xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 6724ed7f)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126 
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129 
130 static bool largepages_enabled = true;
131 
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137 
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 		unsigned long start, unsigned long end)
140 {
141 }
142 
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 	if (pfn_valid(pfn))
146 		return PageReserved(pfn_to_page(pfn));
147 
148 	return true;
149 }
150 
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 	int cpu;
157 
158 	if (mutex_lock_killable(&vcpu->mutex))
159 		return -EINTR;
160 	cpu = get_cpu();
161 	preempt_notifier_register(&vcpu->preempt_notifier);
162 	kvm_arch_vcpu_load(vcpu, cpu);
163 	put_cpu();
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167 
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 	preempt_disable();
171 	kvm_arch_vcpu_put(vcpu);
172 	preempt_notifier_unregister(&vcpu->preempt_notifier);
173 	preempt_enable();
174 	mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 	int i, cpu, me;
215 	cpumask_var_t cpus;
216 	bool called;
217 	struct kvm_vcpu *vcpu;
218 
219 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220 
221 	me = get_cpu();
222 	kvm_for_each_vcpu(i, vcpu, kvm) {
223 		kvm_make_request(req, vcpu);
224 		cpu = vcpu->cpu;
225 
226 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 			continue;
228 
229 		if (cpus != NULL && cpu != -1 && cpu != me &&
230 		    kvm_request_needs_ipi(vcpu, req))
231 			__cpumask_set_cpu(cpu, cpus);
232 	}
233 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 	put_cpu();
235 	free_cpumask_var(cpus);
236 	return called;
237 }
238 
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 	/*
243 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 	 * kvm_make_all_cpus_request.
245 	 */
246 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247 
248 	/*
249 	 * We want to publish modifications to the page tables before reading
250 	 * mode. Pairs with a memory barrier in arch-specific code.
251 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 	 *
255 	 * There is already an smp_mb__after_atomic() before
256 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 	 * barrier here.
258 	 */
259 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 		++kvm->stat.remote_tlb_flush;
261 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265 
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270 
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 	struct page *page;
274 	int r;
275 
276 	mutex_init(&vcpu->mutex);
277 	vcpu->cpu = -1;
278 	vcpu->kvm = kvm;
279 	vcpu->vcpu_id = id;
280 	vcpu->pid = NULL;
281 	init_swait_queue_head(&vcpu->wq);
282 	kvm_async_pf_vcpu_init(vcpu);
283 
284 	vcpu->pre_pcpu = -1;
285 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286 
287 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 	if (!page) {
289 		r = -ENOMEM;
290 		goto fail;
291 	}
292 	vcpu->run = page_address(page);
293 
294 	kvm_vcpu_set_in_spin_loop(vcpu, false);
295 	kvm_vcpu_set_dy_eligible(vcpu, false);
296 	vcpu->preempted = false;
297 
298 	r = kvm_arch_vcpu_init(vcpu);
299 	if (r < 0)
300 		goto fail_free_run;
301 	return 0;
302 
303 fail_free_run:
304 	free_page((unsigned long)vcpu->run);
305 fail:
306 	return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309 
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 	/*
313 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 	 * will change the vcpu->pid pointer and on uninit all file
315 	 * descriptors are already gone.
316 	 */
317 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 	kvm_arch_vcpu_uninit(vcpu);
319 	free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322 
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 	return container_of(mn, struct kvm, mmu_notifier);
327 }
328 
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 					struct mm_struct *mm,
331 					unsigned long address,
332 					pte_t pte)
333 {
334 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 	int idx;
336 
337 	idx = srcu_read_lock(&kvm->srcu);
338 	spin_lock(&kvm->mmu_lock);
339 	kvm->mmu_notifier_seq++;
340 	kvm_set_spte_hva(kvm, address, pte);
341 	spin_unlock(&kvm->mmu_lock);
342 	srcu_read_unlock(&kvm->srcu, idx);
343 }
344 
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 						    struct mm_struct *mm,
347 						    unsigned long start,
348 						    unsigned long end)
349 {
350 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 	int need_tlb_flush = 0, idx;
352 
353 	idx = srcu_read_lock(&kvm->srcu);
354 	spin_lock(&kvm->mmu_lock);
355 	/*
356 	 * The count increase must become visible at unlock time as no
357 	 * spte can be established without taking the mmu_lock and
358 	 * count is also read inside the mmu_lock critical section.
359 	 */
360 	kvm->mmu_notifier_count++;
361 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 	need_tlb_flush |= kvm->tlbs_dirty;
363 	/* we've to flush the tlb before the pages can be freed */
364 	if (need_tlb_flush)
365 		kvm_flush_remote_tlbs(kvm);
366 
367 	spin_unlock(&kvm->mmu_lock);
368 
369 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370 
371 	srcu_read_unlock(&kvm->srcu, idx);
372 }
373 
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 						  struct mm_struct *mm,
376 						  unsigned long start,
377 						  unsigned long end)
378 {
379 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 
381 	spin_lock(&kvm->mmu_lock);
382 	/*
383 	 * This sequence increase will notify the kvm page fault that
384 	 * the page that is going to be mapped in the spte could have
385 	 * been freed.
386 	 */
387 	kvm->mmu_notifier_seq++;
388 	smp_wmb();
389 	/*
390 	 * The above sequence increase must be visible before the
391 	 * below count decrease, which is ensured by the smp_wmb above
392 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 	 */
394 	kvm->mmu_notifier_count--;
395 	spin_unlock(&kvm->mmu_lock);
396 
397 	BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399 
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 					      struct mm_struct *mm,
402 					      unsigned long start,
403 					      unsigned long end)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 	int young, idx;
407 
408 	idx = srcu_read_lock(&kvm->srcu);
409 	spin_lock(&kvm->mmu_lock);
410 
411 	young = kvm_age_hva(kvm, start, end);
412 	if (young)
413 		kvm_flush_remote_tlbs(kvm);
414 
415 	spin_unlock(&kvm->mmu_lock);
416 	srcu_read_unlock(&kvm->srcu, idx);
417 
418 	return young;
419 }
420 
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 					struct mm_struct *mm,
423 					unsigned long start,
424 					unsigned long end)
425 {
426 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 	int young, idx;
428 
429 	idx = srcu_read_lock(&kvm->srcu);
430 	spin_lock(&kvm->mmu_lock);
431 	/*
432 	 * Even though we do not flush TLB, this will still adversely
433 	 * affect performance on pre-Haswell Intel EPT, where there is
434 	 * no EPT Access Bit to clear so that we have to tear down EPT
435 	 * tables instead. If we find this unacceptable, we can always
436 	 * add a parameter to kvm_age_hva so that it effectively doesn't
437 	 * do anything on clear_young.
438 	 *
439 	 * Also note that currently we never issue secondary TLB flushes
440 	 * from clear_young, leaving this job up to the regular system
441 	 * cadence. If we find this inaccurate, we might come up with a
442 	 * more sophisticated heuristic later.
443 	 */
444 	young = kvm_age_hva(kvm, start, end);
445 	spin_unlock(&kvm->mmu_lock);
446 	srcu_read_unlock(&kvm->srcu, idx);
447 
448 	return young;
449 }
450 
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 				       struct mm_struct *mm,
453 				       unsigned long address)
454 {
455 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 	int young, idx;
457 
458 	idx = srcu_read_lock(&kvm->srcu);
459 	spin_lock(&kvm->mmu_lock);
460 	young = kvm_test_age_hva(kvm, address);
461 	spin_unlock(&kvm->mmu_lock);
462 	srcu_read_unlock(&kvm->srcu, idx);
463 
464 	return young;
465 }
466 
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 				     struct mm_struct *mm)
469 {
470 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 	int idx;
472 
473 	idx = srcu_read_lock(&kvm->srcu);
474 	kvm_arch_flush_shadow_all(kvm);
475 	srcu_read_unlock(&kvm->srcu, idx);
476 }
477 
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
480 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
481 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
482 	.clear_young		= kvm_mmu_notifier_clear_young,
483 	.test_young		= kvm_mmu_notifier_test_young,
484 	.change_pte		= kvm_mmu_notifier_change_pte,
485 	.release		= kvm_mmu_notifier_release,
486 };
487 
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493 
494 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495 
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498 	return 0;
499 }
500 
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502 
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505 	int i;
506 	struct kvm_memslots *slots;
507 
508 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509 	if (!slots)
510 		return NULL;
511 
512 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513 		slots->id_to_index[i] = slots->memslots[i].id = i;
514 
515 	return slots;
516 }
517 
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 	if (!memslot->dirty_bitmap)
521 		return;
522 
523 	kvfree(memslot->dirty_bitmap);
524 	memslot->dirty_bitmap = NULL;
525 }
526 
527 /*
528  * Free any memory in @free but not in @dont.
529  */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531 			      struct kvm_memory_slot *dont)
532 {
533 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 		kvm_destroy_dirty_bitmap(free);
535 
536 	kvm_arch_free_memslot(kvm, free, dont);
537 
538 	free->npages = 0;
539 }
540 
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543 	struct kvm_memory_slot *memslot;
544 
545 	if (!slots)
546 		return;
547 
548 	kvm_for_each_memslot(memslot, slots)
549 		kvm_free_memslot(kvm, memslot, NULL);
550 
551 	kvfree(slots);
552 }
553 
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556 	int i;
557 
558 	if (!kvm->debugfs_dentry)
559 		return;
560 
561 	debugfs_remove_recursive(kvm->debugfs_dentry);
562 
563 	if (kvm->debugfs_stat_data) {
564 		for (i = 0; i < kvm_debugfs_num_entries; i++)
565 			kfree(kvm->debugfs_stat_data[i]);
566 		kfree(kvm->debugfs_stat_data);
567 	}
568 }
569 
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572 	char dir_name[ITOA_MAX_LEN * 2];
573 	struct kvm_stat_data *stat_data;
574 	struct kvm_stats_debugfs_item *p;
575 
576 	if (!debugfs_initialized())
577 		return 0;
578 
579 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581 						 kvm_debugfs_dir);
582 	if (!kvm->debugfs_dentry)
583 		return -ENOMEM;
584 
585 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586 					 sizeof(*kvm->debugfs_stat_data),
587 					 GFP_KERNEL);
588 	if (!kvm->debugfs_stat_data)
589 		return -ENOMEM;
590 
591 	for (p = debugfs_entries; p->name; p++) {
592 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 		if (!stat_data)
594 			return -ENOMEM;
595 
596 		stat_data->kvm = kvm;
597 		stat_data->offset = p->offset;
598 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599 		if (!debugfs_create_file(p->name, 0644,
600 					 kvm->debugfs_dentry,
601 					 stat_data,
602 					 stat_fops_per_vm[p->kind]))
603 			return -ENOMEM;
604 	}
605 	return 0;
606 }
607 
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610 	int r, i;
611 	struct kvm *kvm = kvm_arch_alloc_vm();
612 
613 	if (!kvm)
614 		return ERR_PTR(-ENOMEM);
615 
616 	spin_lock_init(&kvm->mmu_lock);
617 	mmgrab(current->mm);
618 	kvm->mm = current->mm;
619 	kvm_eventfd_init(kvm);
620 	mutex_init(&kvm->lock);
621 	mutex_init(&kvm->irq_lock);
622 	mutex_init(&kvm->slots_lock);
623 	refcount_set(&kvm->users_count, 1);
624 	INIT_LIST_HEAD(&kvm->devices);
625 
626 	r = kvm_arch_init_vm(kvm, type);
627 	if (r)
628 		goto out_err_no_disable;
629 
630 	r = hardware_enable_all();
631 	if (r)
632 		goto out_err_no_disable;
633 
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637 
638 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639 
640 	r = -ENOMEM;
641 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642 		struct kvm_memslots *slots = kvm_alloc_memslots();
643 		if (!slots)
644 			goto out_err_no_srcu;
645 		/*
646 		 * Generations must be different for each address space.
647 		 * Init kvm generation close to the maximum to easily test the
648 		 * code of handling generation number wrap-around.
649 		 */
650 		slots->generation = i * 2 - 150;
651 		rcu_assign_pointer(kvm->memslots[i], slots);
652 	}
653 
654 	if (init_srcu_struct(&kvm->srcu))
655 		goto out_err_no_srcu;
656 	if (init_srcu_struct(&kvm->irq_srcu))
657 		goto out_err_no_irq_srcu;
658 	for (i = 0; i < KVM_NR_BUSES; i++) {
659 		rcu_assign_pointer(kvm->buses[i],
660 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661 		if (!kvm->buses[i])
662 			goto out_err;
663 	}
664 
665 	r = kvm_init_mmu_notifier(kvm);
666 	if (r)
667 		goto out_err;
668 
669 	spin_lock(&kvm_lock);
670 	list_add(&kvm->vm_list, &vm_list);
671 	spin_unlock(&kvm_lock);
672 
673 	preempt_notifier_inc();
674 
675 	return kvm;
676 
677 out_err:
678 	cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 	cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 	hardware_disable_all();
683 out_err_no_disable:
684 	refcount_set(&kvm->users_count, 0);
685 	for (i = 0; i < KVM_NR_BUSES; i++)
686 		kfree(kvm_get_bus(kvm, i));
687 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689 	kvm_arch_free_vm(kvm);
690 	mmdrop(current->mm);
691 	return ERR_PTR(r);
692 }
693 
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696 	struct kvm_device *dev, *tmp;
697 
698 	/*
699 	 * We do not need to take the kvm->lock here, because nobody else
700 	 * has a reference to the struct kvm at this point and therefore
701 	 * cannot access the devices list anyhow.
