1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 126 127 __visible bool kvm_rebooting; 128 EXPORT_SYMBOL_GPL(kvm_rebooting); 129 130 static bool largepages_enabled = true; 131 132 #define KVM_EVENT_CREATE_VM 0 133 #define KVM_EVENT_DESTROY_VM 1 134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 135 static unsigned long long kvm_createvm_count; 136 static unsigned long long kvm_active_vms; 137 138 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 139 { 140 if (pfn_valid(pfn)) 141 return PageReserved(pfn_to_page(pfn)); 142 143 return true; 144 } 145 146 /* 147 * Switches to specified vcpu, until a matching vcpu_put() 148 */ 149 int vcpu_load(struct kvm_vcpu *vcpu) 150 { 151 int cpu; 152 153 if (mutex_lock_killable(&vcpu->mutex)) 154 return -EINTR; 155 cpu = get_cpu(); 156 preempt_notifier_register(&vcpu->preempt_notifier); 157 kvm_arch_vcpu_load(vcpu, cpu); 158 put_cpu(); 159 return 0; 160 } 161 EXPORT_SYMBOL_GPL(vcpu_load); 162 163 void vcpu_put(struct kvm_vcpu *vcpu) 164 { 165 preempt_disable(); 166 kvm_arch_vcpu_put(vcpu); 167 preempt_notifier_unregister(&vcpu->preempt_notifier); 168 preempt_enable(); 169 mutex_unlock(&vcpu->mutex); 170 } 171 EXPORT_SYMBOL_GPL(vcpu_put); 172 173 /* TODO: merge with kvm_arch_vcpu_should_kick */ 174 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 175 { 176 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 177 178 /* 179 * We need to wait for the VCPU to reenable interrupts and get out of 180 * READING_SHADOW_PAGE_TABLES mode. 181 */ 182 if (req & KVM_REQUEST_WAIT) 183 return mode != OUTSIDE_GUEST_MODE; 184 185 /* 186 * Need to kick a running VCPU, but otherwise there is nothing to do. 187 */ 188 return mode == IN_GUEST_MODE; 189 } 190 191 static void ack_flush(void *_completed) 192 { 193 } 194 195 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 196 { 197 if (unlikely(!cpus)) 198 cpus = cpu_online_mask; 199 200 if (cpumask_empty(cpus)) 201 return false; 202 203 smp_call_function_many(cpus, ack_flush, NULL, wait); 204 return true; 205 } 206 207 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 208 { 209 int i, cpu, me; 210 cpumask_var_t cpus; 211 bool called; 212 struct kvm_vcpu *vcpu; 213 214 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 215 216 me = get_cpu(); 217 kvm_for_each_vcpu(i, vcpu, kvm) { 218 kvm_make_request(req, vcpu); 219 cpu = vcpu->cpu; 220 221 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 222 continue; 223 224 if (cpus != NULL && cpu != -1 && cpu != me && 225 kvm_request_needs_ipi(vcpu, req)) 226 __cpumask_set_cpu(cpu, cpus); 227 } 228 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 229 put_cpu(); 230 free_cpumask_var(cpus); 231 return called; 232 } 233 234 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 235 void kvm_flush_remote_tlbs(struct kvm *kvm) 236 { 237 /* 238 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 239 * kvm_make_all_cpus_request. 240 */ 241 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 242 243 /* 244 * We want to publish modifications to the page tables before reading 245 * mode. Pairs with a memory barrier in arch-specific code. 246 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 247 * and smp_mb in walk_shadow_page_lockless_begin/end. 248 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 249 * 250 * There is already an smp_mb__after_atomic() before 251 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 252 * barrier here. 253 */ 254 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 255 ++kvm->stat.remote_tlb_flush; 256 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 257 } 258 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 259 #endif 260 261 void kvm_reload_remote_mmus(struct kvm *kvm) 262 { 263 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 264 } 265 266 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 267 { 268 struct page *page; 269 int r; 270 271 mutex_init(&vcpu->mutex); 272 vcpu->cpu = -1; 273 vcpu->kvm = kvm; 274 vcpu->vcpu_id = id; 275 vcpu->pid = NULL; 276 init_swait_queue_head(&vcpu->wq); 277 kvm_async_pf_vcpu_init(vcpu); 278 279 vcpu->pre_pcpu = -1; 280 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 281 282 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 283 if (!page) { 284 r = -ENOMEM; 285 goto fail; 286 } 287 vcpu->run = page_address(page); 288 289 kvm_vcpu_set_in_spin_loop(vcpu, false); 290 kvm_vcpu_set_dy_eligible(vcpu, false); 291 vcpu->preempted = false; 292 293 r = kvm_arch_vcpu_init(vcpu); 294 if (r < 0) 295 goto fail_free_run; 296 return 0; 297 298 fail_free_run: 299 free_page((unsigned long)vcpu->run); 300 fail: 301 return r; 302 } 303 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 304 305 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 306 { 307 /* 308 * no need for rcu_read_lock as VCPU_RUN is the only place that 309 * will change the vcpu->pid pointer and on uninit all file 310 * descriptors are already gone. 311 */ 312 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 313 kvm_arch_vcpu_uninit(vcpu); 314 free_page((unsigned long)vcpu->run); 315 } 316 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 317 318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 319 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 320 { 321 return container_of(mn, struct kvm, mmu_notifier); 322 } 323 324 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 325 struct mm_struct *mm, 326 unsigned long address, 327 pte_t pte) 328 { 329 struct kvm *kvm = mmu_notifier_to_kvm(mn); 330 int idx; 331 332 idx = srcu_read_lock(&kvm->srcu); 333 spin_lock(&kvm->mmu_lock); 334 kvm->mmu_notifier_seq++; 335 kvm_set_spte_hva(kvm, address, pte); 336 spin_unlock(&kvm->mmu_lock); 337 srcu_read_unlock(&kvm->srcu, idx); 338 } 339 340 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 341 struct mm_struct *mm, 342 unsigned long start, 343 unsigned long end) 344 { 345 struct kvm *kvm = mmu_notifier_to_kvm(mn); 346 int need_tlb_flush = 0, idx; 347 348 idx = srcu_read_lock(&kvm->srcu); 349 spin_lock(&kvm->mmu_lock); 350 /* 351 * The count increase must become visible at unlock time as no 352 * spte can be established without taking the mmu_lock and 353 * count is also read inside the mmu_lock critical section. 354 */ 355 kvm->mmu_notifier_count++; 356 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 357 need_tlb_flush |= kvm->tlbs_dirty; 358 /* we've to flush the tlb before the pages can be freed */ 359 if (need_tlb_flush) 360 kvm_flush_remote_tlbs(kvm); 361 362 spin_unlock(&kvm->mmu_lock); 363 srcu_read_unlock(&kvm->srcu, idx); 364 } 365 366 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 367 struct mm_struct *mm, 368 unsigned long start, 369 unsigned long end) 370 { 371 struct kvm *kvm = mmu_notifier_to_kvm(mn); 372 373 spin_lock(&kvm->mmu_lock); 374 /* 375 * This sequence increase will notify the kvm page fault that 376 * the page that is going to be mapped in the spte could have 377 * been freed. 378 */ 379 kvm->mmu_notifier_seq++; 380 smp_wmb(); 381 /* 382 * The above sequence increase must be visible before the 383 * below count decrease, which is ensured by the smp_wmb above 384 * in conjunction with the smp_rmb in mmu_notifier_retry(). 385 */ 386 kvm->mmu_notifier_count--; 387 spin_unlock(&kvm->mmu_lock); 388 389 BUG_ON(kvm->mmu_notifier_count < 0); 390 } 391 392 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 393 struct mm_struct *mm, 394 unsigned long start, 395 unsigned long end) 396 { 397 struct kvm *kvm = mmu_notifier_to_kvm(mn); 398 int young, idx; 399 400 idx = srcu_read_lock(&kvm->srcu); 401 spin_lock(&kvm->mmu_lock); 402 403 young = kvm_age_hva(kvm, start, end); 404 if (young) 405 kvm_flush_remote_tlbs(kvm); 406 407 spin_unlock(&kvm->mmu_lock); 408 srcu_read_unlock(&kvm->srcu, idx); 409 410 return young; 411 } 412 413 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 414 struct mm_struct *mm, 415 unsigned long start, 416 unsigned long end) 417 { 418 struct kvm *kvm = mmu_notifier_to_kvm(mn); 419 int young, idx; 420 421 idx = srcu_read_lock(&kvm->srcu); 422 spin_lock(&kvm->mmu_lock); 423 /* 424 * Even though we do not flush TLB, this will still adversely 425 * affect performance on pre-Haswell Intel EPT, where there is 426 * no EPT Access Bit to clear so that we have to tear down EPT 427 * tables instead. If we find this unacceptable, we can always 428 * add a parameter to kvm_age_hva so that it effectively doesn't 429 * do anything on clear_young. 430 * 431 * Also note that currently we never issue secondary TLB flushes 432 * from clear_young, leaving this job up to the regular system 433 * cadence. If we find this inaccurate, we might come up with a 434 * more sophisticated heuristic later. 435 */ 436 young = kvm_age_hva(kvm, start, end); 437 spin_unlock(&kvm->mmu_lock); 438 srcu_read_unlock(&kvm->srcu, idx); 439 440 return young; 441 } 442 443 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 444 struct mm_struct *mm, 445 unsigned long address) 446 { 447 struct kvm *kvm = mmu_notifier_to_kvm(mn); 448 int young, idx; 449 450 idx = srcu_read_lock(&kvm->srcu); 451 spin_lock(&kvm->mmu_lock); 452 young = kvm_test_age_hva(kvm, address); 453 spin_unlock(&kvm->mmu_lock); 454 srcu_read_unlock(&kvm->srcu, idx); 455 456 return young; 457 } 458 459 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 460 struct mm_struct *mm) 461 { 462 struct kvm *kvm = mmu_notifier_to_kvm(mn); 463 int idx; 464 465 idx = srcu_read_lock(&kvm->srcu); 466 kvm_arch_flush_shadow_all(kvm); 467 srcu_read_unlock(&kvm->srcu, idx); 468 } 469 470 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 471 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 472 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 473 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 474 .clear_young = kvm_mmu_notifier_clear_young, 475 .test_young = kvm_mmu_notifier_test_young, 476 .change_pte = kvm_mmu_notifier_change_pte, 477 .release = kvm_mmu_notifier_release, 478 }; 479 480 static int kvm_init_mmu_notifier(struct kvm *kvm) 481 { 482 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 483 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 484 } 485 486 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 487 488 static int kvm_init_mmu_notifier(struct kvm *kvm) 489 { 490 return 0; 491 } 492 493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 494 495 static struct kvm_memslots *kvm_alloc_memslots(void) 496 { 497 int i; 498 struct kvm_memslots *slots; 499 500 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 501 if (!slots) 502 return NULL; 503 504 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 505 slots->id_to_index[i] = slots->memslots[i].id = i; 506 507 return slots; 508 } 509 510 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 511 { 512 if (!memslot->dirty_bitmap) 513 return; 514 515 kvfree(memslot->dirty_bitmap); 516 memslot->dirty_bitmap = NULL; 517 } 518 519 /* 520 * Free any memory in @free but not in @dont. 521 */ 522 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 523 struct kvm_memory_slot *dont) 524 { 525 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 526 kvm_destroy_dirty_bitmap(free); 527 528 kvm_arch_free_memslot(kvm, free, dont); 529 530 free->npages = 0; 531 } 532 533 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 534 { 535 struct kvm_memory_slot *memslot; 536 537 if (!slots) 538 return; 539 540 kvm_for_each_memslot(memslot, slots) 541 kvm_free_memslot(kvm, memslot, NULL); 542 543 kvfree(slots); 544 } 545 546 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 547 { 548 int i; 549 550 if (!kvm->debugfs_dentry) 551 return; 552 553 debugfs_remove_recursive(kvm->debugfs_dentry); 554 555 if (kvm->debugfs_stat_data) { 556 for (i = 0; i < kvm_debugfs_num_entries; i++) 557 kfree(kvm->debugfs_stat_data[i]); 558 kfree(kvm->debugfs_stat_data); 559 } 560 } 561 562 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 563 { 564 char dir_name[ITOA_MAX_LEN * 2]; 565 struct kvm_stat_data *stat_data; 566 struct kvm_stats_debugfs_item *p; 567 568 if (!debugfs_initialized()) 569 return 0; 570 571 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 572 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 573 kvm_debugfs_dir); 574 if (!kvm->debugfs_dentry) 575 return -ENOMEM; 576 577 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 578 sizeof(*kvm->debugfs_stat_data), 579 GFP_KERNEL); 580 if (!kvm->debugfs_stat_data) 581 return -ENOMEM; 582 583 for (p = debugfs_entries; p->name; p++) { 584 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 585 if (!stat_data) 586 return -ENOMEM; 587 588 stat_data->kvm = kvm; 589 stat_data->offset = p->offset; 590 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 591 if (!debugfs_create_file(p->name, 0644, 592 kvm->debugfs_dentry, 593 stat_data, 594 stat_fops_per_vm[p->kind])) 595 return -ENOMEM; 596 } 597 return 0; 598 } 599 600 static struct kvm *kvm_create_vm(unsigned long type) 601 { 602 int r, i; 603 struct kvm *kvm = kvm_arch_alloc_vm(); 604 605 if (!kvm) 606 return ERR_PTR(-ENOMEM); 607 608 spin_lock_init(&kvm->mmu_lock); 609 mmgrab(current->mm); 610 kvm->mm = current->mm; 611 kvm_eventfd_init(kvm); 612 mutex_init(&kvm->lock); 613 mutex_init(&kvm->irq_lock); 614 mutex_init(&kvm->slots_lock); 615 refcount_set(&kvm->users_count, 1); 616 INIT_LIST_HEAD(&kvm->devices); 617 618 r = kvm_arch_init_vm(kvm, type); 619 if (r) 620 goto out_err_no_disable; 621 622 r = hardware_enable_all(); 623 if (r) 624 goto out_err_no_disable; 625 626 #ifdef CONFIG_HAVE_KVM_IRQFD 627 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 628 #endif 629 630 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 631 632 r = -ENOMEM; 633 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 634 struct kvm_memslots *slots = kvm_alloc_memslots(); 635 if (!slots) 636 goto out_err_no_srcu; 637 /* 638 * Generations must be different for each address space. 