xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 5f32c314)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 			    struct kvm_memory_slot *new, u64 last_generation);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 		/* The thread running this VCPU changed. */
129 		struct pid *oldpid = vcpu->pid;
130 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 		rcu_assign_pointer(vcpu->pid, newpid);
132 		synchronize_rcu();
133 		put_pid(oldpid);
134 	}
135 	cpu = get_cpu();
136 	preempt_notifier_register(&vcpu->preempt_notifier);
137 	kvm_arch_vcpu_load(vcpu, cpu);
138 	put_cpu();
139 	return 0;
140 }
141 
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 	preempt_disable();
145 	kvm_arch_vcpu_put(vcpu);
146 	preempt_notifier_unregister(&vcpu->preempt_notifier);
147 	preempt_enable();
148 	mutex_unlock(&vcpu->mutex);
149 }
150 
151 static void ack_flush(void *_completed)
152 {
153 }
154 
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 	int i, cpu, me;
158 	cpumask_var_t cpus;
159 	bool called = true;
160 	struct kvm_vcpu *vcpu;
161 
162 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163 
164 	me = get_cpu();
165 	kvm_for_each_vcpu(i, vcpu, kvm) {
166 		kvm_make_request(req, vcpu);
167 		cpu = vcpu->cpu;
168 
169 		/* Set ->requests bit before we read ->mode */
170 		smp_mb();
171 
172 		if (cpus != NULL && cpu != -1 && cpu != me &&
173 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 			cpumask_set_cpu(cpu, cpus);
175 	}
176 	if (unlikely(cpus == NULL))
177 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 	else if (!cpumask_empty(cpus))
179 		smp_call_function_many(cpus, ack_flush, NULL, 1);
180 	else
181 		called = false;
182 	put_cpu();
183 	free_cpumask_var(cpus);
184 	return called;
185 }
186 
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 	long dirty_count = kvm->tlbs_dirty;
190 
191 	smp_mb();
192 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 		++kvm->stat.remote_tlb_flush;
194 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197 
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202 
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207 
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212 
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	kvm_vcpu_set_in_spin_loop(vcpu, false);
234 	kvm_vcpu_set_dy_eligible(vcpu, false);
235 	vcpu->preempted = false;
236 
237 	r = kvm_arch_vcpu_init(vcpu);
238 	if (r < 0)
239 		goto fail_free_run;
240 	return 0;
241 
242 fail_free_run:
243 	free_page((unsigned long)vcpu->run);
244 fail:
245 	return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248 
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 	put_pid(vcpu->pid);
252 	kvm_arch_vcpu_uninit(vcpu);
253 	free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256 
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 	return container_of(mn, struct kvm, mmu_notifier);
261 }
262 
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 					     struct mm_struct *mm,
265 					     unsigned long address)
266 {
267 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 	int need_tlb_flush, idx;
269 
270 	/*
271 	 * When ->invalidate_page runs, the linux pte has been zapped
272 	 * already but the page is still allocated until
273 	 * ->invalidate_page returns. So if we increase the sequence
274 	 * here the kvm page fault will notice if the spte can't be
275 	 * established because the page is going to be freed. If
276 	 * instead the kvm page fault establishes the spte before
277 	 * ->invalidate_page runs, kvm_unmap_hva will release it
278 	 * before returning.
279 	 *
280 	 * The sequence increase only need to be seen at spin_unlock
281 	 * time, and not at spin_lock time.
282 	 *
283 	 * Increasing the sequence after the spin_unlock would be
284 	 * unsafe because the kvm page fault could then establish the
285 	 * pte after kvm_unmap_hva returned, without noticing the page
286 	 * is going to be freed.
287 	 */
288 	idx = srcu_read_lock(&kvm->srcu);
289 	spin_lock(&kvm->mmu_lock);
290 
291 	kvm->mmu_notifier_seq++;
292 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 	/* we've to flush the tlb before the pages can be freed */
294 	if (need_tlb_flush)
295 		kvm_flush_remote_tlbs(kvm);
296 
297 	spin_unlock(&kvm->mmu_lock);
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long address)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int young, idx;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 
379 	young = kvm_age_hva(kvm, address);
380 	if (young)
381 		kvm_flush_remote_tlbs(kvm);
382 
383 	spin_unlock(&kvm->mmu_lock);
384 	srcu_read_unlock(&kvm->srcu, idx);
385 
386 	return young;
387 }
388 
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 				       struct mm_struct *mm,
391 				       unsigned long address)
392 {
393 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 	int young, idx;
395 
396 	idx = srcu_read_lock(&kvm->srcu);
397 	spin_lock(&kvm->mmu_lock);
398 	young = kvm_test_age_hva(kvm, address);
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 
402 	return young;
403 }
404 
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 				     struct mm_struct *mm)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	kvm_arch_flush_shadow_all(kvm);
413 	srcu_read_unlock(&kvm->srcu, idx);
414 }
415 
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
418 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
419 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
420 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
421 	.test_young		= kvm_mmu_notifier_test_young,
422 	.change_pte		= kvm_mmu_notifier_change_pte,
423 	.release		= kvm_mmu_notifier_release,
424 };
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431 
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433 
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 	return 0;
437 }
438 
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440 
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443 	int i;
444 	struct kvm_memslots *slots = kvm->memslots;
445 
446 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 		slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449 
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452 	int r, i;
453 	struct kvm *kvm = kvm_arch_alloc_vm();
454 
455 	if (!kvm)
456 		return ERR_PTR(-ENOMEM);
457 
458 	r = kvm_arch_init_vm(kvm, type);
459 	if (r)
460 		goto out_err_nodisable;
461 
462 	r = hardware_enable_all();
463 	if (r)
464 		goto out_err_nodisable;
465 
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470 
471 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472 
473 	r = -ENOMEM;
474 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 	if (!kvm->memslots)
476 		goto out_err_nosrcu;
477 	kvm_init_memslots_id(kvm);
478 	if (init_srcu_struct(&kvm->srcu))
479 		goto out_err_nosrcu;
480 	for (i = 0; i < KVM_NR_BUSES; i++) {
481 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
482 					GFP_KERNEL);
483 		if (!kvm->buses[i])
484 			goto out_err;
485 	}
486 
487 	spin_lock_init(&kvm->mmu_lock);
488 	kvm->mm = current->mm;
489 	atomic_inc(&kvm->mm->mm_count);
490 	kvm_eventfd_init(kvm);
491 	mutex_init(&kvm->lock);
492 	mutex_init(&kvm->irq_lock);
493 	mutex_init(&kvm->slots_lock);
494 	atomic_set(&kvm->users_count, 1);
495 	INIT_LIST_HEAD(&kvm->devices);
496 
497 	r = kvm_init_mmu_notifier(kvm);
498 	if (r)
499 		goto out_err;
500 
501 	spin_lock(&kvm_lock);
502 	list_add(&kvm->vm_list, &vm_list);
503 	spin_unlock(&kvm_lock);
504 
505 	return kvm;
506 
507 out_err:
508 	cleanup_srcu_struct(&kvm->srcu);
509 out_err_nosrcu:
510 	hardware_disable_all();
511 out_err_nodisable:
512 	for (i = 0; i < KVM_NR_BUSES; i++)
513 		kfree(kvm->buses[i]);
514 	kfree(kvm->memslots);
515 	kvm_arch_free_vm(kvm);
516 	return ERR_PTR(r);
517 }
518 
519 /*
520  * Avoid using vmalloc for a small buffer.
521  * Should not be used when the size is statically known.
522  */
523 void *kvm_kvzalloc(unsigned long size)
524 {
525 	if (size > PAGE_SIZE)
526 		return vzalloc(size);
527 	else
528 		return kzalloc(size, GFP_KERNEL);
529 }
530 
531 void kvm_kvfree(const void *addr)
532 {
533 	if (is_vmalloc_addr(addr))
534 		vfree(addr);
535 	else
536 		kfree(addr);
537 }
538 
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 	if (!memslot->dirty_bitmap)
542 		return;
543 
544 	kvm_kvfree(memslot->dirty_bitmap);
545 	memslot->dirty_bitmap = NULL;
546 }
547 
548 /*
549  * Free any memory in @free but not in @dont.
550  */
551 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
552 				  struct kvm_memory_slot *dont)
553 {
554 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 		kvm_destroy_dirty_bitmap(free);
556 
557 	kvm_arch_free_memslot(kvm, free, dont);
558 
559 	free->npages = 0;
560 }
561 
562 static void kvm_free_physmem(struct kvm *kvm)
563 {
564 	struct kvm_memslots *slots = kvm->memslots;
565 	struct kvm_memory_slot *memslot;
566 
567 	kvm_for_each_memslot(memslot, slots)
568 		kvm_free_physmem_slot(kvm, memslot, NULL);
569 
570 	kfree(kvm->memslots);
571 }
572 
573 static void kvm_destroy_devices(struct kvm *kvm)
574 {
575 	struct list_head *node, *tmp;
576 
577 	list_for_each_safe(node, tmp, &kvm->devices) {
578 		struct kvm_device *dev =
579 			list_entry(node, struct kvm_device, vm_node);
580 
581 		list_del(node);
582 		dev->ops->destroy(dev);
583 	}
584 }
585 
586 static void kvm_destroy_vm(struct kvm *kvm)
587 {
588 	int i;
589 	struct mm_struct *mm = kvm->mm;
590 
591 	kvm_arch_sync_events(kvm);
592 	spin_lock(&kvm_lock);
593 	list_del(&kvm->vm_list);
594 	spin_unlock(&kvm_lock);
595 	kvm_free_irq_routing(kvm);
596 	for (i = 0; i < KVM_NR_BUSES; i++)
597 		kvm_io_bus_destroy(kvm->buses[i]);
598 	kvm_coalesced_mmio_free(kvm);
599 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
601 #else
602 	kvm_arch_flush_shadow_all(kvm);
603 #endif
604 	kvm_arch_destroy_vm(kvm);
605 	kvm_destroy_devices(kvm);
606 	kvm_free_physmem(kvm);
607 	cleanup_srcu_struct(&kvm->srcu);
608 	kvm_arch_free_vm(kvm);
609 	hardware_disable_all();
610 	mmdrop(mm);
611 }
612 
613 void kvm_get_kvm(struct kvm *kvm)
614 {
615 	atomic_inc(&kvm->users_count);
616 }
617 EXPORT_SYMBOL_GPL(kvm_get_kvm);
618 
619 void kvm_put_kvm(struct kvm *kvm)
620 {
621 	if (atomic_dec_and_test(&kvm->users_count))
622 		kvm_destroy_vm(kvm);
623 }
624 EXPORT_SYMBOL_GPL(kvm_put_kvm);
625 
626 
627 static int kvm_vm_release(struct inode *inode, struct file *filp)
628 {
629 	struct kvm *kvm = filp->private_data;
630 
631 	kvm_irqfd_release(kvm);
632 
633 	kvm_put_kvm(kvm);
634 	return 0;
635 }
636 
637 /*
638  * Allocation size is twice as large as the actual dirty bitmap size.
