1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 #include <asm/pgtable.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "vfio.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 /* Worst case buffer size needed for holding an integer. */ 68 #define ITOA_MAX_LEN 12 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 /* Architectures should define their poll value according to the halt latency */ 74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 75 module_param(halt_poll_ns, uint, 0644); 76 EXPORT_SYMBOL_GPL(halt_poll_ns); 77 78 /* Default doubles per-vcpu halt_poll_ns. */ 79 unsigned int halt_poll_ns_grow = 2; 80 module_param(halt_poll_ns_grow, uint, 0644); 81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 82 83 /* The start value to grow halt_poll_ns from */ 84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 85 module_param(halt_poll_ns_grow_start, uint, 0644); 86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 87 88 /* Default resets per-vcpu halt_poll_ns . */ 89 unsigned int halt_poll_ns_shrink; 90 module_param(halt_poll_ns_shrink, uint, 0644); 91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 92 93 /* 94 * Ordering of locks: 95 * 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 97 */ 98 99 DEFINE_MUTEX(kvm_lock); 100 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 101 LIST_HEAD(vm_list); 102 103 static cpumask_var_t cpus_hardware_enabled; 104 static int kvm_usage_count; 105 static atomic_t hardware_enable_failed; 106 107 static struct kmem_cache *kvm_vcpu_cache; 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 111 112 struct dentry *kvm_debugfs_dir; 113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 114 115 static int kvm_debugfs_num_entries; 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 static bool largepages_enabled = true; 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end, bool blockable) 162 { 163 return 0; 164 } 165 166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 167 { 168 /* 169 * The metadata used by is_zone_device_page() to determine whether or 170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 171 * the device has been pinned, e.g. by get_user_pages(). WARN if the 172 * page_count() is zero to help detect bad usage of this helper. 173 */ 174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 175 return false; 176 177 return is_zone_device_page(pfn_to_page(pfn)); 178 } 179 180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 181 { 182 /* 183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 184 * perspective they are "normal" pages, albeit with slightly different 185 * usage rules. 186 */ 187 if (pfn_valid(pfn)) 188 return PageReserved(pfn_to_page(pfn)) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 195 { 196 struct page *page = pfn_to_page(pfn); 197 198 if (!PageTransCompoundMap(page)) 199 return false; 200 201 return is_transparent_hugepage(compound_head(page)); 202 } 203 204 /* 205 * Switches to specified vcpu, until a matching vcpu_put() 206 */ 207 void vcpu_load(struct kvm_vcpu *vcpu) 208 { 209 int cpu = get_cpu(); 210 211 __this_cpu_write(kvm_running_vcpu, vcpu); 212 preempt_notifier_register(&vcpu->preempt_notifier); 213 kvm_arch_vcpu_load(vcpu, cpu); 214 put_cpu(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_load); 217 218 void vcpu_put(struct kvm_vcpu *vcpu) 219 { 220 preempt_disable(); 221 kvm_arch_vcpu_put(vcpu); 222 preempt_notifier_unregister(&vcpu->preempt_notifier); 223 __this_cpu_write(kvm_running_vcpu, NULL); 224 preempt_enable(); 225 } 226 EXPORT_SYMBOL_GPL(vcpu_put); 227 228 /* TODO: merge with kvm_arch_vcpu_should_kick */ 229 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 230 { 231 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 232 233 /* 234 * We need to wait for the VCPU to reenable interrupts and get out of 235 * READING_SHADOW_PAGE_TABLES mode. 236 */ 237 if (req & KVM_REQUEST_WAIT) 238 return mode != OUTSIDE_GUEST_MODE; 239 240 /* 241 * Need to kick a running VCPU, but otherwise there is nothing to do. 242 */ 243 return mode == IN_GUEST_MODE; 244 } 245 246 static void ack_flush(void *_completed) 247 { 248 } 249 250 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 251 { 252 if (unlikely(!cpus)) 253 cpus = cpu_online_mask; 254 255 if (cpumask_empty(cpus)) 256 return false; 257 258 smp_call_function_many(cpus, ack_flush, NULL, wait); 259 return true; 260 } 261 262 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 263 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 264 { 265 int i, cpu, me; 266 struct kvm_vcpu *vcpu; 267 bool called; 268 269 me = get_cpu(); 270 271 kvm_for_each_vcpu(i, vcpu, kvm) { 272 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 273 continue; 274 275 kvm_make_request(req, vcpu); 276 cpu = vcpu->cpu; 277 278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 279 continue; 280 281 if (tmp != NULL && cpu != -1 && cpu != me && 282 kvm_request_needs_ipi(vcpu, req)) 283 __cpumask_set_cpu(cpu, tmp); 284 } 285 286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 287 put_cpu(); 288 289 return called; 290 } 291 292 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 293 { 294 cpumask_var_t cpus; 295 bool called; 296 297 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 298 299 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 300 301 free_cpumask_var(cpus); 302 return called; 303 } 304 305 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 306 void kvm_flush_remote_tlbs(struct kvm *kvm) 307 { 308 /* 309 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 310 * kvm_make_all_cpus_request. 311 */ 312 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 313 314 /* 315 * We want to publish modifications to the page tables before reading 316 * mode. Pairs with a memory barrier in arch-specific code. 317 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 318 * and smp_mb in walk_shadow_page_lockless_begin/end. 319 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 320 * 321 * There is already an smp_mb__after_atomic() before 322 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 323 * barrier here. 324 */ 325 if (!kvm_arch_flush_remote_tlb(kvm) 326 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 327 ++kvm->stat.remote_tlb_flush; 328 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 329 } 330 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 331 #endif 332 333 void kvm_reload_remote_mmus(struct kvm *kvm) 334 { 335 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 336 } 337 338 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 339 { 340 mutex_init(&vcpu->mutex); 341 vcpu->cpu = -1; 342 vcpu->kvm = kvm; 343 vcpu->vcpu_id = id; 344 vcpu->pid = NULL; 345 init_swait_queue_head(&vcpu->wq); 346 kvm_async_pf_vcpu_init(vcpu); 347 348 vcpu->pre_pcpu = -1; 349 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 350 351 kvm_vcpu_set_in_spin_loop(vcpu, false); 352 kvm_vcpu_set_dy_eligible(vcpu, false); 353 vcpu->preempted = false; 354 vcpu->ready = false; 355 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 356 } 357 358 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 359 { 360 kvm_arch_vcpu_destroy(vcpu); 361 362 /* 363 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 364 * the vcpu->pid pointer, and at destruction time all file descriptors 365 * are already gone. 366 */ 367 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 368 369 free_page((unsigned long)vcpu->run); 370 kmem_cache_free(kvm_vcpu_cache, vcpu); 371 } 372 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 373 374 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 375 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 376 { 377 return container_of(mn, struct kvm, mmu_notifier); 378 } 379 380 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 381 struct mm_struct *mm, 382 unsigned long address, 383 pte_t pte) 384 { 385 struct kvm *kvm = mmu_notifier_to_kvm(mn); 386 int idx; 387 388 idx = srcu_read_lock(&kvm->srcu); 389 spin_lock(&kvm->mmu_lock); 390 kvm->mmu_notifier_seq++; 391 392 if (kvm_set_spte_hva(kvm, address, pte)) 393 kvm_flush_remote_tlbs(kvm); 394 395 spin_unlock(&kvm->mmu_lock); 396 srcu_read_unlock(&kvm->srcu, idx); 397 } 398 399 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 400 const struct mmu_notifier_range *range) 401 { 402 struct kvm *kvm = mmu_notifier_to_kvm(mn); 403 int need_tlb_flush = 0, idx; 404 int ret; 405 406 idx = srcu_read_lock(&kvm->srcu); 407 spin_lock(&kvm->mmu_lock); 408 /* 409 * The count increase must become visible at unlock time as no 410 * spte can be established without taking the mmu_lock and 411 * count is also read inside the mmu_lock critical section. 412 */ 413 kvm->mmu_notifier_count++; 414 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 415 need_tlb_flush |= kvm->tlbs_dirty; 416 /* we've to flush the tlb before the pages can be freed */ 417 if (need_tlb_flush) 418 kvm_flush_remote_tlbs(kvm); 419 420 spin_unlock(&kvm->mmu_lock); 421 422 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 423 range->end, 424 mmu_notifier_range_blockable(range)); 425 426 srcu_read_unlock(&kvm->srcu, idx); 427 428 return ret; 429 } 430 431 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 432 const struct mmu_notifier_range *range) 433 { 434 struct kvm *kvm = mmu_notifier_to_kvm(mn); 435 436 spin_lock(&kvm->mmu_lock); 437 /* 438 * This sequence increase will notify the kvm page fault that 439 * the page that is going to be mapped in the spte could have 440 * been freed. 441 */ 442 kvm->mmu_notifier_seq++; 443 smp_wmb(); 444 /* 445 * The above sequence increase must be visible before the 446 * below count decrease, which is ensured by the smp_wmb above 447 * in conjunction with the smp_rmb in mmu_notifier_retry(). 448 */ 449 kvm->mmu_notifier_count--; 450 spin_unlock(&kvm->mmu_lock); 451 452 BUG_ON(kvm->mmu_notifier_count < 0); 453 } 454 455 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 456 struct mm_struct *mm, 457 unsigned long start, 458 unsigned long end) 459 { 460 struct kvm *kvm = mmu_notifier_to_kvm(mn); 461 int young, idx; 462 463 idx = srcu_read_lock(&kvm->srcu); 464 spin_lock(&kvm->mmu_lock); 465 466 young = kvm_age_hva(kvm, start, end); 467 if (young) 468 kvm_flush_remote_tlbs(kvm); 469 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long start, 479 unsigned long end) 480 { 481 struct kvm *kvm = mmu_notifier_to_kvm(mn); 482 int young, idx; 483 484 idx = srcu_read_lock(&kvm->srcu); 485 spin_lock(&kvm->mmu_lock); 486 /* 487 * Even though we do not flush TLB, this will still adversely 488 * affect performance on pre-Haswell Intel EPT, where there is 489 * no EPT Access Bit to clear so that we have to tear down EPT 490 * tables instead. If we find this unacceptable, we can always 491 * add a parameter to kvm_age_hva so that it effectively doesn't 492 * do anything on clear_young. 493 * 494 * Also note that currently we never issue secondary TLB flushes 495 * from clear_young, leaving this job up to the regular system 496 * cadence. If we find this inaccurate, we might come up with a 497 * more sophisticated heuristic later. 498 */ 499 young = kvm_age_hva(kvm, start, end); 500 spin_unlock(&kvm->mmu_lock); 501 srcu_read_unlock(&kvm->srcu, idx); 502 503 return young; 504 } 505 506 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 507 struct mm_struct *mm, 508 unsigned long address) 509 { 510 struct kvm *kvm = mmu_notifier_to_kvm(mn); 511 int young, idx; 512 513 idx = srcu_read_lock(&kvm->srcu); 514 spin_lock(&kvm->mmu_lock); 515 young = kvm_test_age_hva(kvm, address); 516 spin_unlock(&kvm->mmu_lock); 517 srcu_read_unlock(&kvm->srcu, idx); 518 519 return young; 520 } 521 522 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 523 struct mm_struct *mm) 524 { 525 struct kvm *kvm = mmu_notifier_to_kvm(mn); 526 int idx; 527 528 idx = srcu_read_lock(&kvm->srcu); 529 kvm_arch_flush_shadow_all(kvm); 530 srcu_read_unlock(&kvm->srcu, idx); 531 } 532 533 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 534 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 535 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 536 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 537 .clear_young = kvm_mmu_notifier_clear_young, 538 .test_young = kvm_mmu_notifier_test_young, 539 .change_pte = kvm_mmu_notifier_change_pte, 540 .release = kvm_mmu_notifier_release, 541 }; 542 543 static int kvm_init_mmu_notifier(struct kvm *kvm) 544 { 545 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 546 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 547 } 548 549 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 550 551 static int kvm_init_mmu_notifier(struct kvm *kvm) 552 { 553 return 0; 554 } 555 556 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 557 558 static struct kvm_memslots *kvm_alloc_memslots(void) 559 { 560 int i; 561 struct kvm_memslots *slots; 562 563 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 564 if (!slots) 565 return NULL; 566 567 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 568 slots->id_to_index[i] = slots->memslots[i].id = i; 569 570 return slots; 571 } 572 573 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 574 { 575 if (!memslot->dirty_bitmap) 576 return; 577 578 kvfree(memslot->dirty_bitmap); 579 memslot->dirty_bitmap = NULL; 580 } 581 582 /* 583 * Free any memory in @free but not in @dont. 584 */ 585 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 586 struct kvm_memory_slot *dont) 587 { 588 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 589 kvm_destroy_dirty_bitmap(free); 590 591 kvm_arch_free_memslot(kvm, free, dont); 592 593 free->npages = 0; 594 } 595 596 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 597 { 598 struct kvm_memory_slot *memslot; 599 600 if (!slots) 601 return; 602 603 kvm_for_each_memslot(memslot, slots) 604 kvm_free_memslot(kvm, memslot, NULL); 605 606 kvfree(slots); 607 } 608 609 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 610 { 611 int i; 612 613 if (!kvm->debugfs_dentry) 614 return; 615 616 debugfs_remove_recursive(kvm->debugfs_dentry); 617 618 if (kvm->debugfs_stat_data) { 619 for (i = 0; i < kvm_debugfs_num_entries; i++) 620 kfree(kvm->debugfs_stat_data[i]); 621 kfree(kvm->debugfs_stat_data); 622 } 623 } 624 625 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 626 { 627 char dir_name[ITOA_MAX_LEN * 2]; 628 struct kvm_stat_data *stat_data; 629 struct kvm_stats_debugfs_item *p; 630 631 if (!debugfs_initialized()) 632 return 0; 633 634 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 635 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 636 637 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 638 sizeof(*kvm->debugfs_stat_data), 639 GFP_KERNEL_ACCOUNT); 640 if (!kvm->debugfs_stat_data) 641 return -ENOMEM; 642 643 for (p = debugfs_entries; p->name; p++) { 644 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 645 if (!stat_data) 646 return -ENOMEM; 647 648 stat_data->kvm = kvm; 649 stat_data->dbgfs_item = p; 650 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 651 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 652 kvm->debugfs_dentry, stat_data, 653 &stat_fops_per_vm); 654 } 655 return 0; 656 } 657 658 /* 659 * Called after the VM is otherwise initialized, but just before adding it to 660 * the vm_list. 661 */ 662 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 663 { 664 return 0; 665 } 666 667 /* 668 * Called just after removing the VM from the vm_list, but before doing any 669 * other destruction. 