639 * Init kvm generation close to the maximum to easily test the 640 * code of handling generation number wrap-around. 641 */ 642 slots->generation = i * 2 - 150; 643 rcu_assign_pointer(kvm->memslots[i], slots); 644 } 645 646 if (init_srcu_struct(&kvm->srcu)) 647 goto out_err_no_srcu; 648 if (init_srcu_struct(&kvm->irq_srcu)) 649 goto out_err_no_irq_srcu; 650 for (i = 0; i < KVM_NR_BUSES; i++) { 651 rcu_assign_pointer(kvm->buses[i], 652 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 653 if (!kvm->buses[i]) 654 goto out_err; 655 } 656 657 r = kvm_init_mmu_notifier(kvm); 658 if (r) 659 goto out_err; 660 661 spin_lock(&kvm_lock); 662 list_add(&kvm->vm_list, &vm_list); 663 spin_unlock(&kvm_lock); 664 665 preempt_notifier_inc(); 666 667 return kvm; 668 669 out_err: 670 cleanup_srcu_struct(&kvm->irq_srcu); 671 out_err_no_irq_srcu: 672 cleanup_srcu_struct(&kvm->srcu); 673 out_err_no_srcu: 674 hardware_disable_all(); 675 out_err_no_disable: 676 refcount_set(&kvm->users_count, 0); 677 for (i = 0; i < KVM_NR_BUSES; i++) 678 kfree(kvm_get_bus(kvm, i)); 679 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 680 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 681 kvm_arch_free_vm(kvm); 682 mmdrop(current->mm); 683 return ERR_PTR(r); 684 } 685 686 static void kvm_destroy_devices(struct kvm *kvm) 687 { 688 struct kvm_device *dev, *tmp; 689 690 /* 691 * We do not need to take the kvm->lock here, because nobody else 692 * has a reference to the struct kvm at this point and therefore 693 * cannot access the devices list anyhow. 694 */ 695 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 696 list_del(&dev->vm_node); 697 dev->ops->destroy(dev); 698 } 699 } 700 701 static void kvm_destroy_vm(struct kvm *kvm) 702 { 703 int i; 704 struct mm_struct *mm = kvm->mm; 705 706 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 707 kvm_destroy_vm_debugfs(kvm); 708 kvm_arch_sync_events(kvm); 709 spin_lock(&kvm_lock); 710 list_del(&kvm->vm_list); 711 spin_unlock(&kvm_lock); 712 kvm_free_irq_routing(kvm); 713 for (i = 0; i < KVM_NR_BUSES; i++) { 714 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 715 716 if (bus) 717 kvm_io_bus_destroy(bus); 718 kvm->buses[i] = NULL; 719 } 720 kvm_coalesced_mmio_free(kvm); 721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 722 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 723 #else 724 kvm_arch_flush_shadow_all(kvm); 725 #endif 726 kvm_arch_destroy_vm(kvm); 727 kvm_destroy_devices(kvm); 728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 729 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 730 cleanup_srcu_struct(&kvm->irq_srcu); 731 cleanup_srcu_struct(&kvm->srcu); 732 kvm_arch_free_vm(kvm); 733 preempt_notifier_dec(); 734 hardware_disable_all(); 735 mmdrop(mm); 736 } 737 738 void kvm_get_kvm(struct kvm *kvm) 739 { 740 refcount_inc(&kvm->users_count); 741 } 742 EXPORT_SYMBOL_GPL(kvm_get_kvm); 743 744 void kvm_put_kvm(struct kvm *kvm) 745 { 746 if (refcount_dec_and_test(&kvm->users_count)) 747 kvm_destroy_vm(kvm); 748 } 749 EXPORT_SYMBOL_GPL(kvm_put_kvm); 750 751 752 static int kvm_vm_release(struct inode *inode, struct file *filp) 753 { 754 struct kvm *kvm = filp->private_data; 755 756 kvm_irqfd_release(kvm); 757 758 kvm_put_kvm(kvm); 759 return 0; 760 } 761 762 /* 763 * Allocation size is twice as large as the actual dirty bitmap size. 764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 765 */ 766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 767 { 768 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 769 770 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 771 if (!memslot->dirty_bitmap) 772 return -ENOMEM; 773 774 return 0; 775 } 776 777 /* 778 * Insert memslot and re-sort memslots based on their GFN, 779 * so binary search could be used to lookup GFN. 780 * Sorting algorithm takes advantage of having initially 781 * sorted array and known changed memslot position. 782 */ 783 static void update_memslots(struct kvm_memslots *slots, 784 struct kvm_memory_slot *new) 785 { 786 int id = new->id; 787 int i = slots->id_to_index[id]; 788 struct kvm_memory_slot *mslots = slots->memslots; 789 790 WARN_ON(mslots[i].id != id); 791 if (!new->npages) { 792 WARN_ON(!mslots[i].npages); 793 if (mslots[i].npages) 794 slots->used_slots--; 795 } else { 796 if (!mslots[i].npages) 797 slots->used_slots++; 798 } 799 800 while (i < KVM_MEM_SLOTS_NUM - 1 && 801 new->base_gfn <= mslots[i + 1].base_gfn) { 802 if (!mslots[i + 1].npages) 803 break; 804 mslots[i] = mslots[i + 1]; 805 slots->id_to_index[mslots[i].id] = i; 806 i++; 807 } 808 809 /* 810 * The ">=" is needed when creating a slot with base_gfn == 0, 811 * so that it moves before all those with base_gfn == npages == 0. 812 * 813 * On the other hand, if new->npages is zero, the above loop has 814 * already left i pointing to the beginning of the empty part of 815 * mslots, and the ">=" would move the hole backwards in this 816 * case---which is wrong. So skip the loop when deleting a slot. 817 */ 818 if (new->npages) { 819 while (i > 0 && 820 new->base_gfn >= mslots[i - 1].base_gfn) { 821 mslots[i] = mslots[i - 1]; 822 slots->id_to_index[mslots[i].id] = i; 823 i--; 824 } 825 } else 826 WARN_ON_ONCE(i != slots->used_slots); 827 828 mslots[i] = *new; 829 slots->id_to_index[mslots[i].id] = i; 830 } 831 832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 833 { 834 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 835 836 #ifdef __KVM_HAVE_READONLY_MEM 837 valid_flags |= KVM_MEM_READONLY; 838 #endif 839 840 if (mem->flags & ~valid_flags) 841 return -EINVAL; 842 843 return 0; 844 } 845 846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 847 int as_id, struct kvm_memslots *slots) 848 { 849 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 850 851 /* 852 * Set the low bit in the generation, which disables SPTE caching 853 * until the end of synchronize_srcu_expedited. 854 */ 855 WARN_ON(old_memslots->generation & 1); 856 slots->generation = old_memslots->generation + 1; 857 858 rcu_assign_pointer(kvm->memslots[as_id], slots); 859 synchronize_srcu_expedited(&kvm->srcu); 860 861 /* 862 * Increment the new memslot generation a second time. This prevents 863 * vm exits that race with memslot updates from caching a memslot 864 * generation that will (potentially) be valid forever. 865 * 866 * Generations must be unique even across address spaces. We do not need 867 * a global counter for that, instead the generation space is evenly split 868 * across address spaces. For example, with two address spaces, address 869 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 870 * use generations 2, 6, 10, 14, ... 871 */ 872 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 873 874 kvm_arch_memslots_updated(kvm, slots); 875 876 return old_memslots; 877 } 878 879 /* 880 * Allocate some memory and give it an address in the guest physical address 881 * space. 882 * 883 * Discontiguous memory is allowed, mostly for framebuffers. 884 * 885 * Must be called holding kvm->slots_lock for write. 886 */ 887 int __kvm_set_memory_region(struct kvm *kvm, 888 const struct kvm_userspace_memory_region *mem) 889 { 890 int r; 891 gfn_t base_gfn; 892 unsigned long npages; 893 struct kvm_memory_slot *slot; 894 struct kvm_memory_slot old, new; 895 struct kvm_memslots *slots = NULL, *old_memslots; 896 int as_id, id; 897 enum kvm_mr_change change; 898 899 r = check_memory_region_flags(mem); 900 if (r) 901 goto out; 902 903 r = -EINVAL; 904 as_id = mem->slot >> 16; 905 id = (u16)mem->slot; 906 907 /* General sanity checks */ 908 if (mem->memory_size & (PAGE_SIZE - 1)) 909 goto out; 910 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 911 goto out; 912 /* We can read the guest memory with __xxx_user() later on. */ 913 if ((id < KVM_USER_MEM_SLOTS) && 914 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 915 !access_ok(VERIFY_WRITE, 916 (void __user *)(unsigned long)mem->userspace_addr, 917 mem->memory_size))) 918 goto out; 919 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 920 goto out; 921 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 922 goto out; 923 924 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 925 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 926 npages = mem->memory_size >> PAGE_SHIFT; 927 928 if (npages > KVM_MEM_MAX_NR_PAGES) 929 goto out; 930 931 new = old = *slot; 932 933 new.id = id; 934 new.base_gfn = base_gfn; 935 new.npages = npages; 936 new.flags = mem->flags; 937 938 if (npages) { 939 if (!old.npages) 940 change = KVM_MR_CREATE; 941 else { /* Modify an existing slot. */ 942 if ((mem->userspace_addr != old.userspace_addr) || 943 (npages != old.npages) || 944 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 945 goto out; 946 947 if (base_gfn != old.base_gfn) 948 change = KVM_MR_MOVE; 949 else if (new.flags != old.flags) 950 change = KVM_MR_FLAGS_ONLY; 951 else { /* Nothing to change. */ 952 r = 0; 953 goto out; 954 } 955 } 956 } else { 957 if (!old.npages) 958 goto out; 959 960 change = KVM_MR_DELETE; 961 new.base_gfn = 0; 962 new.flags = 0; 963 } 964 965 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 966 /* Check for overlaps */ 967 r = -EEXIST; 968 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 969 if ((slot->id >= KVM_USER_MEM_SLOTS) || 970 (slot->id == id)) 971 continue; 972 if (!((base_gfn + npages <= slot->base_gfn) || 973 (base_gfn >= slot->base_gfn + slot->npages))) 974 goto out; 975 } 976 } 977 978 /* Free page dirty bitmap if unneeded */ 979 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 980 new.dirty_bitmap = NULL; 981 982 r = -ENOMEM; 983 if (change == KVM_MR_CREATE) { 984 new.userspace_addr = mem->userspace_addr; 985 986 if (kvm_arch_create_memslot(kvm, &new, npages)) 987 goto out_free; 988 } 989 990 /* Allocate page dirty bitmap if needed */ 991 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 992 if (kvm_create_dirty_bitmap(&new) < 0) 993 goto out_free; 994 } 995 996 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 997 if (!slots) 998 goto out_free; 999 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1000 1001 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1002 slot = id_to_memslot(slots, id); 1003 slot->flags |= KVM_MEMSLOT_INVALID; 1004 1005 old_memslots = install_new_memslots(kvm, as_id, slots); 1006 1007 /* From this point no new shadow pages pointing to a deleted, 1008 * or moved, memslot will be created. 1009 * 1010 * validation of sp->gfn happens in: 1011 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1012 * - kvm_is_visible_gfn (mmu_check_roots) 1013 */ 1014 kvm_arch_flush_shadow_memslot(kvm, slot); 1015 1016 /* 1017 * We can re-use the old_memslots from above, the only difference 1018 * from the currently installed memslots is the invalid flag. This 1019 * will get overwritten by update_memslots anyway. 1020 */ 1021 slots = old_memslots; 1022 } 1023 1024 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1025 if (r) 1026 goto out_slots; 1027 1028 /* actual memory is freed via old in kvm_free_memslot below */ 1029 if (change == KVM_MR_DELETE) { 1030 new.dirty_bitmap = NULL; 1031 memset(&new.arch, 0, sizeof(new.arch)); 1032 } 1033 1034 update_memslots(slots, &new); 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1038 1039 kvm_free_memslot(kvm, &old, &new); 1040 kvfree(old_memslots); 1041 return 0; 1042 1043 out_slots: 1044 kvfree(slots); 1045 out_free: 1046 kvm_free_memslot(kvm, &new, &old); 1047 out: 1048 return r; 1049 } 1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1051 1052 int kvm_set_memory_region(struct kvm *kvm, 1053 const struct kvm_userspace_memory_region *mem) 1054 { 1055 int r; 1056 1057 mutex_lock(&kvm->slots_lock); 1058 r = __kvm_set_memory_region(kvm, mem); 1059 mutex_unlock(&kvm->slots_lock); 1060 return r; 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1063 1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1065 struct kvm_userspace_memory_region *mem) 1066 { 1067 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1068 return -EINVAL; 1069 1070 return kvm_set_memory_region(kvm, mem); 1071 } 1072 1073 int kvm_get_dirty_log(struct kvm *kvm, 1074 struct kvm_dirty_log *log, int *is_dirty) 1075 { 1076 struct kvm_memslots *slots; 1077 struct kvm_memory_slot *memslot; 1078 int i, as_id, id; 1079 unsigned long n; 1080 unsigned long any = 0; 1081 1082 as_id = log->slot >> 16; 1083 id = (u16)log->slot; 1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1085 return -EINVAL; 1086 1087 slots = __kvm_memslots(kvm, as_id); 1088 memslot = id_to_memslot(slots, id); 1089 if (!memslot->dirty_bitmap) 1090 return -ENOENT; 1091 1092 n = kvm_dirty_bitmap_bytes(memslot); 1093 1094 for (i = 0; !any && i < n/sizeof(long); ++i) 1095 any = memslot->dirty_bitmap[i]; 1096 1097 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1098 return -EFAULT; 1099 1100 if (any) 1101 *is_dirty = 1; 1102 return 0; 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1105 1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1107 /** 1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1109 * are dirty write protect them for next write. 