1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu, 250 unsigned int req, struct cpumask *tmp, 251 int current_cpu) 252 { 253 int cpu; 254 255 kvm_make_request(req, vcpu); 256 257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 258 return; 259 260 /* 261 * Note, the vCPU could get migrated to a different pCPU at any point 262 * after kvm_request_needs_ipi(), which could result in sending an IPI 263 * to the previous pCPU. But, that's OK because the purpose of the IPI 264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 266 * after this point is also OK, as the requirement is only that KVM wait 267 * for vCPUs that were reading SPTEs _before_ any changes were 268 * finalized. See kvm_vcpu_kick() for more details on handling requests. 269 */ 270 if (kvm_request_needs_ipi(vcpu, req)) { 271 cpu = READ_ONCE(vcpu->cpu); 272 if (cpu != -1 && cpu != current_cpu) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 } 276 277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 278 unsigned long *vcpu_bitmap) 279 { 280 struct kvm_vcpu *vcpu; 281 struct cpumask *cpus; 282 int i, me; 283 bool called; 284 285 me = get_cpu(); 286 287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 288 cpumask_clear(cpus); 289 290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 291 vcpu = kvm_get_vcpu(kvm, i); 292 if (!vcpu) 293 continue; 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 295 } 296 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 298 put_cpu(); 299 300 return called; 301 } 302 303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 304 struct kvm_vcpu *except) 305 { 306 struct kvm_vcpu *vcpu; 307 struct cpumask *cpus; 308 bool called; 309 int i, me; 310 311 me = get_cpu(); 312 313 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 314 cpumask_clear(cpus); 315 316 kvm_for_each_vcpu(i, vcpu, kvm) { 317 if (vcpu == except) 318 continue; 319 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 320 } 321 322 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 323 put_cpu(); 324 325 return called; 326 } 327 328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 329 { 330 return kvm_make_all_cpus_request_except(kvm, req, NULL); 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 335 void kvm_flush_remote_tlbs(struct kvm *kvm) 336 { 337 ++kvm->stat.generic.remote_tlb_flush_requests; 338 339 /* 340 * We want to publish modifications to the page tables before reading 341 * mode. Pairs with a memory barrier in arch-specific code. 342 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 343 * and smp_mb in walk_shadow_page_lockless_begin/end. 344 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 345 * 346 * There is already an smp_mb__after_atomic() before 347 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 348 * barrier here. 349 */ 350 if (!kvm_arch_flush_remote_tlb(kvm) 351 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 352 ++kvm->stat.generic.remote_tlb_flush; 353 } 354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 355 #endif 356 357 void kvm_reload_remote_mmus(struct kvm *kvm) 358 { 359 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 360 } 361 362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 364 gfp_t gfp_flags) 365 { 366 gfp_flags |= mc->gfp_zero; 367 368 if (mc->kmem_cache) 369 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 370 else 371 return (void *)__get_free_page(gfp_flags); 372 } 373 374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 375 { 376 void *obj; 377 378 if (mc->nobjs >= min) 379 return 0; 380 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 381 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 382 if (!obj) 383 return mc->nobjs >= min ? 0 : -ENOMEM; 384 mc->objects[mc->nobjs++] = obj; 385 } 386 return 0; 387 } 388 389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 390 { 391 return mc->nobjs; 392 } 393 394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 395 { 396 while (mc->nobjs) { 397 if (mc->kmem_cache) 398 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 399 else 400 free_page((unsigned long)mc->objects[--mc->nobjs]); 401 } 402 } 403 404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 405 { 406 void *p; 407 408 if (WARN_ON(!mc->nobjs)) 409 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 410 else 411 p = mc->objects[--mc->nobjs]; 412 BUG_ON(!p); 413 return p; 414 } 415 #endif 416 417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 418 { 419 mutex_init(&vcpu->mutex); 420 vcpu->cpu = -1; 421 vcpu->kvm = kvm; 422 vcpu->vcpu_id = id; 423 vcpu->pid = NULL; 424 rcuwait_init(&vcpu->wait); 425 kvm_async_pf_vcpu_init(vcpu); 426 427 vcpu->pre_pcpu = -1; 428 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 429 430 kvm_vcpu_set_in_spin_loop(vcpu, false); 431 kvm_vcpu_set_dy_eligible(vcpu, false); 432 vcpu->preempted = false; 433 vcpu->ready = false; 434 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 435 vcpu->last_used_slot = 0; 436 } 437 438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 439 { 440 kvm_dirty_ring_free(&vcpu->dirty_ring); 441 kvm_arch_vcpu_destroy(vcpu); 442 443 /* 444 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 445 * the vcpu->pid pointer, and at destruction time all file descriptors 446 * are already gone. 447 */ 448 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 449 450 free_page((unsigned long)vcpu->run); 451 kmem_cache_free(kvm_vcpu_cache, vcpu); 452 } 453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 454 455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 457 { 458 return container_of(mn, struct kvm, mmu_notifier); 459 } 460 461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 462 struct mm_struct *mm, 463 unsigned long start, unsigned long end) 464 { 465 struct kvm *kvm = mmu_notifier_to_kvm(mn); 466 int idx; 467 468 idx = srcu_read_lock(&kvm->srcu); 469 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 470 srcu_read_unlock(&kvm->srcu, idx); 471 } 472 473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 474 475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 476 unsigned long end); 477 478 struct kvm_hva_range { 479 unsigned long start; 480 unsigned long end; 481 pte_t pte; 482 hva_handler_t handler; 483 on_lock_fn_t on_lock; 484 bool flush_on_ret; 485 bool may_block; 486 }; 487 488 /* 489 * Use a dedicated stub instead of NULL to indicate that there is no callback 490 * function/handler. The compiler technically can't guarantee that a real 491 * function will have a non-zero address, and so it will generate code to 492 * check for !NULL, whereas comparing against a stub will be elided at compile 493 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 494 */ 495 static void kvm_null_fn(void) 496 { 497 498 } 499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 500 501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 502 const struct kvm_hva_range *range) 503 { 504 bool ret = false, locked = false; 505 struct kvm_gfn_range gfn_range; 506 struct kvm_memory_slot *slot; 507 struct kvm_memslots *slots; 508 int i, idx; 509 510 /* A null handler is allowed if and only if on_lock() is provided. */ 511 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 512 IS_KVM_NULL_FN(range->handler))) 513 return 0; 514 515 idx = srcu_read_lock(&kvm->srcu); 516 517 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 518 slots = __kvm_memslots(kvm, i); 519 kvm_for_each_memslot(slot, slots) { 520 unsigned long hva_start, hva_end; 521 522 hva_start = max(range->start, slot->userspace_addr); 523 hva_end = min(range->end, slot->userspace_addr + 524 (slot->npages << PAGE_SHIFT)); 525 if (hva_start >= hva_end) 526 continue; 527 528 /* 529 * To optimize for the likely case where the address 530 * range is covered by zero or one memslots, don't 531 * bother making these conditional (to avoid writes on 532 * the second or later invocation of the handler). 533 */ 534 gfn_range.pte = range->pte; 535 gfn_range.may_block = range->may_block; 536 537 /* 538 * {gfn(page) | page intersects with [hva_start, hva_end)} = 539 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 540 */ 541 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 542 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 543 gfn_range.slot = slot; 544 545 if (!locked) { 546 locked = true; 547 KVM_MMU_LOCK(kvm); 548 if (!IS_KVM_NULL_FN(range->on_lock)) 549 range->on_lock(kvm, range->start, range->end); 550 if (IS_KVM_NULL_FN(range->handler)) 551 break; 552 } 553 ret |= range->handler(kvm, &gfn_range); 554 } 555 } 556 557 if (range->flush_on_ret && ret) 558 kvm_flush_remote_tlbs(kvm); 559 560 if (locked) 561 KVM_MMU_UNLOCK(kvm); 562 563 srcu_read_unlock(&kvm->srcu, idx); 564 565 /* The notifiers are averse to booleans. :-( */ 566 return (int)ret; 567 } 568 569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 570 unsigned long start, 571 unsigned long end, 572 pte_t pte, 573 hva_handler_t handler) 574 { 575 struct kvm *kvm = mmu_notifier_to_kvm(mn); 576 const struct kvm_hva_range range = { 577 .start = start, 578 .end = end, 579 .pte = pte, 580 .handler = handler, 581 .on_lock = (void *)kvm_null_fn, 582 .flush_on_ret = true, 583 .may_block = false, 584 }; 585 586 return __kvm_handle_hva_range(kvm, &range); 587 } 588 589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 590 unsigned long start, 591 unsigned long end, 592 hva_handler_t handler) 593 { 594 struct kvm *kvm = mmu_notifier_to_kvm(mn); 595 const struct kvm_hva_range range = { 596 .start = start, 597 .end = end, 598 .pte = __pte(0), 599 .handler = handler, 600 .on_lock = (void *)kvm_null_fn, 601 .flush_on_ret = false, 602 .may_block = false, 603 }; 604 605 return __kvm_handle_hva_range(kvm, &range); 606 } 607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 608 struct mm_struct *mm, 609 unsigned long address, 610 pte_t pte) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 614 trace_kvm_set_spte_hva(address); 615 616 /* 617 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 618 * If mmu_notifier_count is zero, then no in-progress invalidations, 619 * including this one, found a relevant memslot at start(); rechecking 620 * memslots here is unnecessary. Note, a false positive (count elevated 621 * by a different invalidation) is sub-optimal but functionally ok. 622 */ 623 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 624 if (!READ_ONCE(kvm->mmu_notifier_count)) 625 return; 626 627 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 628 } 629 630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 631 unsigned long end) 632 { 633 /* 634 * The count increase must become visible at unlock time as no 635 * spte can be established without taking the mmu_lock and 636 * count is also read inside the mmu_lock critical section. 637 */ 638 kvm->mmu_notifier_count++; 639 if (likely(kvm->mmu_notifier_count == 1)) { 640 kvm->mmu_notifier_range_start = start; 641 kvm->mmu_notifier_range_end = end; 642 } else { 643 /* 644 * Fully tracking multiple concurrent ranges has dimishing 645 * returns. Keep things simple and just find the minimal range 646 * which includes the current and new ranges. As there won't be 647 * enough information to subtract a range after its invalidate 648 * completes, any ranges invalidated concurrently will 649 * accumulate and persist until all outstanding invalidates 650 * complete. 651 */ 652 kvm->mmu_notifier_range_start = 653 min(kvm->mmu_notifier_range_start, start); 654 kvm->mmu_notifier_range_end = 655 max(kvm->mmu_notifier_range_end, end); 656 } 657 } 658 659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 660 const struct mmu_notifier_range *range) 661 { 662 struct kvm *kvm = mmu_notifier_to_kvm(mn); 663 const struct kvm_hva_range hva_range = { 664 .start = range->start, 665 .end = range->end, 666 .pte = __pte(0), 667 .handler = kvm_unmap_gfn_range, 668 .on_lock = kvm_inc_notifier_count, 669 .flush_on_ret = true, 670 .may_block = mmu_notifier_range_blockable(range), 671 }; 672 673 trace_kvm_unmap_hva_range(range->start, range->end); 674 675 /* 676 * Prevent memslot modification between range_start() and range_end() 677 * so that conditionally locking provides the same result in both 678 * functions. Without that guarantee, the mmu_notifier_count 679 * adjustments will be imbalanced. 680 * 681 * Pairs with the decrement in range_end(). 682 */ 683 spin_lock(&kvm->mn_invalidate_lock); 684 kvm->mn_active_invalidate_count++; 685 spin_unlock(&kvm->mn_invalidate_lock); 686 687 __kvm_handle_hva_range(kvm, &hva_range); 688 689 return 0; 690 } 691 692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 693 unsigned long end) 694 { 695 /* 696 * This sequence increase will notify the kvm page fault that 697 * the page that is going to be mapped in the spte could have 698 * been freed. 699 */ 700 kvm->mmu_notifier_seq++; 701 smp_wmb(); 702 /* 703 * The above sequence increase must be visible before the 704 * below count decrease, which is ensured by the smp_wmb above 705 * in conjunction with the smp_rmb in mmu_notifier_retry(). 706 */ 707 kvm->mmu_notifier_count--; 708 } 709 710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 711 const struct mmu_notifier_range *range) 712 { 713 struct kvm *kvm = mmu_notifier_to_kvm(mn); 714 const struct kvm_hva_range hva_range = { 715 .start = range->start, 716 .end = range->end, 717 .pte = __pte(0), 718 .handler = (void *)kvm_null_fn, 719 .on_lock = kvm_dec_notifier_count, 720 .flush_on_ret = false, 721 .may_block = mmu_notifier_range_blockable(range), 722 }; 723 bool wake; 724 725 __kvm_handle_hva_range(kvm, &hva_range); 726 727 /* Pairs with the increment in range_start(). */ 728 spin_lock(&kvm->mn_invalidate_lock); 729 wake = (--kvm->mn_active_invalidate_count == 0); 730 spin_unlock(&kvm->mn_invalidate_lock); 731 732 /* 733 * There can only be one waiter, since the wait happens under 734 * slots_lock. 735 */ 736 if (wake) 737 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 738 739 BUG_ON(kvm->mmu_notifier_count < 0); 740 } 741 742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 743 struct mm_struct *mm, 744 unsigned long start, 745 unsigned long end) 746 { 747 trace_kvm_age_hva(start, end); 748 749 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 750 } 751 752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 753 struct mm_struct *mm, 754 unsigned long start, 755 unsigned long end) 756 { 757 trace_kvm_age_hva(start, end); 758 759 /* 760 * Even though we do not flush TLB, this will still adversely 761 * affect performance on pre-Haswell Intel EPT, where there is 762 * no EPT Access Bit to clear so that we have to tear down EPT 763 * tables instead. If we find this unacceptable, we can always 764 * add a parameter to kvm_age_hva so that it effectively doesn't 765 * do anything on clear_young. 766 * 767 * Also note that currently we never issue secondary TLB flushes 768 * from clear_young, leaving this job up to the regular system 769 * cadence. If we find this inaccurate, we might come up with a 770 * more sophisticated heuristic later. 771 */ 772 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 773 } 774 775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 776 struct mm_struct *mm, 777 unsigned long address) 778 { 779 trace_kvm_test_age_hva(address); 780 781 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 782 kvm_test_age_gfn); 783 } 784 785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 786 struct mm_struct *mm) 787 { 788 struct kvm *kvm = mmu_notifier_to_kvm(mn); 789 int idx; 790 791 idx = srcu_read_lock(&kvm->srcu); 792 kvm_arch_flush_shadow_all(kvm); 793 srcu_read_unlock(&kvm->srcu, idx); 794 } 795 796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 797 .invalidate_range = kvm_mmu_notifier_invalidate_range, 798 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 799 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 800 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 801 .clear_young = kvm_mmu_notifier_clear_young, 802 .test_young = kvm_mmu_notifier_test_young, 803 .change_pte = kvm_mmu_notifier_change_pte, 804 .release = kvm_mmu_notifier_release, 805 }; 806 807 static int kvm_init_mmu_notifier(struct kvm *kvm) 808 { 809 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 810 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 811 } 812 813 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 814 815 static int kvm_init_mmu_notifier(struct kvm *kvm) 816 { 817 return 0; 818 } 819 820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 821 822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 823 static int kvm_pm_notifier_call(struct notifier_block *bl, 824 unsigned long state, 825 void *unused) 826 { 827 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 828 829 return kvm_arch_pm_notifier(kvm, state); 830 } 831 832 static void kvm_init_pm_notifier(struct kvm *kvm) 833 { 834 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 835 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 836 kvm->pm_notifier.priority = INT_MAX; 837 register_pm_notifier(&kvm->pm_notifier); 838 } 839 840 static void kvm_destroy_pm_notifier(struct kvm *kvm) 841 { 842 unregister_pm_notifier(&kvm->pm_notifier); 843 } 844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 845 static void kvm_init_pm_notifier(struct kvm *kvm) 846 { 847 } 848 849 static void kvm_destroy_pm_notifier(struct kvm *kvm) 850 { 851 } 852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 853 854 static struct kvm_memslots *kvm_alloc_memslots(void) 855 { 856 int i; 857 struct kvm_memslots *slots; 858 859 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 860 if (!slots) 861 return NULL; 862 863 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 864 slots->id_to_index[i] = -1; 865 866 return slots; 867 } 868 869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 870 { 871 if (!memslot->dirty_bitmap) 872 return; 873 874 kvfree(memslot->dirty_bitmap); 875 memslot->dirty_bitmap = NULL; 876 } 877 878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 879 { 880 kvm_destroy_dirty_bitmap(slot); 881 882 kvm_arch_free_memslot(kvm, slot); 883 884 slot->flags = 0; 885 slot->npages = 0; 886 } 887 888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 889 { 890 struct kvm_memory_slot *memslot; 891 892 if (!slots) 893 return; 894 895 kvm_for_each_memslot(memslot, slots) 896 kvm_free_memslot(kvm, memslot); 897 898 kvfree(slots); 899 } 900 901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 902 { 903 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 904 case KVM_STATS_TYPE_INSTANT: 905 return 0444; 906 case KVM_STATS_TYPE_CUMULATIVE: 907 case KVM_STATS_TYPE_PEAK: 908 default: 909 return 0644; 910 } 911 } 912 913 914 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 915 { 916 int i; 917 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 918 kvm_vcpu_stats_header.num_desc; 919 920 if (!kvm->debugfs_dentry) 921 return; 922 923 debugfs_remove_recursive(kvm->debugfs_dentry); 924 925 if (kvm->debugfs_stat_data) { 926 for (i = 0; i < kvm_debugfs_num_entries; i++) 927 kfree(kvm->debugfs_stat_data[i]); 928 kfree(kvm->debugfs_stat_data); 929 } 930 } 931 932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 933 { 934 static DEFINE_MUTEX(kvm_debugfs_lock); 935 struct dentry *dent; 936 char dir_name[ITOA_MAX_LEN * 2]; 937 struct kvm_stat_data *stat_data; 938 const struct _kvm_stats_desc *pdesc; 939 int i, ret; 940 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 941 kvm_vcpu_stats_header.num_desc; 942 943 if (!debugfs_initialized()) 944 return 0; 945 946 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 947 mutex_lock(&kvm_debugfs_lock); 948 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 949 if (dent) { 950 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 951 dput(dent); 952 mutex_unlock(&kvm_debugfs_lock); 953 return 0; 954 } 955 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 956 mutex_unlock(&kvm_debugfs_lock); 957 if (IS_ERR(dent)) 958 return 0; 959 960 kvm->debugfs_dentry = dent; 961 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 962 sizeof(*kvm->debugfs_stat_data), 963 GFP_KERNEL_ACCOUNT); 964 if (!kvm->debugfs_stat_data) 965 return -ENOMEM; 966 967 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 968 pdesc = &kvm_vm_stats_desc[i]; 969 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 970 if (!stat_data) 971 return -ENOMEM; 972 973 stat_data->kvm = kvm; 974 stat_data->desc = pdesc; 975 stat_data->kind = KVM_STAT_VM; 976 kvm->debugfs_stat_data[i] = stat_data; 977 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 978 kvm->debugfs_dentry, stat_data, 979 &stat_fops_per_vm); 980 } 981 982 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 983 pdesc = &kvm_vcpu_stats_desc[i]; 984 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 985 if (!stat_data) 986 return -ENOMEM; 987 988 stat_data->kvm = kvm; 989 stat_data->desc = pdesc; 990 stat_data->kind = KVM_STAT_VCPU; 991 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 992 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 993 kvm->debugfs_dentry, stat_data, 994 &stat_fops_per_vm); 995 } 996 997 ret = kvm_arch_create_vm_debugfs(kvm); 998 if (ret) { 999 kvm_destroy_vm_debugfs(kvm); 1000 return i; 1001 } 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Called after the VM is otherwise initialized, but just before adding it to 1008 * the vm_list. 1009 */ 1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1011 { 1012 return 0; 1013 } 1014 1015 /* 1016 * Called just after removing the VM from the vm_list, but before doing any 1017 * other destruction. 