639  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
640  */
641 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
642 {
643 #ifndef CONFIG_S390
644 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
645 
646 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
647 	if (!memslot->dirty_bitmap)
648 		return -ENOMEM;
649 
650 #endif /* !CONFIG_S390 */
651 	return 0;
652 }
653 
654 static int cmp_memslot(const void *slot1, const void *slot2)
655 {
656 	struct kvm_memory_slot *s1, *s2;
657 
658 	s1 = (struct kvm_memory_slot *)slot1;
659 	s2 = (struct kvm_memory_slot *)slot2;
660 
661 	if (s1->npages < s2->npages)
662 		return 1;
663 	if (s1->npages > s2->npages)
664 		return -1;
665 
666 	return 0;
667 }
668 
669 /*
670  * Sort the memslots base on its size, so the larger slots
671  * will get better fit.
672  */
673 static void sort_memslots(struct kvm_memslots *slots)
674 {
675 	int i;
676 
677 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
678 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
679 
680 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
681 		slots->id_to_index[slots->memslots[i].id] = i;
682 }
683 
684 static void update_memslots(struct kvm_memslots *slots,
685 			    struct kvm_memory_slot *new,
686 			    u64 last_generation)
687 {
688 	if (new) {
689 		int id = new->id;
690 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
691 		unsigned long npages = old->npages;
692 
693 		*old = *new;
694 		if (new->npages != npages)
695 			sort_memslots(slots);
696 	}
697 
698 	slots->generation = last_generation + 1;
699 }
700 
701 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
702 {
703 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
704 
705 #ifdef KVM_CAP_READONLY_MEM
706 	valid_flags |= KVM_MEM_READONLY;
707 #endif
708 
709 	if (mem->flags & ~valid_flags)
710 		return -EINVAL;
711 
712 	return 0;
713 }
714 
715 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
716 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
717 {
718 	struct kvm_memslots *old_memslots = kvm->memslots;
719 
720 	update_memslots(slots, new, kvm->memslots->generation);
721 	rcu_assign_pointer(kvm->memslots, slots);
722 	synchronize_srcu_expedited(&kvm->srcu);
723 
724 	kvm_arch_memslots_updated(kvm);
725 
726 	return old_memslots;
727 }
728 
729 /*
730  * Allocate some memory and give it an address in the guest physical address
731  * space.
732  *
733  * Discontiguous memory is allowed, mostly for framebuffers.
734  *
735  * Must be called holding mmap_sem for write.
736  */
737 int __kvm_set_memory_region(struct kvm *kvm,
738 			    struct kvm_userspace_memory_region *mem)
739 {
740 	int r;
741 	gfn_t base_gfn;
742 	unsigned long npages;
743 	struct kvm_memory_slot *slot;
744 	struct kvm_memory_slot old, new;
745 	struct kvm_memslots *slots = NULL, *old_memslots;
746 	enum kvm_mr_change change;
747 
748 	r = check_memory_region_flags(mem);
749 	if (r)
750 		goto out;
751 
752 	r = -EINVAL;
753 	/* General sanity checks */
754 	if (mem->memory_size & (PAGE_SIZE - 1))
755 		goto out;
756 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
757 		goto out;
758 	/* We can read the guest memory with __xxx_user() later on. */
759 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
760 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
761 	     !access_ok(VERIFY_WRITE,
762 			(void __user *)(unsigned long)mem->userspace_addr,
763 			mem->memory_size)))
764 		goto out;
765 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
766 		goto out;
767 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
768 		goto out;
769 
770 	slot = id_to_memslot(kvm->memslots, mem->slot);
771 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
772 	npages = mem->memory_size >> PAGE_SHIFT;
773 
774 	r = -EINVAL;
775 	if (npages > KVM_MEM_MAX_NR_PAGES)
776 		goto out;
777 
778 	if (!npages)
779 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
780 
781 	new = old = *slot;
782 
783 	new.id = mem->slot;
784 	new.base_gfn = base_gfn;
785 	new.npages = npages;
786 	new.flags = mem->flags;
787 
788 	r = -EINVAL;
789 	if (npages) {
790 		if (!old.npages)
791 			change = KVM_MR_CREATE;
792 		else { /* Modify an existing slot. */
793 			if ((mem->userspace_addr != old.userspace_addr) ||
794 			    (npages != old.npages) ||
795 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
796 				goto out;
797 
798 			if (base_gfn != old.base_gfn)
799 				change = KVM_MR_MOVE;
800 			else if (new.flags != old.flags)
801 				change = KVM_MR_FLAGS_ONLY;
802 			else { /* Nothing to change. */
803 				r = 0;
804 				goto out;
805 			}
806 		}
807 	} else if (old.npages) {
808 		change = KVM_MR_DELETE;
809 	} else /* Modify a non-existent slot: disallowed. */
810 		goto out;
811 
812 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
813 		/* Check for overlaps */
814 		r = -EEXIST;
815 		kvm_for_each_memslot(slot, kvm->memslots) {
816 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
817 			    (slot->id == mem->slot))
818 				continue;
819 			if (!((base_gfn + npages <= slot->base_gfn) ||
820 			      (base_gfn >= slot->base_gfn + slot->npages)))
821 				goto out;
822 		}
823 	}
824 
825 	/* Free page dirty bitmap if unneeded */
826 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
827 		new.dirty_bitmap = NULL;
828 
829 	r = -ENOMEM;
830 	if (change == KVM_MR_CREATE) {
831 		new.userspace_addr = mem->userspace_addr;
832 
833 		if (kvm_arch_create_memslot(kvm, &new, npages))
834 			goto out_free;
835 	}
836 
837 	/* Allocate page dirty bitmap if needed */
838 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
839 		if (kvm_create_dirty_bitmap(&new) < 0)
840 			goto out_free;
841 	}
842 
843 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
844 		r = -ENOMEM;
845 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
846 				GFP_KERNEL);
847 		if (!slots)
848 			goto out_free;
849 		slot = id_to_memslot(slots, mem->slot);
850 		slot->flags |= KVM_MEMSLOT_INVALID;
851 
852 		old_memslots = install_new_memslots(kvm, slots, NULL);
853 
854 		/* slot was deleted or moved, clear iommu mapping */
855 		kvm_iommu_unmap_pages(kvm, &old);
856 		/* From this point no new shadow pages pointing to a deleted,
857 		 * or moved, memslot will be created.
858 		 *
859 		 * validation of sp->gfn happens in:
860 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
861 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
862 		 */
863 		kvm_arch_flush_shadow_memslot(kvm, slot);
864 		slots = old_memslots;
865 	}
866 
867 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
868 	if (r)
869 		goto out_slots;
870 
871 	r = -ENOMEM;
872 	/*
873 	 * We can re-use the old_memslots from above, the only difference
874 	 * from the currently installed memslots is the invalid flag.  This
875 	 * will get overwritten by update_memslots anyway.
876 	 */
877 	if (!slots) {
878 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
879 				GFP_KERNEL);
880 		if (!slots)
881 			goto out_free;
882 	}
883 
884 	/* actual memory is freed via old in kvm_free_physmem_slot below */
885 	if (change == KVM_MR_DELETE) {
886 		new.dirty_bitmap = NULL;
887 		memset(&new.arch, 0, sizeof(new.arch));
888 	}
889 
890 	old_memslots = install_new_memslots(kvm, slots, &new);
891 
892 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
893 
894 	kvm_free_physmem_slot(kvm, &old, &new);
895 	kfree(old_memslots);
896 
897 	/*
898 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
899 	 * un-mapped and re-mapped if their base changes.  Since base change
900 	 * unmapping is handled above with slot deletion, mapping alone is
901 	 * needed here.  Anything else the iommu might care about for existing
902 	 * slots (size changes, userspace addr changes and read-only flag
903 	 * changes) is disallowed above, so any other attribute changes getting
904 	 * here can be skipped.
905 	 */
906 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
907 		r = kvm_iommu_map_pages(kvm, &new);
908 		return r;
909 	}
910 
911 	return 0;
912 
913 out_slots:
914 	kfree(slots);
915 out_free:
916 	kvm_free_physmem_slot(kvm, &new, &old);
917 out:
918 	return r;
919 }
920 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
921 
922 int kvm_set_memory_region(struct kvm *kvm,
923 			  struct kvm_userspace_memory_region *mem)
924 {
925 	int r;
926 
927 	mutex_lock(&kvm->slots_lock);
928 	r = __kvm_set_memory_region(kvm, mem);
929 	mutex_unlock(&kvm->slots_lock);
930 	return r;
931 }
932 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
933 
934 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
935 					  struct kvm_userspace_memory_region *mem)
936 {
937 	if (mem->slot >= KVM_USER_MEM_SLOTS)
938 		return -EINVAL;
939 	return kvm_set_memory_region(kvm, mem);
940 }
941 
942 int kvm_get_dirty_log(struct kvm *kvm,
943 			struct kvm_dirty_log *log, int *is_dirty)
944 {
945 	struct kvm_memory_slot *memslot;
946 	int r, i;
947 	unsigned long n;
948 	unsigned long any = 0;
949 
950 	r = -EINVAL;
951 	if (log->slot >= KVM_USER_MEM_SLOTS)
952 		goto out;
953 
954 	memslot = id_to_memslot(kvm->memslots, log->slot);
955 	r = -ENOENT;
956 	if (!memslot->dirty_bitmap)
957 		goto out;
958 
959 	n = kvm_dirty_bitmap_bytes(memslot);
960 
961 	for (i = 0; !any && i < n/sizeof(long); ++i)
962 		any = memslot->dirty_bitmap[i];
963 
964 	r = -EFAULT;
965 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
966 		goto out;
967 
968 	if (any)
969 		*is_dirty = 1;
970 
971 	r = 0;
972 out:
973 	return r;
974 }
975 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
976 
977 bool kvm_largepages_enabled(void)
978 {
979 	return largepages_enabled;
980 }
981 
982 void kvm_disable_largepages(void)
983 {
984 	largepages_enabled = false;
985 }
986 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
987 
988 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
989 {
990 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
991 }
992 EXPORT_SYMBOL_GPL(gfn_to_memslot);
993 
994 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
995 {
996 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
997 
998 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
999 	      memslot->flags & KVM_MEMSLOT_INVALID)
1000 		return 0;
1001 
1002 	return 1;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1005 
1006 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1007 {
1008 	struct vm_area_struct *vma;
1009 	unsigned long addr, size;
1010 
1011 	size = PAGE_SIZE;
1012 
1013 	addr = gfn_to_hva(kvm, gfn);
1014 	if (kvm_is_error_hva(addr))
1015 		return PAGE_SIZE;
1016 
1017 	down_read(&current->mm->mmap_sem);
1018 	vma = find_vma(current->mm, addr);
1019 	if (!vma)
1020 		goto out;
1021 
1022 	size = vma_kernel_pagesize(vma);
1023 
1024 out:
1025 	up_read(&current->mm->mmap_sem);
1026 
1027 	return size;
1028 }
1029 
1030 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1031 {
1032 	return slot->flags & KVM_MEM_READONLY;
1033 }
1034 
1035 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1036 				       gfn_t *nr_pages, bool write)
1037 {
1038 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1039 		return KVM_HVA_ERR_BAD;
1040 
1041 	if (memslot_is_readonly(slot) && write)
1042 		return KVM_HVA_ERR_RO_BAD;
1043 
1044 	if (nr_pages)
1045 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1046 
1047 	return __gfn_to_hva_memslot(slot, gfn);
1048 }
1049 
1050 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1051 				     gfn_t *nr_pages)
1052 {
1053 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1054 }
1055 
1056 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1057 					gfn_t gfn)
1058 {
1059 	return gfn_to_hva_many(slot, gfn, NULL);
1060 }
1061 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1062 
1063 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1064 {
1065 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1066 }
1067 EXPORT_SYMBOL_GPL(gfn_to_hva);
1068 
1069 /*
1070  * If writable is set to false, the hva returned by this function is only
1071  * allowed to be read.