702 	 */
703 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704 		list_del(&dev->vm_node);
705 		dev->ops->destroy(dev);
706 	}
707 }
708 
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711 	int i;
712 	struct mm_struct *mm = kvm->mm;
713 
714 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715 	kvm_destroy_vm_debugfs(kvm);
716 	kvm_arch_sync_events(kvm);
717 	spin_lock(&kvm_lock);
718 	list_del(&kvm->vm_list);
719 	spin_unlock(&kvm_lock);
720 	kvm_free_irq_routing(kvm);
721 	for (i = 0; i < KVM_NR_BUSES; i++) {
722 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723 
724 		if (bus)
725 			kvm_io_bus_destroy(bus);
726 		kvm->buses[i] = NULL;
727 	}
728 	kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 	kvm_arch_flush_shadow_all(kvm);
733 #endif
734 	kvm_arch_destroy_vm(kvm);
735 	kvm_destroy_devices(kvm);
736 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738 	cleanup_srcu_struct(&kvm->irq_srcu);
739 	cleanup_srcu_struct(&kvm->srcu);
740 	kvm_arch_free_vm(kvm);
741 	preempt_notifier_dec();
742 	hardware_disable_all();
743 	mmdrop(mm);
744 }
745 
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 	refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751 
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 	if (refcount_dec_and_test(&kvm->users_count))
755 		kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758 
759 
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 	struct kvm *kvm = filp->private_data;
763 
764 	kvm_irqfd_release(kvm);
765 
766 	kvm_put_kvm(kvm);
767 	return 0;
768 }
769 
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777 
778 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779 	if (!memslot->dirty_bitmap)
780 		return -ENOMEM;
781 
782 	return 0;
783 }
784 
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792 			    struct kvm_memory_slot *new)
793 {
794 	int id = new->id;
795 	int i = slots->id_to_index[id];
796 	struct kvm_memory_slot *mslots = slots->memslots;
797 
798 	WARN_ON(mslots[i].id != id);
799 	if (!new->npages) {
800 		WARN_ON(!mslots[i].npages);
801 		if (mslots[i].npages)
802 			slots->used_slots--;
803 	} else {
804 		if (!mslots[i].npages)
805 			slots->used_slots++;
806 	}
807 
808 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 	       new->base_gfn <= mslots[i + 1].base_gfn) {
810 		if (!mslots[i + 1].npages)
811 			break;
812 		mslots[i] = mslots[i + 1];
813 		slots->id_to_index[mslots[i].id] = i;
814 		i++;
815 	}
816 
817 	/*
818 	 * The ">=" is needed when creating a slot with base_gfn == 0,
819 	 * so that it moves before all those with base_gfn == npages == 0.
820 	 *
821 	 * On the other hand, if new->npages is zero, the above loop has
822 	 * already left i pointing to the beginning of the empty part of
823 	 * mslots, and the ">=" would move the hole backwards in this
824 	 * case---which is wrong.  So skip the loop when deleting a slot.
825 	 */
826 	if (new->npages) {
827 		while (i > 0 &&
828 		       new->base_gfn >= mslots[i - 1].base_gfn) {
829 			mslots[i] = mslots[i - 1];
830 			slots->id_to_index[mslots[i].id] = i;
831 			i--;
832 		}
833 	} else
834 		WARN_ON_ONCE(i != slots->used_slots);
835 
836 	mslots[i] = *new;
837 	slots->id_to_index[mslots[i].id] = i;
838 }
839 
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843 
844 #ifdef __KVM_HAVE_READONLY_MEM
845 	valid_flags |= KVM_MEM_READONLY;
846 #endif
847 
848 	if (mem->flags & ~valid_flags)
849 		return -EINVAL;
850 
851 	return 0;
852 }
853 
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 		int as_id, struct kvm_memslots *slots)
856 {
857 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858 
859 	/*
860 	 * Set the low bit in the generation, which disables SPTE caching
861 	 * until the end of synchronize_srcu_expedited.
862 	 */
863 	WARN_ON(old_memslots->generation & 1);
864 	slots->generation = old_memslots->generation + 1;
865 
866 	rcu_assign_pointer(kvm->memslots[as_id], slots);
867 	synchronize_srcu_expedited(&kvm->srcu);
868 
869 	/*
870 	 * Increment the new memslot generation a second time. This prevents
871 	 * vm exits that race with memslot updates from caching a memslot
872 	 * generation that will (potentially) be valid forever.
873 	 *
874 	 * Generations must be unique even across address spaces.  We do not need
875 	 * a global counter for that, instead the generation space is evenly split
876 	 * across address spaces.  For example, with two address spaces, address
877 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
878 	 * use generations 2, 6, 10, 14, ...
879 	 */
880 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
881 
882 	kvm_arch_memslots_updated(kvm, slots);
883 
884 	return old_memslots;
885 }
886 
887 /*
888  * Allocate some memory and give it an address in the guest physical address
889  * space.
890  *
891  * Discontiguous memory is allowed, mostly for framebuffers.
892  *
893  * Must be called holding kvm->slots_lock for write.
894  */
895 int __kvm_set_memory_region(struct kvm *kvm,
896 			    const struct kvm_userspace_memory_region *mem)
897 {
898 	int r;
899 	gfn_t base_gfn;
900 	unsigned long npages;
901 	struct kvm_memory_slot *slot;
902 	struct kvm_memory_slot old, new;
903 	struct kvm_memslots *slots = NULL, *old_memslots;
904 	int as_id, id;
905 	enum kvm_mr_change change;
906 
907 	r = check_memory_region_flags(mem);
908 	if (r)
909 		goto out;
910 
911 	r = -EINVAL;
912 	as_id = mem->slot >> 16;
913 	id = (u16)mem->slot;
914 
915 	/* General sanity checks */
916 	if (mem->memory_size & (PAGE_SIZE - 1))
917 		goto out;
918 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
919 		goto out;
920 	/* We can read the guest memory with __xxx_user() later on. */
921 	if ((id < KVM_USER_MEM_SLOTS) &&
922 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
923 	     !access_ok(VERIFY_WRITE,
924 			(void __user *)(unsigned long)mem->userspace_addr,
925 			mem->memory_size)))
926 		goto out;
927 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
928 		goto out;
929 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
930 		goto out;
931 
932 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
933 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
934 	npages = mem->memory_size >> PAGE_SHIFT;
935 
936 	if (npages > KVM_MEM_MAX_NR_PAGES)
937 		goto out;
938 
939 	new = old = *slot;
940 
941 	new.id = id;
942 	new.base_gfn = base_gfn;
943 	new.npages = npages;
944 	new.flags = mem->flags;
945 
946 	if (npages) {
947 		if (!old.npages)
948 			change = KVM_MR_CREATE;
949 		else { /* Modify an existing slot. */
950 			if ((mem->userspace_addr != old.userspace_addr) ||
951 			    (npages != old.npages) ||
952 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
953 				goto out;
954 
955 			if (base_gfn != old.base_gfn)
956 				change = KVM_MR_MOVE;
957 			else if (new.flags != old.flags)
958 				change = KVM_MR_FLAGS_ONLY;
959 			else { /* Nothing to change. */
960 				r = 0;
961 				goto out;
962 			}
963 		}
964 	} else {
965 		if (!old.npages)
966 			goto out;
967 
968 		change = KVM_MR_DELETE;
969 		new.base_gfn = 0;
970 		new.flags = 0;
971 	}
972 
973 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974 		/* Check for overlaps */
975 		r = -EEXIST;
976 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
977 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
978 			    (slot->id == id))
979 				continue;
980 			if (!((base_gfn + npages <= slot->base_gfn) ||
981 			      (base_gfn >= slot->base_gfn + slot->npages)))
982 				goto out;
983 		}
984 	}
985 
986 	/* Free page dirty bitmap if unneeded */
987 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988 		new.dirty_bitmap = NULL;
989 
990 	r = -ENOMEM;
991 	if (change == KVM_MR_CREATE) {
992 		new.userspace_addr = mem->userspace_addr;
993 
994 		if (kvm_arch_create_memslot(kvm, &new, npages))
995 			goto out_free;
996 	}
997 
998 	/* Allocate page dirty bitmap if needed */
999 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000 		if (kvm_create_dirty_bitmap(&new) < 0)
1001 			goto out_free;
1002 	}
1003 
1004 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005 	if (!slots)
1006 		goto out_free;
1007 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1008 
1009 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010 		slot = id_to_memslot(slots, id);
1011 		slot->flags |= KVM_MEMSLOT_INVALID;
1012 
1013 		old_memslots = install_new_memslots(kvm, as_id, slots);
1014 
1015 		/* From this point no new shadow pages pointing to a deleted,
1016 		 * or moved, memslot will be created.
1017 		 *
1018 		 * validation of sp->gfn happens in:
1019 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1021 		 */
1022 		kvm_arch_flush_shadow_memslot(kvm, slot);
1023 
1024 		/*
1025 		 * We can re-use the old_memslots from above, the only difference
1026 		 * from the currently installed memslots is the invalid flag.  This
1027 		 * will get overwritten by update_memslots anyway.
1028 		 */
1029 		slots = old_memslots;
1030 	}
1031 
1032 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033 	if (r)
1034 		goto out_slots;
1035 
1036 	/* actual memory is freed via old in kvm_free_memslot below */
1037 	if (change == KVM_MR_DELETE) {
1038 		new.dirty_bitmap = NULL;
1039 		memset(&new.arch, 0, sizeof(new.arch));
1040 	}
1041 
1042 	update_memslots(slots, &new);
1043 	old_memslots = install_new_memslots(kvm, as_id, slots);
1044 
1045 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1046 
1047 	kvm_free_memslot(kvm, &old, &new);
1048 	kvfree(old_memslots);
1049 	return 0;
1050 
1051 out_slots:
1052 	kvfree(slots);
1053 out_free:
1054 	kvm_free_memslot(kvm, &new, &old);
1055 out:
1056 	return r;
1057 }
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1059 
1060 int kvm_set_memory_region(struct kvm *kvm,
1061 			  const struct kvm_userspace_memory_region *mem)
1062 {
1063 	int r;
1064 
1065 	mutex_lock(&kvm->slots_lock);
1066 	r = __kvm_set_memory_region(kvm, mem);
1067 	mutex_unlock(&kvm->slots_lock);
1068 	return r;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1071 
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073 					  struct kvm_userspace_memory_region *mem)
1074 {
1075 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076 		return -EINVAL;
1077 
1078 	return kvm_set_memory_region(kvm, mem);
1079 }
1080 
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082 			struct kvm_dirty_log *log, int *is_dirty)
1083 {
1084 	struct kvm_memslots *slots;
1085 	struct kvm_memory_slot *memslot;
1086 	int i, as_id, id;
1087 	unsigned long n;
1088 	unsigned long any = 0;
1089 
1090 	as_id = log->slot >> 16;
1091 	id = (u16)log->slot;
1092 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093 		return -EINVAL;
1094 
1095 	slots = __kvm_memslots(kvm, as_id);
1096 	memslot = id_to_memslot(slots, id);
1097 	if (!memslot->dirty_bitmap)
1098 		return -ENOENT;
1099 
1100 	n = kvm_dirty_bitmap_bytes(memslot);
1101 
1102 	for (i = 0; !any && i < n/sizeof(long); ++i)
1103 		any = memslot->dirty_bitmap[i];
1104 
1105 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106 		return -EFAULT;
1107 
1108 	if (any)
1109 		*is_dirty = 1;
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1113 
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1115 /**
1116  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117  *	are dirty write protect them for next write.
1118  * @kvm:	pointer to kvm instance
1119  * @log:	slot id and address to which we copy the log
1120  * @is_dirty:	flag set if any page is dirty
1121  *
1122  * We need to keep it in mind that VCPU threads can write to the bitmap
1123  * concurrently. So, to avoid losing track of dirty pages we keep the
1124  * following order:
1125  *
1126  *    1. Take a snapshot of the bit and clear it if needed.
1127  *    2. Write protect the corresponding page.
1128  *    3. Copy the snapshot to the userspace.
1129  *    4. Upon return caller flushes TLB's if needed.
1130  *
1131  * Between 2 and 4, the guest may write to the page using the remaining TLB
1132  * entry.  This is not a problem because the page is reported dirty using
1133  * the snapshot taken before and step 4 ensures that writes done after
1134  * exiting to userspace will be logged for the next call.
