xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 643d1f7f)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 
44 #include <asm/processor.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
48 
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51 
52 DEFINE_SPINLOCK(kvm_lock);
53 LIST_HEAD(vm_list);
54 
55 static cpumask_t cpus_hardware_enabled;
56 
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59 
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61 
62 static struct dentry *debugfs_dir;
63 
64 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
65 			   unsigned long arg);
66 
67 static inline int valid_vcpu(int n)
68 {
69 	return likely(n >= 0 && n < KVM_MAX_VCPUS);
70 }
71 
72 /*
73  * Switches to specified vcpu, until a matching vcpu_put()
74  */
75 void vcpu_load(struct kvm_vcpu *vcpu)
76 {
77 	int cpu;
78 
79 	mutex_lock(&vcpu->mutex);
80 	cpu = get_cpu();
81 	preempt_notifier_register(&vcpu->preempt_notifier);
82 	kvm_arch_vcpu_load(vcpu, cpu);
83 	put_cpu();
84 }
85 
86 void vcpu_put(struct kvm_vcpu *vcpu)
87 {
88 	preempt_disable();
89 	kvm_arch_vcpu_put(vcpu);
90 	preempt_notifier_unregister(&vcpu->preempt_notifier);
91 	preempt_enable();
92 	mutex_unlock(&vcpu->mutex);
93 }
94 
95 static void ack_flush(void *_completed)
96 {
97 }
98 
99 void kvm_flush_remote_tlbs(struct kvm *kvm)
100 {
101 	int i, cpu;
102 	cpumask_t cpus;
103 	struct kvm_vcpu *vcpu;
104 
105 	cpus_clear(cpus);
106 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
107 		vcpu = kvm->vcpus[i];
108 		if (!vcpu)
109 			continue;
110 		if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
111 			continue;
112 		cpu = vcpu->cpu;
113 		if (cpu != -1 && cpu != raw_smp_processor_id())
114 			cpu_set(cpu, cpus);
115 	}
116 	if (cpus_empty(cpus))
117 		return;
118 	++kvm->stat.remote_tlb_flush;
119 	smp_call_function_mask(cpus, ack_flush, NULL, 1);
120 }
121 
122 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
123 {
124 	struct page *page;
125 	int r;
126 
127 	mutex_init(&vcpu->mutex);
128 	vcpu->cpu = -1;
129 	vcpu->kvm = kvm;
130 	vcpu->vcpu_id = id;
131 	init_waitqueue_head(&vcpu->wq);
132 
133 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
134 	if (!page) {
135 		r = -ENOMEM;
136 		goto fail;
137 	}
138 	vcpu->run = page_address(page);
139 
140 	r = kvm_arch_vcpu_init(vcpu);
141 	if (r < 0)
142 		goto fail_free_run;
143 	return 0;
144 
145 fail_free_run:
146 	free_page((unsigned long)vcpu->run);
147 fail:
148 	return r;
149 }
150 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
151 
152 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
153 {
154 	kvm_arch_vcpu_uninit(vcpu);
155 	free_page((unsigned long)vcpu->run);
156 }
157 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
158 
159 static struct kvm *kvm_create_vm(void)
160 {
161 	struct kvm *kvm = kvm_arch_create_vm();
162 
163 	if (IS_ERR(kvm))
164 		goto out;
165 
166 	kvm->mm = current->mm;
167 	atomic_inc(&kvm->mm->mm_count);
168 	spin_lock_init(&kvm->mmu_lock);
169 	kvm_io_bus_init(&kvm->pio_bus);
170 	mutex_init(&kvm->lock);
171 	kvm_io_bus_init(&kvm->mmio_bus);
172 	spin_lock(&kvm_lock);
173 	list_add(&kvm->vm_list, &vm_list);
174 	spin_unlock(&kvm_lock);
175 out:
176 	return kvm;
177 }
178 
179 /*
180  * Free any memory in @free but not in @dont.
181  */
182 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
183 				  struct kvm_memory_slot *dont)
184 {
185 	if (!dont || free->rmap != dont->rmap)
186 		vfree(free->rmap);
187 
188 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
189 		vfree(free->dirty_bitmap);
190 
191 	free->npages = 0;
192 	free->dirty_bitmap = NULL;
193 	free->rmap = NULL;
194 }
195 
196 void kvm_free_physmem(struct kvm *kvm)
197 {
198 	int i;
199 
200 	for (i = 0; i < kvm->nmemslots; ++i)
201 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
202 }
203 
204 static void kvm_destroy_vm(struct kvm *kvm)
205 {
206 	struct mm_struct *mm = kvm->mm;
207 
208 	spin_lock(&kvm_lock);
209 	list_del(&kvm->vm_list);
210 	spin_unlock(&kvm_lock);
211 	kvm_io_bus_destroy(&kvm->pio_bus);
212 	kvm_io_bus_destroy(&kvm->mmio_bus);
213 	kvm_arch_destroy_vm(kvm);
214 	mmdrop(mm);
215 }
216 
217 static int kvm_vm_release(struct inode *inode, struct file *filp)
218 {
219 	struct kvm *kvm = filp->private_data;
220 
221 	kvm_destroy_vm(kvm);
222 	return 0;
223 }
224 
225 /*
226  * Allocate some memory and give it an address in the guest physical address
227  * space.