1072  */
1073 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1074 {
1075 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1076 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1077 
1078 	if (!kvm_is_error_hva(hva) && writable)
1079 		*writable = !memslot_is_readonly(slot);
1080 
1081 	return hva;
1082 }
1083 
1084 static int kvm_read_hva(void *data, void __user *hva, int len)
1085 {
1086 	return __copy_from_user(data, hva, len);
1087 }
1088 
1089 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1090 {
1091 	return __copy_from_user_inatomic(data, hva, len);
1092 }
1093 
1094 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1095 	unsigned long start, int write, struct page **page)
1096 {
1097 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1098 
1099 	if (write)
1100 		flags |= FOLL_WRITE;
1101 
1102 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1103 }
1104 
1105 static inline int check_user_page_hwpoison(unsigned long addr)
1106 {
1107 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1108 
1109 	rc = __get_user_pages(current, current->mm, addr, 1,
1110 			      flags, NULL, NULL, NULL);
1111 	return rc == -EHWPOISON;
1112 }
1113 
1114 /*
1115  * The atomic path to get the writable pfn which will be stored in @pfn,
1116  * true indicates success, otherwise false is returned.
1117  */
1118 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1119 			    bool write_fault, bool *writable, pfn_t *pfn)
1120 {
1121 	struct page *page[1];
1122 	int npages;
1123 
1124 	if (!(async || atomic))
1125 		return false;
1126 
1127 	/*
1128 	 * Fast pin a writable pfn only if it is a write fault request
1129 	 * or the caller allows to map a writable pfn for a read fault
1130 	 * request.
1131 	 */
1132 	if (!(write_fault || writable))
1133 		return false;
1134 
1135 	npages = __get_user_pages_fast(addr, 1, 1, page);
1136 	if (npages == 1) {
1137 		*pfn = page_to_pfn(page[0]);
1138 
1139 		if (writable)
1140 			*writable = true;
1141 		return true;
1142 	}
1143 
1144 	return false;
1145 }
1146 
1147 /*
1148  * The slow path to get the pfn of the specified host virtual address,
1149  * 1 indicates success, -errno is returned if error is detected.
1150  */
1151 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1152 			   bool *writable, pfn_t *pfn)
1153 {
1154 	struct page *page[1];
1155 	int npages = 0;
1156 
1157 	might_sleep();
1158 
1159 	if (writable)
1160 		*writable = write_fault;
1161 
1162 	if (async) {
1163 		down_read(&current->mm->mmap_sem);
1164 		npages = get_user_page_nowait(current, current->mm,
1165 					      addr, write_fault, page);
1166 		up_read(&current->mm->mmap_sem);
1167 	} else
1168 		npages = get_user_pages_fast(addr, 1, write_fault,
1169 					     page);
1170 	if (npages != 1)
1171 		return npages;
1172 
1173 	/* map read fault as writable if possible */
1174 	if (unlikely(!write_fault) && writable) {
1175 		struct page *wpage[1];
1176 
1177 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1178 		if (npages == 1) {
1179 			*writable = true;
1180 			put_page(page[0]);
1181 			page[0] = wpage[0];
1182 		}
1183 
1184 		npages = 1;
1185 	}
1186 	*pfn = page_to_pfn(page[0]);
1187 	return npages;
1188 }
1189 
1190 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1191 {
1192 	if (unlikely(!(vma->vm_flags & VM_READ)))
1193 		return false;
1194 
1195 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1196 		return false;
1197 
1198 	return true;
1199 }
1200 
1201 /*
1202  * Pin guest page in memory and return its pfn.
1203  * @addr: host virtual address which maps memory to the guest
1204  * @atomic: whether this function can sleep
1205  * @async: whether this function need to wait IO complete if the
1206  *         host page is not in the memory
1207  * @write_fault: whether we should get a writable host page
1208  * @writable: whether it allows to map a writable host page for !@write_fault
1209  *
1210  * The function will map a writable host page for these two cases:
1211  * 1): @write_fault = true
1212  * 2): @write_fault = false && @writable, @writable will tell the caller
1213  *     whether the mapping is writable.
1214  */
1215 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1216 			bool write_fault, bool *writable)
1217 {
1218 	struct vm_area_struct *vma;
1219 	pfn_t pfn = 0;
1220 	int npages;
1221 
1222 	/* we can do it either atomically or asynchronously, not both */
1223 	BUG_ON(atomic && async);
1224 
1225 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1226 		return pfn;
1227 
1228 	if (atomic)
1229 		return KVM_PFN_ERR_FAULT;
1230 
1231 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1232 	if (npages == 1)
1233 		return pfn;
1234 
1235 	down_read(&current->mm->mmap_sem);
1236 	if (npages == -EHWPOISON ||
1237 	      (!async && check_user_page_hwpoison(addr))) {
1238 		pfn = KVM_PFN_ERR_HWPOISON;
1239 		goto exit;
1240 	}
1241 
1242 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1243 
1244 	if (vma == NULL)
1245 		pfn = KVM_PFN_ERR_FAULT;
1246 	else if ((vma->vm_flags & VM_PFNMAP)) {
1247 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1248 			vma->vm_pgoff;
1249 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1250 	} else {
1251 		if (async && vma_is_valid(vma, write_fault))
1252 			*async = true;
1253 		pfn = KVM_PFN_ERR_FAULT;
1254 	}
1255 exit:
1256 	up_read(&current->mm->mmap_sem);
1257 	return pfn;
1258 }
1259 
1260 static pfn_t
1261 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1262 		     bool *async, bool write_fault, bool *writable)
1263 {
1264 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1265 
1266 	if (addr == KVM_HVA_ERR_RO_BAD)
1267 		return KVM_PFN_ERR_RO_FAULT;
1268 
1269 	if (kvm_is_error_hva(addr))
1270 		return KVM_PFN_NOSLOT;
1271 
1272 	/* Do not map writable pfn in the readonly memslot. */
1273 	if (writable && memslot_is_readonly(slot)) {
1274 		*writable = false;
1275 		writable = NULL;
1276 	}
1277 
1278 	return hva_to_pfn(addr, atomic, async, write_fault,
1279 			  writable);
1280 }
1281 
1282 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1283 			  bool write_fault, bool *writable)
1284 {
1285 	struct kvm_memory_slot *slot;
1286 
1287 	if (async)
1288 		*async = false;
1289 
1290 	slot = gfn_to_memslot(kvm, gfn);
1291 
1292 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1293 				    writable);
1294 }
1295 
1296 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1297 {
1298 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1301 
1302 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1303 		       bool write_fault, bool *writable)
1304 {
1305 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1308 
1309 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1310 {
1311 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1314 
1315 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1316 		      bool *writable)
1317 {
1318 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1319 }
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1321 
1322 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1323 {
1324 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1325 }
1326 
1327 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1328 {
1329 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1330 }
1331 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1332 
1333 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1334 								  int nr_pages)
1335 {
1336 	unsigned long addr;
1337 	gfn_t entry;
1338 
1339 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1340 	if (kvm_is_error_hva(addr))
1341 		return -1;
1342 
1343 	if (entry < nr_pages)
1344 		return 0;
1345 
1346 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1347 }
1348 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1349 
1350 static struct page *kvm_pfn_to_page(pfn_t pfn)
1351 {
1352 	if (is_error_noslot_pfn(pfn))
1353 		return KVM_ERR_PTR_BAD_PAGE;
1354 
1355 	if (kvm_is_mmio_pfn(pfn)) {
1356 		WARN_ON(1);
1357 		return KVM_ERR_PTR_BAD_PAGE;
1358 	}
1359 
1360 	return pfn_to_page(pfn);
1361 }
1362 
1363 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1364 {
1365 	pfn_t pfn;
1366 
1367 	pfn = gfn_to_pfn(kvm, gfn);
1368 
1369 	return kvm_pfn_to_page(pfn);
1370 }
1371 
1372 EXPORT_SYMBOL_GPL(gfn_to_page);
1373 
1374 void kvm_release_page_clean(struct page *page)
1375 {
1376 	WARN_ON(is_error_page(page));
1377 
1378 	kvm_release_pfn_clean(page_to_pfn(page));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1381 
1382 void kvm_release_pfn_clean(pfn_t pfn)
1383 {
1384 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1385 		put_page(pfn_to_page(pfn));
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1388 
1389 void kvm_release_page_dirty(struct page *page)
1390 {
1391 	WARN_ON(is_error_page(page));
1392 
1393 	kvm_release_pfn_dirty(page_to_pfn(page));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1396 
1397 static void kvm_release_pfn_dirty(pfn_t pfn)
1398 {
1399 	kvm_set_pfn_dirty(pfn);
1400 	kvm_release_pfn_clean(pfn);
1401 }
1402 
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1404 {
1405 	if (!kvm_is_mmio_pfn(pfn)) {
1406 		struct page *page = pfn_to_page(pfn);
1407 		if (!PageReserved(page))
1408 			SetPageDirty(page);
1409 	}
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1412 
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1414 {
1415 	if (!kvm_is_mmio_pfn(pfn))
1416 		mark_page_accessed(pfn_to_page(pfn));
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1419 
1420 void kvm_get_pfn(pfn_t pfn)
1421 {
1422 	if (!kvm_is_mmio_pfn(pfn))
1423 		get_page(pfn_to_page(pfn));
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1426 
1427 static int next_segment(unsigned long len, int offset)
1428 {
1429 	if (len > PAGE_SIZE - offset)
