xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6774def6)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /*
70  * Ordering of locks:
71  *
72  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74 
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78 
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82 
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85 
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87 
88 struct dentry *kvm_debugfs_dir;
89 
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 			   unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 				  unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98 
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 		/* The thread running this VCPU changed. */
129 		struct pid *oldpid = vcpu->pid;
130 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 		rcu_assign_pointer(vcpu->pid, newpid);
132 		if (oldpid)
133 			synchronize_rcu();
134 		put_pid(oldpid);
135 	}
136 	cpu = get_cpu();
137 	preempt_notifier_register(&vcpu->preempt_notifier);
138 	kvm_arch_vcpu_load(vcpu, cpu);
139 	put_cpu();
140 	return 0;
141 }
142 
143 void vcpu_put(struct kvm_vcpu *vcpu)
144 {
145 	preempt_disable();
146 	kvm_arch_vcpu_put(vcpu);
147 	preempt_notifier_unregister(&vcpu->preempt_notifier);
148 	preempt_enable();
149 	mutex_unlock(&vcpu->mutex);
150 }
151 
152 static void ack_flush(void *_completed)
153 {
154 }
155 
156 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
157 {
158 	int i, cpu, me;
159 	cpumask_var_t cpus;
160 	bool called = true;
161 	struct kvm_vcpu *vcpu;
162 
163 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
164 
165 	me = get_cpu();
166 	kvm_for_each_vcpu(i, vcpu, kvm) {
167 		kvm_make_request(req, vcpu);
168 		cpu = vcpu->cpu;
169 
170 		/* Set ->requests bit before we read ->mode */
171 		smp_mb();
172 
173 		if (cpus != NULL && cpu != -1 && cpu != me &&
174 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175 			cpumask_set_cpu(cpu, cpus);
176 	}
177 	if (unlikely(cpus == NULL))
178 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 	else if (!cpumask_empty(cpus))
180 		smp_call_function_many(cpus, ack_flush, NULL, 1);
181 	else
182 		called = false;
183 	put_cpu();
184 	free_cpumask_var(cpus);
185 	return called;
186 }
187 
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190 	long dirty_count = kvm->tlbs_dirty;
191 
192 	smp_mb();
193 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 		++kvm->stat.remote_tlb_flush;
195 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198 
199 void kvm_reload_remote_mmus(struct kvm *kvm)
200 {
201 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
202 }
203 
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 {
206 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
207 }
208 
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 {
211 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
212 }
213 
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216 	struct page *page;
217 	int r;
218 
219 	mutex_init(&vcpu->mutex);
220 	vcpu->cpu = -1;
221 	vcpu->kvm = kvm;
222 	vcpu->vcpu_id = id;
223 	vcpu->pid = NULL;
224 	init_waitqueue_head(&vcpu->wq);
225 	kvm_async_pf_vcpu_init(vcpu);
226 
227 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 	if (!page) {
229 		r = -ENOMEM;
230 		goto fail;
231 	}
232 	vcpu->run = page_address(page);
233 
234 	kvm_vcpu_set_in_spin_loop(vcpu, false);
235 	kvm_vcpu_set_dy_eligible(vcpu, false);
236 	vcpu->preempted = false;
237 
238 	r = kvm_arch_vcpu_init(vcpu);
239 	if (r < 0)
240 		goto fail_free_run;
241 	return 0;
242 
243 fail_free_run:
244 	free_page((unsigned long)vcpu->run);
245 fail:
246 	return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249 
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 	put_pid(vcpu->pid);
253 	kvm_arch_vcpu_uninit(vcpu);
254 	free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257 
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 	return container_of(mn, struct kvm, mmu_notifier);
262 }
263 
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 					     struct mm_struct *mm,
266 					     unsigned long address)
267 {
268 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 	int need_tlb_flush, idx;
270 
271 	/*
272 	 * When ->invalidate_page runs, the linux pte has been zapped
273 	 * already but the page is still allocated until
274 	 * ->invalidate_page returns. So if we increase the sequence
275 	 * here the kvm page fault will notice if the spte can't be
276 	 * established because the page is going to be freed. If
277 	 * instead the kvm page fault establishes the spte before
278 	 * ->invalidate_page runs, kvm_unmap_hva will release it
279 	 * before returning.
280 	 *
281 	 * The sequence increase only need to be seen at spin_unlock
282 	 * time, and not at spin_lock time.
283 	 *
284 	 * Increasing the sequence after the spin_unlock would be
285 	 * unsafe because the kvm page fault could then establish the
286 	 * pte after kvm_unmap_hva returned, without noticing the page
287 	 * is going to be freed.
288 	 */
289 	idx = srcu_read_lock(&kvm->srcu);
290 	spin_lock(&kvm->mmu_lock);
291 
292 	kvm->mmu_notifier_seq++;
293 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 	/* we've to flush the tlb before the pages can be freed */
295 	if (need_tlb_flush)
296 		kvm_flush_remote_tlbs(kvm);
297 
298 	spin_unlock(&kvm->mmu_lock);
299 
300 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
301 
302 	srcu_read_unlock(&kvm->srcu, idx);
303 }
304 
305 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
306 					struct mm_struct *mm,
307 					unsigned long address,
308 					pte_t pte)
309 {
310 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
311 	int idx;
312 
313 	idx = srcu_read_lock(&kvm->srcu);
314 	spin_lock(&kvm->mmu_lock);
315 	kvm->mmu_notifier_seq++;
316 	kvm_set_spte_hva(kvm, address, pte);
317 	spin_unlock(&kvm->mmu_lock);
318 	srcu_read_unlock(&kvm->srcu, idx);
319 }
320 
321 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
322 						    struct mm_struct *mm,
323 						    unsigned long start,
324 						    unsigned long end)
325 {
326 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
327 	int need_tlb_flush = 0, idx;
328 
329 	idx = srcu_read_lock(&kvm->srcu);
330 	spin_lock(&kvm->mmu_lock);
331 	/*
332 	 * The count increase must become visible at unlock time as no
333 	 * spte can be established without taking the mmu_lock and
334 	 * count is also read inside the mmu_lock critical section.
335 	 */
336 	kvm->mmu_notifier_count++;
337 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
338 	need_tlb_flush |= kvm->tlbs_dirty;
339 	/* we've to flush the tlb before the pages can be freed */
340 	if (need_tlb_flush)
341 		kvm_flush_remote_tlbs(kvm);
342 
343 	spin_unlock(&kvm->mmu_lock);
344 	srcu_read_unlock(&kvm->srcu, idx);
345 }
346 
347 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
348 						  struct mm_struct *mm,
349 						  unsigned long start,
350 						  unsigned long end)
351 {
352 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 
354 	spin_lock(&kvm->mmu_lock);
355 	/*
356 	 * This sequence increase will notify the kvm page fault that
357 	 * the page that is going to be mapped in the spte could have
358 	 * been freed.
359 	 */
360 	kvm->mmu_notifier_seq++;
361 	smp_wmb();
362 	/*
363 	 * The above sequence increase must be visible before the
364 	 * below count decrease, which is ensured by the smp_wmb above
365 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 	 */
367 	kvm->mmu_notifier_count--;
368 	spin_unlock(&kvm->mmu_lock);
369 
370 	BUG_ON(kvm->mmu_notifier_count < 0);
371 }
372 
373 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
374 					      struct mm_struct *mm,
375 					      unsigned long start,
376 					      unsigned long end)
377 {
378 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
379 	int young, idx;
380 
381 	idx = srcu_read_lock(&kvm->srcu);
382 	spin_lock(&kvm->mmu_lock);
383 
384 	young = kvm_age_hva(kvm, start, end);
385 	if (young)
386 		kvm_flush_remote_tlbs(kvm);
387 
388 	spin_unlock(&kvm->mmu_lock);
389 	srcu_read_unlock(&kvm->srcu, idx);
390 
391 	return young;
392 }
393 
394 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
395 				       struct mm_struct *mm,
396 				       unsigned long address)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 	young = kvm_test_age_hva(kvm, address);
404 	spin_unlock(&kvm->mmu_lock);
405 	srcu_read_unlock(&kvm->srcu, idx);
406 
407 	return young;
408 }
409 
410 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
411 				     struct mm_struct *mm)
412 {
413 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
414 	int idx;
415 
416 	idx = srcu_read_lock(&kvm->srcu);
417 	kvm_arch_flush_shadow_all(kvm);
418 	srcu_read_unlock(&kvm->srcu, idx);
419 }
420 
421 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
422 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
423 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
424 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
425 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
426 	.test_young		= kvm_mmu_notifier_test_young,
427 	.change_pte		= kvm_mmu_notifier_change_pte,
428 	.release		= kvm_mmu_notifier_release,
429 };
430 
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
434 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 }
436 
437 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438 
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441 	return 0;
442 }
443 
444 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445 
446 static void kvm_init_memslots_id(struct kvm *kvm)
447 {
448 	int i;
449 	struct kvm_memslots *slots = kvm->memslots;
450 
451 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
452 		slots->id_to_index[i] = slots->memslots[i].id = i;
453 }
454 
455 static struct kvm *kvm_create_vm(unsigned long type)
456 {
457 	int r, i;
458 	struct kvm *kvm = kvm_arch_alloc_vm();
459 
460 	if (!kvm)
461 		return ERR_PTR(-ENOMEM);
462 
463 	r = kvm_arch_init_vm(kvm, type);
464 	if (r)
465 		goto out_err_no_disable;
466 
467 	r = hardware_enable_all();
468 	if (r)
469 		goto out_err_no_disable;
470 
471 #ifdef CONFIG_HAVE_KVM_IRQCHIP
472 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
473 #endif
474 #ifdef CONFIG_HAVE_KVM_IRQFD
475 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
476 #endif
477 
478 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
479 
480 	r = -ENOMEM;
481 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
482 	if (!kvm->memslots)
483 		goto out_err_no_srcu;
484 
485 	/*
486 	 * Init kvm generation close to the maximum to easily test the
487 	 * code of handling generation number wrap-around.
488 	 */
489 	kvm->memslots->generation = -150;
490 
491 	kvm_init_memslots_id(kvm);
492 	if (init_srcu_struct(&kvm->srcu))
493 		goto out_err_no_srcu;
494 	if (init_srcu_struct(&kvm->irq_srcu))
495 		goto out_err_no_irq_srcu;
496 	for (i = 0; i < KVM_NR_BUSES; i++) {
497 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
498 					GFP_KERNEL);
499 		if (!kvm->buses[i])
500 			goto out_err;
501 	}
502 
503 	spin_lock_init(&kvm->mmu_lock);
504 	kvm->mm = current->mm;
505 	atomic_inc(&kvm->mm->mm_count);
506 	kvm_eventfd_init(kvm);
507 	mutex_init(&kvm->lock);
508 	mutex_init(&kvm->irq_lock);
509 	mutex_init(&kvm->slots_lock);
510 	atomic_set(&kvm->users_count, 1);
511 	INIT_LIST_HEAD(&kvm->devices);
512 
513 	r = kvm_init_mmu_notifier(kvm);
514 	if (r)
515 		goto out_err;
516 
517 	spin_lock(&kvm_lock);
518 	list_add(&kvm->vm_list, &vm_list);
519 	spin_unlock(&kvm_lock);
520 
521 	return kvm;
522 
523 out_err:
524 	cleanup_srcu_struct(&kvm->irq_srcu);
525 out_err_no_irq_srcu:
526 	cleanup_srcu_struct(&kvm->srcu);
527 out_err_no_srcu:
528 	hardware_disable_all();
529 out_err_no_disable:
530 	for (i = 0; i < KVM_NR_BUSES; i++)
531 		kfree(kvm->buses[i]);
532 	kfree(kvm->memslots);
533 	kvm_arch_free_vm(kvm);
534 	return ERR_PTR(r);
535 }
536 
537 /*
538  * Avoid using vmalloc for a small buffer.