228  *
229  * Discontiguous memory is allowed, mostly for framebuffers.
230  *
231  * Must be called holding mmap_sem for write.
232  */
233 int __kvm_set_memory_region(struct kvm *kvm,
234 			    struct kvm_userspace_memory_region *mem,
235 			    int user_alloc)
236 {
237 	int r;
238 	gfn_t base_gfn;
239 	unsigned long npages;
240 	unsigned long i;
241 	struct kvm_memory_slot *memslot;
242 	struct kvm_memory_slot old, new;
243 
244 	r = -EINVAL;
245 	/* General sanity checks */
246 	if (mem->memory_size & (PAGE_SIZE - 1))
247 		goto out;
248 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
249 		goto out;
250 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
251 		goto out;
252 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
253 		goto out;
254 
255 	memslot = &kvm->memslots[mem->slot];
256 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
257 	npages = mem->memory_size >> PAGE_SHIFT;
258 
259 	if (!npages)
260 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
261 
262 	new = old = *memslot;
263 
264 	new.base_gfn = base_gfn;
265 	new.npages = npages;
266 	new.flags = mem->flags;
267 
268 	/* Disallow changing a memory slot's size. */
269 	r = -EINVAL;
270 	if (npages && old.npages && npages != old.npages)
271 		goto out_free;
272 
273 	/* Check for overlaps */
274 	r = -EEXIST;
275 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
276 		struct kvm_memory_slot *s = &kvm->memslots[i];
277 
278 		if (s == memslot)
279 			continue;
280 		if (!((base_gfn + npages <= s->base_gfn) ||
281 		      (base_gfn >= s->base_gfn + s->npages)))
282 			goto out_free;
283 	}
284 
285 	/* Free page dirty bitmap if unneeded */
286 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
287 		new.dirty_bitmap = NULL;
288 
289 	r = -ENOMEM;
290 
291 	/* Allocate if a slot is being created */
292 	if (npages && !new.rmap) {
293 		new.rmap = vmalloc(npages * sizeof(struct page *));
294 
295 		if (!new.rmap)
296 			goto out_free;
297 
298 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
299 
300 		new.user_alloc = user_alloc;
301 		new.userspace_addr = mem->userspace_addr;
302 	}
303 
304 	/* Allocate page dirty bitmap if needed */
305 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
306 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
307 
308 		new.dirty_bitmap = vmalloc(dirty_bytes);
309 		if (!new.dirty_bitmap)
310 			goto out_free;
311 		memset(new.dirty_bitmap, 0, dirty_bytes);
312 	}
313 
314 	if (mem->slot >= kvm->nmemslots)
315 		kvm->nmemslots = mem->slot + 1;
316 
317 	*memslot = new;
318 
319 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
320 	if (r) {
321 		*memslot = old;
322 		goto out_free;
323 	}
324 
325 	kvm_free_physmem_slot(&old, &new);
326 	return 0;
327 
328 out_free:
329 	kvm_free_physmem_slot(&new, &old);
330 out:
331 	return r;
332 
333 }
334 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
335 
336 int kvm_set_memory_region(struct kvm *kvm,
337 			  struct kvm_userspace_memory_region *mem,
338 			  int user_alloc)
339 {
340 	int r;
341 
342 	down_write(&current->mm->mmap_sem);
343 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
344 	up_write(&current->mm->mmap_sem);
345 	return r;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
348 
349 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
350 				   struct
351 				   kvm_userspace_memory_region *mem,
352 				   int user_alloc)
353 {
354 	if (mem->slot >= KVM_MEMORY_SLOTS)
355 		return -EINVAL;
356 	return kvm_set_memory_region(kvm, mem, user_alloc);
357 }
358 
359 int kvm_get_dirty_log(struct kvm *kvm,
360 			struct kvm_dirty_log *log, int *is_dirty)
361 {
362 	struct kvm_memory_slot *memslot;
363 	int r, i;
364 	int n;
365 	unsigned long any = 0;
366 
367 	r = -EINVAL;
368 	if (log->slot >= KVM_MEMORY_SLOTS)
369 		goto out;
370 
371 	memslot = &kvm->memslots[log->slot];
372 	r = -ENOENT;
373 	if (!memslot->dirty_bitmap)
374 		goto out;
375 
376 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
377 
378 	for (i = 0; !any && i < n/sizeof(long); ++i)
379 		any = memslot->dirty_bitmap[i];
380 
381 	r = -EFAULT;
382 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
383 		goto out;
384 