670 */ 671 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 672 { 673 } 674 675 static struct kvm *kvm_create_vm(unsigned long type) 676 { 677 struct kvm *kvm = kvm_arch_alloc_vm(); 678 int r = -ENOMEM; 679 int i; 680 681 if (!kvm) 682 return ERR_PTR(-ENOMEM); 683 684 spin_lock_init(&kvm->mmu_lock); 685 mmgrab(current->mm); 686 kvm->mm = current->mm; 687 kvm_eventfd_init(kvm); 688 mutex_init(&kvm->lock); 689 mutex_init(&kvm->irq_lock); 690 mutex_init(&kvm->slots_lock); 691 INIT_LIST_HEAD(&kvm->devices); 692 693 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 694 695 if (init_srcu_struct(&kvm->srcu)) 696 goto out_err_no_srcu; 697 if (init_srcu_struct(&kvm->irq_srcu)) 698 goto out_err_no_irq_srcu; 699 700 refcount_set(&kvm->users_count, 1); 701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 702 struct kvm_memslots *slots = kvm_alloc_memslots(); 703 704 if (!slots) 705 goto out_err_no_arch_destroy_vm; 706 /* Generations must be different for each address space. */ 707 slots->generation = i; 708 rcu_assign_pointer(kvm->memslots[i], slots); 709 } 710 711 for (i = 0; i < KVM_NR_BUSES; i++) { 712 rcu_assign_pointer(kvm->buses[i], 713 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 714 if (!kvm->buses[i]) 715 goto out_err_no_arch_destroy_vm; 716 } 717 718 r = kvm_arch_init_vm(kvm, type); 719 if (r) 720 goto out_err_no_arch_destroy_vm; 721 722 r = hardware_enable_all(); 723 if (r) 724 goto out_err_no_disable; 725 726 #ifdef CONFIG_HAVE_KVM_IRQFD 727 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 728 #endif 729 730 r = kvm_init_mmu_notifier(kvm); 731 if (r) 732 goto out_err_no_mmu_notifier; 733 734 r = kvm_arch_post_init_vm(kvm); 735 if (r) 736 goto out_err; 737 738 mutex_lock(&kvm_lock); 739 list_add(&kvm->vm_list, &vm_list); 740 mutex_unlock(&kvm_lock); 741 742 preempt_notifier_inc(); 743 744 return kvm; 745 746 out_err: 747 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 748 if (kvm->mmu_notifier.ops) 749 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 750 #endif 751 out_err_no_mmu_notifier: 752 hardware_disable_all(); 753 out_err_no_disable: 754 kvm_arch_destroy_vm(kvm); 755 out_err_no_arch_destroy_vm: 756 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 757 for (i = 0; i < KVM_NR_BUSES; i++) 758 kfree(kvm_get_bus(kvm, i)); 759 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 760 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 761 cleanup_srcu_struct(&kvm->irq_srcu); 762 out_err_no_irq_srcu: 763 cleanup_srcu_struct(&kvm->srcu); 764 out_err_no_srcu: 765 kvm_arch_free_vm(kvm); 766 mmdrop(current->mm); 767 return ERR_PTR(r); 768 } 769 770 static void kvm_destroy_devices(struct kvm *kvm) 771 { 772 struct kvm_device *dev, *tmp; 773 774 /* 775 * We do not need to take the kvm->lock here, because nobody else 776 * has a reference to the struct kvm at this point and therefore 777 * cannot access the devices list anyhow. 778 */ 779 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 780 list_del(&dev->vm_node); 781 dev->ops->destroy(dev); 782 } 783 } 784 785 static void kvm_destroy_vm(struct kvm *kvm) 786 { 787 int i; 788 struct mm_struct *mm = kvm->mm; 789 790 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 791 kvm_destroy_vm_debugfs(kvm); 792 kvm_arch_sync_events(kvm); 793 mutex_lock(&kvm_lock); 794 list_del(&kvm->vm_list); 795 mutex_unlock(&kvm_lock); 796 kvm_arch_pre_destroy_vm(kvm); 797 798 kvm_free_irq_routing(kvm); 799 for (i = 0; i < KVM_NR_BUSES; i++) { 800 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 801 802 if (bus) 803 kvm_io_bus_destroy(bus); 804 kvm->buses[i] = NULL; 805 } 806 kvm_coalesced_mmio_free(kvm); 807 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 808 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 809 #else 810 kvm_arch_flush_shadow_all(kvm); 811 #endif 812 kvm_arch_destroy_vm(kvm); 813 kvm_destroy_devices(kvm); 814 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 815 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 816 cleanup_srcu_struct(&kvm->irq_srcu); 817 cleanup_srcu_struct(&kvm->srcu); 818 kvm_arch_free_vm(kvm); 819 preempt_notifier_dec(); 820 hardware_disable_all(); 821 mmdrop(mm); 822 } 823 824 void kvm_get_kvm(struct kvm *kvm) 825 { 826 refcount_inc(&kvm->users_count); 827 } 828 EXPORT_SYMBOL_GPL(kvm_get_kvm); 829 830 void kvm_put_kvm(struct kvm *kvm) 831 { 832 if (refcount_dec_and_test(&kvm->users_count)) 833 kvm_destroy_vm(kvm); 834 } 835 EXPORT_SYMBOL_GPL(kvm_put_kvm); 836 837 /* 838 * Used to put a reference that was taken on behalf of an object associated 839 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 840 * of the new file descriptor fails and the reference cannot be transferred to 841 * its final owner. In such cases, the caller is still actively using @kvm and 842 * will fail miserably if the refcount unexpectedly hits zero. 843 */ 844 void kvm_put_kvm_no_destroy(struct kvm *kvm) 845 { 846 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 847 } 848 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 849 850 static int kvm_vm_release(struct inode *inode, struct file *filp) 851 { 852 struct kvm *kvm = filp->private_data; 853 854 kvm_irqfd_release(kvm); 855 856 kvm_put_kvm(kvm); 857 return 0; 858 } 859 860 /* 861 * Allocation size is twice as large as the actual dirty bitmap size. 862 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 863 */ 864 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 865 { 866 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 867 868 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 869 if (!memslot->dirty_bitmap) 870 return -ENOMEM; 871 872 return 0; 873 } 874 875 /* 876 * Insert memslot and re-sort memslots based on their GFN, 877 * so binary search could be used to lookup GFN. 878 * Sorting algorithm takes advantage of having initially 879 * sorted array and known changed memslot position. 880 */ 881 static void update_memslots(struct kvm_memslots *slots, 882 struct kvm_memory_slot *new, 883 enum kvm_mr_change change) 884 { 885 int id = new->id; 886 int i = slots->id_to_index[id]; 887 struct kvm_memory_slot *mslots = slots->memslots; 888 889 WARN_ON(mslots[i].id != id); 890 switch (change) { 891 case KVM_MR_CREATE: 892 slots->used_slots++; 893 WARN_ON(mslots[i].npages || !new->npages); 894 break; 895 case KVM_MR_DELETE: 896 slots->used_slots--; 897 WARN_ON(new->npages || !mslots[i].npages); 898 break; 899 default: 900 break; 901 } 902 903 while (i < KVM_MEM_SLOTS_NUM - 1 && 904 new->base_gfn <= mslots[i + 1].base_gfn) { 905 if (!mslots[i + 1].npages) 906 break; 907 mslots[i] = mslots[i + 1]; 908 slots->id_to_index[mslots[i].id] = i; 909 i++; 910 } 911 912 /* 913 * The ">=" is needed when creating a slot with base_gfn == 0, 914 * so that it moves before all those with base_gfn == npages == 0. 915 * 916 * On the other hand, if new->npages is zero, the above loop has 917 * already left i pointing to the beginning of the empty part of 918 * mslots, and the ">=" would move the hole backwards in this 919 * case---which is wrong. So skip the loop when deleting a slot. 920 */ 921 if (new->npages) { 922 while (i > 0 && 923 new->base_gfn >= mslots[i - 1].base_gfn) { 924 mslots[i] = mslots[i - 1]; 925 slots->id_to_index[mslots[i].id] = i; 926 i--; 927 } 928 } else 929 WARN_ON_ONCE(i != slots->used_slots); 930 931 mslots[i] = *new; 932 slots->id_to_index[mslots[i].id] = i; 933 } 934 935 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 936 { 937 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 938 939 #ifdef __KVM_HAVE_READONLY_MEM 940 valid_flags |= KVM_MEM_READONLY; 941 #endif 942 943 if (mem->flags & ~valid_flags) 944 return -EINVAL; 945 946 return 0; 947 } 948 949 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 950 int as_id, struct kvm_memslots *slots) 951 { 952 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 953 u64 gen = old_memslots->generation; 954 955 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 956 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 957 958 rcu_assign_pointer(kvm->memslots[as_id], slots); 959 synchronize_srcu_expedited(&kvm->srcu); 960 961 /* 962 * Increment the new memslot generation a second time, dropping the 963 * update in-progress flag and incrementing the generation based on 964 * the number of address spaces. This provides a unique and easily 965 * identifiable generation number while the memslots are in flux. 966 */ 967 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 968 969 /* 970 * Generations must be unique even across address spaces. We do not need 971 * a global counter for that, instead the generation space is evenly split 972 * across address spaces. For example, with two address spaces, address 973 * space 0 will use generations 0, 2, 4, ... while address space 1 will 974 * use generations 1, 3, 5, ... 975 */ 976 gen += KVM_ADDRESS_SPACE_NUM; 977 978 kvm_arch_memslots_updated(kvm, gen); 979 980 slots->generation = gen; 981 982 return old_memslots; 983 } 984 985 /* 986 * Allocate some memory and give it an address in the guest physical address 987 * space. 988 * 989 * Discontiguous memory is allowed, mostly for framebuffers. 990 * 991 * Must be called holding kvm->slots_lock for write. 992 */ 993 int __kvm_set_memory_region(struct kvm *kvm, 994 const struct kvm_userspace_memory_region *mem) 995 { 996 int r; 997 gfn_t base_gfn; 998 unsigned long npages; 999 struct kvm_memory_slot *slot; 1000 struct kvm_memory_slot old, new; 1001 struct kvm_memslots *slots = NULL, *old_memslots; 1002 int as_id, id; 1003 enum kvm_mr_change change; 1004 1005 r = check_memory_region_flags(mem); 1006 if (r) 1007 goto out; 1008 1009 r = -EINVAL; 1010 as_id = mem->slot >> 16; 1011 id = (u16)mem->slot; 1012 1013 /* General sanity checks */ 1014 if (mem->memory_size & (PAGE_SIZE - 1)) 1015 goto out; 1016 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1017 goto out; 1018 /* We can read the guest memory with __xxx_user() later on. */ 1019 if ((id < KVM_USER_MEM_SLOTS) && 1020 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1021 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1022 mem->memory_size))) 1023 goto out; 1024 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1025 goto out; 1026 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1027 goto out; 1028 1029 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1030 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1031 npages = mem->memory_size >> PAGE_SHIFT; 1032 1033 if (npages > KVM_MEM_MAX_NR_PAGES) 1034 goto out; 1035 1036 new = old = *slot; 1037 1038 new.id = id; 1039 new.base_gfn = base_gfn; 1040 new.npages = npages; 1041 new.flags = mem->flags; 1042 1043 if (npages) { 1044 if (!old.npages) 1045 change = KVM_MR_CREATE; 1046 else { /* Modify an existing slot. */ 1047 if ((mem->userspace_addr != old.userspace_addr) || 1048 (npages != old.npages) || 1049 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1050 goto out; 1051 1052 if (base_gfn != old.base_gfn) 1053 change = KVM_MR_MOVE; 1054 else if (new.flags != old.flags) 1055 change = KVM_MR_FLAGS_ONLY; 1056 else { /* Nothing to change. */ 1057 r = 0; 1058 goto out; 1059 } 1060 } 1061 } else { 1062 if (!old.npages) 1063 goto out; 1064 1065 change = KVM_MR_DELETE; 1066 new.base_gfn = 0; 1067 new.flags = 0; 1068 } 1069 1070 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1071 /* Check for overlaps */ 1072 r = -EEXIST; 1073 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1074 if (slot->id == id) 1075 continue; 1076 if (!((base_gfn + npages <= slot->base_gfn) || 1077 (base_gfn >= slot->base_gfn + slot->npages))) 1078 goto out; 1079 } 1080 } 1081 1082 /* Free page dirty bitmap if unneeded */ 1083 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1084 new.dirty_bitmap = NULL; 1085 1086 r = -ENOMEM; 1087 if (change == KVM_MR_CREATE) { 1088 new.userspace_addr = mem->userspace_addr; 1089 1090 if (kvm_arch_create_memslot(kvm, &new, npages)) 1091 goto out_free; 1092 } 1093 1094 /* Allocate page dirty bitmap if needed */ 1095 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1096 if (kvm_create_dirty_bitmap(&new) < 0) 1097 goto out_free; 1098 } 1099 1100 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1101 if (!slots) 1102 goto out_free; 1103 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1104 1105 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1106 slot = id_to_memslot(slots, id); 1107 slot->flags |= KVM_MEMSLOT_INVALID; 1108 1109 old_memslots = install_new_memslots(kvm, as_id, slots); 1110 1111 /* From this point no new shadow pages pointing to a deleted, 1112 * or moved, memslot will be created. 1113 * 1114 * validation of sp->gfn happens in: 1115 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1116 * - kvm_is_visible_gfn (mmu_check_root) 1117 */ 1118 kvm_arch_flush_shadow_memslot(kvm, slot); 1119 1120 /* 1121 * We can re-use the old_memslots from above, the only difference 1122 * from the currently installed memslots is the invalid flag. This 1123 * will get overwritten by update_memslots anyway. 1124 */ 1125 slots = old_memslots; 1126 } 1127 1128 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1129 if (r) 1130 goto out_slots; 1131 1132 /* actual memory is freed via old in kvm_free_memslot below */ 1133 if (change == KVM_MR_DELETE) { 1134 new.dirty_bitmap = NULL; 1135 memset(&new.arch, 0, sizeof(new.arch)); 1136 } 1137 1138 update_memslots(slots, &new, change); 1139 old_memslots = install_new_memslots(kvm, as_id, slots); 1140 1141 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1142 1143 kvm_free_memslot(kvm, &old, &new); 1144 kvfree(old_memslots); 1145 return 0; 1146 1147 out_slots: 1148 kvfree(slots); 1149 out_free: 1150 kvm_free_memslot(kvm, &new, &old); 1151 out: 1152 return r; 1153 } 1154 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1155 1156 int kvm_set_memory_region(struct kvm *kvm, 1157 const struct kvm_userspace_memory_region *mem) 1158 { 1159 int r; 1160 1161 mutex_lock(&kvm->slots_lock); 1162 r = __kvm_set_memory_region(kvm, mem); 1163 mutex_unlock(&kvm->slots_lock); 1164 return r; 1165 } 1166 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1167 1168 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1169 struct kvm_userspace_memory_region *mem) 1170 { 1171 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1172 return -EINVAL; 1173 1174 return kvm_set_memory_region(kvm, mem); 1175 } 1176 1177 int kvm_get_dirty_log(struct kvm *kvm, 1178 struct kvm_dirty_log *log, int *is_dirty) 1179 { 1180 struct kvm_memslots *slots; 1181 struct kvm_memory_slot *memslot; 1182 int i, as_id, id; 1183 unsigned long n; 1184 unsigned long any = 0; 1185 1186 as_id = log->slot >> 16; 1187 id = (u16)log->slot; 1188 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1189 return -EINVAL; 1190 1191 slots = __kvm_memslots(kvm, as_id); 1192 memslot = id_to_memslot(slots, id); 1193 if (!memslot->dirty_bitmap) 1194 return -ENOENT; 1195 1196 n = kvm_dirty_bitmap_bytes(memslot); 1197 1198 for (i = 0; !any && i < n/sizeof(long); ++i) 1199 any = memslot->dirty_bitmap[i]; 1200 1201 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1202 return -EFAULT; 1203 1204 if (any) 1205 *is_dirty = 1; 1206 return 0; 1207 } 1208 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1209 1210 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1211 /** 1212 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1213 * and reenable dirty page tracking for the corresponding pages. 