1430 		return PAGE_SIZE - offset;
1431 	else
1432 		return len;
1433 }
1434 
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436 			int len)
1437 {
1438 	int r;
1439 	unsigned long addr;
1440 
1441 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 	if (kvm_is_error_hva(addr))
1443 		return -EFAULT;
1444 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445 	if (r)
1446 		return -EFAULT;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1450 
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1452 {
1453 	gfn_t gfn = gpa >> PAGE_SHIFT;
1454 	int seg;
1455 	int offset = offset_in_page(gpa);
1456 	int ret;
1457 
1458 	while ((seg = next_segment(len, offset)) != 0) {
1459 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460 		if (ret < 0)
1461 			return ret;
1462 		offset = 0;
1463 		len -= seg;
1464 		data += seg;
1465 		++gfn;
1466 	}
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1470 
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472 			  unsigned long len)
1473 {
1474 	int r;
1475 	unsigned long addr;
1476 	gfn_t gfn = gpa >> PAGE_SHIFT;
1477 	int offset = offset_in_page(gpa);
1478 
1479 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 	if (kvm_is_error_hva(addr))
1481 		return -EFAULT;
1482 	pagefault_disable();
1483 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484 	pagefault_enable();
1485 	if (r)
1486 		return -EFAULT;
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1490 
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 			 int offset, int len)
1493 {
1494 	int r;
1495 	unsigned long addr;
1496 
1497 	addr = gfn_to_hva(kvm, gfn);
1498 	if (kvm_is_error_hva(addr))
1499 		return -EFAULT;
1500 	r = __copy_to_user((void __user *)addr + offset, data, len);
1501 	if (r)
1502 		return -EFAULT;
1503 	mark_page_dirty(kvm, gfn);
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1507 
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509 		    unsigned long len)
1510 {
1511 	gfn_t gfn = gpa >> PAGE_SHIFT;
1512 	int seg;
1513 	int offset = offset_in_page(gpa);
1514 	int ret;
1515 
1516 	while ((seg = next_segment(len, offset)) != 0) {
1517 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518 		if (ret < 0)
1519 			return ret;
1520 		offset = 0;
1521 		len -= seg;
1522 		data += seg;
1523 		++gfn;
1524 	}
1525 	return 0;
1526 }
1527 
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 			      gpa_t gpa, unsigned long len)
1530 {
1531 	struct kvm_memslots *slots = kvm_memslots(kvm);
1532 	int offset = offset_in_page(gpa);
1533 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 	gfn_t nr_pages_avail;
1537 
1538 	ghc->gpa = gpa;
1539 	ghc->generation = slots->generation;
1540 	ghc->len = len;
1541 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 		ghc->hva += offset;
1545 	} else {
1546 		/*
1547 		 * If the requested region crosses two memslots, we still
1548 		 * verify that the entire region is valid here.
1549 		 */
1550 		while (start_gfn <= end_gfn) {
1551 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553 						   &nr_pages_avail);
1554 			if (kvm_is_error_hva(ghc->hva))
1555 				return -EFAULT;
1556 			start_gfn += nr_pages_avail;
1557 		}
1558 		/* Use the slow path for cross page reads and writes. */
1559 		ghc->memslot = NULL;
1560 	}
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1564 
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 			   void *data, unsigned long len)
1567 {
1568 	struct kvm_memslots *slots = kvm_memslots(kvm);
1569 	int r;
1570 
1571 	BUG_ON(len > ghc->len);
1572 
1573 	if (slots->generation != ghc->generation)
1574 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1575 
1576 	if (unlikely(!ghc->memslot))
1577 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1578 
1579 	if (kvm_is_error_hva(ghc->hva))
1580 		return -EFAULT;
1581 
1582 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1583 	if (r)
1584 		return -EFAULT;
1585 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1590 
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 			   void *data, unsigned long len)
1593 {
1594 	struct kvm_memslots *slots = kvm_memslots(kvm);
1595 	int r;
1596 
1597 	BUG_ON(len > ghc->len);
1598 
1599 	if (slots->generation != ghc->generation)
1600 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1601 
1602 	if (unlikely(!ghc->memslot))
1603 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1604 
1605 	if (kvm_is_error_hva(ghc->hva))
1606 		return -EFAULT;
1607 
1608 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 	if (r)
1610 		return -EFAULT;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615 
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1619 
1620 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623 
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626 	gfn_t gfn = gpa >> PAGE_SHIFT;
1627 	int seg;
1628 	int offset = offset_in_page(gpa);
1629 	int ret;
1630 
1631         while ((seg = next_segment(len, offset)) != 0) {
1632 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633 		if (ret < 0)
1634 			return ret;
1635 		offset = 0;
1636 		len -= seg;
1637 		++gfn;
1638 	}
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642 
1643 static void mark_page_dirty_in_slot(struct kvm *kvm,
1644 				    struct kvm_memory_slot *memslot,
1645 				    gfn_t gfn)
1646 {
1647 	if (memslot && memslot->dirty_bitmap) {
1648 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1649 
1650 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1651 	}
1652 }
1653 
1654 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1655 {
1656 	struct kvm_memory_slot *memslot;
1657 
1658 	memslot = gfn_to_memslot(kvm, gfn);
1659 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1660 }
1661 EXPORT_SYMBOL_GPL(mark_page_dirty);
1662 
1663 /*
1664  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1665  */
1666 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1667 {
1668 	DEFINE_WAIT(wait);
1669 
1670 	for (;;) {
1671 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1672 
1673 		if (kvm_arch_vcpu_runnable(vcpu)) {
1674 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1675 			break;
1676 		}
1677 		if (kvm_cpu_has_pending_timer(vcpu))
1678 			break;
1679 		if (signal_pending(current))
1680 			break;
1681 
1682 		schedule();
1683 	}
1684 
1685 	finish_wait(&vcpu->wq, &wait);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1688 
1689 #ifndef CONFIG_S390
1690 /*
1691  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1692  */
1693 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1694 {
1695 	int me;
1696 	int cpu = vcpu->cpu;
1697 	wait_queue_head_t *wqp;
1698 
1699 	wqp = kvm_arch_vcpu_wq(vcpu);
1700 	if (waitqueue_active(wqp)) {
1701 		wake_up_interruptible(wqp);
1702 		++vcpu->stat.halt_wakeup;
1703 	}
1704 
1705 	me = get_cpu();
1706 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1707 		if (kvm_arch_vcpu_should_kick(vcpu))
1708 			smp_send_reschedule(cpu);
1709 	put_cpu();
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1712 #endif /* !CONFIG_S390 */
1713 
1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1715 {
1716 	struct pid *pid;
1717 	struct task_struct *task = NULL;
1718 	bool ret = false;
1719 
1720 	rcu_read_lock();
1721 	pid = rcu_dereference(target->pid);
1722 	if (pid)
1723 		task = get_pid_task(target->pid, PIDTYPE_PID);
1724 	rcu_read_unlock();
1725 	if (!task)
1726 		return ret;
1727 	if (task->flags & PF_VCPU) {
1728 		put_task_struct(task);
1729 		return ret;
1730 	}
1731 	ret = yield_to(task, 1);
1732 	put_task_struct(task);
1733 
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1737 
1738 /*
1739  * Helper that checks whether a VCPU is eligible for directed yield.
1740  * Most eligible candidate to yield is decided by following heuristics:
1741  *
1742  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1743  *  (preempted lock holder), indicated by @in_spin_loop.
1744  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1745  *
1746  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1747  *  chance last time (mostly it has become eligible now since we have probably
1748  *  yielded to lockholder in last iteration. This is done by toggling
1749  *  @dy_eligible each time a VCPU checked for eligibility.)
1750  *
1751  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1752  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1753  *  burning. Giving priority for a potential lock-holder increases lock
1754  *  progress.
1755  *
1756  *  Since algorithm is based on heuristics, accessing another VCPU data without
1757  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1758  *  and continue with next VCPU and so on.
1759  */
1760 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1761 {
1762 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1763 	bool eligible;
1764 
1765 	eligible = !vcpu->spin_loop.in_spin_loop ||
1766 			(vcpu->spin_loop.in_spin_loop &&
1767 			 vcpu->spin_loop.dy_eligible);
1768 
1769 	if (vcpu->spin_loop.in_spin_loop)
1770 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1771 
1772 	return eligible;
1773 #else
1774 	return true;
1775 #endif
1776 }
1777 
1778 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1779 {
1780 	struct kvm *kvm = me->kvm;
1781 	struct kvm_vcpu *vcpu;
1782 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1783 	int yielded = 0;
1784 	int try = 3;
1785 	int pass;
1786 	int i;
1787 
1788 	kvm_vcpu_set_in_spin_loop(me, true);
1789 	/*
1790 	 * We boost the priority of a VCPU that is runnable but not
1791 	 * currently running, because it got preempted by something
1792 	 * else and called schedule in __vcpu_run.  Hopefully that
1793 	 * VCPU is holding the lock that we need and will release it.
1794 	 * We approximate round-robin by starting at the last boosted VCPU.