385 	if (any)
386 		*is_dirty = 1;
387 
388 	r = 0;
389 out:
390 	return r;
391 }
392 
393 int is_error_page(struct page *page)
394 {
395 	return page == bad_page;
396 }
397 EXPORT_SYMBOL_GPL(is_error_page);
398 
399 static inline unsigned long bad_hva(void)
400 {
401 	return PAGE_OFFSET;
402 }
403 
404 int kvm_is_error_hva(unsigned long addr)
405 {
406 	return addr == bad_hva();
407 }
408 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
409 
410 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
411 {
412 	int i;
413 
414 	for (i = 0; i < kvm->nmemslots; ++i) {
415 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
416 
417 		if (gfn >= memslot->base_gfn
418 		    && gfn < memslot->base_gfn + memslot->npages)
419 			return memslot;
420 	}
421 	return NULL;
422 }
423 
424 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
425 {
426 	gfn = unalias_gfn(kvm, gfn);
427 	return __gfn_to_memslot(kvm, gfn);
428 }
429 
430 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
431 {
432 	int i;
433 
434 	gfn = unalias_gfn(kvm, gfn);
435 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
436 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
437 
438 		if (gfn >= memslot->base_gfn
439 		    && gfn < memslot->base_gfn + memslot->npages)
440 			return 1;
441 	}
442 	return 0;
443 }
444 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
445 
446 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
447 {
448 	struct kvm_memory_slot *slot;
449 
450 	gfn = unalias_gfn(kvm, gfn);
451 	slot = __gfn_to_memslot(kvm, gfn);
452 	if (!slot)
453 		return bad_hva();
454 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
455 }
456 
457 /*
458  * Requires current->mm->mmap_sem to be held
459  */
460 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
461 {
462 	struct page *page[1];
463 	unsigned long addr;
464 	int npages;
465 
466 	might_sleep();
467 
468 	addr = gfn_to_hva(kvm, gfn);
469 	if (kvm_is_error_hva(addr)) {
470 		get_page(bad_page);
471 		return bad_page;
472 	}
473 
474 	npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
475 				NULL);
476 
477 	if (npages != 1) {
478 		get_page(bad_page);
479 		return bad_page;
480 	}
481 
482 	return page[0];
483 }
484 
485 EXPORT_SYMBOL_GPL(gfn_to_page);
486 
487 void kvm_release_page_clean(struct page *page)
488 {
489 	put_page(page);
490 }
491 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
492 
493 void kvm_release_page_dirty(struct page *page)
494 {
495 	if (!PageReserved(page))
496 		SetPageDirty(page);
497 	put_page(page);
498 }
499 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
500 
501 static int next_segment(unsigned long len, int offset)
502 {
503 	if (len > PAGE_SIZE - offset)
504 		return PAGE_SIZE - offset;
505 	else
506 		return len;
507 }
508 
509 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
510 			int len)
511 {
512 	int r;
513 	unsigned long addr;
514 
515 	addr = gfn_to_hva(kvm, gfn);
516 	if (kvm_is_error_hva(addr))
517 		return -EFAULT;
518 	r = copy_from_user(data, (void __user *)addr + offset, len);
519 	if (r)
520 		return -EFAULT;
521 	return 0;
522 }
523 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
524 
525 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
526 {
527 	gfn_t gfn = gpa >> PAGE_SHIFT;
528 	int seg;
529 	int offset = offset_in_page(gpa);
530 	int ret;
531 
532 	while ((seg = next_segment(len, offset)) != 0) {
533 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
534 		if (ret < 0)
535 			return ret;
536 		offset = 0;
537 		len -= seg;
538 		data += seg;
539 		++gfn;
540 	}
541 	return 0;
542 }
543 EXPORT_SYMBOL_GPL(kvm_read_guest);
544 
545 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
546 			  unsigned long len)
547 {
548 	int r;
549 	unsigned long addr;
550 	gfn_t gfn = gpa >> PAGE_SHIFT;
551 	int offset = offset_in_page(gpa);
552 
553 	addr = gfn_to_hva(kvm, gfn);
554 	if (kvm_is_error_hva(addr))
555 		return -EFAULT;
556 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
557 	if (r)
558 		return -EFAULT;
559 	return 0;
560 }
561 EXPORT_SYMBOL(kvm_read_guest_atomic);
562 
563 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
564 			 int offset, int len)
565 {