1214 * @kvm: pointer to kvm instance 1215 * @log: slot id and address to which we copy the log 1216 * @flush: true if TLB flush is needed by caller 1217 * 1218 * We need to keep it in mind that VCPU threads can write to the bitmap 1219 * concurrently. So, to avoid losing track of dirty pages we keep the 1220 * following order: 1221 * 1222 * 1. Take a snapshot of the bit and clear it if needed. 1223 * 2. Write protect the corresponding page. 1224 * 3. Copy the snapshot to the userspace. 1225 * 4. Upon return caller flushes TLB's if needed. 1226 * 1227 * Between 2 and 4, the guest may write to the page using the remaining TLB 1228 * entry. This is not a problem because the page is reported dirty using 1229 * the snapshot taken before and step 4 ensures that writes done after 1230 * exiting to userspace will be logged for the next call. 1231 * 1232 */ 1233 int kvm_get_dirty_log_protect(struct kvm *kvm, 1234 struct kvm_dirty_log *log, bool *flush) 1235 { 1236 struct kvm_memslots *slots; 1237 struct kvm_memory_slot *memslot; 1238 int i, as_id, id; 1239 unsigned long n; 1240 unsigned long *dirty_bitmap; 1241 unsigned long *dirty_bitmap_buffer; 1242 1243 as_id = log->slot >> 16; 1244 id = (u16)log->slot; 1245 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1246 return -EINVAL; 1247 1248 slots = __kvm_memslots(kvm, as_id); 1249 memslot = id_to_memslot(slots, id); 1250 1251 dirty_bitmap = memslot->dirty_bitmap; 1252 if (!dirty_bitmap) 1253 return -ENOENT; 1254 1255 n = kvm_dirty_bitmap_bytes(memslot); 1256 *flush = false; 1257 if (kvm->manual_dirty_log_protect) { 1258 /* 1259 * Unlike kvm_get_dirty_log, we always return false in *flush, 1260 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1261 * is some code duplication between this function and 1262 * kvm_get_dirty_log, but hopefully all architecture 1263 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1264 * can be eliminated. 1265 */ 1266 dirty_bitmap_buffer = dirty_bitmap; 1267 } else { 1268 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1269 memset(dirty_bitmap_buffer, 0, n); 1270 1271 spin_lock(&kvm->mmu_lock); 1272 for (i = 0; i < n / sizeof(long); i++) { 1273 unsigned long mask; 1274 gfn_t offset; 1275 1276 if (!dirty_bitmap[i]) 1277 continue; 1278 1279 *flush = true; 1280 mask = xchg(&dirty_bitmap[i], 0); 1281 dirty_bitmap_buffer[i] = mask; 1282 1283 offset = i * BITS_PER_LONG; 1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1285 offset, mask); 1286 } 1287 spin_unlock(&kvm->mmu_lock); 1288 } 1289 1290 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1291 return -EFAULT; 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1295 1296 /** 1297 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1298 * and reenable dirty page tracking for the corresponding pages. 1299 * @kvm: pointer to kvm instance 1300 * @log: slot id and address from which to fetch the bitmap of dirty pages 1301 * @flush: true if TLB flush is needed by caller 1302 */ 1303 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1304 struct kvm_clear_dirty_log *log, bool *flush) 1305 { 1306 struct kvm_memslots *slots; 1307 struct kvm_memory_slot *memslot; 1308 int as_id, id; 1309 gfn_t offset; 1310 unsigned long i, n; 1311 unsigned long *dirty_bitmap; 1312 unsigned long *dirty_bitmap_buffer; 1313 1314 as_id = log->slot >> 16; 1315 id = (u16)log->slot; 1316 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1317 return -EINVAL; 1318 1319 if (log->first_page & 63) 1320 return -EINVAL; 1321 1322 slots = __kvm_memslots(kvm, as_id); 1323 memslot = id_to_memslot(slots, id); 1324 1325 dirty_bitmap = memslot->dirty_bitmap; 1326 if (!dirty_bitmap) 1327 return -ENOENT; 1328 1329 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1330 1331 if (log->first_page > memslot->npages || 1332 log->num_pages > memslot->npages - log->first_page || 1333 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1334 return -EINVAL; 1335 1336 *flush = false; 1337 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1338 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1339 return -EFAULT; 1340 1341 spin_lock(&kvm->mmu_lock); 1342 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1343 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1344 i++, offset += BITS_PER_LONG) { 1345 unsigned long mask = *dirty_bitmap_buffer++; 1346 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1347 if (!mask) 1348 continue; 1349 1350 mask &= atomic_long_fetch_andnot(mask, p); 1351 1352 /* 1353 * mask contains the bits that really have been cleared. This 1354 * never includes any bits beyond the length of the memslot (if 1355 * the length is not aligned to 64 pages), therefore it is not 1356 * a problem if userspace sets them in log->dirty_bitmap. 1357 */ 1358 if (mask) { 1359 *flush = true; 1360 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1361 offset, mask); 1362 } 1363 } 1364 spin_unlock(&kvm->mmu_lock); 1365 1366 return 0; 1367 } 1368 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1369 #endif 1370 1371 bool kvm_largepages_enabled(void) 1372 { 1373 return largepages_enabled; 1374 } 1375 1376 void kvm_disable_largepages(void) 1377 { 1378 largepages_enabled = false; 1379 } 1380 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1381 1382 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1383 { 1384 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1385 } 1386 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1387 1388 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1389 { 1390 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1391 } 1392 1393 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1394 { 1395 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1396 1397 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1398 memslot->flags & KVM_MEMSLOT_INVALID) 1399 return false; 1400 1401 return true; 1402 } 1403 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1404 1405 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1406 { 1407 struct vm_area_struct *vma; 1408 unsigned long addr, size; 1409 1410 size = PAGE_SIZE; 1411 1412 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1413 if (kvm_is_error_hva(addr)) 1414 return PAGE_SIZE; 1415 1416 down_read(¤t->mm->mmap_sem); 1417 vma = find_vma(current->mm, addr); 1418 if (!vma) 1419 goto out; 1420 1421 size = vma_kernel_pagesize(vma); 1422 1423 out: 1424 up_read(¤t->mm->mmap_sem); 1425 1426 return size; 1427 } 1428 1429 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1430 { 1431 return slot->flags & KVM_MEM_READONLY; 1432 } 1433 1434 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1435 gfn_t *nr_pages, bool write) 1436 { 1437 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1438 return KVM_HVA_ERR_BAD; 1439 1440 if (memslot_is_readonly(slot) && write) 1441 return KVM_HVA_ERR_RO_BAD; 1442 1443 if (nr_pages) 1444 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1445 1446 return __gfn_to_hva_memslot(slot, gfn); 1447 } 1448 1449 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1450 gfn_t *nr_pages) 1451 { 1452 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1453 } 1454 1455 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1456 gfn_t gfn) 1457 { 1458 return gfn_to_hva_many(slot, gfn, NULL); 1459 } 1460 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1461 1462 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1463 { 1464 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1465 } 1466 EXPORT_SYMBOL_GPL(gfn_to_hva); 1467 1468 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1469 { 1470 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1471 } 1472 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1473 1474 /* 1475 * Return the hva of a @gfn and the R/W attribute if possible. 1476 * 1477 * @slot: the kvm_memory_slot which contains @gfn 1478 * @gfn: the gfn to be translated 1479 * @writable: used to return the read/write attribute of the @slot if the hva 1480 * is valid and @writable is not NULL 1481 */ 1482 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1483 gfn_t gfn, bool *writable) 1484 { 1485 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1486 1487 if (!kvm_is_error_hva(hva) && writable) 1488 *writable = !memslot_is_readonly(slot); 1489 1490 return hva; 1491 } 1492 1493 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1494 { 1495 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1496 1497 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1498 } 1499 1500 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1501 { 1502 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1503 1504 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1505 } 1506 1507 static inline int check_user_page_hwpoison(unsigned long addr) 1508 { 1509 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1510 1511 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1512 return rc == -EHWPOISON; 1513 } 1514 1515 /* 1516 * The fast path to get the writable pfn which will be stored in @pfn, 1517 * true indicates success, otherwise false is returned. It's also the 1518 * only part that runs if we can in atomic context. 1519 */ 1520 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1521 bool *writable, kvm_pfn_t *pfn) 1522 { 1523 struct page *page[1]; 1524 int npages; 1525 1526 /* 1527 * Fast pin a writable pfn only if it is a write fault request 1528 * or the caller allows to map a writable pfn for a read fault 1529 * request. 1530 */ 1531 if (!(write_fault || writable)) 1532 return false; 1533 1534 npages = __get_user_pages_fast(addr, 1, 1, page); 1535 if (npages == 1) { 1536 *pfn = page_to_pfn(page[0]); 1537 1538 if (writable) 1539 *writable = true; 1540 return true; 1541 } 1542 1543 return false; 1544 } 1545 1546 /* 1547 * The slow path to get the pfn of the specified host virtual address, 1548 * 1 indicates success, -errno is returned if error is detected. 1549 */ 1550 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1551 bool *writable, kvm_pfn_t *pfn) 1552 { 1553 unsigned int flags = FOLL_HWPOISON; 1554 struct page *page; 1555 int npages = 0; 1556 1557 might_sleep(); 1558 1559 if (writable) 1560 *writable = write_fault; 1561 1562 if (write_fault) 1563 flags |= FOLL_WRITE; 1564 if (async) 1565 flags |= FOLL_NOWAIT; 1566 1567 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1568 if (npages != 1) 1569 return npages; 1570 1571 /* map read fault as writable if possible */ 1572 if (unlikely(!write_fault) && writable) { 1573 struct page *wpage; 1574 1575 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1576 *writable = true; 1577 put_page(page); 1578 page = wpage; 1579 } 1580 } 1581 *pfn = page_to_pfn(page); 1582 return npages; 1583 } 1584 1585 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1586 { 1587 if (unlikely(!(vma->vm_flags & VM_READ))) 1588 return false; 1589 1590 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1591 return false; 1592 1593 return true; 1594 } 1595 1596 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1597 unsigned long addr, bool *async, 1598 bool write_fault, bool *writable, 1599 kvm_pfn_t *p_pfn) 1600 { 1601 unsigned long pfn; 1602 int r; 1603 1604 r = follow_pfn(vma, addr, &pfn); 1605 if (r) { 1606 /* 1607 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1608 * not call the fault handler, so do it here. 1609 */ 1610 bool unlocked = false; 1611 r = fixup_user_fault(current, current->mm, addr, 1612 (write_fault ? FAULT_FLAG_WRITE : 0), 1613 &unlocked); 1614 if (unlocked) 1615 return -EAGAIN; 1616 if (r) 1617 return r; 1618 1619 r = follow_pfn(vma, addr, &pfn); 1620 if (r) 1621 return r; 1622 1623 } 1624 1625 if (writable) 1626 *writable = true; 1627 1628 /* 1629 * Get a reference here because callers of *hva_to_pfn* and 1630 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1631 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1632 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1633 * simply do nothing for reserved pfns. 1634 * 1635 * Whoever called remap_pfn_range is also going to call e.g. 1636 * unmap_mapping_range before the underlying pages are freed, 1637 * causing a call to our MMU notifier. 1638 */ 1639 kvm_get_pfn(pfn); 1640 1641 *p_pfn = pfn; 1642 return 0; 1643 } 1644 1645 /* 1646 * Pin guest page in memory and return its pfn. 1647 * @addr: host virtual address which maps memory to the guest 1648 * @atomic: whether this function can sleep 1649 * @async: whether this function need to wait IO complete if the 1650 * host page is not in the memory 1651 * @write_fault: whether we should get a writable host page 1652 * @writable: whether it allows to map a writable host page for !@write_fault 1653 * 1654 * The function will map a writable host page for these two cases: 1655 * 1): @write_fault = true 1656 * 2): @write_fault = false && @writable, @writable will tell the caller 1657 * whether the mapping is writable. 