu = raw_smp_processor_id();
3288 	int r;
3289 
3290 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3291 		return;
3292 
3293 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3294 
3295 	r = kvm_arch_hardware_enable();
3296 
3297 	if (r) {
3298 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3299 		atomic_inc(&hardware_enable_failed);
3300 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3301 	}
3302 }
3303 
3304 static int kvm_starting_cpu(unsigned int cpu)
3305 {
3306 	raw_spin_lock(&kvm_count_lock);
3307 	if (kvm_usage_count)
3308 		hardware_enable_nolock(NULL);
3309 	raw_spin_unlock(&kvm_count_lock);
3310 	return 0;
3311 }
3312 
3313 static void hardware_disable_nolock(void *junk)
3314 {
3315 	int cpu = raw_smp_processor_id();
3316 
3317 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3318 		return;
3319 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3320 	kvm_arch_hardware_disable();
3321 }
3322 
3323 static int kvm_dying_cpu(unsigned int cpu)
3324 {
3325 	raw_spin_lock(&kvm_count_lock);
3326 	if (kvm_usage_count)
3327 		hardware_disable_nolock(NULL);
3328 	raw_spin_unlock(&kvm_count_lock);
3329 	return 0;
3330 }
3331 
3332 static void hardware_disable_all_nolock(void)
3333 {
3334 	BUG_ON(!kvm_usage_count);
3335 
3336 	kvm_usage_count--;
3337 	if (!kvm_usage_count)
3338 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3339 }
3340 
3341 static void hardware_disable_all(void)
3342 {
3343 	raw_spin_lock(&kvm_count_lock);
3344 	hardware_disable_all_nolock();
3345 	raw_spin_unlock(&kvm_count_lock);
3346 }
3347 
3348 static int hardware_enable_all(void)
3349 {
3350 	int r = 0;
3351 
3352 	raw_spin_lock(&kvm_count_lock);
3353 
3354 	kvm_usage_count++;
3355 	if (kvm_usage_count == 1) {
3356 		atomic_set(&hardware_enable_failed, 0);
3357 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3358 
3359 		if (atomic_read(&hardware_enable_failed)) {
3360 			hardware_disable_all_nolock();
3361 			r = -EBUSY;
3362 		}
3363 	}
3364 
3365 	raw_spin_unlock(&kvm_count_lock);
3366 
3367 	return r;
3368 }
3369 
3370 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3371 		      void *v)
3372 {
3373 	/*
3374 	 * Some (well, at least mine) BIOSes hang on reboot if
3375 	 * in vmx root mode.
3376 	 *
3377 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3378 	 */
3379 	pr_info("kvm: exiting hardware virtualization\n");
3380 	kvm_rebooting = true;
3381 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3382 	return NOTIFY_OK;
3383 }
3384 
3385 static struct notifier_block kvm_reboot_notifier = {
3386 	.notifier_call = kvm_reboot,
3387 	.priority = 0,
3388 };
3389 
3390 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3391 {
3392 	int i;
3393 
3394 	for (i = 0; i < bus->dev_count; i++) {
3395 		struct kvm_io_device *pos = bus->range[i].dev;
3396 
3397 		kvm_iodevice_destructor(pos);
3398 	}
3399 	kfree(bus);
3400 }
3401 
3402 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3403 				 const struct kvm_io_range *r2)
3404 {
3405 	gpa_t addr1 = r1->addr;
3406 	gpa_t addr2 = r2->addr;
3407 
3408 	if (addr1 < addr2)
3409 		return -1;
3410 
3411 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3412 	 * accept any overlapping write.  Any order is acceptable for
3413 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3414 	 * we process all of them.
