xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 static struct kmem_cache *kvm_vcpu_cache;
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 static bool largepages_enabled = true;
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 		unsigned long start, unsigned long end, bool blockable)
162 {
163 	return 0;
164 }
165 
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 		return false;
176 
177 	return is_zone_device_page(pfn_to_page(pfn));
178 }
179 
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182 	/*
183 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 	 * perspective they are "normal" pages, albeit with slightly different
185 	 * usage rules.
186 	 */
187 	if (pfn_valid(pfn))
188 		return PageReserved(pfn_to_page(pfn)) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
195 {
196 	struct page *page = pfn_to_page(pfn);
197 
198 	if (!PageTransCompoundMap(page))
199 		return false;
200 
201 	return is_transparent_hugepage(compound_head(page));
202 }
203 
204 /*
205  * Switches to specified vcpu, until a matching vcpu_put()
206  */
207 void vcpu_load(struct kvm_vcpu *vcpu)
208 {
209 	int cpu = get_cpu();
210 
211 	__this_cpu_write(kvm_running_vcpu, vcpu);
212 	preempt_notifier_register(&vcpu->preempt_notifier);
213 	kvm_arch_vcpu_load(vcpu, cpu);
214 	put_cpu();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_load);
217 
218 void vcpu_put(struct kvm_vcpu *vcpu)
219 {
220 	preempt_disable();
221 	kvm_arch_vcpu_put(vcpu);
222 	preempt_notifier_unregister(&vcpu->preempt_notifier);
223 	__this_cpu_write(kvm_running_vcpu, NULL);
224 	preempt_enable();
225 }
226 EXPORT_SYMBOL_GPL(vcpu_put);
227 
228 /* TODO: merge with kvm_arch_vcpu_should_kick */
229 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
230 {
231 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
232 
233 	/*
234 	 * We need to wait for the VCPU to reenable interrupts and get out of
235 	 * READING_SHADOW_PAGE_TABLES mode.
236 	 */
237 	if (req & KVM_REQUEST_WAIT)
238 		return mode != OUTSIDE_GUEST_MODE;
239 
240 	/*
241 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
242 	 */
243 	return mode == IN_GUEST_MODE;
244 }
245 
246 static void ack_flush(void *_completed)
247 {
248 }
249 
250 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
251 {
252 	if (unlikely(!cpus))
253 		cpus = cpu_online_mask;
254 
255 	if (cpumask_empty(cpus))
256 		return false;
257 
258 	smp_call_function_many(cpus, ack_flush, NULL, wait);
259 	return true;
260 }
261 
262 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
263 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265 	int i, cpu, me;
266 	struct kvm_vcpu *vcpu;
267 	bool called;
268 
269 	me = get_cpu();
270 
271 	kvm_for_each_vcpu(i, vcpu, kvm) {
272 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
293 {
294 	cpumask_var_t cpus;
295 	bool called;
296 
297 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298 
299 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
300 
301 	free_cpumask_var(cpus);
302 	return called;
303 }
304 
305 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
306 void kvm_flush_remote_tlbs(struct kvm *kvm)
307 {
308 	/*
309 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
310 	 * kvm_make_all_cpus_request.
311 	 */
312 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
313 
314 	/*
315 	 * We want to publish modifications to the page tables before reading
316 	 * mode. Pairs with a memory barrier in arch-specific code.
317 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
318 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
319 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
320 	 *
321 	 * There is already an smp_mb__after_atomic() before
322 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
323 	 * barrier here.
324 	 */
325 	if (!kvm_arch_flush_remote_tlb(kvm)
326 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
327 		++kvm->stat.remote_tlb_flush;
328 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
329 }
330 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
331 #endif
332 
333 void kvm_reload_remote_mmus(struct kvm *kvm)
334 {
335 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
336 }
337 
338 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
339 {
340 	mutex_init(&vcpu->mutex);
341 	vcpu->cpu = -1;
342 	vcpu->kvm = kvm;
343 	vcpu->vcpu_id = id;
344 	vcpu->pid = NULL;
345 	init_swait_queue_head(&vcpu->wq);
346 	kvm_async_pf_vcpu_init(vcpu);
347 
348 	vcpu->pre_pcpu = -1;
349 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
350 
351 	kvm_vcpu_set_in_spin_loop(vcpu, false);
352 	kvm_vcpu_set_dy_eligible(vcpu, false);
353 	vcpu->preempted = false;
354 	vcpu->ready = false;
355 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
356 }
357 
358 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
359 {
360 	kvm_arch_vcpu_destroy(vcpu);
361 
362 	/*
363 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
364 	 * the vcpu->pid pointer, and at destruction time all file descriptors
365 	 * are already gone.
366 	 */
367 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
368 
369 	free_page((unsigned long)vcpu->run);
370 	kmem_cache_free(kvm_vcpu_cache, vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
373 
374 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
375 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
376 {
377 	return container_of(mn, struct kvm, mmu_notifier);
378 }
379 
380 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
381 					struct mm_struct *mm,
382 					unsigned long address,
383 					pte_t pte)
384 {
385 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 	int idx;
387 
388 	idx = srcu_read_lock(&kvm->srcu);
389 	spin_lock(&kvm->mmu_lock);
390 	kvm->mmu_notifier_seq++;
391 
392 	if (kvm_set_spte_hva(kvm, address, pte))
393 		kvm_flush_remote_tlbs(kvm);
394 
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 }
398 
399 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
400 					const struct mmu_notifier_range *range)
401 {
402 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 	int need_tlb_flush = 0, idx;
404 	int ret;
405 
406 	idx = srcu_read_lock(&kvm->srcu);
407 	spin_lock(&kvm->mmu_lock);
408 	/*
409 	 * The count increase must become visible at unlock time as no
410 	 * spte can be established without taking the mmu_lock and
411 	 * count is also read inside the mmu_lock critical section.
412 	 */
413 	kvm->mmu_notifier_count++;
414 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
415 	need_tlb_flush |= kvm->tlbs_dirty;
416 	/* we've to flush the tlb before the pages can be freed */
417 	if (need_tlb_flush)
418 		kvm_flush_remote_tlbs(kvm);
419 
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
423 					range->end,
424 					mmu_notifier_range_blockable(range));
425 
426 	srcu_read_unlock(&kvm->srcu, idx);
427 
428 	return ret;
429 }
430 
431 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
432 					const struct mmu_notifier_range *range)
433 {
434 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
435 
436 	spin_lock(&kvm->mmu_lock);
437 	/*
438 	 * This sequence increase will notify the kvm page fault that
439 	 * the page that is going to be mapped in the spte could have
440 	 * been freed.
441 	 */
442 	kvm->mmu_notifier_seq++;
443 	smp_wmb();
444 	/*
445 	 * The above sequence increase must be visible before the
446 	 * below count decrease, which is ensured by the smp_wmb above
447 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
448 	 */
449 	kvm->mmu_notifier_count--;
450 	spin_unlock(&kvm->mmu_lock);
451 
452 	BUG_ON(kvm->mmu_notifier_count < 0);
453 }
454 
455 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
456 					      struct mm_struct *mm,
457 					      unsigned long start,
458 					      unsigned long end)
459 {
460 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 	int young, idx;
462 
463 	idx = srcu_read_lock(&kvm->srcu);
464 	spin_lock(&kvm->mmu_lock);
465 
466 	young = kvm_age_hva(kvm, start, end);
467 	if (young)
468 		kvm_flush_remote_tlbs(kvm);
469 
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
477 					struct mm_struct *mm,
478 					unsigned long start,
479 					unsigned long end)
480 {
481 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
482 	int young, idx;
483 
484 	idx = srcu_read_lock(&kvm->srcu);
485 	spin_lock(&kvm->mmu_lock);
486 	/*
487 	 * Even though we do not flush TLB, this will still adversely
488 	 * affect performance on pre-Haswell Intel EPT, where there is
489 	 * no EPT Access Bit to clear so that we have to tear down EPT
490 	 * tables instead. If we find this unacceptable, we can always
491 	 * add a parameter to kvm_age_hva so that it effectively doesn't
492 	 * do anything on clear_young.
493 	 *
494 	 * Also note that currently we never issue secondary TLB flushes
495 	 * from clear_young, leaving this job up to the regular system
496 	 * cadence. If we find this inaccurate, we might come up with a
497 	 * more sophisticated heuristic later.
