xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static struct file_operations kvm_chardev_ops;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165 
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (WARN_ON_ONCE(!page_count(page)))
175 		return false;
176 
177 	return is_zone_device_page(page);
178 }
179 
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188 	struct page *page;
189 
190 	if (!pfn_valid(pfn))
191 		return NULL;
192 
193 	page = pfn_to_page(pfn);
194 	if (!PageReserved(page))
195 		return page;
196 
197 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198 	if (is_zero_pfn(pfn))
199 		return page;
200 
201 	/*
202 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203 	 * perspective they are "normal" pages, albeit with slightly different
204 	 * usage rules.
205 	 */
206 	if (kvm_is_zone_device_page(page))
207 		return page;
208 
209 	return NULL;
210 }
211 
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217 	int cpu = get_cpu();
218 
219 	__this_cpu_write(kvm_running_vcpu, vcpu);
220 	preempt_notifier_register(&vcpu->preempt_notifier);
221 	kvm_arch_vcpu_load(vcpu, cpu);
222 	put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225 
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228 	preempt_disable();
229 	kvm_arch_vcpu_put(vcpu);
230 	preempt_notifier_unregister(&vcpu->preempt_notifier);
231 	__this_cpu_write(kvm_running_vcpu, NULL);
232 	preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235 
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240 
241 	/*
242 	 * We need to wait for the VCPU to reenable interrupts and get out of
243 	 * READING_SHADOW_PAGE_TABLES mode.
244 	 */
245 	if (req & KVM_REQUEST_WAIT)
246 		return mode != OUTSIDE_GUEST_MODE;
247 
248 	/*
249 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
250 	 */
251 	return mode == IN_GUEST_MODE;
252 }
253 
254 static void ack_kick(void *_completed)
255 {
256 }
257 
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260 	if (cpumask_empty(cpus))
261 		return false;
262 
263 	smp_call_function_many(cpus, ack_kick, NULL, wait);
264 	return true;
265 }
266 
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268 				  struct cpumask *tmp, int current_cpu)
269 {
270 	int cpu;
271 
272 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273 		__kvm_make_request(req, vcpu);
274 
275 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 		return;
277 
278 	/*
279 	 * Note, the vCPU could get migrated to a different pCPU at any point
280 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
281 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
282 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284 	 * after this point is also OK, as the requirement is only that KVM wait
285 	 * for vCPUs that were reading SPTEs _before_ any changes were
286 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
287 	 */
288 	if (kvm_request_needs_ipi(vcpu, req)) {
289 		cpu = READ_ONCE(vcpu->cpu);
290 		if (cpu != -1 && cpu != current_cpu)
291 			__cpumask_set_cpu(cpu, tmp);
292 	}
293 }
294 
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296 				 unsigned long *vcpu_bitmap)
297 {
298 	struct kvm_vcpu *vcpu;
299 	struct cpumask *cpus;
300 	int i, me;
301 	bool called;
302 
303 	me = get_cpu();
304 
305 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306 	cpumask_clear(cpus);
307 
308 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 		vcpu = kvm_get_vcpu(kvm, i);
310 		if (!vcpu)
311 			continue;
312 		kvm_make_vcpu_request(vcpu, req, cpus, me);
313 	}
314 
315 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 	put_cpu();
317 
318 	return called;
319 }
320 
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 				      struct kvm_vcpu *except)
323 {
324 	struct kvm_vcpu *vcpu;
325 	struct cpumask *cpus;
326 	unsigned long i;
327 	bool called;
328 	int me;
329 
330 	me = get_cpu();
331 
332 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333 	cpumask_clear(cpus);
334 
335 	kvm_for_each_vcpu(i, vcpu, kvm) {
336 		if (vcpu == except)
337 			continue;
338 		kvm_make_vcpu_request(vcpu, req, cpus, me);
339 	}
340 
341 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 	put_cpu();
343 
344 	return called;
345 }
346 
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352 
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356 	++kvm->stat.generic.remote_tlb_flush_requests;
357 
358 	/*
359 	 * We want to publish modifications to the page tables before reading
360 	 * mode. Pairs with a memory barrier in arch-specific code.
361 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
363 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364 	 *
365 	 * There is already an smp_mb__after_atomic() before
366 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367 	 * barrier here.
368 	 */
369 	if (!kvm_arch_flush_remote_tlb(kvm)
370 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371 		++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375 
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378 	kvm_arch_flush_shadow_all(kvm);
379 	kvm_arch_guest_memory_reclaimed(kvm);
380 }
381 
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384 					       gfp_t gfp_flags)
385 {
386 	gfp_flags |= mc->gfp_zero;
387 
388 	if (mc->kmem_cache)
389 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390 	else
391 		return (void *)__get_free_page(gfp_flags);
392 }
393 
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397 	void *obj;
398 
399 	if (mc->nobjs >= min)
400 		return 0;
401 
402 	if (unlikely(!mc->objects)) {
403 		if (WARN_ON_ONCE(!capacity))
404 			return -EIO;
405 
406 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407 		if (!mc->objects)
408 			return -ENOMEM;
409 
410 		mc->capacity = capacity;
411 	}
412 
413 	/* It is illegal to request a different capacity across topups. */
414 	if (WARN_ON_ONCE(mc->capacity != capacity))
415 		return -EIO;
416 
417 	while (mc->nobjs < mc->capacity) {
418 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
419 		if (!obj)
420 			return mc->nobjs >= min ? 0 : -ENOMEM;
421 		mc->objects[mc->nobjs++] = obj;
422 	}
423 	return 0;
424 }
425 
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430 
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433 	return mc->nobjs;
434 }
435 
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438 	while (mc->nobjs) {
439 		if (mc->kmem_cache)
440 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441 		else
442 			free_page((unsigned long)mc->objects[--mc->nobjs]);
443 	}
444 
445 	kvfree(mc->objects);
446 
447 	mc->objects = NULL;
448 	mc->capacity = 0;
449 }
450 
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453 	void *p;
454 
455 	if (WARN_ON(!mc->nobjs))
456 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457 	else
458 		p = mc->objects[--mc->nobjs];
459 	BUG_ON(!p);
460 	return p;
461 }
462 #endif
463 
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466 	mutex_init(&vcpu->mutex);
467 	vcpu->cpu = -1;
468 	vcpu->kvm = kvm;
469 	vcpu->vcpu_id = id;
470 	vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472 	rcuwait_init(&vcpu->wait);
473 #endif
474 	kvm_async_pf_vcpu_init(vcpu);
475 
476 	kvm_vcpu_set_in_spin_loop(vcpu, false);
477 	kvm_vcpu_set_dy_eligible(vcpu, false);
478 	vcpu->preempted = false;
479 	vcpu->ready = false;
480 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481 	vcpu->last_used_slot = NULL;
482 
483 	/* Fill the stats id string for the vcpu */
484 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485 		 task_pid_nr(current), id);
486 }
487 
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490 	kvm_arch_vcpu_destroy(vcpu);
491 	kvm_dirty_ring_free(&vcpu->dirty_ring);
492 
493 	/*
494 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495 	 * the vcpu->pid pointer, and at destruction time all file descriptors
496 	 * are already gone.
497 	 */
498 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
499 
500 	free_page((unsigned long)vcpu->run);
501 	kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503 
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506 	unsigned long i;
507 	struct kvm_vcpu *vcpu;
508 
509 	kvm_for_each_vcpu(i, vcpu, kvm) {
510 		kvm_vcpu_destroy(vcpu);
511 		xa_erase(&kvm->vcpu_array, i);
512 	}
513 
514 	atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517 
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521 	return container_of(mn, struct kvm, mmu_notifier);
522 }
523 
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525 					      struct mm_struct *mm,
526 					      unsigned long start, unsigned long end)
527 {
528 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 	int idx;
530 
531 	idx = srcu_read_lock(&kvm->srcu);
532 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533 	srcu_read_unlock(&kvm->srcu, idx);
534 }
535 
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537 
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539 			     unsigned long end);
540 
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542 
543 struct kvm_hva_range {
544 	unsigned long start;
545 	unsigned long end;
546 	pte_t pte;
547 	hva_handler_t handler;
548 	on_lock_fn_t on_lock;
549 	on_unlock_fn_t on_unlock;
550 	bool flush_on_ret;
551 	bool may_block;
552 };
553 
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563 
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566 
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
569 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570 	     node;							     \
571 	     node = interval_tree_iter_next(node, start, last))	     \
572 
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574 						  const struct kvm_hva_range *range)
575 {
576 	bool ret = false, locked = false;
577 	struct kvm_gfn_range gfn_range;
578 	struct kvm_memory_slot *slot;
579 	struct kvm_memslots *slots;
580 	int i, idx;
581 
582 	if (WARN_ON_ONCE(range->end <= range->start))
583 		return 0;
584 
585 	/* A null handler is allowed if and only if on_lock() is provided. */
586 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587 			 IS_KVM_NULL_FN(range->handler)))
588 		return 0;
589 
590 	idx = srcu_read_lock(&kvm->srcu);
591 
592 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593 		struct interval_tree_node *node;
594 
595 		slots = __kvm_memslots(kvm, i);
596 		kvm_for_each_memslot_in_hva_range(node, slots,
597 						  range->start, range->end - 1) {
598 			unsigned long hva_start, hva_end;
599 
600 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601 			hva_start = max(range->start, slot->userspace_addr);
602 			hva_end = min(range->end, slot->userspace_addr +
603 						  (slot->npages << PAGE_SHIFT));
604 
605 			/*
606 			 * To optimize for the likely case where the address
607 			 * range is covered by zero or one memslots, don't
608 			 * bother making these conditional (to avoid writes on
609 			 * the second or later invocation of the handler).
610 			 */
611 			gfn_range.pte = range->pte;
612 			gfn_range.may_block = range->may_block;
613 
614 			/*
615 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 			 */
618 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 			gfn_range.slot = slot;
621 
622 			if (!locked) {
623 				locked = true;
624 				KVM_MMU_LOCK(kvm);
625 				if (!IS_KVM_NULL_FN(range->on_lock))
626 					range->on_lock(kvm, range->start, range->end);
627 				if (IS_KVM_NULL_FN(range->handler))
628 					break;
629 			}
630 			ret |= range->handler(kvm, &gfn_range);
631 		}
632 	}
633 
634 	if (range->flush_on_ret && ret)
635 		kvm_flush_remote_tlbs(kvm);
636 
637 	if (locked) {
638 		KVM_MMU_UNLOCK(kvm);
639 		if (!IS_KVM_NULL_FN(range->on_unlock))
640 			range->on_unlock(kvm);
641 	}
642 
643 	srcu_read_unlock(&kvm->srcu, idx);
644 
645 	/* The notifiers are averse to booleans. :-( */
646 	return (int)ret;
647 }
648 
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650 						unsigned long start,
651 						unsigned long end,
652 						pte_t pte,
653 						hva_handler_t handler)
654 {
655 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
656 	const struct kvm_hva_range range = {
657 		.start		= start,
658 		.end		= end,
659 		.pte		= pte,
660 		.handler	= handler,
661 		.on_lock	= (void *)kvm_null_fn,
662 		.on_unlock	= (void *)kvm_null_fn,
663 		.flush_on_ret	= true,
664 		.may_block	= false,
665 	};
666 
667 	return __kvm_handle_hva_range(kvm, &range);
668 }
669 
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671 							 unsigned long start,
672 							 unsigned long end,
673 							 hva_handler_t handler)
674 {
675 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 	const struct kvm_hva_range range = {
677 		.start		= start,
678 		.end		= end,
679 		.pte		= __pte(0),
680 		.handler	= handler,
681 		.on_lock	= (void *)kvm_null_fn,
682 		.on_unlock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= false,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range);
688 }
689 
690 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
691 {
692 	/*
693 	 * Skipping invalid memslots is correct if and only change_pte() is
694 	 * surrounded by invalidate_range_{start,end}(), which is currently
695 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
696 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
697 	 * doesn't hold references to the old PFN.
698 	 */
699 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
700 
701 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
702 		return false;
703 
704 	return kvm_set_spte_gfn(kvm, range);
705 }
706 
707 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
708 					struct mm_struct *mm,
709 					unsigned long address,
710 					pte_t pte)
711 {
712 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
713 
714 	trace_kvm_set_spte_hva(address);
715 
716 	/*
717 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
718 	 * If mmu_invalidate_in_progress is zero, then no in-progress
719 	 * invalidations, including this one, found a relevant memslot at
720 	 * start(); rechecking memslots here is unnecessary.  Note, a false
721 	 * positive (count elevated by a different invalidation) is sub-optimal
722 	 * but functionally ok.
723 	 */
724 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
725 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
726 		return;
727 
728 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
729 }
730 
731 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
732 			      unsigned long end)
733 {
734 	/*
735 	 * The count increase must become visible at unlock time as no
736 	 * spte can be established without taking the mmu_lock and
737 	 * count is also read inside the mmu_lock critical section.
738 	 */
739 	kvm->mmu_invalidate_in_progress++;
740 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
741 		kvm->mmu_invalidate_range_start = start;
742 		kvm->mmu_invalidate_range_end = end;
743 	} else {
744 		/*
745 		 * Fully tracking multiple concurrent ranges has diminishing
746 		 * returns. Keep things simple and just find the minimal range
747 		 * which includes the current and new ranges. As there won't be
748 		 * enough information to subtract a range after its invalidate
749 		 * completes, any ranges invalidated concurrently will
750 		 * accumulate and persist until all outstanding invalidates
751 		 * complete.
752 		 */
753 		kvm->mmu_invalidate_range_start =
754 			min(kvm->mmu_invalidate_range_start, start);
755 		kvm->mmu_invalidate_range_end =
756 			max(kvm->mmu_invalidate_range_end, end);
757 	}
758 }
759 
760 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
761 					const struct mmu_notifier_range *range)
762 {
763 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
764 	const struct kvm_hva_range hva_range = {
765 		.start		= range->start,
766 		.end		= range->end,
767 		.pte		= __pte(0),
768 		.handler	= kvm_unmap_gfn_range,
769 		.on_lock	= kvm_mmu_invalidate_begin,
770 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
771 		.flush_on_ret	= true,
772 		.may_block	= mmu_notifier_range_blockable(range),
773 	};
774 
775 	trace_kvm_unmap_hva_range(range->start, range->end);
776 
777 	/*
778 	 * Prevent memslot modification between range_start() and range_end()
779 	 * so that conditionally locking provides the same result in both
780 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
781 	 * adjustments will be imbalanced.
782 	 *
783 	 * Pairs with the decrement in range_end().
784 	 */
785 	spin_lock(&kvm->mn_invalidate_lock);
786 	kvm->mn_active_invalidate_count++;
787 	spin_unlock(&kvm->mn_invalidate_lock);
788 
789 	/*
790 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
791 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
792 	 * each cache's lock.  There are relatively few caches in existence at
793 	 * any given time, and the caches themselves can check for hva overlap,
794 	 * i.e. don't need to rely on memslot overlap checks for performance.
795 	 * Because this runs without holding mmu_lock, the pfn caches must use
796 	 * mn_active_invalidate_count (see above) instead of
797 	 * mmu_invalidate_in_progress.
798 	 */
799 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
800 					  hva_range.may_block);
801 
802 	__kvm_handle_hva_range(kvm, &hva_range);
803 
804 	return 0;
805 }
806 
807 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
808 			    unsigned long end)
809 {
810 	/*
811 	 * This sequence increase will notify the kvm page fault that
812 	 * the page that is going to be mapped in the spte could have
813 	 * been freed.
814 	 */
815 	kvm->mmu_invalidate_seq++;
816 	smp_wmb();
817 	/*
818 	 * The above sequence increase must be visible before the
819 	 * below count decrease, which is ensured by the smp_wmb above
820 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
821 	 */
822 	kvm->mmu_invalidate_in_progress--;
823 }
824 
825 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
826 					const struct mmu_notifier_range *range)
827 {
828 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
829 	const struct kvm_hva_range hva_range = {
830 		.start		= range->start,
831 		.end		= range->end,
832 		.pte		= __pte(0),
833 		.handler	= (void *)kvm_null_fn,
834 		.on_lock	= kvm_mmu_invalidate_end,
835 		.on_unlock	= (void *)kvm_null_fn,
836 		.flush_on_ret	= false,
837 		.may_block	= mmu_notifier_range_blockable(range),
838 	};
839 	bool wake;
840 
841 	__kvm_handle_hva_range(kvm, &hva_range);
842 
843 	/* Pairs with the increment in range_start(). */
844 	spin_lock(&kvm->mn_invalidate_lock);
845 	wake = (--kvm->mn_active_invalidate_count == 0);
846 	spin_unlock(&kvm->mn_invalidate_lock);
847 
848 	/*
849 	 * There can only be one waiter, since the wait happens under
850 	 * slots_lock.
851 	 */
852 	if (wake)
853 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
854 
855 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
856 }
857 
858 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
859 					      struct mm_struct *mm,
860 					      unsigned long start,
861 					      unsigned long end)
862 {
863 	trace_kvm_age_hva(start, end);
864 
865 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
866 }
867 
868 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
869 					struct mm_struct *mm,
870 					unsigned long start,
871 					unsigned long end)
872 {
873 	trace_kvm_age_hva(start, end);
874 
875 	/*
876 	 * Even though we do not flush TLB, this will still adversely
877 	 * affect performance on pre-Haswell Intel EPT, where there is
878 	 * no EPT Access Bit to clear so that we have to tear down EPT
879 	 * tables instead. If we find this unacceptable, we can always
880 	 * add a parameter to kvm_age_hva so that it effectively doesn't
881 	 * do anything on clear_young.
882 	 *
883 	 * Also note that currently we never issue secondary TLB flushes
884 	 * from clear_young, leaving this job up to the regular system
885 	 * cadence. If we find this inaccurate, we might come up with a
886 	 * more sophisticated heuristic later.
887 	 */
888 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
889 }
890 
891 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
892 				       struct mm_struct *mm,
893 				       unsigned long address)
894 {
895 	trace_kvm_test_age_hva(address);
896 
897 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
898 					     kvm_test_age_gfn);
899 }
900 
901 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
902 				     struct mm_struct *mm)
903 {
904 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
905 	int idx;
906 
907 	idx = srcu_read_lock(&kvm->srcu);
908 	kvm_flush_shadow_all(kvm);
909 	srcu_read_unlock(&kvm->srcu, idx);
910 }
911 
912 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
913 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
914 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
915 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
916 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
917 	.clear_young		= kvm_mmu_notifier_clear_young,
918 	.test_young		= kvm_mmu_notifier_test_young,
919 	.change_pte		= kvm_mmu_notifier_change_pte,
920 	.release		= kvm_mmu_notifier_release,
921 };
922 
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928 
929 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
930 
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933 	return 0;
934 }
935 
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937 
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940 				unsigned long state,
941 				void *unused)
942 {
943 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944 
945 	return kvm_arch_pm_notifier(kvm, state);
946 }
947 
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
952 	kvm->pm_notifier.priority = INT_MAX;
953 	register_pm_notifier(&kvm->pm_notifier);
954 }
955 
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958 	unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964 
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969 
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972 	if (!memslot->dirty_bitmap)
973 		return;
974 
975 	kvfree(memslot->dirty_bitmap);
976 	memslot->dirty_bitmap = NULL;
977 }
978 
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982 	kvm_destroy_dirty_bitmap(slot);
983 
984 	kvm_arch_free_memslot(kvm, slot);
985 
986 	kfree(slot);
987 }
988 
989 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
990 {
991 	struct hlist_node *idnode;
992 	struct kvm_memory_slot *memslot;
993 	int bkt;
994 
995 	/*
996 	 * The same memslot objects live in both active and inactive sets,
997 	 * arbitrarily free using index '1' so the second invocation of this
998 	 * function isn't operating over a structure with dangling pointers
999 	 * (even though this function isn't actually touching them).