539  * Should not be used when the size is statically known.
540  */
541 void *kvm_kvzalloc(unsigned long size)
542 {
543 	if (size > PAGE_SIZE)
544 		return vzalloc(size);
545 	else
546 		return kzalloc(size, GFP_KERNEL);
547 }
548 
549 void kvm_kvfree(const void *addr)
550 {
551 	if (is_vmalloc_addr(addr))
552 		vfree(addr);
553 	else
554 		kfree(addr);
555 }
556 
557 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
558 {
559 	if (!memslot->dirty_bitmap)
560 		return;
561 
562 	kvm_kvfree(memslot->dirty_bitmap);
563 	memslot->dirty_bitmap = NULL;
564 }
565 
566 /*
567  * Free any memory in @free but not in @dont.
568  */
569 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
570 				  struct kvm_memory_slot *dont)
571 {
572 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
573 		kvm_destroy_dirty_bitmap(free);
574 
575 	kvm_arch_free_memslot(kvm, free, dont);
576 
577 	free->npages = 0;
578 }
579 
580 static void kvm_free_physmem(struct kvm *kvm)
581 {
582 	struct kvm_memslots *slots = kvm->memslots;
583 	struct kvm_memory_slot *memslot;
584 
585 	kvm_for_each_memslot(memslot, slots)
586 		kvm_free_physmem_slot(kvm, memslot, NULL);
587 
588 	kfree(kvm->memslots);
589 }
590 
591 static void kvm_destroy_devices(struct kvm *kvm)
592 {
593 	struct list_head *node, *tmp;
594 
595 	list_for_each_safe(node, tmp, &kvm->devices) {
596 		struct kvm_device *dev =
597 			list_entry(node, struct kvm_device, vm_node);
598 
599 		list_del(node);
600 		dev->ops->destroy(dev);
601 	}
602 }
603 
604 static void kvm_destroy_vm(struct kvm *kvm)
605 {
606 	int i;
607 	struct mm_struct *mm = kvm->mm;
608 
609 	kvm_arch_sync_events(kvm);
610 	spin_lock(&kvm_lock);
611 	list_del(&kvm->vm_list);
612 	spin_unlock(&kvm_lock);
613 	kvm_free_irq_routing(kvm);
614 	for (i = 0; i < KVM_NR_BUSES; i++)
615 		kvm_io_bus_destroy(kvm->buses[i]);
616 	kvm_coalesced_mmio_free(kvm);
617 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
618 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
619 #else
620 	kvm_arch_flush_shadow_all(kvm);
621 #endif
622 	kvm_arch_destroy_vm(kvm);
623 	kvm_destroy_devices(kvm);
624 	kvm_free_physmem(kvm);
625 	cleanup_srcu_struct(&kvm->irq_srcu);
626 	cleanup_srcu_struct(&kvm->srcu);
627 	kvm_arch_free_vm(kvm);
628 	hardware_disable_all();
629 	mmdrop(mm);
630 }
631 
632 void kvm_get_kvm(struct kvm *kvm)
633 {
634 	atomic_inc(&kvm->users_count);
635 }
636 EXPORT_SYMBOL_GPL(kvm_get_kvm);
637 
638 void kvm_put_kvm(struct kvm *kvm)
639 {
640 	if (atomic_dec_and_test(&kvm->users_count))
641 		kvm_destroy_vm(kvm);
642 }
643 EXPORT_SYMBOL_GPL(kvm_put_kvm);
644 
645 
646 static int kvm_vm_release(struct inode *inode, struct file *filp)
647 {
648 	struct kvm *kvm = filp->private_data;
649 
650 	kvm_irqfd_release(kvm);
651 
652 	kvm_put_kvm(kvm);
653 	return 0;
654 }
655 
656 /*
657  * Allocation size is twice as large as the actual dirty bitmap size.
658  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
659  */
660 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
661 {
662 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
663 
664 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
665 	if (!memslot->dirty_bitmap)
666 		return -ENOMEM;
667 
668 	return 0;
669 }
670 
671 static int cmp_memslot(const void *slot1, const void *slot2)
672 {
673 	struct kvm_memory_slot *s1, *s2;
674 
675 	s1 = (struct kvm_memory_slot *)slot1;
676 	s2 = (struct kvm_memory_slot *)slot2;
677 
678 	if (s1->npages < s2->npages)
679 		return 1;
680 	if (s1->npages > s2->npages)
681 		return -1;
682 
683 	return 0;
684 }
685 
686 /*
687  * Sort the memslots base on its size, so the larger slots
688  * will get better fit.
689  */
690 static void sort_memslots(struct kvm_memslots *slots)
691 {
692 	int i;
693 
694 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
695 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
696 
697 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
698 		slots->id_to_index[slots->memslots[i].id] = i;
699 }
700 
701 static void update_memslots(struct kvm_memslots *slots,
702 			    struct kvm_memory_slot *new)
703 {
704 	if (new) {
705 		int id = new->id;
706 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
707 		unsigned long npages = old->npages;
708 
709 		*old = *new;
710 		if (new->npages != npages)
711 			sort_memslots(slots);
712 	}
713 }
714 
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 {
717 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718 
719 #ifdef __KVM_HAVE_READONLY_MEM
720 	valid_flags |= KVM_MEM_READONLY;
721 #endif
722 
723 	if (mem->flags & ~valid_flags)
724 		return -EINVAL;
725 
726 	return 0;
727 }
728 
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
731 {
732 	struct kvm_memslots *old_memslots = kvm->memslots;
733 
734 	/*
735 	 * Set the low bit in the generation, which disables SPTE caching
736 	 * until the end of synchronize_srcu_expedited.
737 	 */
738 	WARN_ON(old_memslots->generation & 1);
739 	slots->generation = old_memslots->generation + 1;
740 
741 	update_memslots(slots, new);
742 	rcu_assign_pointer(kvm->memslots, slots);
743 	synchronize_srcu_expedited(&kvm->srcu);
744 
745 	/*
746 	 * Increment the new memslot generation a second time. This prevents
747 	 * vm exits that race with memslot updates from caching a memslot
748 	 * generation that will (potentially) be valid forever.
749 	 */
750 	slots->generation++;
751 
752 	kvm_arch_memslots_updated(kvm);
753 
754 	return old_memslots;
755 }
756 
757 /*
758  * Allocate some memory and give it an address in the guest physical address
759  * space.
760  *
761  * Discontiguous memory is allowed, mostly for framebuffers.
762  *
763  * Must be called holding mmap_sem for write.
764  */
765 int __kvm_set_memory_region(struct kvm *kvm,
766 			    struct kvm_userspace_memory_region *mem)
767 {
768 	int r;
769 	gfn_t base_gfn;
770 	unsigned long npages;
771 	struct kvm_memory_slot *slot;
772 	struct kvm_memory_slot old, new;
773 	struct kvm_memslots *slots = NULL, *old_memslots;
774 	enum kvm_mr_change change;
775 
776 	r = check_memory_region_flags(mem);
777 	if (r)
778 		goto out;
779 
780 	r = -EINVAL;
781 	/* General sanity checks */
782 	if (mem->memory_size & (PAGE_SIZE - 1))
783 		goto out;
784 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
785 		goto out;
786 	/* We can read the guest memory with __xxx_user() later on. */
787 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
788 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
789 	     !access_ok(VERIFY_WRITE,
790 			(void __user *)(unsigned long)mem->userspace_addr,
791 			mem->memory_size)))
792 		goto out;
793 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
794 		goto out;
795 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
796 		goto out;
797 
798 	slot = id_to_memslot(kvm->memslots, mem->slot);
799 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
800 	npages = mem->memory_size >> PAGE_SHIFT;
801 
802 	if (npages > KVM_MEM_MAX_NR_PAGES)
803 		goto out;
804 
805 	if (!npages)
806 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
807 
808 	new = old = *slot;
809 
810 	new.id = mem->slot;
811 	new.base_gfn = base_gfn;
812 	new.npages = npages;
813 	new.flags = mem->flags;
814 
815 	if (npages) {
816 		if (!old.npages)
817 			change = KVM_MR_CREATE;
818 		else { /* Modify an existing slot. */
819 			if ((mem->userspace_addr != old.userspace_addr) ||
820 			    (npages != old.npages) ||
821 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
822 				goto out;
823 
824 			if (base_gfn != old.base_gfn)
825 				change = KVM_MR_MOVE;
826 			else if (new.flags != old.flags)
827 				change = KVM_MR_FLAGS_ONLY;
828 			else { /* Nothing to change. */
829 				r = 0;
830 				goto out;
831 			}
832 		}
833 	} else if (old.npages) {
834 		change = KVM_MR_DELETE;
835 	} else /* Modify a non-existent slot: disallowed. */
836 		goto out;
837 
838 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
839 		/* Check for overlaps */
840 		r = -EEXIST;
841 		kvm_for_each_memslot(slot, kvm->memslots) {
842 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
843 			    (slot->id == mem->slot))
844 				continue;
845 			if (!((base_gfn + npages <= slot->base_gfn) ||
846 			      (base_gfn >= slot->base_gfn + slot->npages)))
847 				goto out;
848 		}
849 	}
850 
851 	/* Free page dirty bitmap if unneeded */
852 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
853 		new.dirty_bitmap = NULL;
854 
855 	r = -ENOMEM;
856 	if (change == KVM_MR_CREATE) {
857 		new.userspace_addr = mem->userspace_addr;
858 
859 		if (kvm_arch_create_memslot(kvm, &new, npages))
860 			goto out_free;
861 	}
862 
863 	/* Allocate page dirty bitmap if needed */
864 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
865 		if (kvm_create_dirty_bitmap(&new) < 0)
866 			goto out_free;
867 	}
868 
869 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
870 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
871 				GFP_KERNEL);
872 		if (!slots)
873 			goto out_free;
874 		slot = id_to_memslot(slots, mem->slot);
875 		slot->flags |= KVM_MEMSLOT_INVALID;
876 
877 		old_memslots = install_new_memslots(kvm, slots, NULL);
878 
879 		/* slot was deleted or moved, clear iommu mapping */
880 		kvm_iommu_unmap_pages(kvm, &old);
881 		/* From this point no new shadow pages pointing to a deleted,
882 		 * or moved, memslot will be created.
883 		 *
884 		 * validation of sp->gfn happens in:
885 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
887 		 */
888 		kvm_arch_flush_shadow_memslot(kvm, slot);
889 		slots = old_memslots;
890 	}
891 
892 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
893 	if (r)
894 		goto out_slots;
895 
896 	r = -ENOMEM;
897 	/*
898 	 * We can re-use the old_memslots from above, the only difference
899 	 * from the currently installed memslots is the invalid flag.  This
900 	 * will get overwritten by update_memslots anyway.