498 	 */
499 	young = kvm_age_hva(kvm, start, end);
500 	spin_unlock(&kvm->mmu_lock);
501 	srcu_read_unlock(&kvm->srcu, idx);
502 
503 	return young;
504 }
505 
506 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
507 				       struct mm_struct *mm,
508 				       unsigned long address)
509 {
510 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
511 	int young, idx;
512 
513 	idx = srcu_read_lock(&kvm->srcu);
514 	spin_lock(&kvm->mmu_lock);
515 	young = kvm_test_age_hva(kvm, address);
516 	spin_unlock(&kvm->mmu_lock);
517 	srcu_read_unlock(&kvm->srcu, idx);
518 
519 	return young;
520 }
521 
522 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
523 				     struct mm_struct *mm)
524 {
525 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
526 	int idx;
527 
528 	idx = srcu_read_lock(&kvm->srcu);
529 	kvm_arch_flush_shadow_all(kvm);
530 	srcu_read_unlock(&kvm->srcu, idx);
531 }
532 
533 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
534 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
535 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
536 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
537 	.clear_young		= kvm_mmu_notifier_clear_young,
538 	.test_young		= kvm_mmu_notifier_test_young,
539 	.change_pte		= kvm_mmu_notifier_change_pte,
540 	.release		= kvm_mmu_notifier_release,
541 };
542 
543 static int kvm_init_mmu_notifier(struct kvm *kvm)
544 {
545 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
546 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
547 }
548 
549 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
550 
551 static int kvm_init_mmu_notifier(struct kvm *kvm)
552 {
553 	return 0;
554 }
555 
556 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
557 
558 static struct kvm_memslots *kvm_alloc_memslots(void)
559 {
560 	int i;
561 	struct kvm_memslots *slots;
562 
563 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
564 	if (!slots)
565 		return NULL;
566 
567 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
568 		slots->id_to_index[i] = slots->memslots[i].id = i;
569 
570 	return slots;
571 }
572 
573 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
574 {
575 	if (!memslot->dirty_bitmap)
576 		return;
577 
578 	kvfree(memslot->dirty_bitmap);
579 	memslot->dirty_bitmap = NULL;
580 }
581 
582 /*
583  * Free any memory in @free but not in @dont.
584  */
585 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
586 			      struct kvm_memory_slot *dont)
587 {
588 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
589 		kvm_destroy_dirty_bitmap(free);
590 
591 	kvm_arch_free_memslot(kvm, free, dont);
592 
593 	free->npages = 0;
594 }
595 
596 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
597 {
598 	struct kvm_memory_slot *memslot;
599 
600 	if (!slots)
601 		return;
602 
603 	kvm_for_each_memslot(memslot, slots)
604 		kvm_free_memslot(kvm, memslot, NULL);
605 
606 	kvfree(slots);
607 }
608 
609 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
610 {
611 	int i;
612 
613 	if (!kvm->debugfs_dentry)
614 		return;
615 
616 	debugfs_remove_recursive(kvm->debugfs_dentry);
617 
618 	if (kvm->debugfs_stat_data) {
619 		for (i = 0; i < kvm_debugfs_num_entries; i++)
620 			kfree(kvm->debugfs_stat_data[i]);
621 		kfree(kvm->debugfs_stat_data);
622 	}
623 }
624 
625 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
626 {
627 	char dir_name[ITOA_MAX_LEN * 2];
628 	struct kvm_stat_data *stat_data;
629 	struct kvm_stats_debugfs_item *p;
630 
631 	if (!debugfs_initialized())
632 		return 0;
633 
634 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
635 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
636 
637 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
638 					 sizeof(*kvm->debugfs_stat_data),
639 					 GFP_KERNEL_ACCOUNT);
640 	if (!kvm->debugfs_stat_data)
641 		return -ENOMEM;
642 
643 	for (p = debugfs_entries; p->name; p++) {
644 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
645 		if (!stat_data)
646 			return -ENOMEM;
647 
648 		stat_data->kvm = kvm;
649 		stat_data->dbgfs_item = p;
650 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
651 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
652 				    kvm->debugfs_dentry, stat_data,
653 				    &stat_fops_per_vm);
654 	}
655 	return 0;
656 }
657 
658 /*
659  * Called after the VM is otherwise initialized, but just before adding it to
660  * the vm_list.
661  */
662 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
663 {
664 	return 0;
665 }
666 
667 /*
668  * Called just after removing the VM from the vm_list, but before doing any
669  * other destruction.
670  */
671 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
672 {
673 }
674 
675 static struct kvm *kvm_create_vm(unsigned long type)
676 {
677 	struct kvm *kvm = kvm_arch_alloc_vm();
678 	int r = -ENOMEM;
679 	int i;
680 
681 	if (!kvm)
682 		return ERR_PTR(-ENOMEM);
683 
684 	spin_lock_init(&kvm->mmu_lock);
685 	mmgrab(current->mm);
686 	kvm->mm = current->mm;
687 	kvm_eventfd_init(kvm);
688 	mutex_init(&kvm->lock);
689 	mutex_init(&kvm->irq_lock);
690 	mutex_init(&kvm->slots_lock);
691 	INIT_LIST_HEAD(&kvm->devices);
692 
693 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
694 
695 	if (init_srcu_struct(&kvm->srcu))
696 		goto out_err_no_srcu;
697 	if (init_srcu_struct(&kvm->irq_srcu))
698 		goto out_err_no_irq_srcu;
699 
700 	refcount_set(&kvm->users_count, 1);
701 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
702 		struct kvm_memslots *slots = kvm_alloc_memslots();
703 
704 		if (!slots)
705 			goto out_err_no_arch_destroy_vm;
706 		/* Generations must be different for each address space. */
707 		slots->generation = i;
708 		rcu_assign_pointer(kvm->memslots[i], slots);
709 	}
710 
711 	for (i = 0; i < KVM_NR_BUSES; i++) {
712 		rcu_assign_pointer(kvm->buses[i],
713 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
714 		if (!kvm->buses[i])
715 			goto out_err_no_arch_destroy_vm;
716 	}
717 
718 	r = kvm_arch_init_vm(kvm, type);
719 	if (r)
720 		goto out_err_no_arch_destroy_vm;
721 
722 	r = hardware_enable_all();
723 	if (r)
724 		goto out_err_no_disable;
725 
726 #ifdef CONFIG_HAVE_KVM_IRQFD
727 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
728 #endif
729 
730 	r = kvm_init_mmu_notifier(kvm);
731 	if (r)
732 		goto out_err_no_mmu_notifier;
733 
734 	r = kvm_arch_post_init_vm(kvm);
735 	if (r)
736 		goto out_err;
737 
738 	mutex_lock(&kvm_lock);
739 	list_add(&kvm->vm_list, &vm_list);
740 	mutex_unlock(&kvm_lock);
741 
742 	preempt_notifier_inc();
743 
744 	return kvm;
745 
746 out_err:
747 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
748 	if (kvm->mmu_notifier.ops)
749 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
750 #endif
751 out_err_no_mmu_notifier:
752 	hardware_disable_all();
753 out_err_no_disable:
754 	kvm_arch_destroy_vm(kvm);
755 out_err_no_arch_destroy_vm:
756 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
757 	for (i = 0; i < KVM_NR_BUSES; i++)
758 		kfree(kvm_get_bus(kvm, i));
759 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
760 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
761 	cleanup_srcu_struct(&kvm->irq_srcu);
762 out_err_no_irq_srcu:
763 	cleanup_srcu_struct(&kvm->srcu);
764 out_err_no_srcu:
765 	kvm_arch_free_vm(kvm);
766 	mmdrop(current->mm);
767 	return ERR_PTR(r);
768 }
769 
770 static void kvm_destroy_devices(struct kvm *kvm)
771 {
772 	struct kvm_device *dev, *tmp;
773 
774 	/*
775 	 * We do not need to take the kvm->lock here, because nobody else
776 	 * has a reference to the struct kvm at this point and therefore
777 	 * cannot access the devices list anyhow.
778 	 */
779 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
780 		list_del(&dev->vm_node);
781 		dev->ops->destroy(dev);
782 	}
783 }
784 
785 static void kvm_destroy_vm(struct kvm *kvm)
786 {
787 	int i;
788 	struct mm_struct *mm = kvm->mm;
789 
790 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
791 	kvm_destroy_vm_debugfs(kvm);
792 	kvm_arch_sync_events(kvm);
793 	mutex_lock(&kvm_lock);
794 	list_del(&kvm->vm_list);
795 	mutex_unlock(&kvm_lock);
796 	kvm_arch_pre_destroy_vm(kvm);
797 
798 	kvm_free_irq_routing(kvm);
799 	for (i = 0; i < KVM_NR_BUSES; i++) {
800 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
801 
802 		if (bus)
803 			kvm_io_bus_destroy(bus);
804 		kvm->buses[i] = NULL;
805 	}
806 	kvm_coalesced_mmio_free(kvm);
807 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
808 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
809 #else
810 	kvm_arch_flush_shadow_all(kvm);
811 #endif
812 	kvm_arch_destroy_vm(kvm);
813 	kvm_destroy_devices(kvm);
814 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
815 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
816 	cleanup_srcu_struct(&kvm->irq_srcu);
817 	cleanup_srcu_struct(&kvm->srcu);
818 	kvm_arch_free_vm(kvm);
819 	preempt_notifier_dec();
820 	hardware_disable_all();
821 	mmdrop(mm);
822 }
823 
824 void kvm_get_kvm(struct kvm *kvm)
825 {
826 	refcount_inc(&kvm->users_count);
827 }
828 EXPORT_SYMBOL_GPL(kvm_get_kvm);
829 
830 void kvm_put_kvm(struct kvm *kvm)
831 {
832 	if (refcount_dec_and_test(&kvm->users_count))
833 		kvm_destroy_vm(kvm);
834 }
835 EXPORT_SYMBOL_GPL(kvm_put_kvm);
836 
837 /*
838  * Used to put a reference that was taken on behalf of an object associated
839  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
840  * of the new file descriptor fails and the reference cannot be transferred to
841  * its final owner.  In such cases, the caller is still actively using @kvm and
842  * will fail miserably if the refcount unexpectedly hits zero.