1135  *
1136  */
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138 			struct kvm_dirty_log *log, bool *is_dirty)
1139 {
1140 	struct kvm_memslots *slots;
1141 	struct kvm_memory_slot *memslot;
1142 	int i, as_id, id;
1143 	unsigned long n;
1144 	unsigned long *dirty_bitmap;
1145 	unsigned long *dirty_bitmap_buffer;
1146 
1147 	as_id = log->slot >> 16;
1148 	id = (u16)log->slot;
1149 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150 		return -EINVAL;
1151 
1152 	slots = __kvm_memslots(kvm, as_id);
1153 	memslot = id_to_memslot(slots, id);
1154 
1155 	dirty_bitmap = memslot->dirty_bitmap;
1156 	if (!dirty_bitmap)
1157 		return -ENOENT;
1158 
1159 	n = kvm_dirty_bitmap_bytes(memslot);
1160 
1161 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162 	memset(dirty_bitmap_buffer, 0, n);
1163 
1164 	spin_lock(&kvm->mmu_lock);
1165 	*is_dirty = false;
1166 	for (i = 0; i < n / sizeof(long); i++) {
1167 		unsigned long mask;
1168 		gfn_t offset;
1169 
1170 		if (!dirty_bitmap[i])
1171 			continue;
1172 
1173 		*is_dirty = true;
1174 
1175 		mask = xchg(&dirty_bitmap[i], 0);
1176 		dirty_bitmap_buffer[i] = mask;
1177 
1178 		if (mask) {
1179 			offset = i * BITS_PER_LONG;
1180 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181 								offset, mask);
1182 		}
1183 	}
1184 
1185 	spin_unlock(&kvm->mmu_lock);
1186 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187 		return -EFAULT;
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1192 
1193 bool kvm_largepages_enabled(void)
1194 {
1195 	return largepages_enabled;
1196 }
1197 
1198 void kvm_disable_largepages(void)
1199 {
1200 	largepages_enabled = false;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1203 
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1205 {
1206 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1209 
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1211 {
1212 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1213 }
1214 
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1216 {
1217 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1218 
1219 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220 	      memslot->flags & KVM_MEMSLOT_INVALID)
1221 		return false;
1222 
1223 	return true;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1226 
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1228 {
1229 	struct vm_area_struct *vma;
1230 	unsigned long addr, size;
1231 
1232 	size = PAGE_SIZE;
1233 
1234 	addr = gfn_to_hva(kvm, gfn);
1235 	if (kvm_is_error_hva(addr))
1236 		return PAGE_SIZE;
1237 
1238 	down_read(&current->mm->mmap_sem);
1239 	vma = find_vma(current->mm, addr);
1240 	if (!vma)
1241 		goto out;
1242 
1243 	size = vma_kernel_pagesize(vma);
1244 
1245 out:
1246 	up_read(&current->mm->mmap_sem);
1247 
1248 	return size;
1249 }
1250 
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1252 {
1253 	return slot->flags & KVM_MEM_READONLY;
1254 }
1255 
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257 				       gfn_t *nr_pages, bool write)
1258 {
1259 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260 		return KVM_HVA_ERR_BAD;
1261 
1262 	if (memslot_is_readonly(slot) && write)
1263 		return KVM_HVA_ERR_RO_BAD;
1264 
1265 	if (nr_pages)
1266 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1267 
1268 	return __gfn_to_hva_memslot(slot, gfn);
1269 }
1270 
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272 				     gfn_t *nr_pages)
1273 {
1274 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1275 }
1276 
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278 					gfn_t gfn)
1279 {
1280 	return gfn_to_hva_many(slot, gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1283 
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1285 {
1286 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1289 
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1291 {
1292 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1295 
1296 /*
1297  * If writable is set to false, the hva returned by this function is only
1298  * allowed to be read.
1299  */
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301 				      gfn_t gfn, bool *writable)
1302 {
1303 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1304 
1305 	if (!kvm_is_error_hva(hva) && writable)
1306 		*writable = !memslot_is_readonly(slot);
1307 
1308 	return hva;
1309 }
1310 
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1312 {
1313 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1314 
1315 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317 
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1319 {
1320 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1321 
1322 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1323 }
1324 
1325 static int get_user_page_nowait(unsigned long start, int write,
1326 		struct page **page)
1327 {
1328 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1329 
1330 	if (write)
1331 		flags |= FOLL_WRITE;
1332 
1333 	return get_user_pages(start, 1, flags, page, NULL);
1334 }
1335 
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339 
1340 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341 	return rc == -EHWPOISON;
1342 }
1343 
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351 	struct page *page[1];
1352 	int npages;
1353 
1354 	if (!(async || atomic))
1355 		return false;
1356 
1357 	/*
1358 	 * Fast pin a writable pfn only if it is a write fault request
1359 	 * or the caller allows to map a writable pfn for a read fault
1360 	 * request.
1361 	 */
1362 	if (!(write_fault || writable))
1363 		return false;
1364 
1365 	npages = __get_user_pages_fast(addr, 1, 1, page);
1366 	if (npages == 1) {
1367 		*pfn = page_to_pfn(page[0]);
1368 
1369 		if (writable)
1370 			*writable = true;
1371 		return true;
1372 	}
1373 
1374 	return false;
1375 }
1376 
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382 			   bool *writable, kvm_pfn_t *pfn)
1383 {
1384 	struct page *page[1];
1385 	int npages = 0;
1386 
1387 	might_sleep();
1388 
1389 	if (writable)
1390 		*writable = write_fault;
1391 
1392 	if (async) {
1393 		down_read(&current->mm->mmap_sem);
1394 		npages = get_user_page_nowait(addr, write_fault, page);
1395 		up_read(&current->mm->mmap_sem);
1396 	} else {
1397 		unsigned int flags = FOLL_HWPOISON;
1398 
1399 		if (write_fault)
1400 			flags |= FOLL_WRITE;
1401 
1402 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1403 	}
1404 	if (npages != 1)
1405 		return npages;
1406 
1407 	/* map read fault as writable if possible */
1408 	if (unlikely(!write_fault) && writable) {
1409 		struct page *wpage[1];
1410 
1411 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1412 		if (npages == 1) {
1413 			*writable = true;
1414 			put_page(page[0]);
1415 			page[0] = wpage[0];
1416 		}
1417 
1418 		npages = 1;
1419 	}
1420 	*pfn = page_to_pfn(page[0]);
1421 	return npages;
1422 }
1423 
1424 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1425 {
1426 	if (unlikely(!(vma->vm_flags & VM_READ)))
1427 		return false;
1428 
1429 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1430 		return false;
1431 
1432 	return true;
1433 }
1434 
1435 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1436 			       unsigned long addr, bool *async,
1437 			       bool write_fault, kvm_pfn_t *p_pfn)
1438 {
1439 	unsigned long pfn;
1440 	int r;
1441 
1442 	r = follow_pfn(vma, addr, &pfn);
1443 	if (r) {
1444 		/*
1445 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1446 		 * not call the fault handler, so do it here.
1447 		 */
1448 		bool unlocked = false;
1449 		r = fixup_user_fault(current, current->mm, addr,
1450 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1451 				     &unlocked);
1452 		if (unlocked)
1453 			return -EAGAIN;
1454 		if (r)
1455 			return r;
1456 
1457 		r = follow_pfn(vma, addr, &pfn);
1458 		if (r)
1459 			return r;
1460 
1461 	}
1462 
1463 
1464 	/*
1465 	 * Get a reference here because callers of *hva_to_pfn* and
1466 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1467 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1468 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1469 	 * simply do nothing for reserved pfns.
1470 	 *
1471 	 * Whoever called remap_pfn_range is also going to call e.g.
1472 	 * unmap_mapping_range before the underlying pages are freed,
1473 	 * causing a call to our MMU notifier.
1474 	 */
1475 	kvm_get_pfn(pfn);
1476 
1477 	*p_pfn = pfn;
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Pin guest page in memory and return its pfn.
1483  * @addr: host virtual address which maps memory to the guest
1484  * @atomic: whether this function can sleep
1485  * @async: whether this function need to wait IO complete if the
1486  *         host page is not in the memory
1487  * @write_fault: whether we should get a writable host page
1488  * @writable: whether it allows to map a writable host page for !@write_fault
1489  *
1490  * The function will map a writable host page for these two cases:
1491  * 1): @write_fault = true
1492  * 2): @write_fault = false && @writable, @writable will tell the caller
1493  *     whether the mapping is writable.
1494  */
1495 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1496 			bool write_fault, bool *writable)
1497 {
1498 	struct vm_area_struct *vma;
1499 	kvm_pfn_t pfn = 0;
1500 	int npages, r;
1501 
1502 	/* we can do it either atomically or asynchronously, not both */
1503 	BUG_ON(atomic && async);
1504 
1505 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1506 		return pfn;
1507 
1508 	if (atomic)
1509 		return KVM_PFN_ERR_FAULT;
1510 
1511 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1512 	if (npages == 1)
1513 		return pfn;
1514 
1515 	down_read(&current->mm->mmap_sem);
1516 	if (npages == -EHWPOISON ||
1517 	      (!async && check_user_page_hwpoison(addr))) {
1518 		pfn = KVM_PFN_ERR_HWPOISON;
1519 		goto exit;
1520 	}
1521 
1522 retry:
1523 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1524 
1525 	if (vma == NULL)
1526 		pfn = KVM_PFN_ERR_FAULT;
1527 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1528 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1529 		if (r == -EAGAIN)
1530 			goto retry;
1531 		if (r < 0)
1532 			pfn = KVM_PFN_ERR_FAULT;
1533 	} else {
1534 		if (async && vma_is_valid(vma, write_fault))
1535 			*async = true;
1536 		pfn = KVM_PFN_ERR_FAULT;
1537 	}
1538 exit:
1539 	up_read(&current->mm->mmap_sem);
1540 	return pfn;
1541 }
1542 
1543 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1544 			       bool atomic, bool *async, bool write_fault,
1545 			       bool *writable)
1546 {
1547 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1548 
1549 	if (addr == KVM_HVA_ERR_RO_BAD) {
1550 		if (writable)
1551 			*writable = false;
1552 		return KVM_PFN_ERR_RO_FAULT;
1553 	}
1554 
1555 	if (kvm_is_error_hva(addr)) {
1556 		if (writable)
1557 			*writable = false;
1558 		return KVM_PFN_NOSLOT;
1559 	}
1560 
1561 	/* Do not map writable pfn in the readonly memslot. */
1562 	if (writable && memslot_is_readonly(slot)) {
1563 		*writable = false;
1564 		writable = NULL;
1565 	}
1566 
1567 	return hva_to_pfn(addr, atomic, async, write_fault,
1568 			  writable);
1569 }
1570 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1571 
1572 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1573 		      bool *writable)
1574 {
1575 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1576 				    write_fault, writable);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1579 
1580 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1585 
1586 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1587 {
1588 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1591 
1592 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1593 {
1594 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1597 
1598 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1599 {
1600 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1603 
1604 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1605 {
1606 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1609 
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1615 
1616 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1617 			    struct page **pages, int nr_pages)
1618 {
1619 	unsigned long addr;
1620 	gfn_t entry = 0;
1621 
1622 	addr = gfn_to_hva_many(slot, gfn, &entry);
1623 	if (kvm_is_error_hva(addr))
1624 		return -1;
1625 
1626 	if (entry < nr_pages)
1627 		return 0;
1628 
1629 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1630 }
1631 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1632 
1633 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1634 {
1635 	if (is_error_noslot_pfn(pfn))
1636 		return KVM_ERR_PTR_BAD_PAGE;
1637 
1638 	if (kvm_is_reserved_pfn(pfn)) {
1639 		WARN_ON(1);
1640 		return KVM_ERR_PTR_BAD_PAGE;
1641 	}
1642 
1643 	return pfn_to_page(pfn);
1644 }
1645 
1646 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1647 {
1648 	kvm_pfn_t pfn;
1649 
1650 	pfn = gfn_to_pfn(kvm, gfn);
1651 
1652 	return kvm_pfn_to_page(pfn);
1653 }
1654 EXPORT_SYMBOL_GPL(gfn_to_page);
1655 
1656 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1657 {
1658 	kvm_pfn_t pfn;
1659 
1660 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1661 
1662 	return kvm_pfn_to_page(pfn);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1665 
1666 void kvm_release_page_clean(struct page *page)
1667 {
1668 	WARN_ON(is_error_page(page));
1669 
1670 	kvm_release_pfn_clean(page_to_pfn(page));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1673 
1674 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1675 {
1676 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1677 		put_page(pfn_to_page(pfn));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1680 
1681 void kvm_release_page_dirty(struct page *page)
1682 {
1683 	WARN_ON(is_error_page(page));
1684 
1685 	kvm_release_pfn_dirty(page_to_pfn(page));
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1688 
1689 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1690 {
1691 	kvm_set_pfn_dirty(pfn);
1692 	kvm_release_pfn_clean(pfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1695 
1696 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1697 {
1698 	if (!kvm_is_reserved_pfn(pfn)) {
1699 		struct page *page = pfn_to_page(pfn);
1700 
1701 		if (!PageReserved(page))
1702 			SetPageDirty(page);
1703 	}
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1706 
1707 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1708 {
1709 	if (!kvm_is_reserved_pfn(pfn))
1710 		mark_page_accessed(pfn_to_page(pfn));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1713 
1714 void kvm_get_pfn(kvm_pfn_t pfn)
1715 {
1716 	if (!kvm_is_reserved_pfn(pfn))
1717 		get_page(pfn_to_page(pfn));
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1720 
1721 static int next_segment(unsigned long len, int offset)
1722 {