1658 */ 1659 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1660 bool write_fault, bool *writable) 1661 { 1662 struct vm_area_struct *vma; 1663 kvm_pfn_t pfn = 0; 1664 int npages, r; 1665 1666 /* we can do it either atomically or asynchronously, not both */ 1667 BUG_ON(atomic && async); 1668 1669 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1670 return pfn; 1671 1672 if (atomic) 1673 return KVM_PFN_ERR_FAULT; 1674 1675 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1676 if (npages == 1) 1677 return pfn; 1678 1679 down_read(¤t->mm->mmap_sem); 1680 if (npages == -EHWPOISON || 1681 (!async && check_user_page_hwpoison(addr))) { 1682 pfn = KVM_PFN_ERR_HWPOISON; 1683 goto exit; 1684 } 1685 1686 retry: 1687 vma = find_vma_intersection(current->mm, addr, addr + 1); 1688 1689 if (vma == NULL) 1690 pfn = KVM_PFN_ERR_FAULT; 1691 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1692 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1693 if (r == -EAGAIN) 1694 goto retry; 1695 if (r < 0) 1696 pfn = KVM_PFN_ERR_FAULT; 1697 } else { 1698 if (async && vma_is_valid(vma, write_fault)) 1699 *async = true; 1700 pfn = KVM_PFN_ERR_FAULT; 1701 } 1702 exit: 1703 up_read(¤t->mm->mmap_sem); 1704 return pfn; 1705 } 1706 1707 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1708 bool atomic, bool *async, bool write_fault, 1709 bool *writable) 1710 { 1711 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1712 1713 if (addr == KVM_HVA_ERR_RO_BAD) { 1714 if (writable) 1715 *writable = false; 1716 return KVM_PFN_ERR_RO_FAULT; 1717 } 1718 1719 if (kvm_is_error_hva(addr)) { 1720 if (writable) 1721 *writable = false; 1722 return KVM_PFN_NOSLOT; 1723 } 1724 1725 /* Do not map writable pfn in the readonly memslot. */ 1726 if (writable && memslot_is_readonly(slot)) { 1727 *writable = false; 1728 writable = NULL; 1729 } 1730 1731 return hva_to_pfn(addr, atomic, async, write_fault, 1732 writable); 1733 } 1734 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1735 1736 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1737 bool *writable) 1738 { 1739 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1740 write_fault, writable); 1741 } 1742 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1743 1744 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1745 { 1746 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1747 } 1748 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1749 1750 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1751 { 1752 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1753 } 1754 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1755 1756 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1757 { 1758 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1759 } 1760 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1761 1762 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1763 { 1764 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1767 1768 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1769 { 1770 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1771 } 1772 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1773 1774 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1775 { 1776 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1779 1780 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1781 struct page **pages, int nr_pages) 1782 { 1783 unsigned long addr; 1784 gfn_t entry = 0; 1785 1786 addr = gfn_to_hva_many(slot, gfn, &entry); 1787 if (kvm_is_error_hva(addr)) 1788 return -1; 1789 1790 if (entry < nr_pages) 1791 return 0; 1792 1793 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1794 } 1795 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1796 1797 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1798 { 1799 if (is_error_noslot_pfn(pfn)) 1800 return KVM_ERR_PTR_BAD_PAGE; 1801 1802 if (kvm_is_reserved_pfn(pfn)) { 1803 WARN_ON(1); 1804 return KVM_ERR_PTR_BAD_PAGE; 1805 } 1806 1807 return pfn_to_page(pfn); 1808 } 1809 1810 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1811 { 1812 kvm_pfn_t pfn; 1813 1814 pfn = gfn_to_pfn(kvm, gfn); 1815 1816 return kvm_pfn_to_page(pfn); 1817 } 1818 EXPORT_SYMBOL_GPL(gfn_to_page); 1819 1820 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 1821 { 1822 if (pfn == 0) 1823 return; 1824 1825 if (cache) 1826 cache->pfn = cache->gfn = 0; 1827 1828 if (dirty) 1829 kvm_release_pfn_dirty(pfn); 1830 else 1831 kvm_release_pfn_clean(pfn); 1832 } 1833 1834 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 1835 struct gfn_to_pfn_cache *cache, u64 gen) 1836 { 1837 kvm_release_pfn(cache->pfn, cache->dirty, cache); 1838 1839 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 1840 cache->gfn = gfn; 1841 cache->dirty = false; 1842 cache->generation = gen; 1843 } 1844 1845 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 1846 struct kvm_host_map *map, 1847 struct gfn_to_pfn_cache *cache, 1848 bool atomic) 1849 { 1850 kvm_pfn_t pfn; 1851 void *hva = NULL; 1852 struct page *page = KVM_UNMAPPED_PAGE; 1853 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 1854 u64 gen = slots->generation; 1855 1856 if (!map) 1857 return -EINVAL; 1858 1859 if (cache) { 1860 if (!cache->pfn || cache->gfn != gfn || 1861 cache->generation != gen) { 1862 if (atomic) 1863 return -EAGAIN; 1864 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 1865 } 1866 pfn = cache->pfn; 1867 } else { 1868 if (atomic) 1869 return -EAGAIN; 1870 pfn = gfn_to_pfn_memslot(slot, gfn); 1871 } 1872 if (is_error_noslot_pfn(pfn)) 1873 return -EINVAL; 1874 1875 if (pfn_valid(pfn)) { 1876 page = pfn_to_page(pfn); 1877 if (atomic) 1878 hva = kmap_atomic(page); 1879 else 1880 hva = kmap(page); 1881 #ifdef CONFIG_HAS_IOMEM 1882 } else if (!atomic) { 1883 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1884 } else { 1885 return -EINVAL; 1886 #endif 1887 } 1888 1889 if (!hva) 1890 return -EFAULT; 1891 1892 map->page = page; 1893 map->hva = hva; 1894 map->pfn = pfn; 1895 map->gfn = gfn; 1896 1897 return 0; 1898 } 1899 1900 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 1901 struct gfn_to_pfn_cache *cache, bool atomic) 1902 { 1903 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 1904 cache, atomic); 1905 } 1906 EXPORT_SYMBOL_GPL(kvm_map_gfn); 1907 1908 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1909 { 1910 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 1911 NULL, false); 1912 } 1913 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1914 1915 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 1916 struct kvm_host_map *map, 1917 struct gfn_to_pfn_cache *cache, 1918 bool dirty, bool atomic) 1919 { 1920 if (!map) 1921 return; 1922 1923 if (!map->hva) 1924 return; 1925 1926 if (map->page != KVM_UNMAPPED_PAGE) { 1927 if (atomic) 1928 kunmap_atomic(map->hva); 1929 else 1930 kunmap(map->page); 1931 } 1932 #ifdef CONFIG_HAS_IOMEM 1933 else if (!atomic) 1934 memunmap(map->hva); 1935 else 1936 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 1937 #endif 1938 1939 if (dirty) 1940 mark_page_dirty_in_slot(memslot, map->gfn); 1941 1942 if (cache) 1943 cache->dirty |= dirty; 1944 else 1945 kvm_release_pfn(map->pfn, dirty, NULL); 1946 1947 map->hva = NULL; 1948 map->page = NULL; 1949 } 1950 1951 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1952 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 1953 { 1954 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 1955 cache, dirty, atomic); 1956 return 0; 1957 } 1958 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 1959 1960 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 1961 { 1962 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 1963 dirty, false); 1964 } 1965 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1966 1967 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1968 { 1969 kvm_pfn_t pfn; 1970 1971 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1972 1973 return kvm_pfn_to_page(pfn); 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1976 1977 void kvm_release_page_clean(struct page *page) 1978 { 1979 WARN_ON(is_error_page(page)); 1980 1981 kvm_release_pfn_clean(page_to_pfn(page)); 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1984 1985 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1986 { 1987 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1988 put_page(pfn_to_page(pfn)); 1989 } 1990 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1991 1992 void kvm_release_page_dirty(struct page *page) 1993 { 1994 WARN_ON(is_error_page(page)); 1995 1996 kvm_release_pfn_dirty(page_to_pfn(page)); 1997 } 1998 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1999 2000 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2001 { 2002 kvm_set_pfn_dirty(pfn); 2003 kvm_release_pfn_clean(pfn); 2004 } 2005 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2006 2007 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2008 { 2009 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2010 SetPageDirty(pfn_to_page(pfn)); 2011 } 2012 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2013 2014 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2015 { 2016 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2017 mark_page_accessed(pfn_to_page(pfn)); 2018 } 2019 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2020 2021 void kvm_get_pfn(kvm_pfn_t pfn) 2022 { 2023 if (!kvm_is_reserved_pfn(pfn)) 2024 get_page(pfn_to_page(pfn)); 2025 } 2026 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2027 2028 static int next_segment(unsigned long len, int offset) 2029 { 2030 if (len > PAGE_SIZE - offset) 2031 return PAGE_SIZE - offset; 2032 else 2033 return len; 2034 } 2035 2036 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2037 void *data, int offset, int len) 2038 { 2039 int r; 2040 unsigned long addr; 2041 2042 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2043 if (kvm_is_error_hva(addr)) 2044 return -EFAULT; 2045 r = __copy_from_user(data, (void __user *)addr + offset, len); 2046 if (r) 2047 return -EFAULT; 2048 return 0; 2049 } 2050 2051 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2052 int len) 2053 { 2054 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2055 2056 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2059 2060 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2061 int offset, int len) 2062 { 2063 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2064 2065 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2066 } 2067 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2068 2069 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2070 { 2071 gfn_t gfn = gpa >> PAGE_SHIFT; 2072 int seg; 2073 int offset = offset_in_page(gpa); 2074 int ret; 2075 2076 while ((seg = next_segment(len, offset)) != 0) { 2077 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2078 if (ret < 0) 2079 return ret; 2080 offset = 0; 2081 len -= seg; 2082 data += seg; 2083 ++gfn; 2084 } 2085 return 0; 2086 } 2087 EXPORT_SYMBOL_GPL(kvm_read_guest); 2088 2089 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2090 { 2091 gfn_t gfn = gpa >> PAGE_SHIFT; 2092 int seg; 2093 int offset = offset_in_page(gpa); 2094 int ret; 2095 2096 while ((seg = next_segment(len, offset)) != 0) { 2097 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2098 if (ret < 0) 2099 return ret; 2100 offset = 0; 2101 len -= seg; 2102 data += seg; 2103 ++gfn; 2104 } 2105 return 0; 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2108 2109 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2110 void *data, int offset, unsigned long len) 2111 { 2112 int r; 2113 unsigned long addr; 2114 2115 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2116 if (kvm_is_error_hva(addr)) 2117 return -EFAULT; 2118 pagefault_disable(); 2119 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2120 pagefault_enable(); 2121 if (r) 2122 return -EFAULT; 2123 return 0; 2124 } 2125 2126 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2127 void *data, unsigned long len) 2128 { 2129 gfn_t gfn = gpa >> PAGE_SHIFT; 2130 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2131 int offset = offset_in_page(gpa); 2132 2133 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2134 } 2135 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2136 2137 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2138 const void *data, int offset, int len) 2139 { 2140 int r; 2141 unsigned long addr; 2142 2143 addr = gfn_to_hva_memslot(memslot, gfn); 2144 if (kvm_is_error_hva(addr)) 2145 return -EFAULT; 2146 r = __copy_to_user((void __user *)addr + offset, data, len); 2147 if (r) 2148 return -EFAULT; 2149 mark_page_dirty_in_slot(memslot, gfn); 2150 return 0; 2151 } 2152 2153 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2154 const void *data, int offset, int len) 2155 { 2156 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2157 2158 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2159 } 2160 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2161 2162 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2163 const void *data, int offset, int len) 2164 { 2165 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2166 2167 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2168 } 2169 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2170 2171 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2172 unsigned long len) 2173 { 2174 gfn_t gfn = gpa >> PAGE_SHIFT; 2175 int seg; 2176 int offset = offset_in_page(gpa); 2177 int ret; 2178 2179 while ((seg = next_segment(len, offset)) != 0) { 2180 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2181 if (ret < 0) 2182 return ret; 2183 offset = 0; 2184 len -= seg; 2185 data += seg; 2186 ++gfn; 2187 } 2188 return 0; 2189 } 2190 EXPORT_SYMBOL_GPL(kvm_write_guest); 2191 2192 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2193 unsigned long len) 2194 { 2195 gfn_t gfn = gpa >> PAGE_SHIFT; 2196 int seg; 2197 int offset = offset_in_page(gpa); 2198 int ret; 2199 2200 while ((seg = next_segment(len, offset)) != 0) { 2201 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2202 if (ret < 0) 2203 return ret; 2204 offset = 0; 2205 len -= seg; 2206 data += seg; 2207 ++gfn; 2208 } 2209 return 0; 2210 } 2211 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2212 2213 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2214 struct gfn_to_hva_cache *ghc, 2215 gpa_t gpa, unsigned long len) 2216 { 2217 int offset = offset_in_page(gpa); 2218 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2219 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2220 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2221 gfn_t nr_pages_avail; 2222 2223 /* Update ghc->generation before performing any error checks. */ 2224 ghc->generation = slots->generation; 2225 2226 if (start_gfn > end_gfn) { 2227 ghc->hva = KVM_HVA_ERR_BAD; 2228 return -EINVAL; 2229 } 2230 2231 /* 2232 * If the requested region crosses two memslots, we still 2233 * verify that the entire region is valid here. 2234 */ 2235 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2236 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2237 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2238 &nr_pages_avail); 2239 if (kvm_is_error_hva(ghc->hva)) 2240 return -EFAULT; 2241 } 2242 2243 /* Use the slow path for cross page reads and writes. */ 2244 if (nr_pages_needed == 1) 2245 ghc->hva += offset; 2246 else 2247 ghc->memslot = NULL; 2248 2249 ghc->gpa = gpa; 2250 ghc->len = len; 2251 return 0; 2252 } 2253 2254 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2255 gpa_t gpa, unsigned long len) 2256 { 2257 struct kvm_memslots *slots = kvm_memslots(kvm); 2258 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2259 } 2260 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2261 2262 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2263 void *data, unsigned int offset, 2264 unsigned long len) 2265 { 2266 struct kvm_memslots *slots = kvm_memslots(kvm); 2267 int r; 2268 gpa_t gpa = ghc->gpa + offset; 2269 2270 BUG_ON(len + offset > ghc->len); 2271 2272 if (slots->generation != ghc->generation) { 2273 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2274 return -EFAULT; 2275 } 2276 2277 if (kvm_is_error_hva(ghc->hva)) 2278 return -EFAULT; 2279 2280 if (unlikely(!ghc->memslot)) 2281 return kvm_write_guest(kvm, gpa, data, len); 2282 2283 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2284 if (r) 2285 return -EFAULT; 2286 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2287 2288 return 0; 2289 } 2290 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2291 2292 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2293 void *data, unsigned long len) 2294 { 2295 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2296 } 2297 