xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 65cf840f)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/mm.h>
26 #include <linux/miscdevice.h>
27 #include <linux/vmalloc.h>
28 #include <linux/reboot.h>
29 #include <linux/debugfs.h>
30 #include <linux/highmem.h>
31 #include <linux/file.h>
32 #include <linux/sysdev.h>
33 #include <linux/cpu.h>
34 #include <linux/sched.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 
50 #include <asm/processor.h>
51 #include <asm/io.h>
52 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm-generic/bitops/le.h>
55 
56 #include "coalesced_mmio.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60 
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63 
64 /*
65  * Ordering of locks:
66  *
67  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68  */
69 
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72 
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76 
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79 
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81 
82 struct dentry *kvm_debugfs_dir;
83 
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 			   unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88 
89 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
90 
91 static bool kvm_rebooting;
92 
93 static bool largepages_enabled = true;
94 
95 inline int kvm_is_mmio_pfn(pfn_t pfn)
96 {
97 	if (pfn_valid(pfn)) {
98 		struct page *page = compound_head(pfn_to_page(pfn));
99 		return PageReserved(page);
100 	}
101 
102 	return true;
103 }
104 
105 /*
106  * Switches to specified vcpu, until a matching vcpu_put()
107  */
108 void vcpu_load(struct kvm_vcpu *vcpu)
109 {
110 	int cpu;
111 
112 	mutex_lock(&vcpu->mutex);
113 	cpu = get_cpu();
114 	preempt_notifier_register(&vcpu->preempt_notifier);
115 	kvm_arch_vcpu_load(vcpu, cpu);
116 	put_cpu();
117 }
118 
119 void vcpu_put(struct kvm_vcpu *vcpu)
120 {
121 	preempt_disable();
122 	kvm_arch_vcpu_put(vcpu);
123 	preempt_notifier_unregister(&vcpu->preempt_notifier);
124 	preempt_enable();
125 	mutex_unlock(&vcpu->mutex);
126 }
127 
128 static void ack_flush(void *_completed)
129 {
130 }
131 
132 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
133 {
134 	int i, cpu, me;
135 	cpumask_var_t cpus;
136 	bool called = true;
137 	struct kvm_vcpu *vcpu;
138 
139 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
140 
141 	raw_spin_lock(&kvm->requests_lock);
142 	me = smp_processor_id();
143 	kvm_for_each_vcpu(i, vcpu, kvm) {
144 		if (test_and_set_bit(req, &vcpu->requests))
145 			continue;
146 		cpu = vcpu->cpu;
147 		if (cpus != NULL && cpu != -1 && cpu != me)
148 			cpumask_set_cpu(cpu, cpus);
149 	}
150 	if (unlikely(cpus == NULL))
151 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
152 	else if (!cpumask_empty(cpus))
153 		smp_call_function_many(cpus, ack_flush, NULL, 1);
154 	else
155 		called = false;
156 	raw_spin_unlock(&kvm->requests_lock);
157 	free_cpumask_var(cpus);
158 	return called;
159 }
160 
161 void kvm_flush_remote_tlbs(struct kvm *kvm)
162 {
163 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
164 		++kvm->stat.remote_tlb_flush;
165 }
166 
167 void kvm_reload_remote_mmus(struct kvm *kvm)
168 {
169 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
170 }
171 
172 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
173 {
174 	struct page *page;
175 	int r;
176 
177 	mutex_init(&vcpu->mutex);
178 	vcpu->cpu = -1;
179 	vcpu->kvm = kvm;
180 	vcpu->vcpu_id = id;
181 	init_waitqueue_head(&vcpu->wq);
182 
183 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
184 	if (!page) {
185 		r = -ENOMEM;
186 		goto fail;
187 	}
188 	vcpu->run = page_address(page);
189 
190 	r = kvm_arch_vcpu_init(vcpu);
191 	if (r < 0)
192 		goto fail_free_run;
193 	return 0;
194 
195 fail_free_run:
196 	free_page((unsigned long)vcpu->run);
197 fail:
198 	return r;
199 }
200 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
201 
202 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
203 {
204 	kvm_arch_vcpu_uninit(vcpu);
205 	free_page((unsigned long)vcpu->run);
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
208 
209 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
210 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
211 {
212 	return container_of(mn, struct kvm, mmu_notifier);
213 }
214 
215 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
216 					     struct mm_struct *mm,
217 					     unsigned long address)
218 {
219 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
220 	int need_tlb_flush, idx;
221 
222 	/*
223 	 * When ->invalidate_page runs, the linux pte has been zapped
224 	 * already but the page is still allocated until
225 	 * ->invalidate_page returns. So if we increase the sequence
226 	 * here the kvm page fault will notice if the spte can't be
227 	 * established because the page is going to be freed. If
228 	 * instead the kvm page fault establishes the spte before
229 	 * ->invalidate_page runs, kvm_unmap_hva will release it
230 	 * before returning.
231 	 *
232 	 * The sequence increase only need to be seen at spin_unlock
233 	 * time, and not at spin_lock time.
234 	 *
235 	 * Increasing the sequence after the spin_unlock would be
236 	 * unsafe because the kvm page fault could then establish the
237 	 * pte after kvm_unmap_hva returned, without noticing the page
238 	 * is going to be freed.
239 	 */
240 	idx = srcu_read_lock(&kvm->srcu);
241 	spin_lock(&kvm->mmu_lock);
242 	kvm->mmu_notifier_seq++;
243 	need_tlb_flush = kvm_unmap_hva(kvm, address);
244 	spin_unlock(&kvm->mmu_lock);
245 	srcu_read_unlock(&kvm->srcu, idx);
246 
247 	/* we've to flush the tlb before the pages can be freed */
248 	if (need_tlb_flush)
249 		kvm_flush_remote_tlbs(kvm);
250 
251 }
252 
253 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
254 					struct mm_struct *mm,
255 					unsigned long address,
256 					pte_t pte)
257 {
258 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
259 	int idx;
260 
261 	idx = srcu_read_lock(&kvm->srcu);
262 	spin_lock(&kvm->mmu_lock);
263 	kvm->mmu_notifier_seq++;
264 	kvm_set_spte_hva(kvm, address, pte);
265 	spin_unlock(&kvm->mmu_lock);
266 	srcu_read_unlock(&kvm->srcu, idx);
267 }
268 
269 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
270 						    struct mm_struct *mm,
271 						    unsigned long start,
272 						    unsigned long end)
273 {
274 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
275 	int need_tlb_flush = 0, idx;
276 
277 	idx = srcu_read_lock(&kvm->srcu);
278 	spin_lock(&kvm->mmu_lock);
279 	/*
280 	 * The count increase must become visible at unlock time as no
281 	 * spte can be established without taking the mmu_lock and
282 	 * count is also read inside the mmu_lock critical section.
283 	 */
284 	kvm->mmu_notifier_count++;
285 	for (; start < end; start += PAGE_SIZE)
286 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
287 	spin_unlock(&kvm->mmu_lock);
288 	srcu_read_unlock(&kvm->srcu, idx);
289 
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 }
294 
295 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
296 						  struct mm_struct *mm,
297 						  unsigned long start,
298 						  unsigned long end)
299 {
300 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
301 
302 	spin_lock(&kvm->mmu_lock);
303 	/*
304 	 * This sequence increase will notify the kvm page fault that
305 	 * the page that is going to be mapped in the spte could have
306 	 * been freed.
307 	 */
308 	kvm->mmu_notifier_seq++;
309 	/*
310 	 * The above sequence increase must be visible before the
311 	 * below count decrease but both values are read by the kvm
312 	 * page fault under mmu_lock spinlock so we don't need to add
313 	 * a smb_wmb() here in between the two.