1018 */ 1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1020 { 1021 } 1022 1023 /* 1024 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1025 * be setup already, so we can create arch-specific debugfs entries under it. 1026 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1027 * a per-arch destroy interface is not needed. 1028 */ 1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1030 { 1031 return 0; 1032 } 1033 1034 static struct kvm *kvm_create_vm(unsigned long type) 1035 { 1036 struct kvm *kvm = kvm_arch_alloc_vm(); 1037 int r = -ENOMEM; 1038 int i; 1039 1040 if (!kvm) 1041 return ERR_PTR(-ENOMEM); 1042 1043 KVM_MMU_LOCK_INIT(kvm); 1044 mmgrab(current->mm); 1045 kvm->mm = current->mm; 1046 kvm_eventfd_init(kvm); 1047 mutex_init(&kvm->lock); 1048 mutex_init(&kvm->irq_lock); 1049 mutex_init(&kvm->slots_lock); 1050 mutex_init(&kvm->slots_arch_lock); 1051 spin_lock_init(&kvm->mn_invalidate_lock); 1052 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1053 1054 INIT_LIST_HEAD(&kvm->devices); 1055 1056 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1057 1058 if (init_srcu_struct(&kvm->srcu)) 1059 goto out_err_no_srcu; 1060 if (init_srcu_struct(&kvm->irq_srcu)) 1061 goto out_err_no_irq_srcu; 1062 1063 refcount_set(&kvm->users_count, 1); 1064 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1065 struct kvm_memslots *slots = kvm_alloc_memslots(); 1066 1067 if (!slots) 1068 goto out_err_no_arch_destroy_vm; 1069 /* Generations must be different for each address space. */ 1070 slots->generation = i; 1071 rcu_assign_pointer(kvm->memslots[i], slots); 1072 } 1073 1074 for (i = 0; i < KVM_NR_BUSES; i++) { 1075 rcu_assign_pointer(kvm->buses[i], 1076 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1077 if (!kvm->buses[i]) 1078 goto out_err_no_arch_destroy_vm; 1079 } 1080 1081 kvm->max_halt_poll_ns = halt_poll_ns; 1082 1083 r = kvm_arch_init_vm(kvm, type); 1084 if (r) 1085 goto out_err_no_arch_destroy_vm; 1086 1087 r = hardware_enable_all(); 1088 if (r) 1089 goto out_err_no_disable; 1090 1091 #ifdef CONFIG_HAVE_KVM_IRQFD 1092 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1093 #endif 1094 1095 r = kvm_init_mmu_notifier(kvm); 1096 if (r) 1097 goto out_err_no_mmu_notifier; 1098 1099 r = kvm_arch_post_init_vm(kvm); 1100 if (r) 1101 goto out_err; 1102 1103 mutex_lock(&kvm_lock); 1104 list_add(&kvm->vm_list, &vm_list); 1105 mutex_unlock(&kvm_lock); 1106 1107 preempt_notifier_inc(); 1108 kvm_init_pm_notifier(kvm); 1109 1110 return kvm; 1111 1112 out_err: 1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1114 if (kvm->mmu_notifier.ops) 1115 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1116 #endif 1117 out_err_no_mmu_notifier: 1118 hardware_disable_all(); 1119 out_err_no_disable: 1120 kvm_arch_destroy_vm(kvm); 1121 out_err_no_arch_destroy_vm: 1122 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1123 for (i = 0; i < KVM_NR_BUSES; i++) 1124 kfree(kvm_get_bus(kvm, i)); 1125 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1126 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1127 cleanup_srcu_struct(&kvm->irq_srcu); 1128 out_err_no_irq_srcu: 1129 cleanup_srcu_struct(&kvm->srcu); 1130 out_err_no_srcu: 1131 kvm_arch_free_vm(kvm); 1132 mmdrop(current->mm); 1133 return ERR_PTR(r); 1134 } 1135 1136 static void kvm_destroy_devices(struct kvm *kvm) 1137 { 1138 struct kvm_device *dev, *tmp; 1139 1140 /* 1141 * We do not need to take the kvm->lock here, because nobody else 1142 * has a reference to the struct kvm at this point and therefore 1143 * cannot access the devices list anyhow. 1144 */ 1145 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1146 list_del(&dev->vm_node); 1147 dev->ops->destroy(dev); 1148 } 1149 } 1150 1151 static void kvm_destroy_vm(struct kvm *kvm) 1152 { 1153 int i; 1154 struct mm_struct *mm = kvm->mm; 1155 1156 kvm_destroy_pm_notifier(kvm); 1157 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1158 kvm_destroy_vm_debugfs(kvm); 1159 kvm_arch_sync_events(kvm); 1160 mutex_lock(&kvm_lock); 1161 list_del(&kvm->vm_list); 1162 mutex_unlock(&kvm_lock); 1163 kvm_arch_pre_destroy_vm(kvm); 1164 1165 kvm_free_irq_routing(kvm); 1166 for (i = 0; i < KVM_NR_BUSES; i++) { 1167 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1168 1169 if (bus) 1170 kvm_io_bus_destroy(bus); 1171 kvm->buses[i] = NULL; 1172 } 1173 kvm_coalesced_mmio_free(kvm); 1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1175 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1176 /* 1177 * At this point, pending calls to invalidate_range_start() 1178 * have completed but no more MMU notifiers will run, so 1179 * mn_active_invalidate_count may remain unbalanced. 1180 * No threads can be waiting in install_new_memslots as the 1181 * last reference on KVM has been dropped, but freeing 1182 * memslots would deadlock without this manual intervention. 1183 */ 1184 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1185 kvm->mn_active_invalidate_count = 0; 1186 #else 1187 kvm_arch_flush_shadow_all(kvm); 1188 #endif 1189 kvm_arch_destroy_vm(kvm); 1190 kvm_destroy_devices(kvm); 1191 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1192 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1193 cleanup_srcu_struct(&kvm->irq_srcu); 1194 cleanup_srcu_struct(&kvm->srcu); 1195 kvm_arch_free_vm(kvm); 1196 preempt_notifier_dec(); 1197 hardware_disable_all(); 1198 mmdrop(mm); 1199 } 1200 1201 void kvm_get_kvm(struct kvm *kvm) 1202 { 1203 refcount_inc(&kvm->users_count); 1204 } 1205 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1206 1207 /* 1208 * Make sure the vm is not during destruction, which is a safe version of 1209 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1210 */ 1211 bool kvm_get_kvm_safe(struct kvm *kvm) 1212 { 1213 return refcount_inc_not_zero(&kvm->users_count); 1214 } 1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1216 1217 void kvm_put_kvm(struct kvm *kvm) 1218 { 1219 if (refcount_dec_and_test(&kvm->users_count)) 1220 kvm_destroy_vm(kvm); 1221 } 1222 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1223 1224 /* 1225 * Used to put a reference that was taken on behalf of an object associated 1226 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1227 * of the new file descriptor fails and the reference cannot be transferred to 1228 * its final owner. In such cases, the caller is still actively using @kvm and 1229 * will fail miserably if the refcount unexpectedly hits zero. 1230 */ 1231 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1232 { 1233 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1234 } 1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1236 1237 static int kvm_vm_release(struct inode *inode, struct file *filp) 1238 { 1239 struct kvm *kvm = filp->private_data; 1240 1241 kvm_irqfd_release(kvm); 1242 1243 kvm_put_kvm(kvm); 1244 return 0; 1245 } 1246 1247 /* 1248 * Allocation size is twice as large as the actual dirty bitmap size. 1249 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1250 */ 1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1252 { 1253 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1254 1255 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1256 if (!memslot->dirty_bitmap) 1257 return -ENOMEM; 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * Delete a memslot by decrementing the number of used slots and shifting all 1264 * other entries in the array forward one spot. 1265 */ 1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1267 struct kvm_memory_slot *memslot) 1268 { 1269 struct kvm_memory_slot *mslots = slots->memslots; 1270 int i; 1271 1272 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 1273 return; 1274 1275 slots->used_slots--; 1276 1277 if (atomic_read(&slots->last_used_slot) >= slots->used_slots) 1278 atomic_set(&slots->last_used_slot, 0); 1279 1280 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 1281 mslots[i] = mslots[i + 1]; 1282 slots->id_to_index[mslots[i].id] = i; 1283 } 1284 mslots[i] = *memslot; 1285 slots->id_to_index[memslot->id] = -1; 1286 } 1287 1288 /* 1289 * "Insert" a new memslot by incrementing the number of used slots. Returns 1290 * the new slot's initial index into the memslots array. 1291 */ 1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1293 { 1294 return slots->used_slots++; 1295 } 1296 1297 /* 1298 * Move a changed memslot backwards in the array by shifting existing slots 1299 * with a higher GFN toward the front of the array. Note, the changed memslot 1300 * itself is not preserved in the array, i.e. not swapped at this time, only 1301 * its new index into the array is tracked. Returns the changed memslot's 1302 * current index into the memslots array. 1303 */ 1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1305 struct kvm_memory_slot *memslot) 1306 { 1307 struct kvm_memory_slot *mslots = slots->memslots; 1308 int i; 1309 1310 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 1311 WARN_ON_ONCE(!slots->used_slots)) 1312 return -1; 1313 1314 /* 1315 * Move the target memslot backward in the array by shifting existing 1316 * memslots with a higher GFN (than the target memslot) towards the 1317 * front of the array. 1318 */ 1319 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 1320 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1321 break; 1322 1323 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1324 1325 /* Shift the next memslot forward one and update its index. */ 1326 mslots[i] = mslots[i + 1]; 1327 slots->id_to_index[mslots[i].id] = i; 1328 } 1329 return i; 1330 } 1331 1332 /* 1333 * Move a changed memslot forwards in the array by shifting existing slots with 1334 * a lower GFN toward the back of the array. Note, the changed memslot itself 1335 * is not preserved in the array, i.e. not swapped at this time, only its new 1336 * index into the array is tracked. Returns the changed memslot's final index 1337 * into the memslots array. 1338 */ 1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1340 struct kvm_memory_slot *memslot, 1341 int start) 1342 { 1343 struct kvm_memory_slot *mslots = slots->memslots; 1344 int i; 1345 1346 for (i = start; i > 0; i--) { 1347 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1348 break; 1349 1350 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1351 1352 /* Shift the next memslot back one and update its index. */ 1353 mslots[i] = mslots[i - 1]; 1354 slots->id_to_index[mslots[i].id] = i; 1355 } 1356 return i; 1357 } 1358 1359 /* 1360 * Re-sort memslots based on their GFN to account for an added, deleted, or 1361 * moved memslot. Sorting memslots by GFN allows using a binary search during 1362 * memslot lookup. 1363 * 1364 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1365 * at memslots[0] has the highest GFN. 1366 * 1367 * The sorting algorithm takes advantage of having initially sorted memslots 1368 * and knowing the position of the changed memslot. Sorting is also optimized 1369 * by not swapping the updated memslot and instead only shifting other memslots 1370 * and tracking the new index for the update memslot. Only once its final 1371 * index is known is the updated memslot copied into its position in the array. 1372 * 1373 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1374 * the end of the array. 1375 * 1376 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1377 * end of the array and then it forward to its correct location. 1378 * 1379 * - When moving a memslot, the algorithm first moves the updated memslot 1380 * backward to handle the scenario where the memslot's GFN was changed to a 1381 * lower value. update_memslots() then falls through and runs the same flow 1382 * as creating a memslot to move the memslot forward to handle the scenario 1383 * where its GFN was changed to a higher value. 1384 * 1385 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1386 * historical reasons. Originally, invalid memslots where denoted by having 1387 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1388 * to the end of the array. The current algorithm uses dedicated logic to 1389 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1390 * 1391 * The other historical motiviation for highest->lowest was to improve the 1392 * performance of memslot lookup. KVM originally used a linear search starting 1393 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1394 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1395 * single memslot above the 4gb boundary. As the largest memslot is also the 1396 * most likely to be referenced, sorting it to the front of the array was 1397 * advantageous. The current binary search starts from the middle of the array 1398 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1399 */ 1400 static void update_memslots(struct kvm_memslots *slots, 1401 struct kvm_memory_slot *memslot, 1402 enum kvm_mr_change change) 1403 { 1404 int i; 1405 1406 if (change == KVM_MR_DELETE) { 1407 kvm_memslot_delete(slots, memslot); 1408 } else { 1409 if (change == KVM_MR_CREATE) 1410 i = kvm_memslot_insert_back(slots); 1411 else 1412 i = kvm_memslot_move_backward(slots, memslot); 1413 i = kvm_memslot_move_forward(slots, memslot, i); 1414 1415 /* 1416 * Copy the memslot to its new position in memslots and update 1417 * its index accordingly. 1418 */ 1419 slots->memslots[i] = *memslot; 1420 slots->id_to_index[memslot->id] = i; 1421 } 1422 } 1423 1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1425 { 1426 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1427 1428 #ifdef __KVM_HAVE_READONLY_MEM 1429 valid_flags |= KVM_MEM_READONLY; 1430 #endif 1431 1432 if (mem->flags & ~valid_flags) 1433 return -EINVAL; 1434 1435 return 0; 1436 } 1437 1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1439 int as_id, struct kvm_memslots *slots) 1440 { 1441 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1442 u64 gen = old_memslots->generation; 1443 1444 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1445 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1446 1447 /* 1448 * Do not store the new memslots while there are invalidations in 1449 * progress, otherwise the locking in invalidate_range_start and 1450 * invalidate_range_end will be unbalanced. 1451 */ 1452 spin_lock(&kvm->mn_invalidate_lock); 1453 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1454 while (kvm->mn_active_invalidate_count) { 1455 set_current_state(TASK_UNINTERRUPTIBLE); 1456 spin_unlock(&kvm->mn_invalidate_lock); 1457 schedule(); 1458 spin_lock(&kvm->mn_invalidate_lock); 1459 } 1460 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1461 rcu_assign_pointer(kvm->memslots[as_id], slots); 1462 spin_unlock(&kvm->mn_invalidate_lock); 1463 1464 /* 1465 * Acquired in kvm_set_memslot. Must be released before synchronize 1466 * SRCU below in order to avoid deadlock with another thread 1467 * acquiring the slots_arch_lock in an srcu critical section. 1468 */ 1469 mutex_unlock(&kvm->slots_arch_lock); 1470 1471 synchronize_srcu_expedited(&kvm->srcu); 1472 1473 /* 1474 * Increment the new memslot generation a second time, dropping the 1475 * update in-progress flag and incrementing the generation based on 1476 * the number of address spaces. This provides a unique and easily 1477 * identifiable generation number while the memslots are in flux. 1478 */ 1479 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1480 1481 /* 1482 * Generations must be unique even across address spaces. We do not need 1483 * a global counter for that, instead the generation space is evenly split 1484 * across address spaces. For example, with two address spaces, address 1485 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1486 * use generations 1, 3, 5, ... 