xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static struct file_operations kvm_chardev_ops;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165 
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (WARN_ON_ONCE(!page_count(page)))
175 		return false;
176 
177 	return is_zone_device_page(page);
178 }
179 
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188 	struct page *page;
189 
190 	if (!pfn_valid(pfn))
191 		return NULL;
192 
193 	page = pfn_to_page(pfn);
194 	if (!PageReserved(page))
195 		return page;
196 
197 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198 	if (is_zero_pfn(pfn))
199 		return page;
200 
201 	/*
202 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203 	 * perspective they are "normal" pages, albeit with slightly different
204 	 * usage rules.
205 	 */
206 	if (kvm_is_zone_device_page(page))
207 		return page;
208 
209 	return NULL;
210 }
211 
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217 	int cpu = get_cpu();
218 
219 	__this_cpu_write(kvm_running_vcpu, vcpu);
220 	preempt_notifier_register(&vcpu->preempt_notifier);
221 	kvm_arch_vcpu_load(vcpu, cpu);
222 	put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225 
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228 	preempt_disable();
229 	kvm_arch_vcpu_put(vcpu);
230 	preempt_notifier_unregister(&vcpu->preempt_notifier);
231 	__this_cpu_write(kvm_running_vcpu, NULL);
232 	preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235 
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240 
241 	/*
242 	 * We need to wait for the VCPU to reenable interrupts and get out of
243 	 * READING_SHADOW_PAGE_TABLES mode.
244 	 */
245 	if (req & KVM_REQUEST_WAIT)
246 		return mode != OUTSIDE_GUEST_MODE;
247 
248 	/*
249 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
250 	 */
251 	return mode == IN_GUEST_MODE;
252 }
253 
254 static void ack_kick(void *_completed)
255 {
256 }
257 
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260 	if (cpumask_empty(cpus))
261 		return false;
262 
263 	smp_call_function_many(cpus, ack_kick, NULL, wait);
264 	return true;
265 }
266 
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268 				  struct cpumask *tmp, int current_cpu)
269 {
270 	int cpu;
271 
272 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273 		__kvm_make_request(req, vcpu);
274 
275 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 		return;
277 
278 	/*
279 	 * Note, the vCPU could get migrated to a different pCPU at any point
280 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
281 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
282 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284 	 * after this point is also OK, as the requirement is only that KVM wait
285 	 * for vCPUs that were reading SPTEs _before_ any changes were
286 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
287 	 */
288 	if (kvm_request_needs_ipi(vcpu, req)) {
289 		cpu = READ_ONCE(vcpu->cpu);
290 		if (cpu != -1 && cpu != current_cpu)
291 			__cpumask_set_cpu(cpu, tmp);
292 	}
293 }
294 
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296 				 unsigned long *vcpu_bitmap)
297 {
298 	struct kvm_vcpu *vcpu;
299 	struct cpumask *cpus;
300 	int i, me;
301 	bool called;
302 
303 	me = get_cpu();
304 
305 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306 	cpumask_clear(cpus);
307 
308 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 		vcpu = kvm_get_vcpu(kvm, i);
310 		if (!vcpu)
311 			continue;
312 		kvm_make_vcpu_request(vcpu, req, cpus, me);
313 	}
314 
315 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 	put_cpu();
317 
318 	return called;
319 }
320 
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 				      struct kvm_vcpu *except)
323 {
324 	struct kvm_vcpu *vcpu;
325 	struct cpumask *cpus;
326 	unsigned long i;
327 	bool called;
328 	int me;
329 
330 	me = get_cpu();
331 
332 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333 	cpumask_clear(cpus);
334 
335 	kvm_for_each_vcpu(i, vcpu, kvm) {
336 		if (vcpu == except)
337 			continue;
338 		kvm_make_vcpu_request(vcpu, req, cpus, me);
339 	}
340 
341 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 	put_cpu();
343 
344 	return called;
345 }
346 
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352 
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356 	++kvm->stat.generic.remote_tlb_flush_requests;
357 
358 	/*
359 	 * We want to publish modifications to the page tables before reading
360 	 * mode. Pairs with a memory barrier in arch-specific code.
361 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
363 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364 	 *
365 	 * There is already an smp_mb__after_atomic() before
366 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367 	 * barrier here.
368 	 */
369 	if (!kvm_arch_flush_remote_tlb(kvm)
370 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371 		++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375 
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378 	kvm_arch_flush_shadow_all(kvm);
379 	kvm_arch_guest_memory_reclaimed(kvm);
380 }
381 
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384 					       gfp_t gfp_flags)
385 {
386 	gfp_flags |= mc->gfp_zero;
387 
388 	if (mc->kmem_cache)
389 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390 	else
391 		return (void *)__get_free_page(gfp_flags);
392 }
393 
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397 	void *obj;
398 
399 	if (mc->nobjs >= min)
400 		return 0;
401 
402 	if (unlikely(!mc->objects)) {
403 		if (WARN_ON_ONCE(!capacity))
404 			return -EIO;
405 
406 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407 		if (!mc->objects)
408 			return -ENOMEM;
409 
410 		mc->capacity = capacity;
411 	}
412 
413 	/* It is illegal to request a different capacity across topups. */
414 	if (WARN_ON_ONCE(mc->capacity != capacity))
415 		return -EIO;
416 
417 	while (mc->nobjs < mc->capacity) {
418 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
419 		if (!obj)
420 			return mc->nobjs >= min ? 0 : -ENOMEM;
421 		mc->objects[mc->nobjs++] = obj;
422 	}
423 	return 0;
424 }
425 
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430 
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433 	return mc->nobjs;
434 }
435 
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438 	while (mc->nobjs) {
439 		if (mc->kmem_cache)
440 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441 		else
442 			free_page((unsigned long)mc->objects[--mc->nobjs]);
443 	}
444 
445 	kvfree(mc->objects);
446 
447 	mc->objects = NULL;
448 	mc->capacity = 0;
449 }
450 
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453 	void *p;
454 
455 	if (WARN_ON(!mc->nobjs))
456 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457 	else
458 		p = mc->objects[--mc->nobjs];
459 	BUG_ON(!p);
460 	return p;
461 }
462 #endif
463 
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466 	mutex_init(&vcpu->mutex);
467 	vcpu->cpu = -1;
468 	vcpu->kvm = kvm;
469 	vcpu->vcpu_id = id;
470 	vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472 	rcuwait_init(&vcpu->wait);
473 #endif
474 	kvm_async_pf_vcpu_init(vcpu);
475 
476 	kvm_vcpu_set_in_spin_loop(vcpu, false);
477 	kvm_vcpu_set_dy_eligible(vcpu, false);
478 	vcpu->preempted = false;
479 	vcpu->ready = false;
480 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481 	vcpu->last_used_slot = NULL;
482 
483 	/* Fill the stats id string for the vcpu */
484 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485 		 task_pid_nr(current), id);
486 }
487 
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490 	kvm_arch_vcpu_destroy(vcpu);
491 	kvm_dirty_ring_free(&vcpu->dirty_ring);
492 
493 	/*
494 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495 	 * the vcpu->pid pointer, and at destruction time all file descriptors
496 	 * are already gone.
497 	 */
498 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
499 
500 	free_page((unsigned long)vcpu->run);
501 	kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503 
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506 	unsigned long i;
507 	struct kvm_vcpu *vcpu;
508 
509 	kvm_for_each_vcpu(i, vcpu, kvm) {
510 		kvm_vcpu_destroy(vcpu);
511 		xa_erase(&kvm->vcpu_array, i);
512 	}
513 
514 	atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517 
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521 	return container_of(mn, struct kvm, mmu_notifier);
522 }
523 
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525 					      struct mm_struct *mm,
526 					      unsigned long start, unsigned long end)
527 {
528 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 	int idx;
530 
531 	idx = srcu_read_lock(&kvm->srcu);
532 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533 	srcu_read_unlock(&kvm->srcu, idx);
534 }
535 
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537 
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539 			     unsigned long end);
540 
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542 
543 struct kvm_hva_range {
544 	unsigned long start;
545 	unsigned long end;
546 	pte_t pte;
547 	hva_handler_t handler;
548 	on_lock_fn_t on_lock;
549 	on_unlock_fn_t on_unlock;
550 	bool flush_on_ret;
551 	bool may_block;
552 };
553 
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563 
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566 
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
569 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570 	     node;							     \
571 	     node = interval_tree_iter_next(node, start, last))	     \
572 
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574 						  const struct kvm_hva_range *range)
575 {
576 	bool ret = false, locked = false;
577 	struct kvm_gfn_range gfn_range;
578 	struct kvm_memory_slot *slot;
579 	struct kvm_memslots *slots;
580 	int i, idx;
581 
582 	if (WARN_ON_ONCE(range->end <= range->start))
583 		return 0;
584 
585 	/* A null handler is allowed if and only if on_lock() is provided. */
586 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587 			 IS_KVM_NULL_FN(range->handler)))
588 		return 0;
589 
590 	idx = srcu_read_lock(&kvm->srcu);
591 
592 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593 		struct interval_tree_node *node;
594 
595 		slots = __kvm_memslots(kvm, i);
596 		kvm_for_each_memslot_in_hva_range(node, slots,
597 						  range->start, range->end - 1) {
598 			unsigned long hva_start, hva_end;
599 
600 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601 			hva_start = max(range->start, slot->userspace_addr);
602 			hva_end = min(range->end, slot->userspace_addr +
603 						  (slot->npages << PAGE_SHIFT));
604 
605 			/*
606 			 * To optimize for the likely case where the address
607 			 * range is covered by zero or one memslots, don't
608 			 * bother making these conditional (to avoid writes on
609 			 * the second or later invocation of the handler).
610 			 */
611 			gfn_range.pte = range->pte;
612 			gfn_range.may_block = range->may_block;
613 
614 			/*
615 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 			 */
618 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 			gfn_range.slot = slot;
621 
622 			if (!locked) {
623 				locked = true;
624 				KVM_MMU_LOCK(kvm);
625 				if (!IS_KVM_NULL_FN(range->on_lock))
626 					range->on_lock(kvm, range->start, range->end);
627 				if (IS_KVM_NULL_FN(range->handler))
628 					break;
629 			}
630 			ret |= range->handler(kvm, &gfn_range);
631 		}
632 	}
633 
634 	if (range->flush_on_ret && ret)
635 		kvm_flush_remote_tlbs(kvm);
636 
637 	if (locked) {
638 		KVM_MMU_UNLOCK(kvm);
639 		if (!IS_KVM_NULL_FN(range->on_unlock))
640 			range->on_unlock(kvm);
641 	}
642 
643 	srcu_read_unlock(&kvm->srcu, idx);
644 
645 	/* The notifiers are averse to booleans. :-( */
646 	return (int)ret;
647 }
648 
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650 						unsigned long start,
651 						unsigned long end,
652 						pte_t pte,
653 						hva_handler_t handler)
654 {
655 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
656 	const struct kvm_hva_range range = {
657 		.start		= start,
658 		.end		= end,
659 		.pte		= pte,
660 		.handler	= handler,
661 		.on_lock	= (void *)kvm_null_fn,
662 		.on_unlock	= (void *)kvm_null_fn,
663 		.flush_on_ret	= true,
664 		.may_block	= false,
665 	};
666 
667 	return __kvm_handle_hva_range(kvm, &range);
668 }
669 
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671 							 unsigned long start,
672 							 unsigned long end,
673 							 hva_handler_t handler)
674 {
675 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 	const struct kvm_hva_range range = {
677 		.start		= start,
678 		.end		= end,
679 		.pte		= __pte(0),
680 		.handler	= handler,
681 		.on_lock	= (void *)kvm_null_fn,
682 		.on_unlock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= false,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range);
688 }
689 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
690 					struct mm_struct *mm,
691 					unsigned long address,
692 					pte_t pte)
693 {
694 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
695 
696 	trace_kvm_set_spte_hva(address);
697 
698 	/*
699 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
700 	 * If mmu_invalidate_in_progress is zero, then no in-progress
701 	 * invalidations, including this one, found a relevant memslot at
702 	 * start(); rechecking memslots here is unnecessary.  Note, a false
703 	 * positive (count elevated by a different invalidation) is sub-optimal
704 	 * but functionally ok.
705 	 */
706 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
708 		return;
709 
710 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
711 }
712 
713 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
714 			      unsigned long end)
715 {
716 	/*
717 	 * The count increase must become visible at unlock time as no
718 	 * spte can be established without taking the mmu_lock and
719 	 * count is also read inside the mmu_lock critical section.
720 	 */
721 	kvm->mmu_invalidate_in_progress++;
722 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
723 		kvm->mmu_invalidate_range_start = start;
724 		kvm->mmu_invalidate_range_end = end;
725 	} else {
726 		/*
727 		 * Fully tracking multiple concurrent ranges has diminishing
728 		 * returns. Keep things simple and just find the minimal range
729 		 * which includes the current and new ranges. As there won't be
730 		 * enough information to subtract a range after its invalidate
731 		 * completes, any ranges invalidated concurrently will
732 		 * accumulate and persist until all outstanding invalidates
733 		 * complete.
734 		 */
735 		kvm->mmu_invalidate_range_start =
736 			min(kvm->mmu_invalidate_range_start, start);
737 		kvm->mmu_invalidate_range_end =
738 			max(kvm->mmu_invalidate_range_end, end);
739 	}
740 }
741 
742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
743 					const struct mmu_notifier_range *range)
744 {
745 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
746 	const struct kvm_hva_range hva_range = {
747 		.start		= range->start,
748 		.end		= range->end,
749 		.pte		= __pte(0),
750 		.handler	= kvm_unmap_gfn_range,
751 		.on_lock	= kvm_mmu_invalidate_begin,
752 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
753 		.flush_on_ret	= true,
754 		.may_block	= mmu_notifier_range_blockable(range),
755 	};
756 
757 	trace_kvm_unmap_hva_range(range->start, range->end);
758 
759 	/*
760 	 * Prevent memslot modification between range_start() and range_end()
761 	 * so that conditionally locking provides the same result in both
762 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
763 	 * adjustments will be imbalanced.
764 	 *
765 	 * Pairs with the decrement in range_end().
766 	 */
767 	spin_lock(&kvm->mn_invalidate_lock);
768 	kvm->mn_active_invalidate_count++;
769 	spin_unlock(&kvm->mn_invalidate_lock);
770 
771 	/*
772 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
773 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
774 	 * each cache's lock.  There are relatively few caches in existence at
775 	 * any given time, and the caches themselves can check for hva overlap,
776 	 * i.e. don't need to rely on memslot overlap checks for performance.
777 	 * Because this runs without holding mmu_lock, the pfn caches must use
778 	 * mn_active_invalidate_count (see above) instead of
779 	 * mmu_invalidate_in_progress.
780 	 */
781 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
782 					  hva_range.may_block);
783 
784 	__kvm_handle_hva_range(kvm, &hva_range);
785 
786 	return 0;
787 }
788 
789 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
790 			    unsigned long end)
791 {
792 	/*
793 	 * This sequence increase will notify the kvm page fault that
794 	 * the page that is going to be mapped in the spte could have
795 	 * been freed.
796 	 */
797 	kvm->mmu_invalidate_seq++;
798 	smp_wmb();
799 	/*
800 	 * The above sequence increase must be visible before the
801 	 * below count decrease, which is ensured by the smp_wmb above
802 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
803 	 */
804 	kvm->mmu_invalidate_in_progress--;
805 }
806 
807 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
808 					const struct mmu_notifier_range *range)
809 {
810 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
811 	const struct kvm_hva_range hva_range = {
812 		.start		= range->start,
813 		.end		= range->end,
814 		.pte		= __pte(0),
815 		.handler	= (void *)kvm_null_fn,
816 		.on_lock	= kvm_mmu_invalidate_end,
817 		.on_unlock	= (void *)kvm_null_fn,
818 		.flush_on_ret	= false,
819 		.may_block	= mmu_notifier_range_blockable(range),
820 	};
821 	bool wake;
822 
823 	__kvm_handle_hva_range(kvm, &hva_range);
824 
825 	/* Pairs with the increment in range_start(). */
826 	spin_lock(&kvm->mn_invalidate_lock);
827 	wake = (--kvm->mn_active_invalidate_count == 0);
828 	spin_unlock(&kvm->mn_invalidate_lock);
829 
830 	/*
831 	 * There can only be one waiter, since the wait happens under
832 	 * slots_lock.
833 	 */
834 	if (wake)
835 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
836 
837 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
838 }
839 
840 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
841 					      struct mm_struct *mm,
842 					      unsigned long start,
843 					      unsigned long end)
844 {
845 	trace_kvm_age_hva(start, end);
846 
847 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
848 }
849 
850 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
851 					struct mm_struct *mm,
852 					unsigned long start,
853 					unsigned long end)
854 {
855 	trace_kvm_age_hva(start, end);
856 
857 	/*
858 	 * Even though we do not flush TLB, this will still adversely
859 	 * affect performance on pre-Haswell Intel EPT, where there is
860 	 * no EPT Access Bit to clear so that we have to tear down EPT
861 	 * tables instead. If we find this unacceptable, we can always
862 	 * add a parameter to kvm_age_hva so that it effectively doesn't
863 	 * do anything on clear_young.
864 	 *
865 	 * Also note that currently we never issue secondary TLB flushes
866 	 * from clear_young, leaving this job up to the regular system
867 	 * cadence. If we find this inaccurate, we might come up with a
868 	 * more sophisticated heuristic later.
869 	 */
870 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
871 }
872 
873 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
874 				       struct mm_struct *mm,
875 				       unsigned long address)
876 {
877 	trace_kvm_test_age_hva(address);
878 
879 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
880 					     kvm_test_age_gfn);
881 }
882 
883 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
884 				     struct mm_struct *mm)
885 {
886 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
887 	int idx;
888 
889 	idx = srcu_read_lock(&kvm->srcu);
890 	kvm_flush_shadow_all(kvm);
891 	srcu_read_unlock(&kvm->srcu, idx);
892 }
893 
894 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
895 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
896 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
897 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
898 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
899 	.clear_young		= kvm_mmu_notifier_clear_young,
900 	.test_young		= kvm_mmu_notifier_test_young,
901 	.change_pte		= kvm_mmu_notifier_change_pte,
902 	.release		= kvm_mmu_notifier_release,
903 };
904 
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910 
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912 
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915 	return 0;
916 }
917 
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919 
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922 				unsigned long state,
923 				void *unused)
924 {
925 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926 
927 	return kvm_arch_pm_notifier(kvm, state);
928 }
929 
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
934 	kvm->pm_notifier.priority = INT_MAX;
935 	register_pm_notifier(&kvm->pm_notifier);
936 }
937 
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940 	unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946 
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951 
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954 	if (!memslot->dirty_bitmap)
955 		return;
956 
957 	kvfree(memslot->dirty_bitmap);
958 	memslot->dirty_bitmap = NULL;
959 }
960 
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964 	kvm_destroy_dirty_bitmap(slot);
965 
966 	kvm_arch_free_memslot(kvm, slot);
967 
968 	kfree(slot);
969 }
970 
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973 	struct hlist_node *idnode;
974 	struct kvm_memory_slot *memslot;
975 	int bkt;
976 
977 	/*
978 	 * The same memslot objects live in both active and inactive sets,
979 	 * arbitrarily free using index '1' so the second invocation of this
980 	 * function isn't operating over a structure with dangling pointers
981 	 * (even though this function isn't actually touching them).