3415 	 */
3416 	if (r2->len) {
3417 		addr1 += r1->len;
3418 		addr2 += r2->len;
3419 	}
3420 
3421 	if (addr1 > addr2)
3422 		return 1;
3423 
3424 	return 0;
3425 }
3426 
3427 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3428 {
3429 	return kvm_io_bus_cmp(p1, p2);
3430 }
3431 
3432 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3433 			  gpa_t addr, int len)
3434 {
3435 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3436 		.addr = addr,
3437 		.len = len,
3438 		.dev = dev,
3439 	};
3440 
3441 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3442 		kvm_io_bus_sort_cmp, NULL);
3443 
3444 	return 0;
3445 }
3446 
3447 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3448 			     gpa_t addr, int len)
3449 {
3450 	struct kvm_io_range *range, key;
3451 	int off;
3452 
3453 	key = (struct kvm_io_range) {
3454 		.addr = addr,
3455 		.len = len,
3456 	};
3457 
3458 	range = bsearch(&key, bus->range, bus->dev_count,
3459 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3460 	if (range == NULL)
3461 		return -ENOENT;
3462 
3463 	off = range - bus->range;
3464 
3465 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3466 		off--;
3467 
3468 	return off;
3469 }
3470 
3471 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3472 			      struct kvm_io_range *range, const void *val)
3473 {
3474 	int idx;
3475 
3476 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3477 	if (idx < 0)
3478 		return -EOPNOTSUPP;
3479 
3480 	while (idx < bus->dev_count &&
3481 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3482 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3483 					range->len, val))
3484 			return idx;
3485 		idx++;
3486 	}
3487 
3488 	return -EOPNOTSUPP;
3489 }
3490 
3491 /* kvm_io_bus_write - called under kvm->slots_lock */
3492 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3493 		     int len, const void *val)
3494 {
3495 	struct kvm_io_bus *bus;
3496 	struct kvm_io_range range;
3497 	int r;
3498 
3499 	range = (struct kvm_io_range) {
3500 		.addr = addr,
3501 		.len = len,
3502 	};
3503 
3504 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505 	if (!bus)
3506 		return -ENOMEM;
3507 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3508 	return r < 0 ? r : 0;
3509 }
3510 
3511 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3512 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3513 			    gpa_t addr, int len, const void *val, long cookie)
3514 {
3515 	struct kvm_io_bus *bus;
3516 	struct kvm_io_range range;
3517 
3518 	range = (struct kvm_io_range) {
3519 		.addr = addr,
3520 		.len = len,
3521 	};
3522 
3523 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3524 	if (!bus)
3525 		return -ENOMEM;
3526 
3527 	/* First try the device referenced by cookie. */
3528 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3529 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3530 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3531 					val))
3532 			return cookie;
3533 
3534 	/*
3535 	 * cookie contained garbage; fall back to search and return the
3536 	 * correct cookie value.
3537 	 */
3538 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3539 }
3540 
3541 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3542 			     struct kvm_io_range *range, void *val)
3543 {
3544 	int idx;
3545 
3546 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3547 	if (idx < 0)
3548 		return -EOPNOTSUPP;
3549 
3550 	while (idx < bus->dev_count &&
3551 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3552 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3553 				       range->len, val))
3554 			return idx;
3555 		idx++;
3556 	}
3557 
3558 	return -EOPNOTSUPP;
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3561 
3562 /* kvm_io_bus_read - called under kvm->slots_lock */
3563 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3564 		    int len, void *val)
3565 {
3566 	struct kvm_io_bus *bus;
3567 	struct kvm_io_range range;
3568 	int r;
3569 
3570 	range = (struct kvm_io_range) {
3571 		.addr = addr,