1000 	 */
1001 	if (!slots->node_idx)
1002 		return;
1003 
1004 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1005 		kvm_free_memslot(kvm, memslot);
1006 }
1007 
1008 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1009 {
1010 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1011 	case KVM_STATS_TYPE_INSTANT:
1012 		return 0444;
1013 	case KVM_STATS_TYPE_CUMULATIVE:
1014 	case KVM_STATS_TYPE_PEAK:
1015 	default:
1016 		return 0644;
1017 	}
1018 }
1019 
1020 
1021 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1022 {
1023 	int i;
1024 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025 				      kvm_vcpu_stats_header.num_desc;
1026 
1027 	if (IS_ERR(kvm->debugfs_dentry))
1028 		return;
1029 
1030 	debugfs_remove_recursive(kvm->debugfs_dentry);
1031 
1032 	if (kvm->debugfs_stat_data) {
1033 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1034 			kfree(kvm->debugfs_stat_data[i]);
1035 		kfree(kvm->debugfs_stat_data);
1036 	}
1037 }
1038 
1039 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1040 {
1041 	static DEFINE_MUTEX(kvm_debugfs_lock);
1042 	struct dentry *dent;
1043 	char dir_name[ITOA_MAX_LEN * 2];
1044 	struct kvm_stat_data *stat_data;
1045 	const struct _kvm_stats_desc *pdesc;
1046 	int i, ret = -ENOMEM;
1047 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1048 				      kvm_vcpu_stats_header.num_desc;
1049 
1050 	if (!debugfs_initialized())
1051 		return 0;
1052 
1053 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1054 	mutex_lock(&kvm_debugfs_lock);
1055 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1056 	if (dent) {
1057 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1058 		dput(dent);
1059 		mutex_unlock(&kvm_debugfs_lock);
1060 		return 0;
1061 	}
1062 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1063 	mutex_unlock(&kvm_debugfs_lock);
1064 	if (IS_ERR(dent))
1065 		return 0;
1066 
1067 	kvm->debugfs_dentry = dent;
1068 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1069 					 sizeof(*kvm->debugfs_stat_data),
1070 					 GFP_KERNEL_ACCOUNT);
1071 	if (!kvm->debugfs_stat_data)
1072 		goto out_err;
1073 
1074 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1075 		pdesc = &kvm_vm_stats_desc[i];
1076 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077 		if (!stat_data)
1078 			goto out_err;
1079 
1080 		stat_data->kvm = kvm;
1081 		stat_data->desc = pdesc;
1082 		stat_data->kind = KVM_STAT_VM;
1083 		kvm->debugfs_stat_data[i] = stat_data;
1084 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1085 				    kvm->debugfs_dentry, stat_data,
1086 				    &stat_fops_per_vm);
1087 	}
1088 
1089 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1090 		pdesc = &kvm_vcpu_stats_desc[i];
1091 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1092 		if (!stat_data)
1093 			goto out_err;
1094 
1095 		stat_data->kvm = kvm;
1096 		stat_data->desc = pdesc;
1097 		stat_data->kind = KVM_STAT_VCPU;
1098 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1099 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1100 				    kvm->debugfs_dentry, stat_data,
1101 				    &stat_fops_per_vm);
1102 	}
1103 
1104 	ret = kvm_arch_create_vm_debugfs(kvm);
1105 	if (ret)
1106 		goto out_err;
1107 
1108 	return 0;
1109 out_err:
1110 	kvm_destroy_vm_debugfs(kvm);
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130 
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139 	return 0;
1140 }
1141 
1142 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1143 {
1144 	struct kvm *kvm = kvm_arch_alloc_vm();
1145 	struct kvm_memslots *slots;
1146 	int r = -ENOMEM;
1147 	int i, j;
1148 
1149 	if (!kvm)
1150 		return ERR_PTR(-ENOMEM);
1151 
1152 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1153 	__module_get(kvm_chardev_ops.owner);
1154 
1155 	KVM_MMU_LOCK_INIT(kvm);
1156 	mmgrab(current->mm);
1157 	kvm->mm = current->mm;
1158 	kvm_eventfd_init(kvm);
1159 	mutex_init(&kvm->lock);
1160 	mutex_init(&kvm->irq_lock);
1161 	mutex_init(&kvm->slots_lock);
1162 	mutex_init(&kvm->slots_arch_lock);
1163 	spin_lock_init(&kvm->mn_invalidate_lock);
1164 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1165 	xa_init(&kvm->vcpu_array);
1166 
1167 	INIT_LIST_HEAD(&kvm->gpc_list);
1168 	spin_lock_init(&kvm->gpc_lock);
1169 
1170 	INIT_LIST_HEAD(&kvm->devices);
1171 	kvm->max_vcpus = KVM_MAX_VCPUS;
1172 
1173 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1174 
1175 	/*
1176 	 * Force subsequent debugfs file creations to fail if the VM directory
1177 	 * is not created (by kvm_create_vm_debugfs()).
1178 	 */
1179 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1180 
1181 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1182 		 task_pid_nr(current));
1183 
1184 	if (init_srcu_struct(&kvm->srcu))
1185 		goto out_err_no_srcu;
1186 	if (init_srcu_struct(&kvm->irq_srcu))
1187 		goto out_err_no_irq_srcu;
1188 
1189 	refcount_set(&kvm->users_count, 1);
1190 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1191 		for (j = 0; j < 2; j++) {
1192 			slots = &kvm->__memslots[i][j];
1193 
1194 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1195 			slots->hva_tree = RB_ROOT_CACHED;
1196 			slots->gfn_tree = RB_ROOT;
1197 			hash_init(slots->id_hash);
1198 			slots->node_idx = j;
1199 
1200 			/* Generations must be different for each address space. */
1201 			slots->generation = i;
1202 		}
1203 
1204 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1205 	}
1206 
1207 	for (i = 0; i < KVM_NR_BUSES; i++) {
1208 		rcu_assign_pointer(kvm->buses[i],
1209 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1210 		if (!kvm->buses[i])
1211 			goto out_err_no_arch_destroy_vm;
1212 	}
1213 
1214 	r = kvm_arch_init_vm(kvm, type);
1215 	if (r)
1216 		goto out_err_no_arch_destroy_vm;
1217 
1218 	r = hardware_enable_all();
1219 	if (r)
1220 		goto out_err_no_disable;
1221 
1222 #ifdef CONFIG_HAVE_KVM_IRQFD
1223 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1224 #endif
1225 
1226 	r = kvm_init_mmu_notifier(kvm);
1227 	if (r)
1228 		goto out_err_no_mmu_notifier;
1229 
1230 	r = kvm_coalesced_mmio_init(kvm);
1231 	if (r < 0)
1232 		goto out_no_coalesced_mmio;
1233 
1234 	r = kvm_create_vm_debugfs(kvm, fdname);
1235 	if (r)
1236 		goto out_err_no_debugfs;
1237 
1238 	r = kvm_arch_post_init_vm(kvm);
1239 	if (r)
1240 		goto out_err;
1241 
1242 	mutex_lock(&kvm_lock);
1243 	list_add(&kvm->vm_list, &vm_list);
1244 	mutex_unlock(&kvm_lock);
1245 
1246 	preempt_notifier_inc();
1247 	kvm_init_pm_notifier(kvm);
1248 
1249 	return kvm;
1250 
1251 out_err:
1252 	kvm_destroy_vm_debugfs(kvm);
1253 out_err_no_debugfs:
1254 	kvm_coalesced_mmio_free(kvm);
1255 out_no_coalesced_mmio:
1256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1257 	if (kvm->mmu_notifier.ops)
1258 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1259 #endif
1260 out_err_no_mmu_notifier:
1261 	hardware_disable_all();
1262 out_err_no_disable:
1263 	kvm_arch_destroy_vm(kvm);
1264 out_err_no_arch_destroy_vm:
1265 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1266 	for (i = 0; i < KVM_NR_BUSES; i++)
1267 		kfree(kvm_get_bus(kvm, i));
1268 	cleanup_srcu_struct(&kvm->irq_srcu);
1269 out_err_no_irq_srcu:
1270 	cleanup_srcu_struct(&kvm->srcu);
1271 out_err_no_srcu:
1272 	kvm_arch_free_vm(kvm);
1273 	mmdrop(current->mm);
1274 	module_put(kvm_chardev_ops.owner);
1275 	return ERR_PTR(r);
1276 }
1277 
1278 static void kvm_destroy_devices(struct kvm *kvm)
1279 {
1280 	struct kvm_device *dev, *tmp;
1281 
1282 	/*
1283 	 * We do not need to take the kvm->lock here, because nobody else
1284 	 * has a reference to the struct kvm at this point and therefore
1285 	 * cannot access the devices list anyhow.
1286 	 */
1287 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1288 		list_del(&dev->vm_node);
1289 		dev->ops->destroy(dev);
1290 	}
1291 }
1292 
1293 static void kvm_destroy_vm(struct kvm *kvm)
1294 {
1295 	int i;
1296 	struct mm_struct *mm = kvm->mm;
1297 
1298 	kvm_destroy_pm_notifier(kvm);
1299 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1300 	kvm_destroy_vm_debugfs(kvm);
1301 	kvm_arch_sync_events(kvm);
1302 	mutex_lock(&kvm_lock);
1303 	list_del(&kvm->vm_list);
1304 	mutex_unlock(&kvm_lock);
1305 	kvm_arch_pre_destroy_vm(kvm);
1306 
1307 	kvm_free_irq_routing(kvm);
1308 	for (i = 0; i < KVM_NR_BUSES; i++) {
1309 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1310 
1311 		if (bus)
1312 			kvm_io_bus_destroy(bus);
1313 		kvm->buses[i] = NULL;
1314 	}
1315 	kvm_coalesced_mmio_free(kvm);
1316 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1317 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1318 	/*
1319 	 * At this point, pending calls to invalidate_range_start()
1320 	 * have completed but no more MMU notifiers will run, so
1321 	 * mn_active_invalidate_count may remain unbalanced.
1322 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1323 	 * last reference on KVM has been dropped, but freeing
1324 	 * memslots would deadlock without this manual intervention.
1325 	 */
1326 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1327 	kvm->mn_active_invalidate_count = 0;
1328 #else
1329 	kvm_flush_shadow_all(kvm);
1330 #endif
1331 	kvm_arch_destroy_vm(kvm);
1332 	kvm_destroy_devices(kvm);
1333 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1334 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1335 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1336 	}
1337 	cleanup_srcu_struct(&kvm->irq_srcu);
1338 	cleanup_srcu_struct(&kvm->srcu);
1339 	kvm_arch_free_vm(kvm);
1340 	preempt_notifier_dec();
1341 	hardware_disable_all();
1342 	mmdrop(mm);
1343 	module_put(kvm_chardev_ops.owner);
1344 }
1345 
1346 void kvm_get_kvm(struct kvm *kvm)
1347 {
1348 	refcount_inc(&kvm->users_count);
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1351 
1352 /*
1353  * Make sure the vm is not during destruction, which is a safe version of
1354  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1355  */
1356 bool kvm_get_kvm_safe(struct kvm *kvm)
1357 {
1358 	return refcount_inc_not_zero(&kvm->users_count);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1361 
1362 void kvm_put_kvm(struct kvm *kvm)
1363 {
1364 	if (refcount_dec_and_test(&kvm->users_count))
1365 		kvm_destroy_vm(kvm);
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1368 
1369 /*
1370  * Used to put a reference that was taken on behalf of an object associated
1371  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1372  * of the new file descriptor fails and the reference cannot be transferred to
1373  * its final owner.  In such cases, the caller is still actively using @kvm and
1374  * will fail miserably if the refcount unexpectedly hits zero.
1375  */
1376 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1377 {
1378 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1381 
1382 static int kvm_vm_release(struct inode *inode, struct file *filp)
1383 {
1384 	struct kvm *kvm = filp->private_data;
1385 
1386 	kvm_irqfd_release(kvm);
1387 
1388 	kvm_put_kvm(kvm);
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Allocation size is twice as large as the actual dirty bitmap size.
1394  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1395  */
1396 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1397 {
1398 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1399 
1400 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1401 	if (!memslot->dirty_bitmap)
1402 		return -ENOMEM;
1403 
1404 	return 0;
1405 }
1406 
1407 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1408 {
1409 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1410 	int node_idx_inactive = active->node_idx ^ 1;
1411 
1412 	return &kvm->__memslots[as_id][node_idx_inactive];
1413 }
1414 
1415 /*
1416  * Helper to get the address space ID when one of memslot pointers may be NULL.
1417  * This also serves as a sanity that at least one of the pointers is non-NULL,
1418  * and that their address space IDs don't diverge.
1419  */
1420 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1421 				  struct kvm_memory_slot *b)
1422 {
1423 	if (WARN_ON_ONCE(!a && !b))
1424 		return 0;
1425 
1426 	if (!a)
1427 		return b->as_id;
1428 	if (!b)
1429 		return a->as_id;
1430 
1431 	WARN_ON_ONCE(a->as_id != b->as_id);
1432 	return a->as_id;
1433 }
1434 
1435 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1436 				struct kvm_memory_slot *slot)
1437 {
1438 	struct rb_root *gfn_tree = &slots->gfn_tree;
1439 	struct rb_node **node, *parent;
1440 	int idx = slots->node_idx;
1441 
1442 	parent = NULL;
1443 	for (node = &gfn_tree->rb_node; *node; ) {
1444 		struct kvm_memory_slot *tmp;
1445 
1446 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1447 		parent = *node;
1448 		if (slot->base_gfn < tmp->base_gfn)
1449 			node = &(*node)->rb_left;
1450 		else if (slot->base_gfn > tmp->base_gfn)
1451 			node = &(*node)->rb_right;
1452 		else
1453 			BUG();
1454 	}
1455 
1456 	rb_link_node(&slot->gfn_node[idx], parent, node);
1457 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1458 }
1459 
1460 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1461 			       struct kvm_memory_slot *slot)
1462 {
1463 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1464 }
1465 
1466 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1467 				 struct kvm_memory_slot *old,
1468 				 struct kvm_memory_slot *new)
1469 {
1470 	int idx = slots->node_idx;
1471 
1472 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1473 
1474 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1475 			&slots->gfn_tree);
1476 }
1477 
1478 /*
1479  * Replace @old with @new in the inactive memslots.
1480  *
1481  * With NULL @old this simply adds @new.
1482  * With NULL @new this simply removes @old.
1483  *
1484  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1485  * appropriately.
1486  */
1487 static void kvm_replace_memslot(struct kvm *kvm,
1488 				struct kvm_memory_slot *old,
1489 				struct kvm_memory_slot *new)
1490 {
1491 	int as_id = kvm_memslots_get_as_id(old, new);
1492 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1493 	int idx = slots->node_idx;
1494 
1495 	if (old) {
1496 		hash_del(&old->id_node[idx]);
1497 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1498 
1499 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1500 			atomic_long_set(&slots->last_used_slot, (long)new);
1501 
1502 		if (!new) {
1503 			kvm_erase_gfn_node(slots, old);
1504 			return;
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * Initialize @new's hva range.  Do this even when replacing an @old
1510 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1511 	 */
1512 	new->hva_node[idx].start = new->userspace_addr;
1513 	new->hva_node[idx].last = new->userspace_addr +
1514 				  (new->npages << PAGE_SHIFT) - 1;
1515 
1516 	/*
1517 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1518 	 * hva_node needs to be swapped with remove+insert even though hva can't
1519 	 * change when replacing an existing slot.
1520 	 */
1521 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1522 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1523 
1524 	/*
1525 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1526 	 * switch the node in the gfn tree instead of removing the old and
1527 	 * inserting the new as two separate operations. Replacement is a
1528 	 * single O(1) operation versus two O(log(n)) operations for
1529 	 * remove+insert.
1530 	 */
1531 	if (old && old->base_gfn == new->base_gfn) {
1532 		kvm_replace_gfn_node(slots, old, new);
1533 	} else {
1534 		if (old)
1535 			kvm_erase_gfn_node(slots, old);
1536 		kvm_insert_gfn_node(slots, new);
1537 	}
1538 }
1539 
1540 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1541 {
1542 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1543 
1544 #ifdef __KVM_HAVE_READONLY_MEM
1545 	valid_flags |= KVM_MEM_READONLY;
1546 #endif
1547 
1548 	if (mem->flags & ~valid_flags)
1549 		return -EINVAL;
1550 
1551 	return 0;
1552 }
1553 
1554 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1555 {
1556 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557 
1558 	/* Grab the generation from the activate memslots. */
1559 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1560 
1561 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1562 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1563 
1564 	/*
1565 	 * Do not store the new memslots while there are invalidations in
1566 	 * progress, otherwise the locking in invalidate_range_start and
1567 	 * invalidate_range_end will be unbalanced.
1568 	 */
1569 	spin_lock(&kvm->mn_invalidate_lock);
1570 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1571 	while (kvm->mn_active_invalidate_count) {
1572 		set_current_state(TASK_UNINTERRUPTIBLE);
1573 		spin_unlock(&kvm->mn_invalidate_lock);
1574 		schedule();
1575 		spin_lock(&kvm->mn_invalidate_lock);
1576 	}
1577 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1578 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1579 	spin_unlock(&kvm->mn_invalidate_lock);
1580 
1581 	/*
1582 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1583 	 * SRCU below in order to avoid deadlock with another thread
1584 	 * acquiring the slots_arch_lock in an srcu critical section.
1585 	 */
1586 	mutex_unlock(&kvm->slots_arch_lock);
1587 
1588 	synchronize_srcu_expedited(&kvm->srcu);
1589 
1590 	/*
1591 	 * Increment the new memslot generation a second time, dropping the
1592 	 * update in-progress flag and incrementing the generation based on
1593 	 * the number of address spaces.  This provides a unique and easily
1594 	 * identifiable generation number while the memslots are in flux.
1595 	 */
1596 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1597 
1598 	/*
1599 	 * Generations must be unique even across address spaces.  We do not need
1600 	 * a global counter for that, instead the generation space is evenly split
1601 	 * across address spaces.  For example, with two address spaces, address
1602 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1603 	 * use generations 1, 3, 5, ...
1604 	 */
1605 	gen += KVM_ADDRESS_SPACE_NUM;
1606 
1607 	kvm_arch_memslots_updated(kvm, gen);
1608 
1609 	slots->generation = gen;
1610 }
1611 
1612 static int kvm_prepare_memory_region(struct kvm *kvm,
1613 				     const struct kvm_memory_slot *old,
1614 				     struct kvm_memory_slot *new,
1615 				     enum kvm_mr_change change)
1616 {
1617 	int r;
1618 
1619 	/*
1620 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1621 	 * will be freed on "commit".  If logging is enabled in both old and
1622 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1623 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1624 	 * new bitmap.
1625 	 */
1626 	if (change != KVM_MR_DELETE) {
1627 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1628 			new->dirty_bitmap = NULL;
1629 		else if (old && old->dirty_bitmap)
1630 			new->dirty_bitmap = old->dirty_bitmap;
1631 		else if (kvm_use_dirty_bitmap(kvm)) {
1632 			r = kvm_alloc_dirty_bitmap(new);
1633 			if (r)
1634 				return r;
1635 
1636 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1637 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1638 		}
1639 	}
1640 
1641 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1642 
1643 	/* Free the bitmap on failure if it was allocated above. */
1644 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1645 		kvm_destroy_dirty_bitmap(new);
1646 
1647 	return r;
1648 }
1649 
1650 static void kvm_commit_memory_region(struct kvm *kvm,
1651 				     struct kvm_memory_slot *old,
1652 				     const struct kvm_memory_slot *new,
1653 				     enum kvm_mr_change change)
1654 {
1655 	int old_flags = old ? old->flags : 0;
1656 	int new_flags = new ? new->flags : 0;
1657 	/*
1658 	 * Update the total number of memslot pages before calling the arch
1659 	 * hook so that architectures can consume the result directly.
1660 	 */
1661 	if (change == KVM_MR_DELETE)
1662 		kvm->nr_memslot_pages -= old->npages;
1663 	else if (change == KVM_MR_CREATE)
1664 		kvm->nr_memslot_pages += new->npages;
1665 
1666 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1667 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1668 		atomic_set(&kvm->nr_memslots_dirty_logging,
1669 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1670 	}
1671 
1672 	kvm_arch_commit_memory_region(kvm, old, new, change);
1673 
1674 	switch (change) {
1675 	case KVM_MR_CREATE:
1676 		/* Nothing more to do. */
1677 		break;
1678 	case KVM_MR_DELETE:
1679 		/* Free the old memslot and all its metadata. */
1680 		kvm_free_memslot(kvm, old);
1681 		break;
1682 	case KVM_MR_MOVE:
1683 	case KVM_MR_FLAGS_ONLY:
1684 		/*
1685 		 * Free the dirty bitmap as needed; the below check encompasses
1686 		 * both the flags and whether a ring buffer is being used)
1687 		 */
1688 		if (old->dirty_bitmap && !new->dirty_bitmap)
1689 			kvm_destroy_dirty_bitmap(old);
1690 
1691 		/*
1692 		 * The final quirk.  Free the detached, old slot, but only its
1693 		 * memory, not any metadata.  Metadata, including arch specific
1694 		 * data, may be reused by @new.
1695 		 */
1696 		kfree(old);
1697 		break;
1698 	default:
1699 		BUG();
1700 	}
1701 }
1702 
1703 /*
1704  * Activate @new, which must be installed in the inactive slots by the caller,
1705  * by swapping the active slots and then propagating @new to @old once @old is
1706  * unreachable and can be safely modified.
1707  *
1708  * With NULL @old this simply adds @new to @active (while swapping the sets).
1709  * With NULL @new this simply removes @old from @active and frees it
1710  * (while also swapping the sets).