901 	 */
902 	if (!slots) {
903 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
904 				GFP_KERNEL);
905 		if (!slots)
906 			goto out_free;
907 	}
908 
909 	/* actual memory is freed via old in kvm_free_physmem_slot below */
910 	if (change == KVM_MR_DELETE) {
911 		new.dirty_bitmap = NULL;
912 		memset(&new.arch, 0, sizeof(new.arch));
913 	}
914 
915 	old_memslots = install_new_memslots(kvm, slots, &new);
916 
917 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
918 
919 	kvm_free_physmem_slot(kvm, &old, &new);
920 	kfree(old_memslots);
921 
922 	/*
923 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
924 	 * un-mapped and re-mapped if their base changes.  Since base change
925 	 * unmapping is handled above with slot deletion, mapping alone is
926 	 * needed here.  Anything else the iommu might care about for existing
927 	 * slots (size changes, userspace addr changes and read-only flag
928 	 * changes) is disallowed above, so any other attribute changes getting
929 	 * here can be skipped.
930 	 */
931 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932 		r = kvm_iommu_map_pages(kvm, &new);
933 		return r;
934 	}
935 
936 	return 0;
937 
938 out_slots:
939 	kfree(slots);
940 out_free:
941 	kvm_free_physmem_slot(kvm, &new, &old);
942 out:
943 	return r;
944 }
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
946 
947 int kvm_set_memory_region(struct kvm *kvm,
948 			  struct kvm_userspace_memory_region *mem)
949 {
950 	int r;
951 
952 	mutex_lock(&kvm->slots_lock);
953 	r = __kvm_set_memory_region(kvm, mem);
954 	mutex_unlock(&kvm->slots_lock);
955 	return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958 
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 					  struct kvm_userspace_memory_region *mem)
961 {
962 	if (mem->slot >= KVM_USER_MEM_SLOTS)
963 		return -EINVAL;
964 	return kvm_set_memory_region(kvm, mem);
965 }
966 
967 int kvm_get_dirty_log(struct kvm *kvm,
968 			struct kvm_dirty_log *log, int *is_dirty)
969 {
970 	struct kvm_memory_slot *memslot;
971 	int r, i;
972 	unsigned long n;
973 	unsigned long any = 0;
974 
975 	r = -EINVAL;
976 	if (log->slot >= KVM_USER_MEM_SLOTS)
977 		goto out;
978 
979 	memslot = id_to_memslot(kvm->memslots, log->slot);
980 	r = -ENOENT;
981 	if (!memslot->dirty_bitmap)
982 		goto out;
983 
984 	n = kvm_dirty_bitmap_bytes(memslot);
985 
986 	for (i = 0; !any && i < n/sizeof(long); ++i)
987 		any = memslot->dirty_bitmap[i];
988 
989 	r = -EFAULT;
990 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
991 		goto out;
992 
993 	if (any)
994 		*is_dirty = 1;
995 
996 	r = 0;
997 out:
998 	return r;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1001 
1002 bool kvm_largepages_enabled(void)
1003 {
1004 	return largepages_enabled;
1005 }
1006 
1007 void kvm_disable_largepages(void)
1008 {
1009 	largepages_enabled = false;
1010 }
1011 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1012 
1013 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1014 {
1015 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1016 }
1017 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1018 
1019 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1020 {
1021 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1022 
1023 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1024 	      memslot->flags & KVM_MEMSLOT_INVALID)
1025 		return 0;
1026 
1027 	return 1;
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1030 
1031 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1032 {
1033 	struct vm_area_struct *vma;
1034 	unsigned long addr, size;
1035 
1036 	size = PAGE_SIZE;
1037 
1038 	addr = gfn_to_hva(kvm, gfn);
1039 	if (kvm_is_error_hva(addr))
1040 		return PAGE_SIZE;
1041 
1042 	down_read(&current->mm->mmap_sem);
1043 	vma = find_vma(current->mm, addr);
1044 	if (!vma)
1045 		goto out;
1046 
1047 	size = vma_kernel_pagesize(vma);
1048 
1049 out:
1050 	up_read(&current->mm->mmap_sem);
1051 
1052 	return size;
1053 }
1054 
1055 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1056 {
1057 	return slot->flags & KVM_MEM_READONLY;
1058 }
1059 
1060 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061 				       gfn_t *nr_pages, bool write)
1062 {
1063 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1064 		return KVM_HVA_ERR_BAD;
1065 
1066 	if (memslot_is_readonly(slot) && write)
1067 		return KVM_HVA_ERR_RO_BAD;
1068 
1069 	if (nr_pages)
1070 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1071 
1072 	return __gfn_to_hva_memslot(slot, gfn);
1073 }
1074 
1075 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1076 				     gfn_t *nr_pages)
1077 {
1078 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1079 }
1080 
1081 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1082 					gfn_t gfn)
1083 {
1084 	return gfn_to_hva_many(slot, gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1087 
1088 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1089 {
1090 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1091 }
1092 EXPORT_SYMBOL_GPL(gfn_to_hva);
1093 
1094 /*
1095  * If writable is set to false, the hva returned by this function is only
1096  * allowed to be read.
1097  */
1098 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1099 				      gfn_t gfn, bool *writable)
1100 {
1101 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1102 
1103 	if (!kvm_is_error_hva(hva) && writable)
1104 		*writable = !memslot_is_readonly(slot);
1105 
1106 	return hva;
1107 }
1108 
1109 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1110 {
1111 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1112 
1113 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1114 }
1115 
1116 static int kvm_read_hva(void *data, void __user *hva, int len)
1117 {
1118 	return __copy_from_user(data, hva, len);
1119 }
1120 
1121 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1122 {
1123 	return __copy_from_user_inatomic(data, hva, len);
1124 }
1125 
1126 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1127 	unsigned long start, int write, struct page **page)
1128 {
1129 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1130 
1131 	if (write)
1132 		flags |= FOLL_WRITE;
1133 
1134 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1135 }
1136 
1137 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1138 			 unsigned long addr, bool write_fault,
1139 			 struct page **pagep)
1140 {
1141 	int npages;
1142 	int locked = 1;
1143 	int flags = FOLL_TOUCH | FOLL_HWPOISON |
1144 		    (pagep ? FOLL_GET : 0) |
1145 		    (write_fault ? FOLL_WRITE : 0);
1146 
1147 	/*
1148 	 * If retrying the fault, we get here *not* having allowed the filemap
1149 	 * to wait on the page lock. We should now allow waiting on the IO with
1150 	 * the mmap semaphore released.
1151 	 */
1152 	down_read(&mm->mmap_sem);
1153 	npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1154 				  &locked);
1155 	if (!locked) {
1156 		VM_BUG_ON(npages);
1157 
1158 		if (!pagep)
1159 			return 0;
1160 
1161 		/*
1162 		 * The previous call has now waited on the IO. Now we can
1163 		 * retry and complete. Pass TRIED to ensure we do not re
1164 		 * schedule async IO (see e.g. filemap_fault).
1165 		 */
1166 		down_read(&mm->mmap_sem);
1167 		npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1168 					  pagep, NULL, NULL);
1169 	}
1170 	up_read(&mm->mmap_sem);
1171 	return npages;
1172 }
1173 
1174 static inline int check_user_page_hwpoison(unsigned long addr)
1175 {
1176 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1177 
1178 	rc = __get_user_pages(current, current->mm, addr, 1,
1179 			      flags, NULL, NULL, NULL);
1180 	return rc == -EHWPOISON;
1181 }
1182 
1183 /*
1184  * The atomic path to get the writable pfn which will be stored in @pfn,
1185  * true indicates success, otherwise false is returned.
1186  */
1187 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1188 			    bool write_fault, bool *writable, pfn_t *pfn)
1189 {
1190 	struct page *page[1];
1191 	int npages;
1192 
1193 	if (!(async || atomic))
1194 		return false;
1195 
1196 	/*
1197 	 * Fast pin a writable pfn only if it is a write fault request
1198 	 * or the caller allows to map a writable pfn for a read fault
1199 	 * request.
1200 	 */
1201 	if (!(write_fault || writable))
1202 		return false;
1203 
1204 	npages = __get_user_pages_fast(addr, 1, 1, page);
1205 	if (npages == 1) {
1206 		*pfn = page_to_pfn(page[0]);
1207 
1208 		if (writable)
1209 			*writable = true;
1210 		return true;
1211 	}
1212 
1213 	return false;
1214 }
1215 
1216 /*
1217  * The slow path to get the pfn of the specified host virtual address,
1218  * 1 indicates success, -errno is returned if error is detected.
1219  */
1220 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1221 			   bool *writable, pfn_t *pfn)
1222 {
1223 	struct page *page[1];
1224 	int npages = 0;
1225 
1226 	might_sleep();
1227 
1228 	if (writable)
1229 		*writable = write_fault;
1230 
1231 	if (async) {
1232 		down_read(&current->mm->mmap_sem);
1233 		npages = get_user_page_nowait(current, current->mm,
1234 					      addr, write_fault, page);
1235 		up_read(&current->mm->mmap_sem);
1236 	} else {
1237 		/*
1238 		 * By now we have tried gup_fast, and possibly async_pf, and we
1239 		 * are certainly not atomic. Time to retry the gup, allowing
1240 		 * mmap semaphore to be relinquished in the case of IO.
1241 		 */
1242 		npages = kvm_get_user_page_io(current, current->mm, addr,
1243 					      write_fault, page);
1244 	}
1245 	if (npages != 1)
1246 		return npages;
1247 
1248 	/* map read fault as writable if possible */
1249 	if (unlikely(!write_fault) && writable) {
1250 		struct page *wpage[1];
1251 
1252 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1253 		if (npages == 1) {
1254 			*writable = true;
1255 			put_page(page[0]);
1256 			page[0] = wpage[0];
1257 		}
1258 
1259 		npages = 1;
1260 	}
1261 	*pfn = page_to_pfn(page[0]);
1262 	return npages;
1263 }
1264 
1265 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1266 {
1267 	if (unlikely(!(vma->vm_flags & VM_READ)))
1268 		return false;
1269 
1270 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1271 		return false;
1272 
1273 	return true;
1274 }
1275 
1276 /*
1277  * Pin guest page in memory and return its pfn.
1278  * @addr: host virtual address which maps memory to the guest
1279  * @atomic: whether this function can sleep
1280  * @async: whether this function need to wait IO complete if the
1281  *         host page is not in the memory
1282  * @write_fault: whether we should get a writable host page
1283  * @writable: whether it allows to map a writable host page for !@write_fault
1284  *
1285  * The function will map a writable host page for these two cases:
1286  * 1): @write_fault = true
1287  * 2): @write_fault = false && @writable, @writable will tell the caller
1288  *     whether the mapping is writable.