1487 */ 1488 gen += KVM_ADDRESS_SPACE_NUM; 1489 1490 kvm_arch_memslots_updated(kvm, gen); 1491 1492 slots->generation = gen; 1493 1494 return old_memslots; 1495 } 1496 1497 static size_t kvm_memslots_size(int slots) 1498 { 1499 return sizeof(struct kvm_memslots) + 1500 (sizeof(struct kvm_memory_slot) * slots); 1501 } 1502 1503 static void kvm_copy_memslots(struct kvm_memslots *to, 1504 struct kvm_memslots *from) 1505 { 1506 memcpy(to, from, kvm_memslots_size(from->used_slots)); 1507 } 1508 1509 /* 1510 * Note, at a minimum, the current number of used slots must be allocated, even 1511 * when deleting a memslot, as we need a complete duplicate of the memslots for 1512 * use when invalidating a memslot prior to deleting/moving the memslot. 1513 */ 1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1515 enum kvm_mr_change change) 1516 { 1517 struct kvm_memslots *slots; 1518 size_t new_size; 1519 1520 if (change == KVM_MR_CREATE) 1521 new_size = kvm_memslots_size(old->used_slots + 1); 1522 else 1523 new_size = kvm_memslots_size(old->used_slots); 1524 1525 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1526 if (likely(slots)) 1527 kvm_copy_memslots(slots, old); 1528 1529 return slots; 1530 } 1531 1532 static int kvm_set_memslot(struct kvm *kvm, 1533 const struct kvm_userspace_memory_region *mem, 1534 struct kvm_memory_slot *new, int as_id, 1535 enum kvm_mr_change change) 1536 { 1537 struct kvm_memory_slot *slot, old; 1538 struct kvm_memslots *slots; 1539 int r; 1540 1541 /* 1542 * Released in install_new_memslots. 1543 * 1544 * Must be held from before the current memslots are copied until 1545 * after the new memslots are installed with rcu_assign_pointer, 1546 * then released before the synchronize srcu in install_new_memslots. 1547 * 1548 * When modifying memslots outside of the slots_lock, must be held 1549 * before reading the pointer to the current memslots until after all 1550 * changes to those memslots are complete. 1551 * 1552 * These rules ensure that installing new memslots does not lose 1553 * changes made to the previous memslots. 1554 */ 1555 mutex_lock(&kvm->slots_arch_lock); 1556 1557 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1558 if (!slots) { 1559 mutex_unlock(&kvm->slots_arch_lock); 1560 return -ENOMEM; 1561 } 1562 1563 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1564 /* 1565 * Note, the INVALID flag needs to be in the appropriate entry 1566 * in the freshly allocated memslots, not in @old or @new. 1567 */ 1568 slot = id_to_memslot(slots, new->id); 1569 slot->flags |= KVM_MEMSLOT_INVALID; 1570 1571 /* 1572 * We can re-use the memory from the old memslots. 1573 * It will be overwritten with a copy of the new memslots 1574 * after reacquiring the slots_arch_lock below. 1575 */ 1576 slots = install_new_memslots(kvm, as_id, slots); 1577 1578 /* From this point no new shadow pages pointing to a deleted, 1579 * or moved, memslot will be created. 1580 * 1581 * validation of sp->gfn happens in: 1582 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1583 * - kvm_is_visible_gfn (mmu_check_root) 1584 */ 1585 kvm_arch_flush_shadow_memslot(kvm, slot); 1586 1587 /* Released in install_new_memslots. */ 1588 mutex_lock(&kvm->slots_arch_lock); 1589 1590 /* 1591 * The arch-specific fields of the memslots could have changed 1592 * between releasing the slots_arch_lock in 1593 * install_new_memslots and here, so get a fresh copy of the 1594 * slots. 1595 */ 1596 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id)); 1597 } 1598 1599 /* 1600 * Make a full copy of the old memslot, the pointer will become stale 1601 * when the memslots are re-sorted by update_memslots(), and the old 1602 * memslot needs to be referenced after calling update_memslots(), e.g. 1603 * to free its resources and for arch specific behavior. This needs to 1604 * happen *after* (re)acquiring slots_arch_lock. 1605 */ 1606 slot = id_to_memslot(slots, new->id); 1607 if (slot) { 1608 old = *slot; 1609 } else { 1610 WARN_ON_ONCE(change != KVM_MR_CREATE); 1611 memset(&old, 0, sizeof(old)); 1612 old.id = new->id; 1613 old.as_id = as_id; 1614 } 1615 1616 /* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */ 1617 memcpy(&new->arch, &old.arch, sizeof(old.arch)); 1618 1619 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1620 if (r) 1621 goto out_slots; 1622 1623 update_memslots(slots, new, change); 1624 slots = install_new_memslots(kvm, as_id, slots); 1625 1626 kvm_arch_commit_memory_region(kvm, mem, &old, new, change); 1627 1628 /* Free the old memslot's metadata. Note, this is the full copy!!! */ 1629 if (change == KVM_MR_DELETE) 1630 kvm_free_memslot(kvm, &old); 1631 1632 kvfree(slots); 1633 return 0; 1634 1635 out_slots: 1636 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1637 slot = id_to_memslot(slots, new->id); 1638 slot->flags &= ~KVM_MEMSLOT_INVALID; 1639 slots = install_new_memslots(kvm, as_id, slots); 1640 } else { 1641 mutex_unlock(&kvm->slots_arch_lock); 1642 } 1643 kvfree(slots); 1644 return r; 1645 } 1646 1647 static int kvm_delete_memslot(struct kvm *kvm, 1648 const struct kvm_userspace_memory_region *mem, 1649 struct kvm_memory_slot *old, int as_id) 1650 { 1651 struct kvm_memory_slot new; 1652 1653 if (!old->npages) 1654 return -EINVAL; 1655 1656 memset(&new, 0, sizeof(new)); 1657 new.id = old->id; 1658 /* 1659 * This is only for debugging purpose; it should never be referenced 1660 * for a removed memslot. 1661 */ 1662 new.as_id = as_id; 1663 1664 return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE); 1665 } 1666 1667 /* 1668 * Allocate some memory and give it an address in the guest physical address 1669 * space. 1670 * 1671 * Discontiguous memory is allowed, mostly for framebuffers. 1672 * 1673 * Must be called holding kvm->slots_lock for write. 1674 */ 1675 int __kvm_set_memory_region(struct kvm *kvm, 1676 const struct kvm_userspace_memory_region *mem) 1677 { 1678 struct kvm_memory_slot old, new; 1679 struct kvm_memory_slot *tmp; 1680 enum kvm_mr_change change; 1681 int as_id, id; 1682 int r; 1683 1684 r = check_memory_region_flags(mem); 1685 if (r) 1686 return r; 1687 1688 as_id = mem->slot >> 16; 1689 id = (u16)mem->slot; 1690 1691 /* General sanity checks */ 1692 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1693 (mem->memory_size != (unsigned long)mem->memory_size)) 1694 return -EINVAL; 1695 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1696 return -EINVAL; 1697 /* We can read the guest memory with __xxx_user() later on. */ 1698 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1699 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1700 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1701 mem->memory_size)) 1702 return -EINVAL; 1703 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1704 return -EINVAL; 1705 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1706 return -EINVAL; 1707 1708 /* 1709 * Make a full copy of the old memslot, the pointer will become stale 1710 * when the memslots are re-sorted by update_memslots(), and the old 1711 * memslot needs to be referenced after calling update_memslots(), e.g. 1712 * to free its resources and for arch specific behavior. 1713 */ 1714 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1715 if (tmp) { 1716 old = *tmp; 1717 tmp = NULL; 1718 } else { 1719 memset(&old, 0, sizeof(old)); 1720 old.id = id; 1721 } 1722 1723 if (!mem->memory_size) 1724 return kvm_delete_memslot(kvm, mem, &old, as_id); 1725 1726 new.as_id = as_id; 1727 new.id = id; 1728 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1729 new.npages = mem->memory_size >> PAGE_SHIFT; 1730 new.flags = mem->flags; 1731 new.userspace_addr = mem->userspace_addr; 1732 1733 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1734 return -EINVAL; 1735 1736 if (!old.npages) { 1737 change = KVM_MR_CREATE; 1738 new.dirty_bitmap = NULL; 1739 } else { /* Modify an existing slot. */ 1740 if ((new.userspace_addr != old.userspace_addr) || 1741 (new.npages != old.npages) || 1742 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1743 return -EINVAL; 1744 1745 if (new.base_gfn != old.base_gfn) 1746 change = KVM_MR_MOVE; 1747 else if (new.flags != old.flags) 1748 change = KVM_MR_FLAGS_ONLY; 1749 else /* Nothing to change. */ 1750 return 0; 1751 1752 /* Copy dirty_bitmap from the current memslot. */ 1753 new.dirty_bitmap = old.dirty_bitmap; 1754 } 1755 1756 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1757 /* Check for overlaps */ 1758 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1759 if (tmp->id == id) 1760 continue; 1761 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1762 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1763 return -EEXIST; 1764 } 1765 } 1766 1767 /* Allocate/free page dirty bitmap as needed */ 1768 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1769 new.dirty_bitmap = NULL; 1770 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) { 1771 r = kvm_alloc_dirty_bitmap(&new); 1772 if (r) 1773 return r; 1774 1775 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1776 bitmap_set(new.dirty_bitmap, 0, new.npages); 1777 } 1778 1779 r = kvm_set_memslot(kvm, mem, &new, as_id, change); 1780 if (r) 1781 goto out_bitmap; 1782 1783 if (old.dirty_bitmap && !new.dirty_bitmap) 1784 kvm_destroy_dirty_bitmap(&old); 1785 return 0; 1786 1787 out_bitmap: 1788 if (new.dirty_bitmap && !old.dirty_bitmap) 1789 kvm_destroy_dirty_bitmap(&new); 1790 return r; 1791 } 1792 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1793 1794 int kvm_set_memory_region(struct kvm *kvm, 1795 const struct kvm_userspace_memory_region *mem) 1796 { 1797 int r; 1798 1799 mutex_lock(&kvm->slots_lock); 1800 r = __kvm_set_memory_region(kvm, mem); 1801 mutex_unlock(&kvm->slots_lock); 1802 return r; 1803 } 1804 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1805 1806 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1807 struct kvm_userspace_memory_region *mem) 1808 { 1809 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1810 return -EINVAL; 1811 1812 return kvm_set_memory_region(kvm, mem); 1813 } 1814 1815 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1816 /** 1817 * kvm_get_dirty_log - get a snapshot of dirty pages 1818 * @kvm: pointer to kvm instance 1819 * @log: slot id and address to which we copy the log 1820 * @is_dirty: set to '1' if any dirty pages were found 1821 * @memslot: set to the associated memslot, always valid on success 1822 */ 1823 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1824 int *is_dirty, struct kvm_memory_slot **memslot) 1825 { 1826 struct kvm_memslots *slots; 1827 int i, as_id, id; 1828 unsigned long n; 1829 unsigned long any = 0; 1830 1831 /* Dirty ring tracking is exclusive to dirty log tracking */ 1832 if (kvm->dirty_ring_size) 1833 return -ENXIO; 1834 1835 *memslot = NULL; 1836 *is_dirty = 0; 1837 1838 as_id = log->slot >> 16; 1839 id = (u16)log->slot; 1840 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1841 return -EINVAL; 1842 1843 slots = __kvm_memslots(kvm, as_id); 1844 *memslot = id_to_memslot(slots, id); 1845 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1846 return -ENOENT; 1847 1848 kvm_arch_sync_dirty_log(kvm, *memslot); 1849 1850 n = kvm_dirty_bitmap_bytes(*memslot); 1851 1852 for (i = 0; !any && i < n/sizeof(long); ++i) 1853 any = (*memslot)->dirty_bitmap[i]; 1854 1855 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1856 return -EFAULT; 1857 1858 if (any) 1859 *is_dirty = 1; 1860 return 0; 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1863 1864 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1865 /** 1866 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1867 * and reenable dirty page tracking for the corresponding pages. 1868 * @kvm: pointer to kvm instance 1869 * @log: slot id and address to which we copy the log 1870 * 1871 * We need to keep it in mind that VCPU threads can write to the bitmap 1872 * concurrently. So, to avoid losing track of dirty pages we keep the 1873 * following order: 1874 * 1875 * 1. Take a snapshot of the bit and clear it if needed. 1876 * 2. Write protect the corresponding page. 1877 * 3. Copy the snapshot to the userspace. 1878 * 4. Upon return caller flushes TLB's if needed. 1879 * 1880 * Between 2 and 4, the guest may write to the page using the remaining TLB 1881 * entry. This is not a problem because the page is reported dirty using 1882 * the snapshot taken before and step 4 ensures that writes done after 1883 * exiting to userspace will be logged for the next call. 1884 * 1885 */ 1886 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1887 { 1888 struct kvm_memslots *slots; 1889 struct kvm_memory_slot *memslot; 1890 int i, as_id, id; 1891 unsigned long n; 1892 unsigned long *dirty_bitmap; 1893 unsigned long *dirty_bitmap_buffer; 1894 bool flush; 1895 1896 /* Dirty ring tracking is exclusive to dirty log tracking */ 1897 if (kvm->dirty_ring_size) 1898 return -ENXIO; 1899 1900 as_id = log->slot >> 16; 1901 id = (u16)log->slot; 1902 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1903 return -EINVAL; 1904 1905 slots = __kvm_memslots(kvm, as_id); 1906 memslot = id_to_memslot(slots, id); 1907 if (!memslot || !memslot->dirty_bitmap) 1908 return -ENOENT; 1909 1910 dirty_bitmap = memslot->dirty_bitmap; 1911 1912 kvm_arch_sync_dirty_log(kvm, memslot); 1913 1914 n = kvm_dirty_bitmap_bytes(memslot); 1915 flush = false; 1916 if (kvm->manual_dirty_log_protect) { 1917 /* 1918 * Unlike kvm_get_dirty_log, we always return false in *flush, 1919 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1920 * is some code duplication between this function and 1921 * kvm_get_dirty_log, but hopefully all architecture 1922 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1923 * can be eliminated. 1924 */ 1925 dirty_bitmap_buffer = dirty_bitmap; 1926 } else { 1927 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1928 memset(dirty_bitmap_buffer, 0, n); 1929 1930 KVM_MMU_LOCK(kvm); 1931 for (i = 0; i < n / sizeof(long); i++) { 1932 unsigned long mask; 1933 gfn_t offset; 1934 1935 if (!dirty_bitmap[i]) 1936 continue; 1937 1938 flush = true; 1939 mask = xchg(&dirty_bitmap[i], 0); 1940 dirty_bitmap_buffer[i] = mask; 1941 1942 offset = i * BITS_PER_LONG; 1943 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1944 offset, mask); 1945 } 1946 KVM_MMU_UNLOCK(kvm); 1947 } 1948 1949 if (flush) 1950 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1951 1952 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1953 return -EFAULT; 1954 return 0; 1955 } 1956 1957 1958 /** 1959 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1960 * @kvm: kvm instance 1961 * @log: slot id and address to which we copy the log 1962 * 1963 * Steps 1-4 below provide general overview of dirty page logging. See 1964 * kvm_get_dirty_log_protect() function description for additional details. 1965 * 1966 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1967 * always flush the TLB (step 4) even if previous step failed and the dirty 1968 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1969 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1970 * writes will be marked dirty for next log read. 1971 * 1972 * 1. Take a snapshot of the bit and clear it if needed. 1973 * 2. Write protect the corresponding page. 1974 * 3. Copy the snapshot to the userspace. 1975 * 4. Flush TLB's if needed. 1976 */ 1977 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1978 struct kvm_dirty_log *log) 1979 { 1980 int r; 1981 1982 mutex_lock(&kvm->slots_lock); 1983 1984 r = kvm_get_dirty_log_protect(kvm, log); 1985 1986 mutex_unlock(&kvm->slots_lock); 1987 return r; 1988 } 1989 1990 /** 1991 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1992 * and reenable dirty page tracking for the corresponding pages. 1993 * @kvm: pointer to kvm instance 1994 * @log: slot id and address from which to fetch the bitmap of dirty pages 1995 */ 1996 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1997 struct kvm_clear_dirty_log *log) 1998 { 1999 struct kvm_memslots *slots; 2000 struct kvm_memory_slot *memslot; 2001 int as_id, id; 2002 gfn_t offset; 2003 unsigned long i, n; 2004 unsigned long *dirty_bitmap; 2005 unsigned long *dirty_bitmap_buffer; 2006 bool flush; 2007 2008 /* Dirty ring tracking is exclusive to dirty log tracking */ 2009 if (kvm->dirty_ring_size) 2010 return -ENXIO; 2011 2012 as_id = log->slot >> 16; 2013 id = (u16)log->slot; 2014 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2015 return -EINVAL; 2016 2017 if (log->first_page & 63) 2018 return -EINVAL; 2019 2020 slots = __kvm_memslots(kvm, as_id); 2021 memslot = id_to_memslot(slots, id); 2022 if (!memslot || !memslot->dirty_bitmap) 2023 return -ENOENT; 2024 2025 dirty_bitmap = memslot->dirty_bitmap; 2026 2027 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2028 2029 if (log->first_page > memslot->npages || 2030 log->num_pages > memslot->npages - log->first_page || 2031 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2032 return -EINVAL; 2033 2034 kvm_arch_sync_dirty_log(kvm, memslot); 2035 2036 flush = false; 2037 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2038 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2039 return -EFAULT; 2040 2041 KVM_MMU_LOCK(kvm); 2042 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2043 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2044 i++, offset += BITS_PER_LONG) { 2045 unsigned long mask = *dirty_bitmap_buffer++; 2046 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2047 if (!mask) 2048 continue; 2049 2050 mask &= atomic_long_fetch_andnot(mask, p); 2051 2052 /* 2053 * mask contains the bits that really have been cleared. This 2054 * never includes any bits beyond the length of the memslot (if 2055 * the length is not aligned to 64 pages), therefore it is not 2056 * a problem if userspace sets them in log->dirty_bitmap. 2057 */ 2058 if (mask) { 2059 flush = true; 2060 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2061 offset, mask); 2062 } 2063 } 2064 KVM_MMU_UNLOCK(kvm); 2065 2066 if (flush) 2067 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2068 2069 return 0; 2070 } 2071 2072 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2073 struct kvm_clear_dirty_log *log) 2074 { 2075 int r; 2076 2077 mutex_lock(&kvm->slots_lock); 2078 2079 r = kvm_clear_dirty_log_protect(kvm, log); 2080 2081 mutex_unlock(&kvm->slots_lock); 2082 return r; 2083 } 2084 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2085 2086 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2087 { 2088 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2089 } 2090 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2091 2092 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2093 { 2094 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2095 struct kvm_memory_slot *slot; 2096 int slot_index; 2097 2098 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn); 2099 if (slot) 2100 return slot; 2101 2102 /* 2103 * Fall back to searching all memslots. We purposely use 2104 * search_memslots() instead of __gfn_to_memslot() to avoid 2105 * thrashing the VM-wide last_used_index in kvm_memslots. 