1711  */
1712 static void kvm_activate_memslot(struct kvm *kvm,
1713 				 struct kvm_memory_slot *old,
1714 				 struct kvm_memory_slot *new)
1715 {
1716 	int as_id = kvm_memslots_get_as_id(old, new);
1717 
1718 	kvm_swap_active_memslots(kvm, as_id);
1719 
1720 	/* Propagate the new memslot to the now inactive memslots. */
1721 	kvm_replace_memslot(kvm, old, new);
1722 }
1723 
1724 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1725 			     const struct kvm_memory_slot *src)
1726 {
1727 	dest->base_gfn = src->base_gfn;
1728 	dest->npages = src->npages;
1729 	dest->dirty_bitmap = src->dirty_bitmap;
1730 	dest->arch = src->arch;
1731 	dest->userspace_addr = src->userspace_addr;
1732 	dest->flags = src->flags;
1733 	dest->id = src->id;
1734 	dest->as_id = src->as_id;
1735 }
1736 
1737 static void kvm_invalidate_memslot(struct kvm *kvm,
1738 				   struct kvm_memory_slot *old,
1739 				   struct kvm_memory_slot *invalid_slot)
1740 {
1741 	/*
1742 	 * Mark the current slot INVALID.  As with all memslot modifications,
1743 	 * this must be done on an unreachable slot to avoid modifying the
1744 	 * current slot in the active tree.
1745 	 */
1746 	kvm_copy_memslot(invalid_slot, old);
1747 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1748 	kvm_replace_memslot(kvm, old, invalid_slot);
1749 
1750 	/*
1751 	 * Activate the slot that is now marked INVALID, but don't propagate
1752 	 * the slot to the now inactive slots. The slot is either going to be
1753 	 * deleted or recreated as a new slot.
1754 	 */
1755 	kvm_swap_active_memslots(kvm, old->as_id);
1756 
1757 	/*
1758 	 * From this point no new shadow pages pointing to a deleted, or moved,
1759 	 * memslot will be created.  Validation of sp->gfn happens in:
1760 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1761 	 *	- kvm_is_visible_gfn (mmu_check_root)
1762 	 */
1763 	kvm_arch_flush_shadow_memslot(kvm, old);
1764 	kvm_arch_guest_memory_reclaimed(kvm);
1765 
1766 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1767 	mutex_lock(&kvm->slots_arch_lock);
1768 
1769 	/*
1770 	 * Copy the arch-specific field of the newly-installed slot back to the
1771 	 * old slot as the arch data could have changed between releasing
1772 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1773 	 * above.  Writers are required to retrieve memslots *after* acquiring
1774 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1775 	 */
1776 	old->arch = invalid_slot->arch;
1777 }
1778 
1779 static void kvm_create_memslot(struct kvm *kvm,
1780 			       struct kvm_memory_slot *new)
1781 {
1782 	/* Add the new memslot to the inactive set and activate. */
1783 	kvm_replace_memslot(kvm, NULL, new);
1784 	kvm_activate_memslot(kvm, NULL, new);
1785 }
1786 
1787 static void kvm_delete_memslot(struct kvm *kvm,
1788 			       struct kvm_memory_slot *old,
1789 			       struct kvm_memory_slot *invalid_slot)
1790 {
1791 	/*
1792 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1793 	 * the "new" slot, and for the invalid version in the active slots.
1794 	 */
1795 	kvm_replace_memslot(kvm, old, NULL);
1796 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1797 }
1798 
1799 static void kvm_move_memslot(struct kvm *kvm,
1800 			     struct kvm_memory_slot *old,
1801 			     struct kvm_memory_slot *new,
1802 			     struct kvm_memory_slot *invalid_slot)
1803 {
1804 	/*
1805 	 * Replace the old memslot in the inactive slots, and then swap slots
1806 	 * and replace the current INVALID with the new as well.
1807 	 */
1808 	kvm_replace_memslot(kvm, old, new);
1809 	kvm_activate_memslot(kvm, invalid_slot, new);
1810 }
1811 
1812 static void kvm_update_flags_memslot(struct kvm *kvm,
1813 				     struct kvm_memory_slot *old,
1814 				     struct kvm_memory_slot *new)
1815 {
1816 	/*
1817 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1818 	 * an intermediate step. Instead, the old memslot is simply replaced
1819 	 * with a new, updated copy in both memslot sets.
1820 	 */
1821 	kvm_replace_memslot(kvm, old, new);
1822 	kvm_activate_memslot(kvm, old, new);
1823 }
1824 
1825 static int kvm_set_memslot(struct kvm *kvm,
1826 			   struct kvm_memory_slot *old,
1827 			   struct kvm_memory_slot *new,
1828 			   enum kvm_mr_change change)
1829 {
1830 	struct kvm_memory_slot *invalid_slot;
1831 	int r;
1832 
1833 	/*
1834 	 * Released in kvm_swap_active_memslots().
1835 	 *
1836 	 * Must be held from before the current memslots are copied until after
1837 	 * the new memslots are installed with rcu_assign_pointer, then
1838 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1839 	 *
1840 	 * When modifying memslots outside of the slots_lock, must be held
1841 	 * before reading the pointer to the current memslots until after all
1842 	 * changes to those memslots are complete.
1843 	 *
1844 	 * These rules ensure that installing new memslots does not lose
1845 	 * changes made to the previous memslots.
1846 	 */
1847 	mutex_lock(&kvm->slots_arch_lock);
1848 
1849 	/*
1850 	 * Invalidate the old slot if it's being deleted or moved.  This is
1851 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1852 	 * continue running by ensuring there are no mappings or shadow pages
1853 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1854 	 * (and without a lock), a window would exist between effecting the
1855 	 * delete/move and committing the changes in arch code where KVM or a
1856 	 * guest could access a non-existent memslot.
1857 	 *
1858 	 * Modifications are done on a temporary, unreachable slot.  The old
1859 	 * slot needs to be preserved in case a later step fails and the
1860 	 * invalidation needs to be reverted.
1861 	 */
1862 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1863 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1864 		if (!invalid_slot) {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 			return -ENOMEM;
1867 		}
1868 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1869 	}
1870 
1871 	r = kvm_prepare_memory_region(kvm, old, new, change);
1872 	if (r) {
1873 		/*
1874 		 * For DELETE/MOVE, revert the above INVALID change.  No
1875 		 * modifications required since the original slot was preserved
1876 		 * in the inactive slots.  Changing the active memslots also
1877 		 * release slots_arch_lock.
1878 		 */
1879 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1880 			kvm_activate_memslot(kvm, invalid_slot, old);
1881 			kfree(invalid_slot);
1882 		} else {
1883 			mutex_unlock(&kvm->slots_arch_lock);
1884 		}
1885 		return r;
1886 	}
1887 
1888 	/*
1889 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1890 	 * version of the old slot.  MOVE is particularly special as it reuses
1891 	 * the old slot and returns a copy of the old slot (in working_slot).
1892 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1893 	 * old slot is detached but otherwise preserved.
1894 	 */
1895 	if (change == KVM_MR_CREATE)
1896 		kvm_create_memslot(kvm, new);
1897 	else if (change == KVM_MR_DELETE)
1898 		kvm_delete_memslot(kvm, old, invalid_slot);
1899 	else if (change == KVM_MR_MOVE)
1900 		kvm_move_memslot(kvm, old, new, invalid_slot);
1901 	else if (change == KVM_MR_FLAGS_ONLY)
1902 		kvm_update_flags_memslot(kvm, old, new);
1903 	else
1904 		BUG();
1905 
1906 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1907 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1908 		kfree(invalid_slot);
1909 
1910 	/*
1911 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1912 	 * will directly hit the final, active memslot.  Architectures are
1913 	 * responsible for knowing that new->arch may be stale.
1914 	 */
1915 	kvm_commit_memory_region(kvm, old, new, change);
1916 
1917 	return 0;
1918 }
1919 
1920 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1921 				      gfn_t start, gfn_t end)
1922 {
1923 	struct kvm_memslot_iter iter;
1924 
1925 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1926 		if (iter.slot->id != id)
1927 			return true;
1928 	}
1929 
1930 	return false;
1931 }
1932 
1933 /*
1934  * Allocate some memory and give it an address in the guest physical address
1935  * space.
1936  *
1937  * Discontiguous memory is allowed, mostly for framebuffers.
1938  *
1939  * Must be called holding kvm->slots_lock for write.
1940  */
1941 int __kvm_set_memory_region(struct kvm *kvm,
1942 			    const struct kvm_userspace_memory_region *mem)
1943 {
1944 	struct kvm_memory_slot *old, *new;
1945 	struct kvm_memslots *slots;
1946 	enum kvm_mr_change change;
1947 	unsigned long npages;
1948 	gfn_t base_gfn;
1949 	int as_id, id;
1950 	int r;
1951 
1952 	r = check_memory_region_flags(mem);
1953 	if (r)
1954 		return r;
1955 
1956 	as_id = mem->slot >> 16;
1957 	id = (u16)mem->slot;
1958 
1959 	/* General sanity checks */
1960 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1961 	    (mem->memory_size != (unsigned long)mem->memory_size))
1962 		return -EINVAL;
1963 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1964 		return -EINVAL;
1965 	/* We can read the guest memory with __xxx_user() later on. */
1966 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1967 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1968 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1969 			mem->memory_size))
1970 		return -EINVAL;
1971 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1972 		return -EINVAL;
1973 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 		return -EINVAL;
1975 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976 		return -EINVAL;
1977 
1978 	slots = __kvm_memslots(kvm, as_id);
1979 
1980 	/*
1981 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1982 	 * and/or destroyed by kvm_set_memslot().
1983 	 */
1984 	old = id_to_memslot(slots, id);
1985 
1986 	if (!mem->memory_size) {
1987 		if (!old || !old->npages)
1988 			return -EINVAL;
1989 
1990 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991 			return -EIO;
1992 
1993 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994 	}
1995 
1996 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997 	npages = (mem->memory_size >> PAGE_SHIFT);
1998 
1999 	if (!old || !old->npages) {
2000 		change = KVM_MR_CREATE;
2001 
2002 		/*
2003 		 * To simplify KVM internals, the total number of pages across
2004 		 * all memslots must fit in an unsigned long.
2005 		 */
2006 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007 			return -EINVAL;
2008 	} else { /* Modify an existing slot. */
2009 		if ((mem->userspace_addr != old->userspace_addr) ||
2010 		    (npages != old->npages) ||
2011 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2012 			return -EINVAL;
2013 
2014 		if (base_gfn != old->base_gfn)
2015 			change = KVM_MR_MOVE;
2016 		else if (mem->flags != old->flags)
2017 			change = KVM_MR_FLAGS_ONLY;
2018 		else /* Nothing to change. */
2019 			return 0;
2020 	}
2021 
2022 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2023 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2024 		return -EEXIST;
2025 
2026 	/* Allocate a slot that will persist in the memslot. */
2027 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2028 	if (!new)
2029 		return -ENOMEM;
2030 
2031 	new->as_id = as_id;
2032 	new->id = id;
2033 	new->base_gfn = base_gfn;
2034 	new->npages = npages;
2035 	new->flags = mem->flags;
2036 	new->userspace_addr = mem->userspace_addr;
2037 
2038 	r = kvm_set_memslot(kvm, old, new, change);
2039 	if (r)
2040 		kfree(new);
2041 	return r;
2042 }
2043 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2044 
2045 int kvm_set_memory_region(struct kvm *kvm,
2046 			  const struct kvm_userspace_memory_region *mem)
2047 {
2048 	int r;
2049 
2050 	mutex_lock(&kvm->slots_lock);
2051 	r = __kvm_set_memory_region(kvm, mem);
2052 	mutex_unlock(&kvm->slots_lock);
2053 	return r;
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2056 
2057 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2058 					  struct kvm_userspace_memory_region *mem)
2059 {
2060 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2061 		return -EINVAL;
2062 
2063 	return kvm_set_memory_region(kvm, mem);
2064 }
2065 
2066 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2067 /**
2068  * kvm_get_dirty_log - get a snapshot of dirty pages
2069  * @kvm:	pointer to kvm instance
2070  * @log:	slot id and address to which we copy the log
2071  * @is_dirty:	set to '1' if any dirty pages were found
2072  * @memslot:	set to the associated memslot, always valid on success
2073  */
2074 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2075 		      int *is_dirty, struct kvm_memory_slot **memslot)
2076 {
2077 	struct kvm_memslots *slots;
2078 	int i, as_id, id;
2079 	unsigned long n;
2080 	unsigned long any = 0;
2081 
2082 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2083 	if (!kvm_use_dirty_bitmap(kvm))
2084 		return -ENXIO;
2085 
2086 	*memslot = NULL;
2087 	*is_dirty = 0;
2088 
2089 	as_id = log->slot >> 16;
2090 	id = (u16)log->slot;
2091 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2092 		return -EINVAL;
2093 
2094 	slots = __kvm_memslots(kvm, as_id);
2095 	*memslot = id_to_memslot(slots, id);
2096 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2097 		return -ENOENT;
2098 
2099 	kvm_arch_sync_dirty_log(kvm, *memslot);
2100 
2101 	n = kvm_dirty_bitmap_bytes(*memslot);
2102 
2103 	for (i = 0; !any && i < n/sizeof(long); ++i)
2104 		any = (*memslot)->dirty_bitmap[i];
2105 
2106 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2107 		return -EFAULT;
2108 
2109 	if (any)
2110 		*is_dirty = 1;
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2114 
2115 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2116 /**
2117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2118  *	and reenable dirty page tracking for the corresponding pages.
2119  * @kvm:	pointer to kvm instance
2120  * @log:	slot id and address to which we copy the log
2121  *
2122  * We need to keep it in mind that VCPU threads can write to the bitmap
2123  * concurrently. So, to avoid losing track of dirty pages we keep the
2124  * following order:
2125  *
2126  *    1. Take a snapshot of the bit and clear it if needed.
2127  *    2. Write protect the corresponding page.
2128  *    3. Copy the snapshot to the userspace.
2129  *    4. Upon return caller flushes TLB's if needed.
2130  *
2131  * Between 2 and 4, the guest may write to the page using the remaining TLB
2132  * entry.  This is not a problem because the page is reported dirty using
2133  * the snapshot taken before and step 4 ensures that writes done after
2134  * exiting to userspace will be logged for the next call.
2135  *
2136  */
2137 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2138 {
2139 	struct kvm_memslots *slots;
2140 	struct kvm_memory_slot *memslot;
2141 	int i, as_id, id;
2142 	unsigned long n;
2143 	unsigned long *dirty_bitmap;
2144 	unsigned long *dirty_bitmap_buffer;
2145 	bool flush;
2146 
2147 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2148 	if (!kvm_use_dirty_bitmap(kvm))
2149 		return -ENXIO;
2150 
2151 	as_id = log->slot >> 16;
2152 	id = (u16)log->slot;
2153 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2154 		return -EINVAL;
2155 
2156 	slots = __kvm_memslots(kvm, as_id);
2157 	memslot = id_to_memslot(slots, id);
2158 	if (!memslot || !memslot->dirty_bitmap)
2159 		return -ENOENT;
2160 
2161 	dirty_bitmap = memslot->dirty_bitmap;
2162 
2163 	kvm_arch_sync_dirty_log(kvm, memslot);
2164 
2165 	n = kvm_dirty_bitmap_bytes(memslot);
2166 	flush = false;
2167 	if (kvm->manual_dirty_log_protect) {
2168 		/*
2169 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2170 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2171 		 * is some code duplication between this function and
2172 		 * kvm_get_dirty_log, but hopefully all architecture
2173 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2174 		 * can be eliminated.
2175 		 */
2176 		dirty_bitmap_buffer = dirty_bitmap;
2177 	} else {
2178 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2179 		memset(dirty_bitmap_buffer, 0, n);
2180 
2181 		KVM_MMU_LOCK(kvm);
2182 		for (i = 0; i < n / sizeof(long); i++) {
2183 			unsigned long mask;
2184 			gfn_t offset;
2185 
2186 			if (!dirty_bitmap[i])
2187 				continue;
2188 
2189 			flush = true;
2190 			mask = xchg(&dirty_bitmap[i], 0);
2191 			dirty_bitmap_buffer[i] = mask;
2192 
2193 			offset = i * BITS_PER_LONG;
2194 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2195 								offset, mask);
2196 		}
2197 		KVM_MMU_UNLOCK(kvm);
2198 	}
2199 
2200 	if (flush)
2201 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2202 
2203 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2204 		return -EFAULT;
2205 	return 0;
2206 }
2207 
2208 
2209 /**
2210  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2211  * @kvm: kvm instance
2212  * @log: slot id and address to which we copy the log
2213  *
2214  * Steps 1-4 below provide general overview of dirty page logging. See
2215  * kvm_get_dirty_log_protect() function description for additional details.
2216  *
2217  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2218  * always flush the TLB (step 4) even if previous step failed  and the dirty
2219  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2220  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2221  * writes will be marked dirty for next log read.
2222  *
2223  *   1. Take a snapshot of the bit and clear it if needed.
2224  *   2. Write protect the corresponding page.
2225  *   3. Copy the snapshot to the userspace.
2226  *   4. Flush TLB's if needed.
2227  */
2228 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2229 				      struct kvm_dirty_log *log)
2230 {
2231 	int r;
2232 
2233 	mutex_lock(&kvm->slots_lock);
2234 
2235 	r = kvm_get_dirty_log_protect(kvm, log);
2236 
2237 	mutex_unlock(&kvm->slots_lock);
2238 	return r;
2239 }
2240 
2241 /**
2242  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2243  *	and reenable dirty page tracking for the corresponding pages.
2244  * @kvm:	pointer to kvm instance
2245  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2246  */
2247 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2248 				       struct kvm_clear_dirty_log *log)
2249 {
2250 	struct kvm_memslots *slots;
2251 	struct kvm_memory_slot *memslot;
2252 	int as_id, id;
2253 	gfn_t offset;
2254 	unsigned long i, n;
2255 	unsigned long *dirty_bitmap;
2256 	unsigned long *dirty_bitmap_buffer;
2257 	bool flush;
2258 
2259 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2260 	if (!kvm_use_dirty_bitmap(kvm))
2261 		return -ENXIO;
2262 
2263 	as_id = log->slot >> 16;
2264 	id = (u16)log->slot;
2265 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2266 		return -EINVAL;
2267 
2268 	if (log->first_page & 63)
2269 		return -EINVAL;
2270 
2271 	slots = __kvm_memslots(kvm, as_id);
2272 	memslot = id_to_memslot(slots, id);
2273 	if (!memslot || !memslot->dirty_bitmap)
2274 		return -ENOENT;
2275 
2276 	dirty_bitmap = memslot->dirty_bitmap;
2277 
2278 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2279 
2280 	if (log->first_page > memslot->npages ||
2281 	    log->num_pages > memslot->npages - log->first_page ||
2282 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2283 	    return -EINVAL;
2284 
2285 	kvm_arch_sync_dirty_log(kvm, memslot);
2286 
2287 	flush = false;
2288 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2289 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2290 		return -EFAULT;
2291 
2292 	KVM_MMU_LOCK(kvm);
2293 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2294 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2295 	     i++, offset += BITS_PER_LONG) {
2296 		unsigned long mask = *dirty_bitmap_buffer++;
2297 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2298 		if (!mask)
2299 			continue;
2300 
2301 		mask &= atomic_long_fetch_andnot(mask, p);
2302 
2303 		/*
2304 		 * mask contains the bits that really have been cleared.  This
2305 		 * never includes any bits beyond the length of the memslot (if
2306 		 * the length is not aligned to 64 pages), therefore it is not
2307 		 * a problem if userspace sets them in log->dirty_bitmap.
2308 		*/
2309 		if (mask) {
2310 			flush = true;
2311 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2312 								offset, mask);
2313 		}
2314 	}
2315 	KVM_MMU_UNLOCK(kvm);
2316 
2317 	if (flush)
2318 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2319 
2320 	return 0;
2321 }
2322 
2323 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2324 					struct kvm_clear_dirty_log *log)
2325 {
2326 	int r;
2327 
2328 	mutex_lock(&kvm->slots_lock);
2329 
2330 	r = kvm_clear_dirty_log_protect(kvm, log);
2331 
2332 	mutex_unlock(&kvm->slots_lock);
2333 	return r;
2334 }
2335 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2336 
2337 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2338 {
2339 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2340 }
2341 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2342 
2343 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2344 {
2345 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2346 	u64 gen = slots->generation;
2347 	struct kvm_memory_slot *slot;
2348 
2349 	/*
2350 	 * This also protects against using a memslot from a different address space,
2351 	 * since different address spaces have different generation numbers.