843  */
844 void kvm_put_kvm_no_destroy(struct kvm *kvm)
845 {
846 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
847 }
848 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
849 
850 static int kvm_vm_release(struct inode *inode, struct file *filp)
851 {
852 	struct kvm *kvm = filp->private_data;
853 
854 	kvm_irqfd_release(kvm);
855 
856 	kvm_put_kvm(kvm);
857 	return 0;
858 }
859 
860 /*
861  * Allocation size is twice as large as the actual dirty bitmap size.
862  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
863  */
864 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
865 {
866 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
867 
868 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
869 	if (!memslot->dirty_bitmap)
870 		return -ENOMEM;
871 
872 	return 0;
873 }
874 
875 /*
876  * Insert memslot and re-sort memslots based on their GFN,
877  * so binary search could be used to lookup GFN.
878  * Sorting algorithm takes advantage of having initially
879  * sorted array and known changed memslot position.
880  */
881 static void update_memslots(struct kvm_memslots *slots,
882 			    struct kvm_memory_slot *new,
883 			    enum kvm_mr_change change)
884 {
885 	int id = new->id;
886 	int i = slots->id_to_index[id];
887 	struct kvm_memory_slot *mslots = slots->memslots;
888 
889 	WARN_ON(mslots[i].id != id);
890 	switch (change) {
891 	case KVM_MR_CREATE:
892 		slots->used_slots++;
893 		WARN_ON(mslots[i].npages || !new->npages);
894 		break;
895 	case KVM_MR_DELETE:
896 		slots->used_slots--;
897 		WARN_ON(new->npages || !mslots[i].npages);
898 		break;
899 	default:
900 		break;
901 	}
902 
903 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
904 	       new->base_gfn <= mslots[i + 1].base_gfn) {
905 		if (!mslots[i + 1].npages)
906 			break;
907 		mslots[i] = mslots[i + 1];
908 		slots->id_to_index[mslots[i].id] = i;
909 		i++;
910 	}
911 
912 	/*
913 	 * The ">=" is needed when creating a slot with base_gfn == 0,
914 	 * so that it moves before all those with base_gfn == npages == 0.
915 	 *
916 	 * On the other hand, if new->npages is zero, the above loop has
917 	 * already left i pointing to the beginning of the empty part of
918 	 * mslots, and the ">=" would move the hole backwards in this
919 	 * case---which is wrong.  So skip the loop when deleting a slot.
920 	 */
921 	if (new->npages) {
922 		while (i > 0 &&
923 		       new->base_gfn >= mslots[i - 1].base_gfn) {
924 			mslots[i] = mslots[i - 1];
925 			slots->id_to_index[mslots[i].id] = i;
926 			i--;
927 		}
928 	} else
929 		WARN_ON_ONCE(i != slots->used_slots);
930 
931 	mslots[i] = *new;
932 	slots->id_to_index[mslots[i].id] = i;
933 }
934 
935 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
936 {
937 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
938 
939 #ifdef __KVM_HAVE_READONLY_MEM
940 	valid_flags |= KVM_MEM_READONLY;
941 #endif
942 
943 	if (mem->flags & ~valid_flags)
944 		return -EINVAL;
945 
946 	return 0;
947 }
948 
949 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
950 		int as_id, struct kvm_memslots *slots)
951 {
952 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
953 	u64 gen = old_memslots->generation;
954 
955 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
956 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
957 
958 	rcu_assign_pointer(kvm->memslots[as_id], slots);
959 	synchronize_srcu_expedited(&kvm->srcu);
960 
961 	/*
962 	 * Increment the new memslot generation a second time, dropping the
963 	 * update in-progress flag and incrementing the generation based on
964 	 * the number of address spaces.  This provides a unique and easily
965 	 * identifiable generation number while the memslots are in flux.
966 	 */
967 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
968 
969 	/*
970 	 * Generations must be unique even across address spaces.  We do not need
971 	 * a global counter for that, instead the generation space is evenly split
972 	 * across address spaces.  For example, with two address spaces, address
973 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
974 	 * use generations 1, 3, 5, ...
975 	 */
976 	gen += KVM_ADDRESS_SPACE_NUM;
977 
978 	kvm_arch_memslots_updated(kvm, gen);
979 
980 	slots->generation = gen;
981 
982 	return old_memslots;
983 }
984 
985 /*
986  * Allocate some memory and give it an address in the guest physical address
987  * space.
988  *
989  * Discontiguous memory is allowed, mostly for framebuffers.
990  *
991  * Must be called holding kvm->slots_lock for write.
992  */
993 int __kvm_set_memory_region(struct kvm *kvm,
994 			    const struct kvm_userspace_memory_region *mem)
995 {
996 	int r;
997 	gfn_t base_gfn;
998 	unsigned long npages;
999 	struct kvm_memory_slot *slot;
1000 	struct kvm_memory_slot old, new;
1001 	struct kvm_memslots *slots = NULL, *old_memslots;
1002 	int as_id, id;
1003 	enum kvm_mr_change change;
1004 
1005 	r = check_memory_region_flags(mem);
1006 	if (r)
1007 		goto out;
1008 
1009 	r = -EINVAL;
1010 	as_id = mem->slot >> 16;
1011 	id = (u16)mem->slot;
1012 
1013 	/* General sanity checks */
1014 	if (mem->memory_size & (PAGE_SIZE - 1))
1015 		goto out;
1016 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1017 		goto out;
1018 	/* We can read the guest memory with __xxx_user() later on. */
1019 	if ((id < KVM_USER_MEM_SLOTS) &&
1020 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1021 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1022 			mem->memory_size)))
1023 		goto out;
1024 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1025 		goto out;
1026 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1027 		goto out;
1028 
1029 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1030 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1031 	npages = mem->memory_size >> PAGE_SHIFT;
1032 
1033 	if (npages > KVM_MEM_MAX_NR_PAGES)
1034 		goto out;
1035 
1036 	new = old = *slot;
1037 
1038 	new.id = id;
1039 	new.base_gfn = base_gfn;
1040 	new.npages = npages;
1041 	new.flags = mem->flags;
1042 
1043 	if (npages) {
1044 		if (!old.npages)
1045 			change = KVM_MR_CREATE;
1046 		else { /* Modify an existing slot. */
1047 			if ((mem->userspace_addr != old.userspace_addr) ||
1048 			    (npages != old.npages) ||
1049 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1050 				goto out;
1051 
1052 			if (base_gfn != old.base_gfn)
1053 				change = KVM_MR_MOVE;
1054 			else if (new.flags != old.flags)
1055 				change = KVM_MR_FLAGS_ONLY;
1056 			else { /* Nothing to change. */
1057 				r = 0;
1058 				goto out;
1059 			}
1060 		}
1061 	} else {
1062 		if (!old.npages)
1063 			goto out;
1064 
1065 		change = KVM_MR_DELETE;
1066 		new.base_gfn = 0;
1067 		new.flags = 0;
1068 	}
1069 
1070 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1071 		/* Check for overlaps */
1072 		r = -EEXIST;
1073 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1074 			if (slot->id == id)
1075 				continue;
1076 			if (!((base_gfn + npages <= slot->base_gfn) ||
1077 			      (base_gfn >= slot->base_gfn + slot->npages)))
1078 				goto out;
1079 		}
1080 	}
1081 
1082 	/* Free page dirty bitmap if unneeded */
1083 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1084 		new.dirty_bitmap = NULL;
1085 
1086 	r = -ENOMEM;
1087 	if (change == KVM_MR_CREATE) {
1088 		new.userspace_addr = mem->userspace_addr;
1089 
1090 		if (kvm_arch_create_memslot(kvm, &new, npages))
1091 			goto out_free;
1092 	}
1093 
1094 	/* Allocate page dirty bitmap if needed */
1095 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1096 		if (kvm_create_dirty_bitmap(&new) < 0)
1097 			goto out_free;
1098 	}
1099 
1100 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1101 	if (!slots)
1102 		goto out_free;
1103 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1104 
1105 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1106 		slot = id_to_memslot(slots, id);
1107 		slot->flags |= KVM_MEMSLOT_INVALID;
1108 
1109 		old_memslots = install_new_memslots(kvm, as_id, slots);
1110 
1111 		/* From this point no new shadow pages pointing to a deleted,
1112 		 * or moved, memslot will be created.
1113 		 *
1114 		 * validation of sp->gfn happens in:
1115 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1116 		 *	- kvm_is_visible_gfn (mmu_check_root)
1117 		 */
1118 		kvm_arch_flush_shadow_memslot(kvm, slot);
1119 
1120 		/*
1121 		 * We can re-use the old_memslots from above, the only difference
1122 		 * from the currently installed memslots is the invalid flag.  This
1123 		 * will get overwritten by update_memslots anyway.