982 	 */
983 	if (!slots->node_idx)
984 		return;
985 
986 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987 		kvm_free_memslot(kvm, memslot);
988 }
989 
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993 	case KVM_STATS_TYPE_INSTANT:
994 		return 0444;
995 	case KVM_STATS_TYPE_CUMULATIVE:
996 	case KVM_STATS_TYPE_PEAK:
997 	default:
998 		return 0644;
999 	}
1000 }
1001 
1002 
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005 	int i;
1006 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007 				      kvm_vcpu_stats_header.num_desc;
1008 
1009 	if (IS_ERR(kvm->debugfs_dentry))
1010 		return;
1011 
1012 	debugfs_remove_recursive(kvm->debugfs_dentry);
1013 
1014 	if (kvm->debugfs_stat_data) {
1015 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1016 			kfree(kvm->debugfs_stat_data[i]);
1017 		kfree(kvm->debugfs_stat_data);
1018 	}
1019 }
1020 
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023 	static DEFINE_MUTEX(kvm_debugfs_lock);
1024 	struct dentry *dent;
1025 	char dir_name[ITOA_MAX_LEN * 2];
1026 	struct kvm_stat_data *stat_data;
1027 	const struct _kvm_stats_desc *pdesc;
1028 	int i, ret = -ENOMEM;
1029 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 				      kvm_vcpu_stats_header.num_desc;
1031 
1032 	if (!debugfs_initialized())
1033 		return 0;
1034 
1035 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036 	mutex_lock(&kvm_debugfs_lock);
1037 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038 	if (dent) {
1039 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040 		dput(dent);
1041 		mutex_unlock(&kvm_debugfs_lock);
1042 		return 0;
1043 	}
1044 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045 	mutex_unlock(&kvm_debugfs_lock);
1046 	if (IS_ERR(dent))
1047 		return 0;
1048 
1049 	kvm->debugfs_dentry = dent;
1050 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051 					 sizeof(*kvm->debugfs_stat_data),
1052 					 GFP_KERNEL_ACCOUNT);
1053 	if (!kvm->debugfs_stat_data)
1054 		goto out_err;
1055 
1056 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057 		pdesc = &kvm_vm_stats_desc[i];
1058 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059 		if (!stat_data)
1060 			goto out_err;
1061 
1062 		stat_data->kvm = kvm;
1063 		stat_data->desc = pdesc;
1064 		stat_data->kind = KVM_STAT_VM;
1065 		kvm->debugfs_stat_data[i] = stat_data;
1066 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067 				    kvm->debugfs_dentry, stat_data,
1068 				    &stat_fops_per_vm);
1069 	}
1070 
1071 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072 		pdesc = &kvm_vcpu_stats_desc[i];
1073 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074 		if (!stat_data)
1075 			goto out_err;
1076 
1077 		stat_data->kvm = kvm;
1078 		stat_data->desc = pdesc;
1079 		stat_data->kind = KVM_STAT_VCPU;
1080 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082 				    kvm->debugfs_dentry, stat_data,
1083 				    &stat_fops_per_vm);
1084 	}
1085 
1086 	ret = kvm_arch_create_vm_debugfs(kvm);
1087 	if (ret)
1088 		goto out_err;
1089 
1090 	return 0;
1091 out_err:
1092 	kvm_destroy_vm_debugfs(kvm);
1093 	return ret;
1094 }
1095 
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112 
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121 	return 0;
1122 }
1123 
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126 	struct kvm *kvm = kvm_arch_alloc_vm();
1127 	struct kvm_memslots *slots;
1128 	int r = -ENOMEM;
1129 	int i, j;
1130 
1131 	if (!kvm)
1132 		return ERR_PTR(-ENOMEM);
1133 
1134 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135 	__module_get(kvm_chardev_ops.owner);
1136 
1137 	KVM_MMU_LOCK_INIT(kvm);
1138 	mmgrab(current->mm);
1139 	kvm->mm = current->mm;
1140 	kvm_eventfd_init(kvm);
1141 	mutex_init(&kvm->lock);
1142 	mutex_init(&kvm->irq_lock);
1143 	mutex_init(&kvm->slots_lock);
1144 	mutex_init(&kvm->slots_arch_lock);
1145 	spin_lock_init(&kvm->mn_invalidate_lock);
1146 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147 	xa_init(&kvm->vcpu_array);
1148 
1149 	INIT_LIST_HEAD(&kvm->gpc_list);
1150 	spin_lock_init(&kvm->gpc_lock);
1151 
1152 	INIT_LIST_HEAD(&kvm->devices);
1153 	kvm->max_vcpus = KVM_MAX_VCPUS;
1154 
1155 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156 
1157 	/*
1158 	 * Force subsequent debugfs file creations to fail if the VM directory
1159 	 * is not created (by kvm_create_vm_debugfs()).
1160 	 */
1161 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162 
1163 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164 		 task_pid_nr(current));
1165 
1166 	if (init_srcu_struct(&kvm->srcu))
1167 		goto out_err_no_srcu;
1168 	if (init_srcu_struct(&kvm->irq_srcu))
1169 		goto out_err_no_irq_srcu;
1170 
1171 	refcount_set(&kvm->users_count, 1);
1172 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173 		for (j = 0; j < 2; j++) {
1174 			slots = &kvm->__memslots[i][j];
1175 
1176 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177 			slots->hva_tree = RB_ROOT_CACHED;
1178 			slots->gfn_tree = RB_ROOT;
1179 			hash_init(slots->id_hash);
1180 			slots->node_idx = j;
1181 
1182 			/* Generations must be different for each address space. */
1183 			slots->generation = i;
1184 		}
1185 
1186 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187 	}
1188 
1189 	for (i = 0; i < KVM_NR_BUSES; i++) {
1190 		rcu_assign_pointer(kvm->buses[i],
1191 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192 		if (!kvm->buses[i])
1193 			goto out_err_no_arch_destroy_vm;
1194 	}
1195 
1196 	r = kvm_arch_init_vm(kvm, type);
1197 	if (r)
1198 		goto out_err_no_arch_destroy_vm;
1199 
1200 	r = hardware_enable_all();
1201 	if (r)
1202 		goto out_err_no_disable;
1203 
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207 
1208 	r = kvm_init_mmu_notifier(kvm);
1209 	if (r)
1210 		goto out_err_no_mmu_notifier;
1211 
1212 	r = kvm_coalesced_mmio_init(kvm);
1213 	if (r < 0)
1214 		goto out_no_coalesced_mmio;
1215 
1216 	r = kvm_create_vm_debugfs(kvm, fdname);
1217 	if (r)
1218 		goto out_err_no_debugfs;
1219 
1220 	r = kvm_arch_post_init_vm(kvm);
1221 	if (r)
1222 		goto out_err;
1223 
1224 	mutex_lock(&kvm_lock);
1225 	list_add(&kvm->vm_list, &vm_list);
1226 	mutex_unlock(&kvm_lock);
1227 
1228 	preempt_notifier_inc();
1229 	kvm_init_pm_notifier(kvm);
1230 
1231 	return kvm;
1232 
1233 out_err:
1234 	kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236 	kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239 	if (kvm->mmu_notifier.ops)
1240 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243 	hardware_disable_all();
1244 out_err_no_disable:
1245 	kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248 	for (i = 0; i < KVM_NR_BUSES; i++)
1249 		kfree(kvm_get_bus(kvm, i));
1250 	cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252 	cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254 	kvm_arch_free_vm(kvm);
1255 	mmdrop(current->mm);
1256 	module_put(kvm_chardev_ops.owner);
1257 	return ERR_PTR(r);
1258 }
1259 
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262 	struct kvm_device *dev, *tmp;
1263 
1264 	/*
1265 	 * We do not need to take the kvm->lock here, because nobody else
1266 	 * has a reference to the struct kvm at this point and therefore
1267 	 * cannot access the devices list anyhow.
1268 	 */
1269 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270 		list_del(&dev->vm_node);
1271 		dev->ops->destroy(dev);
1272 	}
1273 }
1274 
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277 	int i;
1278 	struct mm_struct *mm = kvm->mm;
1279 
1280 	kvm_destroy_pm_notifier(kvm);
1281 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282 	kvm_destroy_vm_debugfs(kvm);
1283 	kvm_arch_sync_events(kvm);
1284 	mutex_lock(&kvm_lock);
1285 	list_del(&kvm->vm_list);
1286 	mutex_unlock(&kvm_lock);
1287 	kvm_arch_pre_destroy_vm(kvm);
1288 
1289 	kvm_free_irq_routing(kvm);
1290 	for (i = 0; i < KVM_NR_BUSES; i++) {
1291 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292 
1293 		if (bus)
1294 			kvm_io_bus_destroy(bus);
1295 		kvm->buses[i] = NULL;
1296 	}
1297 	kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300 	/*
1301 	 * At this point, pending calls to invalidate_range_start()
1302 	 * have completed but no more MMU notifiers will run, so
1303 	 * mn_active_invalidate_count may remain unbalanced.
1304 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1305 	 * last reference on KVM has been dropped, but freeing
1306 	 * memslots would deadlock without this manual intervention.
1307 	 */
1308 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309 	kvm->mn_active_invalidate_count = 0;
1310 #else
1311 	kvm_flush_shadow_all(kvm);
1312 #endif
1313 	kvm_arch_destroy_vm(kvm);
1314 	kvm_destroy_devices(kvm);
1315 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318 	}
1319 	cleanup_srcu_struct(&kvm->irq_srcu);
1320 	cleanup_srcu_struct(&kvm->srcu);
1321 	kvm_arch_free_vm(kvm);
1322 	preempt_notifier_dec();
1323 	hardware_disable_all();
1324 	mmdrop(mm);
1325 	module_put(kvm_chardev_ops.owner);
1326 }
1327 
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330 	refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333 
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340 	return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343 
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346 	if (refcount_dec_and_test(&kvm->users_count))
1347 		kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350 
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363 
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366 	struct kvm *kvm = filp->private_data;
1367 
1368 	kvm_irqfd_release(kvm);
1369 
1370 	kvm_put_kvm(kvm);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381 
1382 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383 	if (!memslot->dirty_bitmap)
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392 	int node_idx_inactive = active->node_idx ^ 1;
1393 
1394 	return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396 
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403 				  struct kvm_memory_slot *b)
1404 {
1405 	if (WARN_ON_ONCE(!a && !b))
1406 		return 0;
1407 
1408 	if (!a)
1409 		return b->as_id;
1410 	if (!b)
1411 		return a->as_id;
1412 
1413 	WARN_ON_ONCE(a->as_id != b->as_id);
1414 	return a->as_id;
1415 }
1416 
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418 				struct kvm_memory_slot *slot)
1419 {
1420 	struct rb_root *gfn_tree = &slots->gfn_tree;
1421 	struct rb_node **node, *parent;
1422 	int idx = slots->node_idx;
1423 
1424 	parent = NULL;
1425 	for (node = &gfn_tree->rb_node; *node; ) {
1426 		struct kvm_memory_slot *tmp;
1427 
1428 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429 		parent = *node;
1430 		if (slot->base_gfn < tmp->base_gfn)
1431 			node = &(*node)->rb_left;
1432 		else if (slot->base_gfn > tmp->base_gfn)
1433 			node = &(*node)->rb_right;
1434 		else
1435 			BUG();
1436 	}
1437 
1438 	rb_link_node(&slot->gfn_node[idx], parent, node);
1439 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441 
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443 			       struct kvm_memory_slot *slot)
1444 {
1445 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447 
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449 				 struct kvm_memory_slot *old,
1450 				 struct kvm_memory_slot *new)
1451 {
1452 	int idx = slots->node_idx;
1453 
1454 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455 
1456 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457 			&slots->gfn_tree);
1458 }
1459 
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470 				struct kvm_memory_slot *old,
1471 				struct kvm_memory_slot *new)
1472 {
1473 	int as_id = kvm_memslots_get_as_id(old, new);
1474 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475 	int idx = slots->node_idx;
1476 
1477 	if (old) {
1478 		hash_del(&old->id_node[idx]);
1479 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480 
1481 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1482 			atomic_long_set(&slots->last_used_slot, (long)new);
1483 
1484 		if (!new) {
1485 			kvm_erase_gfn_node(slots, old);
1486 			return;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Initialize @new's hva range.  Do this even when replacing an @old
1492 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1493 	 */
1494 	new->hva_node[idx].start = new->userspace_addr;
1495 	new->hva_node[idx].last = new->userspace_addr +
1496 				  (new->npages << PAGE_SHIFT) - 1;
1497 
1498 	/*
1499 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500 	 * hva_node needs to be swapped with remove+insert even though hva can't
1501 	 * change when replacing an existing slot.
1502 	 */
1503 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505 
1506 	/*
1507 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508 	 * switch the node in the gfn tree instead of removing the old and
1509 	 * inserting the new as two separate operations. Replacement is a
1510 	 * single O(1) operation versus two O(log(n)) operations for
1511 	 * remove+insert.
1512 	 */
1513 	if (old && old->base_gfn == new->base_gfn) {
1514 		kvm_replace_gfn_node(slots, old, new);
1515 	} else {
1516 		if (old)
1517 			kvm_erase_gfn_node(slots, old);
1518 		kvm_insert_gfn_node(slots, new);
1519 	}
1520 }
1521 
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525 
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527 	valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529 
1530 	if (mem->flags & ~valid_flags)
1531 		return -EINVAL;
1532 
1533 	return 0;
1534 }
1535 
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539 
1540 	/* Grab the generation from the activate memslots. */
1541 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542 
1543 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545 
1546 	/*
1547 	 * Do not store the new memslots while there are invalidations in
1548 	 * progress, otherwise the locking in invalidate_range_start and
1549 	 * invalidate_range_end will be unbalanced.
1550 	 */
1551 	spin_lock(&kvm->mn_invalidate_lock);
1552 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553 	while (kvm->mn_active_invalidate_count) {
1554 		set_current_state(TASK_UNINTERRUPTIBLE);
1555 		spin_unlock(&kvm->mn_invalidate_lock);
1556 		schedule();
1557 		spin_lock(&kvm->mn_invalidate_lock);
1558 	}
1559 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1561 	spin_unlock(&kvm->mn_invalidate_lock);
1562 
1563 	/*
1564 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1565 	 * SRCU below in order to avoid deadlock with another thread
1566 	 * acquiring the slots_arch_lock in an srcu critical section.
1567 	 */
1568 	mutex_unlock(&kvm->slots_arch_lock);
1569 
1570 	synchronize_srcu_expedited(&kvm->srcu);
1571 
1572 	/*
1573 	 * Increment the new memslot generation a second time, dropping the
1574 	 * update in-progress flag and incrementing the generation based on
1575 	 * the number of address spaces.  This provides a unique and easily
1576 	 * identifiable generation number while the memslots are in flux.
1577 	 */
1578 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579 
1580 	/*
1581 	 * Generations must be unique even across address spaces.  We do not need
1582 	 * a global counter for that, instead the generation space is evenly split
1583 	 * across address spaces.  For example, with two address spaces, address
1584 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585 	 * use generations 1, 3, 5, ...
1586 	 */
1587 	gen += KVM_ADDRESS_SPACE_NUM;
1588 
1589 	kvm_arch_memslots_updated(kvm, gen);
1590 
1591 	slots->generation = gen;
1592 }
1593 
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595 				     const struct kvm_memory_slot *old,
1596 				     struct kvm_memory_slot *new,
1597 				     enum kvm_mr_change change)
1598 {
1599 	int r;
1600 
1601 	/*
1602 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603 	 * will be freed on "commit".  If logging is enabled in both old and
1604 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1605 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1606 	 * new bitmap.
1607 	 */
1608 	if (change != KVM_MR_DELETE) {
1609 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610 			new->dirty_bitmap = NULL;
1611 		else if (old && old->dirty_bitmap)
1612 			new->dirty_bitmap = old->dirty_bitmap;
1613 		else if (kvm_use_dirty_bitmap(kvm)) {
1614 			r = kvm_alloc_dirty_bitmap(new);
1615 			if (r)
1616 				return r;
1617 
1618 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1620 		}
1621 	}
1622 
1623 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624 
1625 	/* Free the bitmap on failure if it was allocated above. */
1626 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627 		kvm_destroy_dirty_bitmap(new);
1628 
1629 	return r;
1630 }
1631 
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633 				     struct kvm_memory_slot *old,
1634 				     const struct kvm_memory_slot *new,
1635 				     enum kvm_mr_change change)
1636 {
1637 	int old_flags = old ? old->flags : 0;
1638 	int new_flags = new ? new->flags : 0;
1639 	/*
1640 	 * Update the total number of memslot pages before calling the arch
1641 	 * hook so that architectures can consume the result directly.
1642 	 */
1643 	if (change == KVM_MR_DELETE)
1644 		kvm->nr_memslot_pages -= old->npages;
1645 	else if (change == KVM_MR_CREATE)
1646 		kvm->nr_memslot_pages += new->npages;
1647 
1648 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650 		atomic_set(&kvm->nr_memslots_dirty_logging,
1651 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652 	}
1653 
1654 	kvm_arch_commit_memory_region(kvm, old, new, change);
1655 
1656 	switch (change) {
1657 	case KVM_MR_CREATE:
1658 		/* Nothing more to do. */
1659 		break;
1660 	case KVM_MR_DELETE:
1661 		/* Free the old memslot and all its metadata. */
1662 		kvm_free_memslot(kvm, old);
1663 		break;
1664 	case KVM_MR_MOVE:
1665 	case KVM_MR_FLAGS_ONLY:
1666 		/*
1667 		 * Free the dirty bitmap as needed; the below check encompasses
1668 		 * both the flags and whether a ring buffer is being used)
1669 		 */
1670 		if (old->dirty_bitmap && !new->dirty_bitmap)
1671 			kvm_destroy_dirty_bitmap(old);
1672 
1673 		/*
1674 		 * The final quirk.  Free the detached, old slot, but only its
1675 		 * memory, not any metadata.  Metadata, including arch specific
1676 		 * data, may be reused by @new.
1677 		 */
1678 		kfree(old);
1679 		break;
1680 	default:
1681 		BUG();
1682 	}
1683 }
1684 
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695 				 struct kvm_memory_slot *old,
1696 				 struct kvm_memory_slot *new)
1697 {
1698 	int as_id = kvm_memslots_get_as_id(old, new);
1699 
1700 	kvm_swap_active_memslots(kvm, as_id);
1701 
1702 	/* Propagate the new memslot to the now inactive memslots. */
1703 	kvm_replace_memslot(kvm, old, new);
1704 }
1705 
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707 			     const struct kvm_memory_slot *src)
1708 {
1709 	dest->base_gfn = src->base_gfn;
1710 	dest->npages = src->npages;
1711 	dest->dirty_bitmap = src->dirty_bitmap;
1712 	dest->arch = src->arch;
1713 	dest->userspace_addr = src->userspace_addr;
1714 	dest->flags = src->flags;
1715 	dest->id = src->id;
1716 	dest->as_id = src->as_id;
1717 }
1718 
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720 				   struct kvm_memory_slot *old,
1721 				   struct kvm_memory_slot *invalid_slot)
1722 {
1723 	/*
1724 	 * Mark the current slot INVALID.  As with all memslot modifications,
1725 	 * this must be done on an unreachable slot to avoid modifying the
1726 	 * current slot in the active tree.
1727 	 */
1728 	kvm_copy_memslot(invalid_slot, old);
1729 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730 	kvm_replace_memslot(kvm, old, invalid_slot);
1731 
1732 	/*
1733 	 * Activate the slot that is now marked INVALID, but don't propagate
1734 	 * the slot to the now inactive slots. The slot is either going to be
1735 	 * deleted or recreated as a new slot.
1736 	 */
1737 	kvm_swap_active_memslots(kvm, old->as_id);
1738 
1739 	/*
1740 	 * From this point no new shadow pages pointing to a deleted, or moved,
1741 	 * memslot will be created.  Validation of sp->gfn happens in:
1742 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743 	 *	- kvm_is_visible_gfn (mmu_check_root)
1744 	 */
1745 	kvm_arch_flush_shadow_memslot(kvm, old);
1746 	kvm_arch_guest_memory_reclaimed(kvm);
1747 
1748 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1749 	mutex_lock(&kvm->slots_arch_lock);
1750 
1751 	/*
1752 	 * Copy the arch-specific field of the newly-installed slot back to the
1753 	 * old slot as the arch data could have changed between releasing
1754 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755 	 * above.  Writers are required to retrieve memslots *after* acquiring
1756 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757 	 */
1758 	old->arch = invalid_slot->arch;
1759 }
1760 
1761 static void kvm_create_memslot(struct kvm *kvm,
1762 			       struct kvm_memory_slot *new)
1763 {
1764 	/* Add the new memslot to the inactive set and activate. */
1765 	kvm_replace_memslot(kvm, NULL, new);
1766 	kvm_activate_memslot(kvm, NULL, new);
1767 }
1768 
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770 			       struct kvm_memory_slot *old,
1771 			       struct kvm_memory_slot *invalid_slot)
1772 {
1773 	/*
1774 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1775 	 * the "new" slot, and for the invalid version in the active slots.