2352 	 */
2353 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2354 		vcpu->last_used_slot = NULL;
2355 		vcpu->last_used_slot_gen = gen;
2356 	}
2357 
2358 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2359 	if (slot)
2360 		return slot;
2361 
2362 	/*
2363 	 * Fall back to searching all memslots. We purposely use
2364 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2365 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2366 	 */
2367 	slot = search_memslots(slots, gfn, false);
2368 	if (slot) {
2369 		vcpu->last_used_slot = slot;
2370 		return slot;
2371 	}
2372 
2373 	return NULL;
2374 }
2375 
2376 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2377 {
2378 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2379 
2380 	return kvm_is_visible_memslot(memslot);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2383 
2384 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2385 {
2386 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2387 
2388 	return kvm_is_visible_memslot(memslot);
2389 }
2390 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2391 
2392 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2393 {
2394 	struct vm_area_struct *vma;
2395 	unsigned long addr, size;
2396 
2397 	size = PAGE_SIZE;
2398 
2399 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2400 	if (kvm_is_error_hva(addr))
2401 		return PAGE_SIZE;
2402 
2403 	mmap_read_lock(current->mm);
2404 	vma = find_vma(current->mm, addr);
2405 	if (!vma)
2406 		goto out;
2407 
2408 	size = vma_kernel_pagesize(vma);
2409 
2410 out:
2411 	mmap_read_unlock(current->mm);
2412 
2413 	return size;
2414 }
2415 
2416 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2417 {
2418 	return slot->flags & KVM_MEM_READONLY;
2419 }
2420 
2421 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2422 				       gfn_t *nr_pages, bool write)
2423 {
2424 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2425 		return KVM_HVA_ERR_BAD;
2426 
2427 	if (memslot_is_readonly(slot) && write)
2428 		return KVM_HVA_ERR_RO_BAD;
2429 
2430 	if (nr_pages)
2431 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2432 
2433 	return __gfn_to_hva_memslot(slot, gfn);
2434 }
2435 
2436 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2437 				     gfn_t *nr_pages)
2438 {
2439 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2440 }
2441 
2442 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2443 					gfn_t gfn)
2444 {
2445 	return gfn_to_hva_many(slot, gfn, NULL);
2446 }
2447 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2448 
2449 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2450 {
2451 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2452 }
2453 EXPORT_SYMBOL_GPL(gfn_to_hva);
2454 
2455 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2456 {
2457 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2460 
2461 /*
2462  * Return the hva of a @gfn and the R/W attribute if possible.
2463  *
2464  * @slot: the kvm_memory_slot which contains @gfn
2465  * @gfn: the gfn to be translated
2466  * @writable: used to return the read/write attribute of the @slot if the hva
2467  * is valid and @writable is not NULL
2468  */
2469 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2470 				      gfn_t gfn, bool *writable)
2471 {
2472 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2473 
2474 	if (!kvm_is_error_hva(hva) && writable)
2475 		*writable = !memslot_is_readonly(slot);
2476 
2477 	return hva;
2478 }
2479 
2480 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2481 {
2482 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2483 
2484 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2485 }
2486 
2487 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2488 {
2489 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2490 
2491 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2492 }
2493 
2494 static inline int check_user_page_hwpoison(unsigned long addr)
2495 {
2496 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2497 
2498 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2499 	return rc == -EHWPOISON;
2500 }
2501 
2502 /*
2503  * The fast path to get the writable pfn which will be stored in @pfn,
2504  * true indicates success, otherwise false is returned.  It's also the
2505  * only part that runs if we can in atomic context.
2506  */
2507 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2508 			    bool *writable, kvm_pfn_t *pfn)
2509 {
2510 	struct page *page[1];
2511 
2512 	/*
2513 	 * Fast pin a writable pfn only if it is a write fault request
2514 	 * or the caller allows to map a writable pfn for a read fault
2515 	 * request.
2516 	 */
2517 	if (!(write_fault || writable))
2518 		return false;
2519 
2520 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2521 		*pfn = page_to_pfn(page[0]);
2522 
2523 		if (writable)
2524 			*writable = true;
2525 		return true;
2526 	}
2527 
2528 	return false;
2529 }
2530 
2531 /*
2532  * The slow path to get the pfn of the specified host virtual address,
2533  * 1 indicates success, -errno is returned if error is detected.
2534  */
2535 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2536 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2537 {
2538 	unsigned int flags = FOLL_HWPOISON;
2539 	struct page *page;
2540 	int npages;
2541 
2542 	might_sleep();
2543 
2544 	if (writable)
2545 		*writable = write_fault;
2546 
2547 	if (write_fault)
2548 		flags |= FOLL_WRITE;
2549 	if (async)
2550 		flags |= FOLL_NOWAIT;
2551 	if (interruptible)
2552 		flags |= FOLL_INTERRUPTIBLE;
2553 
2554 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2555 	if (npages != 1)
2556 		return npages;
2557 
2558 	/* map read fault as writable if possible */
2559 	if (unlikely(!write_fault) && writable) {
2560 		struct page *wpage;
2561 
2562 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2563 			*writable = true;
2564 			put_page(page);
2565 			page = wpage;
2566 		}
2567 	}
2568 	*pfn = page_to_pfn(page);
2569 	return npages;
2570 }
2571 
2572 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2573 {
2574 	if (unlikely(!(vma->vm_flags & VM_READ)))
2575 		return false;
2576 
2577 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2578 		return false;
2579 
2580 	return true;
2581 }
2582 
2583 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2584 {
2585 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2586 
2587 	if (!page)
2588 		return 1;
2589 
2590 	return get_page_unless_zero(page);
2591 }
2592 
2593 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2594 			       unsigned long addr, bool write_fault,
2595 			       bool *writable, kvm_pfn_t *p_pfn)
2596 {
2597 	kvm_pfn_t pfn;
2598 	pte_t *ptep;
2599 	spinlock_t *ptl;
2600 	int r;
2601 
2602 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2603 	if (r) {
2604 		/*
2605 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2606 		 * not call the fault handler, so do it here.
2607 		 */
2608 		bool unlocked = false;
2609 		r = fixup_user_fault(current->mm, addr,
2610 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2611 				     &unlocked);
2612 		if (unlocked)
2613 			return -EAGAIN;
2614 		if (r)
2615 			return r;
2616 
2617 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2618 		if (r)
2619 			return r;
2620 	}
2621 
2622 	if (write_fault && !pte_write(*ptep)) {
2623 		pfn = KVM_PFN_ERR_RO_FAULT;
2624 		goto out;
2625 	}
2626 
2627 	if (writable)
2628 		*writable = pte_write(*ptep);
2629 	pfn = pte_pfn(*ptep);
2630 
2631 	/*
2632 	 * Get a reference here because callers of *hva_to_pfn* and
2633 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2634 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2635 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2636 	 * simply do nothing for reserved pfns.
2637 	 *
2638 	 * Whoever called remap_pfn_range is also going to call e.g.
2639 	 * unmap_mapping_range before the underlying pages are freed,
2640 	 * causing a call to our MMU notifier.
2641 	 *
2642 	 * Certain IO or PFNMAP mappings can be backed with valid
2643 	 * struct pages, but be allocated without refcounting e.g.,
2644 	 * tail pages of non-compound higher order allocations, which
2645 	 * would then underflow the refcount when the caller does the
2646 	 * required put_page. Don't allow those pages here.
2647 	 */
2648 	if (!kvm_try_get_pfn(pfn))
2649 		r = -EFAULT;
2650 
2651 out:
2652 	pte_unmap_unlock(ptep, ptl);
2653 	*p_pfn = pfn;
2654 
2655 	return r;
2656 }
2657 
2658 /*
2659  * Pin guest page in memory and return its pfn.
2660  * @addr: host virtual address which maps memory to the guest
2661  * @atomic: whether this function can sleep
2662  * @interruptible: whether the process can be interrupted by non-fatal signals
2663  * @async: whether this function need to wait IO complete if the
2664  *         host page is not in the memory
2665  * @write_fault: whether we should get a writable host page
2666  * @writable: whether it allows to map a writable host page for !@write_fault
2667  *
2668  * The function will map a writable host page for these two cases:
2669  * 1): @write_fault = true
2670  * 2): @write_fault = false && @writable, @writable will tell the caller
2671  *     whether the mapping is writable.
2672  */
2673 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2674 		     bool *async, bool write_fault, bool *writable)
2675 {
2676 	struct vm_area_struct *vma;
2677 	kvm_pfn_t pfn;
2678 	int npages, r;
2679 
2680 	/* we can do it either atomically or asynchronously, not both */
2681 	BUG_ON(atomic && async);
2682 
2683 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2684 		return pfn;
2685 
2686 	if (atomic)
2687 		return KVM_PFN_ERR_FAULT;
2688 
2689 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2690 				 writable, &pfn);
2691 	if (npages == 1)
2692 		return pfn;
2693 	if (npages == -EINTR)
2694 		return KVM_PFN_ERR_SIGPENDING;
2695 
2696 	mmap_read_lock(current->mm);
2697 	if (npages == -EHWPOISON ||
2698 	      (!async && check_user_page_hwpoison(addr))) {
2699 		pfn = KVM_PFN_ERR_HWPOISON;
2700 		goto exit;
2701 	}
2702 
2703 retry:
2704 	vma = vma_lookup(current->mm, addr);
2705 
2706 	if (vma == NULL)
2707 		pfn = KVM_PFN_ERR_FAULT;
2708 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2709 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2710 		if (r == -EAGAIN)
2711 			goto retry;
2712 		if (r < 0)
2713 			pfn = KVM_PFN_ERR_FAULT;
2714 	} else {
2715 		if (async && vma_is_valid(vma, write_fault))
2716 			*async = true;
2717 		pfn = KVM_PFN_ERR_FAULT;
2718 	}
2719 exit:
2720 	mmap_read_unlock(current->mm);
2721 	return pfn;
2722 }
2723 
2724 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2725 			       bool atomic, bool interruptible, bool *async,
2726 			       bool write_fault, bool *writable, hva_t *hva)
2727 {
2728 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2729 
2730 	if (hva)
2731 		*hva = addr;
2732 
2733 	if (addr == KVM_HVA_ERR_RO_BAD) {
2734 		if (writable)
2735 			*writable = false;
2736 		return KVM_PFN_ERR_RO_FAULT;
2737 	}
2738 
2739 	if (kvm_is_error_hva(addr)) {
2740 		if (writable)
2741 			*writable = false;
2742 		return KVM_PFN_NOSLOT;
2743 	}
2744 
2745 	/* Do not map writable pfn in the readonly memslot. */
2746 	if (writable && memslot_is_readonly(slot)) {
2747 		*writable = false;
2748 		writable = NULL;
2749 	}
2750 
2751 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2752 			  writable);
2753 }
2754 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2755 
2756 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2757 		      bool *writable)
2758 {
2759 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2760 				    NULL, write_fault, writable, NULL);
2761 }
2762 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2763 
2764 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2765 {
2766 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2767 				    NULL, NULL);
2768 }
2769 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2770 
2771 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2772 {
2773 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2774 				    NULL, NULL);
2775 }
2776 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2777 
2778 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2779 {
2780 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2783 
2784 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2785 {
2786 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2787 }
2788 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2789 
2790 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2791 {
2792 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2795 
2796 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2797 			    struct page **pages, int nr_pages)
2798 {
2799 	unsigned long addr;
2800 	gfn_t entry = 0;
2801 
2802 	addr = gfn_to_hva_many(slot, gfn, &entry);
2803 	if (kvm_is_error_hva(addr))
2804 		return -1;
2805 
2806 	if (entry < nr_pages)
2807 		return 0;
2808 
2809 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2810 }
2811 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2812 
2813 /*
2814  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2815  * backed by 'struct page'.  A valid example is if the backing memslot is
2816  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2817  * been elevated by gfn_to_pfn().
2818  */
2819 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2820 {
2821 	struct page *page;
2822 	kvm_pfn_t pfn;
2823 
2824 	pfn = gfn_to_pfn(kvm, gfn);
2825 
2826 	if (is_error_noslot_pfn(pfn))
2827 		return KVM_ERR_PTR_BAD_PAGE;
2828 
2829 	page = kvm_pfn_to_refcounted_page(pfn);
2830 	if (!page)
2831 		return KVM_ERR_PTR_BAD_PAGE;
2832 
2833 	return page;
2834 }
2835 EXPORT_SYMBOL_GPL(gfn_to_page);
2836 
2837 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2838 {
2839 	if (dirty)
2840 		kvm_release_pfn_dirty(pfn);
2841 	else
2842 		kvm_release_pfn_clean(pfn);
2843 }
2844 
2845 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2846 {
2847 	kvm_pfn_t pfn;
2848 	void *hva = NULL;
2849 	struct page *page = KVM_UNMAPPED_PAGE;
2850 
2851 	if (!map)
2852 		return -EINVAL;
2853 
2854 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2855 	if (is_error_noslot_pfn(pfn))
2856 		return -EINVAL;
2857 
2858 	if (pfn_valid(pfn)) {
2859 		page = pfn_to_page(pfn);
2860 		hva = kmap(page);
2861 #ifdef CONFIG_HAS_IOMEM
2862 	} else {
2863 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2864 #endif
2865 	}
2866 
2867 	if (!hva)
2868 		return -EFAULT;
2869 
2870 	map->page = page;
2871 	map->hva = hva;
2872 	map->pfn = pfn;
2873 	map->gfn = gfn;
2874 
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2878 
2879 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2880 {
2881 	if (!map)
2882 		return;
2883 
2884 	if (!map->hva)
2885 		return;
2886 
2887 	if (map->page != KVM_UNMAPPED_PAGE)
2888 		kunmap(map->page);
2889 #ifdef CONFIG_HAS_IOMEM
2890 	else
2891 		memunmap(map->hva);
2892 #endif
2893 
2894 	if (dirty)
2895 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2896 
2897 	kvm_release_pfn(map->pfn, dirty);
2898 
2899 	map->hva = NULL;
2900 	map->page = NULL;
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2903 
2904 static bool kvm_is_ad_tracked_page(struct page *page)
2905 {
2906 	/*
2907 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2908 	 * touched (e.g. set dirty) except by its owner".
2909 	 */
2910 	return !PageReserved(page);
2911 }
2912 
2913 static void kvm_set_page_dirty(struct page *page)
2914 {
2915 	if (kvm_is_ad_tracked_page(page))
2916 		SetPageDirty(page);
2917 }
2918 
2919 static void kvm_set_page_accessed(struct page *page)
2920 {
2921 	if (kvm_is_ad_tracked_page(page))
2922 		mark_page_accessed(page);
2923 }
2924 
2925 void kvm_release_page_clean(struct page *page)
2926 {
2927 	WARN_ON(is_error_page(page));
2928 
2929 	kvm_set_page_accessed(page);
2930 	put_page(page);
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2933 
2934 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2935 {
2936 	struct page *page;
2937 
2938 	if (is_error_noslot_pfn(pfn))
2939 		return;
2940 
2941 	page = kvm_pfn_to_refcounted_page(pfn);
2942 	if (!page)
2943 		return;
2944 
2945 	kvm_release_page_clean(page);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2948 
2949 void kvm_release_page_dirty(struct page *page)
2950 {
2951 	WARN_ON(is_error_page(page));
2952 
2953 	kvm_set_page_dirty(page);
2954 	kvm_release_page_clean(page);
2955 }
2956 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2957 
2958 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2959 {
2960 	struct page *page;
2961 
2962 	if (is_error_noslot_pfn(pfn))
2963 		return;
2964 
2965 	page = kvm_pfn_to_refcounted_page(pfn);
2966 	if (!page)
2967 		return;
2968 
2969 	kvm_release_page_dirty(page);
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2972 
2973 /*
2974  * Note, checking for an error/noslot pfn is the caller's responsibility when
2975  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2976  * "set" helpers are not to be used when the pfn might point at garbage.
2977  */
2978 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2979 {
2980 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2981 		return;
2982 
2983 	if (pfn_valid(pfn))
2984 		kvm_set_page_dirty(pfn_to_page(pfn));
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2987 
2988 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2989 {
2990 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2991 		return;
2992 
2993 	if (pfn_valid(pfn))
2994 		kvm_set_page_accessed(pfn_to_page(pfn));
2995 }
2996 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2997 
2998 static int next_segment(unsigned long len, int offset)
2999 {
3000 	if (len > PAGE_SIZE - offset)
3001 		return PAGE_SIZE - offset;
3002 	else
3003 		return len;
3004 }
3005 
3006 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3007 				 void *data, int offset, int len)
3008 {
3009 	int r;
3010 	unsigned long addr;
3011 
3012 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3013 	if (kvm_is_error_hva(addr))
3014 		return -EFAULT;
3015 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3016 	if (r)
3017 		return -EFAULT;
3018 	return 0;
3019 }
3020 
3021 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3022 			int len)
3023 {
3024 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3025 
3026 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3029 
3030 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3031 			     int offset, int len)
3032 {
3033 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3034 
3035 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3036 }
3037 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3038 
3039 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3040 {
3041 	gfn_t gfn = gpa >> PAGE_SHIFT;
3042 	int seg;
3043 	int offset = offset_in_page(gpa);
3044 	int ret;
3045 
3046 	while ((seg = next_segment(len, offset)) != 0) {
3047 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3048 		if (ret < 0)
3049 			return ret;
3050 		offset = 0;
3051 		len -= seg;
3052 		data += seg;
3053 		++gfn;
3054 	}
3055 	return 0;
3056 }
3057 EXPORT_SYMBOL_GPL(kvm_read_guest);
3058 
3059 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3060 {
3061 	gfn_t gfn = gpa >> PAGE_SHIFT;
3062 	int seg;
3063 	int offset = offset_in_page(gpa);
3064 	int ret;
3065 
3066 	while ((seg = next_segment(len, offset)) != 0) {
3067 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3068 		if (ret < 0)
3069 			return ret;
3070 		offset = 0;
3071 		len -= seg;
3072 		data += seg;
3073 		++gfn;
3074 	}
3075 	return 0;
3076 }
3077 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3078 
3079 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3080 			           void *data, int offset, unsigned long len)
3081 {
3082 	int r;
3083 	unsigned long addr;
3084 
3085 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3086 	if (kvm_is_error_hva(addr))
3087 		return -EFAULT;
3088 	pagefault_disable();
3089 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3090 	pagefault_enable();
3091 	if (r)
3092 		return -EFAULT;
3093 	return 0;
3094 }
3095 
3096 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3097 			       void *data, unsigned long len)
3098 {
3099 	gfn_t gfn = gpa >> PAGE_SHIFT;
3100 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3101 	int offset = offset_in_page(gpa);
3102 
3103 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3104 }
3105 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3106 
3107 static int __kvm_write_guest_page(struct kvm *kvm,
3108 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3109 			          const void *data, int offset, int len)
3110 {
3111 	int r;
3112 	unsigned long addr;
3113 
3114 	addr = gfn_to_hva_memslot(memslot, gfn);
3115 	if (kvm_is_error_hva(addr))
3116 		return -EFAULT;
3117 	r = __copy_to_user((void __user *)addr + offset, data, len);
3118 	if (r)
3119 		return -EFAULT;
3120 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3121 	return 0;
3122 }
3123 
3124 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3125 			 const void *data, int offset, int len)
3126 {
3127 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3128 
3129 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3132 
3133 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3134 			      const void *data, int offset, int len)
3135 {
3136 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3137 
3138 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3139 }
3140 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3141 
3142 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3143 		    unsigned long len)
3144 {
3145 	gfn_t gfn = gpa >> PAGE_SHIFT;
3146 	int seg;
3147 	int offset = offset_in_page(gpa);
3148 	int ret;
3149 
3150 	while ((seg = next_segment(len, offset)) != 0) {
3151 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3152 		if (ret < 0)
3153 			return ret;
3154 		offset = 0;
3155 		len -= seg;
3156 		data += seg;
3157 		++gfn;
3158 	}
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_write_guest);
3162 
3163 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3164 		         unsigned long len)
3165 {
3166 	gfn_t gfn = gpa >> PAGE_SHIFT;
3167 	int seg;
3168 	int offset = offset_in_page(gpa);
3169 	int ret;
3170 
3171 	while ((seg = next_segment(len, offset)) != 0) {
3172 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3173 		if (ret < 0)
3174 			return ret;
3175 		offset = 0;
3176 		len -= seg;
3177 		data += seg;
3178 		++gfn;
3179 	}
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3183 
3184 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3185 				       struct gfn_to_hva_cache *ghc,
3186 				       gpa_t gpa, unsigned long len)
3187 {
3188 	int offset = offset_in_page(gpa);
3189 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3190 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3191 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3192 	gfn_t nr_pages_avail;
3193 
3194 	/* Update ghc->generation before performing any error checks. */
3195 	ghc->generation = slots->generation;
3196 
3197 	if (start_gfn > end_gfn) {
3198 		ghc->hva = KVM_HVA_ERR_BAD;
3199 		return -EINVAL;
3200 	}
3201 
3202 	/*
3203 	 * If the requested region crosses two memslots, we still
3204 	 * verify that the entire region is valid here.