566 	int r;
567 	unsigned long addr;
568 
569 	addr = gfn_to_hva(kvm, gfn);
570 	if (kvm_is_error_hva(addr))
571 		return -EFAULT;
572 	r = copy_to_user((void __user *)addr + offset, data, len);
573 	if (r)
574 		return -EFAULT;
575 	mark_page_dirty(kvm, gfn);
576 	return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
579 
580 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
581 		    unsigned long len)
582 {
583 	gfn_t gfn = gpa >> PAGE_SHIFT;
584 	int seg;
585 	int offset = offset_in_page(gpa);
586 	int ret;
587 
588 	while ((seg = next_segment(len, offset)) != 0) {
589 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
590 		if (ret < 0)
591 			return ret;
592 		offset = 0;
593 		len -= seg;
594 		data += seg;
595 		++gfn;
596 	}
597 	return 0;
598 }
599 
600 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
601 {
602 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
603 }
604 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
605 
606 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
607 {
608 	gfn_t gfn = gpa >> PAGE_SHIFT;
609 	int seg;
610 	int offset = offset_in_page(gpa);
611 	int ret;
612 
613         while ((seg = next_segment(len, offset)) != 0) {
614 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
615 		if (ret < 0)
616 			return ret;
617 		offset = 0;
618 		len -= seg;
619 		++gfn;
620 	}
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_clear_guest);
624 
625 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
626 {
627 	struct kvm_memory_slot *memslot;
628 
629 	gfn = unalias_gfn(kvm, gfn);
630 	memslot = __gfn_to_memslot(kvm, gfn);
631 	if (memslot && memslot->dirty_bitmap) {
632 		unsigned long rel_gfn = gfn - memslot->base_gfn;
633 
634 		/* avoid RMW */
635 		if (!test_bit(rel_gfn, memslot->dirty_bitmap))
636 			set_bit(rel_gfn, memslot->dirty_bitmap);
637 	}
638 }
639 
640 /*
641  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
642  */
643 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
644 {
645 	DECLARE_WAITQUEUE(wait, current);
646 
647 	add_wait_queue(&vcpu->wq, &wait);
648 
649 	/*
650 	 * We will block until either an interrupt or a signal wakes us up
651 	 */
652 	while (!kvm_cpu_has_interrupt(vcpu)
653 	       && !signal_pending(current)
654 	       && !kvm_arch_vcpu_runnable(vcpu)) {
655 		set_current_state(TASK_INTERRUPTIBLE);
656 		vcpu_put(vcpu);
657 		schedule();
658 		vcpu_load(vcpu);
659 	}
660 
661 	__set_current_state(TASK_RUNNING);
662 	remove_wait_queue(&vcpu->wq, &wait);
663 }
664 
665 void kvm_resched(struct kvm_vcpu *vcpu)
666 {
667 	if (!need_resched())
668 		return;
669 	cond_resched();
670 }
671 EXPORT_SYMBOL_GPL(kvm_resched);
672 
673 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
674 {
675 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
676 	struct page *page;
677 
678 	if (vmf->pgoff == 0)
679 		page = virt_to_page(vcpu->run);
680 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
681 		page = virt_to_page(vcpu->arch.pio_data);
682 	else
683 		return VM_FAULT_SIGBUS;
684 	get_page(page);
685 	vmf->page = page;
686 	return 0;
687 }
688 
689 static struct vm_operations_struct kvm_vcpu_vm_ops = {
690 	.fault = kvm_vcpu_fault,
691 };
692 
693 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
694 {
695 	vma->vm_ops = &kvm_vcpu_vm_ops;
696 	return 0;
697 }
698 
699 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
700 {
701 	struct kvm_vcpu *vcpu = filp->private_data;
702 
703 	fput(vcpu->kvm->filp);
704 	return 0;
705 }
706 
707 static struct file_operations kvm_vcpu_fops = {
708 	.release        = kvm_vcpu_release,
709 	.unlocked_ioctl = kvm_vcpu_ioctl,
710 	.compat_ioctl   = kvm_vcpu_ioctl,
711 	.mmap           = kvm_vcpu_mmap,
712 };
713 
714 /*
715  * Allocates an inode for the vcpu.
716  */
717 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
718 {
719 	int fd, r;
720 	struct inode *inode;
721 	struct file *file;
722 
723 	r = anon_inode_getfd(&fd, &inode, &file,
724 			     "kvm-vcpu", &kvm_vcpu_fops, vcpu);
725 	if (r)
726 		return r;
727 	atomic_inc(&vcpu->kvm->filp->f_count);
728 	return fd;
729 }
730 
731 /*
732  * Creates some virtual cpus.  Good luck creating more than one.