1110 * @kvm: pointer to kvm instance 1111 * @log: slot id and address to which we copy the log 1112 * @is_dirty: flag set if any page is dirty 1113 * 1114 * We need to keep it in mind that VCPU threads can write to the bitmap 1115 * concurrently. So, to avoid losing track of dirty pages we keep the 1116 * following order: 1117 * 1118 * 1. Take a snapshot of the bit and clear it if needed. 1119 * 2. Write protect the corresponding page. 1120 * 3. Copy the snapshot to the userspace. 1121 * 4. Upon return caller flushes TLB's if needed. 1122 * 1123 * Between 2 and 4, the guest may write to the page using the remaining TLB 1124 * entry. This is not a problem because the page is reported dirty using 1125 * the snapshot taken before and step 4 ensures that writes done after 1126 * exiting to userspace will be logged for the next call. 1127 * 1128 */ 1129 int kvm_get_dirty_log_protect(struct kvm *kvm, 1130 struct kvm_dirty_log *log, bool *is_dirty) 1131 { 1132 struct kvm_memslots *slots; 1133 struct kvm_memory_slot *memslot; 1134 int i, as_id, id; 1135 unsigned long n; 1136 unsigned long *dirty_bitmap; 1137 unsigned long *dirty_bitmap_buffer; 1138 1139 as_id = log->slot >> 16; 1140 id = (u16)log->slot; 1141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1142 return -EINVAL; 1143 1144 slots = __kvm_memslots(kvm, as_id); 1145 memslot = id_to_memslot(slots, id); 1146 1147 dirty_bitmap = memslot->dirty_bitmap; 1148 if (!dirty_bitmap) 1149 return -ENOENT; 1150 1151 n = kvm_dirty_bitmap_bytes(memslot); 1152 1153 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1154 memset(dirty_bitmap_buffer, 0, n); 1155 1156 spin_lock(&kvm->mmu_lock); 1157 *is_dirty = false; 1158 for (i = 0; i < n / sizeof(long); i++) { 1159 unsigned long mask; 1160 gfn_t offset; 1161 1162 if (!dirty_bitmap[i]) 1163 continue; 1164 1165 *is_dirty = true; 1166 1167 mask = xchg(&dirty_bitmap[i], 0); 1168 dirty_bitmap_buffer[i] = mask; 1169 1170 if (mask) { 1171 offset = i * BITS_PER_LONG; 1172 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1173 offset, mask); 1174 } 1175 } 1176 1177 spin_unlock(&kvm->mmu_lock); 1178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1179 return -EFAULT; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1183 #endif 1184 1185 bool kvm_largepages_enabled(void) 1186 { 1187 return largepages_enabled; 1188 } 1189 1190 void kvm_disable_largepages(void) 1191 { 1192 largepages_enabled = false; 1193 } 1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1195 1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1197 { 1198 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1199 } 1200 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1201 1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1203 { 1204 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1205 } 1206 1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1208 { 1209 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1210 1211 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1212 memslot->flags & KVM_MEMSLOT_INVALID) 1213 return false; 1214 1215 return true; 1216 } 1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1218 1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1220 { 1221 struct vm_area_struct *vma; 1222 unsigned long addr, size; 1223 1224 size = PAGE_SIZE; 1225 1226 addr = gfn_to_hva(kvm, gfn); 1227 if (kvm_is_error_hva(addr)) 1228 return PAGE_SIZE; 1229 1230 down_read(¤t->mm->mmap_sem); 1231 vma = find_vma(current->mm, addr); 1232 if (!vma) 1233 goto out; 1234 1235 size = vma_kernel_pagesize(vma); 1236 1237 out: 1238 up_read(¤t->mm->mmap_sem); 1239 1240 return size; 1241 } 1242 1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1244 { 1245 return slot->flags & KVM_MEM_READONLY; 1246 } 1247 1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1249 gfn_t *nr_pages, bool write) 1250 { 1251 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1252 return KVM_HVA_ERR_BAD; 1253 1254 if (memslot_is_readonly(slot) && write) 1255 return KVM_HVA_ERR_RO_BAD; 1256 1257 if (nr_pages) 1258 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1259 1260 return __gfn_to_hva_memslot(slot, gfn); 1261 } 1262 1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1264 gfn_t *nr_pages) 1265 { 1266 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1267 } 1268 1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1270 gfn_t gfn) 1271 { 1272 return gfn_to_hva_many(slot, gfn, NULL); 1273 } 1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1275 1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1277 { 1278 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1279 } 1280 EXPORT_SYMBOL_GPL(gfn_to_hva); 1281 1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1283 { 1284 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1285 } 1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1287 1288 /* 1289 * If writable is set to false, the hva returned by this function is only 1290 * allowed to be read. 1291 */ 1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1293 gfn_t gfn, bool *writable) 1294 { 1295 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1296 1297 if (!kvm_is_error_hva(hva) && writable) 1298 *writable = !memslot_is_readonly(slot); 1299 1300 return hva; 1301 } 1302 1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1304 { 1305 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1306 1307 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1308 } 1309 1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1311 { 1312 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1313 1314 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1315 } 1316 1317 static int get_user_page_nowait(unsigned long start, int write, 1318 struct page **page) 1319 { 1320 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1321 1322 if (write) 1323 flags |= FOLL_WRITE; 1324 1325 return get_user_pages(start, 1, flags, page, NULL); 1326 } 1327 1328 static inline int check_user_page_hwpoison(unsigned long addr) 1329 { 1330 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1331 1332 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1333 return rc == -EHWPOISON; 1334 } 1335 1336 /* 1337 * The atomic path to get the writable pfn which will be stored in @pfn, 1338 * true indicates success, otherwise false is returned. 1339 */ 1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1341 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1342 { 1343 struct page *page[1]; 1344 int npages; 1345 1346 if (!(async || atomic)) 1347 return false; 1348 1349 /* 1350 * Fast pin a writable pfn only if it is a write fault request 1351 * or the caller allows to map a writable pfn for a read fault 1352 * request. 1353 */ 1354 if (!(write_fault || writable)) 1355 return false; 1356 1357 npages = __get_user_pages_fast(addr, 1, 1, page); 1358 if (npages == 1) { 1359 *pfn = page_to_pfn(page[0]); 1360 1361 if (writable) 1362 *writable = true; 1363 return true; 1364 } 1365 1366 return false; 1367 } 1368 1369 /* 1370 * The slow path to get the pfn of the specified host virtual address, 1371 * 1 indicates success, -errno is returned if error is detected. 1372 */ 1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1374 bool *writable, kvm_pfn_t *pfn) 1375 { 1376 struct page *page[1]; 1377 int npages = 0; 1378 1379 might_sleep(); 1380 1381 if (writable) 1382 *writable = write_fault; 1383 1384 if (async) { 1385 down_read(¤t->mm->mmap_sem); 1386 npages = get_user_page_nowait(addr, write_fault, page); 1387 up_read(¤t->mm->mmap_sem); 1388 } else { 1389 unsigned int flags = FOLL_HWPOISON; 1390 1391 if (write_fault) 1392 flags |= FOLL_WRITE; 1393 1394 npages = get_user_pages_unlocked(addr, 1, page, flags); 1395 } 1396 if (npages != 1) 1397 return npages; 1398 1399 /* map read fault as writable if possible */ 1400 if (unlikely(!write_fault) && writable) { 1401 struct page *wpage[1]; 1402 1403 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1404 if (npages == 1) { 1405 *writable = true; 1406 put_page(page[0]); 1407 page[0] = wpage[0]; 1408 } 1409 1410 npages = 1; 1411 } 1412 *pfn = page_to_pfn(page[0]); 1413 return npages; 1414 } 1415 1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1417 { 1418 if (unlikely(!(vma->vm_flags & VM_READ))) 1419 return false; 1420 1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1422 return false; 1423 1424 return true; 1425 } 1426 1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1428 unsigned long addr, bool *async, 1429 bool write_fault, kvm_pfn_t *p_pfn) 1430 { 1431 unsigned long pfn; 1432 int r; 1433 1434 r = follow_pfn(vma, addr, &pfn); 1435 if (r) { 1436 /* 1437 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1438 * not call the fault handler, so do it here. 1439 */ 1440 bool unlocked = false; 1441 r = fixup_user_fault(current, current->mm, addr, 1442 (write_fault ? FAULT_FLAG_WRITE : 0), 1443 &unlocked); 1444 if (unlocked) 1445 return -EAGAIN; 1446 if (r) 1447 return r; 1448 1449 r = follow_pfn(vma, addr, &pfn); 1450 if (r) 1451 return r; 1452 1453 } 1454 1455 1456 /* 1457 * Get a reference here because callers of *hva_to_pfn* and 1458 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1459 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1460 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1461 * simply do nothing for reserved pfns. 1462 * 1463 * Whoever called remap_pfn_range is also going to call e.g. 1464 * unmap_mapping_range before the underlying pages are freed, 1465 * causing a call to our MMU notifier. 1466 */ 1467 kvm_get_pfn(pfn); 1468 1469 *p_pfn = pfn; 1470 return 0; 1471 } 1472 1473 /* 1474 * Pin guest page in memory and return its pfn. 1475 * @addr: host virtual address which maps memory to the guest 1476 * @atomic: whether this function can sleep 1477 * @async: whether this function need to wait IO complete if the 1478 * host page is not in the memory 1479 * @write_fault: whether we should get a writable host page 1480 * @writable: whether it allows to map a writable host page for !@write_fault 1481 * 1482 * The function will map a writable host page for these two cases: 1483 * 1): @write_fault = true 1484 * 2): @write_fault = false && @writable, @writable will tell the caller 1485 * whether the mapping is writable. 1486 */ 1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1488 bool write_fault, bool *writable) 1489 { 1490 struct vm_area_struct *vma; 1491 kvm_pfn_t pfn = 0; 1492 int npages, r; 1493 1494 /* we can do it either atomically or asynchronously, not both */ 1495 BUG_ON(atomic && async); 1496 1497 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1498 return pfn; 1499 1500 if (atomic) 1501 return KVM_PFN_ERR_FAULT; 1502 1503 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1504 if (npages == 1) 1505 return pfn; 1506 1507 down_read(¤t->mm->mmap_sem); 1508 if (npages == -EHWPOISON || 1509 (!async && check_user_page_hwpoison(addr))) { 1510 pfn = KVM_PFN_ERR_HWPOISON; 1511 goto exit; 1512 } 1513 1514 retry: 1515 vma = find_vma_intersection(current->mm, addr, addr + 1); 1516 1517 if (vma == NULL) 1518 pfn = KVM_PFN_ERR_FAULT; 1519 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1520 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1521 if (r == -EAGAIN) 1522 goto retry; 1523 if (r < 0) 1524 pfn = KVM_PFN_ERR_FAULT; 1525 } else { 1526 if (async && vma_is_valid(vma, write_fault)) 1527 *async = true; 1528 pfn = KVM_PFN_ERR_FAULT; 1529 } 1530 exit: 1531 up_read(¤t->mm->mmap_sem); 1532 return pfn; 1533 } 1534 1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1536 bool atomic, bool *async, bool write_fault, 1537 bool *writable) 1538 { 1539 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1540 1541 if (addr == KVM_HVA_ERR_RO_BAD) { 1542 if (writable) 1543 *writable = false; 1544 return KVM_PFN_ERR_RO_FAULT; 1545 } 1546 1547 if (kvm_is_error_hva(addr)) { 1548 if (writable) 1549 *writable = false; 1550 return KVM_PFN_NOSLOT; 1551 } 1552 1553 /* Do not map writable pfn in the readonly memslot. */ 1554 if (writable && memslot_is_readonly(slot)) { 1555 *writable = false; 1556 writable = NULL; 1557 } 1558 1559 return hva_to_pfn(addr, atomic, async, write_fault, 1560 writable); 1561 } 1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1563 1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1565 bool *writable) 1566 { 1567 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1568 write_fault, writable); 1569 } 1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1571 1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1573 { 1574 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1575 } 1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1577 1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1579 { 1580 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1581 } 1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1583 1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1585 { 1586 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1587 } 1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1589 1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1591 { 1592 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1593 } 1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1595 1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1597 { 1598 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1599 } 1600 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1601 1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1603 { 1604 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1605 } 1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1607 1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1609 struct page **pages, int nr_pages) 1610 { 1611 unsigned long addr; 1612 gfn_t entry = 0; 1613 1614 addr = gfn_to_hva_many(slot, gfn, &entry); 1615 if (kvm_is_error_hva(addr)) 1616 return -1; 1617 1618 if (entry < nr_pages) 1619 return 0; 1620 1621 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1622 } 1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1624 1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1626 { 1627 if (is_error_noslot_pfn(pfn)) 1628 return KVM_ERR_PTR_BAD_PAGE; 1629 1630 if (kvm_is_reserved_pfn(pfn)) { 1631 WARN_ON(1); 1632 return KVM_ERR_PTR_BAD_PAGE; 1633 } 1634 1635 return pfn_to_page(pfn); 1636 } 1637 1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1639 { 1640 kvm_pfn_t pfn; 1641 1642 pfn = gfn_to_pfn(kvm, gfn); 1643 1644 return kvm_pfn_to_page(pfn); 1645 } 1646 EXPORT_SYMBOL_GPL(gfn_to_page); 1647 1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1649 { 1650 kvm_pfn_t pfn; 1651 1652 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1653 1654 return kvm_pfn_to_page(pfn); 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1657 1658 void kvm_release_page_clean(struct page *page) 1659 { 1660 WARN_ON(is_error_page(page)); 1661 1662 kvm_release_pfn_clean(page_to_pfn(page)); 1663 } 1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1665 1666 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1667 { 1668 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1669 put_page(pfn_to_page(pfn)); 1670 } 1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1672 1673 void kvm_release_page_dirty(struct page *page) 1674 { 1675 WARN_ON(is_error_page(page)); 1676 1677 kvm_release_pfn_dirty(page_to_pfn(page)); 1678 } 1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1680 1681 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1682 { 1683 kvm_set_pfn_dirty(pfn); 1684 kvm_release_pfn_clean(pfn); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1687 1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1689 { 1690 if (!kvm_is_reserved_pfn(pfn)) { 1691 struct page *page = pfn_to_page(pfn); 1692 1693 if (!PageReserved(page)) 1694 SetPageDirty(page); 1695 } 1696 } 1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1698 1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1700 { 1701 if (!kvm_is_reserved_pfn(pfn)) 1702 mark_page_accessed(pfn_to_page(pfn)); 1703 } 1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1705 1706 void kvm_get_pfn(kvm_pfn_t pfn) 1707 { 1708 if (!kvm_is_reserved_pfn(pfn)) 1709 get_page(pfn_to_page(pfn)); 1710 } 1711 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1712 1713 static int next_segment(unsigned long len, int offset) 1714 { 1715 if (len > PAGE_SIZE - offset) 1716 return PAGE_SIZE - offset; 1717 else 1718 return len; 1719 } 1720 1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1722 void *data, int offset, int len) 1723 { 1724 int r; 1725 unsigned long addr; 1726 1727 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1728 if (kvm_is_error_hva(addr)) 1729 return -EFAULT; 1730 r = __copy_from_user(data, (void __user *)addr + offset, len); 1731 if (r) 1732 return -EFAULT; 1733 return 0; 1734 } 1735 1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1737 int len) 1738 { 1739 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1740 1741 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1742 } 1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1744 1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1746 int offset, int len) 1747 { 1748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1749 1750 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1753 1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1755 { 1756 gfn_t gfn = gpa >> PAGE_SHIFT; 1757 int seg; 1758 int offset = offset_in_page(gpa); 1759 int ret; 1760 1761 while ((seg = next_segment(len, offset)) != 0) { 1762 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1763 if (ret < 0) 1764 return ret; 1765 offset = 0; 1766 len -= seg; 1767 data += seg; 1768 ++gfn; 1769 } 1770 return 0; 1771 } 1772 EXPORT_SYMBOL_GPL(kvm_read_guest); 1773 1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1775 { 1776 gfn_t gfn = gpa >> PAGE_SHIFT; 1777 int seg; 1778 int offset = offset_in_page(gpa); 1779 int ret; 1780 1781 while ((seg = next_segment(len, offset)) != 0) { 1782 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1783 if (ret < 0) 1784 return ret; 1785 offset = 0; 1786 len -= seg; 1787 data += seg; 1788 ++gfn; 1789 } 1790 return 0; 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1793 1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1795 void *data, int offset, unsigned long len) 1796 { 1797 int r; 1798 unsigned long addr; 1799 1800 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1801 if (kvm_is_error_hva(addr)) 1802 return -EFAULT; 1803 pagefault_disable(); 1804 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1805 pagefault_enable(); 1806 if (r) 1807 return -EFAULT; 1808 return 0; 1809 } 1810 1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1812 unsigned long len) 1813 { 1814 gfn_t gfn = gpa >> PAGE_SHIFT; 1815 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1816 int offset = offset_in_page(gpa); 1817 1818 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1819 } 1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1821 1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1823 void *data, unsigned long len) 1824 { 1825 gfn_t gfn = gpa >> PAGE_SHIFT; 1826 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1827 int offset = offset_in_page(gpa); 1828 1829 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1830 } 1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1832 1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1834 const void *data, int offset, int len) 1835 { 1836 int r; 1837 unsigned long addr; 1838 1839 addr = gfn_to_hva_memslot(memslot, gfn); 1840 if (kvm_is_error_hva(addr)) 1841 return -EFAULT; 1842 r = __copy_to_user((void __user *)addr + offset, data, len); 1843 if (r) 1844 return -EFAULT; 1845 mark_page_dirty_in_slot(memslot, gfn); 1846 return 0; 1847 } 1848 1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1850 const void *data, int offset, int len) 1851 { 1852 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1853 1854 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1855 } 1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1857 1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1859 const void *data, int offset, int len) 1860 { 1861 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1862 1863 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1864 } 1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1866 1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1868 unsigned long len) 1869 { 1870 gfn_t gfn = gpa >> PAGE_SHIFT; 1871 int seg; 1872 int offset = offset_in_page(gpa); 1873 int ret; 1874 1875 while ((seg = next_segment(len, offset)) != 0) { 1876 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1877 if (ret < 0) 1878 return ret; 1879 offset = 0; 1880 len -= seg; 1881 data += seg; 1882 ++gfn; 1883 } 1884 return 0; 1885 } 1886 EXPORT_SYMBOL_GPL(kvm_write_guest); 1887 1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1889 unsigned long len) 1890 { 1891 gfn_t gfn = gpa >> PAGE_SHIFT; 1892 int seg; 1893 int offset = offset_in_page(gpa); 1894 int ret; 1895 1896 while ((seg = next_segment(len, offset)) != 0) { 1897 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1898 if (ret < 0) 1899 return ret; 1900 offset = 0; 1901 len -= seg; 1902 data += seg; 1903 ++gfn; 1904 } 1905 return 0; 1906 } 1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1908 1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1910 struct gfn_to_hva_cache *ghc, 1911 gpa_t gpa, unsigned long len) 1912 { 1913 int offset = offset_in_page(gpa); 1914 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1915 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1916 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1917 gfn_t nr_pages_avail; 1918 1919 ghc->gpa = gpa; 1920 ghc->generation = slots->generation; 1921 ghc->len = len; 1922 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1923 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1924 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1925 ghc->hva += offset; 1926 } else { 1927 /* 1928 * If the requested region crosses two memslots, we still 1929 * verify that the entire region is valid here. 1930 */ 1931 while (start_gfn <= end_gfn) { 1932 nr_pages_avail = 0; 1933 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1934 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1935 &nr_pages_avail); 1936 if (kvm_is_error_hva(ghc->hva)) 1937 return -EFAULT; 1938 start_gfn += nr_pages_avail; 1939 } 1940 /* Use the slow path for cross page reads and writes. */ 1941 ghc->memslot = NULL; 1942 } 1943 return 0; 1944 } 1945 1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1947 gpa_t gpa, unsigned long len) 1948 { 1949 struct kvm_memslots *slots = kvm_memslots(kvm); 1950 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1953 1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1955 void *data, int offset, unsigned long len) 1956 { 1957 struct kvm_memslots *slots = kvm_memslots(kvm); 1958 int r; 1959 gpa_t gpa = ghc->gpa + offset; 1960 1961 BUG_ON(len + offset > ghc->len); 1962 1963 if (slots->generation != ghc->generation) 1964 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1965 1966 if (unlikely(!ghc->memslot)) 1967 return kvm_write_guest(kvm, gpa, data, len); 1968 1969 if (kvm_is_error_hva(ghc->hva)) 1970 return -EFAULT; 1971 1972 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1973 if (r) 1974 return -EFAULT; 1975 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1980 1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1982 void *data, unsigned long len) 1983 { 1984 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1987 1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1989 void *data, unsigned long len) 1990 { 1991 struct kvm_memslots *slots = kvm_memslots(kvm); 1992 int r; 1993 1994 BUG_ON(len > ghc->len); 1995 1996 if (slots->generation != ghc->generation) 1997 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1998 1999 if (unlikely(!ghc->memslot)) 2000 return kvm_read_guest(kvm, ghc->gpa, data, len); 2001 2002 if (kvm_is_error_hva(ghc->hva)) 2003 return -EFAULT; 2004 2005 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2006 if (r) 2007 return -EFAULT; 2008 2009 return 0; 2010 } 2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2012 2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2014 { 2015 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2016 2017 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2018 } 2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2020 2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2022 { 2023 gfn_t gfn = gpa >> PAGE_SHIFT; 2024 int seg; 2025 int offset = offset_in_page(gpa); 2026 int ret; 2027 2028 while ((seg = next_segment(len, offset)) != 0) { 2029 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2030 if (ret < 0) 2031 return ret; 2032 offset = 0; 2033 len -= seg; 2034 ++gfn; 2035 } 2036 return 0; 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2039 2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2041 gfn_t gfn) 2042 { 2043 if (memslot && memslot->dirty_bitmap) { 2044 unsigned long rel_gfn = gfn - memslot->base_gfn; 2045 2046 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2047 } 2048 } 2049 2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2051 { 2052 struct kvm_memory_slot *memslot; 2053 2054 memslot = gfn_to_memslot(kvm, gfn); 2055 mark_page_dirty_in_slot(memslot, gfn); 2056 } 2057 EXPORT_SYMBOL_GPL(mark_page_dirty); 2058 2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2060 { 2061 struct kvm_memory_slot *memslot; 2062 2063 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2064 mark_page_dirty_in_slot(memslot, gfn); 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2067 2068 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2069 { 2070 if (!vcpu->sigset_active) 2071 return; 2072 2073 /* 2074 * This does a lockless modification of ->real_blocked, which is fine 2075 * because, only current can change ->real_blocked and all readers of 2076 * ->real_blocked don't care as long ->real_blocked is always a subset 2077 * of ->blocked. 