1723 	if (len > PAGE_SIZE - offset)
1724 		return PAGE_SIZE - offset;
1725 	else
1726 		return len;
1727 }
1728 
1729 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1730 				 void *data, int offset, int len)
1731 {
1732 	int r;
1733 	unsigned long addr;
1734 
1735 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1736 	if (kvm_is_error_hva(addr))
1737 		return -EFAULT;
1738 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1739 	if (r)
1740 		return -EFAULT;
1741 	return 0;
1742 }
1743 
1744 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1745 			int len)
1746 {
1747 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1748 
1749 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1752 
1753 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1754 			     int offset, int len)
1755 {
1756 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757 
1758 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1761 
1762 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1763 {
1764 	gfn_t gfn = gpa >> PAGE_SHIFT;
1765 	int seg;
1766 	int offset = offset_in_page(gpa);
1767 	int ret;
1768 
1769 	while ((seg = next_segment(len, offset)) != 0) {
1770 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1771 		if (ret < 0)
1772 			return ret;
1773 		offset = 0;
1774 		len -= seg;
1775 		data += seg;
1776 		++gfn;
1777 	}
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_read_guest);
1781 
1782 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1783 {
1784 	gfn_t gfn = gpa >> PAGE_SHIFT;
1785 	int seg;
1786 	int offset = offset_in_page(gpa);
1787 	int ret;
1788 
1789 	while ((seg = next_segment(len, offset)) != 0) {
1790 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1791 		if (ret < 0)
1792 			return ret;
1793 		offset = 0;
1794 		len -= seg;
1795 		data += seg;
1796 		++gfn;
1797 	}
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1801 
1802 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1803 			           void *data, int offset, unsigned long len)
1804 {
1805 	int r;
1806 	unsigned long addr;
1807 
1808 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1809 	if (kvm_is_error_hva(addr))
1810 		return -EFAULT;
1811 	pagefault_disable();
1812 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1813 	pagefault_enable();
1814 	if (r)
1815 		return -EFAULT;
1816 	return 0;
1817 }
1818 
1819 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1820 			  unsigned long len)
1821 {
1822 	gfn_t gfn = gpa >> PAGE_SHIFT;
1823 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1824 	int offset = offset_in_page(gpa);
1825 
1826 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1829 
1830 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1831 			       void *data, unsigned long len)
1832 {
1833 	gfn_t gfn = gpa >> PAGE_SHIFT;
1834 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1835 	int offset = offset_in_page(gpa);
1836 
1837 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1840 
1841 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1842 			          const void *data, int offset, int len)
1843 {
1844 	int r;
1845 	unsigned long addr;
1846 
1847 	addr = gfn_to_hva_memslot(memslot, gfn);
1848 	if (kvm_is_error_hva(addr))
1849 		return -EFAULT;
1850 	r = __copy_to_user((void __user *)addr + offset, data, len);
1851 	if (r)
1852 		return -EFAULT;
1853 	mark_page_dirty_in_slot(memslot, gfn);
1854 	return 0;
1855 }
1856 
1857 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1858 			 const void *data, int offset, int len)
1859 {
1860 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1861 
1862 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1865 
1866 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1867 			      const void *data, int offset, int len)
1868 {
1869 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1870 
1871 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1874 
1875 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1876 		    unsigned long len)
1877 {
1878 	gfn_t gfn = gpa >> PAGE_SHIFT;
1879 	int seg;
1880 	int offset = offset_in_page(gpa);
1881 	int ret;
1882 
1883 	while ((seg = next_segment(len, offset)) != 0) {
1884 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1885 		if (ret < 0)
1886 			return ret;
1887 		offset = 0;
1888 		len -= seg;
1889 		data += seg;
1890 		++gfn;
1891 	}
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_write_guest);
1895 
1896 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1897 		         unsigned long len)
1898 {
1899 	gfn_t gfn = gpa >> PAGE_SHIFT;
1900 	int seg;
1901 	int offset = offset_in_page(gpa);
1902 	int ret;
1903 
1904 	while ((seg = next_segment(len, offset)) != 0) {
1905 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1906 		if (ret < 0)
1907 			return ret;
1908 		offset = 0;
1909 		len -= seg;
1910 		data += seg;
1911 		++gfn;
1912 	}
1913 	return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1916 
1917 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1918 				       struct gfn_to_hva_cache *ghc,
1919 				       gpa_t gpa, unsigned long len)
1920 {
1921 	int offset = offset_in_page(gpa);
1922 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1923 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1924 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1925 	gfn_t nr_pages_avail;
1926 
1927 	ghc->gpa = gpa;
1928 	ghc->generation = slots->generation;
1929 	ghc->len = len;
1930 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1931 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1932 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1933 		ghc->hva += offset;
1934 	} else {
1935 		/*
1936 		 * If the requested region crosses two memslots, we still
1937 		 * verify that the entire region is valid here.
1938 		 */
1939 		while (start_gfn <= end_gfn) {
1940 			nr_pages_avail = 0;
1941 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1942 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1943 						   &nr_pages_avail);
1944 			if (kvm_is_error_hva(ghc->hva))
1945 				return -EFAULT;
1946 			start_gfn += nr_pages_avail;
1947 		}
1948 		/* Use the slow path for cross page reads and writes. */
1949 		ghc->memslot = NULL;
1950 	}
1951 	return 0;
1952 }
1953 
1954 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955 			      gpa_t gpa, unsigned long len)
1956 {
1957 	struct kvm_memslots *slots = kvm_memslots(kvm);
1958 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1961 
1962 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1963 			   void *data, int offset, unsigned long len)
1964 {
1965 	struct kvm_memslots *slots = kvm_memslots(kvm);
1966 	int r;
1967 	gpa_t gpa = ghc->gpa + offset;
1968 
1969 	BUG_ON(len + offset > ghc->len);
1970 
1971 	if (slots->generation != ghc->generation)
1972 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1973 
1974 	if (unlikely(!ghc->memslot))
1975 		return kvm_write_guest(kvm, gpa, data, len);
1976 
1977 	if (kvm_is_error_hva(ghc->hva))
1978 		return -EFAULT;
1979 
1980 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1981 	if (r)
1982 		return -EFAULT;
1983 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1984 
1985 	return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1988 
1989 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1990 			   void *data, unsigned long len)
1991 {
1992 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995 
1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997 			   void *data, unsigned long len)
1998 {
1999 	struct kvm_memslots *slots = kvm_memslots(kvm);
2000 	int r;
2001 
2002 	BUG_ON(len > ghc->len);
2003 
2004 	if (slots->generation != ghc->generation)
2005 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2006 
2007 	if (unlikely(!ghc->memslot))
2008 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2009 
2010 	if (kvm_is_error_hva(ghc->hva))
2011 		return -EFAULT;
2012 
2013 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014 	if (r)
2015 		return -EFAULT;
2016 
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020 
2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022 {
2023 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024 
2025 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028 
2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030 {
2031 	gfn_t gfn = gpa >> PAGE_SHIFT;
2032 	int seg;
2033 	int offset = offset_in_page(gpa);
2034 	int ret;
2035 
2036 	while ((seg = next_segment(len, offset)) != 0) {
2037 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038 		if (ret < 0)
2039 			return ret;
2040 		offset = 0;
2041 		len -= seg;
2042 		++gfn;
2043 	}
2044 	return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047 
2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049 				    gfn_t gfn)
2050 {
2051 	if (memslot && memslot->dirty_bitmap) {
2052 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2053 
2054 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055 	}
2056 }
2057 
2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059 {
2060 	struct kvm_memory_slot *memslot;
2061 
2062 	memslot = gfn_to_memslot(kvm, gfn);
2063 	mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(mark_page_dirty);
2066 
2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068 {
2069 	struct kvm_memory_slot *memslot;
2070 
2071 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072 	mark_page_dirty_in_slot(memslot, gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075 
2076 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2077 {
2078 	if (!vcpu->sigset_active)
2079 		return;
2080 
2081 	/*
2082 	 * This does a lockless modification of ->real_blocked, which is fine
2083 	 * because, only current can change ->real_blocked and all readers of
2084 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2085 	 * of ->blocked.
2086 	 */
2087 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2088 }
2089 
2090 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2091 {
2092 	if (!vcpu->sigset_active)
2093 		return;
2094 
2095 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2096 	sigemptyset(&current->real_blocked);
2097 }
2098 
2099 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2100 {
2101 	unsigned int old, val, grow;
2102 
2103 	old = val = vcpu->halt_poll_ns;
2104 	grow = READ_ONCE(halt_poll_ns_grow);
2105 	/* 10us base */
2106 	if (val == 0 && grow)
2107 		val = 10000;
2108 	else
2109 		val *= grow;
2110 
2111 	if (val > halt_poll_ns)
2112 		val = halt_poll_ns;
2113 
2114 	vcpu->halt_poll_ns = val;
2115 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2116 }
2117 
2118 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2119 {
2120 	unsigned int old, val, shrink;
2121 
2122 	old = val = vcpu->halt_poll_ns;
2123 	shrink = READ_ONCE(halt_poll_ns_shrink);
2124 	if (shrink == 0)
2125 		val = 0;
2126 	else
2127 		val /= shrink;
2128 
2129 	vcpu->halt_poll_ns = val;
2130 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2131 }
2132 
2133 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2134 {
2135 	if (kvm_arch_vcpu_runnable(vcpu)) {
2136 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2137 		return -EINTR;
2138 	}
2139 	if (kvm_cpu_has_pending_timer(vcpu))
2140 		return -EINTR;
2141 	if (signal_pending(current))
2142 		return -EINTR;
2143 
2144 	return 0;
2145 }
2146 
2147 /*
2148  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2149  */
2150 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2151 {
2152 	ktime_t start, cur;
2153 	DECLARE_SWAITQUEUE(wait);
2154 	bool waited = false;
2155 	u64 block_ns;
2156 
2157 	start = cur = ktime_get();
2158 	if (vcpu->halt_poll_ns) {
2159 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2160 
2161 		++vcpu->stat.halt_attempted_poll;
2162 		do {
2163 			/*
2164 			 * This sets KVM_REQ_UNHALT if an interrupt
2165 			 * arrives.
2166 			 */
2167 			if (kvm_vcpu_check_block(vcpu) < 0) {
2168 				++vcpu->stat.halt_successful_poll;
2169 				if (!vcpu_valid_wakeup(vcpu))
2170 					++vcpu->stat.halt_poll_invalid;
2171 				goto out;
2172 			}
2173 			cur = ktime_get();
2174 		} while (single_task_running() && ktime_before(cur, stop));
2175 	}
2176 
2177 	kvm_arch_vcpu_blocking(vcpu);
2178 
2179 	for (;;) {
2180 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2181 
2182 		if (kvm_vcpu_check_block(vcpu) < 0)
2183 			break;
2184 
2185 		waited = true;
2186 		schedule();
2187 	}
2188 
2189 	finish_swait(&vcpu->wq, &wait);
2190 	cur = ktime_get();
2191 
2192 	kvm_arch_vcpu_unblocking(vcpu);
2193 out:
2194 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2195 
2196 	if (!vcpu_valid_wakeup(vcpu))
2197 		shrink_halt_poll_ns(vcpu);
2198 	else if (halt_poll_ns) {
2199 		if (block_ns <= vcpu->halt_poll_ns)
2200 			;
2201 		/* we had a long block, shrink polling */
2202 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2203 			shrink_halt_poll_ns(vcpu);
2204 		/* we had a short halt and our poll time is too small */
2205 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2206 			block_ns < halt_poll_ns)
2207 			grow_halt_poll_ns(vcpu);
2208 	} else
2209 		vcpu->halt_poll_ns = 0;
2210 
2211 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2212 	kvm_arch_vcpu_block_finish(vcpu);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2215 
2216 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2217 {
2218 	struct swait_queue_head *wqp;
2219 
2220 	wqp = kvm_arch_vcpu_wq(vcpu);
2221 	if (swq_has_sleeper(wqp)) {
2222 		swake_up(wqp);
2223 		++vcpu->stat.halt_wakeup;
2224 		return true;
2225 	}
2226 
2227 	return false;
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2230 
2231 #ifndef CONFIG_S390
2232 /*
2233  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2234  */
2235 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2236 {
2237 	int me;
2238 	int cpu = vcpu->cpu;
2239 
2240 	if (kvm_vcpu_wake_up(vcpu))
2241 		return;
2242 
2243 	me = get_cpu();
2244 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2245 		if (kvm_arch_vcpu_should_kick(vcpu))
2246 			smp_send_reschedule(cpu);
2247 	put_cpu();
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2250 #endif /* !CONFIG_S390 */
2251 
2252 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2253 {
2254 	struct pid *pid;
2255 	struct task_struct *task = NULL;
2256 	int ret = 0;
2257 
2258 	rcu_read_lock();
2259 	pid = rcu_dereference(target->pid);
2260 	if (pid)
2261 		task = get_pid_task(pid, PIDTYPE_PID);
2262 	rcu_read_unlock();
2263 	if (!task)
2264 		return ret;
2265 	ret = yield_to(task, 1);
2266 	put_task_struct(task);
2267 
2268 	return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2271 
2272 /*
2273  * Helper that checks whether a VCPU is eligible for directed yield.
2274  * Most eligible candidate to yield is decided by following heuristics:
2275  *
2276  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2277  *  (preempted lock holder), indicated by @in_spin_loop.