1289  */
1290 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1291 			bool write_fault, bool *writable)
1292 {
1293 	struct vm_area_struct *vma;
1294 	pfn_t pfn = 0;
1295 	int npages;
1296 
1297 	/* we can do it either atomically or asynchronously, not both */
1298 	BUG_ON(atomic && async);
1299 
1300 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1301 		return pfn;
1302 
1303 	if (atomic)
1304 		return KVM_PFN_ERR_FAULT;
1305 
1306 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1307 	if (npages == 1)
1308 		return pfn;
1309 
1310 	down_read(&current->mm->mmap_sem);
1311 	if (npages == -EHWPOISON ||
1312 	      (!async && check_user_page_hwpoison(addr))) {
1313 		pfn = KVM_PFN_ERR_HWPOISON;
1314 		goto exit;
1315 	}
1316 
1317 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1318 
1319 	if (vma == NULL)
1320 		pfn = KVM_PFN_ERR_FAULT;
1321 	else if ((vma->vm_flags & VM_PFNMAP)) {
1322 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1323 			vma->vm_pgoff;
1324 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1325 	} else {
1326 		if (async && vma_is_valid(vma, write_fault))
1327 			*async = true;
1328 		pfn = KVM_PFN_ERR_FAULT;
1329 	}
1330 exit:
1331 	up_read(&current->mm->mmap_sem);
1332 	return pfn;
1333 }
1334 
1335 static pfn_t
1336 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1337 		     bool *async, bool write_fault, bool *writable)
1338 {
1339 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1340 
1341 	if (addr == KVM_HVA_ERR_RO_BAD)
1342 		return KVM_PFN_ERR_RO_FAULT;
1343 
1344 	if (kvm_is_error_hva(addr))
1345 		return KVM_PFN_NOSLOT;
1346 
1347 	/* Do not map writable pfn in the readonly memslot. */
1348 	if (writable && memslot_is_readonly(slot)) {
1349 		*writable = false;
1350 		writable = NULL;
1351 	}
1352 
1353 	return hva_to_pfn(addr, atomic, async, write_fault,
1354 			  writable);
1355 }
1356 
1357 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1358 			  bool write_fault, bool *writable)
1359 {
1360 	struct kvm_memory_slot *slot;
1361 
1362 	if (async)
1363 		*async = false;
1364 
1365 	slot = gfn_to_memslot(kvm, gfn);
1366 
1367 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1368 				    writable);
1369 }
1370 
1371 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1372 {
1373 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1376 
1377 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1378 		       bool write_fault, bool *writable)
1379 {
1380 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1383 
1384 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1385 {
1386 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1387 }
1388 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1389 
1390 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1391 		      bool *writable)
1392 {
1393 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1394 }
1395 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1396 
1397 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1398 {
1399 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1400 }
1401 
1402 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1403 {
1404 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1405 }
1406 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1407 
1408 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1409 								  int nr_pages)
1410 {
1411 	unsigned long addr;
1412 	gfn_t entry;
1413 
1414 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1415 	if (kvm_is_error_hva(addr))
1416 		return -1;
1417 
1418 	if (entry < nr_pages)
1419 		return 0;
1420 
1421 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1422 }
1423 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1424 
1425 static struct page *kvm_pfn_to_page(pfn_t pfn)
1426 {
1427 	if (is_error_noslot_pfn(pfn))
1428 		return KVM_ERR_PTR_BAD_PAGE;
1429 
1430 	if (kvm_is_mmio_pfn(pfn)) {
1431 		WARN_ON(1);
1432 		return KVM_ERR_PTR_BAD_PAGE;
1433 	}
1434 
1435 	return pfn_to_page(pfn);
1436 }
1437 
1438 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1439 {
1440 	pfn_t pfn;
1441 
1442 	pfn = gfn_to_pfn(kvm, gfn);
1443 
1444 	return kvm_pfn_to_page(pfn);
1445 }
1446 
1447 EXPORT_SYMBOL_GPL(gfn_to_page);
1448 
1449 void kvm_release_page_clean(struct page *page)
1450 {
1451 	WARN_ON(is_error_page(page));
1452 
1453 	kvm_release_pfn_clean(page_to_pfn(page));
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1456 
1457 void kvm_release_pfn_clean(pfn_t pfn)
1458 {
1459 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1460 		put_page(pfn_to_page(pfn));
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1463 
1464 void kvm_release_page_dirty(struct page *page)
1465 {
1466 	WARN_ON(is_error_page(page));
1467 
1468 	kvm_release_pfn_dirty(page_to_pfn(page));
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1471 
1472 static void kvm_release_pfn_dirty(pfn_t pfn)
1473 {
1474 	kvm_set_pfn_dirty(pfn);
1475 	kvm_release_pfn_clean(pfn);
1476 }
1477 
1478 void kvm_set_pfn_dirty(pfn_t pfn)
1479 {
1480 	if (!kvm_is_mmio_pfn(pfn)) {
1481 		struct page *page = pfn_to_page(pfn);
1482 		if (!PageReserved(page))
1483 			SetPageDirty(page);
1484 	}
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1487 
1488 void kvm_set_pfn_accessed(pfn_t pfn)
1489 {
1490 	if (!kvm_is_mmio_pfn(pfn))
1491 		mark_page_accessed(pfn_to_page(pfn));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1494 
1495 void kvm_get_pfn(pfn_t pfn)
1496 {
1497 	if (!kvm_is_mmio_pfn(pfn))
1498 		get_page(pfn_to_page(pfn));
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1501 
1502 static int next_segment(unsigned long len, int offset)
1503 {
1504 	if (len > PAGE_SIZE - offset)
1505 		return PAGE_SIZE - offset;
1506 	else
1507 		return len;
1508 }
1509 
1510 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1511 			int len)
1512 {
1513 	int r;
1514 	unsigned long addr;
1515 
1516 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1517 	if (kvm_is_error_hva(addr))
1518 		return -EFAULT;
1519 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1520 	if (r)
1521 		return -EFAULT;
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1525 
1526 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1527 {
1528 	gfn_t gfn = gpa >> PAGE_SHIFT;
1529 	int seg;
1530 	int offset = offset_in_page(gpa);
1531 	int ret;
1532 
1533 	while ((seg = next_segment(len, offset)) != 0) {
1534 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1535 		if (ret < 0)
1536 			return ret;
1537 		offset = 0;
1538 		len -= seg;
1539 		data += seg;
1540 		++gfn;
1541 	}
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_read_guest);
1545 
1546 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1547 			  unsigned long len)
1548 {
1549 	int r;
1550 	unsigned long addr;
1551 	gfn_t gfn = gpa >> PAGE_SHIFT;
1552 	int offset = offset_in_page(gpa);
1553 
1554 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555 	if (kvm_is_error_hva(addr))
1556 		return -EFAULT;
1557 	pagefault_disable();
1558 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1559 	pagefault_enable();
1560 	if (r)
1561 		return -EFAULT;
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL(kvm_read_guest_atomic);
1565 
1566 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1567 			 int offset, int len)
1568 {
1569 	int r;
1570 	unsigned long addr;
1571 
1572 	addr = gfn_to_hva(kvm, gfn);
1573 	if (kvm_is_error_hva(addr))
1574 		return -EFAULT;
1575 	r = __copy_to_user((void __user *)addr + offset, data, len);
1576 	if (r)
1577 		return -EFAULT;
1578 	mark_page_dirty(kvm, gfn);
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1582 
1583 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1584 		    unsigned long len)
1585 {
1586 	gfn_t gfn = gpa >> PAGE_SHIFT;
1587 	int seg;
1588 	int offset = offset_in_page(gpa);
1589 	int ret;
1590 
1591 	while ((seg = next_segment(len, offset)) != 0) {
1592 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1593 		if (ret < 0)
1594 			return ret;
1595 		offset = 0;
1596 		len -= seg;
1597 		data += seg;
1598 		++gfn;
1599 	}
1600 	return 0;
1601 }
1602 
1603 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1604 			      gpa_t gpa, unsigned long len)
1605 {
1606 	struct kvm_memslots *slots = kvm_memslots(kvm);
1607 	int offset = offset_in_page(gpa);
1608 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1609 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1610 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1611 	gfn_t nr_pages_avail;
1612 
1613 	ghc->gpa = gpa;
1614 	ghc->generation = slots->generation;
1615 	ghc->len = len;
1616 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1617 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1618 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1619 		ghc->hva += offset;
1620 	} else {
1621 		/*
1622 		 * If the requested region crosses two memslots, we still
1623 		 * verify that the entire region is valid here.
1624 		 */
1625 		while (start_gfn <= end_gfn) {
1626 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1627 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1628 						   &nr_pages_avail);
1629 			if (kvm_is_error_hva(ghc->hva))
1630 				return -EFAULT;
1631 			start_gfn += nr_pages_avail;
1632 		}
1633 		/* Use the slow path for cross page reads and writes. */
1634 		ghc->memslot = NULL;
1635 	}
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1639 
1640 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1641 			   void *data, unsigned long len)
1642 {
1643 	struct kvm_memslots *slots = kvm_memslots(kvm);
1644 	int r;
1645 
1646 	BUG_ON(len > ghc->len);
1647 
1648 	if (slots->generation != ghc->generation)
1649 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1650 
1651 	if (unlikely(!ghc->memslot))
1652 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1653 
1654 	if (kvm_is_error_hva(ghc->hva))
1655 		return -EFAULT;
1656 
1657 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1658 	if (r)
1659 		return -EFAULT;
1660 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1661 
1662 	return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1665 
1666 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667 			   void *data, unsigned long len)
1668 {
1669 	struct kvm_memslots *slots = kvm_memslots(kvm);
1670 	int r;
1671 
1672 	BUG_ON(len > ghc->len);
1673 
1674 	if (slots->generation != ghc->generation)
1675 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1676 
1677 	if (unlikely(!ghc->memslot))
1678 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1679 
1680 	if (kvm_is_error_hva(ghc->hva))
1681 		return -EFAULT;
1682 
1683 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1684 	if (r)
1685 		return -EFAULT;
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1690 
1691 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1692 {
1693 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1694 
1695 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1698 
1699 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1700 {
1701 	gfn_t gfn = gpa >> PAGE_SHIFT;
1702 	int seg;
1703 	int offset = offset_in_page(gpa);
1704 	int ret;
1705 
1706         while ((seg = next_segment(len, offset)) != 0) {
1707 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1708 		if (ret < 0)
1709 			return ret;
1710 		offset = 0;
1711 		len -= seg;
1712 		++gfn;
1713 	}
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1717 
1718 static void mark_page_dirty_in_slot(struct kvm *kvm,
1719 				    struct kvm_memory_slot *memslot,
1720 				    gfn_t gfn)
1721 {
1722 	if (memslot && memslot->dirty_bitmap) {
1723 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1724 
1725 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1726 	}
1727 }
1728 
1729 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1730 {
1731 	struct kvm_memory_slot *memslot;
1732 
1733 	memslot = gfn_to_memslot(kvm, gfn);
1734 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1735 }
1736 EXPORT_SYMBOL_GPL(mark_page_dirty);
1737 
1738 /*
1739  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1740  */
1741 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1742 {
1743 	DEFINE_WAIT(wait);
1744 
1745 	for (;;) {
1746 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1747 
1748 		if (kvm_arch_vcpu_runnable(vcpu)) {
1749 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1750 			break;
1751 		}
1752 		if (kvm_cpu_has_pending_timer(vcpu))
1753 			break;
1754 		if (signal_pending(current))
1755 			break;
1756 
1757 		schedule();
1758 	}
1759 
1760 	finish_wait(&vcpu->wq, &wait);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1763 
1764 #ifndef CONFIG_S390
1765 /*
1766  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1767  */
1768 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1769 {
1770 	int me;
1771 	int cpu = vcpu->cpu;
1772 	wait_queue_head_t *wqp;
1773 
1774 	wqp = kvm_arch_vcpu_wq(vcpu);
1775 	if (waitqueue_active(wqp)) {
1776 		wake_up_interruptible(wqp);
1777 		++vcpu->stat.halt_wakeup;
1778 	}
1779 
1780 	me = get_cpu();
1781 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1782 		if (kvm_arch_vcpu_should_kick(vcpu))
1783 			smp_send_reschedule(cpu);
1784 	put_cpu();
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1787 #endif /* !CONFIG_S390 */
1788 
1789 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1790 {
1791 	struct pid *pid;
1792 	struct task_struct *task = NULL;
1793 	int ret = 0;
1794 
1795 	rcu_read_lock();
1796 	pid = rcu_dereference(target->pid);
1797 	if (pid)
1798 		task = get_pid_task(pid, PIDTYPE_PID);
1799 	rcu_read_unlock();
1800 	if (!task)
1801 		return ret;
1802 	if (task->flags & PF_VCPU) {
1803 		put_task_struct(task);
1804 		return ret;
1805 	}
1806 	ret = yield_to(task, 1);
1807 	put_task_struct(task);
1808 
1809 	return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1812 
1813 /*
1814  * Helper that checks whether a VCPU is eligible for directed yield.