2078 */ 2079 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2080 } 2081 2082 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2083 { 2084 if (!vcpu->sigset_active) 2085 return; 2086 2087 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2088 sigemptyset(¤t->real_blocked); 2089 } 2090 2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2092 { 2093 unsigned int old, val, grow; 2094 2095 old = val = vcpu->halt_poll_ns; 2096 grow = READ_ONCE(halt_poll_ns_grow); 2097 /* 10us base */ 2098 if (val == 0 && grow) 2099 val = 10000; 2100 else 2101 val *= grow; 2102 2103 if (val > halt_poll_ns) 2104 val = halt_poll_ns; 2105 2106 vcpu->halt_poll_ns = val; 2107 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2108 } 2109 2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2111 { 2112 unsigned int old, val, shrink; 2113 2114 old = val = vcpu->halt_poll_ns; 2115 shrink = READ_ONCE(halt_poll_ns_shrink); 2116 if (shrink == 0) 2117 val = 0; 2118 else 2119 val /= shrink; 2120 2121 vcpu->halt_poll_ns = val; 2122 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2123 } 2124 2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2126 { 2127 if (kvm_arch_vcpu_runnable(vcpu)) { 2128 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2129 return -EINTR; 2130 } 2131 if (kvm_cpu_has_pending_timer(vcpu)) 2132 return -EINTR; 2133 if (signal_pending(current)) 2134 return -EINTR; 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2141 */ 2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2143 { 2144 ktime_t start, cur; 2145 DECLARE_SWAITQUEUE(wait); 2146 bool waited = false; 2147 u64 block_ns; 2148 2149 start = cur = ktime_get(); 2150 if (vcpu->halt_poll_ns) { 2151 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2152 2153 ++vcpu->stat.halt_attempted_poll; 2154 do { 2155 /* 2156 * This sets KVM_REQ_UNHALT if an interrupt 2157 * arrives. 2158 */ 2159 if (kvm_vcpu_check_block(vcpu) < 0) { 2160 ++vcpu->stat.halt_successful_poll; 2161 if (!vcpu_valid_wakeup(vcpu)) 2162 ++vcpu->stat.halt_poll_invalid; 2163 goto out; 2164 } 2165 cur = ktime_get(); 2166 } while (single_task_running() && ktime_before(cur, stop)); 2167 } 2168 2169 kvm_arch_vcpu_blocking(vcpu); 2170 2171 for (;;) { 2172 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2173 2174 if (kvm_vcpu_check_block(vcpu) < 0) 2175 break; 2176 2177 waited = true; 2178 schedule(); 2179 } 2180 2181 finish_swait(&vcpu->wq, &wait); 2182 cur = ktime_get(); 2183 2184 kvm_arch_vcpu_unblocking(vcpu); 2185 out: 2186 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2187 2188 if (!vcpu_valid_wakeup(vcpu)) 2189 shrink_halt_poll_ns(vcpu); 2190 else if (halt_poll_ns) { 2191 if (block_ns <= vcpu->halt_poll_ns) 2192 ; 2193 /* we had a long block, shrink polling */ 2194 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2195 shrink_halt_poll_ns(vcpu); 2196 /* we had a short halt and our poll time is too small */ 2197 else if (vcpu->halt_poll_ns < halt_poll_ns && 2198 block_ns < halt_poll_ns) 2199 grow_halt_poll_ns(vcpu); 2200 } else 2201 vcpu->halt_poll_ns = 0; 2202 2203 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2204 kvm_arch_vcpu_block_finish(vcpu); 2205 } 2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2207 2208 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2209 { 2210 struct swait_queue_head *wqp; 2211 2212 wqp = kvm_arch_vcpu_wq(vcpu); 2213 if (swq_has_sleeper(wqp)) { 2214 swake_up(wqp); 2215 ++vcpu->stat.halt_wakeup; 2216 return true; 2217 } 2218 2219 return false; 2220 } 2221 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2222 2223 #ifndef CONFIG_S390 2224 /* 2225 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2226 */ 2227 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2228 { 2229 int me; 2230 int cpu = vcpu->cpu; 2231 2232 if (kvm_vcpu_wake_up(vcpu)) 2233 return; 2234 2235 me = get_cpu(); 2236 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2237 if (kvm_arch_vcpu_should_kick(vcpu)) 2238 smp_send_reschedule(cpu); 2239 put_cpu(); 2240 } 2241 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2242 #endif /* !CONFIG_S390 */ 2243 2244 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2245 { 2246 struct pid *pid; 2247 struct task_struct *task = NULL; 2248 int ret = 0; 2249 2250 rcu_read_lock(); 2251 pid = rcu_dereference(target->pid); 2252 if (pid) 2253 task = get_pid_task(pid, PIDTYPE_PID); 2254 rcu_read_unlock(); 2255 if (!task) 2256 return ret; 2257 ret = yield_to(task, 1); 2258 put_task_struct(task); 2259 2260 return ret; 2261 } 2262 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2263 2264 /* 2265 * Helper that checks whether a VCPU is eligible for directed yield. 2266 * Most eligible candidate to yield is decided by following heuristics: 2267 * 2268 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2269 * (preempted lock holder), indicated by @in_spin_loop. 2270 * Set at the beiginning and cleared at the end of interception/PLE handler. 2271 * 2272 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2273 * chance last time (mostly it has become eligible now since we have probably 2274 * yielded to lockholder in last iteration. This is done by toggling 2275 * @dy_eligible each time a VCPU checked for eligibility.) 2276 * 2277 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2278 * to preempted lock-holder could result in wrong VCPU selection and CPU 2279 * burning. Giving priority for a potential lock-holder increases lock 2280 * progress. 2281 * 2282 * Since algorithm is based on heuristics, accessing another VCPU data without 2283 * locking does not harm. It may result in trying to yield to same VCPU, fail 2284 * and continue with next VCPU and so on. 2285 */ 2286 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2287 { 2288 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2289 bool eligible; 2290 2291 eligible = !vcpu->spin_loop.in_spin_loop || 2292 vcpu->spin_loop.dy_eligible; 2293 2294 if (vcpu->spin_loop.in_spin_loop) 2295 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2296 2297 return eligible; 2298 #else 2299 return true; 2300 #endif 2301 } 2302 2303 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2304 { 2305 struct kvm *kvm = me->kvm; 2306 struct kvm_vcpu *vcpu; 2307 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2308 int yielded = 0; 2309 int try = 3; 2310 int pass; 2311 int i; 2312 2313 kvm_vcpu_set_in_spin_loop(me, true); 2314 /* 2315 * We boost the priority of a VCPU that is runnable but not 2316 * currently running, because it got preempted by something 2317 * else and called schedule in __vcpu_run. Hopefully that 2318 * VCPU is holding the lock that we need and will release it. 2319 * We approximate round-robin by starting at the last boosted VCPU. 2320 */ 2321 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2322 kvm_for_each_vcpu(i, vcpu, kvm) { 2323 if (!pass && i <= last_boosted_vcpu) { 2324 i = last_boosted_vcpu; 2325 continue; 2326 } else if (pass && i > last_boosted_vcpu) 2327 break; 2328 if (!READ_ONCE(vcpu->preempted)) 2329 continue; 2330 if (vcpu == me) 2331 continue; 2332 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2333 continue; 2334 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2335 continue; 2336 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2337 continue; 2338 2339 yielded = kvm_vcpu_yield_to(vcpu); 2340 if (yielded > 0) { 2341 kvm->last_boosted_vcpu = i; 2342 break; 2343 } else if (yielded < 0) { 2344 try--; 2345 if (!try) 2346 break; 2347 } 2348 } 2349 } 2350 kvm_vcpu_set_in_spin_loop(me, false); 2351 2352 /* Ensure vcpu is not eligible during next spinloop */ 2353 kvm_vcpu_set_dy_eligible(me, false); 2354 } 2355 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2356 2357 static int kvm_vcpu_fault(struct vm_fault *vmf) 2358 { 2359 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2360 struct page *page; 2361 2362 if (vmf->pgoff == 0) 2363 page = virt_to_page(vcpu->run); 2364 #ifdef CONFIG_X86 2365 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2366 page = virt_to_page(vcpu->arch.pio_data); 2367 #endif 2368 #ifdef CONFIG_KVM_MMIO 2369 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2370 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2371 #endif 2372 else 2373 return kvm_arch_vcpu_fault(vcpu, vmf); 2374 get_page(page); 2375 vmf->page = page; 2376 return 0; 2377 } 2378 2379 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2380 .fault = kvm_vcpu_fault, 2381 }; 2382 2383 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2384 { 2385 vma->vm_ops = &kvm_vcpu_vm_ops; 2386 return 0; 2387 } 2388 2389 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2390 { 2391 struct kvm_vcpu *vcpu = filp->private_data; 2392 2393 debugfs_remove_recursive(vcpu->debugfs_dentry); 2394 kvm_put_kvm(vcpu->kvm); 2395 return 0; 2396 } 2397 2398 static struct file_operations kvm_vcpu_fops = { 2399 .release = kvm_vcpu_release, 2400 .unlocked_ioctl = kvm_vcpu_ioctl, 2401 #ifdef CONFIG_KVM_COMPAT 2402 .compat_ioctl = kvm_vcpu_compat_ioctl, 2403 #endif 2404 .mmap = kvm_vcpu_mmap, 2405 .llseek = noop_llseek, 2406 }; 2407 2408 /* 2409 * Allocates an inode for the vcpu. 2410 */ 2411 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2412 { 2413 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2414 } 2415 2416 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2417 { 2418 char dir_name[ITOA_MAX_LEN * 2]; 2419 int ret; 2420 2421 if (!kvm_arch_has_vcpu_debugfs()) 2422 return 0; 2423 2424 if (!debugfs_initialized()) 2425 return 0; 2426 2427 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2428 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2429 vcpu->kvm->debugfs_dentry); 2430 if (!vcpu->debugfs_dentry) 2431 return -ENOMEM; 2432 2433 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2434 if (ret < 0) { 2435 debugfs_remove_recursive(vcpu->debugfs_dentry); 2436 return ret; 2437 } 2438 2439 return 0; 2440 } 2441 2442 /* 2443 * Creates some virtual cpus. Good luck creating more than one. 2444 */ 2445 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2446 { 2447 int r; 2448 struct kvm_vcpu *vcpu; 2449 2450 if (id >= KVM_MAX_VCPU_ID) 2451 return -EINVAL; 2452 2453 mutex_lock(&kvm->lock); 2454 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2455 mutex_unlock(&kvm->lock); 2456 return -EINVAL; 2457 } 2458 2459 kvm->created_vcpus++; 2460 mutex_unlock(&kvm->lock); 2461 2462 vcpu = kvm_arch_vcpu_create(kvm, id); 2463 if (IS_ERR(vcpu)) { 2464 r = PTR_ERR(vcpu); 2465 goto vcpu_decrement; 2466 } 2467 2468 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2469 2470 r = kvm_arch_vcpu_setup(vcpu); 2471 if (r) 2472 goto vcpu_destroy; 2473 2474 r = kvm_create_vcpu_debugfs(vcpu); 2475 if (r) 2476 goto vcpu_destroy; 2477 2478 mutex_lock(&kvm->lock); 2479 if (kvm_get_vcpu_by_id(kvm, id)) { 2480 r = -EEXIST; 2481 goto unlock_vcpu_destroy; 2482 } 2483 2484 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2485 2486 /* Now it's all set up, let userspace reach it */ 2487 kvm_get_kvm(kvm); 2488 r = create_vcpu_fd(vcpu); 2489 if (r < 0) { 2490 kvm_put_kvm(kvm); 2491 goto unlock_vcpu_destroy; 2492 } 2493 2494 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2495 2496 /* 2497 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2498 * before kvm->online_vcpu's incremented value. 