314 	 */
315 	kvm->mmu_notifier_count--;
316 	spin_unlock(&kvm->mmu_lock);
317 
318 	BUG_ON(kvm->mmu_notifier_count < 0);
319 }
320 
321 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
322 					      struct mm_struct *mm,
323 					      unsigned long address)
324 {
325 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
326 	int young, idx;
327 
328 	idx = srcu_read_lock(&kvm->srcu);
329 	spin_lock(&kvm->mmu_lock);
330 	young = kvm_age_hva(kvm, address);
331 	spin_unlock(&kvm->mmu_lock);
332 	srcu_read_unlock(&kvm->srcu, idx);
333 
334 	if (young)
335 		kvm_flush_remote_tlbs(kvm);
336 
337 	return young;
338 }
339 
340 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
341 				     struct mm_struct *mm)
342 {
343 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
344 	int idx;
345 
346 	idx = srcu_read_lock(&kvm->srcu);
347 	kvm_arch_flush_shadow(kvm);
348 	srcu_read_unlock(&kvm->srcu, idx);
349 }
350 
351 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
352 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
353 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
354 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
355 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
356 	.change_pte		= kvm_mmu_notifier_change_pte,
357 	.release		= kvm_mmu_notifier_release,
358 };
359 
360 static int kvm_init_mmu_notifier(struct kvm *kvm)
361 {
362 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
363 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
364 }
365 
366 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
367 
368 static int kvm_init_mmu_notifier(struct kvm *kvm)
369 {
370 	return 0;
371 }
372 
373 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
374 
375 static struct kvm *kvm_create_vm(void)
376 {
377 	int r = 0, i;
378 	struct kvm *kvm = kvm_arch_create_vm();
379 
380 	if (IS_ERR(kvm))
381 		goto out;
382 
383 	r = hardware_enable_all();
384 	if (r)
385 		goto out_err_nodisable;
386 
387 #ifdef CONFIG_HAVE_KVM_IRQCHIP
388 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
389 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
390 #endif
391 
392 	r = -ENOMEM;
393 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
394 	if (!kvm->memslots)
395 		goto out_err;
396 	if (init_srcu_struct(&kvm->srcu))
397 		goto out_err;
398 	for (i = 0; i < KVM_NR_BUSES; i++) {
399 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
400 					GFP_KERNEL);
401 		if (!kvm->buses[i]) {
402 			cleanup_srcu_struct(&kvm->srcu);
403 			goto out_err;
404 		}
405 	}
406 
407 	r = kvm_init_mmu_notifier(kvm);
408 	if (r) {
409 		cleanup_srcu_struct(&kvm->srcu);
410 		goto out_err;
411 	}
412 
413 	kvm->mm = current->mm;
414 	atomic_inc(&kvm->mm->mm_count);
415 	spin_lock_init(&kvm->mmu_lock);
416 	raw_spin_lock_init(&kvm->requests_lock);
417 	kvm_eventfd_init(kvm);
418 	mutex_init(&kvm->lock);
419 	mutex_init(&kvm->irq_lock);
420 	mutex_init(&kvm->slots_lock);
421 	atomic_set(&kvm->users_count, 1);
422 	spin_lock(&kvm_lock);
423 	list_add(&kvm->vm_list, &vm_list);
424 	spin_unlock(&kvm_lock);
425 out:
426 	return kvm;
427 
428 out_err:
429 	hardware_disable_all();
430 out_err_nodisable:
431 	for (i = 0; i < KVM_NR_BUSES; i++)
432 		kfree(kvm->buses[i]);
433 	kfree(kvm->memslots);
434 	kfree(kvm);
435 	return ERR_PTR(r);
436 }
437 
438 /*
439  * Free any memory in @free but not in @dont.
440  */
441 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
442 				  struct kvm_memory_slot *dont)
443 {
444 	int i;
445 
446 	if (!dont || free->rmap != dont->rmap)
447 		vfree(free->rmap);
448 
449 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
450 		vfree(free->dirty_bitmap);
451 
452 
453 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
454 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
455 			vfree(free->lpage_info[i]);
456 			free->lpage_info[i] = NULL;
457 		}
458 	}
459 
460 	free->npages = 0;
461 	free->dirty_bitmap = NULL;
462 	free->rmap = NULL;
463 }
464 
465 void kvm_free_physmem(struct kvm *kvm)
466 {
467 	int i;
468 	struct kvm_memslots *slots = kvm->memslots;
469 
470 	for (i = 0; i < slots->nmemslots; ++i)
471 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
472 
473 	kfree(kvm->memslots);
474 }
475 
476 static void kvm_destroy_vm(struct kvm *kvm)
477 {
478 	int i;
479 	struct mm_struct *mm = kvm->mm;
480 
481 	kvm_arch_sync_events(kvm);
482 	spin_lock(&kvm_lock);
483 	list_del(&kvm->vm_list);
484 	spin_unlock(&kvm_lock);
485 	kvm_free_irq_routing(kvm);
486 	for (i = 0; i < KVM_NR_BUSES; i++)
487 		kvm_io_bus_destroy(kvm->buses[i]);
488 	kvm_coalesced_mmio_free(kvm);
489 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
490 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
491 #else
492 	kvm_arch_flush_shadow(kvm);
493 #endif
494 	kvm_arch_destroy_vm(kvm);
495 	hardware_disable_all();
496 	mmdrop(mm);
497 }
498 
499 void kvm_get_kvm(struct kvm *kvm)
500 {
501 	atomic_inc(&kvm->users_count);
502 }
503 EXPORT_SYMBOL_GPL(kvm_get_kvm);
504 
505 void kvm_put_kvm(struct kvm *kvm)
506 {
507 	if (atomic_dec_and_test(&kvm->users_count))
508 		kvm_destroy_vm(kvm);
509 }
510 EXPORT_SYMBOL_GPL(kvm_put_kvm);
511 
512 
513 static int kvm_vm_release(struct inode *inode, struct file *filp)
514 {
515 	struct kvm *kvm = filp->private_data;
516 
517 	kvm_irqfd_release(kvm);
518 
519 	kvm_put_kvm(kvm);
520 	return 0;
521 }
522 
523 /*
524  * Allocate some memory and give it an address in the guest physical address
525  * space.
526  *
527  * Discontiguous memory is allowed, mostly for framebuffers.
528  *
529  * Must be called holding mmap_sem for write.