1795 	 */
1796 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797 		kvm_for_each_vcpu(i, vcpu, kvm) {
1798 			if (!pass && i <= last_boosted_vcpu) {
1799 				i = last_boosted_vcpu;
1800 				continue;
1801 			} else if (pass && i > last_boosted_vcpu)
1802 				break;
1803 			if (!ACCESS_ONCE(vcpu->preempted))
1804 				continue;
1805 			if (vcpu == me)
1806 				continue;
1807 			if (waitqueue_active(&vcpu->wq))
1808 				continue;
1809 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1810 				continue;
1811 
1812 			yielded = kvm_vcpu_yield_to(vcpu);
1813 			if (yielded > 0) {
1814 				kvm->last_boosted_vcpu = i;
1815 				break;
1816 			} else if (yielded < 0) {
1817 				try--;
1818 				if (!try)
1819 					break;
1820 			}
1821 		}
1822 	}
1823 	kvm_vcpu_set_in_spin_loop(me, false);
1824 
1825 	/* Ensure vcpu is not eligible during next spinloop */
1826 	kvm_vcpu_set_dy_eligible(me, false);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1829 
1830 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1831 {
1832 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1833 	struct page *page;
1834 
1835 	if (vmf->pgoff == 0)
1836 		page = virt_to_page(vcpu->run);
1837 #ifdef CONFIG_X86
1838 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839 		page = virt_to_page(vcpu->arch.pio_data);
1840 #endif
1841 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1844 #endif
1845 	else
1846 		return kvm_arch_vcpu_fault(vcpu, vmf);
1847 	get_page(page);
1848 	vmf->page = page;
1849 	return 0;
1850 }
1851 
1852 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853 	.fault = kvm_vcpu_fault,
1854 };
1855 
1856 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1857 {
1858 	vma->vm_ops = &kvm_vcpu_vm_ops;
1859 	return 0;
1860 }
1861 
1862 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1863 {
1864 	struct kvm_vcpu *vcpu = filp->private_data;
1865 
1866 	kvm_put_kvm(vcpu->kvm);
1867 	return 0;
1868 }
1869 
1870 static struct file_operations kvm_vcpu_fops = {
1871 	.release        = kvm_vcpu_release,
1872 	.unlocked_ioctl = kvm_vcpu_ioctl,
1873 #ifdef CONFIG_COMPAT
1874 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1875 #endif
1876 	.mmap           = kvm_vcpu_mmap,
1877 	.llseek		= noop_llseek,
1878 };
1879 
1880 /*
1881  * Allocates an inode for the vcpu.
1882  */
1883 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1884 {
1885 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886 }
1887 
1888 /*
1889  * Creates some virtual cpus.  Good luck creating more than one.
1890  */
1891 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1892 {
1893 	int r;
1894 	struct kvm_vcpu *vcpu, *v;
1895 
1896 	if (id >= KVM_MAX_VCPUS)
1897 		return -EINVAL;
1898 
1899 	vcpu = kvm_arch_vcpu_create(kvm, id);
1900 	if (IS_ERR(vcpu))
1901 		return PTR_ERR(vcpu);
1902 
1903 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1904 
1905 	r = kvm_arch_vcpu_setup(vcpu);
1906 	if (r)
1907 		goto vcpu_destroy;
1908 
1909 	mutex_lock(&kvm->lock);
1910 	if (!kvm_vcpu_compatible(vcpu)) {
1911 		r = -EINVAL;
1912 		goto unlock_vcpu_destroy;
1913 	}
1914 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1915 		r = -EINVAL;
1916 		goto unlock_vcpu_destroy;
1917 	}
1918 
1919 	kvm_for_each_vcpu(r, v, kvm)
1920 		if (v->vcpu_id == id) {
1921 			r = -EEXIST;
1922 			goto unlock_vcpu_destroy;
1923 		}
1924 
1925 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1926 
1927 	/* Now it's all set up, let userspace reach it */
1928 	kvm_get_kvm(kvm);
1929 	r = create_vcpu_fd(vcpu);
1930 	if (r < 0) {
1931 		kvm_put_kvm(kvm);
1932 		goto unlock_vcpu_destroy;
1933 	}
1934 
1935 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1936 	smp_wmb();
1937 	atomic_inc(&kvm->online_vcpus);
1938 
1939 	mutex_unlock(&kvm->lock);
1940 	kvm_arch_vcpu_postcreate(vcpu);
1941 	return r;
1942 
1943 unlock_vcpu_destroy:
1944 	mutex_unlock(&kvm->lock);
1945 vcpu_destroy:
1946 	kvm_arch_vcpu_destroy(vcpu);
1947 	return r;
1948 }
1949 
1950 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1951 {
1952 	if (sigset) {
1953 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1954 		vcpu->sigset_active = 1;
1955 		vcpu->sigset = *sigset;
1956 	} else
1957 		vcpu->sigset_active = 0;
1958 	return 0;
1959 }
1960 
1961 static long kvm_vcpu_ioctl(struct file *filp,
1962 			   unsigned int ioctl, unsigned long arg)
1963 {
1964 	struct kvm_vcpu *vcpu = filp->private_data;
1965 	void __user *argp = (void __user *)arg;
1966 	int r;
1967 	struct kvm_fpu *fpu = NULL;
1968 	struct kvm_sregs *kvm_sregs = NULL;
1969 
1970 	if (vcpu->kvm->mm != current->mm)
1971 		return -EIO;
1972 
1973 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1974 	/*
1975 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1976 	 * so vcpu_load() would break it.
1977 	 */
1978 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1979 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1980 #endif
1981 
1982 
1983 	r = vcpu_load(vcpu);
1984 	if (r)
1985 		return r;
1986 	switch (ioctl) {
1987 	case KVM_RUN:
1988 		r = -EINVAL;
1989 		if (arg)
1990 			goto out;
1991 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1992 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1993 		break;
1994 	case KVM_GET_REGS: {
1995 		struct kvm_regs *kvm_regs;
1996 
1997 		r = -ENOMEM;
1998 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1999 		if (!kvm_regs)
2000 			goto out;
2001 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2002 		if (r)
2003 			goto out_free1;
2004 		r = -EFAULT;
2005 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2006 			goto out_free1;
2007 		r = 0;
2008 out_free1:
2009 		kfree(kvm_regs);
2010 		break;
2011 	}
2012 	case KVM_SET_REGS: {
2013 		struct kvm_regs *kvm_regs;
2014 
2015 		r = -ENOMEM;
2016 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2017 		if (IS_ERR(kvm_regs)) {
2018 			r = PTR_ERR(kvm_regs);
2019 			goto out;
2020 		}
2021 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2022 		kfree(kvm_regs);
2023 		break;
2024 	}
2025 	case KVM_GET_SREGS: {
2026 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2027 		r = -ENOMEM;
2028 		if (!kvm_sregs)
2029 			goto out;
2030 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2031 		if (r)
2032 			goto out;
2033 		r = -EFAULT;
2034 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2035 			goto out;
2036 		r = 0;
2037 		break;
2038 	}
2039 	case KVM_SET_SREGS: {
2040 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2041 		if (IS_ERR(kvm_sregs)) {
2042 			r = PTR_ERR(kvm_sregs);
2043 			kvm_sregs = NULL;
2044 			goto out;
2045 		}
2046 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2047 		break;
2048 	}
2049 	case KVM_GET_MP_STATE: {
2050 		struct kvm_mp_state mp_state;
2051 
2052 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2053 		if (r)
2054 			goto out;
2055 		r = -EFAULT;
2056 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2057 			goto out;
2058 		r = 0;
2059 		break;
2060 	}
2061 	case KVM_SET_MP_STATE: {
2062 		struct kvm_mp_state mp_state;
2063 
2064 		r = -EFAULT;
2065 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2066 			goto out;
2067 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2068 		break;
2069 	}
2070 	case KVM_TRANSLATE: {
2071 		struct kvm_translation tr;
2072 
2073 		r = -EFAULT;
2074 		if (copy_from_user(&tr, argp, sizeof tr))
2075 			goto out;
2076 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2077 		if (r)
2078 			goto out;
2079 		r = -EFAULT;
2080 		if (copy_to_user(argp, &tr, sizeof tr))
2081 			goto out;
2082 		r = 0;
2083 		break;
2084 	}
2085 	case KVM_SET_GUEST_DEBUG: {
2086 		struct kvm_guest_debug dbg;
2087 
2088 		r = -EFAULT;
2089 		if (copy_from_user(&dbg, argp, sizeof dbg))
2090 			goto out;
2091 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2092 		break;
2093 	}
2094 	case KVM_SET_SIGNAL_MASK: {
2095 		struct kvm_signal_mask __user *sigmask_arg = argp;
2096 		struct kvm_signal_mask kvm_sigmask;
2097 		sigset_t sigset, *p;
2098 
2099 		p = NULL;
2100 		if (argp) {
2101 			r = -EFAULT;
2102 			if (copy_from_user(&kvm_sigmask, argp,
2103 					   sizeof kvm_sigmask))
2104 				goto out;
2105 			r = -EINVAL;
2106 			if (kvm_sigmask.len != sizeof sigset)
2107 				goto out;
2108 			r = -EFAULT;
2109 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2110 					   sizeof sigset))
2111 				goto out;
2112 			p = &sigset;
2113 		}
2114 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2115 		break;
2116 	}
2117 	case KVM_GET_FPU: {
2118 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2119 		r = -ENOMEM;
2120 		if (!fpu)
2121 			goto out;
2122 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2123 		if (r)
2124 			goto out;
2125 		r = -EFAULT;
2126 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2127 			goto out;
2128 		r = 0;
2129 		break;
2130 	}
2131 	case KVM_SET_FPU: {
2132 		fpu = memdup_user(argp, sizeof(*fpu));
2133 		if (IS_ERR(fpu)) {
2134 			r = PTR_ERR(fpu);
2135 			fpu = NULL;
2136 			goto out;
2137 		}
2138 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2139 		break;
2140 	}
2141 	default:
2142 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2143 	}
2144 out:
2145 	vcpu_put(vcpu);
2146 	kfree(fpu);
2147 	kfree(kvm_sregs);
2148 	return r;
2149 }
2150 
2151 #ifdef CONFIG_COMPAT
2152 static long kvm_vcpu_compat_ioctl(struct file *filp,
2153 				  unsigned int ioctl, unsigned long arg)
2154 {
2155 	struct kvm_vcpu *vcpu = filp->private_data;
2156 	void __user *argp = compat_ptr(arg);
2157 	int r;
2158 
2159 	if (vcpu->kvm->mm != current->mm)
2160 		return -EIO;
2161 