3205 	 */
3206 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3207 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3208 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3209 					   &nr_pages_avail);
3210 		if (kvm_is_error_hva(ghc->hva))
3211 			return -EFAULT;
3212 	}
3213 
3214 	/* Use the slow path for cross page reads and writes. */
3215 	if (nr_pages_needed == 1)
3216 		ghc->hva += offset;
3217 	else
3218 		ghc->memslot = NULL;
3219 
3220 	ghc->gpa = gpa;
3221 	ghc->len = len;
3222 	return 0;
3223 }
3224 
3225 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3226 			      gpa_t gpa, unsigned long len)
3227 {
3228 	struct kvm_memslots *slots = kvm_memslots(kvm);
3229 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3230 }
3231 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3232 
3233 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3234 				  void *data, unsigned int offset,
3235 				  unsigned long len)
3236 {
3237 	struct kvm_memslots *slots = kvm_memslots(kvm);
3238 	int r;
3239 	gpa_t gpa = ghc->gpa + offset;
3240 
3241 	if (WARN_ON_ONCE(len + offset > ghc->len))
3242 		return -EINVAL;
3243 
3244 	if (slots->generation != ghc->generation) {
3245 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3246 			return -EFAULT;
3247 	}
3248 
3249 	if (kvm_is_error_hva(ghc->hva))
3250 		return -EFAULT;
3251 
3252 	if (unlikely(!ghc->memslot))
3253 		return kvm_write_guest(kvm, gpa, data, len);
3254 
3255 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3256 	if (r)
3257 		return -EFAULT;
3258 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3259 
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3263 
3264 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3265 			   void *data, unsigned long len)
3266 {
3267 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3268 }
3269 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3270 
3271 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3272 				 void *data, unsigned int offset,
3273 				 unsigned long len)
3274 {
3275 	struct kvm_memslots *slots = kvm_memslots(kvm);
3276 	int r;
3277 	gpa_t gpa = ghc->gpa + offset;
3278 
3279 	if (WARN_ON_ONCE(len + offset > ghc->len))
3280 		return -EINVAL;
3281 
3282 	if (slots->generation != ghc->generation) {
3283 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3284 			return -EFAULT;
3285 	}
3286 
3287 	if (kvm_is_error_hva(ghc->hva))
3288 		return -EFAULT;
3289 
3290 	if (unlikely(!ghc->memslot))
3291 		return kvm_read_guest(kvm, gpa, data, len);
3292 
3293 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3294 	if (r)
3295 		return -EFAULT;
3296 
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3300 
3301 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3302 			  void *data, unsigned long len)
3303 {
3304 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3305 }
3306 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3307 
3308 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3309 {
3310 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3311 	gfn_t gfn = gpa >> PAGE_SHIFT;
3312 	int seg;
3313 	int offset = offset_in_page(gpa);
3314 	int ret;
3315 
3316 	while ((seg = next_segment(len, offset)) != 0) {
3317 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3318 		if (ret < 0)
3319 			return ret;
3320 		offset = 0;
3321 		len -= seg;
3322 		++gfn;
3323 	}
3324 	return 0;
3325 }
3326 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3327 
3328 void mark_page_dirty_in_slot(struct kvm *kvm,
3329 			     const struct kvm_memory_slot *memslot,
3330 		 	     gfn_t gfn)
3331 {
3332 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3333 
3334 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3335 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3336 		return;
3337 
3338 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3339 #endif
3340 
3341 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3342 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3343 		u32 slot = (memslot->as_id << 16) | memslot->id;
3344 
3345 		if (kvm->dirty_ring_size && vcpu)
3346 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3347 		else if (memslot->dirty_bitmap)
3348 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3349 	}
3350 }
3351 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3352 
3353 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3354 {
3355 	struct kvm_memory_slot *memslot;
3356 
3357 	memslot = gfn_to_memslot(kvm, gfn);
3358 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3359 }
3360 EXPORT_SYMBOL_GPL(mark_page_dirty);
3361 
3362 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3363 {
3364 	struct kvm_memory_slot *memslot;
3365 
3366 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3367 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3368 }
3369 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3370 
3371 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3372 {
3373 	if (!vcpu->sigset_active)
3374 		return;
3375 
3376 	/*
3377 	 * This does a lockless modification of ->real_blocked, which is fine
3378 	 * because, only current can change ->real_blocked and all readers of
3379 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3380 	 * of ->blocked.
3381 	 */
3382 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3383 }
3384 
3385 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3386 {
3387 	if (!vcpu->sigset_active)
3388 		return;
3389 
3390 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3391 	sigemptyset(&current->real_blocked);
3392 }
3393 
3394 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3395 {
3396 	unsigned int old, val, grow, grow_start;
3397 
3398 	old = val = vcpu->halt_poll_ns;
3399 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3400 	grow = READ_ONCE(halt_poll_ns_grow);
3401 	if (!grow)
3402 		goto out;
3403 
3404 	val *= grow;
3405 	if (val < grow_start)
3406 		val = grow_start;
3407 
3408 	vcpu->halt_poll_ns = val;
3409 out:
3410 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3411 }
3412 
3413 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3414 {
3415 	unsigned int old, val, shrink, grow_start;
3416 
3417 	old = val = vcpu->halt_poll_ns;
3418 	shrink = READ_ONCE(halt_poll_ns_shrink);
3419 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3420 	if (shrink == 0)
3421 		val = 0;
3422 	else
3423 		val /= shrink;
3424 
3425 	if (val < grow_start)
3426 		val = 0;
3427 
3428 	vcpu->halt_poll_ns = val;
3429 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3430 }
3431 
3432 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3433 {
3434 	int ret = -EINTR;
3435 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3436 
3437 	if (kvm_arch_vcpu_runnable(vcpu))
3438 		goto out;
3439 	if (kvm_cpu_has_pending_timer(vcpu))
3440 		goto out;
3441 	if (signal_pending(current))
3442 		goto out;
3443 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3444 		goto out;
3445 
3446 	ret = 0;
3447 out:
3448 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3449 	return ret;
3450 }
3451 
3452 /*
3453  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3454  * pending.  This is mostly used when halting a vCPU, but may also be used
3455  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3456  */
3457 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3458 {
3459 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3460 	bool waited = false;
3461 
3462 	vcpu->stat.generic.blocking = 1;
3463 
3464 	preempt_disable();
3465 	kvm_arch_vcpu_blocking(vcpu);
3466 	prepare_to_rcuwait(wait);
3467 	preempt_enable();
3468 
3469 	for (;;) {
3470 		set_current_state(TASK_INTERRUPTIBLE);
3471 
3472 		if (kvm_vcpu_check_block(vcpu) < 0)
3473 			break;
3474 
3475 		waited = true;
3476 		schedule();
3477 	}
3478 
3479 	preempt_disable();
3480 	finish_rcuwait(wait);
3481 	kvm_arch_vcpu_unblocking(vcpu);
3482 	preempt_enable();
3483 
3484 	vcpu->stat.generic.blocking = 0;
3485 
3486 	return waited;
3487 }
3488 
3489 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3490 					  ktime_t end, bool success)
3491 {
3492 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3493 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3494 
3495 	++vcpu->stat.generic.halt_attempted_poll;
3496 
3497 	if (success) {
3498 		++vcpu->stat.generic.halt_successful_poll;
3499 
3500 		if (!vcpu_valid_wakeup(vcpu))
3501 			++vcpu->stat.generic.halt_poll_invalid;
3502 
3503 		stats->halt_poll_success_ns += poll_ns;
3504 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3505 	} else {
3506 		stats->halt_poll_fail_ns += poll_ns;
3507 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3508 	}
3509 }
3510 
3511 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3512 {
3513 	struct kvm *kvm = vcpu->kvm;
3514 
3515 	if (kvm->override_halt_poll_ns) {
3516 		/*
3517 		 * Ensure kvm->max_halt_poll_ns is not read before
3518 		 * kvm->override_halt_poll_ns.
3519 		 *
3520 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3521 		 */
3522 		smp_rmb();
3523 		return READ_ONCE(kvm->max_halt_poll_ns);
3524 	}
3525 
3526 	return READ_ONCE(halt_poll_ns);
3527 }
3528 
3529 /*
3530  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3531  * polling is enabled, busy wait for a short time before blocking to avoid the
3532  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3533  * is halted.
3534  */
3535 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3536 {
3537 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3538 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3539 	ktime_t start, cur, poll_end;
3540 	bool waited = false;
3541 	bool do_halt_poll;
3542 	u64 halt_ns;
3543 
3544 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3545 		vcpu->halt_poll_ns = max_halt_poll_ns;
3546 
3547 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3548 
3549 	start = cur = poll_end = ktime_get();
3550 	if (do_halt_poll) {
3551 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3552 
3553 		do {
3554 			if (kvm_vcpu_check_block(vcpu) < 0)
3555 				goto out;
3556 			cpu_relax();
3557 			poll_end = cur = ktime_get();
3558 		} while (kvm_vcpu_can_poll(cur, stop));
3559 	}
3560 
3561 	waited = kvm_vcpu_block(vcpu);
3562 
3563 	cur = ktime_get();
3564 	if (waited) {
3565 		vcpu->stat.generic.halt_wait_ns +=
3566 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3567 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3568 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3569 	}
3570 out:
3571 	/* The total time the vCPU was "halted", including polling time. */
3572 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3573 
3574 	/*
3575 	 * Note, halt-polling is considered successful so long as the vCPU was
3576 	 * never actually scheduled out, i.e. even if the wake event arrived
3577 	 * after of the halt-polling loop itself, but before the full wait.
3578 	 */
3579 	if (do_halt_poll)
3580 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3581 
3582 	if (halt_poll_allowed) {
3583 		/* Recompute the max halt poll time in case it changed. */
3584 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3585 
3586 		if (!vcpu_valid_wakeup(vcpu)) {
3587 			shrink_halt_poll_ns(vcpu);
3588 		} else if (max_halt_poll_ns) {
3589 			if (halt_ns <= vcpu->halt_poll_ns)
3590 				;
3591 			/* we had a long block, shrink polling */
3592 			else if (vcpu->halt_poll_ns &&
3593 				 halt_ns > max_halt_poll_ns)
3594 				shrink_halt_poll_ns(vcpu);
3595 			/* we had a short halt and our poll time is too small */
3596 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3597 				 halt_ns < max_halt_poll_ns)
3598 				grow_halt_poll_ns(vcpu);
3599 		} else {
3600 			vcpu->halt_poll_ns = 0;
3601 		}
3602 	}
3603 
3604 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3607 
3608 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3609 {
3610 	if (__kvm_vcpu_wake_up(vcpu)) {
3611 		WRITE_ONCE(vcpu->ready, true);
3612 		++vcpu->stat.generic.halt_wakeup;
3613 		return true;
3614 	}
3615 
3616 	return false;
3617 }
3618 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3619 
3620 #ifndef CONFIG_S390
3621 /*
3622  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3623  */
3624 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3625 {
3626 	int me, cpu;
3627 
3628 	if (kvm_vcpu_wake_up(vcpu))
3629 		return;
3630 
3631 	me = get_cpu();
3632 	/*
3633 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3634 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3635 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3636 	 * within the vCPU thread itself.
3637 	 */
3638 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3639 		if (vcpu->mode == IN_GUEST_MODE)
3640 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3641 		goto out;
3642 	}
3643 
3644 	/*
3645 	 * Note, the vCPU could get migrated to a different pCPU at any point
3646 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3647 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3648 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3649 	 * vCPU also requires it to leave IN_GUEST_MODE.
3650 	 */
3651 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3652 		cpu = READ_ONCE(vcpu->cpu);
3653 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3654 			smp_send_reschedule(cpu);
3655 	}
3656 out:
3657 	put_cpu();
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3660 #endif /* !CONFIG_S390 */
3661 
3662 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3663 {
3664 	struct pid *pid;
3665 	struct task_struct *task = NULL;
3666 	int ret = 0;
3667 
3668 	rcu_read_lock();
3669 	pid = rcu_dereference(target->pid);
3670 	if (pid)
3671 		task = get_pid_task(pid, PIDTYPE_PID);
3672 	rcu_read_unlock();
3673 	if (!task)
3674 		return ret;
3675 	ret = yield_to(task, 1);
3676 	put_task_struct(task);
3677 
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3681 
3682 /*
3683  * Helper that checks whether a VCPU is eligible for directed yield.
3684  * Most eligible candidate to yield is decided by following heuristics:
3685  *
3686  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3687  *  (preempted lock holder), indicated by @in_spin_loop.
3688  *  Set at the beginning and cleared at the end of interception/PLE handler.
3689  *
3690  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3691  *  chance last time (mostly it has become eligible now since we have probably
3692  *  yielded to lockholder in last iteration. This is done by toggling
3693  *  @dy_eligible each time a VCPU checked for eligibility.)
3694  *
3695  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3696  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3697  *  burning. Giving priority for a potential lock-holder increases lock
3698  *  progress.
3699  *
3700  *  Since algorithm is based on heuristics, accessing another VCPU data without
3701  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3702  *  and continue with next VCPU and so on.
3703  */
3704 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3705 {
3706 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3707 	bool eligible;
3708 
3709 	eligible = !vcpu->spin_loop.in_spin_loop ||
3710 		    vcpu->spin_loop.dy_eligible;
3711 
3712 	if (vcpu->spin_loop.in_spin_loop)
3713 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3714 
3715 	return eligible;
3716 #else
3717 	return true;
3718 #endif
3719 }
3720 
3721 /*
3722  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3723  * a vcpu_load/vcpu_put pair.  However, for most architectures
3724  * kvm_arch_vcpu_runnable does not require vcpu_load.
3725  */
3726 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3727 {
3728 	return kvm_arch_vcpu_runnable(vcpu);
3729 }
3730 
3731 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3732 {
3733 	if (kvm_arch_dy_runnable(vcpu))
3734 		return true;
3735 
3736 #ifdef CONFIG_KVM_ASYNC_PF
3737 	if (!list_empty_careful(&vcpu->async_pf.done))
3738 		return true;
3739 #endif
3740 
3741 	return false;
3742 }
3743 
3744 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3745 {
3746 	return false;
3747 }
3748 
3749 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3750 {
3751 	struct kvm *kvm = me->kvm;
3752 	struct kvm_vcpu *vcpu;
3753 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3754 	unsigned long i;
3755 	int yielded = 0;
3756 	int try = 3;
3757 	int pass;
3758 
3759 	kvm_vcpu_set_in_spin_loop(me, true);
3760 	/*
3761 	 * We boost the priority of a VCPU that is runnable but not
3762 	 * currently running, because it got preempted by something
3763 	 * else and called schedule in __vcpu_run.  Hopefully that
3764 	 * VCPU is holding the lock that we need and will release it.
3765 	 * We approximate round-robin by starting at the last boosted VCPU.
3766 	 */
3767 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3768 		kvm_for_each_vcpu(i, vcpu, kvm) {
3769 			if (!pass && i <= last_boosted_vcpu) {
3770 				i = last_boosted_vcpu;
3771 				continue;
3772 			} else if (pass && i > last_boosted_vcpu)
3773 				break;
3774 			if (!READ_ONCE(vcpu->ready))
3775 				continue;
3776 			if (vcpu == me)
3777 				continue;
3778 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3779 				continue;
3780 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3781 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3782 			    !kvm_arch_vcpu_in_kernel(vcpu))
3783 				continue;
3784 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3785 				continue;
3786 
3787 			yielded = kvm_vcpu_yield_to(vcpu);
3788 			if (yielded > 0) {
3789 				kvm->last_boosted_vcpu = i;
3790 				break;
3791 			} else if (yielded < 0) {
3792 				try--;
3793 				if (!try)
3794 					break;
3795 			}
3796 		}
3797 	}
3798 	kvm_vcpu_set_in_spin_loop(me, false);
3799 
3800 	/* Ensure vcpu is not eligible during next spinloop */
3801 	kvm_vcpu_set_dy_eligible(me, false);
3802 }
3803 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3804 
3805 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3806 {
3807 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3808 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3809 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3810 	     kvm->dirty_ring_size / PAGE_SIZE);
3811 #else
3812 	return false;
3813 #endif
3814 }
3815 
3816 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3817 {
3818 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3819 	struct page *page;
3820 
3821 	if (vmf->pgoff == 0)
3822 		page = virt_to_page(vcpu->run);
3823 #ifdef CONFIG_X86
3824 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3825 		page = virt_to_page(vcpu->arch.pio_data);
3826 #endif
3827 #ifdef CONFIG_KVM_MMIO
3828 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3829 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3830 #endif
3831 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3832 		page = kvm_dirty_ring_get_page(
3833 		    &vcpu->dirty_ring,
3834 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3835 	else
3836 		return kvm_arch_vcpu_fault(vcpu, vmf);
3837 	get_page(page);
3838 	vmf->page = page;
3839 	return 0;
3840 }
3841 
3842 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3843 	.fault = kvm_vcpu_fault,
3844 };
3845 
3846 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3847 {
3848 	struct kvm_vcpu *vcpu = file->private_data;
3849 	unsigned long pages = vma_pages(vma);
3850 
3851 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3852 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3853 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3854 		return -EINVAL;
3855 
3856 	vma->vm_ops = &kvm_vcpu_vm_ops;
3857 	return 0;
3858 }
3859 
3860 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3861 {
3862 	struct kvm_vcpu *vcpu = filp->private_data;
3863 
3864 	kvm_put_kvm(vcpu->kvm);
3865 	return 0;
3866 }
3867 
3868 static const struct file_operations kvm_vcpu_fops = {
3869 	.release        = kvm_vcpu_release,
3870 	.unlocked_ioctl = kvm_vcpu_ioctl,
3871 	.mmap           = kvm_vcpu_mmap,
3872 	.llseek		= noop_llseek,
3873 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3874 };
3875 
3876 /*
3877  * Allocates an inode for the vcpu.
3878  */
3879 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3880 {
3881 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3882 
3883 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3884 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3885 }
3886 
3887 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3888 static int vcpu_get_pid(void *data, u64 *val)
3889 {
3890 	struct kvm_vcpu *vcpu = data;
3891 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3892 	return 0;
3893 }
3894 
3895 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3896 
3897 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3898 {
3899 	struct dentry *debugfs_dentry;
3900 	char dir_name[ITOA_MAX_LEN * 2];
3901 
3902 	if (!debugfs_initialized())
3903 		return;
3904 
3905 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3906 	debugfs_dentry = debugfs_create_dir(dir_name,
3907 					    vcpu->kvm->debugfs_dentry);
3908 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3909 			    &vcpu_get_pid_fops);
3910 
3911 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3912 }
3913 #endif
3914 
3915 /*
3916  * Creates some virtual cpus.  Good luck creating more than one.
3917  */
3918 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3919 {
3920 	int r;
3921 	struct kvm_vcpu *vcpu;
3922 	struct page *page;
3923 
3924 	if (id >= KVM_MAX_VCPU_IDS)
3925 		return -EINVAL;
3926 
3927 	mutex_lock(&kvm->lock);
3928 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3929 		mutex_unlock(&kvm->lock);
3930 		return -EINVAL;
3931 	}
3932 
3933 	r = kvm_arch_vcpu_precreate(kvm, id);
3934 	if (r) {
3935 		mutex_unlock(&kvm->lock);
3936 		return r;
3937 	}
3938 
3939 	kvm->created_vcpus++;
3940 	mutex_unlock(&kvm->lock);
3941 
3942 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3943 	if (!vcpu) {
3944 		r = -ENOMEM;
3945 		goto vcpu_decrement;
3946 	}
3947 
3948 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3949 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3950 	if (!page) {
3951 		r = -ENOMEM;
3952 		goto vcpu_free;
3953 	}
3954 	vcpu->run = page_address(page);
3955 
3956 	kvm_vcpu_init(vcpu, kvm, id);
3957 
3958 	r = kvm_arch_vcpu_create(vcpu);
3959 	if (r)
3960 		goto vcpu_free_run_page;
3961 
3962 	if (kvm->dirty_ring_size) {
3963 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3964 					 id, kvm->dirty_ring_size);
3965 		if (r)
3966 			goto arch_vcpu_destroy;
3967 	}
3968 
3969 	mutex_lock(&kvm->lock);
3970 
3971 #ifdef CONFIG_LOCKDEP
3972 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3973 	mutex_lock(&vcpu->mutex);
3974 	mutex_unlock(&vcpu->mutex);
3975 #endif
3976 
3977 	if (kvm_get_vcpu_by_id(kvm, id)) {
3978 		r = -EEXIST;
3979 		goto unlock_vcpu_destroy;
3980 	}
3981 
3982 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3983 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3984 	if (r)
3985 		goto unlock_vcpu_destroy;
3986 
3987 	/* Now it's all set up, let userspace reach it */
3988 	kvm_get_kvm(kvm);
3989 	r = create_vcpu_fd(vcpu);
3990 	if (r < 0)
3991 		goto kvm_put_xa_release;
3992 
3993 	if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3994 		r = -EINVAL;
3995 		goto kvm_put_xa_release;
3996 	}
3997 
3998 	/*
3999 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4000 	 * pointer before kvm->online_vcpu's incremented value.