1776 	 */
1777 	kvm_replace_memslot(kvm, old, NULL);
1778 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780 
1781 static void kvm_move_memslot(struct kvm *kvm,
1782 			     struct kvm_memory_slot *old,
1783 			     struct kvm_memory_slot *new,
1784 			     struct kvm_memory_slot *invalid_slot)
1785 {
1786 	/*
1787 	 * Replace the old memslot in the inactive slots, and then swap slots
1788 	 * and replace the current INVALID with the new as well.
1789 	 */
1790 	kvm_replace_memslot(kvm, old, new);
1791 	kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793 
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795 				     struct kvm_memory_slot *old,
1796 				     struct kvm_memory_slot *new)
1797 {
1798 	/*
1799 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800 	 * an intermediate step. Instead, the old memslot is simply replaced
1801 	 * with a new, updated copy in both memslot sets.
1802 	 */
1803 	kvm_replace_memslot(kvm, old, new);
1804 	kvm_activate_memslot(kvm, old, new);
1805 }
1806 
1807 static int kvm_set_memslot(struct kvm *kvm,
1808 			   struct kvm_memory_slot *old,
1809 			   struct kvm_memory_slot *new,
1810 			   enum kvm_mr_change change)
1811 {
1812 	struct kvm_memory_slot *invalid_slot;
1813 	int r;
1814 
1815 	/*
1816 	 * Released in kvm_swap_active_memslots().
1817 	 *
1818 	 * Must be held from before the current memslots are copied until after
1819 	 * the new memslots are installed with rcu_assign_pointer, then
1820 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1821 	 *
1822 	 * When modifying memslots outside of the slots_lock, must be held
1823 	 * before reading the pointer to the current memslots until after all
1824 	 * changes to those memslots are complete.
1825 	 *
1826 	 * These rules ensure that installing new memslots does not lose
1827 	 * changes made to the previous memslots.
1828 	 */
1829 	mutex_lock(&kvm->slots_arch_lock);
1830 
1831 	/*
1832 	 * Invalidate the old slot if it's being deleted or moved.  This is
1833 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1834 	 * continue running by ensuring there are no mappings or shadow pages
1835 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1836 	 * (and without a lock), a window would exist between effecting the
1837 	 * delete/move and committing the changes in arch code where KVM or a
1838 	 * guest could access a non-existent memslot.
1839 	 *
1840 	 * Modifications are done on a temporary, unreachable slot.  The old
1841 	 * slot needs to be preserved in case a later step fails and the
1842 	 * invalidation needs to be reverted.
1843 	 */
1844 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846 		if (!invalid_slot) {
1847 			mutex_unlock(&kvm->slots_arch_lock);
1848 			return -ENOMEM;
1849 		}
1850 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1851 	}
1852 
1853 	r = kvm_prepare_memory_region(kvm, old, new, change);
1854 	if (r) {
1855 		/*
1856 		 * For DELETE/MOVE, revert the above INVALID change.  No
1857 		 * modifications required since the original slot was preserved
1858 		 * in the inactive slots.  Changing the active memslots also
1859 		 * release slots_arch_lock.
1860 		 */
1861 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862 			kvm_activate_memslot(kvm, invalid_slot, old);
1863 			kfree(invalid_slot);
1864 		} else {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 		}
1867 		return r;
1868 	}
1869 
1870 	/*
1871 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1872 	 * version of the old slot.  MOVE is particularly special as it reuses
1873 	 * the old slot and returns a copy of the old slot (in working_slot).
1874 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875 	 * old slot is detached but otherwise preserved.
1876 	 */
1877 	if (change == KVM_MR_CREATE)
1878 		kvm_create_memslot(kvm, new);
1879 	else if (change == KVM_MR_DELETE)
1880 		kvm_delete_memslot(kvm, old, invalid_slot);
1881 	else if (change == KVM_MR_MOVE)
1882 		kvm_move_memslot(kvm, old, new, invalid_slot);
1883 	else if (change == KVM_MR_FLAGS_ONLY)
1884 		kvm_update_flags_memslot(kvm, old, new);
1885 	else
1886 		BUG();
1887 
1888 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1889 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890 		kfree(invalid_slot);
1891 
1892 	/*
1893 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1894 	 * will directly hit the final, active memslot.  Architectures are
1895 	 * responsible for knowing that new->arch may be stale.
1896 	 */
1897 	kvm_commit_memory_region(kvm, old, new, change);
1898 
1899 	return 0;
1900 }
1901 
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903 				      gfn_t start, gfn_t end)
1904 {
1905 	struct kvm_memslot_iter iter;
1906 
1907 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908 		if (iter.slot->id != id)
1909 			return true;
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924 			    const struct kvm_userspace_memory_region *mem)
1925 {
1926 	struct kvm_memory_slot *old, *new;
1927 	struct kvm_memslots *slots;
1928 	enum kvm_mr_change change;
1929 	unsigned long npages;
1930 	gfn_t base_gfn;
1931 	int as_id, id;
1932 	int r;
1933 
1934 	r = check_memory_region_flags(mem);
1935 	if (r)
1936 		return r;
1937 
1938 	as_id = mem->slot >> 16;
1939 	id = (u16)mem->slot;
1940 
1941 	/* General sanity checks */
1942 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943 	    (mem->memory_size != (unsigned long)mem->memory_size))
1944 		return -EINVAL;
1945 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946 		return -EINVAL;
1947 	/* We can read the guest memory with __xxx_user() later on. */
1948 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951 			mem->memory_size))
1952 		return -EINVAL;
1953 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954 		return -EINVAL;
1955 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956 		return -EINVAL;
1957 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958 		return -EINVAL;
1959 
1960 	slots = __kvm_memslots(kvm, as_id);
1961 
1962 	/*
1963 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1964 	 * and/or destroyed by kvm_set_memslot().
1965 	 */
1966 	old = id_to_memslot(slots, id);
1967 
1968 	if (!mem->memory_size) {
1969 		if (!old || !old->npages)
1970 			return -EINVAL;
1971 
1972 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973 			return -EIO;
1974 
1975 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976 	}
1977 
1978 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979 	npages = (mem->memory_size >> PAGE_SHIFT);
1980 
1981 	if (!old || !old->npages) {
1982 		change = KVM_MR_CREATE;
1983 
1984 		/*
1985 		 * To simplify KVM internals, the total number of pages across
1986 		 * all memslots must fit in an unsigned long.
1987 		 */
1988 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989 			return -EINVAL;
1990 	} else { /* Modify an existing slot. */
1991 		if ((mem->userspace_addr != old->userspace_addr) ||
1992 		    (npages != old->npages) ||
1993 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994 			return -EINVAL;
1995 
1996 		if (base_gfn != old->base_gfn)
1997 			change = KVM_MR_MOVE;
1998 		else if (mem->flags != old->flags)
1999 			change = KVM_MR_FLAGS_ONLY;
2000 		else /* Nothing to change. */
2001 			return 0;
2002 	}
2003 
2004 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006 		return -EEXIST;
2007 
2008 	/* Allocate a slot that will persist in the memslot. */
2009 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010 	if (!new)
2011 		return -ENOMEM;
2012 
2013 	new->as_id = as_id;
2014 	new->id = id;
2015 	new->base_gfn = base_gfn;
2016 	new->npages = npages;
2017 	new->flags = mem->flags;
2018 	new->userspace_addr = mem->userspace_addr;
2019 
2020 	r = kvm_set_memslot(kvm, old, new, change);
2021 	if (r)
2022 		kfree(new);
2023 	return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026 
2027 int kvm_set_memory_region(struct kvm *kvm,
2028 			  const struct kvm_userspace_memory_region *mem)
2029 {
2030 	int r;
2031 
2032 	mutex_lock(&kvm->slots_lock);
2033 	r = __kvm_set_memory_region(kvm, mem);
2034 	mutex_unlock(&kvm->slots_lock);
2035 	return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038 
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040 					  struct kvm_userspace_memory_region *mem)
2041 {
2042 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043 		return -EINVAL;
2044 
2045 	return kvm_set_memory_region(kvm, mem);
2046 }
2047 
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:	pointer to kvm instance
2052  * @log:	slot id and address to which we copy the log
2053  * @is_dirty:	set to '1' if any dirty pages were found
2054  * @memslot:	set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057 		      int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059 	struct kvm_memslots *slots;
2060 	int i, as_id, id;
2061 	unsigned long n;
2062 	unsigned long any = 0;
2063 
2064 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2065 	if (!kvm_use_dirty_bitmap(kvm))
2066 		return -ENXIO;
2067 
2068 	*memslot = NULL;
2069 	*is_dirty = 0;
2070 
2071 	as_id = log->slot >> 16;
2072 	id = (u16)log->slot;
2073 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074 		return -EINVAL;
2075 
2076 	slots = __kvm_memslots(kvm, as_id);
2077 	*memslot = id_to_memslot(slots, id);
2078 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079 		return -ENOENT;
2080 
2081 	kvm_arch_sync_dirty_log(kvm, *memslot);
2082 
2083 	n = kvm_dirty_bitmap_bytes(*memslot);
2084 
2085 	for (i = 0; !any && i < n/sizeof(long); ++i)
2086 		any = (*memslot)->dirty_bitmap[i];
2087 
2088 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089 		return -EFAULT;
2090 
2091 	if (any)
2092 		*is_dirty = 1;
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096 
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *	and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:	pointer to kvm instance
2102  * @log:	slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121 	struct kvm_memslots *slots;
2122 	struct kvm_memory_slot *memslot;
2123 	int i, as_id, id;
2124 	unsigned long n;
2125 	unsigned long *dirty_bitmap;
2126 	unsigned long *dirty_bitmap_buffer;
2127 	bool flush;
2128 
2129 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2130 	if (!kvm_use_dirty_bitmap(kvm))
2131 		return -ENXIO;
2132 
2133 	as_id = log->slot >> 16;
2134 	id = (u16)log->slot;
2135 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136 		return -EINVAL;
2137 
2138 	slots = __kvm_memslots(kvm, as_id);
2139 	memslot = id_to_memslot(slots, id);
2140 	if (!memslot || !memslot->dirty_bitmap)
2141 		return -ENOENT;
2142 
2143 	dirty_bitmap = memslot->dirty_bitmap;
2144 
2145 	kvm_arch_sync_dirty_log(kvm, memslot);
2146 
2147 	n = kvm_dirty_bitmap_bytes(memslot);
2148 	flush = false;
2149 	if (kvm->manual_dirty_log_protect) {
2150 		/*
2151 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2152 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153 		 * is some code duplication between this function and
2154 		 * kvm_get_dirty_log, but hopefully all architecture
2155 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156 		 * can be eliminated.
2157 		 */
2158 		dirty_bitmap_buffer = dirty_bitmap;
2159 	} else {
2160 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161 		memset(dirty_bitmap_buffer, 0, n);
2162 
2163 		KVM_MMU_LOCK(kvm);
2164 		for (i = 0; i < n / sizeof(long); i++) {
2165 			unsigned long mask;
2166 			gfn_t offset;
2167 
2168 			if (!dirty_bitmap[i])
2169 				continue;
2170 
2171 			flush = true;
2172 			mask = xchg(&dirty_bitmap[i], 0);
2173 			dirty_bitmap_buffer[i] = mask;
2174 
2175 			offset = i * BITS_PER_LONG;
2176 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177 								offset, mask);
2178 		}
2179 		KVM_MMU_UNLOCK(kvm);
2180 	}
2181 
2182 	if (flush)
2183 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184 
2185 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186 		return -EFAULT;
2187 	return 0;
2188 }
2189 
2190 
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211 				      struct kvm_dirty_log *log)
2212 {
2213 	int r;
2214 
2215 	mutex_lock(&kvm->slots_lock);
2216 
2217 	r = kvm_get_dirty_log_protect(kvm, log);
2218 
2219 	mutex_unlock(&kvm->slots_lock);
2220 	return r;
2221 }
2222 
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *	and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:	pointer to kvm instance
2227  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230 				       struct kvm_clear_dirty_log *log)
2231 {
2232 	struct kvm_memslots *slots;
2233 	struct kvm_memory_slot *memslot;
2234 	int as_id, id;
2235 	gfn_t offset;
2236 	unsigned long i, n;
2237 	unsigned long *dirty_bitmap;
2238 	unsigned long *dirty_bitmap_buffer;
2239 	bool flush;
2240 
2241 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2242 	if (!kvm_use_dirty_bitmap(kvm))
2243 		return -ENXIO;
2244 
2245 	as_id = log->slot >> 16;
2246 	id = (u16)log->slot;
2247 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248 		return -EINVAL;
2249 
2250 	if (log->first_page & 63)
2251 		return -EINVAL;
2252 
2253 	slots = __kvm_memslots(kvm, as_id);
2254 	memslot = id_to_memslot(slots, id);
2255 	if (!memslot || !memslot->dirty_bitmap)
2256 		return -ENOENT;
2257 
2258 	dirty_bitmap = memslot->dirty_bitmap;
2259 
2260 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261 
2262 	if (log->first_page > memslot->npages ||
2263 	    log->num_pages > memslot->npages - log->first_page ||
2264 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265 	    return -EINVAL;
2266 
2267 	kvm_arch_sync_dirty_log(kvm, memslot);
2268 
2269 	flush = false;
2270 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272 		return -EFAULT;
2273 
2274 	KVM_MMU_LOCK(kvm);
2275 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277 	     i++, offset += BITS_PER_LONG) {
2278 		unsigned long mask = *dirty_bitmap_buffer++;
2279 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280 		if (!mask)
2281 			continue;
2282 
2283 		mask &= atomic_long_fetch_andnot(mask, p);
2284 
2285 		/*
2286 		 * mask contains the bits that really have been cleared.  This
2287 		 * never includes any bits beyond the length of the memslot (if
2288 		 * the length is not aligned to 64 pages), therefore it is not
2289 		 * a problem if userspace sets them in log->dirty_bitmap.
2290 		*/
2291 		if (mask) {
2292 			flush = true;
2293 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 								offset, mask);
2295 		}
2296 	}
2297 	KVM_MMU_UNLOCK(kvm);
2298 
2299 	if (flush)
2300 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301 
2302 	return 0;
2303 }
2304 
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306 					struct kvm_clear_dirty_log *log)
2307 {
2308 	int r;
2309 
2310 	mutex_lock(&kvm->slots_lock);
2311 
2312 	r = kvm_clear_dirty_log_protect(kvm, log);
2313 
2314 	mutex_unlock(&kvm->slots_lock);
2315 	return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318 
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324 
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328 	u64 gen = slots->generation;
2329 	struct kvm_memory_slot *slot;
2330 
2331 	/*
2332 	 * This also protects against using a memslot from a different address space,
2333 	 * since different address spaces have different generation numbers.
2334 	 */
2335 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336 		vcpu->last_used_slot = NULL;
2337 		vcpu->last_used_slot_gen = gen;
2338 	}
2339 
2340 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341 	if (slot)
2342 		return slot;
2343 
2344 	/*
2345 	 * Fall back to searching all memslots. We purposely use
2346 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2347 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2348 	 */
2349 	slot = search_memslots(slots, gfn, false);
2350 	if (slot) {
2351 		vcpu->last_used_slot = slot;
2352 		return slot;
2353 	}
2354 
2355 	return NULL;
2356 }
2357 
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361 
2362 	return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365 
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369 
2370 	return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373 
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376 	struct vm_area_struct *vma;
2377 	unsigned long addr, size;
2378 
2379 	size = PAGE_SIZE;
2380 
2381 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382 	if (kvm_is_error_hva(addr))
2383 		return PAGE_SIZE;
2384 
2385 	mmap_read_lock(current->mm);
2386 	vma = find_vma(current->mm, addr);
2387 	if (!vma)
2388 		goto out;
2389 
2390 	size = vma_kernel_pagesize(vma);
2391 
2392 out:
2393 	mmap_read_unlock(current->mm);
2394 
2395 	return size;
2396 }
2397 
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400 	return slot->flags & KVM_MEM_READONLY;
2401 }
2402 
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404 				       gfn_t *nr_pages, bool write)
2405 {
2406 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407 		return KVM_HVA_ERR_BAD;
2408 
2409 	if (memslot_is_readonly(slot) && write)
2410 		return KVM_HVA_ERR_RO_BAD;
2411 
2412 	if (nr_pages)
2413 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2414 
2415 	return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417 
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419 				     gfn_t *nr_pages)
2420 {
2421 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423 
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425 					gfn_t gfn)
2426 {
2427 	return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430 
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436 
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442 
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452 				      gfn_t gfn, bool *writable)
2453 {
2454 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455 
2456 	if (!kvm_is_error_hva(hva) && writable)
2457 		*writable = !memslot_is_readonly(slot);
2458 
2459 	return hva;
2460 }
2461 
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465 
2466 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468 
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472 
2473 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475 
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479 
2480 	rc = get_user_pages(addr, 1, flags, NULL);
2481 	return rc == -EHWPOISON;
2482 }
2483 
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490 			    bool *writable, kvm_pfn_t *pfn)
2491 {
2492 	struct page *page[1];
2493 
2494 	/*
2495 	 * Fast pin a writable pfn only if it is a write fault request
2496 	 * or the caller allows to map a writable pfn for a read fault
2497 	 * request.
2498 	 */
2499 	if (!(write_fault || writable))
2500 		return false;
2501 
2502 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503 		*pfn = page_to_pfn(page[0]);
2504 
2505 		if (writable)
2506 			*writable = true;
2507 		return true;
2508 	}
2509 
2510 	return false;
2511 }
2512 
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520 	unsigned int flags = FOLL_HWPOISON;
2521 	struct page *page;
2522 	int npages;
2523 
2524 	might_sleep();
2525 
2526 	if (writable)
2527 		*writable = write_fault;
2528 
2529 	if (write_fault)
2530 		flags |= FOLL_WRITE;
2531 	if (async)
2532 		flags |= FOLL_NOWAIT;
2533 	if (interruptible)
2534 		flags |= FOLL_INTERRUPTIBLE;
2535 
2536 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2537 	if (npages != 1)
2538 		return npages;
2539 
2540 	/* map read fault as writable if possible */
2541 	if (unlikely(!write_fault) && writable) {
2542 		struct page *wpage;
2543 
2544 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2545 			*writable = true;
2546 			put_page(page);
2547 			page = wpage;
2548 		}
2549 	}
2550 	*pfn = page_to_pfn(page);
2551 	return npages;
2552 }
2553 
2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2555 {
2556 	if (unlikely(!(vma->vm_flags & VM_READ)))
2557 		return false;
2558 
2559 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2560 		return false;
2561 
2562 	return true;
2563 }
2564 
2565 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2566 {
2567 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2568 
2569 	if (!page)
2570 		return 1;
2571 
2572 	return get_page_unless_zero(page);
2573 }
2574 
2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2576 			       unsigned long addr, bool write_fault,
2577 			       bool *writable, kvm_pfn_t *p_pfn)
2578 {
2579 	kvm_pfn_t pfn;
2580 	pte_t *ptep;
2581 	pte_t pte;
2582 	spinlock_t *ptl;
2583 	int r;
2584 
2585 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2586 	if (r) {
2587 		/*
2588 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2589 		 * not call the fault handler, so do it here.