1124 		 */
1125 		slots = old_memslots;
1126 	}
1127 
1128 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1129 	if (r)
1130 		goto out_slots;
1131 
1132 	/* actual memory is freed via old in kvm_free_memslot below */
1133 	if (change == KVM_MR_DELETE) {
1134 		new.dirty_bitmap = NULL;
1135 		memset(&new.arch, 0, sizeof(new.arch));
1136 	}
1137 
1138 	update_memslots(slots, &new, change);
1139 	old_memslots = install_new_memslots(kvm, as_id, slots);
1140 
1141 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1142 
1143 	kvm_free_memslot(kvm, &old, &new);
1144 	kvfree(old_memslots);
1145 	return 0;
1146 
1147 out_slots:
1148 	kvfree(slots);
1149 out_free:
1150 	kvm_free_memslot(kvm, &new, &old);
1151 out:
1152 	return r;
1153 }
1154 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1155 
1156 int kvm_set_memory_region(struct kvm *kvm,
1157 			  const struct kvm_userspace_memory_region *mem)
1158 {
1159 	int r;
1160 
1161 	mutex_lock(&kvm->slots_lock);
1162 	r = __kvm_set_memory_region(kvm, mem);
1163 	mutex_unlock(&kvm->slots_lock);
1164 	return r;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1167 
1168 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1169 					  struct kvm_userspace_memory_region *mem)
1170 {
1171 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1172 		return -EINVAL;
1173 
1174 	return kvm_set_memory_region(kvm, mem);
1175 }
1176 
1177 int kvm_get_dirty_log(struct kvm *kvm,
1178 			struct kvm_dirty_log *log, int *is_dirty)
1179 {
1180 	struct kvm_memslots *slots;
1181 	struct kvm_memory_slot *memslot;
1182 	int i, as_id, id;
1183 	unsigned long n;
1184 	unsigned long any = 0;
1185 
1186 	as_id = log->slot >> 16;
1187 	id = (u16)log->slot;
1188 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1189 		return -EINVAL;
1190 
1191 	slots = __kvm_memslots(kvm, as_id);
1192 	memslot = id_to_memslot(slots, id);
1193 	if (!memslot->dirty_bitmap)
1194 		return -ENOENT;
1195 
1196 	n = kvm_dirty_bitmap_bytes(memslot);
1197 
1198 	for (i = 0; !any && i < n/sizeof(long); ++i)
1199 		any = memslot->dirty_bitmap[i];
1200 
1201 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1202 		return -EFAULT;
1203 
1204 	if (any)
1205 		*is_dirty = 1;
1206 	return 0;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1209 
1210 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1211 /**
1212  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1213  *	and reenable dirty page tracking for the corresponding pages.
1214  * @kvm:	pointer to kvm instance
1215  * @log:	slot id and address to which we copy the log
1216  * @flush:	true if TLB flush is needed by caller
1217  *
1218  * We need to keep it in mind that VCPU threads can write to the bitmap
1219  * concurrently. So, to avoid losing track of dirty pages we keep the
1220  * following order:
1221  *
1222  *    1. Take a snapshot of the bit and clear it if needed.
1223  *    2. Write protect the corresponding page.
1224  *    3. Copy the snapshot to the userspace.
1225  *    4. Upon return caller flushes TLB's if needed.
1226  *
1227  * Between 2 and 4, the guest may write to the page using the remaining TLB
1228  * entry.  This is not a problem because the page is reported dirty using
1229  * the snapshot taken before and step 4 ensures that writes done after
1230  * exiting to userspace will be logged for the next call.
1231  *
1232  */
1233 int kvm_get_dirty_log_protect(struct kvm *kvm,
1234 			struct kvm_dirty_log *log, bool *flush)
1235 {
1236 	struct kvm_memslots *slots;
1237 	struct kvm_memory_slot *memslot;
1238 	int i, as_id, id;
1239 	unsigned long n;
1240 	unsigned long *dirty_bitmap;
1241 	unsigned long *dirty_bitmap_buffer;
1242 
1243 	as_id = log->slot >> 16;
1244 	id = (u16)log->slot;
1245 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1246 		return -EINVAL;
1247 
1248 	slots = __kvm_memslots(kvm, as_id);
1249 	memslot = id_to_memslot(slots, id);
1250 
1251 	dirty_bitmap = memslot->dirty_bitmap;
1252 	if (!dirty_bitmap)
1253 		return -ENOENT;
1254 
1255 	n = kvm_dirty_bitmap_bytes(memslot);
1256 	*flush = false;
1257 	if (kvm->manual_dirty_log_protect) {
1258 		/*
1259 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1260 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1261 		 * is some code duplication between this function and
1262 		 * kvm_get_dirty_log, but hopefully all architecture
1263 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1264 		 * can be eliminated.
1265 		 */
1266 		dirty_bitmap_buffer = dirty_bitmap;
1267 	} else {
1268 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1269 		memset(dirty_bitmap_buffer, 0, n);
1270 
1271 		spin_lock(&kvm->mmu_lock);
1272 		for (i = 0; i < n / sizeof(long); i++) {
1273 			unsigned long mask;
1274 			gfn_t offset;
1275 
1276 			if (!dirty_bitmap[i])
1277 				continue;
1278 
1279 			*flush = true;
1280 			mask = xchg(&dirty_bitmap[i], 0);
1281 			dirty_bitmap_buffer[i] = mask;
1282 
1283 			offset = i * BITS_PER_LONG;
1284 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285 								offset, mask);
1286 		}
1287 		spin_unlock(&kvm->mmu_lock);
1288 	}
1289 
1290 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1291 		return -EFAULT;
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1295 
1296 /**
1297  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1298  *	and reenable dirty page tracking for the corresponding pages.
1299  * @kvm:	pointer to kvm instance
1300  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1301  * @flush:	true if TLB flush is needed by caller
1302  */
1303 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1304 				struct kvm_clear_dirty_log *log, bool *flush)
1305 {
1306 	struct kvm_memslots *slots;
1307 	struct kvm_memory_slot *memslot;
1308 	int as_id, id;
1309 	gfn_t offset;
1310 	unsigned long i, n;
1311 	unsigned long *dirty_bitmap;
1312 	unsigned long *dirty_bitmap_buffer;
1313 
1314 	as_id = log->slot >> 16;
1315 	id = (u16)log->slot;
1316 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1317 		return -EINVAL;
1318 
1319 	if (log->first_page & 63)
1320 		return -EINVAL;
1321 
1322 	slots = __kvm_memslots(kvm, as_id);
1323 	memslot = id_to_memslot(slots, id);
1324 
1325 	dirty_bitmap = memslot->dirty_bitmap;
1326 	if (!dirty_bitmap)
1327 		return -ENOENT;
1328 
1329 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1330 
1331 	if (log->first_page > memslot->npages ||
1332 	    log->num_pages > memslot->npages - log->first_page ||
1333 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1334 	    return -EINVAL;
1335 
1336 	*flush = false;
1337 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1338 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1339 		return -EFAULT;
1340 
1341 	spin_lock(&kvm->mmu_lock);
1342 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1343 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1344 	     i++, offset += BITS_PER_LONG) {
1345 		unsigned long mask = *dirty_bitmap_buffer++;
1346 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1347 		if (!mask)
1348 			continue;
1349 
1350 		mask &= atomic_long_fetch_andnot(mask, p);
1351 
1352 		/*
1353 		 * mask contains the bits that really have been cleared.  This
1354 		 * never includes any bits beyond the length of the memslot (if
1355 		 * the length is not aligned to 64 pages), therefore it is not
1356 		 * a problem if userspace sets them in log->dirty_bitmap.
1357 		*/
1358 		if (mask) {
1359 			*flush = true;
1360 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1361 								offset, mask);
1362 		}
1363 	}
1364 	spin_unlock(&kvm->mmu_lock);
1365 
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1369 #endif
1370 
1371 bool kvm_largepages_enabled(void)
1372 {
1373 	return largepages_enabled;
1374 }
1375 
1376 void kvm_disable_largepages(void)
1377 {
1378 	largepages_enabled = false;
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1381 
1382 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1383 {
1384 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1387 
1388 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1389 {
1390 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1391 }
1392 
1393 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1394 {
1395 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1396 
1397 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1398 	      memslot->flags & KVM_MEMSLOT_INVALID)
1399 		return false;
1400 
1401 	return true;
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1404 
1405 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1406 {
1407 	struct vm_area_struct *vma;
1408 	unsigned long addr, size;
1409 
1410 	size = PAGE_SIZE;
1411 
1412 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1413 	if (kvm_is_error_hva(addr))
1414 		return PAGE_SIZE;
1415 
1416 	down_read(&current->mm->mmap_sem);
1417 	vma = find_vma(current->mm, addr);
1418 	if (!vma)
1419 		goto out;
1420 
1421 	size = vma_kernel_pagesize(vma);
1422 
1423 out:
1424 	up_read(&current->mm->mmap_sem);
1425 
1426 	return size;
1427 }
1428 
1429 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1430 {
1431 	return slot->flags & KVM_MEM_READONLY;
1432 }
1433 
1434 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1435 				       gfn_t *nr_pages, bool write)
1436 {
1437 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1438 		return KVM_HVA_ERR_BAD;
1439 
1440 	if (memslot_is_readonly(slot) && write)
1441 		return KVM_HVA_ERR_RO_BAD;
1442 
1443 	if (nr_pages)
1444 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1445 
1446 	return __gfn_to_hva_memslot(slot, gfn);
1447 }
1448 
1449 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1450 				     gfn_t *nr_pages)
1451 {
1452 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1453 }
1454 
1455 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1456 					gfn_t gfn)
1457 {
1458 	return gfn_to_hva_many(slot, gfn, NULL);
1459 }
1460 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1461 
1462 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1463 {
1464 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1465 }
1466 EXPORT_SYMBOL_GPL(gfn_to_hva);
1467 
1468 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1469 {
1470 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1473 
1474 /*
1475  * Return the hva of a @gfn and the R/W attribute if possible.