4001 	 */
4002 	smp_wmb();
4003 	atomic_inc(&kvm->online_vcpus);
4004 
4005 	mutex_unlock(&kvm->lock);
4006 	kvm_arch_vcpu_postcreate(vcpu);
4007 	kvm_create_vcpu_debugfs(vcpu);
4008 	return r;
4009 
4010 kvm_put_xa_release:
4011 	kvm_put_kvm_no_destroy(kvm);
4012 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4013 unlock_vcpu_destroy:
4014 	mutex_unlock(&kvm->lock);
4015 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4016 arch_vcpu_destroy:
4017 	kvm_arch_vcpu_destroy(vcpu);
4018 vcpu_free_run_page:
4019 	free_page((unsigned long)vcpu->run);
4020 vcpu_free:
4021 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4022 vcpu_decrement:
4023 	mutex_lock(&kvm->lock);
4024 	kvm->created_vcpus--;
4025 	mutex_unlock(&kvm->lock);
4026 	return r;
4027 }
4028 
4029 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4030 {
4031 	if (sigset) {
4032 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4033 		vcpu->sigset_active = 1;
4034 		vcpu->sigset = *sigset;
4035 	} else
4036 		vcpu->sigset_active = 0;
4037 	return 0;
4038 }
4039 
4040 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4041 			      size_t size, loff_t *offset)
4042 {
4043 	struct kvm_vcpu *vcpu = file->private_data;
4044 
4045 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4046 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4047 			sizeof(vcpu->stat), user_buffer, size, offset);
4048 }
4049 
4050 static const struct file_operations kvm_vcpu_stats_fops = {
4051 	.read = kvm_vcpu_stats_read,
4052 	.llseek = noop_llseek,
4053 };
4054 
4055 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4056 {
4057 	int fd;
4058 	struct file *file;
4059 	char name[15 + ITOA_MAX_LEN + 1];
4060 
4061 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4062 
4063 	fd = get_unused_fd_flags(O_CLOEXEC);
4064 	if (fd < 0)
4065 		return fd;
4066 
4067 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4068 	if (IS_ERR(file)) {
4069 		put_unused_fd(fd);
4070 		return PTR_ERR(file);
4071 	}
4072 	file->f_mode |= FMODE_PREAD;
4073 	fd_install(fd, file);
4074 
4075 	return fd;
4076 }
4077 
4078 static long kvm_vcpu_ioctl(struct file *filp,
4079 			   unsigned int ioctl, unsigned long arg)
4080 {
4081 	struct kvm_vcpu *vcpu = filp->private_data;
4082 	void __user *argp = (void __user *)arg;
4083 	int r;
4084 	struct kvm_fpu *fpu = NULL;
4085 	struct kvm_sregs *kvm_sregs = NULL;
4086 
4087 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4088 		return -EIO;
4089 
4090 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4091 		return -EINVAL;
4092 
4093 	/*
4094 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4095 	 * execution; mutex_lock() would break them.
4096 	 */
4097 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4098 	if (r != -ENOIOCTLCMD)
4099 		return r;
4100 
4101 	if (mutex_lock_killable(&vcpu->mutex))
4102 		return -EINTR;
4103 	switch (ioctl) {
4104 	case KVM_RUN: {
4105 		struct pid *oldpid;
4106 		r = -EINVAL;
4107 		if (arg)
4108 			goto out;
4109 		oldpid = rcu_access_pointer(vcpu->pid);
4110 		if (unlikely(oldpid != task_pid(current))) {
4111 			/* The thread running this VCPU changed. */
4112 			struct pid *newpid;
4113 
4114 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4115 			if (r)
4116 				break;
4117 
4118 			newpid = get_task_pid(current, PIDTYPE_PID);
4119 			rcu_assign_pointer(vcpu->pid, newpid);
4120 			if (oldpid)
4121 				synchronize_rcu();
4122 			put_pid(oldpid);
4123 		}
4124 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4125 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4126 		break;
4127 	}
4128 	case KVM_GET_REGS: {
4129 		struct kvm_regs *kvm_regs;
4130 
4131 		r = -ENOMEM;
4132 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4133 		if (!kvm_regs)
4134 			goto out;
4135 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4136 		if (r)
4137 			goto out_free1;
4138 		r = -EFAULT;
4139 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4140 			goto out_free1;
4141 		r = 0;
4142 out_free1:
4143 		kfree(kvm_regs);
4144 		break;
4145 	}
4146 	case KVM_SET_REGS: {
4147 		struct kvm_regs *kvm_regs;
4148 
4149 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4150 		if (IS_ERR(kvm_regs)) {
4151 			r = PTR_ERR(kvm_regs);
4152 			goto out;
4153 		}
4154 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4155 		kfree(kvm_regs);
4156 		break;
4157 	}
4158 	case KVM_GET_SREGS: {
4159 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4160 				    GFP_KERNEL_ACCOUNT);
4161 		r = -ENOMEM;
4162 		if (!kvm_sregs)
4163 			goto out;
4164 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4165 		if (r)
4166 			goto out;
4167 		r = -EFAULT;
4168 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4169 			goto out;
4170 		r = 0;
4171 		break;
4172 	}
4173 	case KVM_SET_SREGS: {
4174 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4175 		if (IS_ERR(kvm_sregs)) {
4176 			r = PTR_ERR(kvm_sregs);
4177 			kvm_sregs = NULL;
4178 			goto out;
4179 		}
4180 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4181 		break;
4182 	}
4183 	case KVM_GET_MP_STATE: {
4184 		struct kvm_mp_state mp_state;
4185 
4186 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4187 		if (r)
4188 			goto out;
4189 		r = -EFAULT;
4190 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4191 			goto out;
4192 		r = 0;
4193 		break;
4194 	}
4195 	case KVM_SET_MP_STATE: {
4196 		struct kvm_mp_state mp_state;
4197 
4198 		r = -EFAULT;
4199 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4200 			goto out;
4201 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4202 		break;
4203 	}
4204 	case KVM_TRANSLATE: {
4205 		struct kvm_translation tr;
4206 
4207 		r = -EFAULT;
4208 		if (copy_from_user(&tr, argp, sizeof(tr)))
4209 			goto out;
4210 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4211 		if (r)
4212 			goto out;
4213 		r = -EFAULT;
4214 		if (copy_to_user(argp, &tr, sizeof(tr)))
4215 			goto out;
4216 		r = 0;
4217 		break;
4218 	}
4219 	case KVM_SET_GUEST_DEBUG: {
4220 		struct kvm_guest_debug dbg;
4221 
4222 		r = -EFAULT;
4223 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4224 			goto out;
4225 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4226 		break;
4227 	}
4228 	case KVM_SET_SIGNAL_MASK: {
4229 		struct kvm_signal_mask __user *sigmask_arg = argp;
4230 		struct kvm_signal_mask kvm_sigmask;
4231 		sigset_t sigset, *p;
4232 
4233 		p = NULL;
4234 		if (argp) {
4235 			r = -EFAULT;
4236 			if (copy_from_user(&kvm_sigmask, argp,
4237 					   sizeof(kvm_sigmask)))
4238 				goto out;
4239 			r = -EINVAL;
4240 			if (kvm_sigmask.len != sizeof(sigset))
4241 				goto out;
4242 			r = -EFAULT;
4243 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4244 					   sizeof(sigset)))
4245 				goto out;
4246 			p = &sigset;
4247 		}
4248 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4249 		break;
4250 	}
4251 	case KVM_GET_FPU: {
4252 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4253 		r = -ENOMEM;
4254 		if (!fpu)
4255 			goto out;
4256 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4257 		if (r)
4258 			goto out;
4259 		r = -EFAULT;
4260 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4261 			goto out;
4262 		r = 0;
4263 		break;
4264 	}
4265 	case KVM_SET_FPU: {
4266 		fpu = memdup_user(argp, sizeof(*fpu));
4267 		if (IS_ERR(fpu)) {
4268 			r = PTR_ERR(fpu);
4269 			fpu = NULL;
4270 			goto out;
4271 		}
4272 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4273 		break;
4274 	}
4275 	case KVM_GET_STATS_FD: {
4276 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4277 		break;
4278 	}
4279 	default:
4280 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4281 	}
4282 out:
4283 	mutex_unlock(&vcpu->mutex);
4284 	kfree(fpu);
4285 	kfree(kvm_sregs);
4286 	return r;
4287 }
4288 
4289 #ifdef CONFIG_KVM_COMPAT
4290 static long kvm_vcpu_compat_ioctl(struct file *filp,
4291 				  unsigned int ioctl, unsigned long arg)
4292 {
4293 	struct kvm_vcpu *vcpu = filp->private_data;
4294 	void __user *argp = compat_ptr(arg);
4295 	int r;
4296 
4297 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4298 		return -EIO;
4299 
4300 	switch (ioctl) {
4301 	case KVM_SET_SIGNAL_MASK: {
4302 		struct kvm_signal_mask __user *sigmask_arg = argp;
4303 		struct kvm_signal_mask kvm_sigmask;
4304 		sigset_t sigset;
4305 
4306 		if (argp) {
4307 			r = -EFAULT;
4308 			if (copy_from_user(&kvm_sigmask, argp,
4309 					   sizeof(kvm_sigmask)))
4310 				goto out;
4311 			r = -EINVAL;
4312 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4313 				goto out;
4314 			r = -EFAULT;
4315 			if (get_compat_sigset(&sigset,
4316 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4317 				goto out;
4318 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4319 		} else
4320 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4321 		break;
4322 	}
4323 	default:
4324 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4325 	}
4326 
4327 out:
4328 	return r;
4329 }
4330 #endif
4331 
4332 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4333 {
4334 	struct kvm_device *dev = filp->private_data;
4335 
4336 	if (dev->ops->mmap)
4337 		return dev->ops->mmap(dev, vma);
4338 
4339 	return -ENODEV;
4340 }
4341 
4342 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4343 				 int (*accessor)(struct kvm_device *dev,
4344 						 struct kvm_device_attr *attr),
4345 				 unsigned long arg)
4346 {
4347 	struct kvm_device_attr attr;
4348 
4349 	if (!accessor)
4350 		return -EPERM;
4351 
4352 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4353 		return -EFAULT;
4354 
4355 	return accessor(dev, &attr);
4356 }
4357 
4358 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4359 			     unsigned long arg)
4360 {
4361 	struct kvm_device *dev = filp->private_data;
4362 
4363 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4364 		return -EIO;
4365 
4366 	switch (ioctl) {
4367 	case KVM_SET_DEVICE_ATTR:
4368 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4369 	case KVM_GET_DEVICE_ATTR:
4370 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4371 	case KVM_HAS_DEVICE_ATTR:
4372 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4373 	default:
4374 		if (dev->ops->ioctl)
4375 			return dev->ops->ioctl(dev, ioctl, arg);
4376 
4377 		return -ENOTTY;
4378 	}
4379 }
4380 
4381 static int kvm_device_release(struct inode *inode, struct file *filp)
4382 {
4383 	struct kvm_device *dev = filp->private_data;
4384 	struct kvm *kvm = dev->kvm;
4385 
4386 	if (dev->ops->release) {
4387 		mutex_lock(&kvm->lock);
4388 		list_del(&dev->vm_node);
4389 		dev->ops->release(dev);
4390 		mutex_unlock(&kvm->lock);
4391 	}
4392 
4393 	kvm_put_kvm(kvm);
4394 	return 0;
4395 }
4396 
4397 static const struct file_operations kvm_device_fops = {
4398 	.unlocked_ioctl = kvm_device_ioctl,
4399 	.release = kvm_device_release,
4400 	KVM_COMPAT(kvm_device_ioctl),
4401 	.mmap = kvm_device_mmap,
4402 };
4403 
4404 struct kvm_device *kvm_device_from_filp(struct file *filp)
4405 {
4406 	if (filp->f_op != &kvm_device_fops)
4407 		return NULL;
4408 
4409 	return filp->private_data;
4410 }
4411 
4412 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4413 #ifdef CONFIG_KVM_MPIC
4414 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4415 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4416 #endif
4417 };
4418 
4419 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4420 {
4421 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4422 		return -ENOSPC;
4423 
4424 	if (kvm_device_ops_table[type] != NULL)
4425 		return -EEXIST;
4426 
4427 	kvm_device_ops_table[type] = ops;
4428 	return 0;
4429 }
4430 
4431 void kvm_unregister_device_ops(u32 type)
4432 {
4433 	if (kvm_device_ops_table[type] != NULL)
4434 		kvm_device_ops_table[type] = NULL;
4435 }
4436 
4437 static int kvm_ioctl_create_device(struct kvm *kvm,
4438 				   struct kvm_create_device *cd)
4439 {
4440 	const struct kvm_device_ops *ops;
4441 	struct kvm_device *dev;
4442 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4443 	int type;
4444 	int ret;
4445 
4446 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4447 		return -ENODEV;
4448 
4449 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4450 	ops = kvm_device_ops_table[type];
4451 	if (ops == NULL)
4452 		return -ENODEV;
4453 
4454 	if (test)
4455 		return 0;
4456 
4457 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4458 	if (!dev)
4459 		return -ENOMEM;
4460 
4461 	dev->ops = ops;
4462 	dev->kvm = kvm;
4463 
4464 	mutex_lock(&kvm->lock);
4465 	ret = ops->create(dev, type);
4466 	if (ret < 0) {
4467 		mutex_unlock(&kvm->lock);
4468 		kfree(dev);
4469 		return ret;
4470 	}
4471 	list_add(&dev->vm_node, &kvm->devices);
4472 	mutex_unlock(&kvm->lock);
4473 
4474 	if (ops->init)
4475 		ops->init(dev);
4476 
4477 	kvm_get_kvm(kvm);
4478 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4479 	if (ret < 0) {
4480 		kvm_put_kvm_no_destroy(kvm);
4481 		mutex_lock(&kvm->lock);
4482 		list_del(&dev->vm_node);
4483 		if (ops->release)
4484 			ops->release(dev);
4485 		mutex_unlock(&kvm->lock);
4486 		if (ops->destroy)
4487 			ops->destroy(dev);
4488 		return ret;
4489 	}
4490 
4491 	cd->fd = ret;
4492 	return 0;
4493 }
4494 
4495 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4496 {
4497 	switch (arg) {
4498 	case KVM_CAP_USER_MEMORY:
4499 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4500 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4501 	case KVM_CAP_INTERNAL_ERROR_DATA:
4502 #ifdef CONFIG_HAVE_KVM_MSI
4503 	case KVM_CAP_SIGNAL_MSI:
4504 #endif
4505 #ifdef CONFIG_HAVE_KVM_IRQFD
4506 	case KVM_CAP_IRQFD:
4507 #endif
4508 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4509 	case KVM_CAP_CHECK_EXTENSION_VM:
4510 	case KVM_CAP_ENABLE_CAP_VM:
4511 	case KVM_CAP_HALT_POLL:
4512 		return 1;
4513 #ifdef CONFIG_KVM_MMIO
4514 	case KVM_CAP_COALESCED_MMIO:
4515 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4516 	case KVM_CAP_COALESCED_PIO:
4517 		return 1;
4518 #endif
4519 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4520 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4521 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4522 #endif
4523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4524 	case KVM_CAP_IRQ_ROUTING:
4525 		return KVM_MAX_IRQ_ROUTES;
4526 #endif
4527 #if KVM_ADDRESS_SPACE_NUM > 1
4528 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4529 		return KVM_ADDRESS_SPACE_NUM;
4530 #endif
4531 	case KVM_CAP_NR_MEMSLOTS:
4532 		return KVM_USER_MEM_SLOTS;
4533 	case KVM_CAP_DIRTY_LOG_RING:
4534 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4535 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4536 #else
4537 		return 0;
4538 #endif
4539 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4540 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4541 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4542 #else
4543 		return 0;
4544 #endif
4545 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4546 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4547 #endif
4548 	case KVM_CAP_BINARY_STATS_FD:
4549 	case KVM_CAP_SYSTEM_EVENT_DATA:
4550 		return 1;
4551 	default:
4552 		break;
4553 	}
4554 	return kvm_vm_ioctl_check_extension(kvm, arg);
4555 }
4556 
4557 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4558 {
4559 	int r;
4560 
4561 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4562 		return -EINVAL;
4563 
4564 	/* the size should be power of 2 */
4565 	if (!size || (size & (size - 1)))
4566 		return -EINVAL;
4567 
4568 	/* Should be bigger to keep the reserved entries, or a page */
4569 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4570 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4571 		return -EINVAL;
4572 
4573 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4574 	    sizeof(struct kvm_dirty_gfn))
4575 		return -E2BIG;
4576 
4577 	/* We only allow it to set once */
4578 	if (kvm->dirty_ring_size)
4579 		return -EINVAL;
4580 
4581 	mutex_lock(&kvm->lock);
4582 
4583 	if (kvm->created_vcpus) {
4584 		/* We don't allow to change this value after vcpu created */
4585 		r = -EINVAL;
4586 	} else {
4587 		kvm->dirty_ring_size = size;
4588 		r = 0;
4589 	}
4590 
4591 	mutex_unlock(&kvm->lock);
4592 	return r;
4593 }
4594 
4595 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4596 {
4597 	unsigned long i;
4598 	struct kvm_vcpu *vcpu;
4599 	int cleared = 0;
4600 
4601 	if (!kvm->dirty_ring_size)
4602 		return -EINVAL;
4603 
4604 	mutex_lock(&kvm->slots_lock);
4605 
4606 	kvm_for_each_vcpu(i, vcpu, kvm)
4607 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4608 
4609 	mutex_unlock(&kvm->slots_lock);
4610 
4611 	if (cleared)
4612 		kvm_flush_remote_tlbs(kvm);
4613 
4614 	return cleared;
4615 }
4616 
4617 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4618 						  struct kvm_enable_cap *cap)
4619 {
4620 	return -EINVAL;
4621 }
4622 
4623 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4624 {
4625 	int i;
4626 
4627 	lockdep_assert_held(&kvm->slots_lock);
4628 
4629 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4630 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4631 			return false;
4632 	}
4633 
4634 	return true;
4635 }
4636 
4637 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4638 					   struct kvm_enable_cap *cap)
4639 {
4640 	switch (cap->cap) {
4641 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4642 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4643 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4644 
4645 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4646 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4647 
4648 		if (cap->flags || (cap->args[0] & ~allowed_options))
4649 			return -EINVAL;
4650 		kvm->manual_dirty_log_protect = cap->args[0];
4651 		return 0;
4652 	}
4653 #endif
4654 	case KVM_CAP_HALT_POLL: {
4655 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4656 			return -EINVAL;
4657 
4658 		kvm->max_halt_poll_ns = cap->args[0];
4659 
4660 		/*
4661 		 * Ensure kvm->override_halt_poll_ns does not become visible
4662 		 * before kvm->max_halt_poll_ns.
4663 		 *
4664 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4665 		 */
4666 		smp_wmb();
4667 		kvm->override_halt_poll_ns = true;
4668 
4669 		return 0;
4670 	}
4671 	case KVM_CAP_DIRTY_LOG_RING:
4672 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4673 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4674 			return -EINVAL;
4675 
4676 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4677 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4678 		int r = -EINVAL;
4679 
4680 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4681 		    !kvm->dirty_ring_size || cap->flags)
4682 			return r;
4683 
4684 		mutex_lock(&kvm->slots_lock);
4685 
4686 		/*
4687 		 * For simplicity, allow enabling ring+bitmap if and only if
4688 		 * there are no memslots, e.g. to ensure all memslots allocate
4689 		 * a bitmap after the capability is enabled.