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2298 2299 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2300 void *data, unsigned long len) 2301 { 2302 struct kvm_memslots *slots = kvm_memslots(kvm); 2303 int r; 2304 2305 BUG_ON(len > ghc->len); 2306 2307 if (slots->generation != ghc->generation) { 2308 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2309 return -EFAULT; 2310 } 2311 2312 if (kvm_is_error_hva(ghc->hva)) 2313 return -EFAULT; 2314 2315 if (unlikely(!ghc->memslot)) 2316 return kvm_read_guest(kvm, ghc->gpa, data, len); 2317 2318 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2319 if (r) 2320 return -EFAULT; 2321 2322 return 0; 2323 } 2324 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2325 2326 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2327 { 2328 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2329 2330 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2331 } 2332 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2333 2334 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2335 { 2336 gfn_t gfn = gpa >> PAGE_SHIFT; 2337 int seg; 2338 int offset = offset_in_page(gpa); 2339 int ret; 2340 2341 while ((seg = next_segment(len, offset)) != 0) { 2342 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2343 if (ret < 0) 2344 return ret; 2345 offset = 0; 2346 len -= seg; 2347 ++gfn; 2348 } 2349 return 0; 2350 } 2351 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2352 2353 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2354 gfn_t gfn) 2355 { 2356 if (memslot && memslot->dirty_bitmap) { 2357 unsigned long rel_gfn = gfn - memslot->base_gfn; 2358 2359 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2360 } 2361 } 2362 2363 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2364 { 2365 struct kvm_memory_slot *memslot; 2366 2367 memslot = gfn_to_memslot(kvm, gfn); 2368 mark_page_dirty_in_slot(memslot, gfn); 2369 } 2370 EXPORT_SYMBOL_GPL(mark_page_dirty); 2371 2372 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2373 { 2374 struct kvm_memory_slot *memslot; 2375 2376 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2377 mark_page_dirty_in_slot(memslot, gfn); 2378 } 2379 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2380 2381 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2382 { 2383 if (!vcpu->sigset_active) 2384 return; 2385 2386 /* 2387 * This does a lockless modification of ->real_blocked, which is fine 2388 * because, only current can change ->real_blocked and all readers of 2389 * ->real_blocked don't care as long ->real_blocked is always a subset 2390 * of ->blocked. 2391 */ 2392 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2393 } 2394 2395 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2396 { 2397 if (!vcpu->sigset_active) 2398 return; 2399 2400 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2401 sigemptyset(¤t->real_blocked); 2402 } 2403 2404 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2405 { 2406 unsigned int old, val, grow, grow_start; 2407 2408 old = val = vcpu->halt_poll_ns; 2409 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2410 grow = READ_ONCE(halt_poll_ns_grow); 2411 if (!grow) 2412 goto out; 2413 2414 val *= grow; 2415 if (val < grow_start) 2416 val = grow_start; 2417 2418 if (val > halt_poll_ns) 2419 val = halt_poll_ns; 2420 2421 vcpu->halt_poll_ns = val; 2422 out: 2423 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2424 } 2425 2426 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2427 { 2428 unsigned int old, val, shrink; 2429 2430 old = val = vcpu->halt_poll_ns; 2431 shrink = READ_ONCE(halt_poll_ns_shrink); 2432 if (shrink == 0) 2433 val = 0; 2434 else 2435 val /= shrink; 2436 2437 vcpu->halt_poll_ns = val; 2438 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2439 } 2440 2441 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2442 { 2443 int ret = -EINTR; 2444 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2445 2446 if (kvm_arch_vcpu_runnable(vcpu)) { 2447 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2448 goto out; 2449 } 2450 if (kvm_cpu_has_pending_timer(vcpu)) 2451 goto out; 2452 if (signal_pending(current)) 2453 goto out; 2454 2455 ret = 0; 2456 out: 2457 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2458 return ret; 2459 } 2460 2461 /* 2462 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2463 */ 2464 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2465 { 2466 ktime_t start, cur; 2467 DECLARE_SWAITQUEUE(wait); 2468 bool waited = false; 2469 u64 block_ns; 2470 2471 kvm_arch_vcpu_blocking(vcpu); 2472 2473 start = cur = ktime_get(); 2474 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2475 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2476 2477 ++vcpu->stat.halt_attempted_poll; 2478 do { 2479 /* 2480 * This sets KVM_REQ_UNHALT if an interrupt 2481 * arrives. 2482 */ 2483 if (kvm_vcpu_check_block(vcpu) < 0) { 2484 ++vcpu->stat.halt_successful_poll; 2485 if (!vcpu_valid_wakeup(vcpu)) 2486 ++vcpu->stat.halt_poll_invalid; 2487 goto out; 2488 } 2489 cur = ktime_get(); 2490 } while (single_task_running() && ktime_before(cur, stop)); 2491 } 2492 2493 for (;;) { 2494 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2495 2496 if (kvm_vcpu_check_block(vcpu) < 0) 2497 break; 2498 2499 waited = true; 2500 schedule(); 2501 } 2502 2503 finish_swait(&vcpu->wq, &wait); 2504 cur = ktime_get(); 2505 out: 2506 kvm_arch_vcpu_unblocking(vcpu); 2507 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2508 2509 if (!kvm_arch_no_poll(vcpu)) { 2510 if (!vcpu_valid_wakeup(vcpu)) { 2511 shrink_halt_poll_ns(vcpu); 2512 } else if (halt_poll_ns) { 2513 if (block_ns <= vcpu->halt_poll_ns) 2514 ; 2515 /* we had a long block, shrink polling */ 2516 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2517 shrink_halt_poll_ns(vcpu); 2518 /* we had a short halt and our poll time is too small */ 2519 else if (vcpu->halt_poll_ns < halt_poll_ns && 2520 block_ns < halt_poll_ns) 2521 grow_halt_poll_ns(vcpu); 2522 } else { 2523 vcpu->halt_poll_ns = 0; 2524 } 2525 } 2526 2527 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2528 kvm_arch_vcpu_block_finish(vcpu); 2529 } 2530 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2531 2532 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2533 { 2534 struct swait_queue_head *wqp; 2535 2536 wqp = kvm_arch_vcpu_wq(vcpu); 2537 if (swq_has_sleeper(wqp)) { 2538 swake_up_one(wqp); 2539 WRITE_ONCE(vcpu->ready, true); 2540 ++vcpu->stat.halt_wakeup; 2541 return true; 2542 } 2543 2544 return false; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2547 2548 #ifndef CONFIG_S390 2549 /* 2550 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2551 */ 2552 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2553 { 2554 int me; 2555 int cpu = vcpu->cpu; 2556 2557 if (kvm_vcpu_wake_up(vcpu)) 2558 return; 2559 2560 me = get_cpu(); 2561 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2562 if (kvm_arch_vcpu_should_kick(vcpu)) 2563 smp_send_reschedule(cpu); 2564 put_cpu(); 2565 } 2566 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2567 #endif /* !CONFIG_S390 */ 2568 2569 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2570 { 2571 struct pid *pid; 2572 struct task_struct *task = NULL; 2573 int ret = 0; 2574 2575 rcu_read_lock(); 2576 pid = rcu_dereference(target->pid); 2577 if (pid) 2578 task = get_pid_task(pid, PIDTYPE_PID); 2579 rcu_read_unlock(); 2580 if (!task) 2581 return ret; 2582 ret = yield_to(task, 1); 2583 put_task_struct(task); 2584 2585 return ret; 2586 } 2587 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2588 2589 /* 2590 * Helper that checks whether a VCPU is eligible for directed yield. 2591 * Most eligible candidate to yield is decided by following heuristics: 2592 * 2593 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2594 * (preempted lock holder), indicated by @in_spin_loop. 2595 * Set at the beiginning and cleared at the end of interception/PLE handler. 2596 * 2597 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2598 * chance last time (mostly it has become eligible now since we have probably 2599 * yielded to lockholder in last iteration. This is done by toggling 2600 * @dy_eligible each time a VCPU checked for eligibility.) 2601 * 2602 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2603 * to preempted lock-holder could result in wrong VCPU selection and CPU 2604 * burning. Giving priority for a potential lock-holder increases lock 2605 * progress. 2606 * 2607 * Since algorithm is based on heuristics, accessing another VCPU data without 2608 * locking does not harm. It may result in trying to yield to same VCPU, fail 2609 * and continue with next VCPU and so on. 2610 */ 2611 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2612 { 2613 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2614 bool eligible; 2615 2616 eligible = !vcpu->spin_loop.in_spin_loop || 2617 vcpu->spin_loop.dy_eligible; 2618 2619 if (vcpu->spin_loop.in_spin_loop) 2620 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2621 2622 return eligible; 2623 #else 2624 return true; 2625 #endif 2626 } 2627 2628 /* 2629 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2630 * a vcpu_load/vcpu_put pair. However, for most architectures 2631 * kvm_arch_vcpu_runnable does not require vcpu_load. 2632 */ 2633 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2634 { 2635 return kvm_arch_vcpu_runnable(vcpu); 2636 } 2637 2638 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2639 { 2640 if (kvm_arch_dy_runnable(vcpu)) 2641 return true; 2642 2643 #ifdef CONFIG_KVM_ASYNC_PF 2644 if (!list_empty_careful(&vcpu->async_pf.done)) 2645 return true; 2646 #endif 2647 2648 return false; 2649 } 2650 2651 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2652 { 2653 struct kvm *kvm = me->kvm; 2654 struct kvm_vcpu *vcpu; 2655 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2656 int yielded = 0; 2657 int try = 3; 2658 int pass; 2659 int i; 2660 2661 kvm_vcpu_set_in_spin_loop(me, true); 2662 /* 2663 * We boost the priority of a VCPU that is runnable but not 2664 * currently running, because it got preempted by something 2665 * else and called schedule in __vcpu_run. Hopefully that 2666 * VCPU is holding the lock that we need and will release it. 2667 * We approximate round-robin by starting at the last boosted VCPU. 2668 */ 2669 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2670 kvm_for_each_vcpu(i, vcpu, kvm) { 2671 if (!pass && i <= last_boosted_vcpu) { 2672 i = last_boosted_vcpu; 2673 continue; 2674 } else if (pass && i > last_boosted_vcpu) 2675 break; 2676 if (!READ_ONCE(vcpu->ready)) 2677 continue; 2678 if (vcpu == me) 2679 continue; 2680 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2681 continue; 2682 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2683 !kvm_arch_vcpu_in_kernel(vcpu)) 2684 continue; 2685 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2686 continue; 2687 2688 yielded = kvm_vcpu_yield_to(vcpu); 2689 if (yielded > 0) { 2690 kvm->last_boosted_vcpu = i; 2691 break; 2692 } else if (yielded < 0) { 2693 try--; 2694 if (!try) 2695 break; 2696 } 2697 } 2698 } 2699 kvm_vcpu_set_in_spin_loop(me, false); 2700 2701 /* Ensure vcpu is not eligible during next spinloop */ 2702 kvm_vcpu_set_dy_eligible(me, false); 2703 } 2704 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2705 2706 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2707 { 2708 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2709 struct page *page; 2710 2711 if (vmf->pgoff == 0) 2712 page = virt_to_page(vcpu->run); 2713 #ifdef CONFIG_X86 2714 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2715 page = virt_to_page(vcpu->arch.pio_data); 2716 #endif 2717 #ifdef CONFIG_KVM_MMIO 2718 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2719 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2720 #endif 2721 else 2722 return kvm_arch_vcpu_fault(vcpu, vmf); 2723 get_page(page); 2724 vmf->page = page; 2725 return 0; 2726 } 2727 2728 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2729 .fault = kvm_vcpu_fault, 2730 }; 2731 2732 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2733 { 2734 vma->vm_ops = &kvm_vcpu_vm_ops; 2735 return 0; 2736 } 2737 2738 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2739 { 2740 struct kvm_vcpu *vcpu = filp->private_data; 2741 2742 debugfs_remove_recursive(vcpu->debugfs_dentry); 2743 kvm_put_kvm(vcpu->kvm); 2744 return 0; 2745 } 2746 2747 static struct file_operations kvm_vcpu_fops = { 2748 .release = kvm_vcpu_release, 2749 .unlocked_ioctl = kvm_vcpu_ioctl, 2750 .mmap = kvm_vcpu_mmap, 2751 .llseek = noop_llseek, 2752 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2753 }; 2754 2755 /* 2756 * Allocates an inode for the vcpu. 2757 */ 2758 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2759 { 2760 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2761 2762 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2763 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2764 } 2765 2766 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2767 { 2768 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2769 char dir_name[ITOA_MAX_LEN * 2]; 2770 2771 if (!debugfs_initialized()) 2772 return; 2773 2774 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2775 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2776 vcpu->kvm->debugfs_dentry); 2777 2778 kvm_arch_create_vcpu_debugfs(vcpu); 2779 #endif 2780 } 2781 2782 /* 2783 * Creates some virtual cpus. Good luck creating more than one. 2784 */ 2785 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2786 { 2787 int r; 2788 struct kvm_vcpu *vcpu; 2789 struct page *page; 2790 2791 if (id >= KVM_MAX_VCPU_ID) 2792 return -EINVAL; 2793 2794 mutex_lock(&kvm->lock); 2795 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2796 mutex_unlock(&kvm->lock); 2797 return -EINVAL; 2798 } 2799 2800 kvm->created_vcpus++; 2801 mutex_unlock(&kvm->lock); 2802 2803 r = kvm_arch_vcpu_precreate(kvm, id); 2804 if (r) 2805 goto vcpu_decrement; 2806 2807 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2808 if (!vcpu) { 2809 r = -ENOMEM; 2810 goto vcpu_decrement; 2811 } 2812 2813 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 2814 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2815 if (!page) { 2816 r = -ENOMEM; 2817 goto vcpu_free; 2818 } 2819 vcpu->run = page_address(page); 2820 2821 kvm_vcpu_init(vcpu, kvm, id); 2822 2823 r = kvm_arch_vcpu_create(vcpu); 2824 if (r) 2825 goto vcpu_free_run_page; 2826 2827 kvm_create_vcpu_debugfs(vcpu); 2828 2829 mutex_lock(&kvm->lock); 2830 if (kvm_get_vcpu_by_id(kvm, id)) { 2831 r = -EEXIST; 2832 goto unlock_vcpu_destroy; 2833 } 2834 2835 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 2836 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 2837 2838 /* Now it's all set up, let userspace reach it */ 2839 kvm_get_kvm(kvm); 2840 r = create_vcpu_fd(vcpu); 2841 if (r < 0) { 2842 kvm_put_kvm_no_destroy(kvm); 2843 goto unlock_vcpu_destroy; 2844 } 2845 2846 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 2847 2848 /* 2849 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2850 * before kvm->online_vcpu's incremented value. 