2162 	switch (ioctl) {
2163 	case KVM_SET_SIGNAL_MASK: {
2164 		struct kvm_signal_mask __user *sigmask_arg = argp;
2165 		struct kvm_signal_mask kvm_sigmask;
2166 		compat_sigset_t csigset;
2167 		sigset_t sigset;
2168 
2169 		if (argp) {
2170 			r = -EFAULT;
2171 			if (copy_from_user(&kvm_sigmask, argp,
2172 					   sizeof kvm_sigmask))
2173 				goto out;
2174 			r = -EINVAL;
2175 			if (kvm_sigmask.len != sizeof csigset)
2176 				goto out;
2177 			r = -EFAULT;
2178 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2179 					   sizeof csigset))
2180 				goto out;
2181 			sigset_from_compat(&sigset, &csigset);
2182 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2183 		} else
2184 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2185 		break;
2186 	}
2187 	default:
2188 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2189 	}
2190 
2191 out:
2192 	return r;
2193 }
2194 #endif
2195 
2196 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2197 				 int (*accessor)(struct kvm_device *dev,
2198 						 struct kvm_device_attr *attr),
2199 				 unsigned long arg)
2200 {
2201 	struct kvm_device_attr attr;
2202 
2203 	if (!accessor)
2204 		return -EPERM;
2205 
2206 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2207 		return -EFAULT;
2208 
2209 	return accessor(dev, &attr);
2210 }
2211 
2212 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2213 			     unsigned long arg)
2214 {
2215 	struct kvm_device *dev = filp->private_data;
2216 
2217 	switch (ioctl) {
2218 	case KVM_SET_DEVICE_ATTR:
2219 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2220 	case KVM_GET_DEVICE_ATTR:
2221 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2222 	case KVM_HAS_DEVICE_ATTR:
2223 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2224 	default:
2225 		if (dev->ops->ioctl)
2226 			return dev->ops->ioctl(dev, ioctl, arg);
2227 
2228 		return -ENOTTY;
2229 	}
2230 }
2231 
2232 static int kvm_device_release(struct inode *inode, struct file *filp)
2233 {
2234 	struct kvm_device *dev = filp->private_data;
2235 	struct kvm *kvm = dev->kvm;
2236 
2237 	kvm_put_kvm(kvm);
2238 	return 0;
2239 }
2240 
2241 static const struct file_operations kvm_device_fops = {
2242 	.unlocked_ioctl = kvm_device_ioctl,
2243 #ifdef CONFIG_COMPAT
2244 	.compat_ioctl = kvm_device_ioctl,
2245 #endif
2246 	.release = kvm_device_release,
2247 };
2248 
2249 struct kvm_device *kvm_device_from_filp(struct file *filp)
2250 {
2251 	if (filp->f_op != &kvm_device_fops)
2252 		return NULL;
2253 
2254 	return filp->private_data;
2255 }
2256 
2257 static int kvm_ioctl_create_device(struct kvm *kvm,
2258 				   struct kvm_create_device *cd)
2259 {
2260 	struct kvm_device_ops *ops = NULL;
2261 	struct kvm_device *dev;
2262 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2263 	int ret;
2264 
2265 	switch (cd->type) {
2266 #ifdef CONFIG_KVM_MPIC
2267 	case KVM_DEV_TYPE_FSL_MPIC_20:
2268 	case KVM_DEV_TYPE_FSL_MPIC_42:
2269 		ops = &kvm_mpic_ops;
2270 		break;
2271 #endif
2272 #ifdef CONFIG_KVM_XICS
2273 	case KVM_DEV_TYPE_XICS:
2274 		ops = &kvm_xics_ops;
2275 		break;
2276 #endif
2277 #ifdef CONFIG_KVM_VFIO
2278 	case KVM_DEV_TYPE_VFIO:
2279 		ops = &kvm_vfio_ops;
2280 		break;
2281 #endif
2282 #ifdef CONFIG_KVM_ARM_VGIC
2283 	case KVM_DEV_TYPE_ARM_VGIC_V2:
2284 		ops = &kvm_arm_vgic_v2_ops;
2285 		break;
2286 #endif
2287 	default:
2288 		return -ENODEV;
2289 	}
2290 
2291 	if (test)
2292 		return 0;
2293 
2294 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2295 	if (!dev)
2296 		return -ENOMEM;
2297 
2298 	dev->ops = ops;
2299 	dev->kvm = kvm;
2300 
2301 	ret = ops->create(dev, cd->type);
2302 	if (ret < 0) {
2303 		kfree(dev);
2304 		return ret;
2305 	}
2306 
2307 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2308 	if (ret < 0) {
2309 		ops->destroy(dev);
2310 		return ret;
2311 	}
2312 
2313 	list_add(&dev->vm_node, &kvm->devices);
2314 	kvm_get_kvm(kvm);
2315 	cd->fd = ret;
2316 	return 0;
2317 }
2318 
2319 static long kvm_vm_ioctl(struct file *filp,
2320 			   unsigned int ioctl, unsigned long arg)
2321 {
2322 	struct kvm *kvm = filp->private_data;
2323 	void __user *argp = (void __user *)arg;
2324 	int r;
2325 
2326 	if (kvm->mm != current->mm)
2327 		return -EIO;
2328 	switch (ioctl) {
2329 	case KVM_CREATE_VCPU:
2330 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2331 		break;
2332 	case KVM_SET_USER_MEMORY_REGION: {
2333 		struct kvm_userspace_memory_region kvm_userspace_mem;
2334 
2335 		r = -EFAULT;
2336 		if (copy_from_user(&kvm_userspace_mem, argp,
2337 						sizeof kvm_userspace_mem))
2338 			goto out;
2339 
2340 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2341 		break;
2342 	}
2343 	case KVM_GET_DIRTY_LOG: {
2344 		struct kvm_dirty_log log;
2345 
2346 		r = -EFAULT;
2347 		if (copy_from_user(&log, argp, sizeof log))
2348 			goto out;
2349 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2350 		break;
2351 	}
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 	case KVM_REGISTER_COALESCED_MMIO: {
2354 		struct kvm_coalesced_mmio_zone zone;
2355 		r = -EFAULT;
2356 		if (copy_from_user(&zone, argp, sizeof zone))
2357 			goto out;
2358 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2359 		break;
2360 	}
2361 	case KVM_UNREGISTER_COALESCED_MMIO: {
2362 		struct kvm_coalesced_mmio_zone zone;
2363 		r = -EFAULT;
2364 		if (copy_from_user(&zone, argp, sizeof zone))
2365 			goto out;
2366 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2367 		break;
2368 	}
2369 #endif
2370 	case KVM_IRQFD: {
2371 		struct kvm_irqfd data;
2372 
2373 		r = -EFAULT;
2374 		if (copy_from_user(&data, argp, sizeof data))
2375 			goto out;
2376 		r = kvm_irqfd(kvm, &data);
2377 		break;
2378 	}
2379 	case KVM_IOEVENTFD: {
2380 		struct kvm_ioeventfd data;
2381 
2382 		r = -EFAULT;
2383 		if (copy_from_user(&data, argp, sizeof data))
2384 			goto out;
2385 		r = kvm_ioeventfd(kvm, &data);
2386 		break;
2387 	}
2388 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2389 	case KVM_SET_BOOT_CPU_ID:
2390 		r = 0;
2391 		mutex_lock(&kvm->lock);
2392 		if (atomic_read(&kvm->online_vcpus) != 0)
2393 			r = -EBUSY;
2394 		else
2395 			kvm->bsp_vcpu_id = arg;
2396 		mutex_unlock(&kvm->lock);
2397 		break;
2398 #endif
2399 #ifdef CONFIG_HAVE_KVM_MSI
2400 	case KVM_SIGNAL_MSI: {
2401 		struct kvm_msi msi;
2402 
2403 		r = -EFAULT;
2404 		if (copy_from_user(&msi, argp, sizeof msi))
2405 			goto out;
2406 		r = kvm_send_userspace_msi(kvm, &msi);
2407 		break;
2408 	}
2409 #endif
2410 #ifdef __KVM_HAVE_IRQ_LINE
2411 	case KVM_IRQ_LINE_STATUS:
2412 	case KVM_IRQ_LINE: {
2413 		struct kvm_irq_level irq_event;
2414 
2415 		r = -EFAULT;
2416 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2417 			goto out;
2418 
2419 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2420 					ioctl == KVM_IRQ_LINE_STATUS);
2421 		if (r)
2422 			goto out;
2423 
2424 		r = -EFAULT;
2425 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2426 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2427 				goto out;
2428 		}
2429 
2430 		r = 0;
2431 		break;
2432 	}
2433 #endif
2434 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2435 	case KVM_SET_GSI_ROUTING: {
2436 		struct kvm_irq_routing routing;
2437 		struct kvm_irq_routing __user *urouting;
2438 		struct kvm_irq_routing_entry *entries;
2439 
2440 		r = -EFAULT;
2441 		if (copy_from_user(&routing, argp, sizeof(routing)))
2442 			goto out;
2443 		r = -EINVAL;
2444 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2445 			goto out;
2446 		if (routing.flags)
2447 			goto out;
2448 		r = -ENOMEM;
2449 		entries = vmalloc(routing.nr * sizeof(*entries));
2450 		if (!entries)
2451 			goto out;
2452 		r = -EFAULT;
2453 		urouting = argp;
2454 		if (copy_from_user(entries, urouting->entries,
2455 				   routing.nr * sizeof(*entries)))
2456 			goto out_free_irq_routing;
2457 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2458 					routing.flags);
2459 	out_free_irq_routing:
2460 		vfree(entries);
2461 		break;
2462 	}
2463 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2464 	case KVM_CREATE_DEVICE: {
2465 		struct kvm_create_device cd;
2466 
2467 		r = -EFAULT;
2468 		if (copy_from_user(&cd, argp, sizeof(cd)))
2469 			goto out;
2470 
2471 		r = kvm_ioctl_create_device(kvm, &cd);
2472 		if (r)
2473 			goto out;
2474 
2475 		r = -EFAULT;
2476 		if (copy_to_user(argp, &cd, sizeof(cd)))
2477 			goto out;
2478 
2479 		r = 0;
2480 		break;
2481 	}
2482 	default:
2483 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2484 		if (r == -ENOTTY)
2485 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2486 	}
2487 out:
2488 	return r;
2489 }
2490 
2491 #ifdef CONFIG_COMPAT
2492 struct compat_kvm_dirty_log {
2493 	__u32 slot;
2494 	__u32 padding1;
2495 	union {
2496 		compat_uptr_t dirty_bitmap; /* one bit per page */
2497 		__u64 padding2;
2498 	};
2499 };
2500 
2501 static long kvm_vm_compat_ioctl(struct file *filp,
2502 			   unsigned int ioctl, unsigned long arg)
2503 {
2504 	struct kvm *kvm = filp->private_data;
2505 	int r;
2506 
2507 	if (kvm->mm != current->mm)
2508 		return -EIO;
2509 	switch (ioctl) {
2510 	case KVM_GET_DIRTY_LOG: {
2511 		struct compat_kvm_dirty_log compat_log;
2512 		struct kvm_dirty_log log;
2513 
2514 		r = -EFAULT;
2515 		if (copy_from_user(&compat_log, (void __user *)arg,
2516 				   sizeof(compat_log)))
2517 			goto out;
2518 		log.slot	 = compat_log.slot;
2519 		log.padding1	 = compat_log.padding1;
2520 		log.padding2	 = compat_log.padding2;
2521 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2522 
2523 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2524 		break;