733  */
734 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
735 {
736 	int r;
737 	struct kvm_vcpu *vcpu;
738 
739 	if (!valid_vcpu(n))
740 		return -EINVAL;
741 
742 	vcpu = kvm_arch_vcpu_create(kvm, n);
743 	if (IS_ERR(vcpu))
744 		return PTR_ERR(vcpu);
745 
746 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
747 
748 	r = kvm_arch_vcpu_setup(vcpu);
749 	if (r)
750 		goto vcpu_destroy;
751 
752 	mutex_lock(&kvm->lock);
753 	if (kvm->vcpus[n]) {
754 		r = -EEXIST;
755 		mutex_unlock(&kvm->lock);
756 		goto vcpu_destroy;
757 	}
758 	kvm->vcpus[n] = vcpu;
759 	mutex_unlock(&kvm->lock);
760 
761 	/* Now it's all set up, let userspace reach it */
762 	r = create_vcpu_fd(vcpu);
763 	if (r < 0)
764 		goto unlink;
765 	return r;
766 
767 unlink:
768 	mutex_lock(&kvm->lock);
769 	kvm->vcpus[n] = NULL;
770 	mutex_unlock(&kvm->lock);
771 vcpu_destroy:
772 	kvm_arch_vcpu_destroy(vcpu);
773 	return r;
774 }
775 
776 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
777 {
778 	if (sigset) {
779 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
780 		vcpu->sigset_active = 1;
781 		vcpu->sigset = *sigset;
782 	} else
783 		vcpu->sigset_active = 0;
784 	return 0;
785 }
786 
787 static long kvm_vcpu_ioctl(struct file *filp,
788 			   unsigned int ioctl, unsigned long arg)
789 {
790 	struct kvm_vcpu *vcpu = filp->private_data;
791 	void __user *argp = (void __user *)arg;
792 	int r;
793 
794 	if (vcpu->kvm->mm != current->mm)
795 		return -EIO;
796 	switch (ioctl) {
797 	case KVM_RUN:
798 		r = -EINVAL;
799 		if (arg)
800 			goto out;
801 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
802 		break;
803 	case KVM_GET_REGS: {
804 		struct kvm_regs kvm_regs;
805 
806 		memset(&kvm_regs, 0, sizeof kvm_regs);
807 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
808 		if (r)
809 			goto out;
810 		r = -EFAULT;
811 		if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
812 			goto out;
813 		r = 0;
814 		break;
815 	}
816 	case KVM_SET_REGS: {
817 		struct kvm_regs kvm_regs;
818 
819 		r = -EFAULT;
820 		if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
821 			goto out;
822 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
823 		if (r)
824 			goto out;
825 		r = 0;
826 		break;
827 	}
828 	case KVM_GET_SREGS: {
829 		struct kvm_sregs kvm_sregs;
830 
831 		memset(&kvm_sregs, 0, sizeof kvm_sregs);
832 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
833 		if (r)
834 			goto out;
835 		r = -EFAULT;
836 		if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
837 			goto out;
838 		r = 0;
839 		break;
840 	}
841 	case KVM_SET_SREGS: {
842 		struct kvm_sregs kvm_sregs;
843 
844 		r = -EFAULT;
845 		if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
846 			goto out;
847 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
848 		if (r)
849 			goto out;
850 		r = 0;
851 		break;
852 	}
853 	case KVM_TRANSLATE: {
854 		struct kvm_translation tr;
855 
856 		r = -EFAULT;
857 		if (copy_from_user(&tr, argp, sizeof tr))
858 			goto out;
859 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
860 		if (r)
861 			goto out;
862 		r = -EFAULT;
863 		if (copy_to_user(argp, &tr, sizeof tr))
864 			goto out;
865 		r = 0;
866 		break;
867 	}
868 	case KVM_DEBUG_GUEST: {
869 		struct kvm_debug_guest dbg;
870 
871 		r = -EFAULT;
872 		if (copy_from_user(&dbg, argp, sizeof dbg))
873 			goto out;
874 		r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
875 		if (r)
876 			goto out;
877 		r = 0;
878 		break;
879 	}
880 	case KVM_SET_SIGNAL_MASK: {
881 		struct kvm_signal_mask __user *sigmask_arg = argp;
882 		struct kvm_signal_mask kvm_sigmask;
883 		sigset_t sigset, *p;
884 
885 		p = NULL;
886 		if (argp) {
887 			r = -EFAULT;
888 			if (copy_from_user(&kvm_sigmask, argp,
889 					   sizeof kvm_sigmask))
890 				goto out;
891 			r = -EINVAL;
892 			if (kvm_sigmask.len != sizeof sigset)
893 				goto out;
894 			r = -EFAULT;
895 			if (copy_from_user(&sigset, sigmask_arg->sigset,
896 					   sizeof sigset))
897 				goto out;
898 			p = &sigset;
899 		}
900 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
901 		break;
902 	}