1815  * Most eligible candidate to yield is decided by following heuristics:
1816  *
1817  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1818  *  (preempted lock holder), indicated by @in_spin_loop.
1819  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1820  *
1821  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1822  *  chance last time (mostly it has become eligible now since we have probably
1823  *  yielded to lockholder in last iteration. This is done by toggling
1824  *  @dy_eligible each time a VCPU checked for eligibility.)
1825  *
1826  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1827  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1828  *  burning. Giving priority for a potential lock-holder increases lock
1829  *  progress.
1830  *
1831  *  Since algorithm is based on heuristics, accessing another VCPU data without
1832  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1833  *  and continue with next VCPU and so on.
1834  */
1835 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1836 {
1837 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1838 	bool eligible;
1839 
1840 	eligible = !vcpu->spin_loop.in_spin_loop ||
1841 		    vcpu->spin_loop.dy_eligible;
1842 
1843 	if (vcpu->spin_loop.in_spin_loop)
1844 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1845 
1846 	return eligible;
1847 #else
1848 	return true;
1849 #endif
1850 }
1851 
1852 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1853 {
1854 	struct kvm *kvm = me->kvm;
1855 	struct kvm_vcpu *vcpu;
1856 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1857 	int yielded = 0;
1858 	int try = 3;
1859 	int pass;
1860 	int i;
1861 
1862 	kvm_vcpu_set_in_spin_loop(me, true);
1863 	/*
1864 	 * We boost the priority of a VCPU that is runnable but not
1865 	 * currently running, because it got preempted by something
1866 	 * else and called schedule in __vcpu_run.  Hopefully that
1867 	 * VCPU is holding the lock that we need and will release it.
1868 	 * We approximate round-robin by starting at the last boosted VCPU.
1869 	 */
1870 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1871 		kvm_for_each_vcpu(i, vcpu, kvm) {
1872 			if (!pass && i <= last_boosted_vcpu) {
1873 				i = last_boosted_vcpu;
1874 				continue;
1875 			} else if (pass && i > last_boosted_vcpu)
1876 				break;
1877 			if (!ACCESS_ONCE(vcpu->preempted))
1878 				continue;
1879 			if (vcpu == me)
1880 				continue;
1881 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1882 				continue;
1883 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1884 				continue;
1885 
1886 			yielded = kvm_vcpu_yield_to(vcpu);
1887 			if (yielded > 0) {
1888 				kvm->last_boosted_vcpu = i;
1889 				break;
1890 			} else if (yielded < 0) {
1891 				try--;
1892 				if (!try)
1893 					break;
1894 			}
1895 		}
1896 	}
1897 	kvm_vcpu_set_in_spin_loop(me, false);
1898 
1899 	/* Ensure vcpu is not eligible during next spinloop */
1900 	kvm_vcpu_set_dy_eligible(me, false);
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1903 
1904 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1905 {
1906 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1907 	struct page *page;
1908 
1909 	if (vmf->pgoff == 0)
1910 		page = virt_to_page(vcpu->run);
1911 #ifdef CONFIG_X86
1912 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1913 		page = virt_to_page(vcpu->arch.pio_data);
1914 #endif
1915 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1916 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1917 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1918 #endif
1919 	else
1920 		return kvm_arch_vcpu_fault(vcpu, vmf);
1921 	get_page(page);
1922 	vmf->page = page;
1923 	return 0;
1924 }
1925 
1926 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1927 	.fault = kvm_vcpu_fault,
1928 };
1929 
1930 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1931 {
1932 	vma->vm_ops = &kvm_vcpu_vm_ops;
1933 	return 0;
1934 }
1935 
1936 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1937 {
1938 	struct kvm_vcpu *vcpu = filp->private_data;
1939 
1940 	kvm_put_kvm(vcpu->kvm);
1941 	return 0;
1942 }
1943 
1944 static struct file_operations kvm_vcpu_fops = {
1945 	.release        = kvm_vcpu_release,
1946 	.unlocked_ioctl = kvm_vcpu_ioctl,
1947 #ifdef CONFIG_COMPAT
1948 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1949 #endif
1950 	.mmap           = kvm_vcpu_mmap,
1951 	.llseek		= noop_llseek,
1952 };
1953 
1954 /*
1955  * Allocates an inode for the vcpu.
1956  */
1957 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1958 {
1959 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1960 }
1961 
1962 /*
1963  * Creates some virtual cpus.  Good luck creating more than one.
1964  */
1965 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1966 {
1967 	int r;
1968 	struct kvm_vcpu *vcpu, *v;
1969 
1970 	if (id >= KVM_MAX_VCPUS)
1971 		return -EINVAL;
1972 
1973 	vcpu = kvm_arch_vcpu_create(kvm, id);
1974 	if (IS_ERR(vcpu))
1975 		return PTR_ERR(vcpu);
1976 
1977 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1978 
1979 	r = kvm_arch_vcpu_setup(vcpu);
1980 	if (r)
1981 		goto vcpu_destroy;
1982 
1983 	mutex_lock(&kvm->lock);
1984 	if (!kvm_vcpu_compatible(vcpu)) {
1985 		r = -EINVAL;
1986 		goto unlock_vcpu_destroy;
1987 	}
1988 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1989 		r = -EINVAL;
1990 		goto unlock_vcpu_destroy;
1991 	}
1992 
1993 	kvm_for_each_vcpu(r, v, kvm)
1994 		if (v->vcpu_id == id) {
1995 			r = -EEXIST;
1996 			goto unlock_vcpu_destroy;
1997 		}
1998 
1999 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2000 
2001 	/* Now it's all set up, let userspace reach it */
2002 	kvm_get_kvm(kvm);
2003 	r = create_vcpu_fd(vcpu);
2004 	if (r < 0) {
2005 		kvm_put_kvm(kvm);
2006 		goto unlock_vcpu_destroy;
2007 	}
2008 
2009 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2010 	smp_wmb();
2011 	atomic_inc(&kvm->online_vcpus);
2012 
2013 	mutex_unlock(&kvm->lock);
2014 	kvm_arch_vcpu_postcreate(vcpu);
2015 	return r;
2016 
2017 unlock_vcpu_destroy:
2018 	mutex_unlock(&kvm->lock);
2019 vcpu_destroy:
2020 	kvm_arch_vcpu_destroy(vcpu);
2021 	return r;
2022 }
2023 
2024 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2025 {
2026 	if (sigset) {
2027 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2028 		vcpu->sigset_active = 1;
2029 		vcpu->sigset = *sigset;
2030 	} else
2031 		vcpu->sigset_active = 0;
2032 	return 0;
2033 }
2034 
2035 static long kvm_vcpu_ioctl(struct file *filp,
2036 			   unsigned int ioctl, unsigned long arg)
2037 {
2038 	struct kvm_vcpu *vcpu = filp->private_data;
2039 	void __user *argp = (void __user *)arg;
2040 	int r;
2041 	struct kvm_fpu *fpu = NULL;
2042 	struct kvm_sregs *kvm_sregs = NULL;
2043 
2044 	if (vcpu->kvm->mm != current->mm)
2045 		return -EIO;
2046 
2047 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2048 		return -EINVAL;
2049 
2050 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2051 	/*
2052 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2053 	 * so vcpu_load() would break it.