530  */
531 int __kvm_set_memory_region(struct kvm *kvm,
532 			    struct kvm_userspace_memory_region *mem,
533 			    int user_alloc)
534 {
535 	int r, flush_shadow = 0;
536 	gfn_t base_gfn;
537 	unsigned long npages;
538 	unsigned long i;
539 	struct kvm_memory_slot *memslot;
540 	struct kvm_memory_slot old, new;
541 	struct kvm_memslots *slots, *old_memslots;
542 
543 	r = -EINVAL;
544 	/* General sanity checks */
545 	if (mem->memory_size & (PAGE_SIZE - 1))
546 		goto out;
547 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
548 		goto out;
549 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
550 		goto out;
551 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
552 		goto out;
553 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
554 		goto out;
555 
556 	memslot = &kvm->memslots->memslots[mem->slot];
557 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
558 	npages = mem->memory_size >> PAGE_SHIFT;
559 
560 	r = -EINVAL;
561 	if (npages > KVM_MEM_MAX_NR_PAGES)
562 		goto out;
563 
564 	if (!npages)
565 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
566 
567 	new = old = *memslot;
568 
569 	new.base_gfn = base_gfn;
570 	new.npages = npages;
571 	new.flags = mem->flags;
572 
573 	/* Disallow changing a memory slot's size. */
574 	r = -EINVAL;
575 	if (npages && old.npages && npages != old.npages)
576 		goto out_free;
577 
578 	/* Check for overlaps */
579 	r = -EEXIST;
580 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
581 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
582 
583 		if (s == memslot || !s->npages)
584 			continue;
585 		if (!((base_gfn + npages <= s->base_gfn) ||
586 		      (base_gfn >= s->base_gfn + s->npages)))
587 			goto out_free;
588 	}
589 
590 	/* Free page dirty bitmap if unneeded */
591 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
592 		new.dirty_bitmap = NULL;
593 
594 	r = -ENOMEM;
595 
596 	/* Allocate if a slot is being created */
597 #ifndef CONFIG_S390
598 	if (npages && !new.rmap) {
599 		new.rmap = vmalloc(npages * sizeof(struct page *));
600 
601 		if (!new.rmap)
602 			goto out_free;
603 
604 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
605 
606 		new.user_alloc = user_alloc;
607 		new.userspace_addr = mem->userspace_addr;
608 	}
609 	if (!npages)
610 		goto skip_lpage;
611 
612 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
613 		unsigned long ugfn;
614 		unsigned long j;
615 		int lpages;
616 		int level = i + 2;
617 
618 		/* Avoid unused variable warning if no large pages */
619 		(void)level;
620 
621 		if (new.lpage_info[i])
622 			continue;
623 
624 		lpages = 1 + (base_gfn + npages - 1) /
625 			     KVM_PAGES_PER_HPAGE(level);
626 		lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
627 
628 		new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
629 
630 		if (!new.lpage_info[i])
631 			goto out_free;
632 
633 		memset(new.lpage_info[i], 0,
634 		       lpages * sizeof(*new.lpage_info[i]));
635 
636 		if (base_gfn % KVM_PAGES_PER_HPAGE(level))
637 			new.lpage_info[i][0].write_count = 1;
638 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
639 			new.lpage_info[i][lpages - 1].write_count = 1;
640 		ugfn = new.userspace_addr >> PAGE_SHIFT;
641 		/*
642 		 * If the gfn and userspace address are not aligned wrt each
643 		 * other, or if explicitly asked to, disable large page
644 		 * support for this slot
645 		 */
646 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
647 		    !largepages_enabled)
648 			for (j = 0; j < lpages; ++j)
649 				new.lpage_info[i][j].write_count = 1;
650 	}
651 
652 skip_lpage:
653 
654 	/* Allocate page dirty bitmap if needed */
655 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
656 		unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
657 
658 		new.dirty_bitmap = vmalloc(dirty_bytes);
659 		if (!new.dirty_bitmap)
660 			goto out_free;
661 		memset(new.dirty_bitmap, 0, dirty_bytes);
662 		/* destroy any largepage mappings for dirty tracking */
663 		if (old.npages)
664 			flush_shadow = 1;
665 	}
666 #else  /* not defined CONFIG_S390 */
667 	new.user_alloc = user_alloc;
668 	if (user_alloc)
669 		new.userspace_addr = mem->userspace_addr;
670 #endif /* not defined CONFIG_S390 */
671 
672 	if (!npages) {
673 		r = -ENOMEM;
674 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
675 		if (!slots)
676 			goto out_free;
677 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
678 		if (mem->slot >= slots->nmemslots)
679 			slots->nmemslots = mem->slot + 1;
680 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
681 
682 		old_memslots = kvm->memslots;
683 		rcu_assign_pointer(kvm->memslots, slots);
684 		synchronize_srcu_expedited(&kvm->srcu);
685 		/* From this point no new shadow pages pointing to a deleted
686 		 * memslot will be created.
687 		 *
688 		 * validation of sp->gfn happens in:
689 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
690 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
691 		 */
692 		kvm_arch_flush_shadow(kvm);
693 		kfree(old_memslots);
694 	}
695 
696 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
697 	if (r)
698 		goto out_free;
699 
700 #ifdef CONFIG_DMAR
701 	/* map the pages in iommu page table */
702 	if (npages) {
703 		r = kvm_iommu_map_pages(kvm, &new);
704 		if (r)
705 			goto out_free;
706 	}
707 #endif
708 
709 	r = -ENOMEM;
710 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
711 	if (!slots)
712 		goto out_free;
713 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
714 	if (mem->slot >= slots->nmemslots)
715 		slots->nmemslots = mem->slot + 1;
716 
717 	/* actual memory is freed via old in kvm_free_physmem_slot below */
718 	if (!npages) {
719 		new.rmap = NULL;
720 		new.dirty_bitmap = NULL;
721 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
722 			new.lpage_info[i] = NULL;
723 	}
724 
725 	slots->memslots[mem->slot] = new;
726 	old_memslots = kvm->memslots;
727 	rcu_assign_pointer(kvm->memslots, slots);
728 	synchronize_srcu_expedited(&kvm->srcu);
729 
730 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
731 
732 	kvm_free_physmem_slot(&old, &new);
733 	kfree(old_memslots);
734 
735 	if (flush_shadow)
736 		kvm_arch_flush_shadow(kvm);
737 
738 	return 0;
739 
740 out_free:
741 	kvm_free_physmem_slot(&new, &old);
742 out:
743 	return r;
744 
745 }
746 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
747 
748 int kvm_set_memory_region(struct kvm *kvm,
749 			  struct kvm_userspace_memory_region *mem,
750 			  int user_alloc)
751 {
752 	int r;
753 
754 	mutex_lock(&kvm->slots_lock);
755 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
756 	mutex_unlock(&kvm->slots_lock);
757 	return r;
758 }
759 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
760 
761 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
762 				   struct
763 				   kvm_userspace_memory_region *mem,
764 				   int user_alloc)
765 {
766 	if (mem->slot >= KVM_MEMORY_SLOTS)
767 		return -EINVAL;
768 	return kvm_set_memory_region(kvm, mem, user_alloc);
769 }
770 
771 int kvm_get_dirty_log(struct kvm *kvm,
772 			struct kvm_dirty_log *log, int *is_dirty)
773 {
774 	struct kvm_memory_slot *memslot;
775 	int r, i;
776 	unsigned long n;
777 	unsigned long any = 0;
778 
779 	r = -EINVAL;
780 	if (log->slot >= KVM_MEMORY_SLOTS)
781 		goto out;
782 
783 	memslot = &kvm->memslots->memslots[log->slot];
784 	r = -ENOENT;
785 	if (!memslot->dirty_bitmap)
786 		goto out;
787 