903 	case KVM_GET_FPU: {
904 		struct kvm_fpu fpu;
905 
906 		memset(&fpu, 0, sizeof fpu);
907 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
908 		if (r)
909 			goto out;
910 		r = -EFAULT;
911 		if (copy_to_user(argp, &fpu, sizeof fpu))
912 			goto out;
913 		r = 0;
914 		break;
915 	}
916 	case KVM_SET_FPU: {
917 		struct kvm_fpu fpu;
918 
919 		r = -EFAULT;
920 		if (copy_from_user(&fpu, argp, sizeof fpu))
921 			goto out;
922 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
923 		if (r)
924 			goto out;
925 		r = 0;
926 		break;
927 	}
928 	default:
929 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
930 	}
931 out:
932 	return r;
933 }
934 
935 static long kvm_vm_ioctl(struct file *filp,
936 			   unsigned int ioctl, unsigned long arg)
937 {
938 	struct kvm *kvm = filp->private_data;
939 	void __user *argp = (void __user *)arg;
940 	int r;
941 
942 	if (kvm->mm != current->mm)
943 		return -EIO;
944 	switch (ioctl) {
945 	case KVM_CREATE_VCPU:
946 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
947 		if (r < 0)
948 			goto out;
949 		break;
950 	case KVM_SET_USER_MEMORY_REGION: {
951 		struct kvm_userspace_memory_region kvm_userspace_mem;
952 
953 		r = -EFAULT;
954 		if (copy_from_user(&kvm_userspace_mem, argp,
955 						sizeof kvm_userspace_mem))
956 			goto out;
957 
958 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
959 		if (r)
960 			goto out;
961 		break;
962 	}
963 	case KVM_GET_DIRTY_LOG: {
964 		struct kvm_dirty_log log;
965 
966 		r = -EFAULT;
967 		if (copy_from_user(&log, argp, sizeof log))
968 			goto out;
969 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
970 		if (r)
971 			goto out;
972 		break;
973 	}
974 	default:
975 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
976 	}
977 out:
978 	return r;
979 }
980 
981 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
982 {
983 	struct kvm *kvm = vma->vm_file->private_data;
984 	struct page *page;
985 
986 	if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
987 		return VM_FAULT_SIGBUS;
988 	page = gfn_to_page(kvm, vmf->pgoff);
989 	if (is_error_page(page)) {
990 		kvm_release_page_clean(page);
991 		return VM_FAULT_SIGBUS;
992 	}
993 	vmf->page = page;
994 	return 0;
995 }
996 
997 static struct vm_operations_struct kvm_vm_vm_ops = {
998 	.fault = kvm_vm_fault,
999 };
1000 
1001 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1002 {
1003 	vma->vm_ops = &kvm_vm_vm_ops;
1004 	return 0;
1005 }
1006 
1007 static struct file_operations kvm_vm_fops = {
1008 	.release        = kvm_vm_release,
1009 	.unlocked_ioctl = kvm_vm_ioctl,
1010 	.compat_ioctl   = kvm_vm_ioctl,
1011 	.mmap           = kvm_vm_mmap,
1012 };
1013 
1014 static int kvm_dev_ioctl_create_vm(void)
1015 {
1016 	int fd, r;
1017 	struct inode *inode;
1018 	struct file *file;
1019 	struct kvm *kvm;
1020 
1021 	kvm = kvm_create_vm();
1022 	if (IS_ERR(kvm))
1023 		return PTR_ERR(kvm);
1024 	r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1025 	if (r) {
1026 		kvm_destroy_vm(kvm);
1027 		return r;
1028 	}
1029 
1030 	kvm->filp = file;
1031 
1032 	return fd;
1033 }
1034 
1035 static long kvm_dev_ioctl(struct file *filp,
1036 			  unsigned int ioctl, unsigned long arg)
1037 {
1038 	void __user *argp = (void __user *)arg;
1039 	long r = -EINVAL;
1040 
1041 	switch (ioctl) {
1042 	case KVM_GET_API_VERSION:
1043 		r = -EINVAL;
1044 		if (arg)
1045 			goto out;
1046 		r = KVM_API_VERSION;
1047 		break;
1048 	case KVM_CREATE_VM:
1049 		r = -EINVAL;
1050 		if (arg)
1051 			goto out;
1052 		r = kvm_dev_ioctl_create_vm();
1053 		break;
1054 	case KVM_CHECK_EXTENSION:
1055 		r = kvm_dev_ioctl_check_extension((long)argp);
1056 		break;
1057 	case KVM_GET_VCPU_MMAP_SIZE:
1058 		r = -EINVAL;
1059 		if (arg)
1060 			goto out;
1061 		r = 2 * PAGE_SIZE;
1062 		break;
1063 	default:
1064 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
1065 	}
1066 out:
1067 	return r;
1068 }
1069 
1070 static struct file_operations kvm_chardev_ops = {
1071 	.unlocked_ioctl = kvm_dev_ioctl,
1072 	.compat_ioctl   = kvm_dev_ioctl,
1073 };
1074 
1075 static struct miscdevice kvm_dev = {
1076 	KVM_MINOR,
1077 	"kvm",