2106 */ 2107 slot = search_memslots(slots, gfn, &slot_index); 2108 if (slot) { 2109 vcpu->last_used_slot = slot_index; 2110 return slot; 2111 } 2112 2113 return NULL; 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2116 2117 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2118 { 2119 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2120 2121 return kvm_is_visible_memslot(memslot); 2122 } 2123 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2124 2125 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2126 { 2127 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2128 2129 return kvm_is_visible_memslot(memslot); 2130 } 2131 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2132 2133 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2134 { 2135 struct vm_area_struct *vma; 2136 unsigned long addr, size; 2137 2138 size = PAGE_SIZE; 2139 2140 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2141 if (kvm_is_error_hva(addr)) 2142 return PAGE_SIZE; 2143 2144 mmap_read_lock(current->mm); 2145 vma = find_vma(current->mm, addr); 2146 if (!vma) 2147 goto out; 2148 2149 size = vma_kernel_pagesize(vma); 2150 2151 out: 2152 mmap_read_unlock(current->mm); 2153 2154 return size; 2155 } 2156 2157 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2158 { 2159 return slot->flags & KVM_MEM_READONLY; 2160 } 2161 2162 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2163 gfn_t *nr_pages, bool write) 2164 { 2165 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2166 return KVM_HVA_ERR_BAD; 2167 2168 if (memslot_is_readonly(slot) && write) 2169 return KVM_HVA_ERR_RO_BAD; 2170 2171 if (nr_pages) 2172 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2173 2174 return __gfn_to_hva_memslot(slot, gfn); 2175 } 2176 2177 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2178 gfn_t *nr_pages) 2179 { 2180 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2181 } 2182 2183 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2184 gfn_t gfn) 2185 { 2186 return gfn_to_hva_many(slot, gfn, NULL); 2187 } 2188 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2189 2190 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2191 { 2192 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2193 } 2194 EXPORT_SYMBOL_GPL(gfn_to_hva); 2195 2196 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2197 { 2198 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2199 } 2200 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2201 2202 /* 2203 * Return the hva of a @gfn and the R/W attribute if possible. 2204 * 2205 * @slot: the kvm_memory_slot which contains @gfn 2206 * @gfn: the gfn to be translated 2207 * @writable: used to return the read/write attribute of the @slot if the hva 2208 * is valid and @writable is not NULL 2209 */ 2210 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2211 gfn_t gfn, bool *writable) 2212 { 2213 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2214 2215 if (!kvm_is_error_hva(hva) && writable) 2216 *writable = !memslot_is_readonly(slot); 2217 2218 return hva; 2219 } 2220 2221 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2222 { 2223 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2224 2225 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2226 } 2227 2228 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2229 { 2230 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2231 2232 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2233 } 2234 2235 static inline int check_user_page_hwpoison(unsigned long addr) 2236 { 2237 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2238 2239 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2240 return rc == -EHWPOISON; 2241 } 2242 2243 /* 2244 * The fast path to get the writable pfn which will be stored in @pfn, 2245 * true indicates success, otherwise false is returned. It's also the 2246 * only part that runs if we can in atomic context. 2247 */ 2248 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2249 bool *writable, kvm_pfn_t *pfn) 2250 { 2251 struct page *page[1]; 2252 2253 /* 2254 * Fast pin a writable pfn only if it is a write fault request 2255 * or the caller allows to map a writable pfn for a read fault 2256 * request. 2257 */ 2258 if (!(write_fault || writable)) 2259 return false; 2260 2261 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2262 *pfn = page_to_pfn(page[0]); 2263 2264 if (writable) 2265 *writable = true; 2266 return true; 2267 } 2268 2269 return false; 2270 } 2271 2272 /* 2273 * The slow path to get the pfn of the specified host virtual address, 2274 * 1 indicates success, -errno is returned if error is detected. 2275 */ 2276 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2277 bool *writable, kvm_pfn_t *pfn) 2278 { 2279 unsigned int flags = FOLL_HWPOISON; 2280 struct page *page; 2281 int npages = 0; 2282 2283 might_sleep(); 2284 2285 if (writable) 2286 *writable = write_fault; 2287 2288 if (write_fault) 2289 flags |= FOLL_WRITE; 2290 if (async) 2291 flags |= FOLL_NOWAIT; 2292 2293 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2294 if (npages != 1) 2295 return npages; 2296 2297 /* map read fault as writable if possible */ 2298 if (unlikely(!write_fault) && writable) { 2299 struct page *wpage; 2300 2301 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2302 *writable = true; 2303 put_page(page); 2304 page = wpage; 2305 } 2306 } 2307 *pfn = page_to_pfn(page); 2308 return npages; 2309 } 2310 2311 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2312 { 2313 if (unlikely(!(vma->vm_flags & VM_READ))) 2314 return false; 2315 2316 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2317 return false; 2318 2319 return true; 2320 } 2321 2322 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2323 { 2324 if (kvm_is_reserved_pfn(pfn)) 2325 return 1; 2326 return get_page_unless_zero(pfn_to_page(pfn)); 2327 } 2328 2329 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2330 unsigned long addr, bool *async, 2331 bool write_fault, bool *writable, 2332 kvm_pfn_t *p_pfn) 2333 { 2334 kvm_pfn_t pfn; 2335 pte_t *ptep; 2336 spinlock_t *ptl; 2337 int r; 2338 2339 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2340 if (r) { 2341 /* 2342 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2343 * not call the fault handler, so do it here. 2344 */ 2345 bool unlocked = false; 2346 r = fixup_user_fault(current->mm, addr, 2347 (write_fault ? FAULT_FLAG_WRITE : 0), 2348 &unlocked); 2349 if (unlocked) 2350 return -EAGAIN; 2351 if (r) 2352 return r; 2353 2354 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2355 if (r) 2356 return r; 2357 } 2358 2359 if (write_fault && !pte_write(*ptep)) { 2360 pfn = KVM_PFN_ERR_RO_FAULT; 2361 goto out; 2362 } 2363 2364 if (writable) 2365 *writable = pte_write(*ptep); 2366 pfn = pte_pfn(*ptep); 2367 2368 /* 2369 * Get a reference here because callers of *hva_to_pfn* and 2370 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2371 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2372 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2373 * simply do nothing for reserved pfns. 2374 * 2375 * Whoever called remap_pfn_range is also going to call e.g. 2376 * unmap_mapping_range before the underlying pages are freed, 2377 * causing a call to our MMU notifier. 2378 * 2379 * Certain IO or PFNMAP mappings can be backed with valid 2380 * struct pages, but be allocated without refcounting e.g., 2381 * tail pages of non-compound higher order allocations, which 2382 * would then underflow the refcount when the caller does the 2383 * required put_page. Don't allow those pages here. 2384 */ 2385 if (!kvm_try_get_pfn(pfn)) 2386 r = -EFAULT; 2387 2388 out: 2389 pte_unmap_unlock(ptep, ptl); 2390 *p_pfn = pfn; 2391 2392 return r; 2393 } 2394 2395 /* 2396 * Pin guest page in memory and return its pfn. 2397 * @addr: host virtual address which maps memory to the guest 2398 * @atomic: whether this function can sleep 2399 * @async: whether this function need to wait IO complete if the 2400 * host page is not in the memory 2401 * @write_fault: whether we should get a writable host page 2402 * @writable: whether it allows to map a writable host page for !@write_fault 2403 * 2404 * The function will map a writable host page for these two cases: 2405 * 1): @write_fault = true 2406 * 2): @write_fault = false && @writable, @writable will tell the caller 2407 * whether the mapping is writable. 2408 */ 2409 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2410 bool write_fault, bool *writable) 2411 { 2412 struct vm_area_struct *vma; 2413 kvm_pfn_t pfn = 0; 2414 int npages, r; 2415 2416 /* we can do it either atomically or asynchronously, not both */ 2417 BUG_ON(atomic && async); 2418 2419 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2420 return pfn; 2421 2422 if (atomic) 2423 return KVM_PFN_ERR_FAULT; 2424 2425 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2426 if (npages == 1) 2427 return pfn; 2428 2429 mmap_read_lock(current->mm); 2430 if (npages == -EHWPOISON || 2431 (!async && check_user_page_hwpoison(addr))) { 2432 pfn = KVM_PFN_ERR_HWPOISON; 2433 goto exit; 2434 } 2435 2436 retry: 2437 vma = vma_lookup(current->mm, addr); 2438 2439 if (vma == NULL) 2440 pfn = KVM_PFN_ERR_FAULT; 2441 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2442 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2443 if (r == -EAGAIN) 2444 goto retry; 2445 if (r < 0) 2446 pfn = KVM_PFN_ERR_FAULT; 2447 } else { 2448 if (async && vma_is_valid(vma, write_fault)) 2449 *async = true; 2450 pfn = KVM_PFN_ERR_FAULT; 2451 } 2452 exit: 2453 mmap_read_unlock(current->mm); 2454 return pfn; 2455 } 2456 2457 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2458 bool atomic, bool *async, bool write_fault, 2459 bool *writable, hva_t *hva) 2460 { 2461 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2462 2463 if (hva) 2464 *hva = addr; 2465 2466 if (addr == KVM_HVA_ERR_RO_BAD) { 2467 if (writable) 2468 *writable = false; 2469 return KVM_PFN_ERR_RO_FAULT; 2470 } 2471 2472 if (kvm_is_error_hva(addr)) { 2473 if (writable) 2474 *writable = false; 2475 return KVM_PFN_NOSLOT; 2476 } 2477 2478 /* Do not map writable pfn in the readonly memslot. */ 2479 if (writable && memslot_is_readonly(slot)) { 2480 *writable = false; 2481 writable = NULL; 2482 } 2483 2484 return hva_to_pfn(addr, atomic, async, write_fault, 2485 writable); 2486 } 2487 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2488 2489 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2490 bool *writable) 2491 { 2492 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2493 write_fault, writable, NULL); 2494 } 2495 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2496 2497 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2498 { 2499 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2500 } 2501 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2502 2503 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2504 { 2505 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2506 } 2507 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2508 2509 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2510 { 2511 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2512 } 2513 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2514 2515 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2516 { 2517 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2518 } 2519 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2520 2521 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2522 { 2523 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2524 } 2525 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2526 2527 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2528 struct page **pages, int nr_pages) 2529 { 2530 unsigned long addr; 2531 gfn_t entry = 0; 2532 2533 addr = gfn_to_hva_many(slot, gfn, &entry); 2534 if (kvm_is_error_hva(addr)) 2535 return -1; 2536 2537 if (entry < nr_pages) 2538 return 0; 2539 2540 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2541 } 2542 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2543 2544 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2545 { 2546 if (is_error_noslot_pfn(pfn)) 2547 return KVM_ERR_PTR_BAD_PAGE; 2548 2549 if (kvm_is_reserved_pfn(pfn)) { 2550 WARN_ON(1); 2551 return KVM_ERR_PTR_BAD_PAGE; 2552 } 2553 2554 return pfn_to_page(pfn); 2555 } 2556 2557 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2558 { 2559 kvm_pfn_t pfn; 2560 2561 pfn = gfn_to_pfn(kvm, gfn); 2562 2563 return kvm_pfn_to_page(pfn); 2564 } 2565 EXPORT_SYMBOL_GPL(gfn_to_page); 2566 2567 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2568 { 2569 if (pfn == 0) 2570 return; 2571 2572 if (dirty) 2573 kvm_release_pfn_dirty(pfn); 2574 else 2575 kvm_release_pfn_clean(pfn); 2576 } 2577 2578 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2579 { 2580 kvm_pfn_t pfn; 2581 void *hva = NULL; 2582 struct page *page = KVM_UNMAPPED_PAGE; 2583 2584 if (!map) 2585 return -EINVAL; 2586 2587 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2588 if (is_error_noslot_pfn(pfn)) 2589 return -EINVAL; 2590 2591 if (pfn_valid(pfn)) { 2592 page = pfn_to_page(pfn); 2593 hva = kmap(page); 2594 #ifdef CONFIG_HAS_IOMEM 2595 } else { 2596 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2597 #endif 2598 } 2599 2600 if (!hva) 2601 return -EFAULT; 2602 2603 map->page = page; 2604 map->hva = hva; 2605 map->pfn = pfn; 2606 map->gfn = gfn; 2607 2608 return 0; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2611 2612 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2613 { 2614 if (!map) 2615 return; 2616 2617 if (!map->hva) 2618 return; 2619 2620 if (map->page != KVM_UNMAPPED_PAGE) 2621 kunmap(map->page); 2622 #ifdef CONFIG_HAS_IOMEM 2623 else 2624 memunmap(map->hva); 2625 #endif 2626 2627 if (dirty) 2628 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2629 2630 kvm_release_pfn(map->pfn, dirty); 2631 2632 map->hva = NULL; 2633 map->page = NULL; 2634 } 2635 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2636 2637 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2638 { 2639 kvm_pfn_t pfn; 2640 2641 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2642 2643 return kvm_pfn_to_page(pfn); 2644 } 2645 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2646 2647 void kvm_release_page_clean(struct page *page) 2648 { 2649 WARN_ON(is_error_page(page)); 2650 2651 kvm_release_pfn_clean(page_to_pfn(page)); 2652 } 2653 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2654 2655 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2656 { 2657 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2658 put_page(pfn_to_page(pfn)); 2659 } 2660 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2661 2662 void kvm_release_page_dirty(struct page *page) 2663 { 2664 WARN_ON(is_error_page(page)); 2665 2666 kvm_release_pfn_dirty(page_to_pfn(page)); 2667 } 2668 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2669 2670 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2671 { 2672 kvm_set_pfn_dirty(pfn); 2673 kvm_release_pfn_clean(pfn); 2674 } 2675 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2676 2677 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2678 { 2679 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2680 SetPageDirty(pfn_to_page(pfn)); 2681 } 2682 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2683 2684 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2685 { 2686 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2687 mark_page_accessed(pfn_to_page(pfn)); 2688 } 2689 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2690 2691 static int next_segment(unsigned long len, int offset) 2692 { 2693 if (len > PAGE_SIZE - offset) 2694 return PAGE_SIZE - offset; 2695 else 2696 return len; 2697 } 2698 2699 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2700 void *data, int offset, int len) 2701 { 2702 int r; 2703 unsigned long addr; 2704 2705 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2706 if (kvm_is_error_hva(addr)) 2707 return -EFAULT; 2708 r = __copy_from_user(data, (void __user *)addr + offset, len); 2709 if (r) 2710 return -EFAULT; 2711 return 0; 2712 } 2713 2714 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2715 int len) 2716 { 2717 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2718 2719 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2720 } 2721 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2722 2723 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2724 int offset, int len) 2725 { 2726 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2727 2728 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2729 } 2730 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2731 2732 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2733 { 2734 gfn_t gfn = gpa >> PAGE_SHIFT; 2735 int seg; 2736 int offset = offset_in_page(gpa); 2737 int ret; 2738 2739 while ((seg = next_segment(len, offset)) != 0) { 2740 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2741 if (ret < 0) 2742 return ret; 2743 offset = 0; 2744 len -= seg; 2745 data += seg; 2746 ++gfn; 2747 } 2748 return 0; 2749 } 2750 EXPORT_SYMBOL_GPL(kvm_read_guest); 2751 2752 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2753 { 2754 gfn_t gfn = gpa >> PAGE_SHIFT; 2755 int seg; 2756 int offset = offset_in_page(gpa); 2757 int ret; 2758 2759 while ((seg = next_segment(len, offset)) != 0) { 2760 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2761 if (ret < 0) 2762 return ret; 2763 offset = 0; 2764 len -= seg; 2765 data += seg; 2766 ++gfn; 2767 } 2768 return 0; 2769 } 2770 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2771 2772 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2773 void *data, int offset, unsigned long len) 2774 { 2775 int r; 2776 unsigned long addr; 2777 2778 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2779 if (kvm_is_error_hva(addr)) 2780 return -EFAULT; 2781 pagefault_disable(); 2782 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2783 pagefault_enable(); 2784 if (r) 2785 return -EFAULT; 2786 return 0; 2787 } 2788 2789 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2790 void *data, unsigned long len) 2791 { 2792 gfn_t gfn = gpa >> PAGE_SHIFT; 2793 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2794 int offset = offset_in_page(gpa); 2795 2796 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2797 } 2798 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2799 2800 static int __kvm_write_guest_page(struct kvm *kvm, 2801 struct kvm_memory_slot *memslot, gfn_t gfn, 2802 const void *data, int offset, int len) 2803 { 2804 int r; 2805 unsigned long addr; 2806 2807 addr = gfn_to_hva_memslot(memslot, gfn); 2808 if (kvm_is_error_hva(addr)) 2809 return -EFAULT; 2810 r = __copy_to_user((void __user *)addr + offset, data, len); 2811 if (r) 2812 return -EFAULT; 2813 