788 	n = kvm_dirty_bitmap_bytes(memslot);
789 
790 	for (i = 0; !any && i < n/sizeof(long); ++i)
791 		any = memslot->dirty_bitmap[i];
792 
793 	r = -EFAULT;
794 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
795 		goto out;
796 
797 	if (any)
798 		*is_dirty = 1;
799 
800 	r = 0;
801 out:
802 	return r;
803 }
804 
805 void kvm_disable_largepages(void)
806 {
807 	largepages_enabled = false;
808 }
809 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
810 
811 int is_error_page(struct page *page)
812 {
813 	return page == bad_page;
814 }
815 EXPORT_SYMBOL_GPL(is_error_page);
816 
817 int is_error_pfn(pfn_t pfn)
818 {
819 	return pfn == bad_pfn;
820 }
821 EXPORT_SYMBOL_GPL(is_error_pfn);
822 
823 static inline unsigned long bad_hva(void)
824 {
825 	return PAGE_OFFSET;
826 }
827 
828 int kvm_is_error_hva(unsigned long addr)
829 {
830 	return addr == bad_hva();
831 }
832 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
833 
834 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
835 {
836 	int i;
837 	struct kvm_memslots *slots = kvm_memslots(kvm);
838 
839 	for (i = 0; i < slots->nmemslots; ++i) {
840 		struct kvm_memory_slot *memslot = &slots->memslots[i];
841 
842 		if (gfn >= memslot->base_gfn
843 		    && gfn < memslot->base_gfn + memslot->npages)
844 			return memslot;
845 	}
846 	return NULL;
847 }
848 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
849 
850 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
851 {
852 	gfn = unalias_gfn(kvm, gfn);
853 	return gfn_to_memslot_unaliased(kvm, gfn);
854 }
855 
856 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
857 {
858 	int i;
859 	struct kvm_memslots *slots = kvm_memslots(kvm);
860 
861 	gfn = unalias_gfn_instantiation(kvm, gfn);
862 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
863 		struct kvm_memory_slot *memslot = &slots->memslots[i];
864 
865 		if (memslot->flags & KVM_MEMSLOT_INVALID)
866 			continue;
867 
868 		if (gfn >= memslot->base_gfn
869 		    && gfn < memslot->base_gfn + memslot->npages)
870 			return 1;
871 	}
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
875 
876 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
877 {
878 	struct vm_area_struct *vma;
879 	unsigned long addr, size;
880 
881 	size = PAGE_SIZE;
882 
883 	addr = gfn_to_hva(kvm, gfn);
884 	if (kvm_is_error_hva(addr))
885 		return PAGE_SIZE;
886 
887 	down_read(&current->mm->mmap_sem);
888 	vma = find_vma(current->mm, addr);
889 	if (!vma)
890 		goto out;
891 
892 	size = vma_kernel_pagesize(vma);
893 
894 out:
895 	up_read(&current->mm->mmap_sem);
896 
897 	return size;
898 }
899 
900 int memslot_id(struct kvm *kvm, gfn_t gfn)
901 {
902 	int i;
903 	struct kvm_memslots *slots = kvm_memslots(kvm);
904 	struct kvm_memory_slot *memslot = NULL;
905 
906 	gfn = unalias_gfn(kvm, gfn);
907 	for (i = 0; i < slots->nmemslots; ++i) {
908 		memslot = &slots->memslots[i];
909 
910 		if (gfn >= memslot->base_gfn
911 		    && gfn < memslot->base_gfn + memslot->npages)
912 			break;
913 	}
914 
915 	return memslot - slots->memslots;
916 }
917 
918 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
919 {
920 	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
921 }
922 
923 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
924 {
925 	struct kvm_memory_slot *slot;
926 
927 	gfn = unalias_gfn_instantiation(kvm, gfn);
928 	slot = gfn_to_memslot_unaliased(kvm, gfn);
929 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
930 		return bad_hva();
931 	return gfn_to_hva_memslot(slot, gfn);
932 }
933 EXPORT_SYMBOL_GPL(gfn_to_hva);
934 
935 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
936 {
937 	struct page *page[1];
938 	int npages;
939 	pfn_t pfn;
940 
941 	might_sleep();
942 
943 	npages = get_user_pages_fast(addr, 1, 1, page);
944 
945 	if (unlikely(npages != 1)) {
946 		struct vm_area_struct *vma;
947 
948 		down_read(&current->mm->mmap_sem);
949 		vma = find_vma(current->mm, addr);
950 
951 		if (vma == NULL || addr < vma->vm_start ||
952 		    !(vma->vm_flags & VM_PFNMAP)) {
953 			up_read(&current->mm->mmap_sem);
954 			get_page(bad_page);
955 			return page_to_pfn(bad_page);
956 		}
957 
958 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
959 		up_read(&current->mm->mmap_sem);
960 		BUG_ON(!kvm_is_mmio_pfn(pfn));
961 	} else
962 		pfn = page_to_pfn(page[0]);
963 
964 	return pfn;
965 }
966 
967 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
968 {
969 	unsigned long addr;
970 
971 	addr = gfn_to_hva(kvm, gfn);
972 	if (kvm_is_error_hva(addr)) {
973 		get_page(bad_page);
974 		return page_to_pfn(bad_page);
975 	}
976 
977 	return hva_to_pfn(kvm, addr);
978 }
979 EXPORT_SYMBOL_GPL(gfn_to_pfn);
980 
981 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
982 			 struct kvm_memory_slot *slot, gfn_t gfn)
983 {
984 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
985 	return hva_to_pfn(kvm, addr);
986 }
987 
988 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
989 {
990 	pfn_t pfn;
991 
992 	pfn = gfn_to_pfn(kvm, gfn);
993 	if (!kvm_is_mmio_pfn(pfn))
994 		return pfn_to_page(pfn);
995 
996 	WARN_ON(kvm_is_mmio_pfn(pfn));
997 
998 	get_page(bad_page);
999 	return bad_page;
1000 }
1001 
1002 EXPORT_SYMBOL_GPL(gfn_to_page);
1003 
1004 void kvm_release_page_clean(struct page *page)
1005 {
1006 	kvm_release_pfn_clean(page_to_pfn(page));
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1009 
1010 void kvm_release_pfn_clean(pfn_t pfn)
1011 {
1012 	if (!kvm_is_mmio_pfn(pfn))
1013 		put_page(pfn_to_page(pfn));
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1016 
1017 void kvm_release_page_dirty(struct page *page)
1018 {
1019 	kvm_release_pfn_dirty(page_to_pfn(page));
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1022 
1023 void kvm_release_pfn_dirty(pfn_t pfn)
1024 {
1025 	kvm_set_pfn_dirty(pfn);
1026 	kvm_release_pfn_clean(pfn);
1027 }
1028 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1029 
1030 void kvm_set_page_dirty(struct page *page)
1031 {
1032 	kvm_set_pfn_dirty(page_to_pfn(page));
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1035 
1036 void kvm_set_pfn_dirty(pfn_t pfn)
1037 {
1038 	if (!kvm_is_mmio_pfn(pfn)) {
1039 		struct page *page = pfn_to_page(pfn);
1040 		if (!PageReserved(page))
1041 			SetPageDirty(page);
1042 	}
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1045 
1046 void kvm_set_pfn_accessed(pfn_t pfn)
1047 {
1048 	if (!kvm_is_mmio_pfn(pfn))
1049 		mark_page_accessed(pfn_to_page(pfn));
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1052 
1053 void kvm_get_pfn(pfn_t pfn)
1054 {
1055 	if (!kvm_is_mmio_pfn(pfn))
1056 		get_page(pfn_to_page(pfn));
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1059 
1060 static int next_segment(unsigned long len, int offset)
1061 {
1062 	if (len > PAGE_SIZE - offset)
1063 		return PAGE_SIZE - offset;
1064 	else
1065 		return len;
1066 }
1067 
1068 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1069 			int len)
1070 {
1071 	int r;
1072 	unsigned long addr;
1073 
1074 	addr = gfn_to_hva(kvm, gfn);
1075 	if (kvm_is_error_hva(addr))
1076 		return -EFAULT;
1077 	r = copy_from_user(data, (void __user *)addr + offset, len);
1078 	if (r)
1079 		return -EFAULT;
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1083 
1084 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1085 {
1086 	gfn_t gfn = gpa >> PAGE_SHIFT;
1087 	int seg;
1088 	int offset = offset_in_page(gpa);
1089 	int ret;
1090 