2499 */ 2500 smp_wmb(); 2501 atomic_inc(&kvm->online_vcpus); 2502 2503 mutex_unlock(&kvm->lock); 2504 kvm_arch_vcpu_postcreate(vcpu); 2505 return r; 2506 2507 unlock_vcpu_destroy: 2508 mutex_unlock(&kvm->lock); 2509 debugfs_remove_recursive(vcpu->debugfs_dentry); 2510 vcpu_destroy: 2511 kvm_arch_vcpu_destroy(vcpu); 2512 vcpu_decrement: 2513 mutex_lock(&kvm->lock); 2514 kvm->created_vcpus--; 2515 mutex_unlock(&kvm->lock); 2516 return r; 2517 } 2518 2519 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2520 { 2521 if (sigset) { 2522 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2523 vcpu->sigset_active = 1; 2524 vcpu->sigset = *sigset; 2525 } else 2526 vcpu->sigset_active = 0; 2527 return 0; 2528 } 2529 2530 static long kvm_vcpu_ioctl(struct file *filp, 2531 unsigned int ioctl, unsigned long arg) 2532 { 2533 struct kvm_vcpu *vcpu = filp->private_data; 2534 void __user *argp = (void __user *)arg; 2535 int r; 2536 struct kvm_fpu *fpu = NULL; 2537 struct kvm_sregs *kvm_sregs = NULL; 2538 2539 if (vcpu->kvm->mm != current->mm) 2540 return -EIO; 2541 2542 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2543 return -EINVAL; 2544 2545 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2546 /* 2547 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2548 * so vcpu_load() would break it. 2549 */ 2550 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2551 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2552 #endif 2553 2554 2555 r = vcpu_load(vcpu); 2556 if (r) 2557 return r; 2558 switch (ioctl) { 2559 case KVM_RUN: { 2560 struct pid *oldpid; 2561 r = -EINVAL; 2562 if (arg) 2563 goto out; 2564 oldpid = rcu_access_pointer(vcpu->pid); 2565 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2566 /* The thread running this VCPU changed. */ 2567 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2568 2569 rcu_assign_pointer(vcpu->pid, newpid); 2570 if (oldpid) 2571 synchronize_rcu(); 2572 put_pid(oldpid); 2573 } 2574 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2575 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2576 break; 2577 } 2578 case KVM_GET_REGS: { 2579 struct kvm_regs *kvm_regs; 2580 2581 r = -ENOMEM; 2582 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2583 if (!kvm_regs) 2584 goto out; 2585 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2586 if (r) 2587 goto out_free1; 2588 r = -EFAULT; 2589 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2590 goto out_free1; 2591 r = 0; 2592 out_free1: 2593 kfree(kvm_regs); 2594 break; 2595 } 2596 case KVM_SET_REGS: { 2597 struct kvm_regs *kvm_regs; 2598 2599 r = -ENOMEM; 2600 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2601 if (IS_ERR(kvm_regs)) { 2602 r = PTR_ERR(kvm_regs); 2603 goto out; 2604 } 2605 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2606 kfree(kvm_regs); 2607 break; 2608 } 2609 case KVM_GET_SREGS: { 2610 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2611 r = -ENOMEM; 2612 if (!kvm_sregs) 2613 goto out; 2614 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2615 if (r) 2616 goto out; 2617 r = -EFAULT; 2618 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2619 goto out; 2620 r = 0; 2621 break; 2622 } 2623 case KVM_SET_SREGS: { 2624 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2625 if (IS_ERR(kvm_sregs)) { 2626 r = PTR_ERR(kvm_sregs); 2627 kvm_sregs = NULL; 2628 goto out; 2629 } 2630 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2631 break; 2632 } 2633 case KVM_GET_MP_STATE: { 2634 struct kvm_mp_state mp_state; 2635 2636 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2637 if (r) 2638 goto out; 2639 r = -EFAULT; 2640 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2641 goto out; 2642 r = 0; 2643 break; 2644 } 2645 case KVM_SET_MP_STATE: { 2646 struct kvm_mp_state mp_state; 2647 2648 r = -EFAULT; 2649 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2650 goto out; 2651 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2652 break; 2653 } 2654 case KVM_TRANSLATE: { 2655 struct kvm_translation tr; 2656 2657 r = -EFAULT; 2658 if (copy_from_user(&tr, argp, sizeof(tr))) 2659 goto out; 2660 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2661 if (r) 2662 goto out; 2663 r = -EFAULT; 2664 if (copy_to_user(argp, &tr, sizeof(tr))) 2665 goto out; 2666 r = 0; 2667 break; 2668 } 2669 case KVM_SET_GUEST_DEBUG: { 2670 struct kvm_guest_debug dbg; 2671 2672 r = -EFAULT; 2673 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2674 goto out; 2675 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2676 break; 2677 } 2678 case KVM_SET_SIGNAL_MASK: { 2679 struct kvm_signal_mask __user *sigmask_arg = argp; 2680 struct kvm_signal_mask kvm_sigmask; 2681 sigset_t sigset, *p; 2682 2683 p = NULL; 2684 if (argp) { 2685 r = -EFAULT; 2686 if (copy_from_user(&kvm_sigmask, argp, 2687 sizeof(kvm_sigmask))) 2688 goto out; 2689 r = -EINVAL; 2690 if (kvm_sigmask.len != sizeof(sigset)) 2691 goto out; 2692 r = -EFAULT; 2693 if (copy_from_user(&sigset, sigmask_arg->sigset, 2694 sizeof(sigset))) 2695 goto out; 2696 p = &sigset; 2697 } 2698 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2699 break; 2700 } 2701 case KVM_GET_FPU: { 2702 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2703 r = -ENOMEM; 2704 if (!fpu) 2705 goto out; 2706 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2707 if (r) 2708 goto out; 2709 r = -EFAULT; 2710 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2711 goto out; 2712 r = 0; 2713 break; 2714 } 2715 case KVM_SET_FPU: { 2716 fpu = memdup_user(argp, sizeof(*fpu)); 2717 if (IS_ERR(fpu)) { 2718 r = PTR_ERR(fpu); 2719 fpu = NULL; 2720 goto out; 2721 } 2722 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2723 break; 2724 } 2725 default: 2726 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2727 } 2728 out: 2729 vcpu_put(vcpu); 2730 kfree(fpu); 2731 kfree(kvm_sregs); 2732 return r; 2733 } 2734 2735 #ifdef CONFIG_KVM_COMPAT 2736 static long kvm_vcpu_compat_ioctl(struct file *filp, 2737 unsigned int ioctl, unsigned long arg) 2738 { 2739 struct kvm_vcpu *vcpu = filp->private_data; 2740 void __user *argp = compat_ptr(arg); 2741 int r; 2742 2743 if (vcpu->kvm->mm != current->mm) 2744 return -EIO; 2745 2746 switch (ioctl) { 2747 case KVM_SET_SIGNAL_MASK: { 2748 struct kvm_signal_mask __user *sigmask_arg = argp; 2749 struct kvm_signal_mask kvm_sigmask; 2750 sigset_t sigset; 2751 2752 if (argp) { 2753 r = -EFAULT; 2754 if (copy_from_user(&kvm_sigmask, argp, 2755 sizeof(kvm_sigmask))) 2756 goto out; 2757 r = -EINVAL; 2758 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2759 goto out; 2760 r = -EFAULT; 2761 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2762 goto out; 2763 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2764 } else 2765 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2766 break; 2767 } 2768 default: 2769 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2770 } 2771 2772 out: 2773 return r; 2774 } 2775 #endif 2776 2777 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2778 int (*accessor)(struct kvm_device *dev, 2779 struct kvm_device_attr *attr), 2780 unsigned long arg) 2781 { 2782 struct kvm_device_attr attr; 2783 2784 if (!accessor) 2785 return -EPERM; 2786 2787 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2788 return -EFAULT; 2789 2790 return accessor(dev, &attr); 2791 } 2792 2793 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2794 unsigned long arg) 2795 { 2796 struct kvm_device *dev = filp->private_data; 2797 2798 switch (ioctl) { 2799 case KVM_SET_DEVICE_ATTR: 2800 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2801 case KVM_GET_DEVICE_ATTR: 2802 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2803 case KVM_HAS_DEVICE_ATTR: 2804 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2805 default: 2806 if (dev->ops->ioctl) 2807 return dev->ops->ioctl(dev, ioctl, arg); 2808 2809 return -ENOTTY; 2810 } 2811 } 2812 2813 static int kvm_device_release(struct inode *inode, struct file *filp) 2814 { 2815 struct kvm_device *dev = filp->private_data; 2816 struct kvm *kvm = dev->kvm; 2817 2818 kvm_put_kvm(kvm); 2819 return 0; 2820 } 2821 2822 static const struct file_operations kvm_device_fops = { 2823 .unlocked_ioctl = kvm_device_ioctl, 2824 #ifdef CONFIG_KVM_COMPAT 2825 .compat_ioctl = kvm_device_ioctl, 2826 #endif 2827 .release = kvm_device_release, 2828 }; 2829 2830 struct kvm_device *kvm_device_from_filp(struct file *filp) 2831 { 2832 if (filp->f_op != &kvm_device_fops) 2833 return NULL; 2834 2835 return filp->private_data; 2836 } 2837 2838 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2839 #ifdef CONFIG_KVM_MPIC 2840 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2841 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2842 #endif 2843 }; 2844 2845 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2846 { 2847 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2848 return -ENOSPC; 2849 2850 if (kvm_device_ops_table[type] != NULL) 2851 return -EEXIST; 2852 2853 kvm_device_ops_table[type] = ops; 2854 return 0; 2855 } 2856 2857 void kvm_unregister_device_ops(u32 type) 2858 { 2859 if (kvm_device_ops_table[type] != NULL) 2860 kvm_device_ops_table[type] = NULL; 2861 } 2862 2863 static int kvm_ioctl_create_device(struct kvm *kvm, 2864 struct kvm_create_device *cd) 2865 { 2866 struct kvm_device_ops *ops = NULL; 2867 struct kvm_device *dev; 2868 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2869 int ret; 2870 2871 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2872 return -ENODEV; 2873 2874 ops = kvm_device_ops_table[cd->type]; 2875 if (ops == NULL) 2876 return -ENODEV; 2877 2878 if (test) 2879 return 0; 2880 2881 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2882 if (!dev) 2883 return -ENOMEM; 2884 2885 dev->ops = ops; 2886 dev->kvm = kvm; 2887 2888 mutex_lock(&kvm->lock); 2889 ret = ops->create(dev, cd->type); 2890 if (ret < 0) { 2891 mutex_unlock(&kvm->lock); 2892 kfree(dev); 2893 return ret; 2894 } 2895 list_add(&dev->vm_node, &kvm->devices); 2896 mutex_unlock(&kvm->lock); 2897 2898 if (ops->init) 2899 ops->init(dev); 2900 2901 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2902 if (ret < 0) { 2903 mutex_lock(&kvm->lock); 2904 list_del(&dev->vm_node); 2905 mutex_unlock(&kvm->lock); 2906 ops->destroy(dev); 2907 return ret; 2908 } 2909 2910 kvm_get_kvm(kvm); 2911 cd->fd = ret; 2912 return 0; 2913 } 2914 2915 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2916 { 2917 switch (arg) { 2918 case KVM_CAP_USER_MEMORY: 2919 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2920 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2921 case KVM_CAP_INTERNAL_ERROR_DATA: 2922 #ifdef CONFIG_HAVE_KVM_MSI 2923 case KVM_CAP_SIGNAL_MSI: 2924 #endif 2925 #ifdef CONFIG_HAVE_KVM_IRQFD 2926 case KVM_CAP_IRQFD: 2927 case KVM_CAP_IRQFD_RESAMPLE: 2928 #endif 2929 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2930 case KVM_CAP_CHECK_EXTENSION_VM: 2931 return 1; 2932 #ifdef CONFIG_KVM_MMIO 2933 case KVM_CAP_COALESCED_MMIO: 2934 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2935 #endif 2936 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2937 case KVM_CAP_IRQ_ROUTING: 2938 return KVM_MAX_IRQ_ROUTES; 2939 #endif 2940 #if KVM_ADDRESS_SPACE_NUM > 1 2941 case KVM_CAP_MULTI_ADDRESS_SPACE: 2942 return KVM_ADDRESS_SPACE_NUM; 2943 #endif 2944 case KVM_CAP_MAX_VCPU_ID: 2945 return KVM_MAX_VCPU_ID; 2946 default: 2947 break; 2948 } 2949 return kvm_vm_ioctl_check_extension(kvm, arg); 2950 } 2951 2952 static long kvm_vm_ioctl(struct file *filp, 2953 unsigned int ioctl, unsigned long arg) 2954 { 2955 struct kvm *kvm = filp->private_data; 2956 void __user *argp = (void __user *)arg; 2957 int r; 2958 2959 if (kvm->mm != current->mm) 2960 return -EIO; 2961 switch (ioctl) { 2962 case KVM_CREATE_VCPU: 2963 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2964 break; 2965 case KVM_SET_USER_MEMORY_REGION: { 2966 struct kvm_userspace_memory_region kvm_userspace_mem; 2967 2968 r = -EFAULT; 2969 if (copy_from_user(&kvm_userspace_mem, argp, 2970 sizeof(kvm_userspace_mem))) 2971 goto out; 2972 2973 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2974 break; 2975 } 2976 case KVM_GET_DIRTY_LOG: { 2977 struct kvm_dirty_log log; 2978 2979 r = -EFAULT; 2980 if (copy_from_user(&log, argp, sizeof(log))) 2981 goto out; 2982 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2983 break; 2984 } 2985 #ifdef CONFIG_KVM_MMIO 2986 case KVM_REGISTER_COALESCED_MMIO: { 2987 struct kvm_coalesced_mmio_zone zone; 2988 2989 r = -EFAULT; 2990 if (copy_from_user(&zone, argp, sizeof(zone))) 2991 goto out; 2992 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2993 break; 2994 } 2995 case KVM_UNREGISTER_COALESCED_MMIO: { 2996 struct kvm_coalesced_mmio_zone zone; 2997 2998 r = -EFAULT; 2999 if (copy_from_user(&zone, argp, sizeof(zone))) 3000 goto out; 3001 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3002 break; 3003 } 3004 #endif 3005 case KVM_IRQFD: { 3006 struct kvm_irqfd data; 3007 3008 r = -EFAULT; 3009 if (copy_from_user(&data, argp, sizeof(data))) 3010 goto out; 3011 r = kvm_irqfd(kvm, &data); 3012 break; 3013 } 3014 case KVM_IOEVENTFD: { 3015 struct kvm_ioeventfd data; 3016 3017 r = -EFAULT; 3018 if (copy_from_user(&data, argp, sizeof(data))) 3019 goto out; 3020 r = kvm_ioeventfd(kvm, &data); 3021 break; 3022 } 3023 #ifdef CONFIG_HAVE_KVM_MSI 3024 case KVM_SIGNAL_MSI: { 3025 struct kvm_msi msi; 3026 3027 r = -EFAULT; 3028 if (copy_from_user(&msi, argp, sizeof(msi))) 3029 goto out; 3030 r = kvm_send_userspace_msi(kvm, &msi); 3031 break; 3032 } 3033 #endif 3034 #ifdef __KVM_HAVE_IRQ_LINE 3035 case KVM_IRQ_LINE_STATUS: 3036 case KVM_IRQ_LINE: { 3037 struct kvm_irq_level irq_event; 3038 3039 r = -EFAULT; 3040 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3041 goto out; 3042 3043 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3044 ioctl == KVM_IRQ_LINE_STATUS); 3045 if (r) 3046 goto out; 3047 3048 r = -EFAULT; 3049 if (ioctl == KVM_IRQ_LINE_STATUS) { 3050 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3051 goto out; 3052 } 3053 3054 r = 0; 3055 break; 3056 } 3057 #endif 3058 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3059 case KVM_SET_GSI_ROUTING: { 3060 struct kvm_irq_routing routing; 3061 struct kvm_irq_routing __user *urouting; 3062 struct kvm_irq_routing_entry *entries = NULL; 3063 3064 r = -EFAULT; 3065 if (copy_from_user(&routing, argp, sizeof(routing))) 3066 goto out; 3067 r = -EINVAL; 3068 if (!kvm_arch_can_set_irq_routing(kvm)) 3069 goto out; 3070 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3071 goto out; 3072 if (routing.flags) 3073 goto out; 3074 if (routing.nr) { 3075 r = -ENOMEM; 3076 entries = vmalloc(routing.nr * sizeof(*entries)); 3077 if (!entries) 3078 goto out; 3079 r = -EFAULT; 3080 urouting = argp; 3081 if (copy_from_user(entries, urouting->entries, 3082 routing.nr * sizeof(*entries))) 3083 goto out_free_irq_routing; 3084 } 3085 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3086 routing.flags); 3087 out_free_irq_routing: 3088 vfree(entries); 3089 break; 3090 } 3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3092 case KVM_CREATE_DEVICE: { 3093 struct kvm_create_device cd; 3094 3095 r = -EFAULT; 3096 if (copy_from_user(&cd, argp, sizeof(cd))) 3097 goto out; 3098 3099 r = kvm_ioctl_create_device(kvm, &cd); 3100 if (r) 3101 goto out; 3102 3103 r = -EFAULT; 3104 if (copy_to_user(argp, &cd, sizeof(cd))) 3105 goto out; 3106 3107 r = 0; 3108 break; 3109 } 3110 case KVM_CHECK_EXTENSION: 3111 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3112 break; 3113 default: 3114 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3115 } 3116 out: 3117 return r; 3118 } 3119 3120 #ifdef CONFIG_KVM_COMPAT 3121 struct compat_kvm_dirty_log { 3122 __u32 slot; 3123 __u32 padding1; 3124 union { 3125 compat_uptr_t dirty_bitmap; /* one bit per page */ 3126 __u64 padding2; 3127 }; 3128 }; 3129 3130 static long kvm_vm_compat_ioctl(struct file *filp, 3131 unsigned int ioctl, unsigned long arg) 3132 { 3133 struct kvm *kvm = filp->private_data; 3134 int r; 3135 3136 if (kvm->mm != current->mm) 3137 return -EIO; 3138 switch (ioctl) { 3139 case KVM_GET_DIRTY_LOG: { 3140 struct compat_kvm_dirty_log compat_log; 3141 struct kvm_dirty_log log; 3142 3143 if (copy_from_user(&compat_log, (void __user *)arg, 3144 sizeof(compat_log))) 3145 return -EFAULT; 3146 log.slot = compat_log.slot; 3147 log.padding1 = compat_log.padding1; 3148 log.padding2 = compat_log.padding2; 3149 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3150 3151 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3152 break; 3153 } 3154 default: 3155 r = kvm_vm_ioctl(filp, ioctl, arg); 3156 } 3157 return r; 3158 } 3159 #endif 3160 3161 static struct file_operations kvm_vm_fops = { 3162 .release = kvm_vm_release, 3163 .unlocked_ioctl = kvm_vm_ioctl, 3164 #ifdef CONFIG_KVM_COMPAT 3165 .compat_ioctl = kvm_vm_compat_ioctl, 3166 #endif 3167 .llseek = noop_llseek, 3168 }; 3169 3170 static int kvm_dev_ioctl_create_vm(unsigned long type) 3171 { 3172 int r; 3173 struct kvm *kvm; 3174 struct file *file; 3175 3176 kvm = kvm_create_vm(type); 3177 if (IS_ERR(kvm)) 3178 return PTR_ERR(kvm); 3179 #ifdef CONFIG_KVM_MMIO 3180 r = kvm_coalesced_mmio_init(kvm); 3181 if (r < 0) { 3182 kvm_put_kvm(kvm); 3183 return r; 3184 } 3185 #endif 3186 r = get_unused_fd_flags(O_CLOEXEC); 3187 if (r < 0) { 3188 kvm_put_kvm(kvm); 3189 return r; 3190 } 3191 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3192 if (IS_ERR(file)) { 3193 put_unused_fd(r); 3194 kvm_put_kvm(kvm); 3195 return PTR_ERR(file); 3196 } 3197 3198 /* 3199 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3200 * already set, with ->release() being kvm_vm_release(). In error 3201 * cases it will be called by the final fput(file) and will take 3202 * care of doing kvm_put_kvm(kvm). 3203 */ 3204 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3205 put_unused_fd(r); 3206 fput(file); 3207 return -ENOMEM; 3208 } 3209 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3210 3211 fd_install(r, file); 3212 return r; 3213 } 3214 3215 static long kvm_dev_ioctl(struct file *filp, 3216 unsigned int ioctl, unsigned long arg) 3217 { 3218 long r = -EINVAL; 3219 3220 switch (ioctl) { 3221 case KVM_GET_API_VERSION: 3222 if (arg) 3223 goto out; 3224 r = KVM_API_VERSION; 3225 break; 3226 case KVM_CREATE_VM: 3227 r = kvm_dev_ioctl_create_vm(arg); 3228 break; 3229 case KVM_CHECK_EXTENSION: 3230 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3231 break; 3232 case KVM_GET_VCPU_MMAP_SIZE: 3233 if (arg) 3234 goto out; 3235 r = PAGE_SIZE; /* struct kvm_run */ 3236 #ifdef CONFIG_X86 3237 r += PAGE_SIZE; /* pio data page */ 3238 #endif 3239 #ifdef CONFIG_KVM_MMIO 3240 r += PAGE_SIZE; /* coalesced mmio ring page */ 3241 #endif 3242 break; 3243 case KVM_TRACE_ENABLE: 3244 case KVM_TRACE_PAUSE: 3245 case KVM_TRACE_DISABLE: 3246 r = -EOPNOTSUPP; 3247 break; 3248 default: 3249 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3250 } 3251 out: 3252 return r; 3253 } 3254 3255 static struct file_operations kvm_chardev_ops = { 3256 .unlocked_ioctl = kvm_dev_ioctl, 3257 .compat_ioctl = kvm_dev_ioctl, 3258 .llseek = noop_llseek, 3259 }; 3260 3261 static struct miscdevice kvm_dev = { 3262 KVM_MINOR, 3263 "kvm", 3264 &kvm_chardev_ops, 3265 }; 3266 3267 static void hardware_enable_nolock(void *junk) 3268 { 3269 int cpu = raw_smp_processor_id(); 3270 int r; 3271 3272 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3273 return; 3274 3275 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3276 3277 r = kvm_arch_hardware_enable(); 3278 3279 if (r) { 3280 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3281 atomic_inc(&hardware_enable_failed); 3282 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3283 } 3284 } 3285 3286 static int kvm_starting_cpu(unsigned int cpu) 3287 { 3288 raw_spin_lock(&kvm_count_lock); 3289 if (kvm_usage_count) 3290 hardware_enable_nolock(NULL); 3291 raw_spin_unlock(&kvm_count_lock); 3292 return 0; 3293 } 3294 3295 static void hardware_disable_nolock(void *junk) 3296 { 3297 int cpu = raw_smp_processor_id(); 3298 3299 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3300 return; 3301 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3302 kvm_arch_hardware_disable(); 3303 } 3304 3305 static int kvm_dying_cpu(unsigned int cpu) 3306 { 3307 raw_spin_lock(&kvm_count_lock); 3308 if (kvm_usage_count) 3309 hardware_disable_nolock(NULL); 3310 raw_spin_unlock(&kvm_count_lock); 3311 return 0; 3312 } 3313 3314 static void hardware_disable_all_nolock(void) 3315 { 3316 BUG_ON(!kvm_usage_count); 3317 3318 kvm_usage_count--; 3319 if (!kvm_usage_count) 3320 on_each_cpu(hardware_disable_nolock, NULL, 1); 3321 } 3322 3323 static void hardware_disable_all(void) 3324 { 3325 raw_spin_lock(&kvm_count_lock); 3326 hardware_disable_all_nolock(); 3327 raw_spin_unlock(&kvm_count_lock); 3328 } 3329 3330 static int hardware_enable_all(void) 3331 { 3332 int r = 0; 3333 3334 raw_spin_lock(&kvm_count_lock); 3335 3336 kvm_usage_count++; 3337 if (kvm_usage_count == 1) { 3338 atomic_set(&hardware_enable_failed, 0); 3339 on_each_cpu(hardware_enable_nolock, NULL, 1); 3340 3341 if (atomic_read(&hardware_enable_failed)) { 3342 hardware_disable_all_nolock(); 3343 r = -EBUSY; 3344 } 3345 } 3346 3347 raw_spin_unlock(&kvm_count_lock); 3348 3349 return r; 3350 } 3351 3352 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3353 void *v) 3354 { 3355 /* 3356 * Some (well, at least mine) BIOSes hang on reboot if 3357 * in vmx root mode. 3358 * 3359 * And Intel TXT required VMX off for all cpu when system shutdown. 3360 */ 3361 pr_info("kvm: exiting hardware virtualization\n"); 3362 kvm_rebooting = true; 3363 on_each_cpu(hardware_disable_nolock, NULL, 1); 3364 return NOTIFY_OK; 3365 } 3366 3367 static struct notifier_block kvm_reboot_notifier = { 3368 .notifier_call = kvm_reboot, 3369 .priority = 0, 3370 }; 3371 3372 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3373 { 3374 int i; 3375 3376 for (i = 0; i < bus->dev_count; i++) { 3377 struct kvm_io_device *pos = bus->range[i].dev; 3378 3379 kvm_iodevice_destructor(pos); 3380 } 3381 kfree(bus); 3382 } 3383 3384 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3385 const struct kvm_io_range *r2) 3386 { 3387 gpa_t addr1 = r1->addr; 3388 gpa_t addr2 = r2->addr; 3389 3390 if (addr1 < addr2) 3391 return -1; 3392 3393 /* If r2->len == 0, match the exact address. If r2->len != 0, 3394 * accept any overlapping write. Any order is acceptable for 3395 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3396 * we process all of them. 3397 */ 3398 if (r2->len) { 3399 addr1 += r1->len; 3400 addr2 += r2->len; 3401 } 3402 3403 if (addr1 > addr2) 3404 return 1; 3405 3406 return 0; 3407 } 3408 3409 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3410 { 3411 return kvm_io_bus_cmp(p1, p2); 3412 } 3413 3414 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3415 gpa_t addr, int len) 3416 { 3417 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3418 .addr = addr, 3419 .len = len, 3420 .dev = dev, 3421 }; 3422 3423 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3424 kvm_io_bus_sort_cmp, NULL); 3425 3426 return 0; 3427 } 3428 3429 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3430 gpa_t addr, int len) 3431 { 3432 struct kvm_io_range *range, key; 3433 int off; 3434 3435 key = (struct kvm_io_range) { 3436 .addr = addr, 3437 .len = len, 3438 }; 3439 3440 range = bsearch(&key, bus->range, bus->dev_count, 3441 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3442 if (range == NULL) 3443 return -ENOENT; 3444 3445 off = range - bus->range; 3446 3447 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3448 off--; 3449 3450 return off; 3451 } 3452 3453 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3454 struct kvm_io_range *range, const void *val) 3455 { 3456 int idx; 3457 3458 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3459 if (idx < 0) 3460 return -EOPNOTSUPP; 3461 3462 while (idx < bus->dev_count && 3463 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3464 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3465 range->len, val)) 3466 return idx; 3467 idx++; 3468 } 3469 3470 return -EOPNOTSUPP; 3471 } 3472 3473 /* kvm_io_bus_write - called under kvm->slots_lock */ 3474 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3475 int len, const void *val) 3476 { 3477 struct kvm_io_bus *bus; 3478 struct kvm_io_range range; 3479 int r; 3480 3481 range = (struct kvm_io_range) { 3482 .addr = addr, 3483 .len = len, 3484 }; 3485 3486 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3487 if (!bus) 3488 return -ENOMEM; 3489 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3490 return r < 0 ? r : 0; 3491 } 3492 3493 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3494 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3495 gpa_t addr, int len, const void *val, long cookie) 3496 { 3497 struct kvm_io_bus *bus; 3498 struct kvm_io_range range; 3499 3500 range = (struct kvm_io_range) { 3501 .addr = addr, 3502 .len = len, 3503 }; 3504 3505 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3506 if (!bus) 3507 return -ENOMEM; 3508 3509 /* First try the device referenced by cookie. */ 3510 if ((cookie >= 0) && (cookie < bus->dev_count) && 3511 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3512 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3513 val)) 3514 return cookie; 3515 3516 /* 3517 * cookie contained garbage; fall back to search and return the 3518 * correct cookie value. 3519 */ 3520 return __kvm_io_bus_write(vcpu, bus, &range, val); 3521 } 3522 3523 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3524 struct kvm_io_range *range, void *val) 3525 { 3526 int idx; 3527 3528 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3529 if (idx < 0) 3530 return -EOPNOTSUPP; 3531 3532 while (idx < bus->dev_count && 3533 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3534 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3535 range->len, val)) 3536 return idx; 3537 idx++; 3538 } 3539 3540 return -EOPNOTSUPP; 3541 } 3542 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3543 3544 /* kvm_io_bus_read - called under kvm->slots_lock */ 3545 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3546 int len, void *val) 3547 { 3548 struct kvm_io_bus *bus; 3549 struct kvm_io_range range; 3550 int r; 3551 3552 range = (struct kvm_io_range) { 3553 .addr = addr, 3554 .len = len, 3555 }; 3556 3557 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3558 if (!bus) 3559 return -ENOMEM; 3560 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3561 return r < 0 ? r : 0; 3562 } 3563 3564 3565 /* Caller must hold slots_lock. */ 3566 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3567 int len, struct kvm_io_device *dev) 3568 { 3569 struct kvm_io_bus *new_bus, *bus; 3570 3571 bus = kvm_get_bus(kvm, bus_idx); 3572 if (!bus) 3573 return -ENOMEM; 3574 3575 /* exclude ioeventfd which is limited by maximum fd */ 3576 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3577 return -ENOSPC; 3578 3579 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3580 sizeof(struct kvm_io_range)), GFP_KERNEL); 3581 if (!new_bus) 3582 return -ENOMEM; 3583 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3584 sizeof(struct kvm_io_range))); 3585 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3586 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3587 synchronize_srcu_expedited(&kvm->srcu); 3588 kfree(bus); 3589 3590 return 0; 3591 } 3592 3593 /* Caller must hold slots_lock. */ 3594 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3595 struct kvm_io_device *dev) 3596 { 3597 int i; 3598 struct kvm_io_bus *new_bus, *bus; 3599 3600 bus = kvm_get_bus(kvm, bus_idx); 3601 if (!bus) 3602 return; 3603 3604 for (i = 0; i < bus->dev_count; i++) 3605 if (bus->range[i].dev == dev) { 3606 break; 3607 } 3608 3609 if (i == bus->dev_count) 3610 return; 3611 3612 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3613 sizeof(struct kvm_io_range)), GFP_KERNEL); 3614 if (!new_bus) { 3615 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3616 goto broken; 3617 } 3618 3619 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3620 new_bus->dev_count--; 3621 memcpy(new_bus->range + i, bus->range + i + 1, 3622 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3623 3624 broken: 3625 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3626 synchronize_srcu_expedited(&kvm->srcu); 3627 kfree(bus); 3628 return; 3629 } 3630 3631 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3632 gpa_t addr) 3633 { 3634 struct kvm_io_bus *bus; 3635 int dev_idx, srcu_idx; 3636 struct kvm_io_device *iodev = NULL; 3637 3638 srcu_idx = srcu_read_lock(&kvm->srcu); 3639 3640 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3641 if (!bus) 3642 goto out_unlock; 3643 3644 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3645 if (dev_idx < 0) 3646 goto out_unlock; 3647 3648 iodev = bus->range[dev_idx].dev; 3649 3650 out_unlock: 3651 srcu_read_unlock(&kvm->srcu, srcu_idx); 3652 3653 return iodev; 3654 } 3655 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3656 3657 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3658 int (*get)(void *, u64 *), int (*set)(void *, u64), 3659 const char *fmt) 3660 { 3661 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3662 inode->i_private; 3663 3664 /* The debugfs files are a reference to the kvm struct which 3665 * is still valid when kvm_destroy_vm is called. 