1078 	&kvm_chardev_ops,
1079 };
1080 
1081 static void hardware_enable(void *junk)
1082 {
1083 	int cpu = raw_smp_processor_id();
1084 
1085 	if (cpu_isset(cpu, cpus_hardware_enabled))
1086 		return;
1087 	cpu_set(cpu, cpus_hardware_enabled);
1088 	kvm_arch_hardware_enable(NULL);
1089 }
1090 
1091 static void hardware_disable(void *junk)
1092 {
1093 	int cpu = raw_smp_processor_id();
1094 
1095 	if (!cpu_isset(cpu, cpus_hardware_enabled))
1096 		return;
1097 	cpu_clear(cpu, cpus_hardware_enabled);
1098 	decache_vcpus_on_cpu(cpu);
1099 	kvm_arch_hardware_disable(NULL);
1100 }
1101 
1102 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1103 			   void *v)
1104 {
1105 	int cpu = (long)v;
1106 
1107 	val &= ~CPU_TASKS_FROZEN;
1108 	switch (val) {
1109 	case CPU_DYING:
1110 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1111 		       cpu);
1112 		hardware_disable(NULL);
1113 		break;
1114 	case CPU_UP_CANCELED:
1115 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1116 		       cpu);
1117 		smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1118 		break;
1119 	case CPU_ONLINE:
1120 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1121 		       cpu);
1122 		smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1123 		break;
1124 	}
1125 	return NOTIFY_OK;
1126 }
1127 
1128 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1129 		      void *v)
1130 {
1131 	if (val == SYS_RESTART) {
1132 		/*
1133 		 * Some (well, at least mine) BIOSes hang on reboot if
1134 		 * in vmx root mode.
1135 		 */
1136 		printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1137 		on_each_cpu(hardware_disable, NULL, 0, 1);
1138 	}
1139 	return NOTIFY_OK;
1140 }
1141 
1142 static struct notifier_block kvm_reboot_notifier = {
1143 	.notifier_call = kvm_reboot,
1144 	.priority = 0,
1145 };
1146 
1147 void kvm_io_bus_init(struct kvm_io_bus *bus)
1148 {
1149 	memset(bus, 0, sizeof(*bus));
1150 }
1151 
1152 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1153 {
1154 	int i;
1155 
1156 	for (i = 0; i < bus->dev_count; i++) {
1157 		struct kvm_io_device *pos = bus->devs[i];
1158 
1159 		kvm_iodevice_destructor(pos);
1160 	}
1161 }
1162 
1163 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < bus->dev_count; i++) {
1168 		struct kvm_io_device *pos = bus->devs[i];
1169 
1170 		if (pos->in_range(pos, addr))
1171 			return pos;
1172 	}
1173 
1174 	return NULL;
1175 }
1176 
1177 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1178 {
1179 	BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1180 
1181 	bus->devs[bus->dev_count++] = dev;
1182 }
1183 
1184 static struct notifier_block kvm_cpu_notifier = {
1185 	.notifier_call = kvm_cpu_hotplug,
1186 	.priority = 20, /* must be > scheduler priority */
1187 };
1188 
1189 static u64 vm_stat_get(void *_offset)
1190 {
1191 	unsigned offset = (long)_offset;
1192 	u64 total = 0;
1193 	struct kvm *kvm;
1194 
1195 	spin_lock(&kvm_lock);
1196 	list_for_each_entry(kvm, &vm_list, vm_list)
1197 		total += *(u32 *)((void *)kvm + offset);
1198 	spin_unlock(&kvm_lock);
1199 	return total;
1200 }
1201 
1202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1203 
1204 static u64 vcpu_stat_get(void *_offset)
1205 {
1206 	unsigned offset = (long)_offset;
1207 	u64 total = 0;
1208 	struct kvm *kvm;
1209 	struct kvm_vcpu *vcpu;
1210 	int i;
1211 
1212 	spin_lock(&kvm_lock);
1213 	list_for_each_entry(kvm, &vm_list, vm_list)
1214 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1215 			vcpu = kvm->vcpus[i];
1216 			if (vcpu)
1217 				total += *(u32 *)((void *)vcpu + offset);
1218 		}
1219 	spin_unlock(&kvm_lock);
1220 	return total;
1221 }
1222 
1223 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1224 
1225 static struct file_operations *stat_fops[] = {
1226 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
1227 	[KVM_STAT_VM]   = &vm_stat_fops,
1228 };
1229 
1230 static void kvm_init_debug(void)
1231 {
1232 	struct kvm_stats_debugfs_item *p;
1233 
1234 	debugfs_dir = debugfs_create_dir("kvm", NULL);
1235 	for (p = debugfs_entries; p->name; ++p)
1236 		p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1237 						(void *)(long)p->offset,