2525 	}
2526 	default:
2527 		r = kvm_vm_ioctl(filp, ioctl, arg);
2528 	}
2529 
2530 out:
2531 	return r;
2532 }
2533 #endif
2534 
2535 static struct file_operations kvm_vm_fops = {
2536 	.release        = kvm_vm_release,
2537 	.unlocked_ioctl = kvm_vm_ioctl,
2538 #ifdef CONFIG_COMPAT
2539 	.compat_ioctl   = kvm_vm_compat_ioctl,
2540 #endif
2541 	.llseek		= noop_llseek,
2542 };
2543 
2544 static int kvm_dev_ioctl_create_vm(unsigned long type)
2545 {
2546 	int r;
2547 	struct kvm *kvm;
2548 
2549 	kvm = kvm_create_vm(type);
2550 	if (IS_ERR(kvm))
2551 		return PTR_ERR(kvm);
2552 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2553 	r = kvm_coalesced_mmio_init(kvm);
2554 	if (r < 0) {
2555 		kvm_put_kvm(kvm);
2556 		return r;
2557 	}
2558 #endif
2559 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2560 	if (r < 0)
2561 		kvm_put_kvm(kvm);
2562 
2563 	return r;
2564 }
2565 
2566 static long kvm_dev_ioctl_check_extension_generic(long arg)
2567 {
2568 	switch (arg) {
2569 	case KVM_CAP_USER_MEMORY:
2570 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2571 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2572 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2573 	case KVM_CAP_SET_BOOT_CPU_ID:
2574 #endif
2575 	case KVM_CAP_INTERNAL_ERROR_DATA:
2576 #ifdef CONFIG_HAVE_KVM_MSI
2577 	case KVM_CAP_SIGNAL_MSI:
2578 #endif
2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2580 	case KVM_CAP_IRQFD_RESAMPLE:
2581 #endif
2582 		return 1;
2583 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2584 	case KVM_CAP_IRQ_ROUTING:
2585 		return KVM_MAX_IRQ_ROUTES;
2586 #endif
2587 	default:
2588 		break;
2589 	}
2590 	return kvm_dev_ioctl_check_extension(arg);
2591 }
2592 
2593 static long kvm_dev_ioctl(struct file *filp,
2594 			  unsigned int ioctl, unsigned long arg)
2595 {
2596 	long r = -EINVAL;
2597 
2598 	switch (ioctl) {
2599 	case KVM_GET_API_VERSION:
2600 		r = -EINVAL;
2601 		if (arg)
2602 			goto out;
2603 		r = KVM_API_VERSION;
2604 		break;
2605 	case KVM_CREATE_VM:
2606 		r = kvm_dev_ioctl_create_vm(arg);
2607 		break;
2608 	case KVM_CHECK_EXTENSION:
2609 		r = kvm_dev_ioctl_check_extension_generic(arg);
2610 		break;
2611 	case KVM_GET_VCPU_MMAP_SIZE:
2612 		r = -EINVAL;
2613 		if (arg)
2614 			goto out;
2615 		r = PAGE_SIZE;     /* struct kvm_run */
2616 #ifdef CONFIG_X86
2617 		r += PAGE_SIZE;    /* pio data page */
2618 #endif
2619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2620 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2621 #endif
2622 		break;
2623 	case KVM_TRACE_ENABLE:
2624 	case KVM_TRACE_PAUSE:
2625 	case KVM_TRACE_DISABLE:
2626 		r = -EOPNOTSUPP;
2627 		break;
2628 	default:
2629 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2630 	}
2631 out:
2632 	return r;
2633 }
2634 
2635 static struct file_operations kvm_chardev_ops = {
2636 	.unlocked_ioctl = kvm_dev_ioctl,
2637 	.compat_ioctl   = kvm_dev_ioctl,
2638 	.llseek		= noop_llseek,
2639 };
2640 
2641 static struct miscdevice kvm_dev = {
2642 	KVM_MINOR,
2643 	"kvm",
2644 	&kvm_chardev_ops,
2645 };
2646 
2647 static void hardware_enable_nolock(void *junk)
2648 {
2649 	int cpu = raw_smp_processor_id();
2650 	int r;
2651 
2652 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2653 		return;
2654 
2655 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2656 
2657 	r = kvm_arch_hardware_enable(NULL);
2658 
2659 	if (r) {
2660 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2661 		atomic_inc(&hardware_enable_failed);
2662 		printk(KERN_INFO "kvm: enabling virtualization on "
2663 				 "CPU%d failed\n", cpu);
2664 	}
2665 }
2666 
2667 static void hardware_enable(void)
2668 {
2669 	raw_spin_lock(&kvm_count_lock);
2670 	if (kvm_usage_count)
2671 		hardware_enable_nolock(NULL);
2672 	raw_spin_unlock(&kvm_count_lock);
2673 }
2674 
2675 static void hardware_disable_nolock(void *junk)
2676 {
2677 	int cpu = raw_smp_processor_id();
2678 
2679 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2680 		return;
2681 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2682 	kvm_arch_hardware_disable(NULL);
2683 }
2684 
2685 static void hardware_disable(void)
2686 {
2687 	raw_spin_lock(&kvm_count_lock);
2688 	if (kvm_usage_count)
2689 		hardware_disable_nolock(NULL);
2690 	raw_spin_unlock(&kvm_count_lock);
2691 }
2692 
2693 static void hardware_disable_all_nolock(void)
2694 {
2695 	BUG_ON(!kvm_usage_count);
2696 
2697 	kvm_usage_count--;
2698 	if (!kvm_usage_count)
2699 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2700 }
2701 
2702 static void hardware_disable_all(void)
2703 {
2704 	raw_spin_lock(&kvm_count_lock);
2705 	hardware_disable_all_nolock();
2706 	raw_spin_unlock(&kvm_count_lock);
2707 }
2708 
2709 static int hardware_enable_all(void)
2710 {
2711 	int r = 0;
2712 
2713 	raw_spin_lock(&kvm_count_lock);
2714 
2715 	kvm_usage_count++;
2716 	if (kvm_usage_count == 1) {
2717 		atomic_set(&hardware_enable_failed, 0);
2718 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2719 
2720 		if (atomic_read(&hardware_enable_failed)) {
2721 			hardware_disable_all_nolock();
2722 			r = -EBUSY;
2723 		}
2724 	}
2725 
2726 	raw_spin_unlock(&kvm_count_lock);
2727 
2728 	return r;
2729 }
2730 
2731 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2732 			   void *v)
2733 {
2734 	int cpu = (long)v;
2735 
2736 	val &= ~CPU_TASKS_FROZEN;
2737 	switch (val) {
2738 	case CPU_DYING:
2739 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2740 		       cpu);
2741 		hardware_disable();
2742 		break;
2743 	case CPU_STARTING:
2744 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2745 		       cpu);
2746 		hardware_enable();
2747 		break;
2748 	}
2749 	return NOTIFY_OK;
2750 }
2751 
2752 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2753 		      void *v)
2754 {
2755 	/*
2756 	 * Some (well, at least mine) BIOSes hang on reboot if
2757 	 * in vmx root mode.
2758 	 *
2759 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2760 	 */
2761 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2762 	kvm_rebooting = true;
2763 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2764 	return NOTIFY_OK;
2765 }
2766 
2767 static struct notifier_block kvm_reboot_notifier = {
2768 	.notifier_call = kvm_reboot,
2769 	.priority = 0,
2770 };
2771 
2772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < bus->dev_count; i++) {
2777 		struct kvm_io_device *pos = bus->range[i].dev;
2778 
2779 		kvm_iodevice_destructor(pos);
2780 	}
2781 	kfree(bus);
2782 }
2783 
2784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2785                                  const struct kvm_io_range *r2)
2786 {
2787 	if (r1->addr < r2->addr)
2788 		return -1;
2789 	if (r1->addr + r1->len > r2->addr + r2->len)
2790 		return 1;
2791 	return 0;
2792 }
2793 
2794 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2795 {
2796 	return kvm_io_bus_cmp(p1, p2);
2797 }
2798 
2799 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2800 			  gpa_t addr, int len)
2801 {
2802 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2803 		.addr = addr,
2804 		.len = len,
2805 		.dev = dev,
2806 	};
2807 
2808 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2809 		kvm_io_bus_sort_cmp, NULL);
2810 
2811 	return 0;
2812 }
2813 
2814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2815 			     gpa_t addr, int len)
2816 {
2817 	struct kvm_io_range *range, key;
2818 	int off;
2819 
2820 	key = (struct kvm_io_range) {
2821 		.addr = addr,
2822 		.len = len,
2823 	};
2824 
2825 	range = bsearch(&key, bus->range, bus->dev_count,
2826 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2827 	if (range == NULL)
2828 		return -ENOENT;
2829 
2830 	off = range - bus->range;
2831 
2832 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2833 		off--;
2834 
2835 	return off;
2836 }
2837 
2838 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2839 			      struct kvm_io_range *range, const void *val)
2840 {
2841 	int idx;
2842 
2843 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2844 	if (idx < 0)
2845 		return -EOPNOTSUPP;
2846 
2847 	while (idx < bus->dev_count &&
2848 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2849 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2850 					range->len, val))
2851 			return idx;
2852 		idx++;
2853 	}
2854 
2855 	return -EOPNOTSUPP;
2856 }
2857 
2858 /* kvm_io_bus_write - called under kvm->slots_lock */
2859 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2860 		     int len, const void *val)
2861 {
2862 	struct kvm_io_bus *bus;
2863 	struct kvm_io_range range;
2864 	int r;
2865 
2866 	range = (struct kvm_io_range) {
2867 		.addr = addr,
2868 		.len = len,
2869 	};
2870 
2871 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2872 	r = __kvm_io_bus_write(bus, &range, val);
2873 	return r < 0 ? r : 0;
2874 }
2875 
2876 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2877 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 			    int len, const void *val, long cookie)
2879 {
2880 	struct kvm_io_bus *bus;
2881 	struct kvm_io_range range;
2882 
2883 	range = (struct kvm_io_range) {
2884 		.addr = addr,
2885 		.len = len,
2886 	};
2887 
2888 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2889 
2890 	/* First try the device referenced by cookie. */
2891 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2892 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2893 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2894 					val))
2895 			return cookie;
2896 
2897 	/*
2898 	 * cookie contained garbage; fall back to search and return the
2899 	 * correct cookie value.