1091 	while ((seg = next_segment(len, offset)) != 0) {
1092 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1093 		if (ret < 0)
1094 			return ret;
1095 		offset = 0;
1096 		len -= seg;
1097 		data += seg;
1098 		++gfn;
1099 	}
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_read_guest);
1103 
1104 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1105 			  unsigned long len)
1106 {
1107 	int r;
1108 	unsigned long addr;
1109 	gfn_t gfn = gpa >> PAGE_SHIFT;
1110 	int offset = offset_in_page(gpa);
1111 
1112 	addr = gfn_to_hva(kvm, gfn);
1113 	if (kvm_is_error_hva(addr))
1114 		return -EFAULT;
1115 	pagefault_disable();
1116 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1117 	pagefault_enable();
1118 	if (r)
1119 		return -EFAULT;
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL(kvm_read_guest_atomic);
1123 
1124 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1125 			 int offset, int len)
1126 {
1127 	int r;
1128 	unsigned long addr;
1129 
1130 	addr = gfn_to_hva(kvm, gfn);
1131 	if (kvm_is_error_hva(addr))
1132 		return -EFAULT;
1133 	r = copy_to_user((void __user *)addr + offset, data, len);
1134 	if (r)
1135 		return -EFAULT;
1136 	mark_page_dirty(kvm, gfn);
1137 	return 0;
1138 }
1139 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1140 
1141 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1142 		    unsigned long len)
1143 {
1144 	gfn_t gfn = gpa >> PAGE_SHIFT;
1145 	int seg;
1146 	int offset = offset_in_page(gpa);
1147 	int ret;
1148 
1149 	while ((seg = next_segment(len, offset)) != 0) {
1150 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1151 		if (ret < 0)
1152 			return ret;
1153 		offset = 0;
1154 		len -= seg;
1155 		data += seg;
1156 		++gfn;
1157 	}
1158 	return 0;
1159 }
1160 
1161 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1162 {
1163 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1166 
1167 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1168 {
1169 	gfn_t gfn = gpa >> PAGE_SHIFT;
1170 	int seg;
1171 	int offset = offset_in_page(gpa);
1172 	int ret;
1173 
1174         while ((seg = next_segment(len, offset)) != 0) {
1175 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1176 		if (ret < 0)
1177 			return ret;
1178 		offset = 0;
1179 		len -= seg;
1180 		++gfn;
1181 	}
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1185 
1186 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1187 {
1188 	struct kvm_memory_slot *memslot;
1189 
1190 	gfn = unalias_gfn(kvm, gfn);
1191 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1192 	if (memslot && memslot->dirty_bitmap) {
1193 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1194 
1195 		generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1196 	}
1197 }
1198 
1199 /*
1200  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1201  */
1202 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1203 {
1204 	DEFINE_WAIT(wait);
1205 
1206 	for (;;) {
1207 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1208 
1209 		if (kvm_arch_vcpu_runnable(vcpu)) {
1210 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1211 			break;
1212 		}
1213 		if (kvm_cpu_has_pending_timer(vcpu))
1214 			break;
1215 		if (signal_pending(current))
1216 			break;
1217 
1218 		schedule();
1219 	}
1220 
1221 	finish_wait(&vcpu->wq, &wait);
1222 }
1223 
1224 void kvm_resched(struct kvm_vcpu *vcpu)
1225 {
1226 	if (!need_resched())
1227 		return;
1228 	cond_resched();
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_resched);
1231 
1232 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1233 {
1234 	ktime_t expires;
1235 	DEFINE_WAIT(wait);
1236 
1237 	prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1238 
1239 	/* Sleep for 100 us, and hope lock-holder got scheduled */
1240 	expires = ktime_add_ns(ktime_get(), 100000UL);
1241 	schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1242 
1243 	finish_wait(&vcpu->wq, &wait);
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1246 
1247 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248 {
1249 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1250 	struct page *page;
1251 
1252 	if (vmf->pgoff == 0)
1253 		page = virt_to_page(vcpu->run);
1254 #ifdef CONFIG_X86
1255 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1256 		page = virt_to_page(vcpu->arch.pio_data);
1257 #endif
1258 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1259 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1260 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1261 #endif
1262 	else
1263 		return VM_FAULT_SIGBUS;
1264 	get_page(page);
1265 	vmf->page = page;
1266 	return 0;
1267 }
1268 
1269 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1270 	.fault = kvm_vcpu_fault,
1271 };
1272 
1273 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1274 {
1275 	vma->vm_ops = &kvm_vcpu_vm_ops;
1276 	return 0;
1277 }
1278 
1279 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1280 {
1281 	struct kvm_vcpu *vcpu = filp->private_data;
1282 
1283 	kvm_put_kvm(vcpu->kvm);
1284 	return 0;
1285 }
1286 
1287 static struct file_operations kvm_vcpu_fops = {
1288 	.release        = kvm_vcpu_release,
1289 	.unlocked_ioctl = kvm_vcpu_ioctl,
1290 	.compat_ioctl   = kvm_vcpu_ioctl,
1291 	.mmap           = kvm_vcpu_mmap,
1292 };
1293 
1294 /*
1295  * Allocates an inode for the vcpu.
1296  */
1297 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1298 {
1299 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1300 }
1301 
1302 /*
1303  * Creates some virtual cpus.  Good luck creating more than one.
1304  */
1305 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1306 {
1307 	int r;
1308 	struct kvm_vcpu *vcpu, *v;
1309 
1310 	vcpu = kvm_arch_vcpu_create(kvm, id);
1311 	if (IS_ERR(vcpu))
1312 		return PTR_ERR(vcpu);
1313 
1314 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1315 
1316 	r = kvm_arch_vcpu_setup(vcpu);
1317 	if (r)
1318 		return r;
1319 
1320 	mutex_lock(&kvm->lock);
1321 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1322 		r = -EINVAL;
1323 		goto vcpu_destroy;
1324 	}
1325 
1326 	kvm_for_each_vcpu(r, v, kvm)
1327 		if (v->vcpu_id == id) {
1328 			r = -EEXIST;
1329 			goto vcpu_destroy;
1330 		}
1331 
1332 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1333 
1334 	/* Now it's all set up, let userspace reach it */
1335 	kvm_get_kvm(kvm);
1336 	r = create_vcpu_fd(vcpu);
1337 	if (r < 0) {
1338 		kvm_put_kvm(kvm);
1339 		goto vcpu_destroy;
1340 	}
1341 
1342 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1343 	smp_wmb();
1344 	atomic_inc(&kvm->online_vcpus);
1345 
1346 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1347 	if (kvm->bsp_vcpu_id == id)
1348 		kvm->bsp_vcpu = vcpu;
1349 #endif
1350 	mutex_unlock(&kvm->lock);
1351 	return r;
1352 
1353 vcpu_destroy:
1354 	mutex_unlock(&kvm->lock);
1355 	kvm_arch_vcpu_destroy(vcpu);
1356 	return r;
1357 }
1358 
1359 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1360 {
1361 	if (sigset) {
1362 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1363 		vcpu->sigset_active = 1;
1364 		vcpu->sigset = *sigset;
1365 	} else
1366 		vcpu->sigset_active = 0;
1367 	return 0;
1368 }
1369 
1370 static long kvm_vcpu_ioctl(struct file *filp,
1371 			   unsigned int ioctl, unsigned long arg)
1372 {
1373 	struct kvm_vcpu *vcpu = filp->private_data;
1374 	void __user *argp = (void __user *)arg;
1375 	int r;
1376 	struct kvm_fpu *fpu = NULL;