mark_page_dirty_in_slot(kvm, memslot, gfn); 2814 return 0; 2815 } 2816 2817 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2818 const void *data, int offset, int len) 2819 { 2820 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2821 2822 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2823 } 2824 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2825 2826 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2827 const void *data, int offset, int len) 2828 { 2829 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2830 2831 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2832 } 2833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2834 2835 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2836 unsigned long len) 2837 { 2838 gfn_t gfn = gpa >> PAGE_SHIFT; 2839 int seg; 2840 int offset = offset_in_page(gpa); 2841 int ret; 2842 2843 while ((seg = next_segment(len, offset)) != 0) { 2844 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2845 if (ret < 0) 2846 return ret; 2847 offset = 0; 2848 len -= seg; 2849 data += seg; 2850 ++gfn; 2851 } 2852 return 0; 2853 } 2854 EXPORT_SYMBOL_GPL(kvm_write_guest); 2855 2856 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2857 unsigned long len) 2858 { 2859 gfn_t gfn = gpa >> PAGE_SHIFT; 2860 int seg; 2861 int offset = offset_in_page(gpa); 2862 int ret; 2863 2864 while ((seg = next_segment(len, offset)) != 0) { 2865 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2866 if (ret < 0) 2867 return ret; 2868 offset = 0; 2869 len -= seg; 2870 data += seg; 2871 ++gfn; 2872 } 2873 return 0; 2874 } 2875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2876 2877 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2878 struct gfn_to_hva_cache *ghc, 2879 gpa_t gpa, unsigned long len) 2880 { 2881 int offset = offset_in_page(gpa); 2882 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2883 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2884 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2885 gfn_t nr_pages_avail; 2886 2887 /* Update ghc->generation before performing any error checks. */ 2888 ghc->generation = slots->generation; 2889 2890 if (start_gfn > end_gfn) { 2891 ghc->hva = KVM_HVA_ERR_BAD; 2892 return -EINVAL; 2893 } 2894 2895 /* 2896 * If the requested region crosses two memslots, we still 2897 * verify that the entire region is valid here. 2898 */ 2899 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2900 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2901 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2902 &nr_pages_avail); 2903 if (kvm_is_error_hva(ghc->hva)) 2904 return -EFAULT; 2905 } 2906 2907 /* Use the slow path for cross page reads and writes. */ 2908 if (nr_pages_needed == 1) 2909 ghc->hva += offset; 2910 else 2911 ghc->memslot = NULL; 2912 2913 ghc->gpa = gpa; 2914 ghc->len = len; 2915 return 0; 2916 } 2917 2918 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2919 gpa_t gpa, unsigned long len) 2920 { 2921 struct kvm_memslots *slots = kvm_memslots(kvm); 2922 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2923 } 2924 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2925 2926 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2927 void *data, unsigned int offset, 2928 unsigned long len) 2929 { 2930 struct kvm_memslots *slots = kvm_memslots(kvm); 2931 int r; 2932 gpa_t gpa = ghc->gpa + offset; 2933 2934 if (WARN_ON_ONCE(len + offset > ghc->len)) 2935 return -EINVAL; 2936 2937 if (slots->generation != ghc->generation) { 2938 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2939 return -EFAULT; 2940 } 2941 2942 if (kvm_is_error_hva(ghc->hva)) 2943 return -EFAULT; 2944 2945 if (unlikely(!ghc->memslot)) 2946 return kvm_write_guest(kvm, gpa, data, len); 2947 2948 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2949 if (r) 2950 return -EFAULT; 2951 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 2952 2953 return 0; 2954 } 2955 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2956 2957 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2958 void *data, unsigned long len) 2959 { 2960 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2961 } 2962 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2963 2964 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2965 void *data, unsigned int offset, 2966 unsigned long len) 2967 { 2968 struct kvm_memslots *slots = kvm_memslots(kvm); 2969 int r; 2970 gpa_t gpa = ghc->gpa + offset; 2971 2972 if (WARN_ON_ONCE(len + offset > ghc->len)) 2973 return -EINVAL; 2974 2975 if (slots->generation != ghc->generation) { 2976 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2977 return -EFAULT; 2978 } 2979 2980 if (kvm_is_error_hva(ghc->hva)) 2981 return -EFAULT; 2982 2983 if (unlikely(!ghc->memslot)) 2984 return kvm_read_guest(kvm, gpa, data, len); 2985 2986 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2987 if (r) 2988 return -EFAULT; 2989 2990 return 0; 2991 } 2992 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2993 2994 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2995 void *data, unsigned long len) 2996 { 2997 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2998 } 2999 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3000 3001 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3002 { 3003 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3004 gfn_t gfn = gpa >> PAGE_SHIFT; 3005 int seg; 3006 int offset = offset_in_page(gpa); 3007 int ret; 3008 3009 while ((seg = next_segment(len, offset)) != 0) { 3010 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3011 if (ret < 0) 3012 return ret; 3013 offset = 0; 3014 len -= seg; 3015 ++gfn; 3016 } 3017 return 0; 3018 } 3019 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3020 3021 void mark_page_dirty_in_slot(struct kvm *kvm, 3022 struct kvm_memory_slot *memslot, 3023 gfn_t gfn) 3024 { 3025 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3026 unsigned long rel_gfn = gfn - memslot->base_gfn; 3027 u32 slot = (memslot->as_id << 16) | memslot->id; 3028 3029 if (kvm->dirty_ring_size) 3030 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 3031 slot, rel_gfn); 3032 else 3033 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3034 } 3035 } 3036 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3037 3038 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3039 { 3040 struct kvm_memory_slot *memslot; 3041 3042 memslot = gfn_to_memslot(kvm, gfn); 3043 mark_page_dirty_in_slot(kvm, memslot, gfn); 3044 } 3045 EXPORT_SYMBOL_GPL(mark_page_dirty); 3046 3047 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3048 { 3049 struct kvm_memory_slot *memslot; 3050 3051 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3052 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3053 } 3054 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3055 3056 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3057 { 3058 if (!vcpu->sigset_active) 3059 return; 3060 3061 /* 3062 * This does a lockless modification of ->real_blocked, which is fine 3063 * because, only current can change ->real_blocked and all readers of 3064 * ->real_blocked don't care as long ->real_blocked is always a subset 3065 * of ->blocked. 3066 */ 3067 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3068 } 3069 3070 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3071 { 3072 if (!vcpu->sigset_active) 3073 return; 3074 3075 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3076 sigemptyset(¤t->real_blocked); 3077 } 3078 3079 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3080 { 3081 unsigned int old, val, grow, grow_start; 3082 3083 old = val = vcpu->halt_poll_ns; 3084 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3085 grow = READ_ONCE(halt_poll_ns_grow); 3086 if (!grow) 3087 goto out; 3088 3089 val *= grow; 3090 if (val < grow_start) 3091 val = grow_start; 3092 3093 if (val > vcpu->kvm->max_halt_poll_ns) 3094 val = vcpu->kvm->max_halt_poll_ns; 3095 3096 vcpu->halt_poll_ns = val; 3097 out: 3098 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3099 } 3100 3101 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3102 { 3103 unsigned int old, val, shrink, grow_start; 3104 3105 old = val = vcpu->halt_poll_ns; 3106 shrink = READ_ONCE(halt_poll_ns_shrink); 3107 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3108 if (shrink == 0) 3109 val = 0; 3110 else 3111 val /= shrink; 3112 3113 if (val < grow_start) 3114 val = 0; 3115 3116 vcpu->halt_poll_ns = val; 3117 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3118 } 3119 3120 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3121 { 3122 int ret = -EINTR; 3123 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3124 3125 if (kvm_arch_vcpu_runnable(vcpu)) { 3126 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3127 goto out; 3128 } 3129 if (kvm_cpu_has_pending_timer(vcpu)) 3130 goto out; 3131 if (signal_pending(current)) 3132 goto out; 3133 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3134 goto out; 3135 3136 ret = 0; 3137 out: 3138 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3139 return ret; 3140 } 3141 3142 static inline void 3143 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3144 { 3145 if (waited) 3146 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3147 else 3148 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3149 } 3150 3151 /* 3152 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3153 */ 3154 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3155 { 3156 ktime_t start, cur, poll_end; 3157 bool waited = false; 3158 u64 block_ns; 3159 3160 kvm_arch_vcpu_blocking(vcpu); 3161 3162 start = cur = poll_end = ktime_get(); 3163 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3164 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3165 3166 ++vcpu->stat.generic.halt_attempted_poll; 3167 do { 3168 /* 3169 * This sets KVM_REQ_UNHALT if an interrupt 3170 * arrives. 3171 */ 3172 if (kvm_vcpu_check_block(vcpu) < 0) { 3173 ++vcpu->stat.generic.halt_successful_poll; 3174 if (!vcpu_valid_wakeup(vcpu)) 3175 ++vcpu->stat.generic.halt_poll_invalid; 3176 3177 KVM_STATS_LOG_HIST_UPDATE( 3178 vcpu->stat.generic.halt_poll_success_hist, 3179 ktime_to_ns(ktime_get()) - 3180 ktime_to_ns(start)); 3181 goto out; 3182 } 3183 cpu_relax(); 3184 poll_end = cur = ktime_get(); 3185 } while (kvm_vcpu_can_poll(cur, stop)); 3186 3187 KVM_STATS_LOG_HIST_UPDATE( 3188 vcpu->stat.generic.halt_poll_fail_hist, 3189 ktime_to_ns(ktime_get()) - ktime_to_ns(start)); 3190 } 3191 3192 3193 prepare_to_rcuwait(&vcpu->wait); 3194 for (;;) { 3195 set_current_state(TASK_INTERRUPTIBLE); 3196 3197 if (kvm_vcpu_check_block(vcpu) < 0) 3198 break; 3199 3200 waited = true; 3201 schedule(); 3202 } 3203 finish_rcuwait(&vcpu->wait); 3204 cur = ktime_get(); 3205 if (waited) { 3206 vcpu->stat.generic.halt_wait_ns += 3207 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3208 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3209 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3210 } 3211 out: 3212 kvm_arch_vcpu_unblocking(vcpu); 3213 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3214 3215 update_halt_poll_stats( 3216 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3217 3218 if (!kvm_arch_no_poll(vcpu)) { 3219 if (!vcpu_valid_wakeup(vcpu)) { 3220 shrink_halt_poll_ns(vcpu); 3221 } else if (vcpu->kvm->max_halt_poll_ns) { 3222 if (block_ns <= vcpu->halt_poll_ns) 3223 ; 3224 /* we had a long block, shrink polling */ 3225 else if (vcpu->halt_poll_ns && 3226 block_ns > vcpu->kvm->max_halt_poll_ns) 3227 shrink_halt_poll_ns(vcpu); 3228 /* we had a short halt and our poll time is too small */ 3229 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3230 block_ns < vcpu->kvm->max_halt_poll_ns) 3231 grow_halt_poll_ns(vcpu); 3232 } else { 3233 vcpu->halt_poll_ns = 0; 3234 } 3235 } 3236 3237 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3238 kvm_arch_vcpu_block_finish(vcpu); 3239 } 3240 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3241 3242 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3243 { 3244 struct rcuwait *waitp; 3245 3246 waitp = kvm_arch_vcpu_get_wait(vcpu); 3247 if (rcuwait_wake_up(waitp)) { 3248 WRITE_ONCE(vcpu->ready, true); 3249 ++vcpu->stat.generic.halt_wakeup; 3250 return true; 3251 } 3252 3253 return false; 3254 } 3255 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3256 3257 #ifndef CONFIG_S390 3258 /* 3259 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3260 */ 3261 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3262 { 3263 int me, cpu; 3264 3265 if (kvm_vcpu_wake_up(vcpu)) 3266 return; 3267 3268 /* 3269 * Note, the vCPU could get migrated to a different pCPU at any point 3270 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3271 * IPI to the previous pCPU. But, that's ok because the purpose of the 3272 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3273 * vCPU also requires it to leave IN_GUEST_MODE. 3274 */ 3275 me = get_cpu(); 3276 if (kvm_arch_vcpu_should_kick(vcpu)) { 3277 cpu = READ_ONCE(vcpu->cpu); 3278 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3279 smp_send_reschedule(cpu); 3280 } 3281 put_cpu(); 3282 } 3283 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3284 #endif /* !CONFIG_S390 */ 3285 3286 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3287 { 3288 struct pid *pid; 3289 struct task_struct *task = NULL; 3290 int ret = 0; 3291 3292 rcu_read_lock(); 3293 pid = rcu_dereference(target->pid); 3294 if (pid) 3295 task = get_pid_task(pid, PIDTYPE_PID); 3296 rcu_read_unlock(); 3297 if (!task) 3298 return ret; 3299 ret = yield_to(task, 1); 3300 put_task_struct(task); 3301 3302 return ret; 3303 } 3304 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3305 3306 /* 3307 * Helper that checks whether a VCPU is eligible for directed yield. 3308 * Most eligible candidate to yield is decided by following heuristics: 3309 * 3310 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3311 * (preempted lock holder), indicated by @in_spin_loop. 3312 * Set at the beginning and cleared at the end of interception/PLE handler. 3313 * 3314 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3315 * chance last time (mostly it has become eligible now since we have probably 3316 * yielded to lockholder in last iteration. This is done by toggling 3317 * @dy_eligible each time a VCPU checked for eligibility.) 3318 * 3319 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3320 * to preempted lock-holder could result in wrong VCPU selection and CPU 3321 * burning. Giving priority for a potential lock-holder increases lock 3322 * progress. 3323 * 3324 * Since algorithm is based on heuristics, accessing another VCPU data without 3325 * locking does not harm. It may result in trying to yield to same VCPU, fail 3326 * and continue with next VCPU and so on. 3327 */ 3328 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3329 { 3330 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3331 bool eligible; 3332 3333 eligible = !vcpu->spin_loop.in_spin_loop || 3334 vcpu->spin_loop.dy_eligible; 3335 3336 if (vcpu->spin_loop.in_spin_loop) 3337 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3338 3339 return eligible; 3340 #else 3341 return true; 3342 #endif 3343 } 3344 3345 /* 3346 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3347 * a vcpu_load/vcpu_put pair. However, for most architectures 3348 * kvm_arch_vcpu_runnable does not require vcpu_load. 3349 */ 3350 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3351 { 3352 return kvm_arch_vcpu_runnable(vcpu); 3353 } 3354 3355 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3356 { 3357 if (kvm_arch_dy_runnable(vcpu)) 3358 return true; 3359 3360 #ifdef CONFIG_KVM_ASYNC_PF 3361 if (!list_empty_careful(&vcpu->async_pf.done)) 3362 return true; 3363 #endif 3364 3365 return false; 3366 } 3367 3368 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3369 { 3370 return false; 3371 } 3372 3373 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3374 { 3375 struct kvm *kvm = me->kvm; 3376 struct kvm_vcpu *vcpu; 3377 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3378 int yielded = 0; 3379 int try = 3; 3380 int pass; 3381 int i; 3382 3383 kvm_vcpu_set_in_spin_loop(me, true); 3384 /* 3385 * We boost the priority of a VCPU that is runnable but not 3386 * currently running, because it got preempted by something 3387 * else and called schedule in __vcpu_run. Hopefully that 3388 * VCPU is holding the lock that we need and will release it. 3389 * We approximate round-robin by starting at the last boosted VCPU. 3390 */ 3391 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3392 kvm_for_each_vcpu(i, vcpu, kvm) { 3393 if (!pass && i <= last_boosted_vcpu) { 3394 i = last_boosted_vcpu; 3395 continue; 3396 } else if (pass && i > last_boosted_vcpu) 3397 break; 3398 if (!READ_ONCE(vcpu->ready)) 3399 continue; 3400 if (vcpu == me) 3401 continue; 3402 if (rcuwait_active(&vcpu->wait) && 3403 !vcpu_dy_runnable(vcpu)) 3404 continue; 3405 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3406 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3407 !kvm_arch_vcpu_in_kernel(vcpu)) 3408 continue; 3409 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3410 continue; 3411 3412 yielded = kvm_vcpu_yield_to(vcpu); 3413 if (yielded > 0) { 3414 kvm->last_boosted_vcpu = i; 3415 break; 3416 } else if (yielded < 0) { 3417 try--; 3418 if (!try) 3419 break; 3420 } 3421 } 3422 } 3423 kvm_vcpu_set_in_spin_loop(me, false); 3424 3425 /* Ensure vcpu is not eligible during next spinloop */ 3426 kvm_vcpu_set_dy_eligible(me, false); 3427 } 3428 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3429 3430 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3431 { 3432 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3433 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3434 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3435 kvm->dirty_ring_size / PAGE_SIZE); 3436 #else 3437 return false; 3438 #endif 3439 } 3440 3441 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3442 { 3443 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3444 struct page *page; 3445 3446 if (vmf->pgoff == 0) 3447 page = virt_to_page(vcpu->run); 3448 #ifdef CONFIG_X86 3449 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3450 page = virt_to_page(vcpu->arch.pio_data); 3451 #endif 3452 #ifdef CONFIG_KVM_MMIO 3453 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3454 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3455 #endif 3456 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3457 page = kvm_dirty_ring_get_page( 3458 &vcpu->dirty_ring, 3459 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3460 else 3461 return kvm_arch_vcpu_fault(vcpu, vmf); 3462 get_page(page); 3463 vmf->page = page; 3464 return 0; 3465 } 3466 3467 