3572 		.len = len,
3573 	};
3574 
3575 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3576 	if (!bus)
3577 		return -ENOMEM;
3578 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3579 	return r < 0 ? r : 0;
3580 }
3581 
3582 
3583 /* Caller must hold slots_lock. */
3584 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3585 			    int len, struct kvm_io_device *dev)
3586 {
3587 	struct kvm_io_bus *new_bus, *bus;
3588 
3589 	bus = kvm_get_bus(kvm, bus_idx);
3590 	if (!bus)
3591 		return -ENOMEM;
3592 
3593 	/* exclude ioeventfd which is limited by maximum fd */
3594 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3595 		return -ENOSPC;
3596 
3597 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3598 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3599 	if (!new_bus)
3600 		return -ENOMEM;
3601 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3602 	       sizeof(struct kvm_io_range)));
3603 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3604 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605 	synchronize_srcu_expedited(&kvm->srcu);
3606 	kfree(bus);
3607 
3608 	return 0;
3609 }
3610 
3611 /* Caller must hold slots_lock. */
3612 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3613 			       struct kvm_io_device *dev)
3614 {
3615 	int i;
3616 	struct kvm_io_bus *new_bus, *bus;
3617 
3618 	bus = kvm_get_bus(kvm, bus_idx);
3619 	if (!bus)
3620 		return;
3621 
3622 	for (i = 0; i < bus->dev_count; i++)
3623 		if (bus->range[i].dev == dev) {
3624 			break;
3625 		}
3626 
3627 	if (i == bus->dev_count)
3628 		return;
3629 
3630 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3631 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3632 	if (!new_bus)  {
3633 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3634 		goto broken;
3635 	}
3636 
3637 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3638 	new_bus->dev_count--;
3639 	memcpy(new_bus->range + i, bus->range + i + 1,
3640 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3641 
3642 broken:
3643 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3644 	synchronize_srcu_expedited(&kvm->srcu);
3645 	kfree(bus);
3646 	return;
3647 }
3648 
3649 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3650 					 gpa_t addr)
3651 {
3652 	struct kvm_io_bus *bus;
3653 	int dev_idx, srcu_idx;
3654 	struct kvm_io_device *iodev = NULL;
3655 
3656 	srcu_idx = srcu_read_lock(&kvm->srcu);
3657 
3658 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3659 	if (!bus)
3660 		goto out_unlock;
3661 
3662 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3663 	if (dev_idx < 0)
3664 		goto out_unlock;
3665 
3666 	iodev = bus->range[dev_idx].dev;
3667 
3668 out_unlock:
3669 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3670 
3671 	return iodev;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3674 
3675 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3676 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3677 			   const char *fmt)
3678 {
3679 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3680 					  inode->i_private;
3681 
3682 	/* The debugfs files are a reference to the kvm struct which
3683 	 * is still valid when kvm_destroy_vm is called.
3684 	 * To avoid the race between open and the removal of the debugfs
3685 	 * directory we test against the users count.
3686 	 */
3687 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3688 		return -ENOENT;
3689 
3690 	if (simple_attr_open(inode, file, get, set, fmt)) {
3691 		kvm_put_kvm(stat_data->kvm);
3692 		return -ENOMEM;
3693 	}
3694 
3695 	return 0;
3696 }
3697 
3698 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3699 {
3700 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3701 					  inode->i_private;
3702 
3703 	simple_attr_release(inode, file);
3704 	kvm_put_kvm(stat_data->kvm);
3705 
3706 	return 0;
3707 }
3708 
3709 static int vm_stat_get_per_vm(void *data, u64 *val)
3710 {
3711 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712 
3713 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3714 