2851 */ 2852 smp_wmb(); 2853 atomic_inc(&kvm->online_vcpus); 2854 2855 mutex_unlock(&kvm->lock); 2856 kvm_arch_vcpu_postcreate(vcpu); 2857 return r; 2858 2859 unlock_vcpu_destroy: 2860 mutex_unlock(&kvm->lock); 2861 debugfs_remove_recursive(vcpu->debugfs_dentry); 2862 kvm_arch_vcpu_destroy(vcpu); 2863 vcpu_free_run_page: 2864 free_page((unsigned long)vcpu->run); 2865 vcpu_free: 2866 kmem_cache_free(kvm_vcpu_cache, vcpu); 2867 vcpu_decrement: 2868 mutex_lock(&kvm->lock); 2869 kvm->created_vcpus--; 2870 mutex_unlock(&kvm->lock); 2871 return r; 2872 } 2873 2874 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2875 { 2876 if (sigset) { 2877 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2878 vcpu->sigset_active = 1; 2879 vcpu->sigset = *sigset; 2880 } else 2881 vcpu->sigset_active = 0; 2882 return 0; 2883 } 2884 2885 static long kvm_vcpu_ioctl(struct file *filp, 2886 unsigned int ioctl, unsigned long arg) 2887 { 2888 struct kvm_vcpu *vcpu = filp->private_data; 2889 void __user *argp = (void __user *)arg; 2890 int r; 2891 struct kvm_fpu *fpu = NULL; 2892 struct kvm_sregs *kvm_sregs = NULL; 2893 2894 if (vcpu->kvm->mm != current->mm) 2895 return -EIO; 2896 2897 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2898 return -EINVAL; 2899 2900 /* 2901 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2902 * execution; mutex_lock() would break them. 2903 */ 2904 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2905 if (r != -ENOIOCTLCMD) 2906 return r; 2907 2908 if (mutex_lock_killable(&vcpu->mutex)) 2909 return -EINTR; 2910 switch (ioctl) { 2911 case KVM_RUN: { 2912 struct pid *oldpid; 2913 r = -EINVAL; 2914 if (arg) 2915 goto out; 2916 oldpid = rcu_access_pointer(vcpu->pid); 2917 if (unlikely(oldpid != task_pid(current))) { 2918 /* The thread running this VCPU changed. */ 2919 struct pid *newpid; 2920 2921 r = kvm_arch_vcpu_run_pid_change(vcpu); 2922 if (r) 2923 break; 2924 2925 newpid = get_task_pid(current, PIDTYPE_PID); 2926 rcu_assign_pointer(vcpu->pid, newpid); 2927 if (oldpid) 2928 synchronize_rcu(); 2929 put_pid(oldpid); 2930 } 2931 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2932 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2933 break; 2934 } 2935 case KVM_GET_REGS: { 2936 struct kvm_regs *kvm_regs; 2937 2938 r = -ENOMEM; 2939 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2940 if (!kvm_regs) 2941 goto out; 2942 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2943 if (r) 2944 goto out_free1; 2945 r = -EFAULT; 2946 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2947 goto out_free1; 2948 r = 0; 2949 out_free1: 2950 kfree(kvm_regs); 2951 break; 2952 } 2953 case KVM_SET_REGS: { 2954 struct kvm_regs *kvm_regs; 2955 2956 r = -ENOMEM; 2957 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2958 if (IS_ERR(kvm_regs)) { 2959 r = PTR_ERR(kvm_regs); 2960 goto out; 2961 } 2962 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2963 kfree(kvm_regs); 2964 break; 2965 } 2966 case KVM_GET_SREGS: { 2967 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2968 GFP_KERNEL_ACCOUNT); 2969 r = -ENOMEM; 2970 if (!kvm_sregs) 2971 goto out; 2972 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2973 if (r) 2974 goto out; 2975 r = -EFAULT; 2976 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2977 goto out; 2978 r = 0; 2979 break; 2980 } 2981 case KVM_SET_SREGS: { 2982 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2983 if (IS_ERR(kvm_sregs)) { 2984 r = PTR_ERR(kvm_sregs); 2985 kvm_sregs = NULL; 2986 goto out; 2987 } 2988 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2989 break; 2990 } 2991 case KVM_GET_MP_STATE: { 2992 struct kvm_mp_state mp_state; 2993 2994 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2995 if (r) 2996 goto out; 2997 r = -EFAULT; 2998 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2999 goto out; 3000 r = 0; 3001 break; 3002 } 3003 case KVM_SET_MP_STATE: { 3004 struct kvm_mp_state mp_state; 3005 3006 r = -EFAULT; 3007 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3008 goto out; 3009 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3010 break; 3011 } 3012 case KVM_TRANSLATE: { 3013 struct kvm_translation tr; 3014 3015 r = -EFAULT; 3016 if (copy_from_user(&tr, argp, sizeof(tr))) 3017 goto out; 3018 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3019 if (r) 3020 goto out; 3021 r = -EFAULT; 3022 if (copy_to_user(argp, &tr, sizeof(tr))) 3023 goto out; 3024 r = 0; 3025 break; 3026 } 3027 case KVM_SET_GUEST_DEBUG: { 3028 struct kvm_guest_debug dbg; 3029 3030 r = -EFAULT; 3031 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3032 goto out; 3033 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3034 break; 3035 } 3036 case KVM_SET_SIGNAL_MASK: { 3037 struct kvm_signal_mask __user *sigmask_arg = argp; 3038 struct kvm_signal_mask kvm_sigmask; 3039 sigset_t sigset, *p; 3040 3041 p = NULL; 3042 if (argp) { 3043 r = -EFAULT; 3044 if (copy_from_user(&kvm_sigmask, argp, 3045 sizeof(kvm_sigmask))) 3046 goto out; 3047 r = -EINVAL; 3048 if (kvm_sigmask.len != sizeof(sigset)) 3049 goto out; 3050 r = -EFAULT; 3051 if (copy_from_user(&sigset, sigmask_arg->sigset, 3052 sizeof(sigset))) 3053 goto out; 3054 p = &sigset; 3055 } 3056 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3057 break; 3058 } 3059 case KVM_GET_FPU: { 3060 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3061 r = -ENOMEM; 3062 if (!fpu) 3063 goto out; 3064 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3065 if (r) 3066 goto out; 3067 r = -EFAULT; 3068 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3069 goto out; 3070 r = 0; 3071 break; 3072 } 3073 case KVM_SET_FPU: { 3074 fpu = memdup_user(argp, sizeof(*fpu)); 3075 if (IS_ERR(fpu)) { 3076 r = PTR_ERR(fpu); 3077 fpu = NULL; 3078 goto out; 3079 } 3080 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3081 break; 3082 } 3083 default: 3084 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3085 } 3086 out: 3087 mutex_unlock(&vcpu->mutex); 3088 kfree(fpu); 3089 kfree(kvm_sregs); 3090 return r; 3091 } 3092 3093 #ifdef CONFIG_KVM_COMPAT 3094 static long kvm_vcpu_compat_ioctl(struct file *filp, 3095 unsigned int ioctl, unsigned long arg) 3096 { 3097 struct kvm_vcpu *vcpu = filp->private_data; 3098 void __user *argp = compat_ptr(arg); 3099 int r; 3100 3101 if (vcpu->kvm->mm != current->mm) 3102 return -EIO; 3103 3104 switch (ioctl) { 3105 case KVM_SET_SIGNAL_MASK: { 3106 struct kvm_signal_mask __user *sigmask_arg = argp; 3107 struct kvm_signal_mask kvm_sigmask; 3108 sigset_t sigset; 3109 3110 if (argp) { 3111 r = -EFAULT; 3112 if (copy_from_user(&kvm_sigmask, argp, 3113 sizeof(kvm_sigmask))) 3114 goto out; 3115 r = -EINVAL; 3116 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3117 goto out; 3118 r = -EFAULT; 3119 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 3120 goto out; 3121 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3122 } else 3123 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3124 break; 3125 } 3126 default: 3127 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3128 } 3129 3130 out: 3131 return r; 3132 } 3133 #endif 3134 3135 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3136 { 3137 struct kvm_device *dev = filp->private_data; 3138 3139 if (dev->ops->mmap) 3140 return dev->ops->mmap(dev, vma); 3141 3142 return -ENODEV; 3143 } 3144 3145 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3146 int (*accessor)(struct kvm_device *dev, 3147 struct kvm_device_attr *attr), 3148 unsigned long arg) 3149 { 3150 struct kvm_device_attr attr; 3151 3152 if (!accessor) 3153 return -EPERM; 3154 3155 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3156 return -EFAULT; 3157 3158 return accessor(dev, &attr); 3159 } 3160 3161 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3162 unsigned long arg) 3163 { 3164 struct kvm_device *dev = filp->private_data; 3165 3166 if (dev->kvm->mm != current->mm) 3167 return -EIO; 3168 3169 switch (ioctl) { 3170 case KVM_SET_DEVICE_ATTR: 3171 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3172 case KVM_GET_DEVICE_ATTR: 3173 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3174 case KVM_HAS_DEVICE_ATTR: 3175 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3176 default: 3177 if (dev->ops->ioctl) 3178 return dev->ops->ioctl(dev, ioctl, arg); 3179 3180 return -ENOTTY; 3181 } 3182 } 3183 3184 static int kvm_device_release(struct inode *inode, struct file *filp) 3185 { 3186 struct kvm_device *dev = filp->private_data; 3187 struct kvm *kvm = dev->kvm; 3188 3189 if (dev->ops->release) { 3190 mutex_lock(&kvm->lock); 3191 list_del(&dev->vm_node); 3192 dev->ops->release(dev); 3193 mutex_unlock(&kvm->lock); 3194 } 3195 3196 kvm_put_kvm(kvm); 3197 return 0; 3198 } 3199 3200 static const struct file_operations kvm_device_fops = { 3201 .unlocked_ioctl = kvm_device_ioctl, 3202 .release = kvm_device_release, 3203 KVM_COMPAT(kvm_device_ioctl), 3204 .mmap = kvm_device_mmap, 3205 }; 3206 3207 struct kvm_device *kvm_device_from_filp(struct file *filp) 3208 { 3209 if (filp->f_op != &kvm_device_fops) 3210 return NULL; 3211 3212 return filp->private_data; 3213 } 3214 3215 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3216 #ifdef CONFIG_KVM_MPIC 3217 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3218 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3219 #endif 3220 }; 3221 3222 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3223 { 3224 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3225 return -ENOSPC; 3226 3227 if (kvm_device_ops_table[type] != NULL) 3228 return -EEXIST; 3229 3230 kvm_device_ops_table[type] = ops; 3231 return 0; 3232 } 3233 3234 void kvm_unregister_device_ops(u32 type) 3235 { 3236 if (kvm_device_ops_table[type] != NULL) 3237 kvm_device_ops_table[type] = NULL; 3238 } 3239 3240 static int kvm_ioctl_create_device(struct kvm *kvm, 3241 struct kvm_create_device *cd) 3242 { 3243 const struct kvm_device_ops *ops = NULL; 3244 struct kvm_device *dev; 3245 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3246 int type; 3247 int ret; 3248 3249 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3250 return -ENODEV; 3251 3252 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3253 ops = kvm_device_ops_table[type]; 3254 if (ops == NULL) 3255 return -ENODEV; 3256 3257 if (test) 3258 return 0; 3259 3260 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3261 if (!dev) 3262 return -ENOMEM; 3263 3264 dev->ops = ops; 3265 dev->kvm = kvm; 3266 3267 mutex_lock(&kvm->lock); 3268 ret = ops->create(dev, type); 3269 if (ret < 0) { 3270 mutex_unlock(&kvm->lock); 3271 kfree(dev); 3272 return ret; 3273 } 3274 list_add(&dev->vm_node, &kvm->devices); 3275 mutex_unlock(&kvm->lock); 3276 3277 if (ops->init) 3278 ops->init(dev); 3279 3280 kvm_get_kvm(kvm); 3281 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3282 if (ret < 0) { 3283 kvm_put_kvm_no_destroy(kvm); 3284 mutex_lock(&kvm->lock); 3285 list_del(&dev->vm_node); 3286 mutex_unlock(&kvm->lock); 3287 ops->destroy(dev); 3288 return ret; 3289 } 3290 3291 cd->fd = ret; 3292 return 0; 3293 } 3294 3295 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3296 { 3297 switch (arg) { 3298 case KVM_CAP_USER_MEMORY: 3299 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3300 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3301 case KVM_CAP_INTERNAL_ERROR_DATA: 3302 #ifdef CONFIG_HAVE_KVM_MSI 3303 case KVM_CAP_SIGNAL_MSI: 3304 #endif 3305 #ifdef CONFIG_HAVE_KVM_IRQFD 3306 case KVM_CAP_IRQFD: 3307 case KVM_CAP_IRQFD_RESAMPLE: 3308 #endif 3309 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3310 case KVM_CAP_CHECK_EXTENSION_VM: 3311 case KVM_CAP_ENABLE_CAP_VM: 3312 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3313 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3314 #endif 3315 return 1; 3316 #ifdef CONFIG_KVM_MMIO 3317 case KVM_CAP_COALESCED_MMIO: 3318 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3319 case KVM_CAP_COALESCED_PIO: 3320 return 1; 3321 #endif 3322 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3323 case KVM_CAP_IRQ_ROUTING: 3324 return KVM_MAX_IRQ_ROUTES; 3325 #endif 3326 #if KVM_ADDRESS_SPACE_NUM > 1 3327 case KVM_CAP_MULTI_ADDRESS_SPACE: 3328 return KVM_ADDRESS_SPACE_NUM; 3329 #endif 3330 case KVM_CAP_NR_MEMSLOTS: 3331 return KVM_USER_MEM_SLOTS; 3332 default: 3333 break; 3334 } 3335 return kvm_vm_ioctl_check_extension(kvm, arg); 3336 } 3337 3338 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3339 struct kvm_enable_cap *cap) 3340 { 3341 return -EINVAL; 3342 } 3343 3344 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3345 struct kvm_enable_cap *cap) 3346 { 3347 switch (cap->cap) { 3348 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3349 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3350 if (cap->flags || (cap->args[0] & ~1)) 3351 return -EINVAL; 3352 kvm->manual_dirty_log_protect = cap->args[0]; 3353 return 0; 3354 #endif 3355 default: 3356 return kvm_vm_ioctl_enable_cap(kvm, cap); 3357 } 3358 } 3359 3360 static long kvm_vm_ioctl(struct file *filp, 3361 unsigned int ioctl, unsigned long arg) 3362 { 3363 struct kvm *kvm = filp->private_data; 3364 void __user *argp = (void __user *)arg; 3365 int r; 3366 3367 if (kvm->mm != current->mm) 3368 return -EIO; 3369 switch (ioctl) { 3370 case KVM_CREATE_VCPU: 3371 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3372 break; 3373 case KVM_ENABLE_CAP: { 3374 struct kvm_enable_cap cap; 3375 3376 r = -EFAULT; 3377 if (copy_from_user(&cap, argp, sizeof(cap))) 3378 goto out; 3379 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3380 break; 3381 } 3382 case KVM_SET_USER_MEMORY_REGION: { 3383 struct kvm_userspace_memory_region kvm_userspace_mem; 3384 3385 r = -EFAULT; 3386 if (copy_from_user(&kvm_userspace_mem, argp, 3387 sizeof(kvm_userspace_mem))) 3388 goto out; 3389 3390 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3391 break; 3392 } 3393 case KVM_GET_DIRTY_LOG: { 3394 struct kvm_dirty_log log; 3395 3396 r = -EFAULT; 3397 if (copy_from_user(&log, argp, sizeof(log))) 3398 goto out; 3399 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3400 break; 3401 } 3402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3403 case KVM_CLEAR_DIRTY_LOG: { 3404 struct kvm_clear_dirty_log log; 3405 3406 r = -EFAULT; 3407 if (copy_from_user(&log, argp, sizeof(log))) 3408 goto out; 3409 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3410 break; 3411 } 3412 #endif 3413 #ifdef CONFIG_KVM_MMIO 3414 case KVM_REGISTER_COALESCED_MMIO: { 3415 struct kvm_coalesced_mmio_zone zone; 3416 3417 r = -EFAULT; 3418 if (copy_from_user(&zone, argp, sizeof(zone))) 3419 goto out; 3420 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3421 break; 3422 } 3423 case KVM_UNREGISTER_COALESCED_MMIO: { 3424 struct kvm_coalesced_mmio_zone zone; 3425 3426 r = -EFAULT; 3427 if (copy_from_user(&zone, argp, sizeof(zone))) 3428 goto out; 3429 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3430 break; 3431 } 3432 #endif 3433 case KVM_IRQFD: { 3434 struct kvm_irqfd data; 3435 3436 r = -EFAULT; 3437 if (copy_from_user(&data, argp, sizeof(data))) 3438 goto out; 3439 r = kvm_irqfd(kvm, &data); 3440 