2590 		 */
2591 		bool unlocked = false;
2592 		r = fixup_user_fault(current->mm, addr,
2593 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2594 				     &unlocked);
2595 		if (unlocked)
2596 			return -EAGAIN;
2597 		if (r)
2598 			return r;
2599 
2600 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2601 		if (r)
2602 			return r;
2603 	}
2604 
2605 	pte = ptep_get(ptep);
2606 
2607 	if (write_fault && !pte_write(pte)) {
2608 		pfn = KVM_PFN_ERR_RO_FAULT;
2609 		goto out;
2610 	}
2611 
2612 	if (writable)
2613 		*writable = pte_write(pte);
2614 	pfn = pte_pfn(pte);
2615 
2616 	/*
2617 	 * Get a reference here because callers of *hva_to_pfn* and
2618 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2619 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2620 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2621 	 * simply do nothing for reserved pfns.
2622 	 *
2623 	 * Whoever called remap_pfn_range is also going to call e.g.
2624 	 * unmap_mapping_range before the underlying pages are freed,
2625 	 * causing a call to our MMU notifier.
2626 	 *
2627 	 * Certain IO or PFNMAP mappings can be backed with valid
2628 	 * struct pages, but be allocated without refcounting e.g.,
2629 	 * tail pages of non-compound higher order allocations, which
2630 	 * would then underflow the refcount when the caller does the
2631 	 * required put_page. Don't allow those pages here.
2632 	 */
2633 	if (!kvm_try_get_pfn(pfn))
2634 		r = -EFAULT;
2635 
2636 out:
2637 	pte_unmap_unlock(ptep, ptl);
2638 	*p_pfn = pfn;
2639 
2640 	return r;
2641 }
2642 
2643 /*
2644  * Pin guest page in memory and return its pfn.
2645  * @addr: host virtual address which maps memory to the guest
2646  * @atomic: whether this function can sleep
2647  * @interruptible: whether the process can be interrupted by non-fatal signals
2648  * @async: whether this function need to wait IO complete if the
2649  *         host page is not in the memory
2650  * @write_fault: whether we should get a writable host page
2651  * @writable: whether it allows to map a writable host page for !@write_fault
2652  *
2653  * The function will map a writable host page for these two cases:
2654  * 1): @write_fault = true
2655  * 2): @write_fault = false && @writable, @writable will tell the caller
2656  *     whether the mapping is writable.
2657  */
2658 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2659 		     bool *async, bool write_fault, bool *writable)
2660 {
2661 	struct vm_area_struct *vma;
2662 	kvm_pfn_t pfn;
2663 	int npages, r;
2664 
2665 	/* we can do it either atomically or asynchronously, not both */
2666 	BUG_ON(atomic && async);
2667 
2668 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2669 		return pfn;
2670 
2671 	if (atomic)
2672 		return KVM_PFN_ERR_FAULT;
2673 
2674 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2675 				 writable, &pfn);
2676 	if (npages == 1)
2677 		return pfn;
2678 	if (npages == -EINTR)
2679 		return KVM_PFN_ERR_SIGPENDING;
2680 
2681 	mmap_read_lock(current->mm);
2682 	if (npages == -EHWPOISON ||
2683 	      (!async && check_user_page_hwpoison(addr))) {
2684 		pfn = KVM_PFN_ERR_HWPOISON;
2685 		goto exit;
2686 	}
2687 
2688 retry:
2689 	vma = vma_lookup(current->mm, addr);
2690 
2691 	if (vma == NULL)
2692 		pfn = KVM_PFN_ERR_FAULT;
2693 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2694 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2695 		if (r == -EAGAIN)
2696 			goto retry;
2697 		if (r < 0)
2698 			pfn = KVM_PFN_ERR_FAULT;
2699 	} else {
2700 		if (async && vma_is_valid(vma, write_fault))
2701 			*async = true;
2702 		pfn = KVM_PFN_ERR_FAULT;
2703 	}
2704 exit:
2705 	mmap_read_unlock(current->mm);
2706 	return pfn;
2707 }
2708 
2709 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2710 			       bool atomic, bool interruptible, bool *async,
2711 			       bool write_fault, bool *writable, hva_t *hva)
2712 {
2713 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2714 
2715 	if (hva)
2716 		*hva = addr;
2717 
2718 	if (addr == KVM_HVA_ERR_RO_BAD) {
2719 		if (writable)
2720 			*writable = false;
2721 		return KVM_PFN_ERR_RO_FAULT;
2722 	}
2723 
2724 	if (kvm_is_error_hva(addr)) {
2725 		if (writable)
2726 			*writable = false;
2727 		return KVM_PFN_NOSLOT;
2728 	}
2729 
2730 	/* Do not map writable pfn in the readonly memslot. */
2731 	if (writable && memslot_is_readonly(slot)) {
2732 		*writable = false;
2733 		writable = NULL;
2734 	}
2735 
2736 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2737 			  writable);
2738 }
2739 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2740 
2741 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2742 		      bool *writable)
2743 {
2744 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2745 				    NULL, write_fault, writable, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2748 
2749 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2750 {
2751 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2752 				    NULL, NULL);
2753 }
2754 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2755 
2756 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2757 {
2758 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2759 				    NULL, NULL);
2760 }
2761 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2762 
2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 {
2765 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2768 
2769 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2770 {
2771 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2772 }
2773 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2774 
2775 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2776 {
2777 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2780 
2781 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2782 			    struct page **pages, int nr_pages)
2783 {
2784 	unsigned long addr;
2785 	gfn_t entry = 0;
2786 
2787 	addr = gfn_to_hva_many(slot, gfn, &entry);
2788 	if (kvm_is_error_hva(addr))
2789 		return -1;
2790 
2791 	if (entry < nr_pages)
2792 		return 0;
2793 
2794 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2795 }
2796 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2797 
2798 /*
2799  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2800  * backed by 'struct page'.  A valid example is if the backing memslot is
2801  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2802  * been elevated by gfn_to_pfn().
2803  */
2804 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2805 {
2806 	struct page *page;
2807 	kvm_pfn_t pfn;
2808 
2809 	pfn = gfn_to_pfn(kvm, gfn);
2810 
2811 	if (is_error_noslot_pfn(pfn))
2812 		return KVM_ERR_PTR_BAD_PAGE;
2813 
2814 	page = kvm_pfn_to_refcounted_page(pfn);
2815 	if (!page)
2816 		return KVM_ERR_PTR_BAD_PAGE;
2817 
2818 	return page;
2819 }
2820 EXPORT_SYMBOL_GPL(gfn_to_page);
2821 
2822 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2823 {
2824 	if (dirty)
2825 		kvm_release_pfn_dirty(pfn);
2826 	else
2827 		kvm_release_pfn_clean(pfn);
2828 }
2829 
2830 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2831 {
2832 	kvm_pfn_t pfn;
2833 	void *hva = NULL;
2834 	struct page *page = KVM_UNMAPPED_PAGE;
2835 
2836 	if (!map)
2837 		return -EINVAL;
2838 
2839 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2840 	if (is_error_noslot_pfn(pfn))
2841 		return -EINVAL;
2842 
2843 	if (pfn_valid(pfn)) {
2844 		page = pfn_to_page(pfn);
2845 		hva = kmap(page);
2846 #ifdef CONFIG_HAS_IOMEM
2847 	} else {
2848 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2849 #endif
2850 	}
2851 
2852 	if (!hva)
2853 		return -EFAULT;
2854 
2855 	map->page = page;
2856 	map->hva = hva;
2857 	map->pfn = pfn;
2858 	map->gfn = gfn;
2859 
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2863 
2864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2865 {
2866 	if (!map)
2867 		return;
2868 
2869 	if (!map->hva)
2870 		return;
2871 
2872 	if (map->page != KVM_UNMAPPED_PAGE)
2873 		kunmap(map->page);
2874 #ifdef CONFIG_HAS_IOMEM
2875 	else
2876 		memunmap(map->hva);
2877 #endif
2878 
2879 	if (dirty)
2880 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2881 
2882 	kvm_release_pfn(map->pfn, dirty);
2883 
2884 	map->hva = NULL;
2885 	map->page = NULL;
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2888 
2889 static bool kvm_is_ad_tracked_page(struct page *page)
2890 {
2891 	/*
2892 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2893 	 * touched (e.g. set dirty) except by its owner".
2894 	 */
2895 	return !PageReserved(page);
2896 }
2897 
2898 static void kvm_set_page_dirty(struct page *page)
2899 {
2900 	if (kvm_is_ad_tracked_page(page))
2901 		SetPageDirty(page);
2902 }
2903 
2904 static void kvm_set_page_accessed(struct page *page)
2905 {
2906 	if (kvm_is_ad_tracked_page(page))
2907 		mark_page_accessed(page);
2908 }
2909 
2910 void kvm_release_page_clean(struct page *page)
2911 {
2912 	WARN_ON(is_error_page(page));
2913 
2914 	kvm_set_page_accessed(page);
2915 	put_page(page);
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2918 
2919 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2920 {
2921 	struct page *page;
2922 
2923 	if (is_error_noslot_pfn(pfn))
2924 		return;
2925 
2926 	page = kvm_pfn_to_refcounted_page(pfn);
2927 	if (!page)
2928 		return;
2929 
2930 	kvm_release_page_clean(page);
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2933 
2934 void kvm_release_page_dirty(struct page *page)
2935 {
2936 	WARN_ON(is_error_page(page));
2937 
2938 	kvm_set_page_dirty(page);
2939 	kvm_release_page_clean(page);
2940 }
2941 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2942 
2943 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2944 {
2945 	struct page *page;
2946 
2947 	if (is_error_noslot_pfn(pfn))
2948 		return;
2949 
2950 	page = kvm_pfn_to_refcounted_page(pfn);
2951 	if (!page)
2952 		return;
2953 
2954 	kvm_release_page_dirty(page);
2955 }
2956 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2957 
2958 /*
2959  * Note, checking for an error/noslot pfn is the caller's responsibility when
2960  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2961  * "set" helpers are not to be used when the pfn might point at garbage.
2962  */
2963 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2964 {
2965 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2966 		return;
2967 
2968 	if (pfn_valid(pfn))
2969 		kvm_set_page_dirty(pfn_to_page(pfn));
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2972 
2973 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2974 {
2975 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2976 		return;
2977 
2978 	if (pfn_valid(pfn))
2979 		kvm_set_page_accessed(pfn_to_page(pfn));
2980 }
2981 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2982 
2983 static int next_segment(unsigned long len, int offset)
2984 {
2985 	if (len > PAGE_SIZE - offset)
2986 		return PAGE_SIZE - offset;
2987 	else
2988 		return len;
2989 }
2990 
2991 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2992 				 void *data, int offset, int len)
2993 {
2994 	int r;
2995 	unsigned long addr;
2996 
2997 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2998 	if (kvm_is_error_hva(addr))
2999 		return -EFAULT;
3000 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3001 	if (r)
3002 		return -EFAULT;
3003 	return 0;
3004 }
3005 
3006 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3007 			int len)
3008 {
3009 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3010 
3011 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3012 }
3013 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3014 
3015 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3016 			     int offset, int len)
3017 {
3018 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3019 
3020 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3021 }
3022 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3023 
3024 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3025 {
3026 	gfn_t gfn = gpa >> PAGE_SHIFT;
3027 	int seg;
3028 	int offset = offset_in_page(gpa);
3029 	int ret;
3030 
3031 	while ((seg = next_segment(len, offset)) != 0) {
3032 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3033 		if (ret < 0)
3034 			return ret;
3035 		offset = 0;
3036 		len -= seg;
3037 		data += seg;
3038 		++gfn;
3039 	}
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(kvm_read_guest);
3043 
3044 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3045 {
3046 	gfn_t gfn = gpa >> PAGE_SHIFT;
3047 	int seg;
3048 	int offset = offset_in_page(gpa);
3049 	int ret;
3050 
3051 	while ((seg = next_segment(len, offset)) != 0) {
3052 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3053 		if (ret < 0)
3054 			return ret;
3055 		offset = 0;
3056 		len -= seg;
3057 		data += seg;
3058 		++gfn;
3059 	}
3060 	return 0;
3061 }
3062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3063 
3064 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3065 			           void *data, int offset, unsigned long len)
3066 {
3067 	int r;
3068 	unsigned long addr;
3069 
3070 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3071 	if (kvm_is_error_hva(addr))
3072 		return -EFAULT;
3073 	pagefault_disable();
3074 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3075 	pagefault_enable();
3076 	if (r)
3077 		return -EFAULT;
3078 	return 0;
3079 }
3080 
3081 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3082 			       void *data, unsigned long len)
3083 {
3084 	gfn_t gfn = gpa >> PAGE_SHIFT;
3085 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3086 	int offset = offset_in_page(gpa);
3087 
3088 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3089 }
3090 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3091 
3092 static int __kvm_write_guest_page(struct kvm *kvm,
3093 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3094 			          const void *data, int offset, int len)
3095 {
3096 	int r;
3097 	unsigned long addr;
3098 
3099 	addr = gfn_to_hva_memslot(memslot, gfn);
3100 	if (kvm_is_error_hva(addr))
3101 		return -EFAULT;
3102 	r = __copy_to_user((void __user *)addr + offset, data, len);
3103 	if (r)
3104 		return -EFAULT;
3105 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3106 	return 0;
3107 }
3108 
3109 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3110 			 const void *data, int offset, int len)
3111 {
3112 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3113 
3114 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3115 }
3116 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3117 
3118 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3119 			      const void *data, int offset, int len)
3120 {
3121 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3122 
3123 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3126 
3127 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3128 		    unsigned long len)
3129 {
3130 	gfn_t gfn = gpa >> PAGE_SHIFT;
3131 	int seg;
3132 	int offset = offset_in_page(gpa);
3133 	int ret;
3134 
3135 	while ((seg = next_segment(len, offset)) != 0) {
3136 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3137 		if (ret < 0)
3138 			return ret;
3139 		offset = 0;
3140 		len -= seg;
3141 		data += seg;
3142 		++gfn;
3143 	}
3144 	return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_write_guest);
3147 
3148 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3149 		         unsigned long len)
3150 {
3151 	gfn_t gfn = gpa >> PAGE_SHIFT;
3152 	int seg;
3153 	int offset = offset_in_page(gpa);
3154 	int ret;
3155 
3156 	while ((seg = next_segment(len, offset)) != 0) {
3157 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3158 		if (ret < 0)
3159 			return ret;
3160 		offset = 0;
3161 		len -= seg;
3162 		data += seg;
3163 		++gfn;
3164 	}
3165 	return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3168 
3169 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3170 				       struct gfn_to_hva_cache *ghc,
3171 				       gpa_t gpa, unsigned long len)
3172 {
3173 	int offset = offset_in_page(gpa);
3174 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3175 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3176 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3177 	gfn_t nr_pages_avail;
3178 
3179 	/* Update ghc->generation before performing any error checks. */
3180 	ghc->generation = slots->generation;
3181 
3182 	if (start_gfn > end_gfn) {
3183 		ghc->hva = KVM_HVA_ERR_BAD;
3184 		return -EINVAL;
3185 	}
3186 
3187 	/*
3188 	 * If the requested region crosses two memslots, we still
3189 	 * verify that the entire region is valid here.
3190 	 */
3191 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3192 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3193 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3194 					   &nr_pages_avail);
3195 		if (kvm_is_error_hva(ghc->hva))
3196 			return -EFAULT;
3197 	}
3198 
3199 	/* Use the slow path for cross page reads and writes. */
3200 	if (nr_pages_needed == 1)
3201 		ghc->hva += offset;
3202 	else
3203 		ghc->memslot = NULL;
3204 
3205 	ghc->gpa = gpa;
3206 	ghc->len = len;
3207 	return 0;
3208 }
3209 
3210 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3211 			      gpa_t gpa, unsigned long len)
3212 {
3213 	struct kvm_memslots *slots = kvm_memslots(kvm);
3214 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3217 
3218 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3219 				  void *data, unsigned int offset,
3220 				  unsigned long len)
3221 {
3222 	struct kvm_memslots *slots = kvm_memslots(kvm);
3223 	int r;
3224 	gpa_t gpa = ghc->gpa + offset;
3225 
3226 	if (WARN_ON_ONCE(len + offset > ghc->len))
3227 		return -EINVAL;
3228 
3229 	if (slots->generation != ghc->generation) {
3230 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3231 			return -EFAULT;
3232 	}
3233 
3234 	if (kvm_is_error_hva(ghc->hva))
3235 		return -EFAULT;
3236 
3237 	if (unlikely(!ghc->memslot))
3238 		return kvm_write_guest(kvm, gpa, data, len);
3239 
3240 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3241 	if (r)
3242 		return -EFAULT;
3243 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3244 
3245 	return 0;
3246 }
3247 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3248 
3249 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3250 			   void *data, unsigned long len)
3251 {
3252 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3253 }
3254 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3255 
3256 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3257 				 void *data, unsigned int offset,
3258 				 unsigned long len)
3259 {
3260 	struct kvm_memslots *slots = kvm_memslots(kvm);
3261 	int r;
3262 	gpa_t gpa = ghc->gpa + offset;
3263 
3264 	if (WARN_ON_ONCE(len + offset > ghc->len))
3265 		return -EINVAL;
3266 
3267 	if (slots->generation != ghc->generation) {
3268 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3269 			return -EFAULT;
3270 	}
3271 
3272 	if (kvm_is_error_hva(ghc->hva))
3273 		return -EFAULT;
3274 
3275 	if (unlikely(!ghc->memslot))
3276 		return kvm_read_guest(kvm, gpa, data, len);
3277 
3278 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3279 	if (r)
3280 		return -EFAULT;
3281 
3282 	return 0;
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3285 
3286 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287 			  void *data, unsigned long len)
3288 {
3289 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3290 }
3291 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3292 
3293 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3294 {
3295 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3296 	gfn_t gfn = gpa >> PAGE_SHIFT;
3297 	int seg;
3298 	int offset = offset_in_page(gpa);
3299 	int ret;
3300 
3301 	while ((seg = next_segment(len, offset)) != 0) {
3302 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3303 		if (ret < 0)
3304 			return ret;
3305 		offset = 0;
3306 		len -= seg;
3307 		++gfn;
3308 	}
3309 	return 0;
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3312 
3313 void mark_page_dirty_in_slot(struct kvm *kvm,
3314 			     const struct kvm_memory_slot *memslot,
3315 		 	     gfn_t gfn)
3316 {
3317 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3318 
3319 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3320 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3321 		return;
3322 
3323 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3324 #endif
3325 
3326 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3327 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3328 		u32 slot = (memslot->as_id << 16) | memslot->id;
3329 
3330 		if (kvm->dirty_ring_size && vcpu)
3331 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3332 		else if (memslot->dirty_bitmap)
3333 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3334 	}
3335 }
3336 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3337 
3338 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3339 {
3340 	struct kvm_memory_slot *memslot;
3341 
3342 	memslot = gfn_to_memslot(kvm, gfn);
3343 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3344 }
3345 EXPORT_SYMBOL_GPL(mark_page_dirty);
3346 
3347 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3348 {
3349 	struct kvm_memory_slot *memslot;
3350 
3351 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3352 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3353 }
3354 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3355 
3356 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3357 {
3358 	if (!vcpu->sigset_active)
3359 		return;
3360 
3361 	/*
3362 	 * This does a lockless modification of ->real_blocked, which is fine
3363 	 * because, only current can change ->real_blocked and all readers of
3364 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3365 	 * of ->blocked.