2278  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2279  *
2280  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2281  *  chance last time (mostly it has become eligible now since we have probably
2282  *  yielded to lockholder in last iteration. This is done by toggling
2283  *  @dy_eligible each time a VCPU checked for eligibility.)
2284  *
2285  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2286  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2287  *  burning. Giving priority for a potential lock-holder increases lock
2288  *  progress.
2289  *
2290  *  Since algorithm is based on heuristics, accessing another VCPU data without
2291  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2292  *  and continue with next VCPU and so on.
2293  */
2294 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2295 {
2296 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2297 	bool eligible;
2298 
2299 	eligible = !vcpu->spin_loop.in_spin_loop ||
2300 		    vcpu->spin_loop.dy_eligible;
2301 
2302 	if (vcpu->spin_loop.in_spin_loop)
2303 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2304 
2305 	return eligible;
2306 #else
2307 	return true;
2308 #endif
2309 }
2310 
2311 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2312 {
2313 	struct kvm *kvm = me->kvm;
2314 	struct kvm_vcpu *vcpu;
2315 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2316 	int yielded = 0;
2317 	int try = 3;
2318 	int pass;
2319 	int i;
2320 
2321 	kvm_vcpu_set_in_spin_loop(me, true);
2322 	/*
2323 	 * We boost the priority of a VCPU that is runnable but not
2324 	 * currently running, because it got preempted by something
2325 	 * else and called schedule in __vcpu_run.  Hopefully that
2326 	 * VCPU is holding the lock that we need and will release it.
2327 	 * We approximate round-robin by starting at the last boosted VCPU.
2328 	 */
2329 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2330 		kvm_for_each_vcpu(i, vcpu, kvm) {
2331 			if (!pass && i <= last_boosted_vcpu) {
2332 				i = last_boosted_vcpu;
2333 				continue;
2334 			} else if (pass && i > last_boosted_vcpu)
2335 				break;
2336 			if (!READ_ONCE(vcpu->preempted))
2337 				continue;
2338 			if (vcpu == me)
2339 				continue;
2340 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2341 				continue;
2342 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2343 				continue;
2344 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2345 				continue;
2346 
2347 			yielded = kvm_vcpu_yield_to(vcpu);
2348 			if (yielded > 0) {
2349 				kvm->last_boosted_vcpu = i;
2350 				break;
2351 			} else if (yielded < 0) {
2352 				try--;
2353 				if (!try)
2354 					break;
2355 			}
2356 		}
2357 	}
2358 	kvm_vcpu_set_in_spin_loop(me, false);
2359 
2360 	/* Ensure vcpu is not eligible during next spinloop */
2361 	kvm_vcpu_set_dy_eligible(me, false);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2364 
2365 static int kvm_vcpu_fault(struct vm_fault *vmf)
2366 {
2367 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2368 	struct page *page;
2369 
2370 	if (vmf->pgoff == 0)
2371 		page = virt_to_page(vcpu->run);
2372 #ifdef CONFIG_X86
2373 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2374 		page = virt_to_page(vcpu->arch.pio_data);
2375 #endif
2376 #ifdef CONFIG_KVM_MMIO
2377 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2378 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2379 #endif
2380 	else
2381 		return kvm_arch_vcpu_fault(vcpu, vmf);
2382 	get_page(page);
2383 	vmf->page = page;
2384 	return 0;
2385 }
2386 
2387 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2388 	.fault = kvm_vcpu_fault,
2389 };
2390 
2391 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2392 {
2393 	vma->vm_ops = &kvm_vcpu_vm_ops;
2394 	return 0;
2395 }
2396 
2397 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2398 {
2399 	struct kvm_vcpu *vcpu = filp->private_data;
2400 
2401 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2402 	kvm_put_kvm(vcpu->kvm);
2403 	return 0;
2404 }
2405 
2406 static struct file_operations kvm_vcpu_fops = {
2407 	.release        = kvm_vcpu_release,
2408 	.unlocked_ioctl = kvm_vcpu_ioctl,
2409 #ifdef CONFIG_KVM_COMPAT
2410 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2411 #endif
2412 	.mmap           = kvm_vcpu_mmap,
2413 	.llseek		= noop_llseek,
2414 };
2415 
2416 /*
2417  * Allocates an inode for the vcpu.
2418  */
2419 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2420 {
2421 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2422 }
2423 
2424 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2425 {
2426 	char dir_name[ITOA_MAX_LEN * 2];
2427 	int ret;
2428 
2429 	if (!kvm_arch_has_vcpu_debugfs())
2430 		return 0;
2431 
2432 	if (!debugfs_initialized())
2433 		return 0;
2434 
2435 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2436 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2437 								vcpu->kvm->debugfs_dentry);
2438 	if (!vcpu->debugfs_dentry)
2439 		return -ENOMEM;
2440 
2441 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2442 	if (ret < 0) {
2443 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2444 		return ret;
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Creates some virtual cpus.  Good luck creating more than one.
2452  */
2453 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2454 {
2455 	int r;
2456 	struct kvm_vcpu *vcpu;
2457 
2458 	if (id >= KVM_MAX_VCPU_ID)
2459 		return -EINVAL;
2460 
2461 	mutex_lock(&kvm->lock);
2462 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2463 		mutex_unlock(&kvm->lock);
2464 		return -EINVAL;
2465 	}
2466 
2467 	kvm->created_vcpus++;
2468 	mutex_unlock(&kvm->lock);
2469 
2470 	vcpu = kvm_arch_vcpu_create(kvm, id);
2471 	if (IS_ERR(vcpu)) {
2472 		r = PTR_ERR(vcpu);
2473 		goto vcpu_decrement;
2474 	}
2475 
2476 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2477 
2478 	r = kvm_arch_vcpu_setup(vcpu);
2479 	if (r)
2480 		goto vcpu_destroy;
2481 
2482 	r = kvm_create_vcpu_debugfs(vcpu);
2483 	if (r)
2484 		goto vcpu_destroy;
2485 
2486 	mutex_lock(&kvm->lock);
2487 	if (kvm_get_vcpu_by_id(kvm, id)) {
2488 		r = -EEXIST;
2489 		goto unlock_vcpu_destroy;
2490 	}
2491 
2492 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2493 
2494 	/* Now it's all set up, let userspace reach it */
2495 	kvm_get_kvm(kvm);
2496 	r = create_vcpu_fd(vcpu);
2497 	if (r < 0) {
2498 		kvm_put_kvm(kvm);
2499 		goto unlock_vcpu_destroy;
2500 	}
2501 
2502 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2503 
2504 	/*
2505 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2506 	 * before kvm->online_vcpu's incremented value.
2507 	 */
2508 	smp_wmb();
2509 	atomic_inc(&kvm->online_vcpus);
2510 
2511 	mutex_unlock(&kvm->lock);
2512 	kvm_arch_vcpu_postcreate(vcpu);
2513 	return r;
2514 
2515 unlock_vcpu_destroy:
2516 	mutex_unlock(&kvm->lock);
2517 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2518 vcpu_destroy:
2519 	kvm_arch_vcpu_destroy(vcpu);
2520 vcpu_decrement:
2521 	mutex_lock(&kvm->lock);
2522 	kvm->created_vcpus--;
2523 	mutex_unlock(&kvm->lock);
2524 	return r;
2525 }
2526 
2527 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2528 {
2529 	if (sigset) {
2530 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2531 		vcpu->sigset_active = 1;
2532 		vcpu->sigset = *sigset;
2533 	} else
2534 		vcpu->sigset_active = 0;
2535 	return 0;
2536 }
2537 
2538 static long kvm_vcpu_ioctl(struct file *filp,
2539 			   unsigned int ioctl, unsigned long arg)
2540 {
2541 	struct kvm_vcpu *vcpu = filp->private_data;
2542 	void __user *argp = (void __user *)arg;
2543 	int r;
2544 	struct kvm_fpu *fpu = NULL;
2545 	struct kvm_sregs *kvm_sregs = NULL;
2546 
2547 	if (vcpu->kvm->mm != current->mm)
2548 		return -EIO;
2549 
2550 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2551 		return -EINVAL;
2552 
2553 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2554 	/*
2555 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2556 	 * so vcpu_load() would break it.
2557 	 */
2558 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2559 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2560 #endif
2561 
2562 
2563 	r = vcpu_load(vcpu);
2564 	if (r)
2565 		return r;
2566 	switch (ioctl) {
2567 	case KVM_RUN: {
2568 		struct pid *oldpid;
2569 		r = -EINVAL;
2570 		if (arg)
2571 			goto out;
2572 		oldpid = rcu_access_pointer(vcpu->pid);
2573 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2574 			/* The thread running this VCPU changed. */
2575 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2576 
2577 			rcu_assign_pointer(vcpu->pid, newpid);
2578 			if (oldpid)
2579 				synchronize_rcu();
2580 			put_pid(oldpid);
2581 		}
2582 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2583 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2584 		break;
2585 	}
2586 	case KVM_GET_REGS: {
2587 		struct kvm_regs *kvm_regs;
2588 
2589 		r = -ENOMEM;
2590 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2591 		if (!kvm_regs)
2592 			goto out;
2593 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2594 		if (r)
2595 			goto out_free1;
2596 		r = -EFAULT;
2597 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2598 			goto out_free1;
2599 		r = 0;
2600 out_free1:
2601 		kfree(kvm_regs);
2602 		break;
2603 	}
2604 	case KVM_SET_REGS: {
2605 		struct kvm_regs *kvm_regs;
2606 
2607 		r = -ENOMEM;
2608 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2609 		if (IS_ERR(kvm_regs)) {
2610 			r = PTR_ERR(kvm_regs);
2611 			goto out;
2612 		}
2613 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2614 		kfree(kvm_regs);
2615 		break;
2616 	}
2617 	case KVM_GET_SREGS: {
2618 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2619 		r = -ENOMEM;
2620 		if (!kvm_sregs)
2621 			goto out;
2622 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2623 		if (r)
2624 			goto out;
2625 		r = -EFAULT;
2626 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2627 			goto out;
2628 		r = 0;
2629 		break;
2630 	}
2631 	case KVM_SET_SREGS: {
2632 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2633 		if (IS_ERR(kvm_sregs)) {
2634 			r = PTR_ERR(kvm_sregs);
2635 			kvm_sregs = NULL;
2636 			goto out;
2637 		}
2638 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2639 		break;
2640 	}
2641 	case KVM_GET_MP_STATE: {
2642 		struct kvm_mp_state mp_state;
2643 
2644 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2645 		if (r)
2646 			goto out;
2647 		r = -EFAULT;
2648 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2649 			goto out;
2650 		r = 0;
2651 		break;
2652 	}
2653 	case KVM_SET_MP_STATE: {
2654 		struct kvm_mp_state mp_state;
2655 
2656 		r = -EFAULT;
2657 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2658 			goto out;
2659 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2660 		break;
2661 	}
2662 	case KVM_TRANSLATE: {
2663 		struct kvm_translation tr;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&tr, argp, sizeof(tr)))
2667 			goto out;
2668 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2669 		if (r)
2670 			goto out;
2671 		r = -EFAULT;
2672 		if (copy_to_user(argp, &tr, sizeof(tr)))
2673 			goto out;
2674 		r = 0;
2675 		break;
2676 	}
2677 	case KVM_SET_GUEST_DEBUG: {
2678 		struct kvm_guest_debug dbg;
2679 
2680 		r = -EFAULT;
2681 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2682 			goto out;
2683 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2684 		break;
2685 	}
2686 	case KVM_SET_SIGNAL_MASK: {
2687 		struct kvm_signal_mask __user *sigmask_arg = argp;
2688 		struct kvm_signal_mask kvm_sigmask;
2689 		sigset_t sigset, *p;
2690 
2691 		p = NULL;
2692 		if (argp) {
2693 			r = -EFAULT;
2694 			if (copy_from_user(&kvm_sigmask, argp,
2695 					   sizeof(kvm_sigmask)))
2696 				goto out;
2697 			r = -EINVAL;
2698 			if (kvm_sigmask.len != sizeof(sigset))
2699 				goto out;
2700 			r = -EFAULT;
2701 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2702 					   sizeof(sigset)))
2703 				goto out;
2704 			p = &sigset;
2705 		}
2706 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2707 		break;
2708 	}
2709 	case KVM_GET_FPU: {
2710 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2711 		r = -ENOMEM;
2712 		if (!fpu)
2713 			goto out;
2714 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2715 		if (r)
2716 			goto out;
2717 		r = -EFAULT;
2718 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2719 			goto out;
2720 		r = 0;
2721 		break;
2722 	}
2723 	case KVM_SET_FPU: {
2724 		fpu = memdup_user(argp, sizeof(*fpu));
2725 		if (IS_ERR(fpu)) {
2726 			r = PTR_ERR(fpu);
2727 			fpu = NULL;
2728 			goto out;
2729 		}
2730 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2731 		break;
2732 	}
2733 	default:
2734 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2735 	}
2736 out:
2737 	vcpu_put(vcpu);
2738 	kfree(fpu);
2739 	kfree(kvm_sregs);
2740 	return r;
2741 }
2742 
2743 #ifdef CONFIG_KVM_COMPAT
2744 static long kvm_vcpu_compat_ioctl(struct file *filp,
2745 				  unsigned int ioctl, unsigned long arg)
2746 {
2747 	struct kvm_vcpu *vcpu = filp->private_data;
2748 	void __user *argp = compat_ptr(arg);
2749 	int r;
2750 
2751 	if (vcpu->kvm->mm != current->mm)
2752 		return -EIO;
2753 
2754 	switch (ioctl) {
2755 	case KVM_SET_SIGNAL_MASK: {
2756 		struct kvm_signal_mask __user *sigmask_arg = argp;
2757 		struct kvm_signal_mask kvm_sigmask;
2758 		sigset_t sigset;
2759 
2760 		if (argp) {
2761 			r = -EFAULT;
2762 			if (copy_from_user(&kvm_sigmask, argp,
2763 					   sizeof(kvm_sigmask)))
2764 				goto out;
2765 			r = -EINVAL;
2766 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2767 				goto out;
2768 			r = -EFAULT;
2769 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2770 				goto out;
2771 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2772 		} else
2773 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2774 		break;
2775 	}
2776 	default:
2777 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2778 	}
2779 
2780 out:
2781 	return r;
2782 }
2783 #endif
2784 
2785 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2786 				 int (*accessor)(struct kvm_device *dev,
2787 						 struct kvm_device_attr *attr),
2788 				 unsigned long arg)
2789 {
2790 	struct kvm_device_attr attr;
2791 
2792 	if (!accessor)
2793 		return -EPERM;
2794 
2795 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2796 		return -EFAULT;
2797 
2798 	return accessor(dev, &attr);
2799 }
2800 
2801 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2802 			     unsigned long arg)
2803 {
2804 	struct kvm_device *dev = filp->private_data;
2805 
2806 	switch (ioctl) {
2807 	case KVM_SET_DEVICE_ATTR:
2808 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2809 	case KVM_GET_DEVICE_ATTR:
2810 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2811 	case KVM_HAS_DEVICE_ATTR:
2812 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2813 	default:
2814 		if (dev->ops->ioctl)
2815 			return dev->ops->ioctl(dev, ioctl, arg);
2816 
2817 		return -ENOTTY;
2818 	}
2819 }
2820 
2821 static int kvm_device_release(struct inode *inode, struct file *filp)
2822 {
2823 	struct kvm_device *dev = filp->private_data;
2824 	struct kvm *kvm = dev->kvm;
2825 
2826 	kvm_put_kvm(kvm);
2827 	return 0;
2828 }
2829 
2830 static const struct file_operations kvm_device_fops = {
2831 	.unlocked_ioctl = kvm_device_ioctl,
2832 #ifdef CONFIG_KVM_COMPAT
2833 	.compat_ioctl = kvm_device_ioctl,
2834 #endif
2835 	.release = kvm_device_release,
2836 };
2837 
2838 struct kvm_device *kvm_device_from_filp(struct file *filp)
2839 {
2840 	if (filp->f_op != &kvm_device_fops)
2841 		return NULL;
2842 
2843 	return filp->private_data;
2844 }
2845 
2846 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2847 #ifdef CONFIG_KVM_MPIC
2848 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2849 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2850 #endif
2851 };
2852 
2853 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2854 {
2855 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2856 		return -ENOSPC;
2857 
2858 	if (kvm_device_ops_table[type] != NULL)
2859 		return -EEXIST;
2860 
2861 	kvm_device_ops_table[type] = ops;
2862 	return 0;
2863 }
2864 
2865 void kvm_unregister_device_ops(u32 type)
2866 {
2867 	if (kvm_device_ops_table[type] != NULL)
2868 		kvm_device_ops_table[type] = NULL;
2869 }
2870 
2871 static int kvm_ioctl_create_device(struct kvm *kvm,
2872 				   struct kvm_create_device *cd)
2873 {
2874 	struct kvm_device_ops *ops = NULL;
2875 	struct kvm_device *dev;
2876 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2877 	int ret;
2878 
2879 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2880 		return -ENODEV;
2881 
2882 	ops = kvm_device_ops_table[cd->type];
2883 	if (ops == NULL)
2884 		return -ENODEV;
2885 
2886 	if (test)
2887 		return 0;
2888 
2889 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2890 	if (!dev)
2891 		return -ENOMEM;
2892 
2893 	dev->ops = ops;
2894 	dev->kvm = kvm;
2895 
2896 	mutex_lock(&kvm->lock);
2897 	ret = ops->create(dev, cd->type);
2898 	if (ret < 0) {
2899 		mutex_unlock(&kvm->lock);
2900 		kfree(dev);
2901 		return ret;
2902 	}
2903 	list_add(&dev->vm_node, &kvm->devices);
2904 	mutex_unlock(&kvm->lock);
2905 
2906 	if (ops->init)
2907 		ops->init(dev);
2908 
2909 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2910 	if (ret < 0) {
2911 		mutex_lock(&kvm->lock);
2912 		list_del(&dev->vm_node);
2913 		mutex_unlock(&kvm->lock);
2914 		ops->destroy(dev);
2915 		return ret;
2916 	}
2917 
2918 	kvm_get_kvm(kvm);
2919 	cd->fd = ret;
2920 	return 0;
2921 }
2922 
2923 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2924 {
2925 	switch (arg) {
2926 	case KVM_CAP_USER_MEMORY:
2927 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2928 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2929 	case KVM_CAP_INTERNAL_ERROR_DATA:
2930 #ifdef CONFIG_HAVE_KVM_MSI
2931 	case KVM_CAP_SIGNAL_MSI:
2932 #endif
2933 #ifdef CONFIG_HAVE_KVM_IRQFD
2934 	case KVM_CAP_IRQFD:
2935 	case KVM_CAP_IRQFD_RESAMPLE:
2936 #endif
2937 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2938 	case KVM_CAP_CHECK_EXTENSION_VM:
2939 		return 1;
2940 #ifdef CONFIG_KVM_MMIO
2941 	case KVM_CAP_COALESCED_MMIO:
2942 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2943 #endif
2944 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2945 	case KVM_CAP_IRQ_ROUTING:
2946 		return KVM_MAX_IRQ_ROUTES;
2947 #endif
2948 #if KVM_ADDRESS_SPACE_NUM > 1
2949 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2950 		return KVM_ADDRESS_SPACE_NUM;
2951 #endif
2952 	case KVM_CAP_MAX_VCPU_ID:
2953 		return KVM_MAX_VCPU_ID;
2954 	default:
2955 		break;
2956 	}
2957 	return kvm_vm_ioctl_check_extension(kvm, arg);
2958 }
2959 
2960 static long kvm_vm_ioctl(struct file *filp,
2961 			   unsigned int ioctl, unsigned long arg)
2962 {
2963 	struct kvm *kvm = filp->private_data;
2964 	void __user *argp = (void __user *)arg;
2965 	int r;
2966 
2967 	if (kvm->mm != current->mm)
2968 		return -EIO;
2969 	switch (ioctl) {
2970 	case KVM_CREATE_VCPU:
2971 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2972 		break;
2973 	case KVM_SET_USER_MEMORY_REGION: {
2974 		struct kvm_userspace_memory_region kvm_userspace_mem;
2975 
2976 		r = -EFAULT;
2977 		if (copy_from_user(&kvm_userspace_mem, argp,
2978 						sizeof(kvm_userspace_mem)))
2979 			goto out;
2980 
2981 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2982 		break;
2983 	}
2984 	case KVM_GET_DIRTY_LOG: {
2985 		struct kvm_dirty_log log;
2986 
2987 		r = -EFAULT;
2988 		if (copy_from_user(&log, argp, sizeof(log)))
2989 			goto out;
2990 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2991 		break;
2992 	}
2993 #ifdef CONFIG_KVM_MMIO
2994 	case KVM_REGISTER_COALESCED_MMIO: {
2995 		struct kvm_coalesced_mmio_zone zone;
2996 
2997 		r = -EFAULT;
2998 		if (copy_from_user(&zone, argp, sizeof(zone)))
2999 			goto out;
3000 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3001 		break;
3002 	}
3003 	case KVM_UNREGISTER_COALESCED_MMIO: {
3004 		struct kvm_coalesced_mmio_zone zone;
3005 
3006 		r = -EFAULT;
3007 		if (copy_from_user(&zone, argp, sizeof(zone)))
3008 			goto out;
3009 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3010 		break;
3011 	}
3012 #endif
3013 	case KVM_IRQFD: {
3014 		struct kvm_irqfd data;
3015 
3016 		r = -EFAULT;
3017 		if (copy_from_user(&data, argp, sizeof(data)))
3018 			goto out;
3019 		r = kvm_irqfd(kvm, &data);
3020 		break;
3021 	}
3022 	case KVM_IOEVENTFD: {
3023 		struct kvm_ioeventfd data;
3024 
3025 		r = -EFAULT;
3026 		if (copy_from_user(&data, argp, sizeof(data)))
3027 			goto out;
3028 		r = kvm_ioeventfd(kvm, &data);
3029 		break;
3030 	}
3031 #ifdef CONFIG_HAVE_KVM_MSI
3032 	case KVM_SIGNAL_MSI: {
3033 		struct kvm_msi msi;
3034 
3035 		r = -EFAULT;
3036 		if (copy_from_user(&msi, argp, sizeof(msi)))
3037 			goto out;
3038 		r = kvm_send_userspace_msi(kvm, &msi);
3039 		break;
3040 	}
3041 #endif
3042 #ifdef __KVM_HAVE_IRQ_LINE
3043 	case KVM_IRQ_LINE_STATUS:
3044 	case KVM_IRQ_LINE: {
3045 		struct kvm_irq_level irq_event;
3046 
3047 		r = -EFAULT;
3048 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3049 			goto out;
3050 
3051 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3052 					ioctl == KVM_IRQ_LINE_STATUS);
3053 		if (r)
3054 			goto out;
3055 
3056 		r = -EFAULT;
3057 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3058 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3059 				goto out;
3060 		}
3061 
3062 		r = 0;
3063 		break;
3064 	}
3065 #endif
3066 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3067 	case KVM_SET_GSI_ROUTING: {
3068 		struct kvm_irq_routing routing;
3069 		struct kvm_irq_routing __user *urouting;
3070 		struct kvm_irq_routing_entry *entries = NULL;
3071 
3072 		r = -EFAULT;
3073 		if (copy_from_user(&routing, argp, sizeof(routing)))
3074 			goto out;
3075 		r = -EINVAL;
3076 		if (!kvm_arch_can_set_irq_routing(kvm))
3077 			goto out;
3078 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3079 			goto out;
3080 		if (routing.flags)
3081 			goto out;
3082 		if (routing.nr) {
3083 			r = -ENOMEM;
3084 			entries = vmalloc(routing.nr * sizeof(*entries));
3085 			if (!entries)
3086 				goto out;
3087 			r = -EFAULT;
3088 			urouting = argp;
3089 			if (copy_from_user(entries, urouting->entries,
3090 					   routing.nr * sizeof(*entries)))
3091 				goto out_free_irq_routing;
3092 		}
3093 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3094 					routing.flags);
3095 out_free_irq_routing:
3096 		vfree(entries);
3097 		break;
3098 	}
3099 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3100 	case KVM_CREATE_DEVICE: {
3101 		struct kvm_create_device cd;
3102 
3103 		r = -EFAULT;
3104 		if (copy_from_user(&cd, argp, sizeof(cd)))
3105 			goto out;
3106 
3107 		r = kvm_ioctl_create_device(kvm, &cd);
3108 		if (r)
3109 			goto out;
3110 
3111 		r = -EFAULT;
3112 		if (copy_to_user(argp, &cd, sizeof(cd)))
3113 			goto out;
3114 
3115 		r = 0;
3116 		break;
3117 	}
3118 	case KVM_CHECK_EXTENSION:
3119 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3120 		break;
3121 	default:
3122 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3123 	}
3124 out:
3125 	return r;
3126 }
3127 
3128 #ifdef CONFIG_KVM_COMPAT
3129 struct compat_kvm_dirty_log {
3130 	__u32 slot;
3131 	__u32 padding1;
3132 	union {
3133 		compat_uptr_t dirty_bitmap; /* one bit per page */
3134 		__u64 padding2;
3135 	};
3136 };
3137 
3138 static long kvm_vm_compat_ioctl(struct file *filp,
3139 			   unsigned int ioctl, unsigned long arg)
3140 {
3141 	struct kvm *kvm = filp->private_data;
3142 	int r;
3143 
3144 	if (kvm->mm != current->mm)
3145 		return -EIO;
3146 	switch (ioctl) {
3147 	case KVM_GET_DIRTY_LOG: {
3148 		struct compat_kvm_dirty_log compat_log;
3149 		struct kvm_dirty_log log;
3150 
3151 		if (copy_from_user(&compat_log, (void __user *)arg,
3152 				   sizeof(compat_log)))
3153 			return -EFAULT;
3154 		log.slot	 = compat_log.slot;
3155 		log.padding1	 = compat_log.padding1;
3156 		log.padding2	 = compat_log.padding2;
3157 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3158 
3159 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3160 		break;
3161 	}
3162 	default:
3163 		r = kvm_vm_ioctl(filp, ioctl, arg);
3164 	}
3165 	return r;
3166 }
3167 #endif
3168 
3169 static struct file_operations kvm_vm_fops = {
3170 	.release        = kvm_vm_release,
3171 	.unlocked_ioctl = kvm_vm_ioctl,
3172 #ifdef CONFIG_KVM_COMPAT
3173 	.compat_ioctl   = kvm_vm_compat_ioctl,
3174 #endif
3175 	.llseek		= noop_llseek,
3176 };
3177 
3178 static int kvm_dev_ioctl_create_vm(unsigned long type)
3179 {
3180 	int r;
3181 	struct kvm *kvm;
3182 	struct file *file;
3183 
3184 	kvm = kvm_create_vm(type);
3185 	if (IS_ERR(kvm))
3186 		return PTR_ERR(kvm);
3187 #ifdef CONFIG_KVM_MMIO
3188 	r = kvm_coalesced_mmio_init(kvm);
3189 	if (r < 0) {
3190 		kvm_put_kvm(kvm);
3191 		return r;
3192 	}
3193 #endif
3194 	r = get_unused_fd_flags(O_CLOEXEC);
3195 	if (r < 0) {
3196 		kvm_put_kvm(kvm);
3197 		return r;
3198 	}
3199 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3200 	if (IS_ERR(file)) {
3201 		put_unused_fd(r);
3202 		kvm_put_kvm(kvm);
3203 		return PTR_ERR(file);
3204 	}
3205 
3206 	/*
3207 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3208 	 * already set, with ->release() being kvm_vm_release().  In error
3209 	 * cases it will be called by the final fput(file) and will take
3210 	 * care of doing kvm_put_kvm(kvm).