1238 						stat_fops[p->kind]);
1239 }
1240 
1241 static void kvm_exit_debug(void)
1242 {
1243 	struct kvm_stats_debugfs_item *p;
1244 
1245 	for (p = debugfs_entries; p->name; ++p)
1246 		debugfs_remove(p->dentry);
1247 	debugfs_remove(debugfs_dir);
1248 }
1249 
1250 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1251 {
1252 	hardware_disable(NULL);
1253 	return 0;
1254 }
1255 
1256 static int kvm_resume(struct sys_device *dev)
1257 {
1258 	hardware_enable(NULL);
1259 	return 0;
1260 }
1261 
1262 static struct sysdev_class kvm_sysdev_class = {
1263 	.name = "kvm",
1264 	.suspend = kvm_suspend,
1265 	.resume = kvm_resume,
1266 };
1267 
1268 static struct sys_device kvm_sysdev = {
1269 	.id = 0,
1270 	.cls = &kvm_sysdev_class,
1271 };
1272 
1273 struct page *bad_page;
1274 
1275 static inline
1276 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1277 {
1278 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
1279 }
1280 
1281 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1282 {
1283 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1284 
1285 	kvm_arch_vcpu_load(vcpu, cpu);
1286 }
1287 
1288 static void kvm_sched_out(struct preempt_notifier *pn,
1289 			  struct task_struct *next)
1290 {
1291 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1292 
1293 	kvm_arch_vcpu_put(vcpu);
1294 }
1295 
1296 int kvm_init(void *opaque, unsigned int vcpu_size,
1297 		  struct module *module)
1298 {
1299 	int r;
1300 	int cpu;
1301 
1302 	kvm_init_debug();
1303 
1304 	r = kvm_arch_init(opaque);
1305 	if (r)
1306 		goto out_fail;
1307 
1308 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1309 
1310 	if (bad_page == NULL) {
1311 		r = -ENOMEM;
1312 		goto out;
1313 	}
1314 
1315 	r = kvm_arch_hardware_setup();
1316 	if (r < 0)
1317 		goto out_free_0;
1318 
1319 	for_each_online_cpu(cpu) {
1320 		smp_call_function_single(cpu,
1321 				kvm_arch_check_processor_compat,
1322 				&r, 0, 1);
1323 		if (r < 0)
1324 			goto out_free_1;
1325 	}
1326 
1327 	on_each_cpu(hardware_enable, NULL, 0, 1);
1328 	r = register_cpu_notifier(&kvm_cpu_notifier);
1329 	if (r)
1330 		goto out_free_2;
1331 	register_reboot_notifier(&kvm_reboot_notifier);
1332 
1333 	r = sysdev_class_register(&kvm_sysdev_class);
1334 	if (r)
1335 		goto out_free_3;
1336 
1337 	r = sysdev_register(&kvm_sysdev);
1338 	if (r)
1339 		goto out_free_4;
1340 
1341 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
1342 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1343 					   __alignof__(struct kvm_vcpu),
1344 					   0, NULL);
1345 	if (!kvm_vcpu_cache) {
1346 		r = -ENOMEM;
1347 		goto out_free_5;
1348 	}
1349 
1350 	kvm_chardev_ops.owner = module;
1351 
1352 	r = misc_register(&kvm_dev);
1353 	if (r) {
1354 		printk(KERN_ERR "kvm: misc device register failed\n");
1355 		goto out_free;
1356 	}
1357 
1358 	kvm_preempt_ops.sched_in = kvm_sched_in;
1359 	kvm_preempt_ops.sched_out = kvm_sched_out;
1360 
1361 	return 0;
1362 
1363 out_free:
1364 	kmem_cache_destroy(kvm_vcpu_cache);
1365 out_free_5:
1366 	sysdev_unregister(&kvm_sysdev);
1367 out_free_4:
1368 	sysdev_class_unregister(&kvm_sysdev_class);
1369 out_free_3:
1370 	unregister_reboot_notifier(&kvm_reboot_notifier);
1371 	unregister_cpu_notifier(&kvm_cpu_notifier);
1372 out_free_2:
1373 	on_each_cpu(hardware_disable, NULL, 0, 1);
1374 out_free_1:
1375 	kvm_arch_hardware_unsetup();
1376 out_free_0:
1377 	__free_page(bad_page);
1378 out:
1379 	kvm_arch_exit();
1380 	kvm_exit_debug();
1381 out_fail:
1382 	return r;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_init);
1385 
1386 void kvm_exit(void)
1387 {
1388 	misc_deregister(&kvm_dev);
1389 	kmem_cache_destroy(kvm_vcpu_cache);
1390 	sysdev_unregister(&kvm_sysdev);
1391 	sysdev_class_unregister(&kvm_sysdev_class);
1392 	unregister_reboot_notifier(&kvm_reboot_notifier);
1393 	unregister_cpu_notifier(&kvm_cpu_notifier);
1394 	on_each_cpu(hardware_disable, NULL, 0, 1);
1395 	kvm_arch_hardware_unsetup();
1396 	kvm_arch_exit();
1397 	kvm_exit_debug();
1398 	__free_page(bad_page);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_exit);
1401