3366 	 */
3367 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3368 }
3369 
3370 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3371 {
3372 	if (!vcpu->sigset_active)
3373 		return;
3374 
3375 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3376 	sigemptyset(&current->real_blocked);
3377 }
3378 
3379 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3380 {
3381 	unsigned int old, val, grow, grow_start;
3382 
3383 	old = val = vcpu->halt_poll_ns;
3384 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3385 	grow = READ_ONCE(halt_poll_ns_grow);
3386 	if (!grow)
3387 		goto out;
3388 
3389 	val *= grow;
3390 	if (val < grow_start)
3391 		val = grow_start;
3392 
3393 	vcpu->halt_poll_ns = val;
3394 out:
3395 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3396 }
3397 
3398 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3399 {
3400 	unsigned int old, val, shrink, grow_start;
3401 
3402 	old = val = vcpu->halt_poll_ns;
3403 	shrink = READ_ONCE(halt_poll_ns_shrink);
3404 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3405 	if (shrink == 0)
3406 		val = 0;
3407 	else
3408 		val /= shrink;
3409 
3410 	if (val < grow_start)
3411 		val = 0;
3412 
3413 	vcpu->halt_poll_ns = val;
3414 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3415 }
3416 
3417 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3418 {
3419 	int ret = -EINTR;
3420 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3421 
3422 	if (kvm_arch_vcpu_runnable(vcpu))
3423 		goto out;
3424 	if (kvm_cpu_has_pending_timer(vcpu))
3425 		goto out;
3426 	if (signal_pending(current))
3427 		goto out;
3428 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3429 		goto out;
3430 
3431 	ret = 0;
3432 out:
3433 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3434 	return ret;
3435 }
3436 
3437 /*
3438  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3439  * pending.  This is mostly used when halting a vCPU, but may also be used
3440  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3441  */
3442 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3443 {
3444 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3445 	bool waited = false;
3446 
3447 	vcpu->stat.generic.blocking = 1;
3448 
3449 	preempt_disable();
3450 	kvm_arch_vcpu_blocking(vcpu);
3451 	prepare_to_rcuwait(wait);
3452 	preempt_enable();
3453 
3454 	for (;;) {
3455 		set_current_state(TASK_INTERRUPTIBLE);
3456 
3457 		if (kvm_vcpu_check_block(vcpu) < 0)
3458 			break;
3459 
3460 		waited = true;
3461 		schedule();
3462 	}
3463 
3464 	preempt_disable();
3465 	finish_rcuwait(wait);
3466 	kvm_arch_vcpu_unblocking(vcpu);
3467 	preempt_enable();
3468 
3469 	vcpu->stat.generic.blocking = 0;
3470 
3471 	return waited;
3472 }
3473 
3474 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3475 					  ktime_t end, bool success)
3476 {
3477 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3478 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3479 
3480 	++vcpu->stat.generic.halt_attempted_poll;
3481 
3482 	if (success) {
3483 		++vcpu->stat.generic.halt_successful_poll;
3484 
3485 		if (!vcpu_valid_wakeup(vcpu))
3486 			++vcpu->stat.generic.halt_poll_invalid;
3487 
3488 		stats->halt_poll_success_ns += poll_ns;
3489 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3490 	} else {
3491 		stats->halt_poll_fail_ns += poll_ns;
3492 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3493 	}
3494 }
3495 
3496 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3497 {
3498 	struct kvm *kvm = vcpu->kvm;
3499 
3500 	if (kvm->override_halt_poll_ns) {
3501 		/*
3502 		 * Ensure kvm->max_halt_poll_ns is not read before
3503 		 * kvm->override_halt_poll_ns.
3504 		 *
3505 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3506 		 */
3507 		smp_rmb();
3508 		return READ_ONCE(kvm->max_halt_poll_ns);
3509 	}
3510 
3511 	return READ_ONCE(halt_poll_ns);
3512 }
3513 
3514 /*
3515  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3516  * polling is enabled, busy wait for a short time before blocking to avoid the
3517  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3518  * is halted.
3519  */
3520 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3521 {
3522 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3523 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3524 	ktime_t start, cur, poll_end;
3525 	bool waited = false;
3526 	bool do_halt_poll;
3527 	u64 halt_ns;
3528 
3529 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3530 		vcpu->halt_poll_ns = max_halt_poll_ns;
3531 
3532 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3533 
3534 	start = cur = poll_end = ktime_get();
3535 	if (do_halt_poll) {
3536 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3537 
3538 		do {
3539 			if (kvm_vcpu_check_block(vcpu) < 0)
3540 				goto out;
3541 			cpu_relax();
3542 			poll_end = cur = ktime_get();
3543 		} while (kvm_vcpu_can_poll(cur, stop));
3544 	}
3545 
3546 	waited = kvm_vcpu_block(vcpu);
3547 
3548 	cur = ktime_get();
3549 	if (waited) {
3550 		vcpu->stat.generic.halt_wait_ns +=
3551 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3552 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3553 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3554 	}
3555 out:
3556 	/* The total time the vCPU was "halted", including polling time. */
3557 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3558 
3559 	/*
3560 	 * Note, halt-polling is considered successful so long as the vCPU was
3561 	 * never actually scheduled out, i.e. even if the wake event arrived
3562 	 * after of the halt-polling loop itself, but before the full wait.
3563 	 */
3564 	if (do_halt_poll)
3565 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3566 
3567 	if (halt_poll_allowed) {
3568 		/* Recompute the max halt poll time in case it changed. */
3569 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3570 
3571 		if (!vcpu_valid_wakeup(vcpu)) {
3572 			shrink_halt_poll_ns(vcpu);
3573 		} else if (max_halt_poll_ns) {
3574 			if (halt_ns <= vcpu->halt_poll_ns)
3575 				;
3576 			/* we had a long block, shrink polling */
3577 			else if (vcpu->halt_poll_ns &&
3578 				 halt_ns > max_halt_poll_ns)
3579 				shrink_halt_poll_ns(vcpu);
3580 			/* we had a short halt and our poll time is too small */
3581 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3582 				 halt_ns < max_halt_poll_ns)
3583 				grow_halt_poll_ns(vcpu);
3584 		} else {
3585 			vcpu->halt_poll_ns = 0;
3586 		}
3587 	}
3588 
3589 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3590 }
3591 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3592 
3593 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3594 {
3595 	if (__kvm_vcpu_wake_up(vcpu)) {
3596 		WRITE_ONCE(vcpu->ready, true);
3597 		++vcpu->stat.generic.halt_wakeup;
3598 		return true;
3599 	}
3600 
3601 	return false;
3602 }
3603 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3604 
3605 #ifndef CONFIG_S390
3606 /*
3607  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3608  */
3609 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3610 {
3611 	int me, cpu;
3612 
3613 	if (kvm_vcpu_wake_up(vcpu))
3614 		return;
3615 
3616 	me = get_cpu();
3617 	/*
3618 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3619 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3620 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3621 	 * within the vCPU thread itself.
3622 	 */
3623 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3624 		if (vcpu->mode == IN_GUEST_MODE)
3625 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * Note, the vCPU could get migrated to a different pCPU at any point
3631 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3632 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3633 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3634 	 * vCPU also requires it to leave IN_GUEST_MODE.
3635 	 */
3636 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3637 		cpu = READ_ONCE(vcpu->cpu);
3638 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3639 			smp_send_reschedule(cpu);
3640 	}
3641 out:
3642 	put_cpu();
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3645 #endif /* !CONFIG_S390 */
3646 
3647 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3648 {
3649 	struct pid *pid;
3650 	struct task_struct *task = NULL;
3651 	int ret = 0;
3652 
3653 	rcu_read_lock();
3654 	pid = rcu_dereference(target->pid);
3655 	if (pid)
3656 		task = get_pid_task(pid, PIDTYPE_PID);
3657 	rcu_read_unlock();
3658 	if (!task)
3659 		return ret;
3660 	ret = yield_to(task, 1);
3661 	put_task_struct(task);
3662 
3663 	return ret;
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3666 
3667 /*
3668  * Helper that checks whether a VCPU is eligible for directed yield.
3669  * Most eligible candidate to yield is decided by following heuristics:
3670  *
3671  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3672  *  (preempted lock holder), indicated by @in_spin_loop.
3673  *  Set at the beginning and cleared at the end of interception/PLE handler.
3674  *
3675  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3676  *  chance last time (mostly it has become eligible now since we have probably
3677  *  yielded to lockholder in last iteration. This is done by toggling
3678  *  @dy_eligible each time a VCPU checked for eligibility.)
3679  *
3680  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3681  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3682  *  burning. Giving priority for a potential lock-holder increases lock
3683  *  progress.
3684  *
3685  *  Since algorithm is based on heuristics, accessing another VCPU data without
3686  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3687  *  and continue with next VCPU and so on.
3688  */
3689 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3690 {
3691 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3692 	bool eligible;
3693 
3694 	eligible = !vcpu->spin_loop.in_spin_loop ||
3695 		    vcpu->spin_loop.dy_eligible;
3696 
3697 	if (vcpu->spin_loop.in_spin_loop)
3698 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3699 
3700 	return eligible;
3701 #else
3702 	return true;
3703 #endif
3704 }
3705 
3706 /*
3707  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3708  * a vcpu_load/vcpu_put pair.  However, for most architectures
3709  * kvm_arch_vcpu_runnable does not require vcpu_load.
3710  */
3711 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3712 {
3713 	return kvm_arch_vcpu_runnable(vcpu);
3714 }
3715 
3716 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3717 {
3718 	if (kvm_arch_dy_runnable(vcpu))
3719 		return true;
3720 
3721 #ifdef CONFIG_KVM_ASYNC_PF
3722 	if (!list_empty_careful(&vcpu->async_pf.done))
3723 		return true;
3724 #endif
3725 
3726 	return false;
3727 }
3728 
3729 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3730 {
3731 	return false;
3732 }
3733 
3734 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3735 {
3736 	struct kvm *kvm = me->kvm;
3737 	struct kvm_vcpu *vcpu;
3738 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3739 	unsigned long i;
3740 	int yielded = 0;
3741 	int try = 3;
3742 	int pass;
3743 
3744 	kvm_vcpu_set_in_spin_loop(me, true);
3745 	/*
3746 	 * We boost the priority of a VCPU that is runnable but not
3747 	 * currently running, because it got preempted by something
3748 	 * else and called schedule in __vcpu_run.  Hopefully that
3749 	 * VCPU is holding the lock that we need and will release it.
3750 	 * We approximate round-robin by starting at the last boosted VCPU.
3751 	 */
3752 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3753 		kvm_for_each_vcpu(i, vcpu, kvm) {
3754 			if (!pass && i <= last_boosted_vcpu) {
3755 				i = last_boosted_vcpu;
3756 				continue;
3757 			} else if (pass && i > last_boosted_vcpu)
3758 				break;
3759 			if (!READ_ONCE(vcpu->ready))
3760 				continue;
3761 			if (vcpu == me)
3762 				continue;
3763 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3764 				continue;
3765 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3766 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3767 			    !kvm_arch_vcpu_in_kernel(vcpu))
3768 				continue;
3769 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3770 				continue;
3771 
3772 			yielded = kvm_vcpu_yield_to(vcpu);
3773 			if (yielded > 0) {
3774 				kvm->last_boosted_vcpu = i;
3775 				break;
3776 			} else if (yielded < 0) {
3777 				try--;
3778 				if (!try)
3779 					break;
3780 			}
3781 		}
3782 	}
3783 	kvm_vcpu_set_in_spin_loop(me, false);
3784 
3785 	/* Ensure vcpu is not eligible during next spinloop */
3786 	kvm_vcpu_set_dy_eligible(me, false);
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3789 
3790 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3791 {
3792 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3793 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3794 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3795 	     kvm->dirty_ring_size / PAGE_SIZE);
3796 #else
3797 	return false;
3798 #endif
3799 }
3800 
3801 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3802 {
3803 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3804 	struct page *page;
3805 
3806 	if (vmf->pgoff == 0)
3807 		page = virt_to_page(vcpu->run);
3808 #ifdef CONFIG_X86
3809 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3810 		page = virt_to_page(vcpu->arch.pio_data);
3811 #endif
3812 #ifdef CONFIG_KVM_MMIO
3813 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3814 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3815 #endif
3816 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3817 		page = kvm_dirty_ring_get_page(
3818 		    &vcpu->dirty_ring,
3819 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3820 	else
3821 		return kvm_arch_vcpu_fault(vcpu, vmf);
3822 	get_page(page);
3823 	vmf->page = page;
3824 	return 0;
3825 }
3826 
3827 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3828 	.fault = kvm_vcpu_fault,
3829 };
3830 
3831 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3832 {
3833 	struct kvm_vcpu *vcpu = file->private_data;
3834 	unsigned long pages = vma_pages(vma);
3835 
3836 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3837 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3838 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3839 		return -EINVAL;
3840 
3841 	vma->vm_ops = &kvm_vcpu_vm_ops;
3842 	return 0;
3843 }
3844 
3845 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3846 {
3847 	struct kvm_vcpu *vcpu = filp->private_data;
3848 
3849 	kvm_put_kvm(vcpu->kvm);
3850 	return 0;
3851 }
3852 
3853 static const struct file_operations kvm_vcpu_fops = {
3854 	.release        = kvm_vcpu_release,
3855 	.unlocked_ioctl = kvm_vcpu_ioctl,
3856 	.mmap           = kvm_vcpu_mmap,
3857 	.llseek		= noop_llseek,
3858 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3859 };
3860 
3861 /*
3862  * Allocates an inode for the vcpu.
3863  */
3864 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3865 {
3866 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3867 
3868 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3869 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3870 }
3871 
3872 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3873 static int vcpu_get_pid(void *data, u64 *val)
3874 {
3875 	struct kvm_vcpu *vcpu = data;
3876 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3877 	return 0;
3878 }
3879 
3880 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3881 
3882 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3883 {
3884 	struct dentry *debugfs_dentry;
3885 	char dir_name[ITOA_MAX_LEN * 2];
3886 
3887 	if (!debugfs_initialized())
3888 		return;
3889 
3890 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3891 	debugfs_dentry = debugfs_create_dir(dir_name,
3892 					    vcpu->kvm->debugfs_dentry);
3893 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3894 			    &vcpu_get_pid_fops);
3895 
3896 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3897 }
3898 #endif
3899 
3900 /*
3901  * Creates some virtual cpus.  Good luck creating more than one.
3902  */
3903 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3904 {
3905 	int r;
3906 	struct kvm_vcpu *vcpu;
3907 	struct page *page;
3908 
3909 	if (id >= KVM_MAX_VCPU_IDS)
3910 		return -EINVAL;
3911 
3912 	mutex_lock(&kvm->lock);
3913 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3914 		mutex_unlock(&kvm->lock);
3915 		return -EINVAL;
3916 	}
3917 
3918 	r = kvm_arch_vcpu_precreate(kvm, id);
3919 	if (r) {
3920 		mutex_unlock(&kvm->lock);
3921 		return r;
3922 	}
3923 
3924 	kvm->created_vcpus++;
3925 	mutex_unlock(&kvm->lock);
3926 
3927 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3928 	if (!vcpu) {
3929 		r = -ENOMEM;
3930 		goto vcpu_decrement;
3931 	}
3932 
3933 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3934 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3935 	if (!page) {
3936 		r = -ENOMEM;
3937 		goto vcpu_free;
3938 	}
3939 	vcpu->run = page_address(page);
3940 
3941 	kvm_vcpu_init(vcpu, kvm, id);
3942 
3943 	r = kvm_arch_vcpu_create(vcpu);
3944 	if (r)
3945 		goto vcpu_free_run_page;
3946 
3947 	if (kvm->dirty_ring_size) {
3948 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3949 					 id, kvm->dirty_ring_size);
3950 		if (r)
3951 			goto arch_vcpu_destroy;
3952 	}
3953 
3954 	mutex_lock(&kvm->lock);
3955 
3956 #ifdef CONFIG_LOCKDEP
3957 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3958 	mutex_lock(&vcpu->mutex);
3959 	mutex_unlock(&vcpu->mutex);
3960 #endif
3961 
3962 	if (kvm_get_vcpu_by_id(kvm, id)) {
3963 		r = -EEXIST;
3964 		goto unlock_vcpu_destroy;
3965 	}
3966 
3967 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3968 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3969 	if (r)
3970 		goto unlock_vcpu_destroy;
3971 
3972 	/* Now it's all set up, let userspace reach it */
3973 	kvm_get_kvm(kvm);
3974 	r = create_vcpu_fd(vcpu);
3975 	if (r < 0)
3976 		goto kvm_put_xa_release;
3977 
3978 	if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3979 		r = -EINVAL;
3980 		goto kvm_put_xa_release;
3981 	}
3982 
3983 	/*
3984 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3985 	 * pointer before kvm->online_vcpu's incremented value.
3986 	 */
3987 	smp_wmb();
3988 	atomic_inc(&kvm->online_vcpus);
3989 
3990 	mutex_unlock(&kvm->lock);
3991 	kvm_arch_vcpu_postcreate(vcpu);
3992 	kvm_create_vcpu_debugfs(vcpu);
3993 	return r;
3994 
3995 kvm_put_xa_release:
3996 	kvm_put_kvm_no_destroy(kvm);
3997 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
3998 unlock_vcpu_destroy:
3999 	mutex_unlock(&kvm->lock);
4000 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4001 arch_vcpu_destroy:
4002 	kvm_arch_vcpu_destroy(vcpu);
4003 vcpu_free_run_page:
4004 	free_page((unsigned long)vcpu->run);
4005 vcpu_free:
4006 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4007 vcpu_decrement:
4008 	mutex_lock(&kvm->lock);
4009 	kvm->created_vcpus--;
4010 	mutex_unlock(&kvm->lock);
4011 	return r;
4012 }
4013 
4014 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4015 {
4016 	if (sigset) {
4017 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4018 		vcpu->sigset_active = 1;
4019 		vcpu->sigset = *sigset;
4020 	} else
4021 		vcpu->sigset_active = 0;
4022 	return 0;
4023 }
4024 
4025 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4026 			      size_t size, loff_t *offset)
4027 {
4028 	struct kvm_vcpu *vcpu = file->private_data;
4029 
4030 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4031 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4032 			sizeof(vcpu->stat), user_buffer, size, offset);
4033 }
4034 
4035 static const struct file_operations kvm_vcpu_stats_fops = {
4036 	.read = kvm_vcpu_stats_read,
4037 	.llseek = noop_llseek,
4038 };
4039 
4040 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4041 {
4042 	int fd;
4043 	struct file *file;
4044 	char name[15 + ITOA_MAX_LEN + 1];
4045 
4046 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4047 
4048 	fd = get_unused_fd_flags(O_CLOEXEC);
4049 	if (fd < 0)
4050 		return fd;
4051 
4052 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4053 	if (IS_ERR(file)) {
4054 		put_unused_fd(fd);
4055 		return PTR_ERR(file);
4056 	}
4057 	file->f_mode |= FMODE_PREAD;
4058 	fd_install(fd, file);
4059 
4060 	return fd;
4061 }
4062 
4063 static long kvm_vcpu_ioctl(struct file *filp,
4064 			   unsigned int ioctl, unsigned long arg)
4065 {
4066 	struct kvm_vcpu *vcpu = filp->private_data;
4067 	void __user *argp = (void __user *)arg;
4068 	int r;
4069 	struct kvm_fpu *fpu = NULL;
4070 	struct kvm_sregs *kvm_sregs = NULL;
4071 
4072 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4073 		return -EIO;
4074 
4075 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4076 		return -EINVAL;
4077 
4078 	/*
4079 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4080 	 * execution; mutex_lock() would break them.