1476  *
1477  * @slot: the kvm_memory_slot which contains @gfn
1478  * @gfn: the gfn to be translated
1479  * @writable: used to return the read/write attribute of the @slot if the hva
1480  * is valid and @writable is not NULL
1481  */
1482 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1483 				      gfn_t gfn, bool *writable)
1484 {
1485 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1486 
1487 	if (!kvm_is_error_hva(hva) && writable)
1488 		*writable = !memslot_is_readonly(slot);
1489 
1490 	return hva;
1491 }
1492 
1493 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1494 {
1495 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1496 
1497 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1498 }
1499 
1500 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1501 {
1502 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1503 
1504 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1505 }
1506 
1507 static inline int check_user_page_hwpoison(unsigned long addr)
1508 {
1509 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1510 
1511 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1512 	return rc == -EHWPOISON;
1513 }
1514 
1515 /*
1516  * The fast path to get the writable pfn which will be stored in @pfn,
1517  * true indicates success, otherwise false is returned.  It's also the
1518  * only part that runs if we can in atomic context.
1519  */
1520 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1521 			    bool *writable, kvm_pfn_t *pfn)
1522 {
1523 	struct page *page[1];
1524 	int npages;
1525 
1526 	/*
1527 	 * Fast pin a writable pfn only if it is a write fault request
1528 	 * or the caller allows to map a writable pfn for a read fault
1529 	 * request.
1530 	 */
1531 	if (!(write_fault || writable))
1532 		return false;
1533 
1534 	npages = __get_user_pages_fast(addr, 1, 1, page);
1535 	if (npages == 1) {
1536 		*pfn = page_to_pfn(page[0]);
1537 
1538 		if (writable)
1539 			*writable = true;
1540 		return true;
1541 	}
1542 
1543 	return false;
1544 }
1545 
1546 /*
1547  * The slow path to get the pfn of the specified host virtual address,
1548  * 1 indicates success, -errno is returned if error is detected.
1549  */
1550 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1551 			   bool *writable, kvm_pfn_t *pfn)
1552 {
1553 	unsigned int flags = FOLL_HWPOISON;
1554 	struct page *page;
1555 	int npages = 0;
1556 
1557 	might_sleep();
1558 
1559 	if (writable)
1560 		*writable = write_fault;
1561 
1562 	if (write_fault)
1563 		flags |= FOLL_WRITE;
1564 	if (async)
1565 		flags |= FOLL_NOWAIT;
1566 
1567 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1568 	if (npages != 1)
1569 		return npages;
1570 
1571 	/* map read fault as writable if possible */
1572 	if (unlikely(!write_fault) && writable) {
1573 		struct page *wpage;
1574 
1575 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1576 			*writable = true;
1577 			put_page(page);
1578 			page = wpage;
1579 		}
1580 	}
1581 	*pfn = page_to_pfn(page);
1582 	return npages;
1583 }
1584 
1585 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1586 {
1587 	if (unlikely(!(vma->vm_flags & VM_READ)))
1588 		return false;
1589 
1590 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1591 		return false;
1592 
1593 	return true;
1594 }
1595 
1596 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1597 			       unsigned long addr, bool *async,
1598 			       bool write_fault, bool *writable,
1599 			       kvm_pfn_t *p_pfn)
1600 {
1601 	unsigned long pfn;
1602 	int r;
1603 
1604 	r = follow_pfn(vma, addr, &pfn);
1605 	if (r) {
1606 		/*
1607 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1608 		 * not call the fault handler, so do it here.
1609 		 */
1610 		bool unlocked = false;
1611 		r = fixup_user_fault(current, current->mm, addr,
1612 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1613 				     &unlocked);
1614 		if (unlocked)
1615 			return -EAGAIN;
1616 		if (r)
1617 			return r;
1618 
1619 		r = follow_pfn(vma, addr, &pfn);
1620 		if (r)
1621 			return r;
1622 
1623 	}
1624 
1625 	if (writable)
1626 		*writable = true;
1627 
1628 	/*
1629 	 * Get a reference here because callers of *hva_to_pfn* and
1630 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1631 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1632 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1633 	 * simply do nothing for reserved pfns.
1634 	 *
1635 	 * Whoever called remap_pfn_range is also going to call e.g.
1636 	 * unmap_mapping_range before the underlying pages are freed,
1637 	 * causing a call to our MMU notifier.
1638 	 */
1639 	kvm_get_pfn(pfn);
1640 
1641 	*p_pfn = pfn;
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Pin guest page in memory and return its pfn.
1647  * @addr: host virtual address which maps memory to the guest
1648  * @atomic: whether this function can sleep
1649  * @async: whether this function need to wait IO complete if the
1650  *         host page is not in the memory
1651  * @write_fault: whether we should get a writable host page
1652  * @writable: whether it allows to map a writable host page for !@write_fault
1653  *
1654  * The function will map a writable host page for these two cases:
1655  * 1): @write_fault = true
1656  * 2): @write_fault = false && @writable, @writable will tell the caller
1657  *     whether the mapping is writable.
1658  */
1659 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1660 			bool write_fault, bool *writable)
1661 {
1662 	struct vm_area_struct *vma;
1663 	kvm_pfn_t pfn = 0;
1664 	int npages, r;
1665 
1666 	/* we can do it either atomically or asynchronously, not both */
1667 	BUG_ON(atomic && async);
1668 
1669 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1670 		return pfn;
1671 
1672 	if (atomic)
1673 		return KVM_PFN_ERR_FAULT;
1674 
1675 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1676 	if (npages == 1)
1677 		return pfn;
1678 
1679 	down_read(&current->mm->mmap_sem);
1680 	if (npages == -EHWPOISON ||
1681 	      (!async && check_user_page_hwpoison(addr))) {
1682 		pfn = KVM_PFN_ERR_HWPOISON;
1683 		goto exit;
1684 	}
1685 
1686 retry:
1687 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1688 
1689 	if (vma == NULL)
1690 		pfn = KVM_PFN_ERR_FAULT;
1691 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1692 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1693 		if (r == -EAGAIN)
1694 			goto retry;
1695 		if (r < 0)
1696 			pfn = KVM_PFN_ERR_FAULT;
1697 	} else {
1698 		if (async && vma_is_valid(vma, write_fault))
1699 			*async = true;
1700 		pfn = KVM_PFN_ERR_FAULT;
1701 	}
1702 exit:
1703 	up_read(&current->mm->mmap_sem);
1704 	return pfn;
1705 }
1706 
1707 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1708 			       bool atomic, bool *async, bool write_fault,
1709 			       bool *writable)
1710 {
1711 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1712 
1713 	if (addr == KVM_HVA_ERR_RO_BAD) {
1714 		if (writable)
1715 			*writable = false;
1716 		return KVM_PFN_ERR_RO_FAULT;
1717 	}
1718 
1719 	if (kvm_is_error_hva(addr)) {
1720 		if (writable)
1721 			*writable = false;
1722 		return KVM_PFN_NOSLOT;
1723 	}
1724 
1725 	/* Do not map writable pfn in the readonly memslot. */
1726 	if (writable && memslot_is_readonly(slot)) {
1727 		*writable = false;
1728 		writable = NULL;
1729 	}
1730 
1731 	return hva_to_pfn(addr, atomic, async, write_fault,
1732 			  writable);
1733 }
1734 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1735 
1736 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1737 		      bool *writable)
1738 {
1739 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1740 				    write_fault, writable);
1741 }
1742 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1743 
1744 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1745 {
1746 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1747 }
1748 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1749 
1750 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1751 {
1752 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1753 }
1754 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1755 
1756 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1757 {
1758 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1759 }
1760 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1761 
1762 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1763 {
1764 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1767 
1768 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1769 {
1770 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1771 }
1772 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1773 
1774 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1775 {
1776 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1779 
1780 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1781 			    struct page **pages, int nr_pages)
1782 {
1783 	unsigned long addr;
1784 	gfn_t entry = 0;
1785 
1786 	addr = gfn_to_hva_many(slot, gfn, &entry);
1787 	if (kvm_is_error_hva(addr))
1788 		return -1;
1789 
1790 	if (entry < nr_pages)
1791 		return 0;
1792 
1793 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1794 }
1795 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1796 
1797 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1798 {
1799 	if (is_error_noslot_pfn(pfn))
1800 		return KVM_ERR_PTR_BAD_PAGE;
1801 
1802 	if (kvm_is_reserved_pfn(pfn)) {
1803 		WARN_ON(1);
1804 		return KVM_ERR_PTR_BAD_PAGE;
1805 	}
1806 
1807 	return pfn_to_page(pfn);
1808 }
1809 
1810 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1811 {
1812 	kvm_pfn_t pfn;
1813 
1814 	pfn = gfn_to_pfn(kvm, gfn);
1815 
1816 	return kvm_pfn_to_page(pfn);
1817 }
1818 EXPORT_SYMBOL_GPL(gfn_to_page);
1819 
1820 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1821 {
1822 	if (pfn == 0)
1823 		return;
1824 
1825 	if (cache)
1826 		cache->pfn = cache->gfn = 0;
1827 
1828 	if (dirty)
1829 		kvm_release_pfn_dirty(pfn);
1830 	else
1831 		kvm_release_pfn_clean(pfn);
1832 }
1833 
1834 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1835 				 struct gfn_to_pfn_cache *cache, u64 gen)
1836 {
1837 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
1838 
1839 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1840 	cache->gfn = gfn;
1841 	cache->dirty = false;
1842 	cache->generation = gen;
1843 }
1844 