2054 	 */
2055 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2056 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2057 #endif
2058 
2059 
2060 	r = vcpu_load(vcpu);
2061 	if (r)
2062 		return r;
2063 	switch (ioctl) {
2064 	case KVM_RUN:
2065 		r = -EINVAL;
2066 		if (arg)
2067 			goto out;
2068 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2069 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2070 		break;
2071 	case KVM_GET_REGS: {
2072 		struct kvm_regs *kvm_regs;
2073 
2074 		r = -ENOMEM;
2075 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2076 		if (!kvm_regs)
2077 			goto out;
2078 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2079 		if (r)
2080 			goto out_free1;
2081 		r = -EFAULT;
2082 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2083 			goto out_free1;
2084 		r = 0;
2085 out_free1:
2086 		kfree(kvm_regs);
2087 		break;
2088 	}
2089 	case KVM_SET_REGS: {
2090 		struct kvm_regs *kvm_regs;
2091 
2092 		r = -ENOMEM;
2093 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2094 		if (IS_ERR(kvm_regs)) {
2095 			r = PTR_ERR(kvm_regs);
2096 			goto out;
2097 		}
2098 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2099 		kfree(kvm_regs);
2100 		break;
2101 	}
2102 	case KVM_GET_SREGS: {
2103 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2104 		r = -ENOMEM;
2105 		if (!kvm_sregs)
2106 			goto out;
2107 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2108 		if (r)
2109 			goto out;
2110 		r = -EFAULT;
2111 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2112 			goto out;
2113 		r = 0;
2114 		break;
2115 	}
2116 	case KVM_SET_SREGS: {
2117 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2118 		if (IS_ERR(kvm_sregs)) {
2119 			r = PTR_ERR(kvm_sregs);
2120 			kvm_sregs = NULL;
2121 			goto out;
2122 		}
2123 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2124 		break;
2125 	}
2126 	case KVM_GET_MP_STATE: {
2127 		struct kvm_mp_state mp_state;
2128 
2129 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2130 		if (r)
2131 			goto out;
2132 		r = -EFAULT;
2133 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2134 			goto out;
2135 		r = 0;
2136 		break;
2137 	}
2138 	case KVM_SET_MP_STATE: {
2139 		struct kvm_mp_state mp_state;
2140 
2141 		r = -EFAULT;
2142 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2143 			goto out;
2144 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2145 		break;
2146 	}
2147 	case KVM_TRANSLATE: {
2148 		struct kvm_translation tr;
2149 
2150 		r = -EFAULT;
2151 		if (copy_from_user(&tr, argp, sizeof tr))
2152 			goto out;
2153 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2154 		if (r)
2155 			goto out;
2156 		r = -EFAULT;
2157 		if (copy_to_user(argp, &tr, sizeof tr))
2158 			goto out;
2159 		r = 0;
2160 		break;
2161 	}
2162 	case KVM_SET_GUEST_DEBUG: {
2163 		struct kvm_guest_debug dbg;
2164 
2165 		r = -EFAULT;
2166 		if (copy_from_user(&dbg, argp, sizeof dbg))
2167 			goto out;
2168 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2169 		break;
2170 	}
2171 	case KVM_SET_SIGNAL_MASK: {
2172 		struct kvm_signal_mask __user *sigmask_arg = argp;
2173 		struct kvm_signal_mask kvm_sigmask;
2174 		sigset_t sigset, *p;
2175 
2176 		p = NULL;
2177 		if (argp) {
2178 			r = -EFAULT;
2179 			if (copy_from_user(&kvm_sigmask, argp,
2180 					   sizeof kvm_sigmask))
2181 				goto out;
2182 			r = -EINVAL;
2183 			if (kvm_sigmask.len != sizeof sigset)
2184 				goto out;
2185 			r = -EFAULT;
2186 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2187 					   sizeof sigset))
2188 				goto out;
2189 			p = &sigset;
2190 		}
2191 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2192 		break;
2193 	}
2194 	case KVM_GET_FPU: {
2195 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2196 		r = -ENOMEM;
2197 		if (!fpu)
2198 			goto out;
2199 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2200 		if (r)
2201 			goto out;
2202 		r = -EFAULT;
2203 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2204 			goto out;
2205 		r = 0;
2206 		break;
2207 	}
2208 	case KVM_SET_FPU: {
2209 		fpu = memdup_user(argp, sizeof(*fpu));
2210 		if (IS_ERR(fpu)) {
2211 			r = PTR_ERR(fpu);
2212 			fpu = NULL;
2213 			goto out;
2214 		}
2215 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2216 		break;
2217 	}
2218 	default:
2219 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2220 	}
2221 out:
2222 	vcpu_put(vcpu);
2223 	kfree(fpu);
2224 	kfree(kvm_sregs);
2225 	return r;
2226 }
2227 
2228 #ifdef CONFIG_COMPAT
2229 static long kvm_vcpu_compat_ioctl(struct file *filp,
2230 				  unsigned int ioctl, unsigned long arg)
2231 {
2232 	struct kvm_vcpu *vcpu = filp->private_data;
2233 	void __user *argp = compat_ptr(arg);
2234 	int r;
2235 
2236 	if (vcpu->kvm->mm != current->mm)
2237 		return -EIO;
2238 
2239 	switch (ioctl) {
2240 	case KVM_SET_SIGNAL_MASK: {
2241 		struct kvm_signal_mask __user *sigmask_arg = argp;
2242 		struct kvm_signal_mask kvm_sigmask;
2243 		compat_sigset_t csigset;
2244 		sigset_t sigset;
2245 
2246 		if (argp) {
2247 			r = -EFAULT;
2248 			if (copy_from_user(&kvm_sigmask, argp,
2249 					   sizeof kvm_sigmask))
2250 				goto out;
2251 			r = -EINVAL;
2252 			if (kvm_sigmask.len != sizeof csigset)
2253 				goto out;
2254 			r = -EFAULT;
2255 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2256 					   sizeof csigset))
2257 				goto out;
2258 			sigset_from_compat(&sigset, &csigset);
2259 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2260 		} else
2261 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2262 		break;
2263 	}
2264 	default:
2265 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2266 	}
2267 
2268 out:
2269 	return r;
2270 }
2271 #endif
2272 
2273 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2274 				 int (*accessor)(struct kvm_device *dev,
2275 						 struct kvm_device_attr *attr),
2276 				 unsigned long arg)
2277 {
2278 	struct kvm_device_attr attr;
2279 
2280 	if (!accessor)
2281 		return -EPERM;
2282 
2283 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2284 		return -EFAULT;
2285 
2286 	return accessor(dev, &attr);
2287 }
2288 
2289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2290 			     unsigned long arg)
2291 {
2292 	struct kvm_device *dev = filp->private_data;
2293 
2294 	switch (ioctl) {
2295 	case KVM_SET_DEVICE_ATTR:
2296 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2297 	case KVM_GET_DEVICE_ATTR:
2298 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2299 	case KVM_HAS_DEVICE_ATTR:
2300 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2301 	default:
2302 		if (dev->ops->ioctl)
2303 			return dev->ops->ioctl(dev, ioctl, arg);
2304 
2305 		return -ENOTTY;
2306 	}
2307 }
2308 
2309 static int kvm_device_release(struct inode *inode, struct file *filp)
2310 {
2311 	struct kvm_device *dev = filp->private_data;
2312 	struct kvm *kvm = dev->kvm;
2313 
2314 	kvm_put_kvm(kvm);
2315 	return 0;
2316 }
2317 
2318 static const struct file_operations kvm_device_fops = {
2319 	.unlocked_ioctl = kvm_device_ioctl,
2320 #ifdef CONFIG_COMPAT
2321 	.compat_ioctl = kvm_device_ioctl,
2322 #endif
2323 	.release = kvm_device_release,
2324 };
2325 
2326 struct kvm_device *kvm_device_from_filp(struct file *filp)
2327 {
2328 	if (filp->f_op != &kvm_device_fops)
2329 		return NULL;
2330 
2331 	return filp->private_data;
2332 }
2333 
2334 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2335 #ifdef CONFIG_KVM_MPIC
2336 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2337 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2338 #endif
2339 
2340 #ifdef CONFIG_KVM_XICS
2341 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2342 #endif
2343 };
2344 
2345 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2346 {
2347 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2348 		return -ENOSPC;
2349 
2350 	if (kvm_device_ops_table[type] != NULL)
2351 		return -EEXIST;
2352 
2353 	kvm_device_ops_table[type] = ops;
2354 	return 0;
2355 }
2356 
2357 void kvm_unregister_device_ops(u32 type)
2358 {
2359 	if (kvm_device_ops_table[type] != NULL)
2360 		kvm_device_ops_table[type] = NULL;
2361 }
2362 
2363 static int kvm_ioctl_create_device(struct kvm *kvm,
2364 				   struct kvm_create_device *cd)
2365 {
2366 	struct kvm_device_ops *ops = NULL;
2367 	struct kvm_device *dev;
2368 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2369 	int ret;
2370 
2371 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2372 		return -ENODEV;
2373 
2374 	ops = kvm_device_ops_table[cd->type];
2375 	if (ops == NULL)
2376 		return -ENODEV;
2377 
2378 	if (test)
2379 		return 0;
2380 
2381 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2382 	if (!dev)
2383 		return -ENOMEM;
2384 
2385 	dev->ops = ops;
2386 	dev->kvm = kvm;
2387 
2388 	ret = ops->create(dev, cd->type);
2389 	if (ret < 0) {
2390 		kfree(dev);
2391 		return ret;
2392 	}
2393 
2394 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2395 	if (ret < 0) {
2396 		ops->destroy(dev);
2397 		return ret;
2398 	}
2399 
2400 	list_add(&dev->vm_node, &kvm->devices);
2401 	kvm_get_kvm(kvm);
2402 	cd->fd = ret;
2403 	return 0;
2404 }
2405 
2406 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2407 {
2408 	switch (arg) {
2409 	case KVM_CAP_USER_MEMORY:
2410 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2411 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2412 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2413 	case KVM_CAP_SET_BOOT_CPU_ID:
2414 #endif
2415 	case KVM_CAP_INTERNAL_ERROR_DATA:
2416 #ifdef CONFIG_HAVE_KVM_MSI
2417 	case KVM_CAP_SIGNAL_MSI:
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQFD
2420 	case KVM_CAP_IRQFD_RESAMPLE:
2421 #endif
2422 	case KVM_CAP_CHECK_EXTENSION_VM:
2423 		return 1;
2424 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2425 	case KVM_CAP_IRQ_ROUTING:
2426 		return KVM_MAX_IRQ_ROUTES;
2427 #endif
2428 	default:
2429 		break;
2430 	}
2431 	return kvm_vm_ioctl_check_extension(kvm, arg);
2432 }
2433 
2434 static long kvm_vm_ioctl(struct file *filp,
2435 			   unsigned int ioctl, unsigned long arg)
2436 {
2437 	struct kvm *kvm = filp->private_data;
2438 	void __user *argp = (void __user *)arg;
2439 	int r;
2440 
2441 	if (kvm->mm != current->mm)
2442 		return -EIO;
2443 	switch (ioctl) {
2444 	case KVM_CREATE_VCPU:
2445 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2446 		break;
2447 	case KVM_SET_USER_MEMORY_REGION: {
2448 		struct kvm_userspace_memory_region kvm_userspace_mem;
2449 
2450 		r = -EFAULT;
2451 		if (copy_from_user(&kvm_userspace_mem, argp,
2452 						sizeof kvm_userspace_mem))
2453 			goto out;
2454 
2455 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2456 		break;
2457 	}
2458 	case KVM_GET_DIRTY_LOG: {
2459 		struct kvm_dirty_log log;
2460 
2461 		r = -EFAULT;
2462 		if (copy_from_user(&log, argp, sizeof log))
2463 			goto out;
2464 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2465 		break;
2466 	}
2467 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2468 	case KVM_REGISTER_COALESCED_MMIO: {
2469 		struct kvm_coalesced_mmio_zone zone;
2470 		r = -EFAULT;
2471 		if (copy_from_user(&zone, argp, sizeof zone))
2472 			goto out;
2473 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2474 		break;
2475 	}
2476 	case KVM_UNREGISTER_COALESCED_MMIO: {
2477 		struct kvm_coalesced_mmio_zone zone;
2478 		r = -EFAULT;
2479 		if (copy_from_user(&zone, argp, sizeof zone))
2480 			goto out;
2481 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2482 		break;
2483 	}
2484 #endif
2485 	case KVM_IRQFD: {
2486 		struct kvm_irqfd data;
2487 
2488 		r = -EFAULT;
2489 		if (copy_from_user(&data, argp, sizeof data))
2490 			goto out;
2491 		r = kvm_irqfd(kvm, &data);
2492 		break;
2493 	}
2494 	case KVM_IOEVENTFD: {
2495 		struct kvm_ioeventfd data;
2496 
2497 		r = -EFAULT;
2498 		if (copy_from_user(&data, argp, sizeof data))
2499 			goto out;
2500 		r = kvm_ioeventfd(kvm, &data);
2501 		break;
2502 	}
2503 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2504 	case KVM_SET_BOOT_CPU_ID:
2505 		r = 0;
2506 		mutex_lock(&kvm->lock);
2507 		if (atomic_read(&kvm->online_vcpus) != 0)
2508 			r = -EBUSY;
2509 		else
2510 			kvm->bsp_vcpu_id = arg;
2511 		mutex_unlock(&kvm->lock);
2512 		break;
2513 #endif