4081 	 */
4082 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4083 	if (r != -ENOIOCTLCMD)
4084 		return r;
4085 
4086 	if (mutex_lock_killable(&vcpu->mutex))
4087 		return -EINTR;
4088 	switch (ioctl) {
4089 	case KVM_RUN: {
4090 		struct pid *oldpid;
4091 		r = -EINVAL;
4092 		if (arg)
4093 			goto out;
4094 		oldpid = rcu_access_pointer(vcpu->pid);
4095 		if (unlikely(oldpid != task_pid(current))) {
4096 			/* The thread running this VCPU changed. */
4097 			struct pid *newpid;
4098 
4099 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4100 			if (r)
4101 				break;
4102 
4103 			newpid = get_task_pid(current, PIDTYPE_PID);
4104 			rcu_assign_pointer(vcpu->pid, newpid);
4105 			if (oldpid)
4106 				synchronize_rcu();
4107 			put_pid(oldpid);
4108 		}
4109 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4110 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4111 		break;
4112 	}
4113 	case KVM_GET_REGS: {
4114 		struct kvm_regs *kvm_regs;
4115 
4116 		r = -ENOMEM;
4117 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4118 		if (!kvm_regs)
4119 			goto out;
4120 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4121 		if (r)
4122 			goto out_free1;
4123 		r = -EFAULT;
4124 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4125 			goto out_free1;
4126 		r = 0;
4127 out_free1:
4128 		kfree(kvm_regs);
4129 		break;
4130 	}
4131 	case KVM_SET_REGS: {
4132 		struct kvm_regs *kvm_regs;
4133 
4134 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4135 		if (IS_ERR(kvm_regs)) {
4136 			r = PTR_ERR(kvm_regs);
4137 			goto out;
4138 		}
4139 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4140 		kfree(kvm_regs);
4141 		break;
4142 	}
4143 	case KVM_GET_SREGS: {
4144 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4145 				    GFP_KERNEL_ACCOUNT);
4146 		r = -ENOMEM;
4147 		if (!kvm_sregs)
4148 			goto out;
4149 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4150 		if (r)
4151 			goto out;
4152 		r = -EFAULT;
4153 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4154 			goto out;
4155 		r = 0;
4156 		break;
4157 	}
4158 	case KVM_SET_SREGS: {
4159 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4160 		if (IS_ERR(kvm_sregs)) {
4161 			r = PTR_ERR(kvm_sregs);
4162 			kvm_sregs = NULL;
4163 			goto out;
4164 		}
4165 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4166 		break;
4167 	}
4168 	case KVM_GET_MP_STATE: {
4169 		struct kvm_mp_state mp_state;
4170 
4171 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4172 		if (r)
4173 			goto out;
4174 		r = -EFAULT;
4175 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4176 			goto out;
4177 		r = 0;
4178 		break;
4179 	}
4180 	case KVM_SET_MP_STATE: {
4181 		struct kvm_mp_state mp_state;
4182 
4183 		r = -EFAULT;
4184 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4185 			goto out;
4186 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4187 		break;
4188 	}
4189 	case KVM_TRANSLATE: {
4190 		struct kvm_translation tr;
4191 
4192 		r = -EFAULT;
4193 		if (copy_from_user(&tr, argp, sizeof(tr)))
4194 			goto out;
4195 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4196 		if (r)
4197 			goto out;
4198 		r = -EFAULT;
4199 		if (copy_to_user(argp, &tr, sizeof(tr)))
4200 			goto out;
4201 		r = 0;
4202 		break;
4203 	}
4204 	case KVM_SET_GUEST_DEBUG: {
4205 		struct kvm_guest_debug dbg;
4206 
4207 		r = -EFAULT;
4208 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4209 			goto out;
4210 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4211 		break;
4212 	}
4213 	case KVM_SET_SIGNAL_MASK: {
4214 		struct kvm_signal_mask __user *sigmask_arg = argp;
4215 		struct kvm_signal_mask kvm_sigmask;
4216 		sigset_t sigset, *p;
4217 
4218 		p = NULL;
4219 		if (argp) {
4220 			r = -EFAULT;
4221 			if (copy_from_user(&kvm_sigmask, argp,
4222 					   sizeof(kvm_sigmask)))
4223 				goto out;
4224 			r = -EINVAL;
4225 			if (kvm_sigmask.len != sizeof(sigset))
4226 				goto out;
4227 			r = -EFAULT;
4228 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4229 					   sizeof(sigset)))
4230 				goto out;
4231 			p = &sigset;
4232 		}
4233 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4234 		break;
4235 	}
4236 	case KVM_GET_FPU: {
4237 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4238 		r = -ENOMEM;
4239 		if (!fpu)
4240 			goto out;
4241 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4242 		if (r)
4243 			goto out;
4244 		r = -EFAULT;
4245 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4246 			goto out;
4247 		r = 0;
4248 		break;
4249 	}
4250 	case KVM_SET_FPU: {
4251 		fpu = memdup_user(argp, sizeof(*fpu));
4252 		if (IS_ERR(fpu)) {
4253 			r = PTR_ERR(fpu);
4254 			fpu = NULL;
4255 			goto out;
4256 		}
4257 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4258 		break;
4259 	}
4260 	case KVM_GET_STATS_FD: {
4261 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4262 		break;
4263 	}
4264 	default:
4265 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4266 	}
4267 out:
4268 	mutex_unlock(&vcpu->mutex);
4269 	kfree(fpu);
4270 	kfree(kvm_sregs);
4271 	return r;
4272 }
4273 
4274 #ifdef CONFIG_KVM_COMPAT
4275 static long kvm_vcpu_compat_ioctl(struct file *filp,
4276 				  unsigned int ioctl, unsigned long arg)
4277 {
4278 	struct kvm_vcpu *vcpu = filp->private_data;
4279 	void __user *argp = compat_ptr(arg);
4280 	int r;
4281 
4282 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4283 		return -EIO;
4284 
4285 	switch (ioctl) {
4286 	case KVM_SET_SIGNAL_MASK: {
4287 		struct kvm_signal_mask __user *sigmask_arg = argp;
4288 		struct kvm_signal_mask kvm_sigmask;
4289 		sigset_t sigset;
4290 
4291 		if (argp) {
4292 			r = -EFAULT;
4293 			if (copy_from_user(&kvm_sigmask, argp,
4294 					   sizeof(kvm_sigmask)))
4295 				goto out;
4296 			r = -EINVAL;
4297 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4298 				goto out;
4299 			r = -EFAULT;
4300 			if (get_compat_sigset(&sigset,
4301 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4302 				goto out;
4303 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4304 		} else
4305 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4306 		break;
4307 	}
4308 	default:
4309 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4310 	}
4311 
4312 out:
4313 	return r;
4314 }
4315 #endif
4316 
4317 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4318 {
4319 	struct kvm_device *dev = filp->private_data;
4320 
4321 	if (dev->ops->mmap)
4322 		return dev->ops->mmap(dev, vma);
4323 
4324 	return -ENODEV;
4325 }
4326 
4327 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4328 				 int (*accessor)(struct kvm_device *dev,
4329 						 struct kvm_device_attr *attr),
4330 				 unsigned long arg)
4331 {
4332 	struct kvm_device_attr attr;
4333 
4334 	if (!accessor)
4335 		return -EPERM;
4336 
4337 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4338 		return -EFAULT;
4339 
4340 	return accessor(dev, &attr);
4341 }
4342 
4343 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4344 			     unsigned long arg)
4345 {
4346 	struct kvm_device *dev = filp->private_data;
4347 
4348 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4349 		return -EIO;
4350 
4351 	switch (ioctl) {
4352 	case KVM_SET_DEVICE_ATTR:
4353 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4354 	case KVM_GET_DEVICE_ATTR:
4355 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4356 	case KVM_HAS_DEVICE_ATTR:
4357 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4358 	default:
4359 		if (dev->ops->ioctl)
4360 			return dev->ops->ioctl(dev, ioctl, arg);
4361 
4362 		return -ENOTTY;
4363 	}
4364 }
4365 
4366 static int kvm_device_release(struct inode *inode, struct file *filp)
4367 {
4368 	struct kvm_device *dev = filp->private_data;
4369 	struct kvm *kvm = dev->kvm;
4370 
4371 	if (dev->ops->release) {
4372 		mutex_lock(&kvm->lock);
4373 		list_del(&dev->vm_node);
4374 		dev->ops->release(dev);
4375 		mutex_unlock(&kvm->lock);
4376 	}
4377 
4378 	kvm_put_kvm(kvm);
4379 	return 0;
4380 }
4381 
4382 static const struct file_operations kvm_device_fops = {
4383 	.unlocked_ioctl = kvm_device_ioctl,
4384 	.release = kvm_device_release,
4385 	KVM_COMPAT(kvm_device_ioctl),
4386 	.mmap = kvm_device_mmap,
4387 };
4388 
4389 struct kvm_device *kvm_device_from_filp(struct file *filp)
4390 {
4391 	if (filp->f_op != &kvm_device_fops)
4392 		return NULL;
4393 
4394 	return filp->private_data;
4395 }
4396 
4397 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4398 #ifdef CONFIG_KVM_MPIC
4399 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4400 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4401 #endif
4402 };
4403 
4404 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4405 {
4406 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4407 		return -ENOSPC;
4408 
4409 	if (kvm_device_ops_table[type] != NULL)
4410 		return -EEXIST;
4411 
4412 	kvm_device_ops_table[type] = ops;
4413 	return 0;
4414 }
4415 
4416 void kvm_unregister_device_ops(u32 type)
4417 {
4418 	if (kvm_device_ops_table[type] != NULL)
4419 		kvm_device_ops_table[type] = NULL;
4420 }
4421 
4422 static int kvm_ioctl_create_device(struct kvm *kvm,
4423 				   struct kvm_create_device *cd)
4424 {
4425 	const struct kvm_device_ops *ops;
4426 	struct kvm_device *dev;
4427 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4428 	int type;
4429 	int ret;
4430 
4431 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4432 		return -ENODEV;
4433 
4434 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4435 	ops = kvm_device_ops_table[type];
4436 	if (ops == NULL)
4437 		return -ENODEV;
4438 
4439 	if (test)
4440 		return 0;
4441 
4442 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4443 	if (!dev)
4444 		return -ENOMEM;
4445 
4446 	dev->ops = ops;
4447 	dev->kvm = kvm;
4448 
4449 	mutex_lock(&kvm->lock);
4450 	ret = ops->create(dev, type);
4451 	if (ret < 0) {
4452 		mutex_unlock(&kvm->lock);
4453 		kfree(dev);
4454 		return ret;
4455 	}
4456 	list_add(&dev->vm_node, &kvm->devices);
4457 	mutex_unlock(&kvm->lock);
4458 
4459 	if (ops->init)
4460 		ops->init(dev);
4461 
4462 	kvm_get_kvm(kvm);
4463 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4464 	if (ret < 0) {
4465 		kvm_put_kvm_no_destroy(kvm);
4466 		mutex_lock(&kvm->lock);
4467 		list_del(&dev->vm_node);
4468 		if (ops->release)
4469 			ops->release(dev);
4470 		mutex_unlock(&kvm->lock);
4471 		if (ops->destroy)
4472 			ops->destroy(dev);
4473 		return ret;
4474 	}
4475 
4476 	cd->fd = ret;
4477 	return 0;
4478 }
4479 
4480 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4481 {
4482 	switch (arg) {
4483 	case KVM_CAP_USER_MEMORY:
4484 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4485 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4486 	case KVM_CAP_INTERNAL_ERROR_DATA:
4487 #ifdef CONFIG_HAVE_KVM_MSI
4488 	case KVM_CAP_SIGNAL_MSI:
4489 #endif
4490 #ifdef CONFIG_HAVE_KVM_IRQFD
4491 	case KVM_CAP_IRQFD:
4492 #endif
4493 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4494 	case KVM_CAP_CHECK_EXTENSION_VM:
4495 	case KVM_CAP_ENABLE_CAP_VM:
4496 	case KVM_CAP_HALT_POLL:
4497 		return 1;
4498 #ifdef CONFIG_KVM_MMIO
4499 	case KVM_CAP_COALESCED_MMIO:
4500 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4501 	case KVM_CAP_COALESCED_PIO:
4502 		return 1;
4503 #endif
4504 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4505 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4506 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4507 #endif
4508 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4509 	case KVM_CAP_IRQ_ROUTING:
4510 		return KVM_MAX_IRQ_ROUTES;
4511 #endif
4512 #if KVM_ADDRESS_SPACE_NUM > 1
4513 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4514 		return KVM_ADDRESS_SPACE_NUM;
4515 #endif
4516 	case KVM_CAP_NR_MEMSLOTS:
4517 		return KVM_USER_MEM_SLOTS;
4518 	case KVM_CAP_DIRTY_LOG_RING:
4519 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4520 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4521 #else
4522 		return 0;
4523 #endif
4524 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4525 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4526 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4527 #else
4528 		return 0;
4529 #endif
4530 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4531 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4532 #endif
4533 	case KVM_CAP_BINARY_STATS_FD:
4534 	case KVM_CAP_SYSTEM_EVENT_DATA:
4535 		return 1;
4536 	default:
4537 		break;
4538 	}
4539 	return kvm_vm_ioctl_check_extension(kvm, arg);
4540 }
4541 
4542 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4543 {
4544 	int r;
4545 
4546 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4547 		return -EINVAL;
4548 
4549 	/* the size should be power of 2 */
4550 	if (!size || (size & (size - 1)))
4551 		return -EINVAL;
4552 
4553 	/* Should be bigger to keep the reserved entries, or a page */
4554 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4555 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4556 		return -EINVAL;
4557 
4558 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4559 	    sizeof(struct kvm_dirty_gfn))
4560 		return -E2BIG;
4561 
4562 	/* We only allow it to set once */
4563 	if (kvm->dirty_ring_size)
4564 		return -EINVAL;
4565 
4566 	mutex_lock(&kvm->lock);
4567 
4568 	if (kvm->created_vcpus) {
4569 		/* We don't allow to change this value after vcpu created */
4570 		r = -EINVAL;
4571 	} else {
4572 		kvm->dirty_ring_size = size;
4573 		r = 0;
4574 	}
4575 
4576 	mutex_unlock(&kvm->lock);
4577 	return r;
4578 }
4579 
4580 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4581 {
4582 	unsigned long i;
4583 	struct kvm_vcpu *vcpu;
4584 	int cleared = 0;
4585 
4586 	if (!kvm->dirty_ring_size)
4587 		return -EINVAL;
4588 
4589 	mutex_lock(&kvm->slots_lock);
4590 
4591 	kvm_for_each_vcpu(i, vcpu, kvm)
4592 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4593 
4594 	mutex_unlock(&kvm->slots_lock);
4595 
4596 	if (cleared)
4597 		kvm_flush_remote_tlbs(kvm);
4598 
4599 	return cleared;
4600 }
4601 
4602 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4603 						  struct kvm_enable_cap *cap)
4604 {
4605 	return -EINVAL;
4606 }
4607 
4608 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4609 {
4610 	int i;
4611 
4612 	lockdep_assert_held(&kvm->slots_lock);
4613 
4614 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4615 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4616 			return false;
4617 	}
4618 
4619 	return true;
4620 }
4621 
4622 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4623 					   struct kvm_enable_cap *cap)
4624 {
4625 	switch (cap->cap) {
4626 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4627 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4628 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4629 
4630 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4631 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4632 
4633 		if (cap->flags || (cap->args[0] & ~allowed_options))
4634 			return -EINVAL;
4635 		kvm->manual_dirty_log_protect = cap->args[0];
4636 		return 0;
4637 	}
4638 #endif
4639 	case KVM_CAP_HALT_POLL: {
4640 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4641 			return -EINVAL;
4642 
4643 		kvm->max_halt_poll_ns = cap->args[0];
4644 
4645 		/*
4646 		 * Ensure kvm->override_halt_poll_ns does not become visible
4647 		 * before kvm->max_halt_poll_ns.
4648 		 *
4649 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4650 		 */
4651 		smp_wmb();
4652 		kvm->override_halt_poll_ns = true;
4653 
4654 		return 0;
4655 	}
4656 	case KVM_CAP_DIRTY_LOG_RING:
4657 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4658 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4659 			return -EINVAL;
4660 
4661 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4662 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4663 		int r = -EINVAL;
4664 
4665 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4666 		    !kvm->dirty_ring_size || cap->flags)
4667 			return r;
4668 
4669 		mutex_lock(&kvm->slots_lock);
4670 
4671 		/*
4672 		 * For simplicity, allow enabling ring+bitmap if and only if
4673 		 * there are no memslots, e.g. to ensure all memslots allocate
4674 		 * a bitmap after the capability is enabled.