3211 	 */
3212 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3213 		put_unused_fd(r);
3214 		fput(file);
3215 		return -ENOMEM;
3216 	}
3217 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3218 
3219 	fd_install(r, file);
3220 	return r;
3221 }
3222 
3223 static long kvm_dev_ioctl(struct file *filp,
3224 			  unsigned int ioctl, unsigned long arg)
3225 {
3226 	long r = -EINVAL;
3227 
3228 	switch (ioctl) {
3229 	case KVM_GET_API_VERSION:
3230 		if (arg)
3231 			goto out;
3232 		r = KVM_API_VERSION;
3233 		break;
3234 	case KVM_CREATE_VM:
3235 		r = kvm_dev_ioctl_create_vm(arg);
3236 		break;
3237 	case KVM_CHECK_EXTENSION:
3238 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3239 		break;
3240 	case KVM_GET_VCPU_MMAP_SIZE:
3241 		if (arg)
3242 			goto out;
3243 		r = PAGE_SIZE;     /* struct kvm_run */
3244 #ifdef CONFIG_X86
3245 		r += PAGE_SIZE;    /* pio data page */
3246 #endif
3247 #ifdef CONFIG_KVM_MMIO
3248 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3249 #endif
3250 		break;
3251 	case KVM_TRACE_ENABLE:
3252 	case KVM_TRACE_PAUSE:
3253 	case KVM_TRACE_DISABLE:
3254 		r = -EOPNOTSUPP;
3255 		break;
3256 	default:
3257 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3258 	}
3259 out:
3260 	return r;
3261 }
3262 
3263 static struct file_operations kvm_chardev_ops = {
3264 	.unlocked_ioctl = kvm_dev_ioctl,
3265 	.compat_ioctl   = kvm_dev_ioctl,
3266 	.llseek		= noop_llseek,
3267 };
3268 
3269 static struct miscdevice kvm_dev = {
3270 	KVM_MINOR,
3271 	"kvm",
3272 	&kvm_chardev_ops,
3273 };
3274 
3275 static void hardware_enable_nolock(void *junk)
3276 {
3277 	int cpu = raw_smp_processor_id();
3278 	int r;
3279 
3280 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281 		return;
3282 
3283 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3284 
3285 	r = kvm_arch_hardware_enable();
3286 
3287 	if (r) {
3288 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289 		atomic_inc(&hardware_enable_failed);
3290 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3291 	}
3292 }
3293 
3294 static int kvm_starting_cpu(unsigned int cpu)
3295 {
3296 	raw_spin_lock(&kvm_count_lock);
3297 	if (kvm_usage_count)
3298 		hardware_enable_nolock(NULL);
3299 	raw_spin_unlock(&kvm_count_lock);
3300 	return 0;
3301 }
3302 
3303 static void hardware_disable_nolock(void *junk)
3304 {
3305 	int cpu = raw_smp_processor_id();
3306 
3307 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3308 		return;
3309 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3310 	kvm_arch_hardware_disable();
3311 }
3312 
3313 static int kvm_dying_cpu(unsigned int cpu)
3314 {
3315 	raw_spin_lock(&kvm_count_lock);
3316 	if (kvm_usage_count)
3317 		hardware_disable_nolock(NULL);
3318 	raw_spin_unlock(&kvm_count_lock);
3319 	return 0;
3320 }
3321 
3322 static void hardware_disable_all_nolock(void)
3323 {
3324 	BUG_ON(!kvm_usage_count);
3325 
3326 	kvm_usage_count--;
3327 	if (!kvm_usage_count)
3328 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3329 }
3330 
3331 static void hardware_disable_all(void)
3332 {
3333 	raw_spin_lock(&kvm_count_lock);
3334 	hardware_disable_all_nolock();
3335 	raw_spin_unlock(&kvm_count_lock);
3336 }
3337 
3338 static int hardware_enable_all(void)
3339 {
3340 	int r = 0;
3341 
3342 	raw_spin_lock(&kvm_count_lock);
3343 
3344 	kvm_usage_count++;
3345 	if (kvm_usage_count == 1) {
3346 		atomic_set(&hardware_enable_failed, 0);
3347 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3348 
3349 		if (atomic_read(&hardware_enable_failed)) {
3350 			hardware_disable_all_nolock();
3351 			r = -EBUSY;
3352 		}
3353 	}
3354 
3355 	raw_spin_unlock(&kvm_count_lock);
3356 
3357 	return r;
3358 }
3359 
3360 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3361 		      void *v)
3362 {
3363 	/*
3364 	 * Some (well, at least mine) BIOSes hang on reboot if
3365 	 * in vmx root mode.
3366 	 *
3367 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3368 	 */
3369 	pr_info("kvm: exiting hardware virtualization\n");
3370 	kvm_rebooting = true;
3371 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3372 	return NOTIFY_OK;
3373 }
3374 
3375 static struct notifier_block kvm_reboot_notifier = {
3376 	.notifier_call = kvm_reboot,
3377 	.priority = 0,
3378 };
3379 
3380 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3381 {
3382 	int i;
3383 
3384 	for (i = 0; i < bus->dev_count; i++) {
3385 		struct kvm_io_device *pos = bus->range[i].dev;
3386 
3387 		kvm_iodevice_destructor(pos);
3388 	}
3389 	kfree(bus);
3390 }
3391 
3392 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3393 				 const struct kvm_io_range *r2)
3394 {
3395 	gpa_t addr1 = r1->addr;
3396 	gpa_t addr2 = r2->addr;
3397 
3398 	if (addr1 < addr2)
3399 		return -1;
3400 
3401 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3402 	 * accept any overlapping write.  Any order is acceptable for
3403 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3404 	 * we process all of them.
3405 	 */
3406 	if (r2->len) {
3407 		addr1 += r1->len;
3408 		addr2 += r2->len;
3409 	}
3410 
3411 	if (addr1 > addr2)
3412 		return 1;
3413 
3414 	return 0;
3415 }
3416 
3417 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3418 {
3419 	return kvm_io_bus_cmp(p1, p2);
3420 }
3421 
3422 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3423 			  gpa_t addr, int len)
3424 {
3425 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3426 		.addr = addr,
3427 		.len = len,
3428 		.dev = dev,
3429 	};
3430 
3431 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3432 		kvm_io_bus_sort_cmp, NULL);
3433 
3434 	return 0;
3435 }
3436 
3437 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3438 			     gpa_t addr, int len)
3439 {
3440 	struct kvm_io_range *range, key;
3441 	int off;
3442 
3443 	key = (struct kvm_io_range) {
3444 		.addr = addr,
3445 		.len = len,
3446 	};
3447 
3448 	range = bsearch(&key, bus->range, bus->dev_count,
3449 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3450 	if (range == NULL)
3451 		return -ENOENT;
3452 
3453 	off = range - bus->range;
3454 
3455 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3456 		off--;
3457 
3458 	return off;
3459 }
3460 
3461 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3462 			      struct kvm_io_range *range, const void *val)
3463 {
3464 	int idx;
3465 
3466 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3467 	if (idx < 0)
3468 		return -EOPNOTSUPP;
3469 
3470 	while (idx < bus->dev_count &&
3471 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3472 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3473 					range->len, val))
3474 			return idx;
3475 		idx++;
3476 	}
3477 
3478 	return -EOPNOTSUPP;
3479 }
3480 
3481 /* kvm_io_bus_write - called under kvm->slots_lock */
3482 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3483 		     int len, const void *val)
3484 {
3485 	struct kvm_io_bus *bus;
3486 	struct kvm_io_range range;
3487 	int r;
3488 
3489 	range = (struct kvm_io_range) {
3490 		.addr = addr,
3491 		.len = len,
3492 	};
3493 
3494 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495 	if (!bus)
3496 		return -ENOMEM;
3497 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3498 	return r < 0 ? r : 0;
3499 }
3500 
3501 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3502 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3503 			    gpa_t addr, int len, const void *val, long cookie)
3504 {
3505 	struct kvm_io_bus *bus;
3506 	struct kvm_io_range range;
3507 
3508 	range = (struct kvm_io_range) {
3509 		.addr = addr,
3510 		.len = len,
3511 	};
3512 
3513 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3514 	if (!bus)
3515 		return -ENOMEM;
3516 
3517 	/* First try the device referenced by cookie. */
3518 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3519 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3520 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3521 					val))
3522 			return cookie;
3523 
3524 	/*
3525 	 * cookie contained garbage; fall back to search and return the
3526 	 * correct cookie value.
3527 	 */
3528 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3529 }
3530 
3531 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3532 			     struct kvm_io_range *range, void *val)
3533 {
3534 	int idx;
3535 
3536 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3537 	if (idx < 0)
3538 		return -EOPNOTSUPP;
3539 
3540 	while (idx < bus->dev_count &&
3541 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3542 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3543 				       range->len, val))
3544 			return idx;
3545 		idx++;
3546 	}
3547 
3548 	return -EOPNOTSUPP;
3549 }
3550 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3551 
3552 /* kvm_io_bus_read - called under kvm->slots_lock */
3553 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3554 		    int len, void *val)
3555 {
3556 	struct kvm_io_bus *bus;
3557 	struct kvm_io_range range;
3558 	int r;
3559 
3560 	range = (struct kvm_io_range) {
3561 		.addr = addr,
3562 		.len = len,
3563 	};
3564 
3565 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3566 	if (!bus)
3567 		return -ENOMEM;
3568 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3569 	return r < 0 ? r : 0;
3570 }
3571 
3572 
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3575 			    int len, struct kvm_io_device *dev)
3576 {
3577 	struct kvm_io_bus *new_bus, *bus;
3578 
3579 	bus = kvm_get_bus(kvm, bus_idx);
3580 	if (!bus)
3581 		return -ENOMEM;
3582 
3583 	/* exclude ioeventfd which is limited by maximum fd */
3584 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3585 		return -ENOSPC;
3586 
3587 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3588 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3589 	if (!new_bus)
3590 		return -ENOMEM;
3591 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3592 	       sizeof(struct kvm_io_range)));
3593 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3594 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3595 	synchronize_srcu_expedited(&kvm->srcu);
3596 	kfree(bus);
3597 
3598 	return 0;
3599 }
3600 
3601 /* Caller must hold slots_lock. */
3602 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3603 			       struct kvm_io_device *dev)
3604 {
3605 	int i;
3606 	struct kvm_io_bus *new_bus, *bus;
3607 
3608 	bus = kvm_get_bus(kvm, bus_idx);
3609 	if (!bus)
3610 		return;
3611 
3612 	for (i = 0; i < bus->dev_count; i++)
3613 		if (bus->range[i].dev == dev) {
3614 			break;
3615 		}
3616 
3617 	if (i == bus->dev_count)
3618 		return;
3619 
3620 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3621 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3622 	if (!new_bus)  {
3623 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3624 		goto broken;
3625 	}
3626 
3627 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3628 	new_bus->dev_count--;
3629 	memcpy(new_bus->range + i, bus->range + i + 1,
3630 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3631 
3632 broken:
3633 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3634 	synchronize_srcu_expedited(&kvm->srcu);
3635 	kfree(bus);
3636 	return;
3637 }
3638 
3639 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3640 					 gpa_t addr)
3641 {
3642 	struct kvm_io_bus *bus;
3643 	int dev_idx, srcu_idx;
3644 	struct kvm_io_device *iodev = NULL;
3645 
3646 	srcu_idx = srcu_read_lock(&kvm->srcu);
3647 
3648 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3649 	if (!bus)
3650 		goto out_unlock;
3651 
3652 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3653 	if (dev_idx < 0)
3654 		goto out_unlock;
3655 
3656 	iodev = bus->range[dev_idx].dev;
3657 
3658 out_unlock:
3659 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3660 
3661 	return iodev;
3662 }
3663 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3664 
3665 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3666 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3667 			   const char *fmt)
3668 {
3669 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3670 					  inode->i_private;
3671 
3672 	/* The debugfs files are a reference to the kvm struct which
3673 	 * is still valid when kvm_destroy_vm is called.