1377 	struct kvm_sregs *kvm_sregs = NULL;
1378 
1379 	if (vcpu->kvm->mm != current->mm)
1380 		return -EIO;
1381 	switch (ioctl) {
1382 	case KVM_RUN:
1383 		r = -EINVAL;
1384 		if (arg)
1385 			goto out;
1386 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1387 		break;
1388 	case KVM_GET_REGS: {
1389 		struct kvm_regs *kvm_regs;
1390 
1391 		r = -ENOMEM;
1392 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1393 		if (!kvm_regs)
1394 			goto out;
1395 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1396 		if (r)
1397 			goto out_free1;
1398 		r = -EFAULT;
1399 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1400 			goto out_free1;
1401 		r = 0;
1402 out_free1:
1403 		kfree(kvm_regs);
1404 		break;
1405 	}
1406 	case KVM_SET_REGS: {
1407 		struct kvm_regs *kvm_regs;
1408 
1409 		r = -ENOMEM;
1410 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1411 		if (!kvm_regs)
1412 			goto out;
1413 		r = -EFAULT;
1414 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1415 			goto out_free2;
1416 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1417 		if (r)
1418 			goto out_free2;
1419 		r = 0;
1420 out_free2:
1421 		kfree(kvm_regs);
1422 		break;
1423 	}
1424 	case KVM_GET_SREGS: {
1425 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1426 		r = -ENOMEM;
1427 		if (!kvm_sregs)
1428 			goto out;
1429 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1430 		if (r)
1431 			goto out;
1432 		r = -EFAULT;
1433 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1434 			goto out;
1435 		r = 0;
1436 		break;
1437 	}
1438 	case KVM_SET_SREGS: {
1439 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1440 		r = -ENOMEM;
1441 		if (!kvm_sregs)
1442 			goto out;
1443 		r = -EFAULT;
1444 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1445 			goto out;
1446 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1447 		if (r)
1448 			goto out;
1449 		r = 0;
1450 		break;
1451 	}
1452 	case KVM_GET_MP_STATE: {
1453 		struct kvm_mp_state mp_state;
1454 
1455 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1456 		if (r)
1457 			goto out;
1458 		r = -EFAULT;
1459 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1460 			goto out;
1461 		r = 0;
1462 		break;
1463 	}
1464 	case KVM_SET_MP_STATE: {
1465 		struct kvm_mp_state mp_state;
1466 
1467 		r = -EFAULT;
1468 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1469 			goto out;
1470 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1471 		if (r)
1472 			goto out;
1473 		r = 0;
1474 		break;
1475 	}
1476 	case KVM_TRANSLATE: {
1477 		struct kvm_translation tr;
1478 
1479 		r = -EFAULT;
1480 		if (copy_from_user(&tr, argp, sizeof tr))
1481 			goto out;
1482 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1483 		if (r)
1484 			goto out;
1485 		r = -EFAULT;
1486 		if (copy_to_user(argp, &tr, sizeof tr))
1487 			goto out;
1488 		r = 0;
1489 		break;
1490 	}
1491 	case KVM_SET_GUEST_DEBUG: {
1492 		struct kvm_guest_debug dbg;
1493 
1494 		r = -EFAULT;
1495 		if (copy_from_user(&dbg, argp, sizeof dbg))
1496 			goto out;
1497 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1498 		if (r)
1499 			goto out;
1500 		r = 0;
1501 		break;
1502 	}
1503 	case KVM_SET_SIGNAL_MASK: {
1504 		struct kvm_signal_mask __user *sigmask_arg = argp;
1505 		struct kvm_signal_mask kvm_sigmask;
1506 		sigset_t sigset, *p;
1507 
1508 		p = NULL;
1509 		if (argp) {
1510 			r = -EFAULT;
1511 			if (copy_from_user(&kvm_sigmask, argp,
1512 					   sizeof kvm_sigmask))
1513 				goto out;
1514 			r = -EINVAL;
1515 			if (kvm_sigmask.len != sizeof sigset)
1516 				goto out;
1517 			r = -EFAULT;
1518 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1519 					   sizeof sigset))
1520 				goto out;
1521 			p = &sigset;
1522 		}
1523 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1524 		break;
1525 	}
1526 	case KVM_GET_FPU: {
1527 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1528 		r = -ENOMEM;
1529 		if (!fpu)
1530 			goto out;
1531 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1532 		if (r)
1533 			goto out;
1534 		r = -EFAULT;
1535 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1536 			goto out;
1537 		r = 0;
1538 		break;
1539 	}
1540 	case KVM_SET_FPU: {
1541 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1542 		r = -ENOMEM;
1543 		if (!fpu)
1544 			goto out;
1545 		r = -EFAULT;
1546 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1547 			goto out;
1548 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1549 		if (r)
1550 			goto out;
1551 		r = 0;
1552 		break;
1553 	}
1554 	default:
1555 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1556 	}
1557 out:
1558 	kfree(fpu);
1559 	kfree(kvm_sregs);
1560 	return r;
1561 }
1562 
1563 static long kvm_vm_ioctl(struct file *filp,
1564 			   unsigned int ioctl, unsigned long arg)
1565 {
1566 	struct kvm *kvm = filp->private_data;
1567 	void __user *argp = (void __user *)arg;
1568 	int r;
1569 
1570 	if (kvm->mm != current->mm)
1571 		return -EIO;
1572 	switch (ioctl) {
1573 	case KVM_CREATE_VCPU:
1574 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1575 		if (r < 0)
1576 			goto out;
1577 		break;
1578 	case KVM_SET_USER_MEMORY_REGION: {
1579 		struct kvm_userspace_memory_region kvm_userspace_mem;
1580 
1581 		r = -EFAULT;
1582 		if (copy_from_user(&kvm_userspace_mem, argp,
1583 						sizeof kvm_userspace_mem))
1584 			goto out;
1585 
1586 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1587 		if (r)
1588 			goto out;
1589 		break;
1590 	}
1591 	case KVM_GET_DIRTY_LOG: {
1592 		struct kvm_dirty_log log;
1593 
1594 		r = -EFAULT;
1595 		if (copy_from_user(&log, argp, sizeof log))
1596 			goto out;
1597 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1598 		if (r)
1599 			goto out;
1600 		break;
1601 	}
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603 	case KVM_REGISTER_COALESCED_MMIO: {
1604 		struct kvm_coalesced_mmio_zone zone;
1605 		r = -EFAULT;
1606 		if (copy_from_user(&zone, argp, sizeof zone))
1607 			goto out;
1608 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1609 		if (r)
1610 			goto out;
1611 		r = 0;
1612 		break;
1613 	}
1614 	case KVM_UNREGISTER_COALESCED_MMIO: {
1615 		struct kvm_coalesced_mmio_zone zone;
1616 		r = -EFAULT;
1617 		if (copy_from_user(&zone, argp, sizeof zone))
1618 			goto out;
1619 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1620 		if (r)
1621 			goto out;
1622 		r = 0;
1623 		break;
1624 	}
1625 #endif
1626 	case KVM_IRQFD: {
1627 		struct kvm_irqfd data;
1628 
1629 		r = -EFAULT;
1630 		if (copy_from_user(&data, argp, sizeof data))
1631 			goto out;
1632 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1633 		break;
1634 	}
1635 	case KVM_IOEVENTFD: {
1636 		struct kvm_ioeventfd data;
1637 
1638 		r = -EFAULT;
1639 		if (copy_from_user(&data, argp, sizeof data))
1640 			goto out;
1641 		r = kvm_ioeventfd(kvm, &data);
1642 		break;
1643 	}
1644 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1645 	case KVM_SET_BOOT_CPU_ID:
1646 		r = 0;
1647 		mutex_lock(&kvm->lock);
1648 		if (atomic_read(&kvm->online_vcpus) != 0)
1649 			r = -EBUSY;
1650 		else
1651 			kvm->bsp_vcpu_id = arg;
1652 		mutex_unlock(&kvm->lock);
1653 		break;
1654 #endif
1655 	default:
1656 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1657 		if (r == -ENOTTY)
1658 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1659 	}
1660 out:
1661 	return r;
1662 }
1663 
1664 #ifdef CONFIG_COMPAT
1665 struct compat_kvm_dirty_log {