4675 		 */
4676 		if (kvm_are_all_memslots_empty(kvm)) {
4677 			kvm->dirty_ring_with_bitmap = true;
4678 			r = 0;
4679 		}
4680 
4681 		mutex_unlock(&kvm->slots_lock);
4682 
4683 		return r;
4684 	}
4685 	default:
4686 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4687 	}
4688 }
4689 
4690 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4691 			      size_t size, loff_t *offset)
4692 {
4693 	struct kvm *kvm = file->private_data;
4694 
4695 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4696 				&kvm_vm_stats_desc[0], &kvm->stat,
4697 				sizeof(kvm->stat), user_buffer, size, offset);
4698 }
4699 
4700 static const struct file_operations kvm_vm_stats_fops = {
4701 	.read = kvm_vm_stats_read,
4702 	.llseek = noop_llseek,
4703 };
4704 
4705 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4706 {
4707 	int fd;
4708 	struct file *file;
4709 
4710 	fd = get_unused_fd_flags(O_CLOEXEC);
4711 	if (fd < 0)
4712 		return fd;
4713 
4714 	file = anon_inode_getfile("kvm-vm-stats",
4715 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4716 	if (IS_ERR(file)) {
4717 		put_unused_fd(fd);
4718 		return PTR_ERR(file);
4719 	}
4720 	file->f_mode |= FMODE_PREAD;
4721 	fd_install(fd, file);
4722 
4723 	return fd;
4724 }
4725 
4726 static long kvm_vm_ioctl(struct file *filp,
4727 			   unsigned int ioctl, unsigned long arg)
4728 {
4729 	struct kvm *kvm = filp->private_data;
4730 	void __user *argp = (void __user *)arg;
4731 	int r;
4732 
4733 	if (kvm->mm != current->mm || kvm->vm_dead)
4734 		return -EIO;
4735 	switch (ioctl) {
4736 	case KVM_CREATE_VCPU:
4737 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4738 		break;
4739 	case KVM_ENABLE_CAP: {
4740 		struct kvm_enable_cap cap;
4741 
4742 		r = -EFAULT;
4743 		if (copy_from_user(&cap, argp, sizeof(cap)))
4744 			goto out;
4745 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4746 		break;
4747 	}
4748 	case KVM_SET_USER_MEMORY_REGION: {
4749 		struct kvm_userspace_memory_region kvm_userspace_mem;
4750 
4751 		r = -EFAULT;
4752 		if (copy_from_user(&kvm_userspace_mem, argp,
4753 						sizeof(kvm_userspace_mem)))
4754 			goto out;
4755 
4756 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4757 		break;
4758 	}
4759 	case KVM_GET_DIRTY_LOG: {
4760 		struct kvm_dirty_log log;
4761 
4762 		r = -EFAULT;
4763 		if (copy_from_user(&log, argp, sizeof(log)))
4764 			goto out;
4765 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4766 		break;
4767 	}
4768 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4769 	case KVM_CLEAR_DIRTY_LOG: {
4770 		struct kvm_clear_dirty_log log;
4771 
4772 		r = -EFAULT;
4773 		if (copy_from_user(&log, argp, sizeof(log)))
4774 			goto out;
4775 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4776 		break;
4777 	}
4778 #endif
4779 #ifdef CONFIG_KVM_MMIO
4780 	case KVM_REGISTER_COALESCED_MMIO: {
4781 		struct kvm_coalesced_mmio_zone zone;
4782 
4783 		r = -EFAULT;
4784 		if (copy_from_user(&zone, argp, sizeof(zone)))
4785 			goto out;
4786 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4787 		break;
4788 	}
4789 	case KVM_UNREGISTER_COALESCED_MMIO: {
4790 		struct kvm_coalesced_mmio_zone zone;
4791 
4792 		r = -EFAULT;
4793 		if (copy_from_user(&zone, argp, sizeof(zone)))
4794 			goto out;
4795 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4796 		break;
4797 	}
4798 #endif
4799 	case KVM_IRQFD: {
4800 		struct kvm_irqfd data;
4801 
4802 		r = -EFAULT;
4803 		if (copy_from_user(&data, argp, sizeof(data)))
4804 			goto out;
4805 		r = kvm_irqfd(kvm, &data);
4806 		break;
4807 	}
4808 	case KVM_IOEVENTFD: {
4809 		struct kvm_ioeventfd data;
4810 
4811 		r = -EFAULT;
4812 		if (copy_from_user(&data, argp, sizeof(data)))
4813 			goto out;
4814 		r = kvm_ioeventfd(kvm, &data);
4815 		break;
4816 	}
4817 #ifdef CONFIG_HAVE_KVM_MSI
4818 	case KVM_SIGNAL_MSI: {
4819 		struct kvm_msi msi;
4820 
4821 		r = -EFAULT;
4822 		if (copy_from_user(&msi, argp, sizeof(msi)))
4823 			goto out;
4824 		r = kvm_send_userspace_msi(kvm, &msi);
4825 		break;
4826 	}
4827 #endif
4828 #ifdef __KVM_HAVE_IRQ_LINE
4829 	case KVM_IRQ_LINE_STATUS:
4830 	case KVM_IRQ_LINE: {
4831 		struct kvm_irq_level irq_event;
4832 
4833 		r = -EFAULT;
4834 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4835 			goto out;
4836 
4837 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4838 					ioctl == KVM_IRQ_LINE_STATUS);
4839 		if (r)
4840 			goto out;
4841 
4842 		r = -EFAULT;
4843 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4844 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4845 				goto out;
4846 		}
4847 
4848 		r = 0;
4849 		break;
4850 	}
4851 #endif
4852 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4853 	case KVM_SET_GSI_ROUTING: {
4854 		struct kvm_irq_routing routing;
4855 		struct kvm_irq_routing __user *urouting;
4856 		struct kvm_irq_routing_entry *entries = NULL;
4857 
4858 		r = -EFAULT;
4859 		if (copy_from_user(&routing, argp, sizeof(routing)))
4860 			goto out;
4861 		r = -EINVAL;
4862 		if (!kvm_arch_can_set_irq_routing(kvm))
4863 			goto out;
4864 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4865 			goto out;
4866 		if (routing.flags)
4867 			goto out;
4868 		if (routing.nr) {
4869 			urouting = argp;
4870 			entries = vmemdup_user(urouting->entries,
4871 					       array_size(sizeof(*entries),
4872 							  routing.nr));
4873 			if (IS_ERR(entries)) {
4874 				r = PTR_ERR(entries);
4875 				goto out;
4876 			}
4877 		}
4878 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4879 					routing.flags);
4880 		kvfree(entries);
4881 		break;
4882 	}
4883 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4884 	case KVM_CREATE_DEVICE: {
4885 		struct kvm_create_device cd;
4886 
4887 		r = -EFAULT;
4888 		if (copy_from_user(&cd, argp, sizeof(cd)))
4889 			goto out;
4890 
4891 		r = kvm_ioctl_create_device(kvm, &cd);
4892 		if (r)
4893 			goto out;
4894 
4895 		r = -EFAULT;
4896 		if (copy_to_user(argp, &cd, sizeof(cd)))
4897 			goto out;
4898 
4899 		r = 0;
4900 		break;
4901 	}
4902 	case KVM_CHECK_EXTENSION:
4903 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4904 		break;
4905 	case KVM_RESET_DIRTY_RINGS:
4906 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4907 		break;
4908 	case KVM_GET_STATS_FD:
4909 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4910 		break;
4911 	default:
4912 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4913 	}
4914 out:
4915 	return r;
4916 }
4917 
4918 #ifdef CONFIG_KVM_COMPAT
4919 struct compat_kvm_dirty_log {
4920 	__u32 slot;
4921 	__u32 padding1;
4922 	union {
4923 		compat_uptr_t dirty_bitmap; /* one bit per page */
4924 		__u64 padding2;
4925 	};
4926 };
4927 
4928 struct compat_kvm_clear_dirty_log {
4929 	__u32 slot;
4930 	__u32 num_pages;
4931 	__u64 first_page;
4932 	union {
4933 		compat_uptr_t dirty_bitmap; /* one bit per page */
4934 		__u64 padding2;
4935 	};
4936 };
4937 
4938 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4939 				     unsigned long arg)
4940 {
4941 	return -ENOTTY;
4942 }
4943 
4944 static long kvm_vm_compat_ioctl(struct file *filp,
4945 			   unsigned int ioctl, unsigned long arg)
4946 {
4947 	struct kvm *kvm = filp->private_data;
4948 	int r;
4949 
4950 	if (kvm->mm != current->mm || kvm->vm_dead)
4951 		return -EIO;
4952 
4953 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4954 	if (r != -ENOTTY)
4955 		return r;
4956 
4957 	switch (ioctl) {
4958 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4959 	case KVM_CLEAR_DIRTY_LOG: {
4960 		struct compat_kvm_clear_dirty_log compat_log;
4961 		struct kvm_clear_dirty_log log;
4962 
4963 		if (copy_from_user(&compat_log, (void __user *)arg,
4964 				   sizeof(compat_log)))
4965 			return -EFAULT;
4966 		log.slot	 = compat_log.slot;
4967 		log.num_pages	 = compat_log.num_pages;
4968 		log.first_page	 = compat_log.first_page;
4969 		log.padding2	 = compat_log.padding2;
4970 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4971 
4972 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4973 		break;
4974 	}
4975 #endif
4976 	case KVM_GET_DIRTY_LOG: {
4977 		struct compat_kvm_dirty_log compat_log;
4978 		struct kvm_dirty_log log;
4979 
4980 		if (copy_from_user(&compat_log, (void __user *)arg,
4981 				   sizeof(compat_log)))
4982 			return -EFAULT;
4983 		log.slot	 = compat_log.slot;
4984 		log.padding1	 = compat_log.padding1;
4985 		log.padding2	 = compat_log.padding2;
4986 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4987 
4988 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4989 		break;
4990 	}
4991 	default:
4992 		r = kvm_vm_ioctl(filp, ioctl, arg);
4993 	}
4994 	return r;
4995 }
4996 #endif
4997 
4998 static const struct file_operations kvm_vm_fops = {
4999 	.release        = kvm_vm_release,
5000 	.unlocked_ioctl = kvm_vm_ioctl,
5001 	.llseek		= noop_llseek,
5002 	KVM_COMPAT(kvm_vm_compat_ioctl),
5003 };
5004 
5005 bool file_is_kvm(struct file *file)
5006 {
5007 	return file && file->f_op == &kvm_vm_fops;
5008 }
5009 EXPORT_SYMBOL_GPL(file_is_kvm);
5010 
5011 static int kvm_dev_ioctl_create_vm(unsigned long type)
5012 {
5013 	char fdname[ITOA_MAX_LEN + 1];
5014 	int r, fd;
5015 	struct kvm *kvm;
5016 	struct file *file;
5017 
5018 	fd = get_unused_fd_flags(O_CLOEXEC);
5019 	if (fd < 0)
5020 		return fd;
5021 
5022 	snprintf(fdname, sizeof(fdname), "%d", fd);
5023 
5024 	kvm = kvm_create_vm(type, fdname);
5025 	if (IS_ERR(kvm)) {
5026 		r = PTR_ERR(kvm);
5027 		goto put_fd;
5028 	}
5029 
5030 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5031 	if (IS_ERR(file)) {
5032 		r = PTR_ERR(file);
5033 		goto put_kvm;
5034 	}
5035 
5036 	/*
5037 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5038 	 * already set, with ->release() being kvm_vm_release().  In error
5039 	 * cases it will be called by the final fput(file) and will take
5040 	 * care of doing kvm_put_kvm(kvm).
5041 	 */
5042 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5043 
5044 	fd_install(fd, file);
5045 	return fd;
5046 
5047 put_kvm:
5048 	kvm_put_kvm(kvm);
5049 put_fd:
5050 	put_unused_fd(fd);
5051 	return r;
5052 }
5053 
5054 static long kvm_dev_ioctl(struct file *filp,
5055 			  unsigned int ioctl, unsigned long arg)
5056 {
5057 	int r = -EINVAL;
5058 
5059 	switch (ioctl) {
5060 	case KVM_GET_API_VERSION:
5061 		if (arg)
5062 			goto out;
5063 		r = KVM_API_VERSION;
5064 		break;
5065 	case KVM_CREATE_VM:
5066 		r = kvm_dev_ioctl_create_vm(arg);
5067 		break;
5068 	case KVM_CHECK_EXTENSION:
5069 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5070 		break;
5071 	case KVM_GET_VCPU_MMAP_SIZE:
5072 		if (arg)
5073 			goto out;
5074 		r = PAGE_SIZE;     /* struct kvm_run */
5075 #ifdef CONFIG_X86
5076 		r += PAGE_SIZE;    /* pio data page */
5077 #endif
5078 #ifdef CONFIG_KVM_MMIO
5079 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5080 #endif
5081 		break;
5082 	case KVM_TRACE_ENABLE:
5083 	case KVM_TRACE_PAUSE:
5084 	case KVM_TRACE_DISABLE:
5085 		r = -EOPNOTSUPP;
5086 		break;
5087 	default:
5088 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5089 	}
5090 out:
5091 	return r;
5092 }
5093 
5094 static struct file_operations kvm_chardev_ops = {
5095 	.unlocked_ioctl = kvm_dev_ioctl,
5096 	.llseek		= noop_llseek,
5097 	KVM_COMPAT(kvm_dev_ioctl),
5098 };
5099 
5100 static struct miscdevice kvm_dev = {
5101 	KVM_MINOR,
5102 	"kvm",
5103 	&kvm_chardev_ops,
5104 };
5105 
5106 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5107 __visible bool kvm_rebooting;
5108 EXPORT_SYMBOL_GPL(kvm_rebooting);
5109 
5110 static DEFINE_PER_CPU(bool, hardware_enabled);
5111 static int kvm_usage_count;
5112 
5113 static int __hardware_enable_nolock(void)
5114 {
5115 	if (__this_cpu_read(hardware_enabled))
5116 		return 0;
5117 
5118 	if (kvm_arch_hardware_enable()) {
5119 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5120 			raw_smp_processor_id());
5121 		return -EIO;
5122 	}
5123 
5124 	__this_cpu_write(hardware_enabled, true);
5125 	return 0;
5126 }
5127 
5128 static void hardware_enable_nolock(void *failed)
5129 {
5130 	if (__hardware_enable_nolock())
5131 		atomic_inc(failed);
5132 }
5133 
5134 static int kvm_online_cpu(unsigned int cpu)
5135 {
5136 	int ret = 0;
5137 
5138 	/*
5139 	 * Abort the CPU online process if hardware virtualization cannot
5140 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5141 	 * errors when scheduled to this CPU.
5142 	 */
5143 	mutex_lock(&kvm_lock);
5144 	if (kvm_usage_count)
5145 		ret = __hardware_enable_nolock();
5146 	mutex_unlock(&kvm_lock);
5147 	return ret;
5148 }
5149 
5150 static void hardware_disable_nolock(void *junk)
5151 {
5152 	/*
5153 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5154 	 * hardware, not just CPUs that successfully enabled hardware!
5155 	 */
5156 	if (!__this_cpu_read(hardware_enabled))
5157 		return;
5158 
5159 	kvm_arch_hardware_disable();
5160 
5161 	__this_cpu_write(hardware_enabled, false);
5162 }
5163 
5164 static int kvm_offline_cpu(unsigned int cpu)
5165 {
5166 	mutex_lock(&kvm_lock);
5167 	if (kvm_usage_count)
5168 		hardware_disable_nolock(NULL);
5169 	mutex_unlock(&kvm_lock);
5170 	return 0;
5171 }
5172 
5173 static void hardware_disable_all_nolock(void)
5174 {
5175 	BUG_ON(!kvm_usage_count);
5176 
5177 	kvm_usage_count--;
5178 	if (!kvm_usage_count)
5179 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5180 }
5181 
5182 static void hardware_disable_all(void)
5183 {
5184 	cpus_read_lock();
5185 	mutex_lock(&kvm_lock);
5186 	hardware_disable_all_nolock();
5187 	mutex_unlock(&kvm_lock);
5188 	cpus_read_unlock();
5189 }
5190 
5191 static int hardware_enable_all(void)
5192 {
5193 	atomic_t failed = ATOMIC_INIT(0);
5194 	int r;
5195 
5196 	/*
5197 	 * Do not enable hardware virtualization if the system is going down.
5198 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5199 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5200 	 * after kvm_reboot() is called.  Note, this relies on system_state
5201 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5202 	 * hook instead of registering a dedicated reboot notifier (the latter
5203 	 * runs before system_state is updated).
5204 	 */
5205 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5206 	    system_state == SYSTEM_RESTART)
5207 		return -EBUSY;
5208 
5209 	/*
5210 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5211 	 * is called, and so on_each_cpu() between them includes the CPU that
5212 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5213 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5214 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5215 	 * enable hardware multiple times.
5216 	 */
5217 	cpus_read_lock();
5218 	mutex_lock(&kvm_lock);
5219 
5220 	r = 0;
5221 
5222 	kvm_usage_count++;
5223 	if (kvm_usage_count == 1) {
5224 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5225 
5226 		if (atomic_read(&failed)) {
5227 			hardware_disable_all_nolock();
5228 			r = -EBUSY;
5229 		}
5230 	}
5231 
5232 	mutex_unlock(&kvm_lock);
5233 	cpus_read_unlock();
5234 
5235 	return r;
5236 }
5237 
5238 static void kvm_shutdown(void)
5239 {
5240 	/*
5241 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5242 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5243 	 * that relevant errors and exceptions aren't entirely unexpected.
5244 	 * Some flavors of hardware virtualization need to be disabled before
5245 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5246 	 * on x86, virtualization can block INIT interrupts, which are used by
5247 	 * firmware to pull APs back under firmware control.  Note, this path
5248 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5249 	 * 100% comprehensive.
5250 	 */
5251 	pr_info("kvm: exiting hardware virtualization\n");
5252 	kvm_rebooting = true;
5253 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5254 }
5255 
5256 static int kvm_suspend(void)
5257 {
5258 	/*
5259 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5260 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5261 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5262 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5263 	 * can be preempted, but the task cannot be frozen until it has dropped
5264 	 * all locks (userspace tasks are frozen via a fake signal).
5265 	 */
5266 	lockdep_assert_not_held(&kvm_lock);
5267 	lockdep_assert_irqs_disabled();
5268 
5269 	if (kvm_usage_count)
5270 		hardware_disable_nolock(NULL);
5271 	return 0;
5272 }
5273 
5274 static void kvm_resume(void)
5275 {
5276 	lockdep_assert_not_held(&kvm_lock);
5277 	lockdep_assert_irqs_disabled();
5278 
5279 	if (kvm_usage_count)
5280 		WARN_ON_ONCE(__hardware_enable_nolock());
5281 }
5282 
5283 static struct syscore_ops kvm_syscore_ops = {
5284 	.suspend = kvm_suspend,
5285 	.resume = kvm_resume,
5286 	.shutdown = kvm_shutdown,
5287 };
5288 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5289 static int hardware_enable_all(void)
5290 {
5291 	return 0;
5292 }
5293 
5294 static void hardware_disable_all(void)
5295 {
5296 
5297 }
5298 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5299 
5300 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5301 {
5302 	int i;
5303 
5304 	for (i = 0; i < bus->dev_count; i++) {
5305 		struct kvm_io_device *pos = bus->range[i].dev;
5306 
5307 		kvm_iodevice_destructor(pos);
5308 	}
5309 	kfree(bus);
5310 }
5311 
5312 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5313 				 const struct kvm_io_range *r2)
5314 {
5315 	gpa_t addr1 = r1->addr;
5316 	gpa_t addr2 = r2->addr;
5317 
5318 	if (addr1 < addr2)
5319 		return -1;
5320 
5321 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5322 	 * accept any overlapping write.  Any order is acceptable for
5323 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5324 	 * we process all of them.
5325 	 */
5326 	if (r2->len) {
5327 		addr1 += r1->len;
5328 		addr2 += r2->len;
5329 	}
5330 
5331 	if (addr1 > addr2)
5332 		return 1;
5333 
5334 	return 0;
5335 }
5336 
5337 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5338 {
5339 	return kvm_io_bus_cmp(p1, p2);
5340 }
5341 
5342 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5343 			     gpa_t addr, int len)
5344 {
5345 	struct kvm_io_range *range, key;
5346 	int off;
5347 
5348 	key = (struct kvm_io_range) {
5349 		.addr = addr,
5350 		.len = len,
5351 	};
5352 
5353 	range = bsearch(&key, bus->range, bus->dev_count,
5354 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5355 	if (range == NULL)
5356 		return -ENOENT;
5357 
5358 	off = range - bus->range;
5359 
5360 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5361 		off--;
5362 
5363 	return off;
5364 }
5365 
5366 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5367 			      struct kvm_io_range *range, const void *val)
5368 {
5369 	int idx;
5370 
5371 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5372 	if (idx < 0)
5373 		return -EOPNOTSUPP;
5374 
5375 	while (idx < bus->dev_count &&
5376 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5377 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5378 					range->len, val))
5379 			return idx;
5380 		idx++;
5381 	}
5382 
5383 	return -EOPNOTSUPP;
5384 }
5385 
5386 /* kvm_io_bus_write - called under kvm->slots_lock */
5387 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5388 		     int len, const void *val)
5389 {
5390 	struct kvm_io_bus *bus;
5391 	struct kvm_io_range range;
5392 	int r;
5393 
5394 	range = (struct kvm_io_range) {
5395 		.addr = addr,
5396 		.len = len,
5397 	};
5398 
5399 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5400 	if (!bus)
5401 		return -ENOMEM;
5402 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5403 	return r < 0 ? r : 0;
5404 }
5405 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5406 
5407 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5408 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5409 			    gpa_t addr, int len, const void *val, long cookie)
5410 {
5411 	struct kvm_io_bus *bus;
5412 	struct kvm_io_range range;
5413 
5414 	range = (struct kvm_io_range) {
5415 		.addr = addr,
5416 		.len = len,
5417 	};
5418 
5419 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5420 	if (!bus)
5421 		return -ENOMEM;
5422 
5423 	/* First try the device referenced by cookie. */
5424 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5425 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5426 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5427 					val))
5428 			return cookie;
5429 
5430 	/*
5431 	 * cookie contained garbage; fall back to search and return the
5432 	 * correct cookie value.