1845 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1846 			 struct kvm_host_map *map,
1847 			 struct gfn_to_pfn_cache *cache,
1848 			 bool atomic)
1849 {
1850 	kvm_pfn_t pfn;
1851 	void *hva = NULL;
1852 	struct page *page = KVM_UNMAPPED_PAGE;
1853 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1854 	u64 gen = slots->generation;
1855 
1856 	if (!map)
1857 		return -EINVAL;
1858 
1859 	if (cache) {
1860 		if (!cache->pfn || cache->gfn != gfn ||
1861 			cache->generation != gen) {
1862 			if (atomic)
1863 				return -EAGAIN;
1864 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1865 		}
1866 		pfn = cache->pfn;
1867 	} else {
1868 		if (atomic)
1869 			return -EAGAIN;
1870 		pfn = gfn_to_pfn_memslot(slot, gfn);
1871 	}
1872 	if (is_error_noslot_pfn(pfn))
1873 		return -EINVAL;
1874 
1875 	if (pfn_valid(pfn)) {
1876 		page = pfn_to_page(pfn);
1877 		if (atomic)
1878 			hva = kmap_atomic(page);
1879 		else
1880 			hva = kmap(page);
1881 #ifdef CONFIG_HAS_IOMEM
1882 	} else if (!atomic) {
1883 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1884 	} else {
1885 		return -EINVAL;
1886 #endif
1887 	}
1888 
1889 	if (!hva)
1890 		return -EFAULT;
1891 
1892 	map->page = page;
1893 	map->hva = hva;
1894 	map->pfn = pfn;
1895 	map->gfn = gfn;
1896 
1897 	return 0;
1898 }
1899 
1900 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1901 		struct gfn_to_pfn_cache *cache, bool atomic)
1902 {
1903 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1904 			cache, atomic);
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1907 
1908 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1909 {
1910 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1911 		NULL, false);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1914 
1915 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1916 			struct kvm_host_map *map,
1917 			struct gfn_to_pfn_cache *cache,
1918 			bool dirty, bool atomic)
1919 {
1920 	if (!map)
1921 		return;
1922 
1923 	if (!map->hva)
1924 		return;
1925 
1926 	if (map->page != KVM_UNMAPPED_PAGE) {
1927 		if (atomic)
1928 			kunmap_atomic(map->hva);
1929 		else
1930 			kunmap(map->page);
1931 	}
1932 #ifdef CONFIG_HAS_IOMEM
1933 	else if (!atomic)
1934 		memunmap(map->hva);
1935 	else
1936 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
1937 #endif
1938 
1939 	if (dirty)
1940 		mark_page_dirty_in_slot(memslot, map->gfn);
1941 
1942 	if (cache)
1943 		cache->dirty |= dirty;
1944 	else
1945 		kvm_release_pfn(map->pfn, dirty, NULL);
1946 
1947 	map->hva = NULL;
1948 	map->page = NULL;
1949 }
1950 
1951 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1952 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1953 {
1954 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1955 			cache, dirty, atomic);
1956 	return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1959 
1960 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1961 {
1962 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1963 			dirty, false);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1966 
1967 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1968 {
1969 	kvm_pfn_t pfn;
1970 
1971 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1972 
1973 	return kvm_pfn_to_page(pfn);
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1976 
1977 void kvm_release_page_clean(struct page *page)
1978 {
1979 	WARN_ON(is_error_page(page));
1980 
1981 	kvm_release_pfn_clean(page_to_pfn(page));
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1984 
1985 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1986 {
1987 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1988 		put_page(pfn_to_page(pfn));
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1991 
1992 void kvm_release_page_dirty(struct page *page)
1993 {
1994 	WARN_ON(is_error_page(page));
1995 
1996 	kvm_release_pfn_dirty(page_to_pfn(page));
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1999 
2000 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2001 {
2002 	kvm_set_pfn_dirty(pfn);
2003 	kvm_release_pfn_clean(pfn);
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2006 
2007 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2008 {
2009 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2010 		SetPageDirty(pfn_to_page(pfn));
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2013 
2014 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2015 {
2016 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2017 		mark_page_accessed(pfn_to_page(pfn));
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2020 
2021 void kvm_get_pfn(kvm_pfn_t pfn)
2022 {
2023 	if (!kvm_is_reserved_pfn(pfn))
2024 		get_page(pfn_to_page(pfn));
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2027 
2028 static int next_segment(unsigned long len, int offset)
2029 {
2030 	if (len > PAGE_SIZE - offset)
2031 		return PAGE_SIZE - offset;
2032 	else
2033 		return len;
2034 }
2035 
2036 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2037 				 void *data, int offset, int len)
2038 {
2039 	int r;
2040 	unsigned long addr;
2041 
2042 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2043 	if (kvm_is_error_hva(addr))
2044 		return -EFAULT;
2045 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2046 	if (r)
2047 		return -EFAULT;
2048 	return 0;
2049 }
2050 
2051 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2052 			int len)
2053 {
2054 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2055 
2056 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2059 
2060 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2061 			     int offset, int len)
2062 {
2063 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064 
2065 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2066 }
2067 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2068 
2069 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2070 {
2071 	gfn_t gfn = gpa >> PAGE_SHIFT;
2072 	int seg;
2073 	int offset = offset_in_page(gpa);
2074 	int ret;
2075 
2076 	while ((seg = next_segment(len, offset)) != 0) {
2077 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2078 		if (ret < 0)
2079 			return ret;
2080 		offset = 0;
2081 		len -= seg;
2082 		data += seg;
2083 		++gfn;
2084 	}
2085 	return 0;
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_read_guest);
2088 
2089 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2090 {
2091 	gfn_t gfn = gpa >> PAGE_SHIFT;
2092 	int seg;
2093 	int offset = offset_in_page(gpa);
2094 	int ret;
2095 
2096 	while ((seg = next_segment(len, offset)) != 0) {
2097 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2098 		if (ret < 0)
2099 			return ret;
2100 		offset = 0;
2101 		len -= seg;
2102 		data += seg;
2103 		++gfn;
2104 	}
2105 	return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2108 
2109 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2110 			           void *data, int offset, unsigned long len)
2111 {
2112 	int r;
2113 	unsigned long addr;
2114 
2115 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2116 	if (kvm_is_error_hva(addr))
2117 		return -EFAULT;
2118 	pagefault_disable();
2119 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2120 	pagefault_enable();
2121 	if (r)
2122 		return -EFAULT;
2123 	return 0;
2124 }
2125 
2126 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2127 			       void *data, unsigned long len)
2128 {
2129 	gfn_t gfn = gpa >> PAGE_SHIFT;
2130 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2131 	int offset = offset_in_page(gpa);
2132 
2133 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2136 
2137 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2138 			          const void *data, int offset, int len)
2139 {
2140 	int r;
2141 	unsigned long addr;
2142 
2143 	addr = gfn_to_hva_memslot(memslot, gfn);
2144 	if (kvm_is_error_hva(addr))
2145 		return -EFAULT;
2146 	r = __copy_to_user((void __user *)addr + offset, data, len);
2147 	if (r)
2148 		return -EFAULT;
2149 	mark_page_dirty_in_slot(memslot, gfn);
2150 	return 0;
2151 }
2152 
2153 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2154 			 const void *data, int offset, int len)
2155 {
2156 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2157 
2158 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2159 }
2160 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2161 
2162 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2163 			      const void *data, int offset, int len)
2164 {
2165 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2166 
2167 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2168 }
2169 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2170 
2171 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2172 		    unsigned long len)
2173 {
2174 	gfn_t gfn = gpa >> PAGE_SHIFT;
2175 	int seg;
2176 	int offset = offset_in_page(gpa);
2177 	int ret;
2178 
2179 	while ((seg = next_segment(len, offset)) != 0) {
2180 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2181 		if (ret < 0)
2182 			return ret;
2183 		offset = 0;
2184 		len -= seg;
2185 		data += seg;
2186 		++gfn;
2187 	}
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_write_guest);
2191 
2192 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2193 		         unsigned long len)
2194 {
2195 	gfn_t gfn = gpa >> PAGE_SHIFT;
2196 	int seg;
2197 	int offset = offset_in_page(gpa);
2198 	int ret;
2199 
2200 	while ((seg = next_segment(len, offset)) != 0) {
2201 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2202 		if (ret < 0)
2203 			return ret;
2204 		offset = 0;
2205 		len -= seg;
2206 		data += seg;
2207 		++gfn;
2208 	}
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2212 
2213 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2214 				       struct gfn_to_hva_cache *ghc,
2215 				       gpa_t gpa, unsigned long len)
2216 {
2217 	int offset = offset_in_page(gpa);
2218 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2219 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2220 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2221 	gfn_t nr_pages_avail;
2222 
2223 	/* Update ghc->generation before performing any error checks. */
2224 	ghc->generation = slots->generation;
2225 
2226 	if (start_gfn > end_gfn) {
2227 		ghc->hva = KVM_HVA_ERR_BAD;
2228 		return -EINVAL;
2229 	}
2230 
2231 	/*
2232 	 * If the requested region crosses two memslots, we still
2233 	 * verify that the entire region is valid here.