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3468 .fault = kvm_vcpu_fault, 3469 }; 3470 3471 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3472 { 3473 struct kvm_vcpu *vcpu = file->private_data; 3474 unsigned long pages = vma_pages(vma); 3475 3476 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3477 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3478 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3479 return -EINVAL; 3480 3481 vma->vm_ops = &kvm_vcpu_vm_ops; 3482 return 0; 3483 } 3484 3485 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3486 { 3487 struct kvm_vcpu *vcpu = filp->private_data; 3488 3489 kvm_put_kvm(vcpu->kvm); 3490 return 0; 3491 } 3492 3493 static struct file_operations kvm_vcpu_fops = { 3494 .release = kvm_vcpu_release, 3495 .unlocked_ioctl = kvm_vcpu_ioctl, 3496 .mmap = kvm_vcpu_mmap, 3497 .llseek = noop_llseek, 3498 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3499 }; 3500 3501 /* 3502 * Allocates an inode for the vcpu. 3503 */ 3504 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3505 { 3506 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3507 3508 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3509 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3510 } 3511 3512 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3513 { 3514 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3515 struct dentry *debugfs_dentry; 3516 char dir_name[ITOA_MAX_LEN * 2]; 3517 3518 if (!debugfs_initialized()) 3519 return; 3520 3521 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3522 debugfs_dentry = debugfs_create_dir(dir_name, 3523 vcpu->kvm->debugfs_dentry); 3524 3525 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3526 #endif 3527 } 3528 3529 /* 3530 * Creates some virtual cpus. Good luck creating more than one. 3531 */ 3532 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3533 { 3534 int r; 3535 struct kvm_vcpu *vcpu; 3536 struct page *page; 3537 3538 if (id >= KVM_MAX_VCPU_IDS) 3539 return -EINVAL; 3540 3541 mutex_lock(&kvm->lock); 3542 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3543 mutex_unlock(&kvm->lock); 3544 return -EINVAL; 3545 } 3546 3547 kvm->created_vcpus++; 3548 mutex_unlock(&kvm->lock); 3549 3550 r = kvm_arch_vcpu_precreate(kvm, id); 3551 if (r) 3552 goto vcpu_decrement; 3553 3554 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3555 if (!vcpu) { 3556 r = -ENOMEM; 3557 goto vcpu_decrement; 3558 } 3559 3560 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3561 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3562 if (!page) { 3563 r = -ENOMEM; 3564 goto vcpu_free; 3565 } 3566 vcpu->run = page_address(page); 3567 3568 kvm_vcpu_init(vcpu, kvm, id); 3569 3570 r = kvm_arch_vcpu_create(vcpu); 3571 if (r) 3572 goto vcpu_free_run_page; 3573 3574 if (kvm->dirty_ring_size) { 3575 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3576 id, kvm->dirty_ring_size); 3577 if (r) 3578 goto arch_vcpu_destroy; 3579 } 3580 3581 mutex_lock(&kvm->lock); 3582 if (kvm_get_vcpu_by_id(kvm, id)) { 3583 r = -EEXIST; 3584 goto unlock_vcpu_destroy; 3585 } 3586 3587 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3588 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3589 3590 /* Fill the stats id string for the vcpu */ 3591 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3592 task_pid_nr(current), id); 3593 3594 /* Now it's all set up, let userspace reach it */ 3595 kvm_get_kvm(kvm); 3596 r = create_vcpu_fd(vcpu); 3597 if (r < 0) { 3598 kvm_put_kvm_no_destroy(kvm); 3599 goto unlock_vcpu_destroy; 3600 } 3601 3602 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3603 3604 /* 3605 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3606 * before kvm->online_vcpu's incremented value. 3607 */ 3608 smp_wmb(); 3609 atomic_inc(&kvm->online_vcpus); 3610 3611 mutex_unlock(&kvm->lock); 3612 kvm_arch_vcpu_postcreate(vcpu); 3613 kvm_create_vcpu_debugfs(vcpu); 3614 return r; 3615 3616 unlock_vcpu_destroy: 3617 mutex_unlock(&kvm->lock); 3618 kvm_dirty_ring_free(&vcpu->dirty_ring); 3619 arch_vcpu_destroy: 3620 kvm_arch_vcpu_destroy(vcpu); 3621 vcpu_free_run_page: 3622 free_page((unsigned long)vcpu->run); 3623 vcpu_free: 3624 kmem_cache_free(kvm_vcpu_cache, vcpu); 3625 vcpu_decrement: 3626 mutex_lock(&kvm->lock); 3627 kvm->created_vcpus--; 3628 mutex_unlock(&kvm->lock); 3629 return r; 3630 } 3631 3632 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3633 { 3634 if (sigset) { 3635 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3636 vcpu->sigset_active = 1; 3637 vcpu->sigset = *sigset; 3638 } else 3639 vcpu->sigset_active = 0; 3640 return 0; 3641 } 3642 3643 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3644 size_t size, loff_t *offset) 3645 { 3646 struct kvm_vcpu *vcpu = file->private_data; 3647 3648 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3649 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3650 sizeof(vcpu->stat), user_buffer, size, offset); 3651 } 3652 3653 static const struct file_operations kvm_vcpu_stats_fops = { 3654 .read = kvm_vcpu_stats_read, 3655 .llseek = noop_llseek, 3656 }; 3657 3658 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3659 { 3660 int fd; 3661 struct file *file; 3662 char name[15 + ITOA_MAX_LEN + 1]; 3663 3664 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3665 3666 fd = get_unused_fd_flags(O_CLOEXEC); 3667 if (fd < 0) 3668 return fd; 3669 3670 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3671 if (IS_ERR(file)) { 3672 put_unused_fd(fd); 3673 return PTR_ERR(file); 3674 } 3675 file->f_mode |= FMODE_PREAD; 3676 fd_install(fd, file); 3677 3678 return fd; 3679 } 3680 3681 static long kvm_vcpu_ioctl(struct file *filp, 3682 unsigned int ioctl, unsigned long arg) 3683 { 3684 struct kvm_vcpu *vcpu = filp->private_data; 3685 void __user *argp = (void __user *)arg; 3686 int r; 3687 struct kvm_fpu *fpu = NULL; 3688 struct kvm_sregs *kvm_sregs = NULL; 3689 3690 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3691 return -EIO; 3692 3693 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3694 return -EINVAL; 3695 3696 /* 3697 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3698 * execution; mutex_lock() would break them. 3699 */ 3700 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3701 if (r != -ENOIOCTLCMD) 3702 return r; 3703 3704 if (mutex_lock_killable(&vcpu->mutex)) 3705 return -EINTR; 3706 switch (ioctl) { 3707 case KVM_RUN: { 3708 struct pid *oldpid; 3709 r = -EINVAL; 3710 if (arg) 3711 goto out; 3712 oldpid = rcu_access_pointer(vcpu->pid); 3713 if (unlikely(oldpid != task_pid(current))) { 3714 /* The thread running this VCPU changed. */ 3715 struct pid *newpid; 3716 3717 r = kvm_arch_vcpu_run_pid_change(vcpu); 3718 if (r) 3719 break; 3720 3721 newpid = get_task_pid(current, PIDTYPE_PID); 3722 rcu_assign_pointer(vcpu->pid, newpid); 3723 if (oldpid) 3724 synchronize_rcu(); 3725 put_pid(oldpid); 3726 } 3727 r = kvm_arch_vcpu_ioctl_run(vcpu); 3728 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3729 break; 3730 } 3731 case KVM_GET_REGS: { 3732 struct kvm_regs *kvm_regs; 3733 3734 r = -ENOMEM; 3735 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3736 if (!kvm_regs) 3737 goto out; 3738 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3739 if (r) 3740 goto out_free1; 3741 r = -EFAULT; 3742 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3743 goto out_free1; 3744 r = 0; 3745 out_free1: 3746 kfree(kvm_regs); 3747 break; 3748 } 3749 case KVM_SET_REGS: { 3750 struct kvm_regs *kvm_regs; 3751 3752 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3753 if (IS_ERR(kvm_regs)) { 3754 r = PTR_ERR(kvm_regs); 3755 goto out; 3756 } 3757 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3758 kfree(kvm_regs); 3759 break; 3760 } 3761 case KVM_GET_SREGS: { 3762 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3763 GFP_KERNEL_ACCOUNT); 3764 r = -ENOMEM; 3765 if (!kvm_sregs) 3766 goto out; 3767 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3768 if (r) 3769 goto out; 3770 r = -EFAULT; 3771 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3772 goto out; 3773 r = 0; 3774 break; 3775 } 3776 case KVM_SET_SREGS: { 3777 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3778 if (IS_ERR(kvm_sregs)) { 3779 r = PTR_ERR(kvm_sregs); 3780 kvm_sregs = NULL; 3781 goto out; 3782 } 3783 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3784 break; 3785 } 3786 case KVM_GET_MP_STATE: { 3787 struct kvm_mp_state mp_state; 3788 3789 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3790 if (r) 3791 goto out; 3792 r = -EFAULT; 3793 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3794 goto out; 3795 r = 0; 3796 break; 3797 } 3798 case KVM_SET_MP_STATE: { 3799 struct kvm_mp_state mp_state; 3800 3801 r = -EFAULT; 3802 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3803 goto out; 3804 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3805 break; 3806 } 3807 case KVM_TRANSLATE: { 3808 struct kvm_translation tr; 3809 3810 r = -EFAULT; 3811 if (copy_from_user(&tr, argp, sizeof(tr))) 3812 goto out; 3813 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3814 if (r) 3815 goto out; 3816 r = -EFAULT; 3817 if (copy_to_user(argp, &tr, sizeof(tr))) 3818 goto out; 3819 r = 0; 3820 break; 3821 } 3822 case KVM_SET_GUEST_DEBUG: { 3823 struct kvm_guest_debug dbg; 3824 3825 r = -EFAULT; 3826 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3827 goto out; 3828 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3829 break; 3830 } 3831 case KVM_SET_SIGNAL_MASK: { 3832 struct kvm_signal_mask __user *sigmask_arg = argp; 3833 struct kvm_signal_mask kvm_sigmask; 3834 sigset_t sigset, *p; 3835 3836 p = NULL; 3837 if (argp) { 3838 r = -EFAULT; 3839 if (copy_from_user(&kvm_sigmask, argp, 3840 sizeof(kvm_sigmask))) 3841 goto out; 3842 r = -EINVAL; 3843 if (kvm_sigmask.len != sizeof(sigset)) 3844 goto out; 3845 r = -EFAULT; 3846 if (copy_from_user(&sigset, sigmask_arg->sigset, 3847 sizeof(sigset))) 3848 goto out; 3849 p = &sigset; 3850 } 3851 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3852 break; 3853 } 3854 case KVM_GET_FPU: { 3855 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3856 r = -ENOMEM; 3857 if (!fpu) 3858 goto out; 3859 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3860 if (r) 3861 goto out; 3862 r = -EFAULT; 3863 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3864 goto out; 3865 r = 0; 3866 break; 3867 } 3868 case KVM_SET_FPU: { 3869 fpu = memdup_user(argp, sizeof(*fpu)); 3870 if (IS_ERR(fpu)) { 3871 r = PTR_ERR(fpu); 3872 fpu = NULL; 3873 goto out; 3874 } 3875 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3876 break; 3877 } 3878 case KVM_GET_STATS_FD: { 3879 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3880 break; 3881 } 3882 default: 3883 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3884 } 3885 out: 3886 mutex_unlock(&vcpu->mutex); 3887 kfree(fpu); 3888 kfree(kvm_sregs); 3889 return r; 3890 } 3891 3892 #ifdef CONFIG_KVM_COMPAT 3893 static long kvm_vcpu_compat_ioctl(struct file *filp, 3894 unsigned int ioctl, unsigned long arg) 3895 { 3896 struct kvm_vcpu *vcpu = filp->private_data; 3897 void __user *argp = compat_ptr(arg); 3898 int r; 3899 3900 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3901 return -EIO; 3902 3903 switch (ioctl) { 3904 case KVM_SET_SIGNAL_MASK: { 3905 struct kvm_signal_mask __user *sigmask_arg = argp; 3906 struct kvm_signal_mask kvm_sigmask; 3907 sigset_t sigset; 3908 3909 if (argp) { 3910 r = -EFAULT; 3911 if (copy_from_user(&kvm_sigmask, argp, 3912 sizeof(kvm_sigmask))) 3913 goto out; 3914 r = -EINVAL; 3915 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3916 goto out; 3917 r = -EFAULT; 3918 if (get_compat_sigset(&sigset, 3919 (compat_sigset_t __user *)sigmask_arg->sigset)) 3920 goto out; 3921 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3922 } else 3923 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3924 break; 3925 } 3926 default: 3927 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3928 } 3929 3930 out: 3931 return r; 3932 } 3933 #endif 3934 3935 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3936 { 3937 struct kvm_device *dev = filp->private_data; 3938 3939 if (dev->ops->mmap) 3940 return dev->ops->mmap(dev, vma); 3941 3942 return -ENODEV; 3943 } 3944 3945 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3946 int (*accessor)(struct kvm_device *dev, 3947 struct kvm_device_attr *attr), 3948 unsigned long arg) 3949 { 3950 struct kvm_device_attr attr; 3951 3952 if (!accessor) 3953 return -EPERM; 3954 3955 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3956 return -EFAULT; 3957 3958 return accessor(dev, &attr); 3959 } 3960 3961 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3962 unsigned long arg) 3963 { 3964 struct kvm_device *dev = filp->private_data; 3965 3966 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 3967 return -EIO; 3968 3969 switch (ioctl) { 3970 case KVM_SET_DEVICE_ATTR: 3971 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3972 case KVM_GET_DEVICE_ATTR: 3973 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3974 case KVM_HAS_DEVICE_ATTR: 3975 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3976 default: 3977 if (dev->ops->ioctl) 3978 return dev->ops->ioctl(dev, ioctl, arg); 3979 3980 return -ENOTTY; 3981 } 3982 } 3983 3984 static int kvm_device_release(struct inode *inode, struct file *filp) 3985 { 3986 struct kvm_device *dev = filp->private_data; 3987 struct kvm *kvm = dev->kvm; 3988 3989 if (dev->ops->release) { 3990 mutex_lock(&kvm->lock); 3991 list_del(&dev->vm_node); 3992 dev->ops->release(dev); 3993 mutex_unlock(&kvm->lock); 3994 } 3995 3996 kvm_put_kvm(kvm); 3997 return 0; 3998 } 3999 4000 static const struct file_operations kvm_device_fops = { 4001 .unlocked_ioctl = kvm_device_ioctl, 4002 .release = kvm_device_release, 4003 KVM_COMPAT(kvm_device_ioctl), 4004 .mmap = kvm_device_mmap, 4005 }; 4006 4007 struct kvm_device *kvm_device_from_filp(struct file *filp) 4008 { 4009 if (filp->f_op != &kvm_device_fops) 4010 return NULL; 4011 4012 return filp->private_data; 4013 } 4014 4015 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4016 #ifdef CONFIG_KVM_MPIC 4017 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4018 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4019 #endif 4020 }; 4021 4022 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4023 { 4024 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4025 return -ENOSPC; 4026 4027 if (kvm_device_ops_table[type] != NULL) 4028 return -EEXIST; 4029 4030 kvm_device_ops_table[type] = ops; 4031 return 0; 4032 } 4033 4034 void kvm_unregister_device_ops(u32 type) 4035 { 4036 if (kvm_device_ops_table[type] != NULL) 4037 kvm_device_ops_table[type] = NULL; 4038 } 4039 4040 static int kvm_ioctl_create_device(struct kvm *kvm, 4041 struct kvm_create_device *cd) 4042 { 4043 const struct kvm_device_ops *ops = NULL; 4044 struct kvm_device *dev; 4045 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4046 int type; 4047 int ret; 4048 4049 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4050 return -ENODEV; 4051 4052 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4053 ops = kvm_device_ops_table[type]; 4054 if (ops == NULL) 4055 return -ENODEV; 4056 4057 if (test) 4058 return 0; 4059 4060 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4061 if (!dev) 4062 return -ENOMEM; 4063 4064 dev->ops = ops; 4065 dev->kvm = kvm; 4066 4067 mutex_lock(&kvm->lock); 4068 ret = ops->create(dev, type); 4069 if (ret < 0) { 4070 mutex_unlock(&kvm->lock); 4071 kfree(dev); 4072 return ret; 4073 } 4074 list_add(&dev->vm_node, &kvm->devices); 4075 mutex_unlock(&kvm->lock); 4076 4077 if (ops->init) 4078 ops->init(dev); 4079 4080 kvm_get_kvm(kvm); 4081 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4082 if (ret < 0) { 4083 kvm_put_kvm_no_destroy(kvm); 4084 mutex_lock(&kvm->lock); 4085 list_del(&dev->vm_node); 4086 mutex_unlock(&kvm->lock); 4087 ops->destroy(dev); 4088 return ret; 4089 } 4090 4091 cd->fd = ret; 4092 return 0; 4093 } 4094 4095 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4096 { 4097 switch (arg) { 4098 case KVM_CAP_USER_MEMORY: 4099 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4100 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4101 case KVM_CAP_INTERNAL_ERROR_DATA: 4102 #ifdef CONFIG_HAVE_KVM_MSI 4103 case KVM_CAP_SIGNAL_MSI: 4104 #endif 4105 #ifdef CONFIG_HAVE_KVM_IRQFD 4106 case KVM_CAP_IRQFD: 4107 case KVM_CAP_IRQFD_RESAMPLE: 4108 #endif 4109 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4110 case KVM_CAP_CHECK_EXTENSION_VM: 4111 case KVM_CAP_ENABLE_CAP_VM: 4112 case KVM_CAP_HALT_POLL: 4113 return 1; 4114 #ifdef CONFIG_KVM_MMIO 4115 case KVM_CAP_COALESCED_MMIO: 4116 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4117 case KVM_CAP_COALESCED_PIO: 4118 return 1; 4119 #endif 4120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4121 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4122 return KVM_DIRTY_LOG_MANUAL_CAPS; 4123 #endif 4124 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4125 case KVM_CAP_IRQ_ROUTING: 4126 return KVM_MAX_IRQ_ROUTES; 4127 #endif 4128 #if KVM_ADDRESS_SPACE_NUM > 1 4129 case KVM_CAP_MULTI_ADDRESS_SPACE: 4130 return KVM_ADDRESS_SPACE_NUM; 4131 #endif 4132 case KVM_CAP_NR_MEMSLOTS: 4133 return KVM_USER_MEM_SLOTS; 4134 case KVM_CAP_DIRTY_LOG_RING: 4135 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4136 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4137 #else 4138 return 0; 4139 #endif 4140 case KVM_CAP_BINARY_STATS_FD: 4141 return 1; 4142 default: 4143 break; 4144 } 4145 return kvm_vm_ioctl_check_extension(kvm, arg); 4146 } 4147 4148 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4149 { 4150 int r; 4151 4152 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4153 return -EINVAL; 4154 4155 /* the size should be power of 2 */ 4156 if (!size || (size & (size - 1))) 4157 return -EINVAL; 4158 4159 /* Should be bigger to keep the reserved entries, or a page */ 4160 if (size < kvm_dirty_ring_get_rsvd_entries() * 4161 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4162 return -EINVAL; 4163 4164 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4165 sizeof(struct kvm_dirty_gfn)) 4166 return -E2BIG; 4167 4168 /* We only allow it to set once */ 4169 if (kvm->dirty_ring_size) 4170 return -EINVAL; 4171 4172 mutex_lock(&kvm->lock); 4173 4174 if (kvm->created_vcpus) { 4175 /* We don't allow to change this value after vcpu created */ 4176 r = -EINVAL; 4177 } else { 4178 kvm->dirty_ring_size = size; 4179 r = 0; 4180 } 4181 4182 mutex_unlock(&kvm->lock); 4183 return r; 4184 } 4185 4186 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4187 { 4188 int i; 4189 struct kvm_vcpu *vcpu; 4190 int cleared = 0; 4191 4192 if (!kvm->dirty_ring_size) 4193 return -EINVAL; 4194 4195 mutex_lock(&kvm->slots_lock); 