2514 #ifdef CONFIG_HAVE_KVM_MSI
2515 	case KVM_SIGNAL_MSI: {
2516 		struct kvm_msi msi;
2517 
2518 		r = -EFAULT;
2519 		if (copy_from_user(&msi, argp, sizeof msi))
2520 			goto out;
2521 		r = kvm_send_userspace_msi(kvm, &msi);
2522 		break;
2523 	}
2524 #endif
2525 #ifdef __KVM_HAVE_IRQ_LINE
2526 	case KVM_IRQ_LINE_STATUS:
2527 	case KVM_IRQ_LINE: {
2528 		struct kvm_irq_level irq_event;
2529 
2530 		r = -EFAULT;
2531 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2532 			goto out;
2533 
2534 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2535 					ioctl == KVM_IRQ_LINE_STATUS);
2536 		if (r)
2537 			goto out;
2538 
2539 		r = -EFAULT;
2540 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2541 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2542 				goto out;
2543 		}
2544 
2545 		r = 0;
2546 		break;
2547 	}
2548 #endif
2549 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2550 	case KVM_SET_GSI_ROUTING: {
2551 		struct kvm_irq_routing routing;
2552 		struct kvm_irq_routing __user *urouting;
2553 		struct kvm_irq_routing_entry *entries;
2554 
2555 		r = -EFAULT;
2556 		if (copy_from_user(&routing, argp, sizeof(routing)))
2557 			goto out;
2558 		r = -EINVAL;
2559 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2560 			goto out;
2561 		if (routing.flags)
2562 			goto out;
2563 		r = -ENOMEM;
2564 		entries = vmalloc(routing.nr * sizeof(*entries));
2565 		if (!entries)
2566 			goto out;
2567 		r = -EFAULT;
2568 		urouting = argp;
2569 		if (copy_from_user(entries, urouting->entries,
2570 				   routing.nr * sizeof(*entries)))
2571 			goto out_free_irq_routing;
2572 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2573 					routing.flags);
2574 	out_free_irq_routing:
2575 		vfree(entries);
2576 		break;
2577 	}
2578 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2579 	case KVM_CREATE_DEVICE: {
2580 		struct kvm_create_device cd;
2581 
2582 		r = -EFAULT;
2583 		if (copy_from_user(&cd, argp, sizeof(cd)))
2584 			goto out;
2585 
2586 		r = kvm_ioctl_create_device(kvm, &cd);
2587 		if (r)
2588 			goto out;
2589 
2590 		r = -EFAULT;
2591 		if (copy_to_user(argp, &cd, sizeof(cd)))
2592 			goto out;
2593 
2594 		r = 0;
2595 		break;
2596 	}
2597 	case KVM_CHECK_EXTENSION:
2598 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2599 		break;
2600 	default:
2601 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2602 		if (r == -ENOTTY)
2603 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2604 	}
2605 out:
2606 	return r;
2607 }
2608 
2609 #ifdef CONFIG_COMPAT
2610 struct compat_kvm_dirty_log {
2611 	__u32 slot;
2612 	__u32 padding1;
2613 	union {
2614 		compat_uptr_t dirty_bitmap; /* one bit per page */
2615 		__u64 padding2;
2616 	};
2617 };
2618 
2619 static long kvm_vm_compat_ioctl(struct file *filp,
2620 			   unsigned int ioctl, unsigned long arg)
2621 {
2622 	struct kvm *kvm = filp->private_data;
2623 	int r;
2624 
2625 	if (kvm->mm != current->mm)
2626 		return -EIO;
2627 	switch (ioctl) {
2628 	case KVM_GET_DIRTY_LOG: {
2629 		struct compat_kvm_dirty_log compat_log;
2630 		struct kvm_dirty_log log;
2631 
2632 		r = -EFAULT;
2633 		if (copy_from_user(&compat_log, (void __user *)arg,
2634 				   sizeof(compat_log)))
2635 			goto out;
2636 		log.slot	 = compat_log.slot;
2637 		log.padding1	 = compat_log.padding1;
2638 		log.padding2	 = compat_log.padding2;
2639 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2640 
2641 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2642 		break;
2643 	}
2644 	default:
2645 		r = kvm_vm_ioctl(filp, ioctl, arg);
2646 	}
2647 
2648 out:
2649 	return r;
2650 }
2651 #endif
2652 
2653 static struct file_operations kvm_vm_fops = {
2654 	.release        = kvm_vm_release,
2655 	.unlocked_ioctl = kvm_vm_ioctl,
2656 #ifdef CONFIG_COMPAT
2657 	.compat_ioctl   = kvm_vm_compat_ioctl,
2658 #endif
2659 	.llseek		= noop_llseek,
2660 };
2661 
2662 static int kvm_dev_ioctl_create_vm(unsigned long type)
2663 {
2664 	int r;
2665 	struct kvm *kvm;
2666 
2667 	kvm = kvm_create_vm(type);
2668 	if (IS_ERR(kvm))
2669 		return PTR_ERR(kvm);
2670 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2671 	r = kvm_coalesced_mmio_init(kvm);
2672 	if (r < 0) {
2673 		kvm_put_kvm(kvm);
2674 		return r;
2675 	}
2676 #endif
2677 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2678 	if (r < 0)
2679 		kvm_put_kvm(kvm);
2680 
2681 	return r;
2682 }
2683 
2684 static long kvm_dev_ioctl(struct file *filp,
2685 			  unsigned int ioctl, unsigned long arg)
2686 {
2687 	long r = -EINVAL;
2688 
2689 	switch (ioctl) {
2690 	case KVM_GET_API_VERSION:
2691 		if (arg)
2692 			goto out;
2693 		r = KVM_API_VERSION;
2694 		break;
2695 	case KVM_CREATE_VM:
2696 		r = kvm_dev_ioctl_create_vm(arg);
2697 		break;
2698 	case KVM_CHECK_EXTENSION:
2699 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2700 		break;
2701 	case KVM_GET_VCPU_MMAP_SIZE:
2702 		if (arg)
2703 			goto out;
2704 		r = PAGE_SIZE;     /* struct kvm_run */
2705 #ifdef CONFIG_X86
2706 		r += PAGE_SIZE;    /* pio data page */
2707 #endif
2708 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2709 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2710 #endif
2711 		break;
2712 	case KVM_TRACE_ENABLE:
2713 	case KVM_TRACE_PAUSE:
2714 	case KVM_TRACE_DISABLE:
2715 		r = -EOPNOTSUPP;
2716 		break;
2717 	default:
2718 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2719 	}
2720 out:
2721 	return r;
2722 }
2723 
2724 static struct file_operations kvm_chardev_ops = {
2725 	.unlocked_ioctl = kvm_dev_ioctl,
2726 	.compat_ioctl   = kvm_dev_ioctl,
2727 	.llseek		= noop_llseek,
2728 };
2729 
2730 static struct miscdevice kvm_dev = {
2731 	KVM_MINOR,
2732 	"kvm",
2733 	&kvm_chardev_ops,
2734 };
2735 
2736 static void hardware_enable_nolock(void *junk)
2737 {
2738 	int cpu = raw_smp_processor_id();
2739 	int r;
2740 
2741 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2742 		return;
2743 
2744 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2745 
2746 	r = kvm_arch_hardware_enable();
2747 
2748 	if (r) {
2749 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2750 		atomic_inc(&hardware_enable_failed);
2751 		printk(KERN_INFO "kvm: enabling virtualization on "
2752 				 "CPU%d failed\n", cpu);
2753 	}
2754 }
2755 
2756 static void hardware_enable(void)
2757 {
2758 	raw_spin_lock(&kvm_count_lock);
2759 	if (kvm_usage_count)
2760 		hardware_enable_nolock(NULL);
2761 	raw_spin_unlock(&kvm_count_lock);
2762 }
2763 
2764 static void hardware_disable_nolock(void *junk)
2765 {
2766 	int cpu = raw_smp_processor_id();
2767 
2768 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2769 		return;
2770 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2771 	kvm_arch_hardware_disable();
2772 }
2773 
2774 static void hardware_disable(void)
2775 {
2776 	raw_spin_lock(&kvm_count_lock);
2777 	if (kvm_usage_count)
2778 		hardware_disable_nolock(NULL);
2779 	raw_spin_unlock(&kvm_count_lock);
2780 }
2781 
2782 static void hardware_disable_all_nolock(void)
2783 {
2784 	BUG_ON(!kvm_usage_count);
2785 
2786 	kvm_usage_count--;
2787 	if (!kvm_usage_count)
2788 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2789 }
2790 
2791 static void hardware_disable_all(void)
2792 {
2793 	raw_spin_lock(&kvm_count_lock);
2794 	hardware_disable_all_nolock();
2795 	raw_spin_unlock(&kvm_count_lock);
2796 }
2797 
2798 static int hardware_enable_all(void)
2799 {
2800 	int r = 0;
2801 
2802 	raw_spin_lock(&kvm_count_lock);
2803 
2804 	kvm_usage_count++;
2805 	if (kvm_usage_count == 1) {
2806 		atomic_set(&hardware_enable_failed, 0);
2807 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2808 
2809 		if (atomic_read(&hardware_enable_failed)) {
2810 			hardware_disable_all_nolock();
2811 			r = -EBUSY;
2812 		}
2813 	}
2814 
2815 	raw_spin_unlock(&kvm_count_lock);
2816 
2817 	return r;
2818 }
2819 
2820 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2821 			   void *v)
2822 {
2823 	int cpu = (long)v;
2824 
2825 	val &= ~CPU_TASKS_FROZEN;
2826 	switch (val) {
2827 	case CPU_DYING:
2828 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2829 		       cpu);
2830 		hardware_disable();
2831 		break;
2832 	case CPU_STARTING:
2833 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2834 		       cpu);
2835 		hardware_enable();
2836 		break;
2837 	}
2838 	return NOTIFY_OK;
2839 }
2840 
2841 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2842 		      void *v)
2843 {
2844 	/*
2845 	 * Some (well, at least mine) BIOSes hang on reboot if
2846 	 * in vmx root mode.
2847 	 *
2848 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2849 	 */
2850 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2851 	kvm_rebooting = true;
2852 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2853 	return NOTIFY_OK;
2854 }
2855 
2856 static struct notifier_block kvm_reboot_notifier = {
2857 	.notifier_call = kvm_reboot,
2858 	.priority = 0,
2859 };
2860 
2861 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2862 {
2863 	int i;
2864 
2865 	for (i = 0; i < bus->dev_count; i++) {
2866 		struct kvm_io_device *pos = bus->range[i].dev;
2867 
2868 		kvm_iodevice_destructor(pos);
2869 	}
2870 	kfree(bus);
2871 }
2872 
2873 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2874                                  const struct kvm_io_range *r2)
2875 {
2876 	if (r1->addr < r2->addr)
2877 		return -1;
2878 	if (r1->addr + r1->len > r2->addr + r2->len)
2879 		return 1;
2880 	return 0;
2881 }
2882 
2883 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2884 {
2885 	return kvm_io_bus_cmp(p1, p2);
2886 }
2887 
2888 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2889 			  gpa_t addr, int len)
2890 {
2891 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2892 		.addr = addr,
2893 		.len = len,
2894 		.dev = dev,
2895 	};
2896 
2897 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2898 		kvm_io_bus_sort_cmp, NULL);
2899 
2900 	return 0;
2901 }
2902 
2903 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2904 			     gpa_t addr, int len)
2905 {
2906 	struct kvm_io_range *range, key;
2907 	int off;
2908 
2909 	key = (struct kvm_io_range) {
2910 		.addr = addr,
2911 		.len = len,
2912 	};
2913 
2914 	range = bsearch(&key, bus->range, bus->dev_count,
2915 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2916 	if (range == NULL)
2917 		return -ENOENT;
2918 
2919 	off = range - bus->range;
2920 
2921 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2922 		off--;
2923 
2924 	return off;
2925 }
2926 
2927 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2928 			      struct kvm_io_range *range, const void *val)
2929 {
2930 	int idx;
2931 
2932 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2933 	if (idx < 0)
2934 		return -EOPNOTSUPP;
2935 
2936 	while (idx < bus->dev_count &&
2937 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2938 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2939 					range->len, val))
2940 			return idx;
2941 		idx++;
2942 	}
2943 
2944 	return -EOPNOTSUPP;
2945 }
2946 
2947 /* kvm_io_bus_write - called under kvm->slots_lock */
2948 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2949 		     int len, const void *val)
2950 {
2951 	struct kvm_io_bus *bus;
2952 	struct kvm_io_range range;
2953 	int r;
2954 
2955 	range = (struct kvm_io_range) {
2956 		.addr = addr,
2957 		.len = len,
2958 	};
2959 
2960 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2961 	r = __kvm_io_bus_write(bus, &range, val);
2962 	return r < 0 ? r : 0;
2963 }
2964 
2965 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2966 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2967 			    int len, const void *val, long cookie)
2968 {
2969 	struct kvm_io_bus *bus;
2970 	struct kvm_io_range range;
2971 
2972 	range = (struct kvm_io_range) {
2973 		.addr = addr,
2974 		.len = len,
2975 	};
2976 
2977 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2978 
2979 	/* First try the device referenced by cookie. */
2980 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2981 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2982 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2983 					val))
2984 			return cookie;
2985 
2986 	/*
2987 	 * cookie contained garbage; fall back to search and return the
2988 	 * correct cookie value.