2234 	 */
2235 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2236 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2237 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2238 					   &nr_pages_avail);
2239 		if (kvm_is_error_hva(ghc->hva))
2240 			return -EFAULT;
2241 	}
2242 
2243 	/* Use the slow path for cross page reads and writes. */
2244 	if (nr_pages_needed == 1)
2245 		ghc->hva += offset;
2246 	else
2247 		ghc->memslot = NULL;
2248 
2249 	ghc->gpa = gpa;
2250 	ghc->len = len;
2251 	return 0;
2252 }
2253 
2254 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2255 			      gpa_t gpa, unsigned long len)
2256 {
2257 	struct kvm_memslots *slots = kvm_memslots(kvm);
2258 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2261 
2262 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2263 				  void *data, unsigned int offset,
2264 				  unsigned long len)
2265 {
2266 	struct kvm_memslots *slots = kvm_memslots(kvm);
2267 	int r;
2268 	gpa_t gpa = ghc->gpa + offset;
2269 
2270 	BUG_ON(len + offset > ghc->len);
2271 
2272 	if (slots->generation != ghc->generation) {
2273 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2274 			return -EFAULT;
2275 	}
2276 
2277 	if (kvm_is_error_hva(ghc->hva))
2278 		return -EFAULT;
2279 
2280 	if (unlikely(!ghc->memslot))
2281 		return kvm_write_guest(kvm, gpa, data, len);
2282 
2283 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2284 	if (r)
2285 		return -EFAULT;
2286 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2287 
2288 	return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2291 
2292 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2293 			   void *data, unsigned long len)
2294 {
2295 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2298 
2299 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2300 			   void *data, unsigned long len)
2301 {
2302 	struct kvm_memslots *slots = kvm_memslots(kvm);
2303 	int r;
2304 
2305 	BUG_ON(len > ghc->len);
2306 
2307 	if (slots->generation != ghc->generation) {
2308 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2309 			return -EFAULT;
2310 	}
2311 
2312 	if (kvm_is_error_hva(ghc->hva))
2313 		return -EFAULT;
2314 
2315 	if (unlikely(!ghc->memslot))
2316 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2317 
2318 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2319 	if (r)
2320 		return -EFAULT;
2321 
2322 	return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2325 
2326 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2327 {
2328 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2329 
2330 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2333 
2334 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2335 {
2336 	gfn_t gfn = gpa >> PAGE_SHIFT;
2337 	int seg;
2338 	int offset = offset_in_page(gpa);
2339 	int ret;
2340 
2341 	while ((seg = next_segment(len, offset)) != 0) {
2342 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2343 		if (ret < 0)
2344 			return ret;
2345 		offset = 0;
2346 		len -= seg;
2347 		++gfn;
2348 	}
2349 	return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2352 
2353 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2354 				    gfn_t gfn)
2355 {
2356 	if (memslot && memslot->dirty_bitmap) {
2357 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2358 
2359 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2360 	}
2361 }
2362 
2363 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2364 {
2365 	struct kvm_memory_slot *memslot;
2366 
2367 	memslot = gfn_to_memslot(kvm, gfn);
2368 	mark_page_dirty_in_slot(memslot, gfn);
2369 }
2370 EXPORT_SYMBOL_GPL(mark_page_dirty);
2371 
2372 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2373 {
2374 	struct kvm_memory_slot *memslot;
2375 
2376 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2377 	mark_page_dirty_in_slot(memslot, gfn);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2380 
2381 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2382 {
2383 	if (!vcpu->sigset_active)
2384 		return;
2385 
2386 	/*
2387 	 * This does a lockless modification of ->real_blocked, which is fine
2388 	 * because, only current can change ->real_blocked and all readers of
2389 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2390 	 * of ->blocked.
2391 	 */
2392 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2393 }
2394 
2395 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2396 {
2397 	if (!vcpu->sigset_active)
2398 		return;
2399 
2400 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2401 	sigemptyset(&current->real_blocked);
2402 }
2403 
2404 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2405 {
2406 	unsigned int old, val, grow, grow_start;
2407 
2408 	old = val = vcpu->halt_poll_ns;
2409 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2410 	grow = READ_ONCE(halt_poll_ns_grow);
2411 	if (!grow)
2412 		goto out;
2413 
2414 	val *= grow;
2415 	if (val < grow_start)
2416 		val = grow_start;
2417 
2418 	if (val > halt_poll_ns)
2419 		val = halt_poll_ns;
2420 
2421 	vcpu->halt_poll_ns = val;
2422 out:
2423 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2424 }
2425 
2426 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2427 {
2428 	unsigned int old, val, shrink;
2429 
2430 	old = val = vcpu->halt_poll_ns;
2431 	shrink = READ_ONCE(halt_poll_ns_shrink);
2432 	if (shrink == 0)
2433 		val = 0;
2434 	else
2435 		val /= shrink;
2436 
2437 	vcpu->halt_poll_ns = val;
2438 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2439 }
2440 
2441 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2442 {
2443 	int ret = -EINTR;
2444 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2445 
2446 	if (kvm_arch_vcpu_runnable(vcpu)) {
2447 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2448 		goto out;
2449 	}
2450 	if (kvm_cpu_has_pending_timer(vcpu))
2451 		goto out;
2452 	if (signal_pending(current))
2453 		goto out;
2454 
2455 	ret = 0;
2456 out:
2457 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2458 	return ret;
2459 }
2460 
2461 /*
2462  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2463  */
2464 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2465 {
2466 	ktime_t start, cur;
2467 	DECLARE_SWAITQUEUE(wait);
2468 	bool waited = false;
2469 	u64 block_ns;
2470 
2471 	kvm_arch_vcpu_blocking(vcpu);
2472 
2473 	start = cur = ktime_get();
2474 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2475 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2476 
2477 		++vcpu->stat.halt_attempted_poll;
2478 		do {
2479 			/*
2480 			 * This sets KVM_REQ_UNHALT if an interrupt
2481 			 * arrives.
2482 			 */
2483 			if (kvm_vcpu_check_block(vcpu) < 0) {
2484 				++vcpu->stat.halt_successful_poll;
2485 				if (!vcpu_valid_wakeup(vcpu))
2486 					++vcpu->stat.halt_poll_invalid;
2487 				goto out;
2488 			}
2489 			cur = ktime_get();
2490 		} while (single_task_running() && ktime_before(cur, stop));
2491 	}
2492 
2493 	for (;;) {
2494 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2495 
2496 		if (kvm_vcpu_check_block(vcpu) < 0)
2497 			break;
2498 
2499 		waited = true;
2500 		schedule();
2501 	}
2502 
2503 	finish_swait(&vcpu->wq, &wait);
2504 	cur = ktime_get();
2505 out:
2506 	kvm_arch_vcpu_unblocking(vcpu);
2507 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2508 
2509 	if (!kvm_arch_no_poll(vcpu)) {
2510 		if (!vcpu_valid_wakeup(vcpu)) {
2511 			shrink_halt_poll_ns(vcpu);
2512 		} else if (halt_poll_ns) {
2513 			if (block_ns <= vcpu->halt_poll_ns)
2514 				;
2515 			/* we had a long block, shrink polling */
2516 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2517 				shrink_halt_poll_ns(vcpu);
2518 			/* we had a short halt and our poll time is too small */
2519 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2520 				block_ns < halt_poll_ns)
2521 				grow_halt_poll_ns(vcpu);
2522 		} else {
2523 			vcpu->halt_poll_ns = 0;
2524 		}
2525 	}
2526 
2527 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2528 	kvm_arch_vcpu_block_finish(vcpu);
2529 }
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2531 
2532 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2533 {
2534 	struct swait_queue_head *wqp;
2535 
2536 	wqp = kvm_arch_vcpu_wq(vcpu);
2537 	if (swq_has_sleeper(wqp)) {
2538 		swake_up_one(wqp);
2539 		WRITE_ONCE(vcpu->ready, true);
2540 		++vcpu->stat.halt_wakeup;
2541 		return true;
2542 	}
2543 
2544 	return false;
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2547 
2548 #ifndef CONFIG_S390
2549 /*
2550  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2551  */
2552 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2553 {
2554 	int me;
2555 	int cpu = vcpu->cpu;
2556 
2557 	if (kvm_vcpu_wake_up(vcpu))
2558 		return;
2559 
2560 	me = get_cpu();
2561 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2562 		if (kvm_arch_vcpu_should_kick(vcpu))
2563 			smp_send_reschedule(cpu);
2564 	put_cpu();
2565 }
2566 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2567 #endif /* !CONFIG_S390 */
2568 
2569 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2570 {
2571 	struct pid *pid;
2572 	struct task_struct *task = NULL;
2573 	int ret = 0;
2574 
2575 	rcu_read_lock();
2576 	pid = rcu_dereference(target->pid);
2577 	if (pid)
2578 		task = get_pid_task(pid, PIDTYPE_PID);
2579 	rcu_read_unlock();
2580 	if (!task)
2581 		return ret;
2582 	ret = yield_to(task, 1);
2583 	put_task_struct(task);
2584 
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2588 
2589 /*
2590  * Helper that checks whether a VCPU is eligible for directed yield.
2591  * Most eligible candidate to yield is decided by following heuristics:
2592  *
2593  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2594  *  (preempted lock holder), indicated by @in_spin_loop.
2595  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2596  *
2597  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2598  *  chance last time (mostly it has become eligible now since we have probably
2599  *  yielded to lockholder in last iteration. This is done by toggling
2600  *  @dy_eligible each time a VCPU checked for eligibility.)