3674 	 * To avoid the race between open and the removal of the debugfs
3675 	 * directory we test against the users count.
3676 	 */
3677 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3678 		return -ENOENT;
3679 
3680 	if (simple_attr_open(inode, file, get, set, fmt)) {
3681 		kvm_put_kvm(stat_data->kvm);
3682 		return -ENOMEM;
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3689 {
3690 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3691 					  inode->i_private;
3692 
3693 	simple_attr_release(inode, file);
3694 	kvm_put_kvm(stat_data->kvm);
3695 
3696 	return 0;
3697 }
3698 
3699 static int vm_stat_get_per_vm(void *data, u64 *val)
3700 {
3701 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3702 
3703 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3704 
3705 	return 0;
3706 }
3707 
3708 static int vm_stat_clear_per_vm(void *data, u64 val)
3709 {
3710 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3711 
3712 	if (val)
3713 		return -EINVAL;
3714 
3715 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3716 
3717 	return 0;
3718 }
3719 
3720 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3721 {
3722 	__simple_attr_check_format("%llu\n", 0ull);
3723 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3724 				vm_stat_clear_per_vm, "%llu\n");
3725 }
3726 
3727 static const struct file_operations vm_stat_get_per_vm_fops = {
3728 	.owner   = THIS_MODULE,
3729 	.open    = vm_stat_get_per_vm_open,
3730 	.release = kvm_debugfs_release,
3731 	.read    = simple_attr_read,
3732 	.write   = simple_attr_write,
3733 	.llseek  = no_llseek,
3734 };
3735 
3736 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3737 {
3738 	int i;
3739 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3740 	struct kvm_vcpu *vcpu;
3741 
3742 	*val = 0;
3743 
3744 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3745 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3746 
3747 	return 0;
3748 }
3749 
3750 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3751 {
3752 	int i;
3753 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3754 	struct kvm_vcpu *vcpu;
3755 
3756 	if (val)
3757 		return -EINVAL;
3758 
3759 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3760 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3761 
3762 	return 0;
3763 }
3764 
3765 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3766 {
3767 	__simple_attr_check_format("%llu\n", 0ull);
3768 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3769 				 vcpu_stat_clear_per_vm, "%llu\n");
3770 }
3771 
3772 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3773 	.owner   = THIS_MODULE,
3774 	.open    = vcpu_stat_get_per_vm_open,
3775 	.release = kvm_debugfs_release,
3776 	.read    = simple_attr_read,
3777 	.write   = simple_attr_write,
3778 	.llseek  = no_llseek,
3779 };
3780 
3781 static const struct file_operations *stat_fops_per_vm[] = {
3782 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3783 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3784 };
3785 
3786 static int vm_stat_get(void *_offset, u64 *val)
3787 {
3788 	unsigned offset = (long)_offset;
3789 	struct kvm *kvm;
3790 	struct kvm_stat_data stat_tmp = {.offset = offset};
3791 	u64 tmp_val;
3792 
3793 	*val = 0;
3794 	spin_lock(&kvm_lock);
3795 	list_for_each_entry(kvm, &vm_list, vm_list) {
3796 		stat_tmp.kvm = kvm;
3797 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3798 		*val += tmp_val;
3799 	}
3800 	spin_unlock(&kvm_lock);
3801 	return 0;
3802 }
3803 
3804 static int vm_stat_clear(void *_offset, u64 val)
3805 {
3806 	unsigned offset = (long)_offset;
3807 	struct kvm *kvm;
3808 	struct kvm_stat_data stat_tmp = {.offset = offset};
3809 
3810 	if (val)
3811 		return -EINVAL;
3812 
3813 	spin_lock(&kvm_lock);
3814 	list_for_each_entry(kvm, &vm_list, vm_list) {
3815 		stat_tmp.kvm = kvm;
3816 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3817 	}
3818 	spin_unlock(&kvm_lock);
3819 
3820 	return 0;
3821 }
3822 
3823 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3824 
3825 static int vcpu_stat_get(void *_offset, u64 *val)
3826 {
3827 	unsigned offset = (long)_offset;
3828 	struct kvm *kvm;
3829 	struct kvm_stat_data stat_tmp = {.offset = offset};
3830 	u64 tmp_val;
3831 
3832 	*val = 0;
3833 	spin_lock(&kvm_lock);
3834 	list_for_each_entry(kvm, &vm_list, vm_list) {
3835 		stat_tmp.kvm = kvm;
3836 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3837 		*val += tmp_val;
3838 	}
3839 	spin_unlock(&kvm_lock);
3840 	return 0;
3841 }
3842 
3843 static int vcpu_stat_clear(void *_offset, u64 val)
3844 {
3845 	unsigned offset = (long)_offset;
3846 	struct kvm *kvm;
3847 	struct kvm_stat_data stat_tmp = {.offset = offset};
3848 
3849 	if (val)
3850 		return -EINVAL;
3851 
3852 	spin_lock(&kvm_lock);
3853 	list_for_each_entry(kvm, &vm_list, vm_list) {
3854 		stat_tmp.kvm = kvm;
3855 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3856 	}
3857 	spin_unlock(&kvm_lock);
3858 
3859 	return 0;
3860 }
3861 
3862 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3863 			"%llu\n");
3864 
3865 static const struct file_operations *stat_fops[] = {
3866 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3867 	[KVM_STAT_VM]   = &vm_stat_fops,
3868 };
3869 
3870 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3871 {
3872 	struct kobj_uevent_env *env;
3873 	unsigned long long created, active;
3874 
3875 	if (!kvm_dev.this_device || !kvm)
3876 		return;
3877 
3878 	spin_lock(&kvm_lock);
3879 	if (type == KVM_EVENT_CREATE_VM) {
3880 		kvm_createvm_count++;
3881 		kvm_active_vms++;
3882 	} else if (type == KVM_EVENT_DESTROY_VM) {
3883 		kvm_active_vms--;
3884 	}
3885 	created = kvm_createvm_count;
3886 	active = kvm_active_vms;
3887 	spin_unlock(&kvm_lock);
3888 
3889 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3890 	if (!env)
3891 		return;
3892 
3893 	add_uevent_var(env, "CREATED=%llu", created);
3894 	add_uevent_var(env, "COUNT=%llu", active);
3895 
3896 	if (type == KVM_EVENT_CREATE_VM) {
3897 		add_uevent_var(env, "EVENT=create");
3898 		kvm->userspace_pid = task_pid_nr(current);
3899 	} else if (type == KVM_EVENT_DESTROY_VM) {
3900 		add_uevent_var(env, "EVENT=destroy");
3901 	}
3902 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3903 
3904 	if (kvm->debugfs_dentry) {
3905 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3906 
3907 		if (p) {
3908 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3909 			if (!IS_ERR(tmp))
3910 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3911 			kfree(p);
3912 		}
3913 	}
3914 	/* no need for checks, since we are adding at most only 5 keys */
3915 	env->envp[env->envp_idx++] = NULL;
3916 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3917 	kfree(env);
3918 }
3919 
3920 static int kvm_init_debug(void)
3921 {
3922 	int r = -EEXIST;
3923 	struct kvm_stats_debugfs_item *p;
3924 
3925 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3926 	if (kvm_debugfs_dir == NULL)
3927 		goto out;
3928 
3929 	kvm_debugfs_num_entries = 0;
3930 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3931 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3932 					 (void *)(long)p->offset,
3933 					 stat_fops[p->kind]))
3934 			goto out_dir;
3935 	}
3936 
3937 	return 0;
3938 
3939 out_dir:
3940 	debugfs_remove_recursive(kvm_debugfs_dir);
3941 out:
3942 	return r;
3943 }
3944 
3945 static int kvm_suspend(void)
3946 {
3947 	if (kvm_usage_count)
3948 		hardware_disable_nolock(NULL);
3949 	return 0;
3950 }
3951 
3952 static void kvm_resume(void)
3953 {
3954 	if (kvm_usage_count) {
3955 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3956 		hardware_enable_nolock(NULL);
3957 	}
3958 }
3959 
3960 static struct syscore_ops kvm_syscore_ops = {
3961 	.suspend = kvm_suspend,
3962 	.resume = kvm_resume,
3963 };
3964 
3965 static inline
3966 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3967 {
3968 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3969 }
3970 
3971 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3972 {
3973 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3974 
3975 	if (vcpu->preempted)
3976 		vcpu->preempted = false;
3977 
3978 	kvm_arch_sched_in(vcpu, cpu);
3979 
3980 	kvm_arch_vcpu_load(vcpu, cpu);
3981 }
3982 
3983 static void kvm_sched_out(struct preempt_notifier *pn,
3984 			  struct task_struct *next)
3985 {
3986 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3987 
3988 	if (current->state == TASK_RUNNING)
3989 		vcpu->preempted = true;
3990 	kvm_arch_vcpu_put(vcpu);
3991 }
3992 
3993 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3994 		  struct module *module)
3995 {
3996 	int r;
3997 	int cpu;
3998 
3999 	r = kvm_arch_init(opaque);
4000 	if (r)
4001 		goto out_fail;
4002 
4003 	/*
4004 	 * kvm_arch_init makes sure there's at most one caller
4005 	 * for architectures that support multiple implementations,
4006 	 * like intel and amd on x86.
4007 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4008 	 * conflicts in case kvm is already setup for another implementation.
4009 	 */
4010 	r = kvm_irqfd_init();
4011 	if (r)
4012 		goto out_irqfd;
4013 
4014 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4015 		r = -ENOMEM;
4016 		goto out_free_0;
4017 	}
4018 
4019 	r = kvm_arch_hardware_setup();
4020 	if (r < 0)
4021 		goto out_free_0a;
4022 
4023 	for_each_online_cpu(cpu) {
4024 		smp_call_function_single(cpu,
4025 				kvm_arch_check_processor_compat,
4026 				&r, 1);
4027 		if (r < 0)
4028 			goto out_free_1;
4029 	}
4030 
4031 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4032 				      kvm_starting_cpu, kvm_dying_cpu);
4033 	if (r)
4034 		goto out_free_2;
4035 	register_reboot_notifier(&kvm_reboot_notifier);
4036 
4037 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4038 	if (!vcpu_align)
4039 		vcpu_align = __alignof__(struct kvm_vcpu);
4040 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4041 					   SLAB_ACCOUNT, NULL);
4042 	if (!kvm_vcpu_cache) {
4043 		r = -ENOMEM;
4044 		goto out_free_3;
4045 	}
4046 
4047 	r = kvm_async_pf_init();
4048 	if (r)
4049 		goto out_free;
4050 
4051 	kvm_chardev_ops.owner = module;
4052 	kvm_vm_fops.owner = module;
4053 	kvm_vcpu_fops.owner = module;
4054 
4055 	r = misc_register(&kvm_dev);
4056 	if (r) {
4057 		pr_err("kvm: misc device register failed\n");
4058 		goto out_unreg;
4059 	}
4060 
4061 	register_syscore_ops(&kvm_syscore_ops);
4062 
4063 	kvm_preempt_ops.sched_in = kvm_sched_in;
4064 	kvm_preempt_ops.sched_out = kvm_sched_out;
4065 
4066 	r = kvm_init_debug();
4067 	if (r) {
4068 		pr_err("kvm: create debugfs files failed\n");
4069 		goto out_undebugfs;
4070 	}
4071 
4072 	r = kvm_vfio_ops_init();
4073 	WARN_ON(r);
4074 
4075 	return 0;
4076 
4077 out_undebugfs:
4078 	unregister_syscore_ops(&kvm_syscore_ops);
4079 	misc_deregister(&kvm_dev);
4080 out_unreg:
4081 	kvm_async_pf_deinit();
4082 out_free:
4083 	kmem_cache_destroy(kvm_vcpu_cache);
4084 out_free_3:
4085 	unregister_reboot_notifier(&kvm_reboot_notifier);
4086 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4087 out_free_2:
4088 out_free_1:
4089 	kvm_arch_hardware_unsetup();
4090 out_free_0a:
4091 	free_cpumask_var(cpus_hardware_enabled);
4092 out_free_0:
4093 	kvm_irqfd_exit();
4094 out_irqfd:
4095 	kvm_arch_exit();
4096 out_fail:
4097 	return r;
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_init);
4100 
4101 void kvm_exit(void)
4102 {
4103 	debugfs_remove_recursive(kvm_debugfs_dir);
4104 	misc_deregister(&kvm_dev);
4105 	kmem_cache_destroy(kvm_vcpu_cache);
4106 	kvm_async_pf_deinit();
4107 	unregister_syscore_ops(&kvm_syscore_ops);
4108 	unregister_reboot_notifier(&kvm_reboot_notifier);
4109 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4110 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4111 	kvm_arch_hardware_unsetup();
4112 	kvm_arch_exit();
4113 	kvm_irqfd_exit();
4114 	free_cpumask_var(cpus_hardware_enabled);
4115 	kvm_vfio_ops_exit();
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_exit);
4118