5433 	 */
5434 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5435 }
5436 
5437 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5438 			     struct kvm_io_range *range, void *val)
5439 {
5440 	int idx;
5441 
5442 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5443 	if (idx < 0)
5444 		return -EOPNOTSUPP;
5445 
5446 	while (idx < bus->dev_count &&
5447 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5448 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5449 				       range->len, val))
5450 			return idx;
5451 		idx++;
5452 	}
5453 
5454 	return -EOPNOTSUPP;
5455 }
5456 
5457 /* kvm_io_bus_read - called under kvm->slots_lock */
5458 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5459 		    int len, void *val)
5460 {
5461 	struct kvm_io_bus *bus;
5462 	struct kvm_io_range range;
5463 	int r;
5464 
5465 	range = (struct kvm_io_range) {
5466 		.addr = addr,
5467 		.len = len,
5468 	};
5469 
5470 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5471 	if (!bus)
5472 		return -ENOMEM;
5473 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5474 	return r < 0 ? r : 0;
5475 }
5476 
5477 /* Caller must hold slots_lock. */
5478 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5479 			    int len, struct kvm_io_device *dev)
5480 {
5481 	int i;
5482 	struct kvm_io_bus *new_bus, *bus;
5483 	struct kvm_io_range range;
5484 
5485 	bus = kvm_get_bus(kvm, bus_idx);
5486 	if (!bus)
5487 		return -ENOMEM;
5488 
5489 	/* exclude ioeventfd which is limited by maximum fd */
5490 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5491 		return -ENOSPC;
5492 
5493 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5494 			  GFP_KERNEL_ACCOUNT);
5495 	if (!new_bus)
5496 		return -ENOMEM;
5497 
5498 	range = (struct kvm_io_range) {
5499 		.addr = addr,
5500 		.len = len,
5501 		.dev = dev,
5502 	};
5503 
5504 	for (i = 0; i < bus->dev_count; i++)
5505 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5506 			break;
5507 
5508 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5509 	new_bus->dev_count++;
5510 	new_bus->range[i] = range;
5511 	memcpy(new_bus->range + i + 1, bus->range + i,
5512 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5513 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5514 	synchronize_srcu_expedited(&kvm->srcu);
5515 	kfree(bus);
5516 
5517 	return 0;
5518 }
5519 
5520 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5521 			      struct kvm_io_device *dev)
5522 {
5523 	int i, j;
5524 	struct kvm_io_bus *new_bus, *bus;
5525 
5526 	lockdep_assert_held(&kvm->slots_lock);
5527 
5528 	bus = kvm_get_bus(kvm, bus_idx);
5529 	if (!bus)
5530 		return 0;
5531 
5532 	for (i = 0; i < bus->dev_count; i++) {
5533 		if (bus->range[i].dev == dev) {
5534 			break;
5535 		}
5536 	}
5537 
5538 	if (i == bus->dev_count)
5539 		return 0;
5540 
5541 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5542 			  GFP_KERNEL_ACCOUNT);
5543 	if (new_bus) {
5544 		memcpy(new_bus, bus, struct_size(bus, range, i));
5545 		new_bus->dev_count--;
5546 		memcpy(new_bus->range + i, bus->range + i + 1,
5547 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5548 	}
5549 
5550 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5551 	synchronize_srcu_expedited(&kvm->srcu);
5552 
5553 	/* Destroy the old bus _after_ installing the (null) bus. */
5554 	if (!new_bus) {
5555 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5556 		for (j = 0; j < bus->dev_count; j++) {
5557 			if (j == i)
5558 				continue;
5559 			kvm_iodevice_destructor(bus->range[j].dev);
5560 		}
5561 	}
5562 
5563 	kfree(bus);
5564 	return new_bus ? 0 : -ENOMEM;
5565 }
5566 
5567 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5568 					 gpa_t addr)
5569 {
5570 	struct kvm_io_bus *bus;
5571 	int dev_idx, srcu_idx;
5572 	struct kvm_io_device *iodev = NULL;
5573 
5574 	srcu_idx = srcu_read_lock(&kvm->srcu);
5575 
5576 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5577 	if (!bus)
5578 		goto out_unlock;
5579 
5580 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5581 	if (dev_idx < 0)
5582 		goto out_unlock;
5583 
5584 	iodev = bus->range[dev_idx].dev;
5585 
5586 out_unlock:
5587 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5588 
5589 	return iodev;
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5592 
5593 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5594 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5595 			   const char *fmt)
5596 {
5597 	int ret;
5598 	struct kvm_stat_data *stat_data = inode->i_private;
5599 
5600 	/*
5601 	 * The debugfs files are a reference to the kvm struct which
5602         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5603         * avoids the race between open and the removal of the debugfs directory.
5604 	 */
5605 	if (!kvm_get_kvm_safe(stat_data->kvm))
5606 		return -ENOENT;
5607 
5608 	ret = simple_attr_open(inode, file, get,
5609 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5610 			       ? set : NULL, fmt);
5611 	if (ret)
5612 		kvm_put_kvm(stat_data->kvm);
5613 
5614 	return ret;
5615 }
5616 
5617 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5618 {
5619 	struct kvm_stat_data *stat_data = inode->i_private;
5620 
5621 	simple_attr_release(inode, file);
5622 	kvm_put_kvm(stat_data->kvm);
5623 
5624 	return 0;
5625 }
5626 
5627 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5628 {
5629 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5630 
5631 	return 0;
5632 }
5633 
5634 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5635 {
5636 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5637 
5638 	return 0;
5639 }
5640 
5641 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5642 {
5643 	unsigned long i;
5644 	struct kvm_vcpu *vcpu;
5645 
5646 	*val = 0;
5647 
5648 	kvm_for_each_vcpu(i, vcpu, kvm)
5649 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5650 
5651 	return 0;
5652 }
5653 
5654 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5655 {
5656 	unsigned long i;
5657 	struct kvm_vcpu *vcpu;
5658 
5659 	kvm_for_each_vcpu(i, vcpu, kvm)
5660 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5661 
5662 	return 0;
5663 }
5664 
5665 static int kvm_stat_data_get(void *data, u64 *val)
5666 {
5667 	int r = -EFAULT;
5668 	struct kvm_stat_data *stat_data = data;
5669 
5670 	switch (stat_data->kind) {
5671 	case KVM_STAT_VM:
5672 		r = kvm_get_stat_per_vm(stat_data->kvm,
5673 					stat_data->desc->desc.offset, val);
5674 		break;
5675 	case KVM_STAT_VCPU:
5676 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5677 					  stat_data->desc->desc.offset, val);
5678 		break;
5679 	}
5680 
5681 	return r;
5682 }
5683 
5684 static int kvm_stat_data_clear(void *data, u64 val)
5685 {
5686 	int r = -EFAULT;
5687 	struct kvm_stat_data *stat_data = data;
5688 
5689 	if (val)
5690 		return -EINVAL;
5691 
5692 	switch (stat_data->kind) {
5693 	case KVM_STAT_VM:
5694 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5695 					  stat_data->desc->desc.offset);
5696 		break;
5697 	case KVM_STAT_VCPU:
5698 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5699 					    stat_data->desc->desc.offset);
5700 		break;
5701 	}
5702 
5703 	return r;
5704 }
5705 
5706 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5707 {
5708 	__simple_attr_check_format("%llu\n", 0ull);
5709 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5710 				kvm_stat_data_clear, "%llu\n");
5711 }
5712 
5713 static const struct file_operations stat_fops_per_vm = {
5714 	.owner = THIS_MODULE,
5715 	.open = kvm_stat_data_open,
5716 	.release = kvm_debugfs_release,
5717 	.read = simple_attr_read,
5718 	.write = simple_attr_write,
5719 	.llseek = no_llseek,
5720 };
5721 
5722 static int vm_stat_get(void *_offset, u64 *val)
5723 {
5724 	unsigned offset = (long)_offset;
5725 	struct kvm *kvm;
5726 	u64 tmp_val;
5727 
5728 	*val = 0;
5729 	mutex_lock(&kvm_lock);
5730 	list_for_each_entry(kvm, &vm_list, vm_list) {
5731 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5732 		*val += tmp_val;
5733 	}
5734 	mutex_unlock(&kvm_lock);
5735 	return 0;
5736 }
5737 
5738 static int vm_stat_clear(void *_offset, u64 val)
5739 {
5740 	unsigned offset = (long)_offset;
5741 	struct kvm *kvm;
5742 
5743 	if (val)
5744 		return -EINVAL;
5745 
5746 	mutex_lock(&kvm_lock);
5747 	list_for_each_entry(kvm, &vm_list, vm_list) {
5748 		kvm_clear_stat_per_vm(kvm, offset);
5749 	}
5750 	mutex_unlock(&kvm_lock);
5751 
5752 	return 0;
5753 }
5754 
5755 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5756 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5757 
5758 static int vcpu_stat_get(void *_offset, u64 *val)
5759 {
5760 	unsigned offset = (long)_offset;
5761 	struct kvm *kvm;
5762 	u64 tmp_val;
5763 
5764 	*val = 0;
5765 	mutex_lock(&kvm_lock);
5766 	list_for_each_entry(kvm, &vm_list, vm_list) {
5767 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5768 		*val += tmp_val;
5769 	}
5770 	mutex_unlock(&kvm_lock);
5771 	return 0;
5772 }
5773 
5774 static int vcpu_stat_clear(void *_offset, u64 val)
5775 {
5776 	unsigned offset = (long)_offset;
5777 	struct kvm *kvm;
5778 
5779 	if (val)
5780 		return -EINVAL;
5781 
5782 	mutex_lock(&kvm_lock);
5783 	list_for_each_entry(kvm, &vm_list, vm_list) {
5784 		kvm_clear_stat_per_vcpu(kvm, offset);
5785 	}
5786 	mutex_unlock(&kvm_lock);
5787 
5788 	return 0;
5789 }
5790 
5791 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5792 			"%llu\n");
5793 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5794 
5795 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5796 {
5797 	struct kobj_uevent_env *env;
5798 	unsigned long long created, active;
5799 
5800 	if (!kvm_dev.this_device || !kvm)
5801 		return;
5802 
5803 	mutex_lock(&kvm_lock);
5804 	if (type == KVM_EVENT_CREATE_VM) {
5805 		kvm_createvm_count++;
5806 		kvm_active_vms++;
5807 	} else if (type == KVM_EVENT_DESTROY_VM) {
5808 		kvm_active_vms--;
5809 	}
5810 	created = kvm_createvm_count;
5811 	active = kvm_active_vms;
5812 	mutex_unlock(&kvm_lock);
5813 
5814 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5815 	if (!env)
5816 		return;
5817 
5818 	add_uevent_var(env, "CREATED=%llu", created);
5819 	add_uevent_var(env, "COUNT=%llu", active);
5820 
5821 	if (type == KVM_EVENT_CREATE_VM) {
5822 		add_uevent_var(env, "EVENT=create");
5823 		kvm->userspace_pid = task_pid_nr(current);
5824 	} else if (type == KVM_EVENT_DESTROY_VM) {
5825 		add_uevent_var(env, "EVENT=destroy");
5826 	}
5827 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5828 
5829 	if (!IS_ERR(kvm->debugfs_dentry)) {
5830 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5831 
5832 		if (p) {
5833 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5834 			if (!IS_ERR(tmp))
5835 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5836 			kfree(p);
5837 		}
5838 	}
5839 	/* no need for checks, since we are adding at most only 5 keys */
5840 	env->envp[env->envp_idx++] = NULL;
5841 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5842 	kfree(env);
5843 }
5844 
5845 static void kvm_init_debug(void)
5846 {
5847 	const struct file_operations *fops;
5848 	const struct _kvm_stats_desc *pdesc;
5849 	int i;
5850 
5851 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5852 
5853 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5854 		pdesc = &kvm_vm_stats_desc[i];
5855 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5856 			fops = &vm_stat_fops;
5857 		else
5858 			fops = &vm_stat_readonly_fops;
5859 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5860 				kvm_debugfs_dir,
5861 				(void *)(long)pdesc->desc.offset, fops);
5862 	}
5863 
5864 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5865 		pdesc = &kvm_vcpu_stats_desc[i];
5866 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5867 			fops = &vcpu_stat_fops;
5868 		else
5869 			fops = &vcpu_stat_readonly_fops;
5870 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5871 				kvm_debugfs_dir,
5872 				(void *)(long)pdesc->desc.offset, fops);
5873 	}
5874 }
5875 
5876 static inline
5877 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5878 {
5879 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5880 }
5881 
5882 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5883 {
5884 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5885 
5886 	WRITE_ONCE(vcpu->preempted, false);
5887 	WRITE_ONCE(vcpu->ready, false);
5888 
5889 	__this_cpu_write(kvm_running_vcpu, vcpu);
5890 	kvm_arch_sched_in(vcpu, cpu);
5891 	kvm_arch_vcpu_load(vcpu, cpu);
5892 }
5893 
5894 static void kvm_sched_out(struct preempt_notifier *pn,
5895 			  struct task_struct *next)
5896 {
5897 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5898 
5899 	if (current->on_rq) {
5900 		WRITE_ONCE(vcpu->preempted, true);
5901 		WRITE_ONCE(vcpu->ready, true);
5902 	}
5903 	kvm_arch_vcpu_put(vcpu);
5904 	__this_cpu_write(kvm_running_vcpu, NULL);
5905 }
5906 
5907 /**
5908  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5909  *
5910  * We can disable preemption locally around accessing the per-CPU variable,
5911  * and use the resolved vcpu pointer after enabling preemption again,
5912  * because even if the current thread is migrated to another CPU, reading
5913  * the per-CPU value later will give us the same value as we update the
5914  * per-CPU variable in the preempt notifier handlers.
5915  */
5916 struct kvm_vcpu *kvm_get_running_vcpu(void)
5917 {
5918 	struct kvm_vcpu *vcpu;
5919 
5920 	preempt_disable();
5921 	vcpu = __this_cpu_read(kvm_running_vcpu);
5922 	preempt_enable();
5923 
5924 	return vcpu;
5925 }
5926 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5927 
5928 /**
5929  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5930  */
5931 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5932 {
5933         return &kvm_running_vcpu;
5934 }
5935 
5936 #ifdef CONFIG_GUEST_PERF_EVENTS
5937 static unsigned int kvm_guest_state(void)
5938 {
5939 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5940 	unsigned int state;
5941 
5942 	if (!kvm_arch_pmi_in_guest(vcpu))
5943 		return 0;
5944 
5945 	state = PERF_GUEST_ACTIVE;
5946 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5947 		state |= PERF_GUEST_USER;
5948 
5949 	return state;
5950 }
5951 
5952 static unsigned long kvm_guest_get_ip(void)
5953 {
5954 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5955 
5956 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5957 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5958 		return 0;
5959 
5960 	return kvm_arch_vcpu_get_ip(vcpu);
5961 }
5962 
5963 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5964 	.state			= kvm_guest_state,
5965 	.get_ip			= kvm_guest_get_ip,
5966 	.handle_intel_pt_intr	= NULL,
5967 };
5968 
5969 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5970 {
5971 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5972 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5973 }
5974 void kvm_unregister_perf_callbacks(void)
5975 {
5976 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5977 }
5978 #endif
5979 
5980 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5981 {
5982 	int r;
5983 	int cpu;
5984 
5985 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5986 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5987 				      kvm_online_cpu, kvm_offline_cpu);
5988 	if (r)
5989 		return r;
5990 
5991 	register_syscore_ops(&kvm_syscore_ops);
5992 #endif
5993 
5994 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5995 	if (!vcpu_align)
5996 		vcpu_align = __alignof__(struct kvm_vcpu);
5997 	kvm_vcpu_cache =
5998 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5999 					   SLAB_ACCOUNT,
6000 					   offsetof(struct kvm_vcpu, arch),
6001 					   offsetofend(struct kvm_vcpu, stats_id)
6002 					   - offsetof(struct kvm_vcpu, arch),
6003 					   NULL);
6004 	if (!kvm_vcpu_cache) {
6005 		r = -ENOMEM;
6006 		goto err_vcpu_cache;
6007 	}
6008 
6009 	for_each_possible_cpu(cpu) {
6010 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6011 					    GFP_KERNEL, cpu_to_node(cpu))) {
6012 			r = -ENOMEM;
6013 			goto err_cpu_kick_mask;
6014 		}
6015 	}
6016 
6017 	r = kvm_irqfd_init();
6018 	if (r)
6019 		goto err_irqfd;
6020 
6021 	r = kvm_async_pf_init();
6022 	if (r)
6023 		goto err_async_pf;
6024 
6025 	kvm_chardev_ops.owner = module;
6026 
6027 	kvm_preempt_ops.sched_in = kvm_sched_in;
6028 	kvm_preempt_ops.sched_out = kvm_sched_out;
6029 
6030 	kvm_init_debug();
6031 
6032 	r = kvm_vfio_ops_init();
6033 	if (WARN_ON_ONCE(r))
6034 		goto err_vfio;
6035 
6036 	/*
6037 	 * Registration _must_ be the very last thing done, as this exposes
6038 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6039 	 */
6040 	r = misc_register(&kvm_dev);
6041 	if (r) {
6042 		pr_err("kvm: misc device register failed\n");
6043 		goto err_register;
6044 	}
6045 
6046 	return 0;
6047 
6048 err_register:
6049 	kvm_vfio_ops_exit();
6050 err_vfio:
6051 	kvm_async_pf_deinit();
6052 err_async_pf:
6053 	kvm_irqfd_exit();
6054 err_irqfd:
6055 err_cpu_kick_mask:
6056 	for_each_possible_cpu(cpu)
6057 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6058 	kmem_cache_destroy(kvm_vcpu_cache);
6059 err_vcpu_cache:
6060 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6061 	unregister_syscore_ops(&kvm_syscore_ops);
6062 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6063 #endif
6064 	return r;
6065 }
6066 EXPORT_SYMBOL_GPL(kvm_init);
6067 
6068 void kvm_exit(void)
6069 {
6070 	int cpu;
6071 
6072 	/*
6073 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6074 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6075 	 * to KVM while the module is being stopped.
6076 	 */
6077 	misc_deregister(&kvm_dev);
6078 
6079 	debugfs_remove_recursive(kvm_debugfs_dir);
6080 	for_each_possible_cpu(cpu)
6081 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6082 	kmem_cache_destroy(kvm_vcpu_cache);
6083 	kvm_vfio_ops_exit();
6084 	kvm_async_pf_deinit();
6085 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6086 	unregister_syscore_ops(&kvm_syscore_ops);
6087 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6088 #endif
6089 	kvm_irqfd_exit();
6090 }
6091 EXPORT_SYMBOL_GPL(kvm_exit);
6092 
6093 struct kvm_vm_worker_thread_context {
6094 	struct kvm *kvm;
6095 	struct task_struct *parent;
6096 	struct completion init_done;
6097 	kvm_vm_thread_fn_t thread_fn;
6098 	uintptr_t data;
6099 	int err;
6100 };
6101 
6102 static int kvm_vm_worker_thread(void *context)
6103 {
6104 	/*
6105 	 * The init_context is allocated on the stack of the parent thread, so
6106 	 * we have to locally copy anything that is needed beyond initialization
6107 	 */
6108 	struct kvm_vm_worker_thread_context *init_context = context;
6109 	struct task_struct *parent;
6110 	struct kvm *kvm = init_context->kvm;
6111 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6112 	uintptr_t data = init_context->data;
6113 	int err;
6114 
6115 	err = kthread_park(current);
6116 	/* kthread_park(current) is never supposed to return an error */
6117 	WARN_ON(err != 0);
6118 	if (err)
6119 		goto init_complete;
6120 
6121 	err = cgroup_attach_task_all(init_context->parent, current);
6122 	if (err) {
6123 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6124 			__func__, err);
6125 		goto init_complete;
6126 	}
6127 
6128 	set_user_nice(current, task_nice(init_context->parent));
6129 
6130 init_complete:
6131 	init_context->err = err;
6132 	complete(&init_context->init_done);
6133 	init_context = NULL;
6134 
6135 	if (err)
6136 		goto out;
6137 
6138 	/* Wait to be woken up by the spawner before proceeding. */
6139 	kthread_parkme();
6140 
6141 	if (!kthread_should_stop())
6142 		err = thread_fn(kvm, data);
6143 
6144 out:
6145 	/*
6146 	 * Move kthread back to its original cgroup to prevent it lingering in
6147 	 * the cgroup of the VM process, after the latter finishes its
6148 	 * execution.
6149 	 *
6150 	 * kthread_stop() waits on the 'exited' completion condition which is
6151 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6152 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6153 	 * called after the exit_mm(). This causes the kthread_stop() to return
6154 	 * before the kthread actually quits the cgroup.
6155 	 */
6156 	rcu_read_lock();
6157 	parent = rcu_dereference(current->real_parent);
6158 	get_task_struct(parent);
6159 	rcu_read_unlock();
6160 	cgroup_attach_task_all(parent, current);
6161 	put_task_struct(parent);
6162 
6163 	return err;
6164 }
6165 
6166 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6167 				uintptr_t data, const char *name,
6168 				struct task_struct **thread_ptr)
6169 {
6170 	struct kvm_vm_worker_thread_context init_context = {};
6171 	struct task_struct *thread;
6172 
6173 	*thread_ptr = NULL;
6174 	init_context.kvm = kvm;
6175 	init_context.parent = current;
6176 	init_context.thread_fn = thread_fn;
6177 	init_context.data = data;
6178 	init_completion(&init_context.init_done);
6179 
6180 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6181 			     "%s-%d", name, task_pid_nr(current));
6182 	if (IS_ERR(thread))
6183 		return PTR_ERR(thread);
6184 
6185 	/* kthread_run is never supposed to return NULL */
6186 	WARN_ON(thread == NULL);
6187 
6188 	wait_for_completion(&init_context.init_done);
6189 
6190 	if (!init_context.err)
6191 		*thread_ptr = thread;
6192 
6193 	return init_context.err;
6194 }
6195