3666 * To avoid the race between open and the removal of the debugfs 3667 * directory we test against the users count. 3668 */ 3669 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3670 return -ENOENT; 3671 3672 if (simple_attr_open(inode, file, get, set, fmt)) { 3673 kvm_put_kvm(stat_data->kvm); 3674 return -ENOMEM; 3675 } 3676 3677 return 0; 3678 } 3679 3680 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3681 { 3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3683 inode->i_private; 3684 3685 simple_attr_release(inode, file); 3686 kvm_put_kvm(stat_data->kvm); 3687 3688 return 0; 3689 } 3690 3691 static int vm_stat_get_per_vm(void *data, u64 *val) 3692 { 3693 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3694 3695 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3696 3697 return 0; 3698 } 3699 3700 static int vm_stat_clear_per_vm(void *data, u64 val) 3701 { 3702 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3703 3704 if (val) 3705 return -EINVAL; 3706 3707 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3708 3709 return 0; 3710 } 3711 3712 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3713 { 3714 __simple_attr_check_format("%llu\n", 0ull); 3715 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3716 vm_stat_clear_per_vm, "%llu\n"); 3717 } 3718 3719 static const struct file_operations vm_stat_get_per_vm_fops = { 3720 .owner = THIS_MODULE, 3721 .open = vm_stat_get_per_vm_open, 3722 .release = kvm_debugfs_release, 3723 .read = simple_attr_read, 3724 .write = simple_attr_write, 3725 .llseek = no_llseek, 3726 }; 3727 3728 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3729 { 3730 int i; 3731 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3732 struct kvm_vcpu *vcpu; 3733 3734 *val = 0; 3735 3736 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3737 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3738 3739 return 0; 3740 } 3741 3742 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3743 { 3744 int i; 3745 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3746 struct kvm_vcpu *vcpu; 3747 3748 if (val) 3749 return -EINVAL; 3750 3751 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3752 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3753 3754 return 0; 3755 } 3756 3757 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3758 { 3759 __simple_attr_check_format("%llu\n", 0ull); 3760 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3761 vcpu_stat_clear_per_vm, "%llu\n"); 3762 } 3763 3764 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3765 .owner = THIS_MODULE, 3766 .open = vcpu_stat_get_per_vm_open, 3767 .release = kvm_debugfs_release, 3768 .read = simple_attr_read, 3769 .write = simple_attr_write, 3770 .llseek = no_llseek, 3771 }; 3772 3773 static const struct file_operations *stat_fops_per_vm[] = { 3774 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3775 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3776 }; 3777 3778 static int vm_stat_get(void *_offset, u64 *val) 3779 { 3780 unsigned offset = (long)_offset; 3781 struct kvm *kvm; 3782 struct kvm_stat_data stat_tmp = {.offset = offset}; 3783 u64 tmp_val; 3784 3785 *val = 0; 3786 spin_lock(&kvm_lock); 3787 list_for_each_entry(kvm, &vm_list, vm_list) { 3788 stat_tmp.kvm = kvm; 3789 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3790 *val += tmp_val; 3791 } 3792 spin_unlock(&kvm_lock); 3793 return 0; 3794 } 3795 3796 static int vm_stat_clear(void *_offset, u64 val) 3797 { 3798 unsigned offset = (long)_offset; 3799 struct kvm *kvm; 3800 struct kvm_stat_data stat_tmp = {.offset = offset}; 3801 3802 if (val) 3803 return -EINVAL; 3804 3805 spin_lock(&kvm_lock); 3806 list_for_each_entry(kvm, &vm_list, vm_list) { 3807 stat_tmp.kvm = kvm; 3808 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3809 } 3810 spin_unlock(&kvm_lock); 3811 3812 return 0; 3813 } 3814 3815 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3816 3817 static int vcpu_stat_get(void *_offset, u64 *val) 3818 { 3819 unsigned offset = (long)_offset; 3820 struct kvm *kvm; 3821 struct kvm_stat_data stat_tmp = {.offset = offset}; 3822 u64 tmp_val; 3823 3824 *val = 0; 3825 spin_lock(&kvm_lock); 3826 list_for_each_entry(kvm, &vm_list, vm_list) { 3827 stat_tmp.kvm = kvm; 3828 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3829 *val += tmp_val; 3830 } 3831 spin_unlock(&kvm_lock); 3832 return 0; 3833 } 3834 3835 static int vcpu_stat_clear(void *_offset, u64 val) 3836 { 3837 unsigned offset = (long)_offset; 3838 struct kvm *kvm; 3839 struct kvm_stat_data stat_tmp = {.offset = offset}; 3840 3841 if (val) 3842 return -EINVAL; 3843 3844 spin_lock(&kvm_lock); 3845 list_for_each_entry(kvm, &vm_list, vm_list) { 3846 stat_tmp.kvm = kvm; 3847 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3848 } 3849 spin_unlock(&kvm_lock); 3850 3851 return 0; 3852 } 3853 3854 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3855 "%llu\n"); 3856 3857 static const struct file_operations *stat_fops[] = { 3858 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3859 [KVM_STAT_VM] = &vm_stat_fops, 3860 }; 3861 3862 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3863 { 3864 struct kobj_uevent_env *env; 3865 unsigned long long created, active; 3866 3867 if (!kvm_dev.this_device || !kvm) 3868 return; 3869 3870 spin_lock(&kvm_lock); 3871 if (type == KVM_EVENT_CREATE_VM) { 3872 kvm_createvm_count++; 3873 kvm_active_vms++; 3874 } else if (type == KVM_EVENT_DESTROY_VM) { 3875 kvm_active_vms--; 3876 } 3877 created = kvm_createvm_count; 3878 active = kvm_active_vms; 3879 spin_unlock(&kvm_lock); 3880 3881 env = kzalloc(sizeof(*env), GFP_KERNEL); 3882 if (!env) 3883 return; 3884 3885 add_uevent_var(env, "CREATED=%llu", created); 3886 add_uevent_var(env, "COUNT=%llu", active); 3887 3888 if (type == KVM_EVENT_CREATE_VM) { 3889 add_uevent_var(env, "EVENT=create"); 3890 kvm->userspace_pid = task_pid_nr(current); 3891 } else if (type == KVM_EVENT_DESTROY_VM) { 3892 add_uevent_var(env, "EVENT=destroy"); 3893 } 3894 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3895 3896 if (kvm->debugfs_dentry) { 3897 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3898 3899 if (p) { 3900 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3901 if (!IS_ERR(tmp)) 3902 add_uevent_var(env, "STATS_PATH=%s", tmp); 3903 kfree(p); 3904 } 3905 } 3906 /* no need for checks, since we are adding at most only 5 keys */ 3907 env->envp[env->envp_idx++] = NULL; 3908 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3909 kfree(env); 3910 } 3911 3912 static int kvm_init_debug(void) 3913 { 3914 int r = -EEXIST; 3915 struct kvm_stats_debugfs_item *p; 3916 3917 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3918 if (kvm_debugfs_dir == NULL) 3919 goto out; 3920 3921 kvm_debugfs_num_entries = 0; 3922 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3923 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3924 (void *)(long)p->offset, 3925 stat_fops[p->kind])) 3926 goto out_dir; 3927 } 3928 3929 return 0; 3930 3931 out_dir: 3932 debugfs_remove_recursive(kvm_debugfs_dir); 3933 out: 3934 return r; 3935 } 3936 3937 static int kvm_suspend(void) 3938 { 3939 if (kvm_usage_count) 3940 hardware_disable_nolock(NULL); 3941 return 0; 3942 } 3943 3944 static void kvm_resume(void) 3945 { 3946 if (kvm_usage_count) { 3947 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3948 hardware_enable_nolock(NULL); 3949 } 3950 } 3951 3952 static struct syscore_ops kvm_syscore_ops = { 3953 .suspend = kvm_suspend, 3954 .resume = kvm_resume, 3955 }; 3956 3957 static inline 3958 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3959 { 3960 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3961 } 3962 3963 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3964 { 3965 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3966 3967 if (vcpu->preempted) 3968 vcpu->preempted = false; 3969 3970 kvm_arch_sched_in(vcpu, cpu); 3971 3972 kvm_arch_vcpu_load(vcpu, cpu); 3973 } 3974 3975 static void kvm_sched_out(struct preempt_notifier *pn, 3976 struct task_struct *next) 3977 { 3978 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3979 3980 if (current->state == TASK_RUNNING) 3981 vcpu->preempted = true; 3982 kvm_arch_vcpu_put(vcpu); 3983 } 3984 3985 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3986 struct module *module) 3987 { 3988 int r; 3989 int cpu; 3990 3991 r = kvm_arch_init(opaque); 3992 if (r) 3993 goto out_fail; 3994 3995 /* 3996 * kvm_arch_init makes sure there's at most one caller 3997 * for architectures that support multiple implementations, 3998 * like intel and amd on x86. 3999 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4000 * conflicts in case kvm is already setup for another implementation. 4001 */ 4002 r = kvm_irqfd_init(); 4003 if (r) 4004 goto out_irqfd; 4005 4006 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4007 r = -ENOMEM; 4008 goto out_free_0; 4009 } 4010 4011 r = kvm_arch_hardware_setup(); 4012 if (r < 0) 4013 goto out_free_0a; 4014 4015 for_each_online_cpu(cpu) { 4016 smp_call_function_single(cpu, 4017 kvm_arch_check_processor_compat, 4018 &r, 1); 4019 if (r < 0) 4020 goto out_free_1; 4021 } 4022 4023 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4024 kvm_starting_cpu, kvm_dying_cpu); 4025 if (r) 4026 goto out_free_2; 4027 register_reboot_notifier(&kvm_reboot_notifier); 4028 4029 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4030 if (!vcpu_align) 4031 vcpu_align = __alignof__(struct kvm_vcpu); 4032 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 4033 SLAB_ACCOUNT, NULL); 4034 if (!kvm_vcpu_cache) { 4035 r = -ENOMEM; 4036 goto out_free_3; 4037 } 4038 4039 r = kvm_async_pf_init(); 4040 if (r) 4041 goto out_free; 4042 4043 kvm_chardev_ops.owner = module; 4044 kvm_vm_fops.owner = module; 4045 kvm_vcpu_fops.owner = module; 4046 4047 r = misc_register(&kvm_dev); 4048 if (r) { 4049 pr_err("kvm: misc device register failed\n"); 4050 goto out_unreg; 4051 } 4052 4053 register_syscore_ops(&kvm_syscore_ops); 4054 4055 kvm_preempt_ops.sched_in = kvm_sched_in; 4056 kvm_preempt_ops.sched_out = kvm_sched_out; 4057 4058 r = kvm_init_debug(); 4059 if (r) { 4060 pr_err("kvm: create debugfs files failed\n"); 4061 goto out_undebugfs; 4062 } 4063 4064 r = kvm_vfio_ops_init(); 4065 WARN_ON(r); 4066 4067 return 0; 4068 4069 out_undebugfs: 4070 unregister_syscore_ops(&kvm_syscore_ops); 4071 misc_deregister(&kvm_dev); 4072 out_unreg: 4073 kvm_async_pf_deinit(); 4074 out_free: 4075 kmem_cache_destroy(kvm_vcpu_cache); 4076 out_free_3: 4077 unregister_reboot_notifier(&kvm_reboot_notifier); 4078 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4079 out_free_2: 4080 out_free_1: 4081 kvm_arch_hardware_unsetup(); 4082 out_free_0a: 4083 free_cpumask_var(cpus_hardware_enabled); 4084 out_free_0: 4085 kvm_irqfd_exit(); 4086 out_irqfd: 4087 kvm_arch_exit(); 4088 out_fail: 4089 return r; 4090 } 4091 EXPORT_SYMBOL_GPL(kvm_init); 4092 4093 void kvm_exit(void) 4094 { 4095 debugfs_remove_recursive(kvm_debugfs_dir); 4096 misc_deregister(&kvm_dev); 4097 kmem_cache_destroy(kvm_vcpu_cache); 4098 kvm_async_pf_deinit(); 4099 unregister_syscore_ops(&kvm_syscore_ops); 4100 unregister_reboot_notifier(&kvm_reboot_notifier); 4101 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4102 on_each_cpu(hardware_disable_nolock, NULL, 1); 4103 kvm_arch_hardware_unsetup(); 4104 kvm_arch_exit(); 4105 kvm_irqfd_exit(); 4106 free_cpumask_var(cpus_hardware_enabled); 4107 kvm_vfio_ops_exit(); 4108 } 4109 EXPORT_SYMBOL_GPL(kvm_exit); 4110