3715 	return 0;
3716 }
3717 
3718 static int vm_stat_clear_per_vm(void *data, u64 val)
3719 {
3720 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 
3722 	if (val)
3723 		return -EINVAL;
3724 
3725 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3726 
3727 	return 0;
3728 }
3729 
3730 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732 	__simple_attr_check_format("%llu\n", 0ull);
3733 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3734 				vm_stat_clear_per_vm, "%llu\n");
3735 }
3736 
3737 static const struct file_operations vm_stat_get_per_vm_fops = {
3738 	.owner   = THIS_MODULE,
3739 	.open    = vm_stat_get_per_vm_open,
3740 	.release = kvm_debugfs_release,
3741 	.read    = simple_attr_read,
3742 	.write   = simple_attr_write,
3743 	.llseek  = no_llseek,
3744 };
3745 
3746 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3747 {
3748 	int i;
3749 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750 	struct kvm_vcpu *vcpu;
3751 
3752 	*val = 0;
3753 
3754 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3756 
3757 	return 0;
3758 }
3759 
3760 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3761 {
3762 	int i;
3763 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3764 	struct kvm_vcpu *vcpu;
3765 
3766 	if (val)
3767 		return -EINVAL;
3768 
3769 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3770 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3771 
3772 	return 0;
3773 }
3774 
3775 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3776 {
3777 	__simple_attr_check_format("%llu\n", 0ull);
3778 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3779 				 vcpu_stat_clear_per_vm, "%llu\n");
3780 }
3781 
3782 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3783 	.owner   = THIS_MODULE,
3784 	.open    = vcpu_stat_get_per_vm_open,
3785 	.release = kvm_debugfs_release,
3786 	.read    = simple_attr_read,
3787 	.write   = simple_attr_write,
3788 	.llseek  = no_llseek,
3789 };
3790 
3791 static const struct file_operations *stat_fops_per_vm[] = {
3792 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3793 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3794 };
3795 
3796 static int vm_stat_get(void *_offset, u64 *val)
3797 {
3798 	unsigned offset = (long)_offset;
3799 	struct kvm *kvm;
3800 	struct kvm_stat_data stat_tmp = {.offset = offset};
3801 	u64 tmp_val;
3802 
3803 	*val = 0;
3804 	spin_lock(&kvm_lock);
3805 	list_for_each_entry(kvm, &vm_list, vm_list) {
3806 		stat_tmp.kvm = kvm;
3807 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808 		*val += tmp_val;
3809 	}
3810 	spin_unlock(&kvm_lock);
3811 	return 0;
3812 }
3813 
3814 static int vm_stat_clear(void *_offset, u64 val)
3815 {
3816 	unsigned offset = (long)_offset;
3817 	struct kvm *kvm;
3818 	struct kvm_stat_data stat_tmp = {.offset = offset};
3819 
3820 	if (val)
3821 		return -EINVAL;
3822 
3823 	spin_lock(&kvm_lock);
3824 	list_for_each_entry(kvm, &vm_list, vm_list) {
3825 		stat_tmp.kvm = kvm;
3826 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3827 	}
3828 	spin_unlock(&kvm_lock);
3829 
3830 	return 0;
3831 }
3832 
3833 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3834 
3835 static int vcpu_stat_get(void *_offset, u64 *val)
3836 {
3837 	unsigned offset = (long)_offset;
3838 	struct kvm *kvm;
3839 	struct kvm_stat_data stat_tmp = {.offset = offset};
3840 	u64 tmp_val;
3841 
3842 	*val = 0;
3843 	spin_lock(&kvm_lock);
3844 	list_for_each_entry(kvm, &vm_list, vm_list) {
3845 		stat_tmp.kvm = kvm;
3846 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3847 		*val += tmp_val;
3848 	}
3849 	spin_unlock(&kvm_lock);
3850 	return 0;
3851 }
3852 
3853 static int vcpu_stat_clear(void *_offset, u64 val)
3854 {
3855 	unsigned offset = (long)_offset;
3856 	struct kvm *kvm;
3857 	struct kvm_stat_data stat_tmp = {.offset = offset};
3858 
3859 	if (val)
3860 		return -EINVAL;
3861 
3862 	spin_lock(&kvm_lock);
3863 	list_for_each_entry(kvm, &vm_list, vm_list) {
3864 		stat_tmp.kvm = kvm;