2900 	 */
2901 	return __kvm_io_bus_write(bus, &range, val);
2902 }
2903 
2904 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2905 			     void *val)
2906 {
2907 	int idx;
2908 
2909 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2910 	if (idx < 0)
2911 		return -EOPNOTSUPP;
2912 
2913 	while (idx < bus->dev_count &&
2914 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2915 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2916 				       range->len, val))
2917 			return idx;
2918 		idx++;
2919 	}
2920 
2921 	return -EOPNOTSUPP;
2922 }
2923 
2924 /* kvm_io_bus_read - called under kvm->slots_lock */
2925 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2926 		    int len, void *val)
2927 {
2928 	struct kvm_io_bus *bus;
2929 	struct kvm_io_range range;
2930 	int r;
2931 
2932 	range = (struct kvm_io_range) {
2933 		.addr = addr,
2934 		.len = len,
2935 	};
2936 
2937 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2938 	r = __kvm_io_bus_read(bus, &range, val);
2939 	return r < 0 ? r : 0;
2940 }
2941 
2942 
2943 /* Caller must hold slots_lock. */
2944 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2945 			    int len, struct kvm_io_device *dev)
2946 {
2947 	struct kvm_io_bus *new_bus, *bus;
2948 
2949 	bus = kvm->buses[bus_idx];
2950 	/* exclude ioeventfd which is limited by maximum fd */
2951 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2952 		return -ENOSPC;
2953 
2954 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2955 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2956 	if (!new_bus)
2957 		return -ENOMEM;
2958 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2959 	       sizeof(struct kvm_io_range)));
2960 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2961 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2962 	synchronize_srcu_expedited(&kvm->srcu);
2963 	kfree(bus);
2964 
2965 	return 0;
2966 }
2967 
2968 /* Caller must hold slots_lock. */
2969 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2970 			      struct kvm_io_device *dev)
2971 {
2972 	int i, r;
2973 	struct kvm_io_bus *new_bus, *bus;
2974 
2975 	bus = kvm->buses[bus_idx];
2976 	r = -ENOENT;
2977 	for (i = 0; i < bus->dev_count; i++)
2978 		if (bus->range[i].dev == dev) {
2979 			r = 0;
2980 			break;
2981 		}
2982 
2983 	if (r)
2984 		return r;
2985 
2986 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2987 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2988 	if (!new_bus)
2989 		return -ENOMEM;
2990 
2991 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2992 	new_bus->dev_count--;
2993 	memcpy(new_bus->range + i, bus->range + i + 1,
2994 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2995 
2996 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2997 	synchronize_srcu_expedited(&kvm->srcu);
2998 	kfree(bus);
2999 	return r;
3000 }
3001 
3002 static struct notifier_block kvm_cpu_notifier = {
3003 	.notifier_call = kvm_cpu_hotplug,
3004 };
3005 
3006 static int vm_stat_get(void *_offset, u64 *val)
3007 {
3008 	unsigned offset = (long)_offset;
3009 	struct kvm *kvm;
3010 
3011 	*val = 0;
3012 	spin_lock(&kvm_lock);
3013 	list_for_each_entry(kvm, &vm_list, vm_list)
3014 		*val += *(u32 *)((void *)kvm + offset);
3015 	spin_unlock(&kvm_lock);
3016 	return 0;
3017 }
3018 
3019 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3020 
3021 static int vcpu_stat_get(void *_offset, u64 *val)
3022 {
3023 	unsigned offset = (long)_offset;
3024 	struct kvm *kvm;
3025 	struct kvm_vcpu *vcpu;
3026 	int i;
3027 
3028 	*val = 0;
3029 	spin_lock(&kvm_lock);
3030 	list_for_each_entry(kvm, &vm_list, vm_list)
3031 		kvm_for_each_vcpu(i, vcpu, kvm)
3032 			*val += *(u32 *)((void *)vcpu + offset);
3033 
3034 	spin_unlock(&kvm_lock);
3035 	return 0;
3036 }
3037 
3038 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3039 
3040 static const struct file_operations *stat_fops[] = {
3041 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3042 	[KVM_STAT_VM]   = &vm_stat_fops,
3043 };
3044 
3045 static int kvm_init_debug(void)
3046 {
3047 	int r = -EEXIST;
3048 	struct kvm_stats_debugfs_item *p;
3049 
3050 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3051 	if (kvm_debugfs_dir == NULL)
3052 		goto out;
3053 
3054 	for (p = debugfs_entries; p->name; ++p) {
3055 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3056 						(void *)(long)p->offset,
3057 						stat_fops[p->kind]);
3058 		if (p->dentry == NULL)
3059 			goto out_dir;
3060 	}
3061 
3062 	return 0;
3063 
3064 out_dir:
3065 	debugfs_remove_recursive(kvm_debugfs_dir);
3066 out:
3067 	return r;
3068 }
3069 
3070 static void kvm_exit_debug(void)
3071 {
3072 	struct kvm_stats_debugfs_item *p;
3073 
3074 	for (p = debugfs_entries; p->name; ++p)
3075 		debugfs_remove(p->dentry);
3076 	debugfs_remove(kvm_debugfs_dir);
3077 }
3078 
3079 static int kvm_suspend(void)
3080 {
3081 	if (kvm_usage_count)
3082 		hardware_disable_nolock(NULL);
3083 	return 0;
3084 }
3085 
3086 static void kvm_resume(void)
3087 {
3088 	if (kvm_usage_count) {
3089 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3090 		hardware_enable_nolock(NULL);
3091 	}
3092 }
3093 
3094 static struct syscore_ops kvm_syscore_ops = {
3095 	.suspend = kvm_suspend,
3096 	.resume = kvm_resume,
3097 };
3098 
3099 static inline
3100 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3101 {
3102 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3103 }
3104 
3105 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3106 {
3107 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3108 	if (vcpu->preempted)
3109 		vcpu->preempted = false;
3110 
3111 	kvm_arch_vcpu_load(vcpu, cpu);
3112 }
3113 
3114 static void kvm_sched_out(struct preempt_notifier *pn,
3115 			  struct task_struct *next)
3116 {
3117 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3118 
3119 	if (current->state == TASK_RUNNING)
3120 		vcpu->preempted = true;
3121 	kvm_arch_vcpu_put(vcpu);
3122 }
3123 
3124 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3125 		  struct module *module)
3126 {
3127 	int r;
3128 	int cpu;
3129 
3130 	r = kvm_arch_init(opaque);
3131 	if (r)
3132 		goto out_fail;
3133 
3134 	/*
3135 	 * kvm_arch_init makes sure there's at most one caller
3136 	 * for architectures that support multiple implementations,
3137 	 * like intel and amd on x86.
3138 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3139 	 * conflicts in case kvm is already setup for another implementation.
3140 	 */
3141 	r = kvm_irqfd_init();
3142 	if (r)
3143 		goto out_irqfd;
3144 
3145 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3146 		r = -ENOMEM;
3147 		goto out_free_0;
3148 	}
3149 
3150 	r = kvm_arch_hardware_setup();
3151 	if (r < 0)
3152 		goto out_free_0a;
3153 
3154 	for_each_online_cpu(cpu) {
3155 		smp_call_function_single(cpu,
3156 				kvm_arch_check_processor_compat,
3157 				&r, 1);
3158 		if (r < 0)
3159 			goto out_free_1;
3160 	}
3161 
3162 	r = register_cpu_notifier(&kvm_cpu_notifier);
3163 	if (r)
3164 		goto out_free_2;
3165 	register_reboot_notifier(&kvm_reboot_notifier);
3166 
3167 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3168 	if (!vcpu_align)
3169 		vcpu_align = __alignof__(struct kvm_vcpu);
3170 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3171 					   0, NULL);
3172 	if (!kvm_vcpu_cache) {
3173 		r = -ENOMEM;
3174 		goto out_free_3;
3175 	}
3176 
3177 	r = kvm_async_pf_init();
3178 	if (r)
3179 		goto out_free;
3180 
3181 	kvm_chardev_ops.owner = module;
3182 	kvm_vm_fops.owner = module;
3183 	kvm_vcpu_fops.owner = module;
3184 
3185 	r = misc_register(&kvm_dev);
3186 	if (r) {
3187 		printk(KERN_ERR "kvm: misc device register failed\n");
3188 		goto out_unreg;
3189 	}
3190 
3191 	register_syscore_ops(&kvm_syscore_ops);
3192 
3193 	kvm_preempt_ops.sched_in = kvm_sched_in;
3194 	kvm_preempt_ops.sched_out = kvm_sched_out;
3195 
3196 	r = kvm_init_debug();
3197 	if (r) {
3198 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3199 		goto out_undebugfs;
3200 	}
3201 
3202 	return 0;
3203 
3204 out_undebugfs:
3205 	unregister_syscore_ops(&kvm_syscore_ops);
3206 	misc_deregister(&kvm_dev);
3207 out_unreg:
3208 	kvm_async_pf_deinit();
3209 out_free:
3210 	kmem_cache_destroy(kvm_vcpu_cache);
3211 out_free_3:
3212 	unregister_reboot_notifier(&kvm_reboot_notifier);
3213 	unregister_cpu_notifier(&kvm_cpu_notifier);
3214 out_free_2:
3215 out_free_1:
3216 	kvm_arch_hardware_unsetup();
3217 out_free_0a:
3218 	free_cpumask_var(cpus_hardware_enabled);
3219 out_free_0:
3220 	kvm_irqfd_exit();
3221 out_irqfd:
3222 	kvm_arch_exit();
3223 out_fail:
3224 	return r;
3225 }
3226 EXPORT_SYMBOL_GPL(kvm_init);
3227 
3228 void kvm_exit(void)
3229 {
3230 	kvm_exit_debug();
3231 	misc_deregister(&kvm_dev);
3232 	kmem_cache_destroy(kvm_vcpu_cache);
3233 	kvm_async_pf_deinit();
3234 	unregister_syscore_ops(&kvm_syscore_ops);
3235 	unregister_reboot_notifier(&kvm_reboot_notifier);
3236 	unregister_cpu_notifier(&kvm_cpu_notifier);
3237 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3238 	kvm_arch_hardware_unsetup();
3239 	kvm_arch_exit();
3240 	kvm_irqfd_exit();
3241 	free_cpumask_var(cpus_hardware_enabled);
3242 }
3243 EXPORT_SYMBOL_GPL(kvm_exit);
3244