break; 3441 } 3442 case KVM_IOEVENTFD: { 3443 struct kvm_ioeventfd data; 3444 3445 r = -EFAULT; 3446 if (copy_from_user(&data, argp, sizeof(data))) 3447 goto out; 3448 r = kvm_ioeventfd(kvm, &data); 3449 break; 3450 } 3451 #ifdef CONFIG_HAVE_KVM_MSI 3452 case KVM_SIGNAL_MSI: { 3453 struct kvm_msi msi; 3454 3455 r = -EFAULT; 3456 if (copy_from_user(&msi, argp, sizeof(msi))) 3457 goto out; 3458 r = kvm_send_userspace_msi(kvm, &msi); 3459 break; 3460 } 3461 #endif 3462 #ifdef __KVM_HAVE_IRQ_LINE 3463 case KVM_IRQ_LINE_STATUS: 3464 case KVM_IRQ_LINE: { 3465 struct kvm_irq_level irq_event; 3466 3467 r = -EFAULT; 3468 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3469 goto out; 3470 3471 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3472 ioctl == KVM_IRQ_LINE_STATUS); 3473 if (r) 3474 goto out; 3475 3476 r = -EFAULT; 3477 if (ioctl == KVM_IRQ_LINE_STATUS) { 3478 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3479 goto out; 3480 } 3481 3482 r = 0; 3483 break; 3484 } 3485 #endif 3486 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3487 case KVM_SET_GSI_ROUTING: { 3488 struct kvm_irq_routing routing; 3489 struct kvm_irq_routing __user *urouting; 3490 struct kvm_irq_routing_entry *entries = NULL; 3491 3492 r = -EFAULT; 3493 if (copy_from_user(&routing, argp, sizeof(routing))) 3494 goto out; 3495 r = -EINVAL; 3496 if (!kvm_arch_can_set_irq_routing(kvm)) 3497 goto out; 3498 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3499 goto out; 3500 if (routing.flags) 3501 goto out; 3502 if (routing.nr) { 3503 r = -ENOMEM; 3504 entries = vmalloc(array_size(sizeof(*entries), 3505 routing.nr)); 3506 if (!entries) 3507 goto out; 3508 r = -EFAULT; 3509 urouting = argp; 3510 if (copy_from_user(entries, urouting->entries, 3511 routing.nr * sizeof(*entries))) 3512 goto out_free_irq_routing; 3513 } 3514 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3515 routing.flags); 3516 out_free_irq_routing: 3517 vfree(entries); 3518 break; 3519 } 3520 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3521 case KVM_CREATE_DEVICE: { 3522 struct kvm_create_device cd; 3523 3524 r = -EFAULT; 3525 if (copy_from_user(&cd, argp, sizeof(cd))) 3526 goto out; 3527 3528 r = kvm_ioctl_create_device(kvm, &cd); 3529 if (r) 3530 goto out; 3531 3532 r = -EFAULT; 3533 if (copy_to_user(argp, &cd, sizeof(cd))) 3534 goto out; 3535 3536 r = 0; 3537 break; 3538 } 3539 case KVM_CHECK_EXTENSION: 3540 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3541 break; 3542 default: 3543 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3544 } 3545 out: 3546 return r; 3547 } 3548 3549 #ifdef CONFIG_KVM_COMPAT 3550 struct compat_kvm_dirty_log { 3551 __u32 slot; 3552 __u32 padding1; 3553 union { 3554 compat_uptr_t dirty_bitmap; /* one bit per page */ 3555 __u64 padding2; 3556 }; 3557 }; 3558 3559 static long kvm_vm_compat_ioctl(struct file *filp, 3560 unsigned int ioctl, unsigned long arg) 3561 { 3562 struct kvm *kvm = filp->private_data; 3563 int r; 3564 3565 if (kvm->mm != current->mm) 3566 return -EIO; 3567 switch (ioctl) { 3568 case KVM_GET_DIRTY_LOG: { 3569 struct compat_kvm_dirty_log compat_log; 3570 struct kvm_dirty_log log; 3571 3572 if (copy_from_user(&compat_log, (void __user *)arg, 3573 sizeof(compat_log))) 3574 return -EFAULT; 3575 log.slot = compat_log.slot; 3576 log.padding1 = compat_log.padding1; 3577 log.padding2 = compat_log.padding2; 3578 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3579 3580 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3581 break; 3582 } 3583 default: 3584 r = kvm_vm_ioctl(filp, ioctl, arg); 3585 } 3586 return r; 3587 } 3588 #endif 3589 3590 static struct file_operations kvm_vm_fops = { 3591 .release = kvm_vm_release, 3592 .unlocked_ioctl = kvm_vm_ioctl, 3593 .llseek = noop_llseek, 3594 KVM_COMPAT(kvm_vm_compat_ioctl), 3595 }; 3596 3597 static int kvm_dev_ioctl_create_vm(unsigned long type) 3598 { 3599 int r; 3600 struct kvm *kvm; 3601 struct file *file; 3602 3603 kvm = kvm_create_vm(type); 3604 if (IS_ERR(kvm)) 3605 return PTR_ERR(kvm); 3606 #ifdef CONFIG_KVM_MMIO 3607 r = kvm_coalesced_mmio_init(kvm); 3608 if (r < 0) 3609 goto put_kvm; 3610 #endif 3611 r = get_unused_fd_flags(O_CLOEXEC); 3612 if (r < 0) 3613 goto put_kvm; 3614 3615 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3616 if (IS_ERR(file)) { 3617 put_unused_fd(r); 3618 r = PTR_ERR(file); 3619 goto put_kvm; 3620 } 3621 3622 /* 3623 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3624 * already set, with ->release() being kvm_vm_release(). In error 3625 * cases it will be called by the final fput(file) and will take 3626 * care of doing kvm_put_kvm(kvm). 3627 */ 3628 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3629 put_unused_fd(r); 3630 fput(file); 3631 return -ENOMEM; 3632 } 3633 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3634 3635 fd_install(r, file); 3636 return r; 3637 3638 put_kvm: 3639 kvm_put_kvm(kvm); 3640 return r; 3641 } 3642 3643 static long kvm_dev_ioctl(struct file *filp, 3644 unsigned int ioctl, unsigned long arg) 3645 { 3646 long r = -EINVAL; 3647 3648 switch (ioctl) { 3649 case KVM_GET_API_VERSION: 3650 if (arg) 3651 goto out; 3652 r = KVM_API_VERSION; 3653 break; 3654 case KVM_CREATE_VM: 3655 r = kvm_dev_ioctl_create_vm(arg); 3656 break; 3657 case KVM_CHECK_EXTENSION: 3658 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3659 break; 3660 case KVM_GET_VCPU_MMAP_SIZE: 3661 if (arg) 3662 goto out; 3663 r = PAGE_SIZE; /* struct kvm_run */ 3664 #ifdef CONFIG_X86 3665 r += PAGE_SIZE; /* pio data page */ 3666 #endif 3667 #ifdef CONFIG_KVM_MMIO 3668 r += PAGE_SIZE; /* coalesced mmio ring page */ 3669 #endif 3670 break; 3671 case KVM_TRACE_ENABLE: 3672 case KVM_TRACE_PAUSE: 3673 case KVM_TRACE_DISABLE: 3674 r = -EOPNOTSUPP; 3675 break; 3676 default: 3677 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3678 } 3679 out: 3680 return r; 3681 } 3682 3683 static struct file_operations kvm_chardev_ops = { 3684 .unlocked_ioctl = kvm_dev_ioctl, 3685 .llseek = noop_llseek, 3686 KVM_COMPAT(kvm_dev_ioctl), 3687 }; 3688 3689 static struct miscdevice kvm_dev = { 3690 KVM_MINOR, 3691 "kvm", 3692 &kvm_chardev_ops, 3693 }; 3694 3695 static void hardware_enable_nolock(void *junk) 3696 { 3697 int cpu = raw_smp_processor_id(); 3698 int r; 3699 3700 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3701 return; 3702 3703 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3704 3705 r = kvm_arch_hardware_enable(); 3706 3707 if (r) { 3708 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3709 atomic_inc(&hardware_enable_failed); 3710 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3711 } 3712 } 3713 3714 static int kvm_starting_cpu(unsigned int cpu) 3715 { 3716 raw_spin_lock(&kvm_count_lock); 3717 if (kvm_usage_count) 3718 hardware_enable_nolock(NULL); 3719 raw_spin_unlock(&kvm_count_lock); 3720 return 0; 3721 } 3722 3723 static void hardware_disable_nolock(void *junk) 3724 { 3725 int cpu = raw_smp_processor_id(); 3726 3727 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3728 return; 3729 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3730 kvm_arch_hardware_disable(); 3731 } 3732 3733 static int kvm_dying_cpu(unsigned int cpu) 3734 { 3735 raw_spin_lock(&kvm_count_lock); 3736 if (kvm_usage_count) 3737 hardware_disable_nolock(NULL); 3738 raw_spin_unlock(&kvm_count_lock); 3739 return 0; 3740 } 3741 3742 static void hardware_disable_all_nolock(void) 3743 { 3744 BUG_ON(!kvm_usage_count); 3745 3746 kvm_usage_count--; 3747 if (!kvm_usage_count) 3748 on_each_cpu(hardware_disable_nolock, NULL, 1); 3749 } 3750 3751 static void hardware_disable_all(void) 3752 { 3753 raw_spin_lock(&kvm_count_lock); 3754 hardware_disable_all_nolock(); 3755 raw_spin_unlock(&kvm_count_lock); 3756 } 3757 3758 static int hardware_enable_all(void) 3759 { 3760 int r = 0; 3761 3762 raw_spin_lock(&kvm_count_lock); 3763 3764 kvm_usage_count++; 3765 if (kvm_usage_count == 1) { 3766 atomic_set(&hardware_enable_failed, 0); 3767 on_each_cpu(hardware_enable_nolock, NULL, 1); 3768 3769 if (atomic_read(&hardware_enable_failed)) { 3770 hardware_disable_all_nolock(); 3771 r = -EBUSY; 3772 } 3773 } 3774 3775 raw_spin_unlock(&kvm_count_lock); 3776 3777 return r; 3778 } 3779 3780 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3781 void *v) 3782 { 3783 /* 3784 * Some (well, at least mine) BIOSes hang on reboot if 3785 * in vmx root mode. 3786 * 3787 * And Intel TXT required VMX off for all cpu when system shutdown. 3788 */ 3789 pr_info("kvm: exiting hardware virtualization\n"); 3790 kvm_rebooting = true; 3791 on_each_cpu(hardware_disable_nolock, NULL, 1); 3792 return NOTIFY_OK; 3793 } 3794 3795 static struct notifier_block kvm_reboot_notifier = { 3796 .notifier_call = kvm_reboot, 3797 .priority = 0, 3798 }; 3799 3800 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3801 { 3802 int i; 3803 3804 for (i = 0; i < bus->dev_count; i++) { 3805 struct kvm_io_device *pos = bus->range[i].dev; 3806 3807 kvm_iodevice_destructor(pos); 3808 } 3809 kfree(bus); 3810 } 3811 3812 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3813 const struct kvm_io_range *r2) 3814 { 3815 gpa_t addr1 = r1->addr; 3816 gpa_t addr2 = r2->addr; 3817 3818 if (addr1 < addr2) 3819 return -1; 3820 3821 /* If r2->len == 0, match the exact address. If r2->len != 0, 3822 * accept any overlapping write. Any order is acceptable for 3823 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3824 * we process all of them. 3825 */ 3826 if (r2->len) { 3827 addr1 += r1->len; 3828 addr2 += r2->len; 3829 } 3830 3831 if (addr1 > addr2) 3832 return 1; 3833 3834 return 0; 3835 } 3836 3837 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3838 { 3839 return kvm_io_bus_cmp(p1, p2); 3840 } 3841 3842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3843 gpa_t addr, int len) 3844 { 3845 struct kvm_io_range *range, key; 3846 int off; 3847 3848 key = (struct kvm_io_range) { 3849 .addr = addr, 3850 .len = len, 3851 }; 3852 3853 range = bsearch(&key, bus->range, bus->dev_count, 3854 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3855 if (range == NULL) 3856 return -ENOENT; 3857 3858 off = range - bus->range; 3859 3860 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3861 off--; 3862 3863 return off; 3864 } 3865 3866 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3867 struct kvm_io_range *range, const void *val) 3868 { 3869 int idx; 3870 3871 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3872 if (idx < 0) 3873 return -EOPNOTSUPP; 3874 3875 while (idx < bus->dev_count && 3876 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3877 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3878 range->len, val)) 3879 return idx; 3880 idx++; 3881 } 3882 3883 return -EOPNOTSUPP; 3884 } 3885 3886 /* kvm_io_bus_write - called under kvm->slots_lock */ 3887 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3888 int len, const void *val) 3889 { 3890 struct kvm_io_bus *bus; 3891 struct kvm_io_range range; 3892 int r; 3893 3894 range = (struct kvm_io_range) { 3895 .addr = addr, 3896 .len = len, 3897 }; 3898 3899 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3900 if (!bus) 3901 return -ENOMEM; 3902 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3903 return r < 0 ? r : 0; 3904 } 3905 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3906 3907 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3908 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3909 gpa_t addr, int len, const void *val, long cookie) 3910 { 3911 struct kvm_io_bus *bus; 3912 struct kvm_io_range range; 3913 3914 range = (struct kvm_io_range) { 3915 .addr = addr, 3916 .len = len, 3917 }; 3918 3919 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3920 if (!bus) 3921 return -ENOMEM; 3922 3923 /* First try the device referenced by cookie. */ 3924 if ((cookie >= 0) && (cookie < bus->dev_count) && 3925 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3926 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3927 val)) 3928 return cookie; 3929 3930 /* 3931 * cookie contained garbage; fall back to search and return the 3932 * correct cookie value. 3933 */ 3934 return __kvm_io_bus_write(vcpu, bus, &range, val); 3935 } 3936 3937 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3938 struct kvm_io_range *range, void *val) 3939 { 3940 int idx; 3941 3942 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3943 if (idx < 0) 3944 return -EOPNOTSUPP; 3945 3946 while (idx < bus->dev_count && 3947 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3948 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3949 range->len, val)) 3950 return idx; 3951 idx++; 3952 } 3953 3954 return -EOPNOTSUPP; 3955 } 3956 3957 /* kvm_io_bus_read - called under kvm->slots_lock */ 3958 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3959 int len, void *val) 3960 { 3961 struct kvm_io_bus *bus; 3962 struct kvm_io_range range; 3963 int r; 3964 3965 range = (struct kvm_io_range) { 3966 .addr = addr, 3967 .len = len, 3968 }; 3969 3970 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3971 if (!bus) 3972 return -ENOMEM; 3973 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3974 return r < 0 ? r : 0; 3975 } 3976 3977 /* Caller must hold slots_lock. */ 3978 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3979 int len, struct kvm_io_device *dev) 3980 { 3981 int i; 3982 struct kvm_io_bus *new_bus, *bus; 3983 struct kvm_io_range range; 3984 3985 bus = kvm_get_bus(kvm, bus_idx); 3986 if (!bus) 3987 return -ENOMEM; 3988 3989 /* exclude ioeventfd which is limited by maximum fd */ 3990 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3991 return -ENOSPC; 3992 3993 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3994 GFP_KERNEL_ACCOUNT); 3995 if (!new_bus) 3996 return -ENOMEM; 3997 3998 range = (struct kvm_io_range) { 3999 .addr = addr, 4000 .len = len, 4001 .dev = dev, 4002 }; 4003 4004 for (i = 0; i < bus->dev_count; i++) 4005 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4006 break; 4007 4008 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4009 new_bus->dev_count++; 4010 new_bus->range[i] = range; 4011 memcpy(new_bus->range + i + 1, bus->range + i, 4012 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4013 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4014 synchronize_srcu_expedited(&kvm->srcu); 4015 kfree(bus); 4016 4017 return 0; 4018 } 4019 4020 /* Caller must hold slots_lock. */ 4021 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4022 struct kvm_io_device *dev) 4023 { 4024 int i; 4025 struct kvm_io_bus *new_bus, *bus; 4026 4027 bus = kvm_get_bus(kvm, bus_idx); 4028 if (!bus) 4029 return; 4030 4031 for (i = 0; i < bus->dev_count; i++) 4032 if (bus->range[i].dev == dev) { 4033 break; 4034 } 4035 4036 if (i == bus->dev_count) 4037 return; 4038 4039 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4040 GFP_KERNEL_ACCOUNT); 4041 if (!new_bus) { 4042 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4043 goto broken; 4044 } 4045 4046 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4047 new_bus->dev_count--; 4048 memcpy(new_bus->range + i, bus->range + i + 1, 4049 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4050 4051 broken: 4052 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4053 synchronize_srcu_expedited(&kvm->srcu); 4054 kfree(bus); 4055 return; 4056 } 4057 4058 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4059 gpa_t addr) 4060 { 4061 struct kvm_io_bus *bus; 4062 int dev_idx, srcu_idx; 4063 struct kvm_io_device *iodev = NULL; 4064 4065 srcu_idx = srcu_read_lock(&kvm->srcu); 4066 4067 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4068 if (!bus) 4069 goto out_unlock; 4070 4071 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4072 if (dev_idx < 0) 4073 goto out_unlock; 4074 4075 iodev = bus->range[dev_idx].dev; 4076 4077 out_unlock: 4078 srcu_read_unlock(&kvm->srcu, srcu_idx); 4079 4080 return iodev; 4081 } 4082 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4083 4084 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4085 int (*get)(void *, u64 *), int (*set)(void *, u64), 4086 const char *fmt) 4087 { 4088 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4089 inode->i_private; 4090 4091 /* The debugfs files are a reference to the kvm struct which 4092 * is still valid when kvm_destroy_vm is called. 