3865 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3866 	}
3867 	spin_unlock(&kvm_lock);
3868 
3869 	return 0;
3870 }
3871 
3872 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3873 			"%llu\n");
3874 
3875 static const struct file_operations *stat_fops[] = {
3876 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3877 	[KVM_STAT_VM]   = &vm_stat_fops,
3878 };
3879 
3880 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3881 {
3882 	struct kobj_uevent_env *env;
3883 	unsigned long long created, active;
3884 
3885 	if (!kvm_dev.this_device || !kvm)
3886 		return;
3887 
3888 	spin_lock(&kvm_lock);
3889 	if (type == KVM_EVENT_CREATE_VM) {
3890 		kvm_createvm_count++;
3891 		kvm_active_vms++;
3892 	} else if (type == KVM_EVENT_DESTROY_VM) {
3893 		kvm_active_vms--;
3894 	}
3895 	created = kvm_createvm_count;
3896 	active = kvm_active_vms;
3897 	spin_unlock(&kvm_lock);
3898 
3899 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3900 	if (!env)
3901 		return;
3902 
3903 	add_uevent_var(env, "CREATED=%llu", created);
3904 	add_uevent_var(env, "COUNT=%llu", active);
3905 
3906 	if (type == KVM_EVENT_CREATE_VM) {
3907 		add_uevent_var(env, "EVENT=create");
3908 		kvm->userspace_pid = task_pid_nr(current);
3909 	} else if (type == KVM_EVENT_DESTROY_VM) {
3910 		add_uevent_var(env, "EVENT=destroy");
3911 	}
3912 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3913 
3914 	if (kvm->debugfs_dentry) {
3915 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3916 
3917 		if (p) {
3918 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3919 			if (!IS_ERR(tmp))
3920 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3921 			kfree(p);
3922 		}
3923 	}
3924 	/* no need for checks, since we are adding at most only 5 keys */
3925 	env->envp[env->envp_idx++] = NULL;
3926 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3927 	kfree(env);
3928 }
3929 
3930 static int kvm_init_debug(void)
3931 {
3932 	int r = -EEXIST;
3933 	struct kvm_stats_debugfs_item *p;
3934 
3935 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3936 	if (kvm_debugfs_dir == NULL)
3937 		goto out;
3938 
3939 	kvm_debugfs_num_entries = 0;
3940 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3941 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3942 					 (void *)(long)p->offset,
3943 					 stat_fops[p->kind]))
3944 			goto out_dir;
3945 	}
3946 
3947 	return 0;
3948 
3949 out_dir:
3950 	debugfs_remove_recursive(kvm_debugfs_dir);
3951 out:
3952 	return r;
3953 }
3954 
3955 static int kvm_suspend(void)
3956 {
3957 	if (kvm_usage_count)
3958 		hardware_disable_nolock(NULL);
3959 	return 0;
3960 }
3961 
3962 static void kvm_resume(void)
3963 {
3964 	if (kvm_usage_count) {
3965 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3966 		hardware_enable_nolock(NULL);
3967 	}
3968 }
3969 
3970 static struct syscore_ops kvm_syscore_ops = {
3971 	.suspend = kvm_suspend,
3972 	.resume = kvm_resume,
3973 };
3974 
3975 static inline
3976 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3977 {
3978 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3979 }
3980 
3981 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3982 {
3983 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3984 
3985 	if (vcpu->preempted)
3986 		vcpu->preempted = false;
3987 
3988 	kvm_arch_sched_in(vcpu, cpu);
3989 
3990 	kvm_arch_vcpu_load(vcpu, cpu);
3991 }
3992 
3993 static void kvm_sched_out(struct preempt_notifier *pn,
3994 			  struct task_struct *next)
3995 {
3996 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3997 
3998 	if (current->state == TASK_RUNNING)
3999 		vcpu->preempted = true;
4000 	kvm_arch_vcpu_put(vcpu);
4001 }
4002 
4003 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4004 		  struct module *module)
4005 {
4006 	int r;
4007 	int cpu;
4008 
4009 	r = kvm_arch_init(opaque);
4010 	if (r)
4011 		goto out_fail;
4012 
4013 	/*
4014 	 * kvm_arch_init makes sure there's at most one caller
4015 	 * for architectures that support multiple implementations,
4016 	 * like intel and amd on x86.