4196 4197 kvm_for_each_vcpu(i, vcpu, kvm) 4198 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4199 4200 mutex_unlock(&kvm->slots_lock); 4201 4202 if (cleared) 4203 kvm_flush_remote_tlbs(kvm); 4204 4205 return cleared; 4206 } 4207 4208 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4209 struct kvm_enable_cap *cap) 4210 { 4211 return -EINVAL; 4212 } 4213 4214 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4215 struct kvm_enable_cap *cap) 4216 { 4217 switch (cap->cap) { 4218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4219 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4220 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4221 4222 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4223 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4224 4225 if (cap->flags || (cap->args[0] & ~allowed_options)) 4226 return -EINVAL; 4227 kvm->manual_dirty_log_protect = cap->args[0]; 4228 return 0; 4229 } 4230 #endif 4231 case KVM_CAP_HALT_POLL: { 4232 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4233 return -EINVAL; 4234 4235 kvm->max_halt_poll_ns = cap->args[0]; 4236 return 0; 4237 } 4238 case KVM_CAP_DIRTY_LOG_RING: 4239 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4240 default: 4241 return kvm_vm_ioctl_enable_cap(kvm, cap); 4242 } 4243 } 4244 4245 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4246 size_t size, loff_t *offset) 4247 { 4248 struct kvm *kvm = file->private_data; 4249 4250 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4251 &kvm_vm_stats_desc[0], &kvm->stat, 4252 sizeof(kvm->stat), user_buffer, size, offset); 4253 } 4254 4255 static const struct file_operations kvm_vm_stats_fops = { 4256 .read = kvm_vm_stats_read, 4257 .llseek = noop_llseek, 4258 }; 4259 4260 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4261 { 4262 int fd; 4263 struct file *file; 4264 4265 fd = get_unused_fd_flags(O_CLOEXEC); 4266 if (fd < 0) 4267 return fd; 4268 4269 file = anon_inode_getfile("kvm-vm-stats", 4270 &kvm_vm_stats_fops, kvm, O_RDONLY); 4271 if (IS_ERR(file)) { 4272 put_unused_fd(fd); 4273 return PTR_ERR(file); 4274 } 4275 file->f_mode |= FMODE_PREAD; 4276 fd_install(fd, file); 4277 4278 return fd; 4279 } 4280 4281 static long kvm_vm_ioctl(struct file *filp, 4282 unsigned int ioctl, unsigned long arg) 4283 { 4284 struct kvm *kvm = filp->private_data; 4285 void __user *argp = (void __user *)arg; 4286 int r; 4287 4288 if (kvm->mm != current->mm || kvm->vm_dead) 4289 return -EIO; 4290 switch (ioctl) { 4291 case KVM_CREATE_VCPU: 4292 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4293 break; 4294 case KVM_ENABLE_CAP: { 4295 struct kvm_enable_cap cap; 4296 4297 r = -EFAULT; 4298 if (copy_from_user(&cap, argp, sizeof(cap))) 4299 goto out; 4300 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4301 break; 4302 } 4303 case KVM_SET_USER_MEMORY_REGION: { 4304 struct kvm_userspace_memory_region kvm_userspace_mem; 4305 4306 r = -EFAULT; 4307 if (copy_from_user(&kvm_userspace_mem, argp, 4308 sizeof(kvm_userspace_mem))) 4309 goto out; 4310 4311 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4312 break; 4313 } 4314 case KVM_GET_DIRTY_LOG: { 4315 struct kvm_dirty_log log; 4316 4317 r = -EFAULT; 4318 if (copy_from_user(&log, argp, sizeof(log))) 4319 goto out; 4320 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4321 break; 4322 } 4323 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4324 case KVM_CLEAR_DIRTY_LOG: { 4325 struct kvm_clear_dirty_log log; 4326 4327 r = -EFAULT; 4328 if (copy_from_user(&log, argp, sizeof(log))) 4329 goto out; 4330 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4331 break; 4332 } 4333 #endif 4334 #ifdef CONFIG_KVM_MMIO 4335 case KVM_REGISTER_COALESCED_MMIO: { 4336 struct kvm_coalesced_mmio_zone zone; 4337 4338 r = -EFAULT; 4339 if (copy_from_user(&zone, argp, sizeof(zone))) 4340 goto out; 4341 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4342 break; 4343 } 4344 case KVM_UNREGISTER_COALESCED_MMIO: { 4345 struct kvm_coalesced_mmio_zone zone; 4346 4347 r = -EFAULT; 4348 if (copy_from_user(&zone, argp, sizeof(zone))) 4349 goto out; 4350 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4351 break; 4352 } 4353 #endif 4354 case KVM_IRQFD: { 4355 struct kvm_irqfd data; 4356 4357 r = -EFAULT; 4358 if (copy_from_user(&data, argp, sizeof(data))) 4359 goto out; 4360 r = kvm_irqfd(kvm, &data); 4361 break; 4362 } 4363 case KVM_IOEVENTFD: { 4364 struct kvm_ioeventfd data; 4365 4366 r = -EFAULT; 4367 if (copy_from_user(&data, argp, sizeof(data))) 4368 goto out; 4369 r = kvm_ioeventfd(kvm, &data); 4370 break; 4371 } 4372 #ifdef CONFIG_HAVE_KVM_MSI 4373 case KVM_SIGNAL_MSI: { 4374 struct kvm_msi msi; 4375 4376 r = -EFAULT; 4377 if (copy_from_user(&msi, argp, sizeof(msi))) 4378 goto out; 4379 r = kvm_send_userspace_msi(kvm, &msi); 4380 break; 4381 } 4382 #endif 4383 #ifdef __KVM_HAVE_IRQ_LINE 4384 case KVM_IRQ_LINE_STATUS: 4385 case KVM_IRQ_LINE: { 4386 struct kvm_irq_level irq_event; 4387 4388 r = -EFAULT; 4389 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4390 goto out; 4391 4392 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4393 ioctl == KVM_IRQ_LINE_STATUS); 4394 if (r) 4395 goto out; 4396 4397 r = -EFAULT; 4398 if (ioctl == KVM_IRQ_LINE_STATUS) { 4399 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4400 goto out; 4401 } 4402 4403 r = 0; 4404 break; 4405 } 4406 #endif 4407 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4408 case KVM_SET_GSI_ROUTING: { 4409 struct kvm_irq_routing routing; 4410 struct kvm_irq_routing __user *urouting; 4411 struct kvm_irq_routing_entry *entries = NULL; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&routing, argp, sizeof(routing))) 4415 goto out; 4416 r = -EINVAL; 4417 if (!kvm_arch_can_set_irq_routing(kvm)) 4418 goto out; 4419 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4420 goto out; 4421 if (routing.flags) 4422 goto out; 4423 if (routing.nr) { 4424 urouting = argp; 4425 entries = vmemdup_user(urouting->entries, 4426 array_size(sizeof(*entries), 4427 routing.nr)); 4428 if (IS_ERR(entries)) { 4429 r = PTR_ERR(entries); 4430 goto out; 4431 } 4432 } 4433 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4434 routing.flags); 4435 kvfree(entries); 4436 break; 4437 } 4438 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4439 case KVM_CREATE_DEVICE: { 4440 struct kvm_create_device cd; 4441 4442 r = -EFAULT; 4443 if (copy_from_user(&cd, argp, sizeof(cd))) 4444 goto out; 4445 4446 r = kvm_ioctl_create_device(kvm, &cd); 4447 if (r) 4448 goto out; 4449 4450 r = -EFAULT; 4451 if (copy_to_user(argp, &cd, sizeof(cd))) 4452 goto out; 4453 4454 r = 0; 4455 break; 4456 } 4457 case KVM_CHECK_EXTENSION: 4458 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4459 break; 4460 case KVM_RESET_DIRTY_RINGS: 4461 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4462 break; 4463 case KVM_GET_STATS_FD: 4464 r = kvm_vm_ioctl_get_stats_fd(kvm); 4465 break; 4466 default: 4467 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4468 } 4469 out: 4470 return r; 4471 } 4472 4473 #ifdef CONFIG_KVM_COMPAT 4474 struct compat_kvm_dirty_log { 4475 __u32 slot; 4476 __u32 padding1; 4477 union { 4478 compat_uptr_t dirty_bitmap; /* one bit per page */ 4479 __u64 padding2; 4480 }; 4481 }; 4482 4483 struct compat_kvm_clear_dirty_log { 4484 __u32 slot; 4485 __u32 num_pages; 4486 __u64 first_page; 4487 union { 4488 compat_uptr_t dirty_bitmap; /* one bit per page */ 4489 __u64 padding2; 4490 }; 4491 }; 4492 4493 static long kvm_vm_compat_ioctl(struct file *filp, 4494 unsigned int ioctl, unsigned long arg) 4495 { 4496 struct kvm *kvm = filp->private_data; 4497 int r; 4498 4499 if (kvm->mm != current->mm || kvm->vm_dead) 4500 return -EIO; 4501 switch (ioctl) { 4502 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4503 case KVM_CLEAR_DIRTY_LOG: { 4504 struct compat_kvm_clear_dirty_log compat_log; 4505 struct kvm_clear_dirty_log log; 4506 4507 if (copy_from_user(&compat_log, (void __user *)arg, 4508 sizeof(compat_log))) 4509 return -EFAULT; 4510 log.slot = compat_log.slot; 4511 log.num_pages = compat_log.num_pages; 4512 log.first_page = compat_log.first_page; 4513 log.padding2 = compat_log.padding2; 4514 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4515 4516 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4517 break; 4518 } 4519 #endif 4520 case KVM_GET_DIRTY_LOG: { 4521 struct compat_kvm_dirty_log compat_log; 4522 struct kvm_dirty_log log; 4523 4524 if (copy_from_user(&compat_log, (void __user *)arg, 4525 sizeof(compat_log))) 4526 return -EFAULT; 4527 log.slot = compat_log.slot; 4528 log.padding1 = compat_log.padding1; 4529 log.padding2 = compat_log.padding2; 4530 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4531 4532 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4533 break; 4534 } 4535 default: 4536 r = kvm_vm_ioctl(filp, ioctl, arg); 4537 } 4538 return r; 4539 } 4540 #endif 4541 4542 static struct file_operations kvm_vm_fops = { 4543 .release = kvm_vm_release, 4544 .unlocked_ioctl = kvm_vm_ioctl, 4545 .llseek = noop_llseek, 4546 KVM_COMPAT(kvm_vm_compat_ioctl), 4547 }; 4548 4549 bool file_is_kvm(struct file *file) 4550 { 4551 return file && file->f_op == &kvm_vm_fops; 4552 } 4553 EXPORT_SYMBOL_GPL(file_is_kvm); 4554 4555 static int kvm_dev_ioctl_create_vm(unsigned long type) 4556 { 4557 int r; 4558 struct kvm *kvm; 4559 struct file *file; 4560 4561 kvm = kvm_create_vm(type); 4562 if (IS_ERR(kvm)) 4563 return PTR_ERR(kvm); 4564 #ifdef CONFIG_KVM_MMIO 4565 r = kvm_coalesced_mmio_init(kvm); 4566 if (r < 0) 4567 goto put_kvm; 4568 #endif 4569 r = get_unused_fd_flags(O_CLOEXEC); 4570 if (r < 0) 4571 goto put_kvm; 4572 4573 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4574 "kvm-%d", task_pid_nr(current)); 4575 4576 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4577 if (IS_ERR(file)) { 4578 put_unused_fd(r); 4579 r = PTR_ERR(file); 4580 goto put_kvm; 4581 } 4582 4583 /* 4584 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4585 * already set, with ->release() being kvm_vm_release(). In error 4586 * cases it will be called by the final fput(file) and will take 4587 * care of doing kvm_put_kvm(kvm). 4588 */ 4589 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4590 put_unused_fd(r); 4591 fput(file); 4592 return -ENOMEM; 4593 } 4594 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4595 4596 fd_install(r, file); 4597 return r; 4598 4599 put_kvm: 4600 kvm_put_kvm(kvm); 4601 return r; 4602 } 4603 4604 static long kvm_dev_ioctl(struct file *filp, 4605 unsigned int ioctl, unsigned long arg) 4606 { 4607 long r = -EINVAL; 4608 4609 switch (ioctl) { 4610 case KVM_GET_API_VERSION: 4611 if (arg) 4612 goto out; 4613 r = KVM_API_VERSION; 4614 break; 4615 case KVM_CREATE_VM: 4616 r = kvm_dev_ioctl_create_vm(arg); 4617 break; 4618 case KVM_CHECK_EXTENSION: 4619 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4620 break; 4621 case KVM_GET_VCPU_MMAP_SIZE: 4622 if (arg) 4623 goto out; 4624 r = PAGE_SIZE; /* struct kvm_run */ 4625 #ifdef CONFIG_X86 4626 r += PAGE_SIZE; /* pio data page */ 4627 #endif 4628 #ifdef CONFIG_KVM_MMIO 4629 r += PAGE_SIZE; /* coalesced mmio ring page */ 4630 #endif 4631 break; 4632 case KVM_TRACE_ENABLE: 4633 case KVM_TRACE_PAUSE: 4634 case KVM_TRACE_DISABLE: 4635 r = -EOPNOTSUPP; 4636 break; 4637 default: 4638 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4639 } 4640 out: 4641 return r; 4642 } 4643 4644 static struct file_operations kvm_chardev_ops = { 4645 .unlocked_ioctl = kvm_dev_ioctl, 4646 .llseek = noop_llseek, 4647 KVM_COMPAT(kvm_dev_ioctl), 4648 }; 4649 4650 static struct miscdevice kvm_dev = { 4651 KVM_MINOR, 4652 "kvm", 4653 &kvm_chardev_ops, 4654 }; 4655 4656 static void hardware_enable_nolock(void *junk) 4657 { 4658 int cpu = raw_smp_processor_id(); 4659 int r; 4660 4661 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4662 return; 4663 4664 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4665 4666 r = kvm_arch_hardware_enable(); 4667 4668 if (r) { 4669 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4670 atomic_inc(&hardware_enable_failed); 4671 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4672 } 4673 } 4674 4675 static int kvm_starting_cpu(unsigned int cpu) 4676 { 4677 raw_spin_lock(&kvm_count_lock); 4678 if (kvm_usage_count) 4679 hardware_enable_nolock(NULL); 4680 raw_spin_unlock(&kvm_count_lock); 4681 return 0; 4682 } 4683 4684 static void hardware_disable_nolock(void *junk) 4685 { 4686 int cpu = raw_smp_processor_id(); 4687 4688 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4689 return; 4690 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4691 kvm_arch_hardware_disable(); 4692 } 4693 4694 static int kvm_dying_cpu(unsigned int cpu) 4695 { 4696 raw_spin_lock(&kvm_count_lock); 4697 if (kvm_usage_count) 4698 hardware_disable_nolock(NULL); 4699 raw_spin_unlock(&kvm_count_lock); 4700 return 0; 4701 } 4702 4703 static void hardware_disable_all_nolock(void) 4704 { 4705 BUG_ON(!kvm_usage_count); 4706 4707 kvm_usage_count--; 4708 if (!kvm_usage_count) 4709 on_each_cpu(hardware_disable_nolock, NULL, 1); 4710 } 4711 4712 static void hardware_disable_all(void) 4713 { 4714 raw_spin_lock(&kvm_count_lock); 4715 hardware_disable_all_nolock(); 4716 raw_spin_unlock(&kvm_count_lock); 4717 } 4718 4719 static int hardware_enable_all(void) 4720 { 4721 int r = 0; 4722 4723 raw_spin_lock(&kvm_count_lock); 4724 4725 kvm_usage_count++; 4726 if (kvm_usage_count == 1) { 4727 atomic_set(&hardware_enable_failed, 0); 4728 on_each_cpu(hardware_enable_nolock, NULL, 1); 4729 4730 if (atomic_read(&hardware_enable_failed)) { 4731 hardware_disable_all_nolock(); 4732 r = -EBUSY; 4733 } 4734 } 4735 4736 raw_spin_unlock(&kvm_count_lock); 4737 4738 return r; 4739 } 4740 4741 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4742 void *v) 4743 { 4744 /* 4745 * Some (well, at least mine) BIOSes hang on reboot if 4746 * in vmx root mode. 4747 * 4748 * And Intel TXT required VMX off for all cpu when system shutdown. 4749 */ 4750 pr_info("kvm: exiting hardware virtualization\n"); 4751 kvm_rebooting = true; 4752 on_each_cpu(hardware_disable_nolock, NULL, 1); 4753 return NOTIFY_OK; 4754 } 4755 4756 static struct notifier_block kvm_reboot_notifier = { 4757 .notifier_call = kvm_reboot, 4758 .priority = 0, 4759 }; 4760 4761 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4762 { 4763 int i; 4764 4765 for (i = 0; i < bus->dev_count; i++) { 4766 struct kvm_io_device *pos = bus->range[i].dev; 4767 4768 kvm_iodevice_destructor(pos); 4769 } 4770 kfree(bus); 4771 } 4772 4773 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4774 const struct kvm_io_range *r2) 4775 { 4776 gpa_t addr1 = r1->addr; 4777 gpa_t addr2 = r2->addr; 4778 4779 if (addr1 < addr2) 4780 return -1; 4781 4782 /* If r2->len == 0, match the exact address. If r2->len != 0, 4783 * accept any overlapping write. Any order is acceptable for 4784 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4785 * we process all of them. 4786 */ 4787 if (r2->len) { 4788 addr1 += r1->len; 4789 addr2 += r2->len; 4790 } 4791 4792 if (addr1 > addr2) 4793 return 1; 4794 4795 return 0; 4796 } 4797 4798 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4799 { 4800 return kvm_io_bus_cmp(p1, p2); 4801 } 4802 4803 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4804 gpa_t addr, int len) 4805 { 4806 struct kvm_io_range *range, key; 4807 int off; 4808 4809 key = (struct kvm_io_range) { 4810 .addr = addr, 4811 .len = len, 4812 }; 4813 4814 range = bsearch(&key, bus->range, bus->dev_count, 4815 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4816 if (range == NULL) 4817 return -ENOENT; 4818 4819 off = range - bus->range; 4820 4821 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4822 off--; 4823 4824 return off; 4825 } 4826 4827 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4828 struct kvm_io_range *range, const void *val) 4829 { 4830 int idx; 4831 4832 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4833 if (idx < 0) 4834 return -EOPNOTSUPP; 4835 4836 while (idx < bus->dev_count && 4837 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4838 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4839 range->len, val)) 4840 return idx; 4841 idx++; 4842 } 4843 4844 return -EOPNOTSUPP; 4845 } 4846 4847 /* kvm_io_bus_write - called under kvm->slots_lock */ 4848 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4849 int len, const void *val) 4850 { 4851 struct kvm_io_bus *bus; 4852 struct kvm_io_range range; 4853 int r; 4854 4855 range = (struct kvm_io_range) { 4856 .addr = addr, 4857 .len = len, 4858 }; 4859 4860 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4861 if (!bus) 4862 return -ENOMEM; 4863 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4864 return r < 0 ? r : 0; 4865 } 4866 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4867 4868 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4869 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4870 gpa_t addr, int len, const void *val, long cookie) 4871 { 4872 struct kvm_io_bus *bus; 4873 struct kvm_io_range range; 4874 4875 range = (struct kvm_io_range) { 4876 .addr = addr, 4877 .len = len, 4878 }; 4879 4880 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4881 if (!bus) 4882 return -ENOMEM; 4883 4884 /* First try the device referenced by cookie. */ 4885 if ((cookie >= 0) && (cookie < bus->dev_count) && 4886 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4887 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4888 val)) 4889 return cookie; 4890 4891 /* 4892 * cookie contained garbage; fall back to search and return the 4893 * correct cookie value. 