4093 * To avoid the race between open and the removal of the debugfs 4094 * directory we test against the users count. 4095 */ 4096 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4097 return -ENOENT; 4098 4099 if (simple_attr_open(inode, file, get, 4100 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4101 ? set : NULL, 4102 fmt)) { 4103 kvm_put_kvm(stat_data->kvm); 4104 return -ENOMEM; 4105 } 4106 4107 return 0; 4108 } 4109 4110 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4111 { 4112 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4113 inode->i_private; 4114 4115 simple_attr_release(inode, file); 4116 kvm_put_kvm(stat_data->kvm); 4117 4118 return 0; 4119 } 4120 4121 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4122 { 4123 *val = *(ulong *)((void *)kvm + offset); 4124 4125 return 0; 4126 } 4127 4128 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4129 { 4130 *(ulong *)((void *)kvm + offset) = 0; 4131 4132 return 0; 4133 } 4134 4135 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4136 { 4137 int i; 4138 struct kvm_vcpu *vcpu; 4139 4140 *val = 0; 4141 4142 kvm_for_each_vcpu(i, vcpu, kvm) 4143 *val += *(u64 *)((void *)vcpu + offset); 4144 4145 return 0; 4146 } 4147 4148 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4149 { 4150 int i; 4151 struct kvm_vcpu *vcpu; 4152 4153 kvm_for_each_vcpu(i, vcpu, kvm) 4154 *(u64 *)((void *)vcpu + offset) = 0; 4155 4156 return 0; 4157 } 4158 4159 static int kvm_stat_data_get(void *data, u64 *val) 4160 { 4161 int r = -EFAULT; 4162 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4163 4164 switch (stat_data->dbgfs_item->kind) { 4165 case KVM_STAT_VM: 4166 r = kvm_get_stat_per_vm(stat_data->kvm, 4167 stat_data->dbgfs_item->offset, val); 4168 break; 4169 case KVM_STAT_VCPU: 4170 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4171 stat_data->dbgfs_item->offset, val); 4172 break; 4173 } 4174 4175 return r; 4176 } 4177 4178 static int kvm_stat_data_clear(void *data, u64 val) 4179 { 4180 int r = -EFAULT; 4181 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4182 4183 if (val) 4184 return -EINVAL; 4185 4186 switch (stat_data->dbgfs_item->kind) { 4187 case KVM_STAT_VM: 4188 r = kvm_clear_stat_per_vm(stat_data->kvm, 4189 stat_data->dbgfs_item->offset); 4190 break; 4191 case KVM_STAT_VCPU: 4192 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4193 stat_data->dbgfs_item->offset); 4194 break; 4195 } 4196 4197 return r; 4198 } 4199 4200 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4201 { 4202 __simple_attr_check_format("%llu\n", 0ull); 4203 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4204 kvm_stat_data_clear, "%llu\n"); 4205 } 4206 4207 static const struct file_operations stat_fops_per_vm = { 4208 .owner = THIS_MODULE, 4209 .open = kvm_stat_data_open, 4210 .release = kvm_debugfs_release, 4211 .read = simple_attr_read, 4212 .write = simple_attr_write, 4213 .llseek = no_llseek, 4214 }; 4215 4216 static int vm_stat_get(void *_offset, u64 *val) 4217 { 4218 unsigned offset = (long)_offset; 4219 struct kvm *kvm; 4220 u64 tmp_val; 4221 4222 *val = 0; 4223 mutex_lock(&kvm_lock); 4224 list_for_each_entry(kvm, &vm_list, vm_list) { 4225 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4226 *val += tmp_val; 4227 } 4228 mutex_unlock(&kvm_lock); 4229 return 0; 4230 } 4231 4232 static int vm_stat_clear(void *_offset, u64 val) 4233 { 4234 unsigned offset = (long)_offset; 4235 struct kvm *kvm; 4236 4237 if (val) 4238 return -EINVAL; 4239 4240 mutex_lock(&kvm_lock); 4241 list_for_each_entry(kvm, &vm_list, vm_list) { 4242 kvm_clear_stat_per_vm(kvm, offset); 4243 } 4244 mutex_unlock(&kvm_lock); 4245 4246 return 0; 4247 } 4248 4249 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4250 4251 static int vcpu_stat_get(void *_offset, u64 *val) 4252 { 4253 unsigned offset = (long)_offset; 4254 struct kvm *kvm; 4255 u64 tmp_val; 4256 4257 *val = 0; 4258 mutex_lock(&kvm_lock); 4259 list_for_each_entry(kvm, &vm_list, vm_list) { 4260 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4261 *val += tmp_val; 4262 } 4263 mutex_unlock(&kvm_lock); 4264 return 0; 4265 } 4266 4267 static int vcpu_stat_clear(void *_offset, u64 val) 4268 { 4269 unsigned offset = (long)_offset; 4270 struct kvm *kvm; 4271 4272 if (val) 4273 return -EINVAL; 4274 4275 mutex_lock(&kvm_lock); 4276 list_for_each_entry(kvm, &vm_list, vm_list) { 4277 kvm_clear_stat_per_vcpu(kvm, offset); 4278 } 4279 mutex_unlock(&kvm_lock); 4280 4281 return 0; 4282 } 4283 4284 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4285 "%llu\n"); 4286 4287 static const struct file_operations *stat_fops[] = { 4288 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4289 [KVM_STAT_VM] = &vm_stat_fops, 4290 }; 4291 4292 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4293 { 4294 struct kobj_uevent_env *env; 4295 unsigned long long created, active; 4296 4297 if (!kvm_dev.this_device || !kvm) 4298 return; 4299 4300 mutex_lock(&kvm_lock); 4301 if (type == KVM_EVENT_CREATE_VM) { 4302 kvm_createvm_count++; 4303 kvm_active_vms++; 4304 } else if (type == KVM_EVENT_DESTROY_VM) { 4305 kvm_active_vms--; 4306 } 4307 created = kvm_createvm_count; 4308 active = kvm_active_vms; 4309 mutex_unlock(&kvm_lock); 4310 4311 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4312 if (!env) 4313 return; 4314 4315 add_uevent_var(env, "CREATED=%llu", created); 4316 add_uevent_var(env, "COUNT=%llu", active); 4317 4318 if (type == KVM_EVENT_CREATE_VM) { 4319 add_uevent_var(env, "EVENT=create"); 4320 kvm->userspace_pid = task_pid_nr(current); 4321 } else if (type == KVM_EVENT_DESTROY_VM) { 4322 add_uevent_var(env, "EVENT=destroy"); 4323 } 4324 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4325 4326 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4327 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4328 4329 if (p) { 4330 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4331 if (!IS_ERR(tmp)) 4332 add_uevent_var(env, "STATS_PATH=%s", tmp); 4333 kfree(p); 4334 } 4335 } 4336 /* no need for checks, since we are adding at most only 5 keys */ 4337 env->envp[env->envp_idx++] = NULL; 4338 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4339 kfree(env); 4340 } 4341 4342 static void kvm_init_debug(void) 4343 { 4344 struct kvm_stats_debugfs_item *p; 4345 4346 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4347 4348 kvm_debugfs_num_entries = 0; 4349 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4350 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4351 kvm_debugfs_dir, (void *)(long)p->offset, 4352 stat_fops[p->kind]); 4353 } 4354 } 4355 4356 static int kvm_suspend(void) 4357 { 4358 if (kvm_usage_count) 4359 hardware_disable_nolock(NULL); 4360 return 0; 4361 } 4362 4363 static void kvm_resume(void) 4364 { 4365 if (kvm_usage_count) { 4366 #ifdef CONFIG_LOCKDEP 4367 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4368 #endif 4369 hardware_enable_nolock(NULL); 4370 } 4371 } 4372 4373 static struct syscore_ops kvm_syscore_ops = { 4374 .suspend = kvm_suspend, 4375 .resume = kvm_resume, 4376 }; 4377 4378 static inline 4379 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4380 { 4381 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4382 } 4383 4384 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4385 { 4386 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4387 4388 WRITE_ONCE(vcpu->preempted, false); 4389 WRITE_ONCE(vcpu->ready, false); 4390 4391 __this_cpu_write(kvm_running_vcpu, vcpu); 4392 kvm_arch_sched_in(vcpu, cpu); 4393 kvm_arch_vcpu_load(vcpu, cpu); 4394 } 4395 4396 static void kvm_sched_out(struct preempt_notifier *pn, 4397 struct task_struct *next) 4398 { 4399 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4400 4401 if (current->state == TASK_RUNNING) { 4402 WRITE_ONCE(vcpu->preempted, true); 4403 WRITE_ONCE(vcpu->ready, true); 4404 } 4405 kvm_arch_vcpu_put(vcpu); 4406 __this_cpu_write(kvm_running_vcpu, NULL); 4407 } 4408 4409 /** 4410 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4411 * Thanks to preempt notifiers, this can also be called from 4412 * preemptible context. 4413 */ 4414 struct kvm_vcpu *kvm_get_running_vcpu(void) 4415 { 4416 return __this_cpu_read(kvm_running_vcpu); 4417 } 4418 4419 /** 4420 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4421 */ 4422 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4423 { 4424 return &kvm_running_vcpu; 4425 } 4426 4427 static void check_processor_compat(void *rtn) 4428 { 4429 *(int *)rtn = kvm_arch_check_processor_compat(); 4430 } 4431 4432 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4433 struct module *module) 4434 { 4435 int r; 4436 int cpu; 4437 4438 r = kvm_arch_init(opaque); 4439 if (r) 4440 goto out_fail; 4441 4442 /* 4443 * kvm_arch_init makes sure there's at most one caller 4444 * for architectures that support multiple implementations, 4445 * like intel and amd on x86. 4446 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4447 * conflicts in case kvm is already setup for another implementation. 4448 */ 4449 r = kvm_irqfd_init(); 4450 if (r) 4451 goto out_irqfd; 4452 4453 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4454 r = -ENOMEM; 4455 goto out_free_0; 4456 } 4457 4458 r = kvm_arch_hardware_setup(); 4459 if (r < 0) 4460 goto out_free_1; 4461 4462 for_each_online_cpu(cpu) { 4463 smp_call_function_single(cpu, check_processor_compat, &r, 1); 4464 if (r < 0) 4465 goto out_free_2; 4466 } 4467 4468 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4469 kvm_starting_cpu, kvm_dying_cpu); 4470 if (r) 4471 goto out_free_2; 4472 register_reboot_notifier(&kvm_reboot_notifier); 4473 4474 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4475 if (!vcpu_align) 4476 vcpu_align = __alignof__(struct kvm_vcpu); 4477 kvm_vcpu_cache = 4478 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4479 SLAB_ACCOUNT, 4480 offsetof(struct kvm_vcpu, arch), 4481 sizeof_field(struct kvm_vcpu, arch), 4482 NULL); 4483 if (!kvm_vcpu_cache) { 4484 r = -ENOMEM; 4485 goto out_free_3; 4486 } 4487 4488 r = kvm_async_pf_init(); 4489 if (r) 4490 goto out_free; 4491 4492 kvm_chardev_ops.owner = module; 4493 kvm_vm_fops.owner = module; 4494 kvm_vcpu_fops.owner = module; 4495 4496 r = misc_register(&kvm_dev); 4497 if (r) { 4498 pr_err("kvm: misc device register failed\n"); 4499 goto out_unreg; 4500 } 4501 4502 register_syscore_ops(&kvm_syscore_ops); 4503 4504 kvm_preempt_ops.sched_in = kvm_sched_in; 4505 kvm_preempt_ops.sched_out = kvm_sched_out; 4506 4507 kvm_init_debug(); 4508 4509 r = kvm_vfio_ops_init(); 4510 WARN_ON(r); 4511 4512 return 0; 4513 4514 out_unreg: 4515 kvm_async_pf_deinit(); 4516 out_free: 4517 kmem_cache_destroy(kvm_vcpu_cache); 4518 out_free_3: 4519 unregister_reboot_notifier(&kvm_reboot_notifier); 4520 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4521 out_free_2: 4522 kvm_arch_hardware_unsetup(); 4523 out_free_1: 4524 free_cpumask_var(cpus_hardware_enabled); 4525 out_free_0: 4526 kvm_irqfd_exit(); 4527 out_irqfd: 4528 kvm_arch_exit(); 4529 out_fail: 4530 return r; 4531 } 4532 EXPORT_SYMBOL_GPL(kvm_init); 4533 4534 void kvm_exit(void) 4535 { 4536 debugfs_remove_recursive(kvm_debugfs_dir); 4537 misc_deregister(&kvm_dev); 4538 kmem_cache_destroy(kvm_vcpu_cache); 4539 kvm_async_pf_deinit(); 4540 unregister_syscore_ops(&kvm_syscore_ops); 4541 unregister_reboot_notifier(&kvm_reboot_notifier); 4542 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4543 on_each_cpu(hardware_disable_nolock, NULL, 1); 4544 kvm_arch_hardware_unsetup(); 4545 kvm_arch_exit(); 4546 kvm_irqfd_exit(); 4547 free_cpumask_var(cpus_hardware_enabled); 4548 kvm_vfio_ops_exit(); 4549 } 4550 EXPORT_SYMBOL_GPL(kvm_exit); 4551 4552 struct kvm_vm_worker_thread_context { 4553 struct kvm *kvm; 4554 struct task_struct *parent; 4555 struct completion init_done; 4556 kvm_vm_thread_fn_t thread_fn; 4557 uintptr_t data; 4558 int err; 4559 }; 4560 4561 static int kvm_vm_worker_thread(void *context) 4562 { 4563 /* 4564 * The init_context is allocated on the stack of the parent thread, so 4565 * we have to locally copy anything that is needed beyond initialization 4566 */ 4567 struct kvm_vm_worker_thread_context *init_context = context; 4568 struct kvm *kvm = init_context->kvm; 4569 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4570 uintptr_t data = init_context->data; 4571 int err; 4572 4573 err = kthread_park(current); 4574 /* kthread_park(current) is never supposed to return an error */ 4575 WARN_ON(err != 0); 4576 if (err) 4577 goto init_complete; 4578 4579 err = cgroup_attach_task_all(init_context->parent, current); 4580 if (err) { 4581 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4582 __func__, err); 4583 goto init_complete; 4584 } 4585 4586 set_user_nice(current, task_nice(init_context->parent)); 4587 4588 init_complete: 4589 init_context->err = err; 4590 complete(&init_context->init_done); 4591 init_context = NULL; 4592 4593 if (err) 4594 return err; 4595 4596 /* Wait to be woken up by the spawner before proceeding. */ 4597 kthread_parkme(); 4598 4599 if (!kthread_should_stop()) 4600 err = thread_fn(kvm, data); 4601 4602 return err; 4603 } 4604 4605 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4606 uintptr_t data, const char *name, 4607 struct task_struct **thread_ptr) 4608 { 4609 struct kvm_vm_worker_thread_context init_context = {}; 4610 struct task_struct *thread; 4611 4612 *thread_ptr = NULL; 4613 init_context.kvm = kvm; 4614 init_context.parent = current; 4615 init_context.thread_fn = thread_fn; 4616 init_context.data = data; 4617 init_completion(&init_context.init_done); 4618 4619 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4620 "%s-%d", name, task_pid_nr(current)); 4621 if (IS_ERR(thread)) 4622 return PTR_ERR(thread); 4623 4624 /* kthread_run is never supposed to return NULL */ 4625 WARN_ON(thread == NULL); 4626 4627 wait_for_completion(&init_context.init_done); 4628 4629 if (!init_context.err) 4630 *thread_ptr = thread; 4631 4632 return init_context.err; 4633 } 4634