2989 	 */
2990 	return __kvm_io_bus_write(bus, &range, val);
2991 }
2992 
2993 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2994 			     void *val)
2995 {
2996 	int idx;
2997 
2998 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2999 	if (idx < 0)
3000 		return -EOPNOTSUPP;
3001 
3002 	while (idx < bus->dev_count &&
3003 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3004 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3005 				       range->len, val))
3006 			return idx;
3007 		idx++;
3008 	}
3009 
3010 	return -EOPNOTSUPP;
3011 }
3012 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3013 
3014 /* kvm_io_bus_read - called under kvm->slots_lock */
3015 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3016 		    int len, void *val)
3017 {
3018 	struct kvm_io_bus *bus;
3019 	struct kvm_io_range range;
3020 	int r;
3021 
3022 	range = (struct kvm_io_range) {
3023 		.addr = addr,
3024 		.len = len,
3025 	};
3026 
3027 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3028 	r = __kvm_io_bus_read(bus, &range, val);
3029 	return r < 0 ? r : 0;
3030 }
3031 
3032 
3033 /* Caller must hold slots_lock. */
3034 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3035 			    int len, struct kvm_io_device *dev)
3036 {
3037 	struct kvm_io_bus *new_bus, *bus;
3038 
3039 	bus = kvm->buses[bus_idx];
3040 	/* exclude ioeventfd which is limited by maximum fd */
3041 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3042 		return -ENOSPC;
3043 
3044 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3045 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3046 	if (!new_bus)
3047 		return -ENOMEM;
3048 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3049 	       sizeof(struct kvm_io_range)));
3050 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3051 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3052 	synchronize_srcu_expedited(&kvm->srcu);
3053 	kfree(bus);
3054 
3055 	return 0;
3056 }
3057 
3058 /* Caller must hold slots_lock. */
3059 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3060 			      struct kvm_io_device *dev)
3061 {
3062 	int i, r;
3063 	struct kvm_io_bus *new_bus, *bus;
3064 
3065 	bus = kvm->buses[bus_idx];
3066 	r = -ENOENT;
3067 	for (i = 0; i < bus->dev_count; i++)
3068 		if (bus->range[i].dev == dev) {
3069 			r = 0;
3070 			break;
3071 		}
3072 
3073 	if (r)
3074 		return r;
3075 
3076 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3077 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3078 	if (!new_bus)
3079 		return -ENOMEM;
3080 
3081 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3082 	new_bus->dev_count--;
3083 	memcpy(new_bus->range + i, bus->range + i + 1,
3084 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3085 
3086 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3087 	synchronize_srcu_expedited(&kvm->srcu);
3088 	kfree(bus);
3089 	return r;
3090 }
3091 
3092 static struct notifier_block kvm_cpu_notifier = {
3093 	.notifier_call = kvm_cpu_hotplug,
3094 };
3095 
3096 static int vm_stat_get(void *_offset, u64 *val)
3097 {
3098 	unsigned offset = (long)_offset;
3099 	struct kvm *kvm;
3100 
3101 	*val = 0;
3102 	spin_lock(&kvm_lock);
3103 	list_for_each_entry(kvm, &vm_list, vm_list)
3104 		*val += *(u32 *)((void *)kvm + offset);
3105 	spin_unlock(&kvm_lock);
3106 	return 0;
3107 }
3108 
3109 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3110 
3111 static int vcpu_stat_get(void *_offset, u64 *val)
3112 {
3113 	unsigned offset = (long)_offset;
3114 	struct kvm *kvm;
3115 	struct kvm_vcpu *vcpu;
3116 	int i;
3117 
3118 	*val = 0;
3119 	spin_lock(&kvm_lock);
3120 	list_for_each_entry(kvm, &vm_list, vm_list)
3121 		kvm_for_each_vcpu(i, vcpu, kvm)
3122 			*val += *(u32 *)((void *)vcpu + offset);
3123 
3124 	spin_unlock(&kvm_lock);
3125 	return 0;
3126 }
3127 
3128 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3129 
3130 static const struct file_operations *stat_fops[] = {
3131 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3132 	[KVM_STAT_VM]   = &vm_stat_fops,
3133 };
3134 
3135 static int kvm_init_debug(void)
3136 {
3137 	int r = -EEXIST;
3138 	struct kvm_stats_debugfs_item *p;
3139 
3140 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3141 	if (kvm_debugfs_dir == NULL)
3142 		goto out;
3143 
3144 	for (p = debugfs_entries; p->name; ++p) {
3145 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3146 						(void *)(long)p->offset,
3147 						stat_fops[p->kind]);
3148 		if (p->dentry == NULL)
3149 			goto out_dir;
3150 	}
3151 
3152 	return 0;
3153 
3154 out_dir:
3155 	debugfs_remove_recursive(kvm_debugfs_dir);
3156 out:
3157 	return r;
3158 }
3159 
3160 static void kvm_exit_debug(void)
3161 {
3162 	struct kvm_stats_debugfs_item *p;
3163 
3164 	for (p = debugfs_entries; p->name; ++p)
3165 		debugfs_remove(p->dentry);
3166 	debugfs_remove(kvm_debugfs_dir);
3167 }
3168 
3169 static int kvm_suspend(void)
3170 {
3171 	if (kvm_usage_count)
3172 		hardware_disable_nolock(NULL);
3173 	return 0;
3174 }
3175 
3176 static void kvm_resume(void)
3177 {
3178 	if (kvm_usage_count) {
3179 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3180 		hardware_enable_nolock(NULL);
3181 	}
3182 }
3183 
3184 static struct syscore_ops kvm_syscore_ops = {
3185 	.suspend = kvm_suspend,
3186 	.resume = kvm_resume,
3187 };
3188 
3189 static inline
3190 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3191 {
3192 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3193 }
3194 
3195 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3196 {
3197 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3198 	if (vcpu->preempted)
3199 		vcpu->preempted = false;
3200 
3201 	kvm_arch_sched_in(vcpu, cpu);
3202 
3203 	kvm_arch_vcpu_load(vcpu, cpu);
3204 }
3205 
3206 static void kvm_sched_out(struct preempt_notifier *pn,
3207 			  struct task_struct *next)
3208 {
3209 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3210 
3211 	if (current->state == TASK_RUNNING)
3212 		vcpu->preempted = true;
3213 	kvm_arch_vcpu_put(vcpu);
3214 }
3215 
3216 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3217 		  struct module *module)
3218 {
3219 	int r;
3220 	int cpu;
3221 
3222 	r = kvm_arch_init(opaque);
3223 	if (r)
3224 		goto out_fail;
3225 
3226 	/*
3227 	 * kvm_arch_init makes sure there's at most one caller
3228 	 * for architectures that support multiple implementations,
3229 	 * like intel and amd on x86.
3230 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3231 	 * conflicts in case kvm is already setup for another implementation.
3232 	 */
3233 	r = kvm_irqfd_init();
3234 	if (r)
3235 		goto out_irqfd;
3236 
3237 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3238 		r = -ENOMEM;
3239 		goto out_free_0;
3240 	}
3241 
3242 	r = kvm_arch_hardware_setup();
3243 	if (r < 0)
3244 		goto out_free_0a;
3245 
3246 	for_each_online_cpu(cpu) {
3247 		smp_call_function_single(cpu,
3248 				kvm_arch_check_processor_compat,
3249 				&r, 1);
3250 		if (r < 0)
3251 			goto out_free_1;
3252 	}
3253 
3254 	r = register_cpu_notifier(&kvm_cpu_notifier);
3255 	if (r)
3256 		goto out_free_2;
3257 	register_reboot_notifier(&kvm_reboot_notifier);
3258 
3259 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3260 	if (!vcpu_align)
3261 		vcpu_align = __alignof__(struct kvm_vcpu);
3262 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3263 					   0, NULL);
3264 	if (!kvm_vcpu_cache) {
3265 		r = -ENOMEM;
3266 		goto out_free_3;
3267 	}
3268 
3269 	r = kvm_async_pf_init();
3270 	if (r)
3271 		goto out_free;
3272 
3273 	kvm_chardev_ops.owner = module;
3274 	kvm_vm_fops.owner = module;
3275 	kvm_vcpu_fops.owner = module;
3276 
3277 	r = misc_register(&kvm_dev);
3278 	if (r) {
3279 		printk(KERN_ERR "kvm: misc device register failed\n");
3280 		goto out_unreg;
3281 	}
3282 
3283 	register_syscore_ops(&kvm_syscore_ops);
3284 
3285 	kvm_preempt_ops.sched_in = kvm_sched_in;
3286 	kvm_preempt_ops.sched_out = kvm_sched_out;
3287 
3288 	r = kvm_init_debug();
3289 	if (r) {
3290 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3291 		goto out_undebugfs;
3292 	}
3293 
3294 	r = kvm_vfio_ops_init();
3295 	WARN_ON(r);
3296 
3297 	return 0;
3298 
3299 out_undebugfs:
3300 	unregister_syscore_ops(&kvm_syscore_ops);
3301 	misc_deregister(&kvm_dev);
3302 out_unreg:
3303 	kvm_async_pf_deinit();
3304 out_free:
3305 	kmem_cache_destroy(kvm_vcpu_cache);
3306 out_free_3:
3307 	unregister_reboot_notifier(&kvm_reboot_notifier);
3308 	unregister_cpu_notifier(&kvm_cpu_notifier);
3309 out_free_2:
3310 out_free_1:
3311 	kvm_arch_hardware_unsetup();
3312 out_free_0a:
3313 	free_cpumask_var(cpus_hardware_enabled);
3314 out_free_0:
3315 	kvm_irqfd_exit();
3316 out_irqfd:
3317 	kvm_arch_exit();
3318 out_fail:
3319 	return r;
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_init);
3322 
3323 void kvm_exit(void)
3324 {
3325 	kvm_exit_debug();
3326 	misc_deregister(&kvm_dev);
3327 	kmem_cache_destroy(kvm_vcpu_cache);
3328 	kvm_async_pf_deinit();
3329 	unregister_syscore_ops(&kvm_syscore_ops);
3330 	unregister_reboot_notifier(&kvm_reboot_notifier);
3331 	unregister_cpu_notifier(&kvm_cpu_notifier);
3332 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3333 	kvm_arch_hardware_unsetup();
3334 	kvm_arch_exit();
3335 	kvm_irqfd_exit();
3336 	free_cpumask_var(cpus_hardware_enabled);
3337 	kvm_vfio_ops_exit();
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_exit);
3340