4894 */ 4895 return __kvm_io_bus_write(vcpu, bus, &range, val); 4896 } 4897 4898 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4899 struct kvm_io_range *range, void *val) 4900 { 4901 int idx; 4902 4903 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4904 if (idx < 0) 4905 return -EOPNOTSUPP; 4906 4907 while (idx < bus->dev_count && 4908 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4909 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4910 range->len, val)) 4911 return idx; 4912 idx++; 4913 } 4914 4915 return -EOPNOTSUPP; 4916 } 4917 4918 /* kvm_io_bus_read - called under kvm->slots_lock */ 4919 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4920 int len, void *val) 4921 { 4922 struct kvm_io_bus *bus; 4923 struct kvm_io_range range; 4924 int r; 4925 4926 range = (struct kvm_io_range) { 4927 .addr = addr, 4928 .len = len, 4929 }; 4930 4931 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4932 if (!bus) 4933 return -ENOMEM; 4934 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4935 return r < 0 ? r : 0; 4936 } 4937 4938 /* Caller must hold slots_lock. */ 4939 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4940 int len, struct kvm_io_device *dev) 4941 { 4942 int i; 4943 struct kvm_io_bus *new_bus, *bus; 4944 struct kvm_io_range range; 4945 4946 bus = kvm_get_bus(kvm, bus_idx); 4947 if (!bus) 4948 return -ENOMEM; 4949 4950 /* exclude ioeventfd which is limited by maximum fd */ 4951 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4952 return -ENOSPC; 4953 4954 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4955 GFP_KERNEL_ACCOUNT); 4956 if (!new_bus) 4957 return -ENOMEM; 4958 4959 range = (struct kvm_io_range) { 4960 .addr = addr, 4961 .len = len, 4962 .dev = dev, 4963 }; 4964 4965 for (i = 0; i < bus->dev_count; i++) 4966 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4967 break; 4968 4969 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4970 new_bus->dev_count++; 4971 new_bus->range[i] = range; 4972 memcpy(new_bus->range + i + 1, bus->range + i, 4973 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4974 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4975 synchronize_srcu_expedited(&kvm->srcu); 4976 kfree(bus); 4977 4978 return 0; 4979 } 4980 4981 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4982 struct kvm_io_device *dev) 4983 { 4984 int i, j; 4985 struct kvm_io_bus *new_bus, *bus; 4986 4987 lockdep_assert_held(&kvm->slots_lock); 4988 4989 bus = kvm_get_bus(kvm, bus_idx); 4990 if (!bus) 4991 return 0; 4992 4993 for (i = 0; i < bus->dev_count; i++) { 4994 if (bus->range[i].dev == dev) { 4995 break; 4996 } 4997 } 4998 4999 if (i == bus->dev_count) 5000 return 0; 5001 5002 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5003 GFP_KERNEL_ACCOUNT); 5004 if (new_bus) { 5005 memcpy(new_bus, bus, struct_size(bus, range, i)); 5006 new_bus->dev_count--; 5007 memcpy(new_bus->range + i, bus->range + i + 1, 5008 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5009 } 5010 5011 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5012 synchronize_srcu_expedited(&kvm->srcu); 5013 5014 /* Destroy the old bus _after_ installing the (null) bus. */ 5015 if (!new_bus) { 5016 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5017 for (j = 0; j < bus->dev_count; j++) { 5018 if (j == i) 5019 continue; 5020 kvm_iodevice_destructor(bus->range[j].dev); 5021 } 5022 } 5023 5024 kfree(bus); 5025 return new_bus ? 0 : -ENOMEM; 5026 } 5027 5028 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5029 gpa_t addr) 5030 { 5031 struct kvm_io_bus *bus; 5032 int dev_idx, srcu_idx; 5033 struct kvm_io_device *iodev = NULL; 5034 5035 srcu_idx = srcu_read_lock(&kvm->srcu); 5036 5037 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5038 if (!bus) 5039 goto out_unlock; 5040 5041 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5042 if (dev_idx < 0) 5043 goto out_unlock; 5044 5045 iodev = bus->range[dev_idx].dev; 5046 5047 out_unlock: 5048 srcu_read_unlock(&kvm->srcu, srcu_idx); 5049 5050 return iodev; 5051 } 5052 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5053 5054 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5055 int (*get)(void *, u64 *), int (*set)(void *, u64), 5056 const char *fmt) 5057 { 5058 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5059 inode->i_private; 5060 5061 /* 5062 * The debugfs files are a reference to the kvm struct which 5063 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5064 * avoids the race between open and the removal of the debugfs directory. 5065 */ 5066 if (!kvm_get_kvm_safe(stat_data->kvm)) 5067 return -ENOENT; 5068 5069 if (simple_attr_open(inode, file, get, 5070 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5071 ? set : NULL, 5072 fmt)) { 5073 kvm_put_kvm(stat_data->kvm); 5074 return -ENOMEM; 5075 } 5076 5077 return 0; 5078 } 5079 5080 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5081 { 5082 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5083 inode->i_private; 5084 5085 simple_attr_release(inode, file); 5086 kvm_put_kvm(stat_data->kvm); 5087 5088 return 0; 5089 } 5090 5091 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5092 { 5093 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5094 5095 return 0; 5096 } 5097 5098 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5099 { 5100 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5101 5102 return 0; 5103 } 5104 5105 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5106 { 5107 int i; 5108 struct kvm_vcpu *vcpu; 5109 5110 *val = 0; 5111 5112 kvm_for_each_vcpu(i, vcpu, kvm) 5113 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5114 5115 return 0; 5116 } 5117 5118 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5119 { 5120 int i; 5121 struct kvm_vcpu *vcpu; 5122 5123 kvm_for_each_vcpu(i, vcpu, kvm) 5124 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5125 5126 return 0; 5127 } 5128 5129 static int kvm_stat_data_get(void *data, u64 *val) 5130 { 5131 int r = -EFAULT; 5132 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5133 5134 switch (stat_data->kind) { 5135 case KVM_STAT_VM: 5136 r = kvm_get_stat_per_vm(stat_data->kvm, 5137 stat_data->desc->desc.offset, val); 5138 break; 5139 case KVM_STAT_VCPU: 5140 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5141 stat_data->desc->desc.offset, val); 5142 break; 5143 } 5144 5145 return r; 5146 } 5147 5148 static int kvm_stat_data_clear(void *data, u64 val) 5149 { 5150 int r = -EFAULT; 5151 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5152 5153 if (val) 5154 return -EINVAL; 5155 5156 switch (stat_data->kind) { 5157 case KVM_STAT_VM: 5158 r = kvm_clear_stat_per_vm(stat_data->kvm, 5159 stat_data->desc->desc.offset); 5160 break; 5161 case KVM_STAT_VCPU: 5162 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5163 stat_data->desc->desc.offset); 5164 break; 5165 } 5166 5167 return r; 5168 } 5169 5170 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5171 { 5172 __simple_attr_check_format("%llu\n", 0ull); 5173 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5174 kvm_stat_data_clear, "%llu\n"); 5175 } 5176 5177 static const struct file_operations stat_fops_per_vm = { 5178 .owner = THIS_MODULE, 5179 .open = kvm_stat_data_open, 5180 .release = kvm_debugfs_release, 5181 .read = simple_attr_read, 5182 .write = simple_attr_write, 5183 .llseek = no_llseek, 5184 }; 5185 5186 static int vm_stat_get(void *_offset, u64 *val) 5187 { 5188 unsigned offset = (long)_offset; 5189 struct kvm *kvm; 5190 u64 tmp_val; 5191 5192 *val = 0; 5193 mutex_lock(&kvm_lock); 5194 list_for_each_entry(kvm, &vm_list, vm_list) { 5195 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5196 *val += tmp_val; 5197 } 5198 mutex_unlock(&kvm_lock); 5199 return 0; 5200 } 5201 5202 static int vm_stat_clear(void *_offset, u64 val) 5203 { 5204 unsigned offset = (long)_offset; 5205 struct kvm *kvm; 5206 5207 if (val) 5208 return -EINVAL; 5209 5210 mutex_lock(&kvm_lock); 5211 list_for_each_entry(kvm, &vm_list, vm_list) { 5212 kvm_clear_stat_per_vm(kvm, offset); 5213 } 5214 mutex_unlock(&kvm_lock); 5215 5216 return 0; 5217 } 5218 5219 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5220 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5221 5222 static int vcpu_stat_get(void *_offset, u64 *val) 5223 { 5224 unsigned offset = (long)_offset; 5225 struct kvm *kvm; 5226 u64 tmp_val; 5227 5228 *val = 0; 5229 mutex_lock(&kvm_lock); 5230 list_for_each_entry(kvm, &vm_list, vm_list) { 5231 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5232 *val += tmp_val; 5233 } 5234 mutex_unlock(&kvm_lock); 5235 return 0; 5236 } 5237 5238 static int vcpu_stat_clear(void *_offset, u64 val) 5239 { 5240 unsigned offset = (long)_offset; 5241 struct kvm *kvm; 5242 5243 if (val) 5244 return -EINVAL; 5245 5246 mutex_lock(&kvm_lock); 5247 list_for_each_entry(kvm, &vm_list, vm_list) { 5248 kvm_clear_stat_per_vcpu(kvm, offset); 5249 } 5250 mutex_unlock(&kvm_lock); 5251 5252 return 0; 5253 } 5254 5255 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5256 "%llu\n"); 5257 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5258 5259 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5260 { 5261 struct kobj_uevent_env *env; 5262 unsigned long long created, active; 5263 5264 if (!kvm_dev.this_device || !kvm) 5265 return; 5266 5267 mutex_lock(&kvm_lock); 5268 if (type == KVM_EVENT_CREATE_VM) { 5269 kvm_createvm_count++; 5270 kvm_active_vms++; 5271 } else if (type == KVM_EVENT_DESTROY_VM) { 5272 kvm_active_vms--; 5273 } 5274 created = kvm_createvm_count; 5275 active = kvm_active_vms; 5276 mutex_unlock(&kvm_lock); 5277 5278 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5279 if (!env) 5280 return; 5281 5282 add_uevent_var(env, "CREATED=%llu", created); 5283 add_uevent_var(env, "COUNT=%llu", active); 5284 5285 if (type == KVM_EVENT_CREATE_VM) { 5286 add_uevent_var(env, "EVENT=create"); 5287 kvm->userspace_pid = task_pid_nr(current); 5288 } else if (type == KVM_EVENT_DESTROY_VM) { 5289 add_uevent_var(env, "EVENT=destroy"); 5290 } 5291 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5292 5293 if (kvm->debugfs_dentry) { 5294 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5295 5296 if (p) { 5297 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5298 if (!IS_ERR(tmp)) 5299 add_uevent_var(env, "STATS_PATH=%s", tmp); 5300 kfree(p); 5301 } 5302 } 5303 /* no need for checks, since we are adding at most only 5 keys */ 5304 env->envp[env->envp_idx++] = NULL; 5305 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5306 kfree(env); 5307 } 5308 5309 static void kvm_init_debug(void) 5310 { 5311 const struct file_operations *fops; 5312 const struct _kvm_stats_desc *pdesc; 5313 int i; 5314 5315 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5316 5317 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5318 pdesc = &kvm_vm_stats_desc[i]; 5319 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5320 fops = &vm_stat_fops; 5321 else 5322 fops = &vm_stat_readonly_fops; 5323 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5324 kvm_debugfs_dir, 5325 (void *)(long)pdesc->desc.offset, fops); 5326 } 5327 5328 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5329 pdesc = &kvm_vcpu_stats_desc[i]; 5330 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5331 fops = &vcpu_stat_fops; 5332 else 5333 fops = &vcpu_stat_readonly_fops; 5334 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5335 kvm_debugfs_dir, 5336 (void *)(long)pdesc->desc.offset, fops); 5337 } 5338 } 5339 5340 static int kvm_suspend(void) 5341 { 5342 if (kvm_usage_count) 5343 hardware_disable_nolock(NULL); 5344 return 0; 5345 } 5346 5347 static void kvm_resume(void) 5348 { 5349 if (kvm_usage_count) { 5350 #ifdef CONFIG_LOCKDEP 5351 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5352 #endif 5353 hardware_enable_nolock(NULL); 5354 } 5355 } 5356 5357 static struct syscore_ops kvm_syscore_ops = { 5358 .suspend = kvm_suspend, 5359 .resume = kvm_resume, 5360 }; 5361 5362 static inline 5363 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5364 { 5365 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5366 } 5367 5368 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5369 { 5370 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5371 5372 WRITE_ONCE(vcpu->preempted, false); 5373 WRITE_ONCE(vcpu->ready, false); 5374 5375 __this_cpu_write(kvm_running_vcpu, vcpu); 5376 kvm_arch_sched_in(vcpu, cpu); 5377 kvm_arch_vcpu_load(vcpu, cpu); 5378 } 5379 5380 static void kvm_sched_out(struct preempt_notifier *pn, 5381 struct task_struct *next) 5382 { 5383 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5384 5385 if (current->on_rq) { 5386 WRITE_ONCE(vcpu->preempted, true); 5387 WRITE_ONCE(vcpu->ready, true); 5388 } 5389 kvm_arch_vcpu_put(vcpu); 5390 __this_cpu_write(kvm_running_vcpu, NULL); 5391 } 5392 5393 /** 5394 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5395 * 5396 * We can disable preemption locally around accessing the per-CPU variable, 5397 * and use the resolved vcpu pointer after enabling preemption again, 5398 * because even if the current thread is migrated to another CPU, reading 5399 * the per-CPU value later will give us the same value as we update the 5400 * per-CPU variable in the preempt notifier handlers. 5401 */ 5402 struct kvm_vcpu *kvm_get_running_vcpu(void) 5403 { 5404 struct kvm_vcpu *vcpu; 5405 5406 preempt_disable(); 5407 vcpu = __this_cpu_read(kvm_running_vcpu); 5408 preempt_enable(); 5409 5410 return vcpu; 5411 } 5412 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5413 5414 /** 5415 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5416 */ 5417 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5418 { 5419 return &kvm_running_vcpu; 5420 } 5421 5422 struct kvm_cpu_compat_check { 5423 void *opaque; 5424 int *ret; 5425 }; 5426 5427 static void check_processor_compat(void *data) 5428 { 5429 struct kvm_cpu_compat_check *c = data; 5430 5431 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5432 } 5433 5434 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5435 struct module *module) 5436 { 5437 struct kvm_cpu_compat_check c; 5438 int r; 5439 int cpu; 5440 5441 r = kvm_arch_init(opaque); 5442 if (r) 5443 goto out_fail; 5444 5445 /* 5446 * kvm_arch_init makes sure there's at most one caller 5447 * for architectures that support multiple implementations, 5448 * like intel and amd on x86. 5449 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5450 * conflicts in case kvm is already setup for another implementation. 5451 */ 5452 r = kvm_irqfd_init(); 5453 if (r) 5454 goto out_irqfd; 5455 5456 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5457 r = -ENOMEM; 5458 goto out_free_0; 5459 } 5460 5461 r = kvm_arch_hardware_setup(opaque); 5462 if (r < 0) 5463 goto out_free_1; 5464 5465 c.ret = &r; 5466 c.opaque = opaque; 5467 for_each_online_cpu(cpu) { 5468 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5469 if (r < 0) 5470 goto out_free_2; 5471 } 5472 5473 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5474 kvm_starting_cpu, kvm_dying_cpu); 5475 if (r) 5476 goto out_free_2; 5477 register_reboot_notifier(&kvm_reboot_notifier); 5478 5479 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5480 if (!vcpu_align) 5481 vcpu_align = __alignof__(struct kvm_vcpu); 5482 kvm_vcpu_cache = 5483 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5484 SLAB_ACCOUNT, 5485 offsetof(struct kvm_vcpu, arch), 5486 offsetofend(struct kvm_vcpu, stats_id) 5487 - offsetof(struct kvm_vcpu, arch), 5488 NULL); 5489 if (!kvm_vcpu_cache) { 5490 r = -ENOMEM; 5491 goto out_free_3; 5492 } 5493 5494 for_each_possible_cpu(cpu) { 5495 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5496 GFP_KERNEL, cpu_to_node(cpu))) { 5497 r = -ENOMEM; 5498 goto out_free_4; 5499 } 5500 } 5501 5502 r = kvm_async_pf_init(); 5503 if (r) 5504 goto out_free_5; 5505 5506 kvm_chardev_ops.owner = module; 5507 kvm_vm_fops.owner = module; 5508 kvm_vcpu_fops.owner = module; 5509 5510 r = misc_register(&kvm_dev); 5511 if (r) { 5512 pr_err("kvm: misc device register failed\n"); 5513 goto out_unreg; 5514 } 5515 5516 register_syscore_ops(&kvm_syscore_ops); 5517 5518 kvm_preempt_ops.sched_in = kvm_sched_in; 5519 kvm_preempt_ops.sched_out = kvm_sched_out; 5520 5521 kvm_init_debug(); 5522 5523 r = kvm_vfio_ops_init(); 5524 WARN_ON(r); 5525 5526 return 0; 5527 5528 out_unreg: 5529 kvm_async_pf_deinit(); 5530 out_free_5: 5531 for_each_possible_cpu(cpu) 5532 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5533 out_free_4: 5534 kmem_cache_destroy(kvm_vcpu_cache); 5535 out_free_3: 5536 unregister_reboot_notifier(&kvm_reboot_notifier); 5537 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5538 out_free_2: 5539 kvm_arch_hardware_unsetup(); 5540 out_free_1: 5541 free_cpumask_var(cpus_hardware_enabled); 5542 out_free_0: 5543 kvm_irqfd_exit(); 5544 out_irqfd: 5545 kvm_arch_exit(); 5546 out_fail: 5547 return r; 5548 } 5549 EXPORT_SYMBOL_GPL(kvm_init); 5550 5551 void kvm_exit(void) 5552 { 5553 int cpu; 5554 5555 debugfs_remove_recursive(kvm_debugfs_dir); 5556 misc_deregister(&kvm_dev); 5557 for_each_possible_cpu(cpu) 5558 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5559 kmem_cache_destroy(kvm_vcpu_cache); 5560 kvm_async_pf_deinit(); 5561 unregister_syscore_ops(&kvm_syscore_ops); 5562 unregister_reboot_notifier(&kvm_reboot_notifier); 5563 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5564 on_each_cpu(hardware_disable_nolock, NULL, 1); 5565 kvm_arch_hardware_unsetup(); 5566 kvm_arch_exit(); 5567 kvm_irqfd_exit(); 5568 free_cpumask_var(cpus_hardware_enabled); 5569 kvm_vfio_ops_exit(); 5570 } 5571 EXPORT_SYMBOL_GPL(kvm_exit); 5572 5573 struct kvm_vm_worker_thread_context { 5574 struct kvm *kvm; 5575 struct task_struct *parent; 5576 struct completion init_done; 5577 kvm_vm_thread_fn_t thread_fn; 5578 uintptr_t data; 5579 int err; 5580 }; 5581 5582 static int kvm_vm_worker_thread(void *context) 5583 { 5584 /* 5585 * The init_context is allocated on the stack of the parent thread, so 5586 * we have to locally copy anything that is needed beyond initialization 5587 */ 5588 struct kvm_vm_worker_thread_context *init_context = context; 5589 struct kvm *kvm = init_context->kvm; 5590 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5591 uintptr_t data = init_context->data; 5592 int err; 5593 5594 err = kthread_park(current); 5595 /* kthread_park(current) is never supposed to return an error */ 5596 WARN_ON(err != 0); 5597 if (err) 5598 goto init_complete; 5599 5600 err = cgroup_attach_task_all(init_context->parent, current); 5601 if (err) { 5602 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5603 __func__, err); 5604 goto init_complete; 5605 } 5606 5607 set_user_nice(current, task_nice(init_context->parent)); 5608 5609 init_complete: 5610 init_context->err = err; 5611 complete(&init_context->init_done); 5612 init_context = NULL; 5613 5614 if (err) 5615 return err; 5616 5617 /* Wait to be woken up by the spawner before proceeding. */ 5618 kthread_parkme(); 5619 5620 if (!kthread_should_stop()) 5621 err = thread_fn(kvm, data); 5622 5623 return err; 5624 } 5625 5626 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5627 uintptr_t data, const char *name, 5628 struct task_struct **thread_ptr) 5629 { 5630 struct kvm_vm_worker_thread_context init_context = {}; 5631 struct task_struct *thread; 5632 5633 *thread_ptr = NULL; 5634 init_context.kvm = kvm; 5635 init_context.parent = current; 5636 init_context.thread_fn = thread_fn; 5637 init_context.data = data; 5638 init_completion(&init_context.init_done); 5639 5640 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5641 "%s-%d", name, task_pid_nr(current)); 5642 if (IS_ERR(thread)) 5643 return PTR_ERR(thread); 5644 5645 /* kthread_run is never supposed to return NULL */ 5646 WARN_ON(thread == NULL); 5647 5648 wait_for_completion(&init_context.init_done); 5649 5650 if (!init_context.err) 5651 *thread_ptr = thread; 5652 5653 return init_context.err; 5654 } 5655