4690 		 */
4691 		if (kvm_are_all_memslots_empty(kvm)) {
4692 			kvm->dirty_ring_with_bitmap = true;
4693 			r = 0;
4694 		}
4695 
4696 		mutex_unlock(&kvm->slots_lock);
4697 
4698 		return r;
4699 	}
4700 	default:
4701 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4702 	}
4703 }
4704 
4705 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4706 			      size_t size, loff_t *offset)
4707 {
4708 	struct kvm *kvm = file->private_data;
4709 
4710 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4711 				&kvm_vm_stats_desc[0], &kvm->stat,
4712 				sizeof(kvm->stat), user_buffer, size, offset);
4713 }
4714 
4715 static const struct file_operations kvm_vm_stats_fops = {
4716 	.read = kvm_vm_stats_read,
4717 	.llseek = noop_llseek,
4718 };
4719 
4720 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4721 {
4722 	int fd;
4723 	struct file *file;
4724 
4725 	fd = get_unused_fd_flags(O_CLOEXEC);
4726 	if (fd < 0)
4727 		return fd;
4728 
4729 	file = anon_inode_getfile("kvm-vm-stats",
4730 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4731 	if (IS_ERR(file)) {
4732 		put_unused_fd(fd);
4733 		return PTR_ERR(file);
4734 	}
4735 	file->f_mode |= FMODE_PREAD;
4736 	fd_install(fd, file);
4737 
4738 	return fd;
4739 }
4740 
4741 static long kvm_vm_ioctl(struct file *filp,
4742 			   unsigned int ioctl, unsigned long arg)
4743 {
4744 	struct kvm *kvm = filp->private_data;
4745 	void __user *argp = (void __user *)arg;
4746 	int r;
4747 
4748 	if (kvm->mm != current->mm || kvm->vm_dead)
4749 		return -EIO;
4750 	switch (ioctl) {
4751 	case KVM_CREATE_VCPU:
4752 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4753 		break;
4754 	case KVM_ENABLE_CAP: {
4755 		struct kvm_enable_cap cap;
4756 
4757 		r = -EFAULT;
4758 		if (copy_from_user(&cap, argp, sizeof(cap)))
4759 			goto out;
4760 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4761 		break;
4762 	}
4763 	case KVM_SET_USER_MEMORY_REGION: {
4764 		struct kvm_userspace_memory_region kvm_userspace_mem;
4765 
4766 		r = -EFAULT;
4767 		if (copy_from_user(&kvm_userspace_mem, argp,
4768 						sizeof(kvm_userspace_mem)))
4769 			goto out;
4770 
4771 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4772 		break;
4773 	}
4774 	case KVM_GET_DIRTY_LOG: {
4775 		struct kvm_dirty_log log;
4776 
4777 		r = -EFAULT;
4778 		if (copy_from_user(&log, argp, sizeof(log)))
4779 			goto out;
4780 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4781 		break;
4782 	}
4783 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4784 	case KVM_CLEAR_DIRTY_LOG: {
4785 		struct kvm_clear_dirty_log log;
4786 
4787 		r = -EFAULT;
4788 		if (copy_from_user(&log, argp, sizeof(log)))
4789 			goto out;
4790 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4791 		break;
4792 	}
4793 #endif
4794 #ifdef CONFIG_KVM_MMIO
4795 	case KVM_REGISTER_COALESCED_MMIO: {
4796 		struct kvm_coalesced_mmio_zone zone;
4797 
4798 		r = -EFAULT;
4799 		if (copy_from_user(&zone, argp, sizeof(zone)))
4800 			goto out;
4801 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4802 		break;
4803 	}
4804 	case KVM_UNREGISTER_COALESCED_MMIO: {
4805 		struct kvm_coalesced_mmio_zone zone;
4806 
4807 		r = -EFAULT;
4808 		if (copy_from_user(&zone, argp, sizeof(zone)))
4809 			goto out;
4810 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4811 		break;
4812 	}
4813 #endif
4814 	case KVM_IRQFD: {
4815 		struct kvm_irqfd data;
4816 
4817 		r = -EFAULT;
4818 		if (copy_from_user(&data, argp, sizeof(data)))
4819 			goto out;
4820 		r = kvm_irqfd(kvm, &data);
4821 		break;
4822 	}
4823 	case KVM_IOEVENTFD: {
4824 		struct kvm_ioeventfd data;
4825 
4826 		r = -EFAULT;
4827 		if (copy_from_user(&data, argp, sizeof(data)))
4828 			goto out;
4829 		r = kvm_ioeventfd(kvm, &data);
4830 		break;
4831 	}
4832 #ifdef CONFIG_HAVE_KVM_MSI
4833 	case KVM_SIGNAL_MSI: {
4834 		struct kvm_msi msi;
4835 
4836 		r = -EFAULT;
4837 		if (copy_from_user(&msi, argp, sizeof(msi)))
4838 			goto out;
4839 		r = kvm_send_userspace_msi(kvm, &msi);
4840 		break;
4841 	}
4842 #endif
4843 #ifdef __KVM_HAVE_IRQ_LINE
4844 	case KVM_IRQ_LINE_STATUS:
4845 	case KVM_IRQ_LINE: {
4846 		struct kvm_irq_level irq_event;
4847 
4848 		r = -EFAULT;
4849 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4850 			goto out;
4851 
4852 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4853 					ioctl == KVM_IRQ_LINE_STATUS);
4854 		if (r)
4855 			goto out;
4856 
4857 		r = -EFAULT;
4858 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4859 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4860 				goto out;
4861 		}
4862 
4863 		r = 0;
4864 		break;
4865 	}
4866 #endif
4867 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4868 	case KVM_SET_GSI_ROUTING: {
4869 		struct kvm_irq_routing routing;
4870 		struct kvm_irq_routing __user *urouting;
4871 		struct kvm_irq_routing_entry *entries = NULL;
4872 
4873 		r = -EFAULT;
4874 		if (copy_from_user(&routing, argp, sizeof(routing)))
4875 			goto out;
4876 		r = -EINVAL;
4877 		if (!kvm_arch_can_set_irq_routing(kvm))
4878 			goto out;
4879 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4880 			goto out;
4881 		if (routing.flags)
4882 			goto out;
4883 		if (routing.nr) {
4884 			urouting = argp;
4885 			entries = vmemdup_user(urouting->entries,
4886 					       array_size(sizeof(*entries),
4887 							  routing.nr));
4888 			if (IS_ERR(entries)) {
4889 				r = PTR_ERR(entries);
4890 				goto out;
4891 			}
4892 		}
4893 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4894 					routing.flags);
4895 		kvfree(entries);
4896 		break;
4897 	}
4898 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4899 	case KVM_CREATE_DEVICE: {
4900 		struct kvm_create_device cd;
4901 
4902 		r = -EFAULT;
4903 		if (copy_from_user(&cd, argp, sizeof(cd)))
4904 			goto out;
4905 
4906 		r = kvm_ioctl_create_device(kvm, &cd);
4907 		if (r)
4908 			goto out;
4909 
4910 		r = -EFAULT;
4911 		if (copy_to_user(argp, &cd, sizeof(cd)))
4912 			goto out;
4913 
4914 		r = 0;
4915 		break;
4916 	}
4917 	case KVM_CHECK_EXTENSION:
4918 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4919 		break;
4920 	case KVM_RESET_DIRTY_RINGS:
4921 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4922 		break;
4923 	case KVM_GET_STATS_FD:
4924 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4925 		break;
4926 	default:
4927 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4928 	}
4929 out:
4930 	return r;
4931 }
4932 
4933 #ifdef CONFIG_KVM_COMPAT
4934 struct compat_kvm_dirty_log {
4935 	__u32 slot;
4936 	__u32 padding1;
4937 	union {
4938 		compat_uptr_t dirty_bitmap; /* one bit per page */
4939 		__u64 padding2;
4940 	};
4941 };
4942 
4943 struct compat_kvm_clear_dirty_log {
4944 	__u32 slot;
4945 	__u32 num_pages;
4946 	__u64 first_page;
4947 	union {
4948 		compat_uptr_t dirty_bitmap; /* one bit per page */
4949 		__u64 padding2;
4950 	};
4951 };
4952 
4953 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4954 				     unsigned long arg)
4955 {
4956 	return -ENOTTY;
4957 }
4958 
4959 static long kvm_vm_compat_ioctl(struct file *filp,
4960 			   unsigned int ioctl, unsigned long arg)
4961 {
4962 	struct kvm *kvm = filp->private_data;
4963 	int r;
4964 
4965 	if (kvm->mm != current->mm || kvm->vm_dead)
4966 		return -EIO;
4967 
4968 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4969 	if (r != -ENOTTY)
4970 		return r;
4971 
4972 	switch (ioctl) {
4973 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4974 	case KVM_CLEAR_DIRTY_LOG: {
4975 		struct compat_kvm_clear_dirty_log compat_log;
4976 		struct kvm_clear_dirty_log log;
4977 
4978 		if (copy_from_user(&compat_log, (void __user *)arg,
4979 				   sizeof(compat_log)))
4980 			return -EFAULT;
4981 		log.slot	 = compat_log.slot;
4982 		log.num_pages	 = compat_log.num_pages;
4983 		log.first_page	 = compat_log.first_page;
4984 		log.padding2	 = compat_log.padding2;
4985 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986 
4987 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4988 		break;
4989 	}
4990 #endif
4991 	case KVM_GET_DIRTY_LOG: {
4992 		struct compat_kvm_dirty_log compat_log;
4993 		struct kvm_dirty_log log;
4994 
4995 		if (copy_from_user(&compat_log, (void __user *)arg,
4996 				   sizeof(compat_log)))
4997 			return -EFAULT;
4998 		log.slot	 = compat_log.slot;
4999 		log.padding1	 = compat_log.padding1;
5000 		log.padding2	 = compat_log.padding2;
5001 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5002 
5003 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5004 		break;
5005 	}
5006 	default:
5007 		r = kvm_vm_ioctl(filp, ioctl, arg);
5008 	}
5009 	return r;
5010 }
5011 #endif
5012 
5013 static const struct file_operations kvm_vm_fops = {
5014 	.release        = kvm_vm_release,
5015 	.unlocked_ioctl = kvm_vm_ioctl,
5016 	.llseek		= noop_llseek,
5017 	KVM_COMPAT(kvm_vm_compat_ioctl),
5018 };
5019 
5020 bool file_is_kvm(struct file *file)
5021 {
5022 	return file && file->f_op == &kvm_vm_fops;
5023 }
5024 EXPORT_SYMBOL_GPL(file_is_kvm);
5025 
5026 static int kvm_dev_ioctl_create_vm(unsigned long type)
5027 {
5028 	char fdname[ITOA_MAX_LEN + 1];
5029 	int r, fd;
5030 	struct kvm *kvm;
5031 	struct file *file;
5032 
5033 	fd = get_unused_fd_flags(O_CLOEXEC);
5034 	if (fd < 0)
5035 		return fd;
5036 
5037 	snprintf(fdname, sizeof(fdname), "%d", fd);
5038 
5039 	kvm = kvm_create_vm(type, fdname);
5040 	if (IS_ERR(kvm)) {
5041 		r = PTR_ERR(kvm);
5042 		goto put_fd;
5043 	}
5044 
5045 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5046 	if (IS_ERR(file)) {
5047 		r = PTR_ERR(file);
5048 		goto put_kvm;
5049 	}
5050 
5051 	/*
5052 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5053 	 * already set, with ->release() being kvm_vm_release().  In error
5054 	 * cases it will be called by the final fput(file) and will take
5055 	 * care of doing kvm_put_kvm(kvm).
5056 	 */
5057 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5058 
5059 	fd_install(fd, file);
5060 	return fd;
5061 
5062 put_kvm:
5063 	kvm_put_kvm(kvm);
5064 put_fd:
5065 	put_unused_fd(fd);
5066 	return r;
5067 }
5068 
5069 static long kvm_dev_ioctl(struct file *filp,
5070 			  unsigned int ioctl, unsigned long arg)
5071 {
5072 	int r = -EINVAL;
5073 
5074 	switch (ioctl) {
5075 	case KVM_GET_API_VERSION:
5076 		if (arg)
5077 			goto out;
5078 		r = KVM_API_VERSION;
5079 		break;
5080 	case KVM_CREATE_VM:
5081 		r = kvm_dev_ioctl_create_vm(arg);
5082 		break;
5083 	case KVM_CHECK_EXTENSION:
5084 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5085 		break;
5086 	case KVM_GET_VCPU_MMAP_SIZE:
5087 		if (arg)
5088 			goto out;
5089 		r = PAGE_SIZE;     /* struct kvm_run */
5090 #ifdef CONFIG_X86
5091 		r += PAGE_SIZE;    /* pio data page */
5092 #endif
5093 #ifdef CONFIG_KVM_MMIO
5094 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5095 #endif
5096 		break;
5097 	case KVM_TRACE_ENABLE:
5098 	case KVM_TRACE_PAUSE:
5099 	case KVM_TRACE_DISABLE:
5100 		r = -EOPNOTSUPP;
5101 		break;
5102 	default:
5103 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5104 	}
5105 out:
5106 	return r;
5107 }
5108 
5109 static struct file_operations kvm_chardev_ops = {
5110 	.unlocked_ioctl = kvm_dev_ioctl,
5111 	.llseek		= noop_llseek,
5112 	KVM_COMPAT(kvm_dev_ioctl),
5113 };
5114 
5115 static struct miscdevice kvm_dev = {
5116 	KVM_MINOR,
5117 	"kvm",
5118 	&kvm_chardev_ops,
5119 };
5120 
5121 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5122 __visible bool kvm_rebooting;
5123 EXPORT_SYMBOL_GPL(kvm_rebooting);
5124 
5125 static DEFINE_PER_CPU(bool, hardware_enabled);
5126 static int kvm_usage_count;
5127 
5128 static int __hardware_enable_nolock(void)
5129 {
5130 	if (__this_cpu_read(hardware_enabled))
5131 		return 0;
5132 
5133 	if (kvm_arch_hardware_enable()) {
5134 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5135 			raw_smp_processor_id());
5136 		return -EIO;
5137 	}
5138 
5139 	__this_cpu_write(hardware_enabled, true);
5140 	return 0;
5141 }
5142 
5143 static void hardware_enable_nolock(void *failed)
5144 {
5145 	if (__hardware_enable_nolock())
5146 		atomic_inc(failed);
5147 }
5148 
5149 static int kvm_online_cpu(unsigned int cpu)
5150 {
5151 	int ret = 0;
5152 
5153 	/*
5154 	 * Abort the CPU online process if hardware virtualization cannot
5155 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5156 	 * errors when scheduled to this CPU.
5157 	 */
5158 	mutex_lock(&kvm_lock);
5159 	if (kvm_usage_count)
5160 		ret = __hardware_enable_nolock();
5161 	mutex_unlock(&kvm_lock);
5162 	return ret;
5163 }
5164 
5165 static void hardware_disable_nolock(void *junk)
5166 {
5167 	/*
5168 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5169 	 * hardware, not just CPUs that successfully enabled hardware!
5170 	 */
5171 	if (!__this_cpu_read(hardware_enabled))
5172 		return;
5173 
5174 	kvm_arch_hardware_disable();
5175 
5176 	__this_cpu_write(hardware_enabled, false);
5177 }
5178 
5179 static int kvm_offline_cpu(unsigned int cpu)
5180 {
5181 	mutex_lock(&kvm_lock);
5182 	if (kvm_usage_count)
5183 		hardware_disable_nolock(NULL);
5184 	mutex_unlock(&kvm_lock);
5185 	return 0;
5186 }
5187 
5188 static void hardware_disable_all_nolock(void)
5189 {
5190 	BUG_ON(!kvm_usage_count);
5191 
5192 	kvm_usage_count--;
5193 	if (!kvm_usage_count)
5194 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5195 }
5196 
5197 static void hardware_disable_all(void)
5198 {
5199 	cpus_read_lock();
5200 	mutex_lock(&kvm_lock);
5201 	hardware_disable_all_nolock();
5202 	mutex_unlock(&kvm_lock);
5203 	cpus_read_unlock();
5204 }
5205 
5206 static int hardware_enable_all(void)
5207 {
5208 	atomic_t failed = ATOMIC_INIT(0);
5209 	int r;
5210 
5211 	/*
5212 	 * Do not enable hardware virtualization if the system is going down.
5213 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5214 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5215 	 * after kvm_reboot() is called.  Note, this relies on system_state
5216 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5217 	 * hook instead of registering a dedicated reboot notifier (the latter
5218 	 * runs before system_state is updated).
5219 	 */
5220 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5221 	    system_state == SYSTEM_RESTART)
5222 		return -EBUSY;
5223 
5224 	/*
5225 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5226 	 * is called, and so on_each_cpu() between them includes the CPU that
5227 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5228 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5229 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5230 	 * enable hardware multiple times.
5231 	 */
5232 	cpus_read_lock();
5233 	mutex_lock(&kvm_lock);
5234 
5235 	r = 0;
5236 
5237 	kvm_usage_count++;
5238 	if (kvm_usage_count == 1) {
5239 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5240 
5241 		if (atomic_read(&failed)) {
5242 			hardware_disable_all_nolock();
5243 			r = -EBUSY;
5244 		}
5245 	}
5246 
5247 	mutex_unlock(&kvm_lock);
5248 	cpus_read_unlock();
5249 
5250 	return r;
5251 }
5252 
5253 static void kvm_shutdown(void)
5254 {
5255 	/*
5256 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5257 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5258 	 * that relevant errors and exceptions aren't entirely unexpected.
5259 	 * Some flavors of hardware virtualization need to be disabled before
5260 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5261 	 * on x86, virtualization can block INIT interrupts, which are used by
5262 	 * firmware to pull APs back under firmware control.  Note, this path
5263 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5264 	 * 100% comprehensive.
5265 	 */
5266 	pr_info("kvm: exiting hardware virtualization\n");
5267 	kvm_rebooting = true;
5268 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5269 }
5270 
5271 static int kvm_suspend(void)
5272 {
5273 	/*
5274 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5275 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5276 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5277 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5278 	 * can be preempted, but the task cannot be frozen until it has dropped
5279 	 * all locks (userspace tasks are frozen via a fake signal).
5280 	 */
5281 	lockdep_assert_not_held(&kvm_lock);
5282 	lockdep_assert_irqs_disabled();
5283 
5284 	if (kvm_usage_count)
5285 		hardware_disable_nolock(NULL);
5286 	return 0;
5287 }
5288 
5289 static void kvm_resume(void)
5290 {
5291 	lockdep_assert_not_held(&kvm_lock);
5292 	lockdep_assert_irqs_disabled();
5293 
5294 	if (kvm_usage_count)
5295 		WARN_ON_ONCE(__hardware_enable_nolock());
5296 }
5297 
5298 static struct syscore_ops kvm_syscore_ops = {
5299 	.suspend = kvm_suspend,
5300 	.resume = kvm_resume,
5301 	.shutdown = kvm_shutdown,
5302 };
5303 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5304 static int hardware_enable_all(void)
5305 {
5306 	return 0;
5307 }
5308 
5309 static void hardware_disable_all(void)
5310 {
5311 
5312 }
5313 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5314 
5315 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5316 {
5317 	int i;
5318 
5319 	for (i = 0; i < bus->dev_count; i++) {
5320 		struct kvm_io_device *pos = bus->range[i].dev;
5321 
5322 		kvm_iodevice_destructor(pos);
5323 	}
5324 	kfree(bus);
5325 }
5326 
5327 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5328 				 const struct kvm_io_range *r2)
5329 {
5330 	gpa_t addr1 = r1->addr;
5331 	gpa_t addr2 = r2->addr;
5332 
5333 	if (addr1 < addr2)
5334 		return -1;
5335 
5336 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5337 	 * accept any overlapping write.  Any order is acceptable for
5338 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5339 	 * we process all of them.
5340 	 */
5341 	if (r2->len) {
5342 		addr1 += r1->len;
5343 		addr2 += r2->len;
5344 	}
5345 
5346 	if (addr1 > addr2)
5347 		return 1;
5348 
5349 	return 0;
5350 }
5351 
5352 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5353 {
5354 	return kvm_io_bus_cmp(p1, p2);
5355 }
5356 
5357 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5358 			     gpa_t addr, int len)
5359 {
5360 	struct kvm_io_range *range, key;
5361 	int off;
5362 
5363 	key = (struct kvm_io_range) {
5364 		.addr = addr,
5365 		.len = len,
5366 	};
5367 
5368 	range = bsearch(&key, bus->range, bus->dev_count,
5369 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5370 	if (range == NULL)
5371 		return -ENOENT;
5372 
5373 	off = range - bus->range;
5374 
5375 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5376 		off--;
5377 
5378 	return off;
5379 }
5380 
5381 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5382 			      struct kvm_io_range *range, const void *val)
5383 {
5384 	int idx;
5385 
5386 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5387 	if (idx < 0)
5388 		return -EOPNOTSUPP;
5389 
5390 	while (idx < bus->dev_count &&
5391 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5392 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5393 					range->len, val))
5394 			return idx;
5395 		idx++;
5396 	}
5397 
5398 	return -EOPNOTSUPP;
5399 }
5400 
5401 /* kvm_io_bus_write - called under kvm->slots_lock */
5402 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5403 		     int len, const void *val)
5404 {
5405 	struct kvm_io_bus *bus;
5406 	struct kvm_io_range range;
5407 	int r;
5408 
5409 	range = (struct kvm_io_range) {
5410 		.addr = addr,
5411 		.len = len,
5412 	};
5413 
5414 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5415 	if (!bus)
5416 		return -ENOMEM;
5417 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5418 	return r < 0 ? r : 0;
5419 }
5420 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5421 
5422 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5423 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5424 			    gpa_t addr, int len, const void *val, long cookie)
5425 {
5426 	struct kvm_io_bus *bus;
5427 	struct kvm_io_range range;
5428 
5429 	range = (struct kvm_io_range) {
5430 		.addr = addr,
5431 		.len = len,
5432 	};
5433 
5434 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5435 	if (!bus)
5436 		return -ENOMEM;
5437 
5438 	/* First try the device referenced by cookie. */
5439 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5440 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5441 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5442 					val))
5443 			return cookie;
5444 
5445 	/*
5446 	 * cookie contained garbage; fall back to search and return the
5447 	 * correct cookie value.