1666 	__u32 slot;
1667 	__u32 padding1;
1668 	union {
1669 		compat_uptr_t dirty_bitmap; /* one bit per page */
1670 		__u64 padding2;
1671 	};
1672 };
1673 
1674 static long kvm_vm_compat_ioctl(struct file *filp,
1675 			   unsigned int ioctl, unsigned long arg)
1676 {
1677 	struct kvm *kvm = filp->private_data;
1678 	int r;
1679 
1680 	if (kvm->mm != current->mm)
1681 		return -EIO;
1682 	switch (ioctl) {
1683 	case KVM_GET_DIRTY_LOG: {
1684 		struct compat_kvm_dirty_log compat_log;
1685 		struct kvm_dirty_log log;
1686 
1687 		r = -EFAULT;
1688 		if (copy_from_user(&compat_log, (void __user *)arg,
1689 				   sizeof(compat_log)))
1690 			goto out;
1691 		log.slot	 = compat_log.slot;
1692 		log.padding1	 = compat_log.padding1;
1693 		log.padding2	 = compat_log.padding2;
1694 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1695 
1696 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1697 		if (r)
1698 			goto out;
1699 		break;
1700 	}
1701 	default:
1702 		r = kvm_vm_ioctl(filp, ioctl, arg);
1703 	}
1704 
1705 out:
1706 	return r;
1707 }
1708 #endif
1709 
1710 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1711 {
1712 	struct page *page[1];
1713 	unsigned long addr;
1714 	int npages;
1715 	gfn_t gfn = vmf->pgoff;
1716 	struct kvm *kvm = vma->vm_file->private_data;
1717 
1718 	addr = gfn_to_hva(kvm, gfn);
1719 	if (kvm_is_error_hva(addr))
1720 		return VM_FAULT_SIGBUS;
1721 
1722 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1723 				NULL);
1724 	if (unlikely(npages != 1))
1725 		return VM_FAULT_SIGBUS;
1726 
1727 	vmf->page = page[0];
1728 	return 0;
1729 }
1730 
1731 static const struct vm_operations_struct kvm_vm_vm_ops = {
1732 	.fault = kvm_vm_fault,
1733 };
1734 
1735 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1736 {
1737 	vma->vm_ops = &kvm_vm_vm_ops;
1738 	return 0;
1739 }
1740 
1741 static struct file_operations kvm_vm_fops = {
1742 	.release        = kvm_vm_release,
1743 	.unlocked_ioctl = kvm_vm_ioctl,
1744 #ifdef CONFIG_COMPAT
1745 	.compat_ioctl   = kvm_vm_compat_ioctl,
1746 #endif
1747 	.mmap           = kvm_vm_mmap,
1748 };
1749 
1750 static int kvm_dev_ioctl_create_vm(void)
1751 {
1752 	int fd, r;
1753 	struct kvm *kvm;
1754 
1755 	kvm = kvm_create_vm();
1756 	if (IS_ERR(kvm))
1757 		return PTR_ERR(kvm);
1758 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1759 	r = kvm_coalesced_mmio_init(kvm);
1760 	if (r < 0) {
1761 		kvm_put_kvm(kvm);
1762 		return r;
1763 	}
1764 #endif
1765 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1766 	if (fd < 0)
1767 		kvm_put_kvm(kvm);
1768 
1769 	return fd;
1770 }
1771 
1772 static long kvm_dev_ioctl_check_extension_generic(long arg)
1773 {
1774 	switch (arg) {
1775 	case KVM_CAP_USER_MEMORY:
1776 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1777 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1778 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1779 	case KVM_CAP_SET_BOOT_CPU_ID:
1780 #endif
1781 	case KVM_CAP_INTERNAL_ERROR_DATA:
1782 		return 1;
1783 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1784 	case KVM_CAP_IRQ_ROUTING:
1785 		return KVM_MAX_IRQ_ROUTES;
1786 #endif
1787 	default:
1788 		break;
1789 	}
1790 	return kvm_dev_ioctl_check_extension(arg);
1791 }
1792 
1793 static long kvm_dev_ioctl(struct file *filp,
1794 			  unsigned int ioctl, unsigned long arg)
1795 {
1796 	long r = -EINVAL;
1797 
1798 	switch (ioctl) {
1799 	case KVM_GET_API_VERSION:
1800 		r = -EINVAL;
1801 		if (arg)
1802 			goto out;
1803 		r = KVM_API_VERSION;
1804 		break;
1805 	case KVM_CREATE_VM:
1806 		r = -EINVAL;
1807 		if (arg)
1808 			goto out;
1809 		r = kvm_dev_ioctl_create_vm();
1810 		break;
1811 	case KVM_CHECK_EXTENSION:
1812 		r = kvm_dev_ioctl_check_extension_generic(arg);
1813 		break;
1814 	case KVM_GET_VCPU_MMAP_SIZE:
1815 		r = -EINVAL;
1816 		if (arg)
1817 			goto out;
1818 		r = PAGE_SIZE;     /* struct kvm_run */
1819 #ifdef CONFIG_X86
1820 		r += PAGE_SIZE;    /* pio data page */
1821 #endif
1822 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1823 		r += PAGE_SIZE;    /* coalesced mmio ring page */
1824 #endif
1825 		break;
1826 	case KVM_TRACE_ENABLE:
1827 	case KVM_TRACE_PAUSE:
1828 	case KVM_TRACE_DISABLE:
1829 		r = -EOPNOTSUPP;
1830 		break;
1831 	default:
1832 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
1833 	}
1834 out:
1835 	return r;
1836 }
1837 
1838 static struct file_operations kvm_chardev_ops = {
1839 	.unlocked_ioctl = kvm_dev_ioctl,
1840 	.compat_ioctl   = kvm_dev_ioctl,
1841 };
1842 
1843 static struct miscdevice kvm_dev = {
1844 	KVM_MINOR,
1845 	"kvm",
1846 	&kvm_chardev_ops,
1847 };
1848 
1849 static void hardware_enable(void *junk)
1850 {
1851 	int cpu = raw_smp_processor_id();
1852 	int r;
1853 
1854 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1855 		return;
1856 
1857 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
1858 
1859 	r = kvm_arch_hardware_enable(NULL);
1860 
1861 	if (r) {
1862 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1863 		atomic_inc(&hardware_enable_failed);
1864 		printk(KERN_INFO "kvm: enabling virtualization on "
1865 				 "CPU%d failed\n", cpu);
1866 	}
1867 }
1868 
1869 static void hardware_disable(void *junk)
1870 {
1871 	int cpu = raw_smp_processor_id();
1872 
1873 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1874 		return;
1875 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1876 	kvm_arch_hardware_disable(NULL);
1877 }
1878 
1879 static void hardware_disable_all_nolock(void)
1880 {
1881 	BUG_ON(!kvm_usage_count);
1882 
1883 	kvm_usage_count--;
1884 	if (!kvm_usage_count)
1885 		on_each_cpu(hardware_disable, NULL, 1);
1886 }
1887 
1888 static void hardware_disable_all(void)
1889 {
1890 	spin_lock(&kvm_lock);
1891 	hardware_disable_all_nolock();
1892 	spin_unlock(&kvm_lock);
1893 }
1894 
1895 static int hardware_enable_all(void)
1896 {
1897 	int r = 0;
1898 
1899 	spin_lock(&kvm_lock);
1900 
1901 	kvm_usage_count++;
1902 	if (kvm_usage_count == 1) {
1903 		atomic_set(&hardware_enable_failed, 0);
1904 		on_each_cpu(hardware_enable, NULL, 1);
1905 
1906 		if (atomic_read(&hardware_enable_failed)) {
1907 			hardware_disable_all_nolock();
1908 			r = -EBUSY;
1909 		}
1910 	}
1911 
1912 	spin_unlock(&kvm_lock);
1913 
1914 	return r;
1915 }
1916 
1917 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1918 			   void *v)
1919 {
1920 	int cpu = (long)v;
1921 
1922 	if (!kvm_usage_count)
1923 		return NOTIFY_OK;
1924 
1925 	val &= ~CPU_TASKS_FROZEN;
1926 	switch (val) {
1927 	case CPU_DYING:
1928 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1929 		       cpu);
1930 		hardware_disable(NULL);
1931 		break;
1932 	case CPU_ONLINE:
1933 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1934 		       cpu);
1935 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
1936 		break;
1937 	}
1938 	return NOTIFY_OK;
1939 }
1940 
1941 
1942 asmlinkage void kvm_handle_fault_on_reboot(void)
1943 {
1944 	if (kvm_rebooting)
1945 		/* spin while reset goes on */
1946 		while (true)
1947 			;
1948 	/* Fault while not rebooting.  We want the trace. */
1949 	BUG();
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1952 
1953 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1954 		      void *v)
1955 {
1956 	/*
1957 	 * Some (well, at least mine) BIOSes hang on reboot if
1958 	 * in vmx root mode.
1959 	 *
1960 	 * And Intel TXT required VMX off for all cpu when system shutdown.