4017 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4018 	 * conflicts in case kvm is already setup for another implementation.
4019 	 */
4020 	r = kvm_irqfd_init();
4021 	if (r)
4022 		goto out_irqfd;
4023 
4024 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4025 		r = -ENOMEM;
4026 		goto out_free_0;
4027 	}
4028 
4029 	r = kvm_arch_hardware_setup();
4030 	if (r < 0)
4031 		goto out_free_0a;
4032 
4033 	for_each_online_cpu(cpu) {
4034 		smp_call_function_single(cpu,
4035 				kvm_arch_check_processor_compat,
4036 				&r, 1);
4037 		if (r < 0)
4038 			goto out_free_1;
4039 	}
4040 
4041 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4042 				      kvm_starting_cpu, kvm_dying_cpu);
4043 	if (r)
4044 		goto out_free_2;
4045 	register_reboot_notifier(&kvm_reboot_notifier);
4046 
4047 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4048 	if (!vcpu_align)
4049 		vcpu_align = __alignof__(struct kvm_vcpu);
4050 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4051 					   0, NULL);
4052 	if (!kvm_vcpu_cache) {
4053 		r = -ENOMEM;
4054 		goto out_free_3;
4055 	}
4056 
4057 	r = kvm_async_pf_init();
4058 	if (r)
4059 		goto out_free;
4060 
4061 	kvm_chardev_ops.owner = module;
4062 	kvm_vm_fops.owner = module;
4063 	kvm_vcpu_fops.owner = module;
4064 
4065 	r = misc_register(&kvm_dev);
4066 	if (r) {
4067 		pr_err("kvm: misc device register failed\n");
4068 		goto out_unreg;
4069 	}
4070 
4071 	register_syscore_ops(&kvm_syscore_ops);
4072 
4073 	kvm_preempt_ops.sched_in = kvm_sched_in;
4074 	kvm_preempt_ops.sched_out = kvm_sched_out;
4075 
4076 	r = kvm_init_debug();
4077 	if (r) {
4078 		pr_err("kvm: create debugfs files failed\n");
4079 		goto out_undebugfs;
4080 	}
4081 
4082 	r = kvm_vfio_ops_init();
4083 	WARN_ON(r);
4084 
4085 	return 0;
4086 
4087 out_undebugfs:
4088 	unregister_syscore_ops(&kvm_syscore_ops);
4089 	misc_deregister(&kvm_dev);
4090 out_unreg:
4091 	kvm_async_pf_deinit();
4092 out_free:
4093 	kmem_cache_destroy(kvm_vcpu_cache);
4094 out_free_3:
4095 	unregister_reboot_notifier(&kvm_reboot_notifier);
4096 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4097 out_free_2:
4098 out_free_1:
4099 	kvm_arch_hardware_unsetup();
4100 out_free_0a:
4101 	free_cpumask_var(cpus_hardware_enabled);
4102 out_free_0:
4103 	kvm_irqfd_exit();
4104 out_irqfd:
4105 	kvm_arch_exit();
4106 out_fail:
4107 	return r;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_init);
4110 
4111 void kvm_exit(void)
4112 {
4113 	debugfs_remove_recursive(kvm_debugfs_dir);
4114 	misc_deregister(&kvm_dev);
4115 	kmem_cache_destroy(kvm_vcpu_cache);
4116 	kvm_async_pf_deinit();
4117 	unregister_syscore_ops(&kvm_syscore_ops);
4118 	unregister_reboot_notifier(&kvm_reboot_notifier);
4119 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4120 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4121 	kvm_arch_hardware_unsetup();
4122 	kvm_arch_exit();
4123 	kvm_irqfd_exit();
4124 	free_cpumask_var(cpus_hardware_enabled);
4125 	kvm_vfio_ops_exit();
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_exit);
4128