5448 	 */
5449 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5450 }
5451 
5452 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5453 			     struct kvm_io_range *range, void *val)
5454 {
5455 	int idx;
5456 
5457 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5458 	if (idx < 0)
5459 		return -EOPNOTSUPP;
5460 
5461 	while (idx < bus->dev_count &&
5462 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5463 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5464 				       range->len, val))
5465 			return idx;
5466 		idx++;
5467 	}
5468 
5469 	return -EOPNOTSUPP;
5470 }
5471 
5472 /* kvm_io_bus_read - called under kvm->slots_lock */
5473 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5474 		    int len, void *val)
5475 {
5476 	struct kvm_io_bus *bus;
5477 	struct kvm_io_range range;
5478 	int r;
5479 
5480 	range = (struct kvm_io_range) {
5481 		.addr = addr,
5482 		.len = len,
5483 	};
5484 
5485 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5486 	if (!bus)
5487 		return -ENOMEM;
5488 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5489 	return r < 0 ? r : 0;
5490 }
5491 
5492 /* Caller must hold slots_lock. */
5493 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5494 			    int len, struct kvm_io_device *dev)
5495 {
5496 	int i;
5497 	struct kvm_io_bus *new_bus, *bus;
5498 	struct kvm_io_range range;
5499 
5500 	bus = kvm_get_bus(kvm, bus_idx);
5501 	if (!bus)
5502 		return -ENOMEM;
5503 
5504 	/* exclude ioeventfd which is limited by maximum fd */
5505 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5506 		return -ENOSPC;
5507 
5508 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5509 			  GFP_KERNEL_ACCOUNT);
5510 	if (!new_bus)
5511 		return -ENOMEM;
5512 
5513 	range = (struct kvm_io_range) {
5514 		.addr = addr,
5515 		.len = len,
5516 		.dev = dev,
5517 	};
5518 
5519 	for (i = 0; i < bus->dev_count; i++)
5520 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5521 			break;
5522 
5523 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5524 	new_bus->dev_count++;
5525 	new_bus->range[i] = range;
5526 	memcpy(new_bus->range + i + 1, bus->range + i,
5527 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5528 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5529 	synchronize_srcu_expedited(&kvm->srcu);
5530 	kfree(bus);
5531 
5532 	return 0;
5533 }
5534 
5535 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5536 			      struct kvm_io_device *dev)
5537 {
5538 	int i, j;
5539 	struct kvm_io_bus *new_bus, *bus;
5540 
5541 	lockdep_assert_held(&kvm->slots_lock);
5542 
5543 	bus = kvm_get_bus(kvm, bus_idx);
5544 	if (!bus)
5545 		return 0;
5546 
5547 	for (i = 0; i < bus->dev_count; i++) {
5548 		if (bus->range[i].dev == dev) {
5549 			break;
5550 		}
5551 	}
5552 
5553 	if (i == bus->dev_count)
5554 		return 0;
5555 
5556 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5557 			  GFP_KERNEL_ACCOUNT);
5558 	if (new_bus) {
5559 		memcpy(new_bus, bus, struct_size(bus, range, i));
5560 		new_bus->dev_count--;
5561 		memcpy(new_bus->range + i, bus->range + i + 1,
5562 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5563 	}
5564 
5565 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5566 	synchronize_srcu_expedited(&kvm->srcu);
5567 
5568 	/* Destroy the old bus _after_ installing the (null) bus. */
5569 	if (!new_bus) {
5570 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5571 		for (j = 0; j < bus->dev_count; j++) {
5572 			if (j == i)
5573 				continue;
5574 			kvm_iodevice_destructor(bus->range[j].dev);
5575 		}
5576 	}
5577 
5578 	kfree(bus);
5579 	return new_bus ? 0 : -ENOMEM;
5580 }
5581 
5582 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5583 					 gpa_t addr)
5584 {
5585 	struct kvm_io_bus *bus;
5586 	int dev_idx, srcu_idx;
5587 	struct kvm_io_device *iodev = NULL;
5588 
5589 	srcu_idx = srcu_read_lock(&kvm->srcu);
5590 
5591 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5592 	if (!bus)
5593 		goto out_unlock;
5594 
5595 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5596 	if (dev_idx < 0)
5597 		goto out_unlock;
5598 
5599 	iodev = bus->range[dev_idx].dev;
5600 
5601 out_unlock:
5602 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5603 
5604 	return iodev;
5605 }
5606 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5607 
5608 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5609 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5610 			   const char *fmt)
5611 {
5612 	int ret;
5613 	struct kvm_stat_data *stat_data = inode->i_private;
5614 
5615 	/*
5616 	 * The debugfs files are a reference to the kvm struct which
5617         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5618         * avoids the race between open and the removal of the debugfs directory.
5619 	 */
5620 	if (!kvm_get_kvm_safe(stat_data->kvm))
5621 		return -ENOENT;
5622 
5623 	ret = simple_attr_open(inode, file, get,
5624 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5625 			       ? set : NULL, fmt);
5626 	if (ret)
5627 		kvm_put_kvm(stat_data->kvm);
5628 
5629 	return ret;
5630 }
5631 
5632 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5633 {
5634 	struct kvm_stat_data *stat_data = inode->i_private;
5635 
5636 	simple_attr_release(inode, file);
5637 	kvm_put_kvm(stat_data->kvm);
5638 
5639 	return 0;
5640 }
5641 
5642 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5643 {
5644 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5645 
5646 	return 0;
5647 }
5648 
5649 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5650 {
5651 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5652 
5653 	return 0;
5654 }
5655 
5656 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5657 {
5658 	unsigned long i;
5659 	struct kvm_vcpu *vcpu;
5660 
5661 	*val = 0;
5662 
5663 	kvm_for_each_vcpu(i, vcpu, kvm)
5664 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5665 
5666 	return 0;
5667 }
5668 
5669 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5670 {
5671 	unsigned long i;
5672 	struct kvm_vcpu *vcpu;
5673 
5674 	kvm_for_each_vcpu(i, vcpu, kvm)
5675 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5676 
5677 	return 0;
5678 }
5679 
5680 static int kvm_stat_data_get(void *data, u64 *val)
5681 {
5682 	int r = -EFAULT;
5683 	struct kvm_stat_data *stat_data = data;
5684 
5685 	switch (stat_data->kind) {
5686 	case KVM_STAT_VM:
5687 		r = kvm_get_stat_per_vm(stat_data->kvm,
5688 					stat_data->desc->desc.offset, val);
5689 		break;
5690 	case KVM_STAT_VCPU:
5691 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5692 					  stat_data->desc->desc.offset, val);
5693 		break;
5694 	}
5695 
5696 	return r;
5697 }
5698 
5699 static int kvm_stat_data_clear(void *data, u64 val)
5700 {
5701 	int r = -EFAULT;
5702 	struct kvm_stat_data *stat_data = data;
5703 
5704 	if (val)
5705 		return -EINVAL;
5706 
5707 	switch (stat_data->kind) {
5708 	case KVM_STAT_VM:
5709 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5710 					  stat_data->desc->desc.offset);
5711 		break;
5712 	case KVM_STAT_VCPU:
5713 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5714 					    stat_data->desc->desc.offset);
5715 		break;
5716 	}
5717 
5718 	return r;
5719 }
5720 
5721 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5722 {
5723 	__simple_attr_check_format("%llu\n", 0ull);
5724 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5725 				kvm_stat_data_clear, "%llu\n");
5726 }
5727 
5728 static const struct file_operations stat_fops_per_vm = {
5729 	.owner = THIS_MODULE,
5730 	.open = kvm_stat_data_open,
5731 	.release = kvm_debugfs_release,
5732 	.read = simple_attr_read,
5733 	.write = simple_attr_write,
5734 	.llseek = no_llseek,
5735 };
5736 
5737 static int vm_stat_get(void *_offset, u64 *val)
5738 {
5739 	unsigned offset = (long)_offset;
5740 	struct kvm *kvm;
5741 	u64 tmp_val;
5742 
5743 	*val = 0;
5744 	mutex_lock(&kvm_lock);
5745 	list_for_each_entry(kvm, &vm_list, vm_list) {
5746 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5747 		*val += tmp_val;
5748 	}
5749 	mutex_unlock(&kvm_lock);
5750 	return 0;
5751 }
5752 
5753 static int vm_stat_clear(void *_offset, u64 val)
5754 {
5755 	unsigned offset = (long)_offset;
5756 	struct kvm *kvm;
5757 
5758 	if (val)
5759 		return -EINVAL;
5760 
5761 	mutex_lock(&kvm_lock);
5762 	list_for_each_entry(kvm, &vm_list, vm_list) {
5763 		kvm_clear_stat_per_vm(kvm, offset);
5764 	}
5765 	mutex_unlock(&kvm_lock);
5766 
5767 	return 0;
5768 }
5769 
5770 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5771 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5772 
5773 static int vcpu_stat_get(void *_offset, u64 *val)
5774 {
5775 	unsigned offset = (long)_offset;
5776 	struct kvm *kvm;
5777 	u64 tmp_val;
5778 
5779 	*val = 0;
5780 	mutex_lock(&kvm_lock);
5781 	list_for_each_entry(kvm, &vm_list, vm_list) {
5782 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5783 		*val += tmp_val;
5784 	}
5785 	mutex_unlock(&kvm_lock);
5786 	return 0;
5787 }
5788 
5789 static int vcpu_stat_clear(void *_offset, u64 val)
5790 {
5791 	unsigned offset = (long)_offset;
5792 	struct kvm *kvm;
5793 
5794 	if (val)
5795 		return -EINVAL;
5796 
5797 	mutex_lock(&kvm_lock);
5798 	list_for_each_entry(kvm, &vm_list, vm_list) {
5799 		kvm_clear_stat_per_vcpu(kvm, offset);
5800 	}
5801 	mutex_unlock(&kvm_lock);
5802 
5803 	return 0;
5804 }
5805 
5806 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5807 			"%llu\n");
5808 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5809 
5810 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5811 {
5812 	struct kobj_uevent_env *env;
5813 	unsigned long long created, active;
5814 
5815 	if (!kvm_dev.this_device || !kvm)
5816 		return;
5817 
5818 	mutex_lock(&kvm_lock);
5819 	if (type == KVM_EVENT_CREATE_VM) {
5820 		kvm_createvm_count++;
5821 		kvm_active_vms++;
5822 	} else if (type == KVM_EVENT_DESTROY_VM) {
5823 		kvm_active_vms--;
5824 	}
5825 	created = kvm_createvm_count;
5826 	active = kvm_active_vms;
5827 	mutex_unlock(&kvm_lock);
5828 
5829 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5830 	if (!env)
5831 		return;
5832 
5833 	add_uevent_var(env, "CREATED=%llu", created);
5834 	add_uevent_var(env, "COUNT=%llu", active);
5835 
5836 	if (type == KVM_EVENT_CREATE_VM) {
5837 		add_uevent_var(env, "EVENT=create");
5838 		kvm->userspace_pid = task_pid_nr(current);
5839 	} else if (type == KVM_EVENT_DESTROY_VM) {
5840 		add_uevent_var(env, "EVENT=destroy");
5841 	}
5842 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5843 
5844 	if (!IS_ERR(kvm->debugfs_dentry)) {
5845 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5846 
5847 		if (p) {
5848 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5849 			if (!IS_ERR(tmp))
5850 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5851 			kfree(p);
5852 		}
5853 	}
5854 	/* no need for checks, since we are adding at most only 5 keys */
5855 	env->envp[env->envp_idx++] = NULL;
5856 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5857 	kfree(env);
5858 }
5859 
5860 static void kvm_init_debug(void)
5861 {
5862 	const struct file_operations *fops;
5863 	const struct _kvm_stats_desc *pdesc;
5864 	int i;
5865 
5866 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5867 
5868 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5869 		pdesc = &kvm_vm_stats_desc[i];
5870 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5871 			fops = &vm_stat_fops;
5872 		else
5873 			fops = &vm_stat_readonly_fops;
5874 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5875 				kvm_debugfs_dir,
5876 				(void *)(long)pdesc->desc.offset, fops);
5877 	}
5878 
5879 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5880 		pdesc = &kvm_vcpu_stats_desc[i];
5881 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5882 			fops = &vcpu_stat_fops;
5883 		else
5884 			fops = &vcpu_stat_readonly_fops;
5885 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5886 				kvm_debugfs_dir,
5887 				(void *)(long)pdesc->desc.offset, fops);
5888 	}
5889 }
5890 
5891 static inline
5892 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5893 {
5894 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5895 }
5896 
5897 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5898 {
5899 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5900 
5901 	WRITE_ONCE(vcpu->preempted, false);
5902 	WRITE_ONCE(vcpu->ready, false);
5903 
5904 	__this_cpu_write(kvm_running_vcpu, vcpu);
5905 	kvm_arch_sched_in(vcpu, cpu);
5906 	kvm_arch_vcpu_load(vcpu, cpu);
5907 }
5908 
5909 static void kvm_sched_out(struct preempt_notifier *pn,
5910 			  struct task_struct *next)
5911 {
5912 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5913 
5914 	if (current->on_rq) {
5915 		WRITE_ONCE(vcpu->preempted, true);
5916 		WRITE_ONCE(vcpu->ready, true);
5917 	}
5918 	kvm_arch_vcpu_put(vcpu);
5919 	__this_cpu_write(kvm_running_vcpu, NULL);
5920 }
5921 
5922 /**
5923  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5924  *
5925  * We can disable preemption locally around accessing the per-CPU variable,
5926  * and use the resolved vcpu pointer after enabling preemption again,
5927  * because even if the current thread is migrated to another CPU, reading
5928  * the per-CPU value later will give us the same value as we update the
5929  * per-CPU variable in the preempt notifier handlers.
5930  */
5931 struct kvm_vcpu *kvm_get_running_vcpu(void)
5932 {
5933 	struct kvm_vcpu *vcpu;
5934 
5935 	preempt_disable();
5936 	vcpu = __this_cpu_read(kvm_running_vcpu);
5937 	preempt_enable();
5938 
5939 	return vcpu;
5940 }
5941 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5942 
5943 /**
5944  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5945  */
5946 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5947 {
5948         return &kvm_running_vcpu;
5949 }
5950 
5951 #ifdef CONFIG_GUEST_PERF_EVENTS
5952 static unsigned int kvm_guest_state(void)
5953 {
5954 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5955 	unsigned int state;
5956 
5957 	if (!kvm_arch_pmi_in_guest(vcpu))
5958 		return 0;
5959 
5960 	state = PERF_GUEST_ACTIVE;
5961 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5962 		state |= PERF_GUEST_USER;
5963 
5964 	return state;
5965 }
5966 
5967 static unsigned long kvm_guest_get_ip(void)
5968 {
5969 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5970 
5971 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5972 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5973 		return 0;
5974 
5975 	return kvm_arch_vcpu_get_ip(vcpu);
5976 }
5977 
5978 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5979 	.state			= kvm_guest_state,
5980 	.get_ip			= kvm_guest_get_ip,
5981 	.handle_intel_pt_intr	= NULL,
5982 };
5983 
5984 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5985 {
5986 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5987 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5988 }
5989 void kvm_unregister_perf_callbacks(void)
5990 {
5991 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5992 }
5993 #endif
5994 
5995 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5996 {
5997 	int r;
5998 	int cpu;
5999 
6000 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6001 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6002 				      kvm_online_cpu, kvm_offline_cpu);
6003 	if (r)
6004 		return r;
6005 
6006 	register_syscore_ops(&kvm_syscore_ops);
6007 #endif
6008 
6009 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6010 	if (!vcpu_align)
6011 		vcpu_align = __alignof__(struct kvm_vcpu);
6012 	kvm_vcpu_cache =
6013 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6014 					   SLAB_ACCOUNT,
6015 					   offsetof(struct kvm_vcpu, arch),
6016 					   offsetofend(struct kvm_vcpu, stats_id)
6017 					   - offsetof(struct kvm_vcpu, arch),
6018 					   NULL);
6019 	if (!kvm_vcpu_cache) {
6020 		r = -ENOMEM;
6021 		goto err_vcpu_cache;
6022 	}
6023 
6024 	for_each_possible_cpu(cpu) {
6025 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6026 					    GFP_KERNEL, cpu_to_node(cpu))) {
6027 			r = -ENOMEM;
6028 			goto err_cpu_kick_mask;
6029 		}
6030 	}
6031 
6032 	r = kvm_irqfd_init();
6033 	if (r)
6034 		goto err_irqfd;
6035 
6036 	r = kvm_async_pf_init();
6037 	if (r)
6038 		goto err_async_pf;
6039 
6040 	kvm_chardev_ops.owner = module;
6041 
6042 	kvm_preempt_ops.sched_in = kvm_sched_in;
6043 	kvm_preempt_ops.sched_out = kvm_sched_out;
6044 
6045 	kvm_init_debug();
6046 
6047 	r = kvm_vfio_ops_init();
6048 	if (WARN_ON_ONCE(r))
6049 		goto err_vfio;
6050 
6051 	/*
6052 	 * Registration _must_ be the very last thing done, as this exposes
6053 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6054 	 */
6055 	r = misc_register(&kvm_dev);
6056 	if (r) {
6057 		pr_err("kvm: misc device register failed\n");
6058 		goto err_register;
6059 	}
6060 
6061 	return 0;
6062 
6063 err_register:
6064 	kvm_vfio_ops_exit();
6065 err_vfio:
6066 	kvm_async_pf_deinit();
6067 err_async_pf:
6068 	kvm_irqfd_exit();
6069 err_irqfd:
6070 err_cpu_kick_mask:
6071 	for_each_possible_cpu(cpu)
6072 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6073 	kmem_cache_destroy(kvm_vcpu_cache);
6074 err_vcpu_cache:
6075 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6076 	unregister_syscore_ops(&kvm_syscore_ops);
6077 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6078 #endif
6079 	return r;
6080 }
6081 EXPORT_SYMBOL_GPL(kvm_init);
6082 
6083 void kvm_exit(void)
6084 {
6085 	int cpu;
6086 
6087 	/*
6088 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6089 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6090 	 * to KVM while the module is being stopped.
6091 	 */
6092 	misc_deregister(&kvm_dev);
6093 
6094 	debugfs_remove_recursive(kvm_debugfs_dir);
6095 	for_each_possible_cpu(cpu)
6096 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6097 	kmem_cache_destroy(kvm_vcpu_cache);
6098 	kvm_vfio_ops_exit();
6099 	kvm_async_pf_deinit();
6100 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6101 	unregister_syscore_ops(&kvm_syscore_ops);
6102 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6103 #endif
6104 	kvm_irqfd_exit();
6105 }
6106 EXPORT_SYMBOL_GPL(kvm_exit);
6107 
6108 struct kvm_vm_worker_thread_context {
6109 	struct kvm *kvm;
6110 	struct task_struct *parent;
6111 	struct completion init_done;
6112 	kvm_vm_thread_fn_t thread_fn;
6113 	uintptr_t data;
6114 	int err;
6115 };
6116 
6117 static int kvm_vm_worker_thread(void *context)
6118 {
6119 	/*
6120 	 * The init_context is allocated on the stack of the parent thread, so
6121 	 * we have to locally copy anything that is needed beyond initialization
6122 	 */
6123 	struct kvm_vm_worker_thread_context *init_context = context;
6124 	struct task_struct *parent;
6125 	struct kvm *kvm = init_context->kvm;
6126 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6127 	uintptr_t data = init_context->data;
6128 	int err;
6129 
6130 	err = kthread_park(current);
6131 	/* kthread_park(current) is never supposed to return an error */
6132 	WARN_ON(err != 0);
6133 	if (err)
6134 		goto init_complete;
6135 
6136 	err = cgroup_attach_task_all(init_context->parent, current);
6137 	if (err) {
6138 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6139 			__func__, err);
6140 		goto init_complete;
6141 	}
6142 
6143 	set_user_nice(current, task_nice(init_context->parent));
6144 
6145 init_complete:
6146 	init_context->err = err;
6147 	complete(&init_context->init_done);
6148 	init_context = NULL;
6149 
6150 	if (err)
6151 		goto out;
6152 
6153 	/* Wait to be woken up by the spawner before proceeding. */
6154 	kthread_parkme();
6155 
6156 	if (!kthread_should_stop())
6157 		err = thread_fn(kvm, data);
6158 
6159 out:
6160 	/*
6161 	 * Move kthread back to its original cgroup to prevent it lingering in
6162 	 * the cgroup of the VM process, after the latter finishes its
6163 	 * execution.
6164 	 *
6165 	 * kthread_stop() waits on the 'exited' completion condition which is
6166 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6167 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6168 	 * called after the exit_mm(). This causes the kthread_stop() to return
6169 	 * before the kthread actually quits the cgroup.
6170 	 */
6171 	rcu_read_lock();
6172 	parent = rcu_dereference(current->real_parent);
6173 	get_task_struct(parent);
6174 	rcu_read_unlock();
6175 	cgroup_attach_task_all(parent, current);
6176 	put_task_struct(parent);
6177 
6178 	return err;
6179 }
6180 
6181 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6182 				uintptr_t data, const char *name,
6183 				struct task_struct **thread_ptr)
6184 {
6185 	struct kvm_vm_worker_thread_context init_context = {};
6186 	struct task_struct *thread;
6187 
6188 	*thread_ptr = NULL;
6189 	init_context.kvm = kvm;
6190 	init_context.parent = current;
6191 	init_context.thread_fn = thread_fn;
6192 	init_context.data = data;
6193 	init_completion(&init_context.init_done);
6194 
6195 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6196 			     "%s-%d", name, task_pid_nr(current));
6197 	if (IS_ERR(thread))
6198 		return PTR_ERR(thread);
6199 
6200 	/* kthread_run is never supposed to return NULL */
6201 	WARN_ON(thread == NULL);
6202 
6203 	wait_for_completion(&init_context.init_done);
6204 
6205 	if (!init_context.err)
6206 		*thread_ptr = thread;
6207 
6208 	return init_context.err;
6209 }
6210