1961 	 */
1962 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1963 	kvm_rebooting = true;
1964 	on_each_cpu(hardware_disable, NULL, 1);
1965 	return NOTIFY_OK;
1966 }
1967 
1968 static struct notifier_block kvm_reboot_notifier = {
1969 	.notifier_call = kvm_reboot,
1970 	.priority = 0,
1971 };
1972 
1973 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1974 {
1975 	int i;
1976 
1977 	for (i = 0; i < bus->dev_count; i++) {
1978 		struct kvm_io_device *pos = bus->devs[i];
1979 
1980 		kvm_iodevice_destructor(pos);
1981 	}
1982 	kfree(bus);
1983 }
1984 
1985 /* kvm_io_bus_write - called under kvm->slots_lock */
1986 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1987 		     int len, const void *val)
1988 {
1989 	int i;
1990 	struct kvm_io_bus *bus;
1991 
1992 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
1993 	for (i = 0; i < bus->dev_count; i++)
1994 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1995 			return 0;
1996 	return -EOPNOTSUPP;
1997 }
1998 
1999 /* kvm_io_bus_read - called under kvm->slots_lock */
2000 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2001 		    int len, void *val)
2002 {
2003 	int i;
2004 	struct kvm_io_bus *bus;
2005 
2006 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2007 	for (i = 0; i < bus->dev_count; i++)
2008 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2009 			return 0;
2010 	return -EOPNOTSUPP;
2011 }
2012 
2013 /* Caller must hold slots_lock. */
2014 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2015 			    struct kvm_io_device *dev)
2016 {
2017 	struct kvm_io_bus *new_bus, *bus;
2018 
2019 	bus = kvm->buses[bus_idx];
2020 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2021 		return -ENOSPC;
2022 
2023 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2024 	if (!new_bus)
2025 		return -ENOMEM;
2026 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2027 	new_bus->devs[new_bus->dev_count++] = dev;
2028 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2029 	synchronize_srcu_expedited(&kvm->srcu);
2030 	kfree(bus);
2031 
2032 	return 0;
2033 }
2034 
2035 /* Caller must hold slots_lock. */
2036 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2037 			      struct kvm_io_device *dev)
2038 {
2039 	int i, r;
2040 	struct kvm_io_bus *new_bus, *bus;
2041 
2042 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2043 	if (!new_bus)
2044 		return -ENOMEM;
2045 
2046 	bus = kvm->buses[bus_idx];
2047 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2048 
2049 	r = -ENOENT;
2050 	for (i = 0; i < new_bus->dev_count; i++)
2051 		if (new_bus->devs[i] == dev) {
2052 			r = 0;
2053 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2054 			break;
2055 		}
2056 
2057 	if (r) {
2058 		kfree(new_bus);
2059 		return r;
2060 	}
2061 
2062 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2063 	synchronize_srcu_expedited(&kvm->srcu);
2064 	kfree(bus);
2065 	return r;
2066 }
2067 
2068 static struct notifier_block kvm_cpu_notifier = {
2069 	.notifier_call = kvm_cpu_hotplug,
2070 	.priority = 20, /* must be > scheduler priority */
2071 };
2072 
2073 static int vm_stat_get(void *_offset, u64 *val)
2074 {
2075 	unsigned offset = (long)_offset;
2076 	struct kvm *kvm;
2077 
2078 	*val = 0;
2079 	spin_lock(&kvm_lock);
2080 	list_for_each_entry(kvm, &vm_list, vm_list)
2081 		*val += *(u32 *)((void *)kvm + offset);
2082 	spin_unlock(&kvm_lock);
2083 	return 0;
2084 }
2085 
2086 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2087 
2088 static int vcpu_stat_get(void *_offset, u64 *val)
2089 {
2090 	unsigned offset = (long)_offset;
2091 	struct kvm *kvm;
2092 	struct kvm_vcpu *vcpu;
2093 	int i;
2094 
2095 	*val = 0;
2096 	spin_lock(&kvm_lock);
2097 	list_for_each_entry(kvm, &vm_list, vm_list)
2098 		kvm_for_each_vcpu(i, vcpu, kvm)
2099 			*val += *(u32 *)((void *)vcpu + offset);
2100 
2101 	spin_unlock(&kvm_lock);
2102 	return 0;
2103 }
2104 
2105 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2106 
2107 static const struct file_operations *stat_fops[] = {
2108 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2109 	[KVM_STAT_VM]   = &vm_stat_fops,
2110 };
2111 
2112 static void kvm_init_debug(void)
2113 {
2114 	struct kvm_stats_debugfs_item *p;
2115 
2116 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2117 	for (p = debugfs_entries; p->name; ++p)
2118 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2119 						(void *)(long)p->offset,
2120 						stat_fops[p->kind]);
2121 }
2122 
2123 static void kvm_exit_debug(void)
2124 {
2125 	struct kvm_stats_debugfs_item *p;
2126 
2127 	for (p = debugfs_entries; p->name; ++p)
2128 		debugfs_remove(p->dentry);
2129 	debugfs_remove(kvm_debugfs_dir);
2130 }
2131 
2132 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2133 {
2134 	if (kvm_usage_count)
2135 		hardware_disable(NULL);
2136 	return 0;
2137 }
2138 
2139 static int kvm_resume(struct sys_device *dev)
2140 {
2141 	if (kvm_usage_count)
2142 		hardware_enable(NULL);
2143 	return 0;
2144 }
2145 
2146 static struct sysdev_class kvm_sysdev_class = {
2147 	.name = "kvm",
2148 	.suspend = kvm_suspend,
2149 	.resume = kvm_resume,
2150 };
2151 
2152 static struct sys_device kvm_sysdev = {
2153 	.id = 0,
2154 	.cls = &kvm_sysdev_class,
2155 };
2156 
2157 struct page *bad_page;
2158 pfn_t bad_pfn;
2159 
2160 static inline
2161 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2162 {
2163 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2164 }
2165 
2166 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2167 {
2168 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2169 
2170 	kvm_arch_vcpu_load(vcpu, cpu);
2171 }
2172 
2173 static void kvm_sched_out(struct preempt_notifier *pn,
2174 			  struct task_struct *next)
2175 {
2176 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2177 
2178 	kvm_arch_vcpu_put(vcpu);
2179 }
2180 
2181 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2182 		  struct module *module)
2183 {
2184 	int r;
2185 	int cpu;
2186 
2187 	r = kvm_arch_init(opaque);
2188 	if (r)
2189 		goto out_fail;
2190 
2191 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2192 
2193 	if (bad_page == NULL) {
2194 		r = -ENOMEM;
2195 		goto out;
2196 	}
2197 
2198 	bad_pfn = page_to_pfn(bad_page);
2199 
2200 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2201 		r = -ENOMEM;
2202 		goto out_free_0;
2203 	}
2204 
2205 	r = kvm_arch_hardware_setup();
2206 	if (r < 0)
2207 		goto out_free_0a;
2208 
2209 	for_each_online_cpu(cpu) {
2210 		smp_call_function_single(cpu,
2211 				kvm_arch_check_processor_compat,
2212 				&r, 1);
2213 		if (r < 0)
2214 			goto out_free_1;
2215 	}
2216 
2217 	r = register_cpu_notifier(&kvm_cpu_notifier);
2218 	if (r)
2219 		goto out_free_2;
2220 	register_reboot_notifier(&kvm_reboot_notifier);
2221 
2222 	r = sysdev_class_register(&kvm_sysdev_class);
2223 	if (r)
2224 		goto out_free_3;
2225 
2226 	r = sysdev_register(&kvm_sysdev);
2227 	if (r)
2228 		goto out_free_4;
2229 
2230 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2231 	if (!vcpu_align)
2232 		vcpu_align = __alignof__(struct kvm_vcpu);
2233 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2234 					   0, NULL);
2235 	if (!kvm_vcpu_cache) {
2236 		r = -ENOMEM;
2237 		goto out_free_5;
2238 	}
2239 
2240 	kvm_chardev_ops.owner = module;
2241 	kvm_vm_fops.owner = module;
2242 	kvm_vcpu_fops.owner = module;
2243 
2244 	r = misc_register(&kvm_dev);
2245 	if (r) {
2246 		printk(KERN_ERR "kvm: misc device register failed\n");
2247 		goto out_free;
2248 	}
2249 
2250 	kvm_preempt_ops.sched_in = kvm_sched_in;
2251 	kvm_preempt_ops.sched_out = kvm_sched_out;
2252 
2253 	kvm_init_debug();
2254 
2255 	return 0;
2256 
2257 out_free:
2258 	kmem_cache_destroy(kvm_vcpu_cache);
2259 out_free_5:
2260 	sysdev_unregister(&kvm_sysdev);
2261 out_free_4:
2262 	sysdev_class_unregister(&kvm_sysdev_class);
2263 out_free_3:
2264 	unregister_reboot_notifier(&kvm_reboot_notifier);
2265 	unregister_cpu_notifier(&kvm_cpu_notifier);
2266 out_free_2:
2267 out_free_1:
2268 	kvm_arch_hardware_unsetup();
2269 out_free_0a:
2270 	free_cpumask_var(cpus_hardware_enabled);
2271 out_free_0:
2272 	__free_page(bad_page);
2273 out:
2274 	kvm_arch_exit();
2275 out_fail:
2276 	return r;
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_init);
2279 
2280 void kvm_exit(void)
2281 {
2282 	kvm_exit_debug();
2283 	misc_deregister(&kvm_dev);
2284 	kmem_cache_destroy(kvm_vcpu_cache);
2285 	sysdev_unregister(&kvm_sysdev);
2286 	sysdev_class_unregister(&kvm_sysdev_class);
2287 	unregister_reboot_notifier(&kvm_reboot_notifier);
2288 	unregister_cpu_notifier(&kvm_cpu_notifier);
2289 	on_each_cpu(hardware_disable, NULL, 1);
2290 	kvm_arch_hardware_unsetup();
2291 	kvm_arch_exit();
2292 	free_cpumask_var(cpus_hardware_enabled);
2293 	__free_page(bad_page);
2294 }
2295 EXPORT_SYMBOL_GPL(kvm_exit);
2296