2601  *
2602  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2603  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2604  *  burning. Giving priority for a potential lock-holder increases lock
2605  *  progress.
2606  *
2607  *  Since algorithm is based on heuristics, accessing another VCPU data without
2608  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2609  *  and continue with next VCPU and so on.
2610  */
2611 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2612 {
2613 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2614 	bool eligible;
2615 
2616 	eligible = !vcpu->spin_loop.in_spin_loop ||
2617 		    vcpu->spin_loop.dy_eligible;
2618 
2619 	if (vcpu->spin_loop.in_spin_loop)
2620 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2621 
2622 	return eligible;
2623 #else
2624 	return true;
2625 #endif
2626 }
2627 
2628 /*
2629  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2630  * a vcpu_load/vcpu_put pair.  However, for most architectures
2631  * kvm_arch_vcpu_runnable does not require vcpu_load.
2632  */
2633 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2634 {
2635 	return kvm_arch_vcpu_runnable(vcpu);
2636 }
2637 
2638 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2639 {
2640 	if (kvm_arch_dy_runnable(vcpu))
2641 		return true;
2642 
2643 #ifdef CONFIG_KVM_ASYNC_PF
2644 	if (!list_empty_careful(&vcpu->async_pf.done))
2645 		return true;
2646 #endif
2647 
2648 	return false;
2649 }
2650 
2651 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2652 {
2653 	struct kvm *kvm = me->kvm;
2654 	struct kvm_vcpu *vcpu;
2655 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2656 	int yielded = 0;
2657 	int try = 3;
2658 	int pass;
2659 	int i;
2660 
2661 	kvm_vcpu_set_in_spin_loop(me, true);
2662 	/*
2663 	 * We boost the priority of a VCPU that is runnable but not
2664 	 * currently running, because it got preempted by something
2665 	 * else and called schedule in __vcpu_run.  Hopefully that
2666 	 * VCPU is holding the lock that we need and will release it.
2667 	 * We approximate round-robin by starting at the last boosted VCPU.
2668 	 */
2669 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2670 		kvm_for_each_vcpu(i, vcpu, kvm) {
2671 			if (!pass && i <= last_boosted_vcpu) {
2672 				i = last_boosted_vcpu;
2673 				continue;
2674 			} else if (pass && i > last_boosted_vcpu)
2675 				break;
2676 			if (!READ_ONCE(vcpu->ready))
2677 				continue;
2678 			if (vcpu == me)
2679 				continue;
2680 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2681 				continue;
2682 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2683 				!kvm_arch_vcpu_in_kernel(vcpu))
2684 				continue;
2685 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2686 				continue;
2687 
2688 			yielded = kvm_vcpu_yield_to(vcpu);
2689 			if (yielded > 0) {
2690 				kvm->last_boosted_vcpu = i;
2691 				break;
2692 			} else if (yielded < 0) {
2693 				try--;
2694 				if (!try)
2695 					break;
2696 			}
2697 		}
2698 	}
2699 	kvm_vcpu_set_in_spin_loop(me, false);
2700 
2701 	/* Ensure vcpu is not eligible during next spinloop */
2702 	kvm_vcpu_set_dy_eligible(me, false);
2703 }
2704 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2705 
2706 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2707 {
2708 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2709 	struct page *page;
2710 
2711 	if (vmf->pgoff == 0)
2712 		page = virt_to_page(vcpu->run);
2713 #ifdef CONFIG_X86
2714 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2715 		page = virt_to_page(vcpu->arch.pio_data);
2716 #endif
2717 #ifdef CONFIG_KVM_MMIO
2718 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2719 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2720 #endif
2721 	else
2722 		return kvm_arch_vcpu_fault(vcpu, vmf);
2723 	get_page(page);
2724 	vmf->page = page;
2725 	return 0;
2726 }
2727 
2728 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2729 	.fault = kvm_vcpu_fault,
2730 };
2731 
2732 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2733 {
2734 	vma->vm_ops = &kvm_vcpu_vm_ops;
2735 	return 0;
2736 }
2737 
2738 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2739 {
2740 	struct kvm_vcpu *vcpu = filp->private_data;
2741 
2742 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2743 	kvm_put_kvm(vcpu->kvm);
2744 	return 0;
2745 }
2746 
2747 static struct file_operations kvm_vcpu_fops = {
2748 	.release        = kvm_vcpu_release,
2749 	.unlocked_ioctl = kvm_vcpu_ioctl,
2750 	.mmap           = kvm_vcpu_mmap,
2751 	.llseek		= noop_llseek,
2752 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2753 };
2754 
2755 /*
2756  * Allocates an inode for the vcpu.
2757  */
2758 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2759 {
2760 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2761 
2762 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2763 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2764 }
2765 
2766 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2767 {
2768 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2769 	char dir_name[ITOA_MAX_LEN * 2];
2770 
2771 	if (!debugfs_initialized())
2772 		return;
2773 
2774 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2775 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2776 						  vcpu->kvm->debugfs_dentry);
2777 
2778 	kvm_arch_create_vcpu_debugfs(vcpu);
2779 #endif
2780 }
2781 
2782 /*
2783  * Creates some virtual cpus.  Good luck creating more than one.
2784  */
2785 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2786 {
2787 	int r;
2788 	struct kvm_vcpu *vcpu;
2789 	struct page *page;
2790 
2791 	if (id >= KVM_MAX_VCPU_ID)
2792 		return -EINVAL;
2793 
2794 	mutex_lock(&kvm->lock);
2795 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2796 		mutex_unlock(&kvm->lock);
2797 		return -EINVAL;
2798 	}
2799 
2800 	kvm->created_vcpus++;
2801 	mutex_unlock(&kvm->lock);
2802 
2803 	r = kvm_arch_vcpu_precreate(kvm, id);
2804 	if (r)
2805 		goto vcpu_decrement;
2806 
2807 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2808 	if (!vcpu) {
2809 		r = -ENOMEM;
2810 		goto vcpu_decrement;
2811 	}
2812 
2813 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
2814 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2815 	if (!page) {
2816 		r = -ENOMEM;
2817 		goto vcpu_free;
2818 	}
2819 	vcpu->run = page_address(page);
2820 
2821 	kvm_vcpu_init(vcpu, kvm, id);
2822 
2823 	r = kvm_arch_vcpu_create(vcpu);
2824 	if (r)
2825 		goto vcpu_free_run_page;
2826 
2827 	kvm_create_vcpu_debugfs(vcpu);
2828 
2829 	mutex_lock(&kvm->lock);
2830 	if (kvm_get_vcpu_by_id(kvm, id)) {
2831 		r = -EEXIST;
2832 		goto unlock_vcpu_destroy;
2833 	}
2834 
2835 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2836 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2837 
2838 	/* Now it's all set up, let userspace reach it */
2839 	kvm_get_kvm(kvm);
2840 	r = create_vcpu_fd(vcpu);
2841 	if (r < 0) {
2842 		kvm_put_kvm_no_destroy(kvm);
2843 		goto unlock_vcpu_destroy;
2844 	}
2845 
2846 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2847 
2848 	/*
2849 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2850 	 * before kvm->online_vcpu's incremented value.
2851 	 */
2852 	smp_wmb();
2853 	atomic_inc(&kvm->online_vcpus);
2854 
2855 	mutex_unlock(&kvm->lock);
2856 	kvm_arch_vcpu_postcreate(vcpu);
2857 	return r;
2858 
2859 unlock_vcpu_destroy:
2860 	mutex_unlock(&kvm->lock);
2861 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2862 	kvm_arch_vcpu_destroy(vcpu);
2863 vcpu_free_run_page:
2864 	free_page((unsigned long)vcpu->run);
2865 vcpu_free:
2866 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2867 vcpu_decrement:
2868 	mutex_lock(&kvm->lock);
2869 	kvm->created_vcpus--;
2870 	mutex_unlock(&kvm->lock);
2871 	return r;
2872 }
2873 
2874 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2875 {
2876 	if (sigset) {
2877 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2878 		vcpu->sigset_active = 1;
2879 		vcpu->sigset = *sigset;
2880 	} else
2881 		vcpu->sigset_active = 0;
2882 	return 0;
2883 }
2884 
2885 static long kvm_vcpu_ioctl(struct file *filp,
2886 			   unsigned int ioctl, unsigned long arg)
2887 {
2888 	struct kvm_vcpu *vcpu = filp->private_data;
2889 	void __user *argp = (void __user *)arg;
2890 	int r;
2891 	struct kvm_fpu *fpu = NULL;
2892 	struct kvm_sregs *kvm_sregs = NULL;
2893 
2894 	if (vcpu->kvm->mm != current->mm)
2895 		return -EIO;
2896 
2897 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2898 		return -EINVAL;
2899 
2900 	/*
2901 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2902 	 * execution; mutex_lock() would break them.
2903 	 */
2904 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2905 	if (r != -ENOIOCTLCMD)
2906 		return r;
2907 
2908 	if (mutex_lock_killable(&vcpu->mutex))
2909 		return -EINTR;
2910 	switch (ioctl) {
2911 	case KVM_RUN: {
2912 		struct pid *oldpid;
2913 		r = -EINVAL;
2914 		if (arg)
2915 			goto out;
2916 		oldpid = rcu_access_pointer(vcpu->pid);
2917 		if (unlikely(oldpid != task_pid(current))) {
2918 			/* The thread running this VCPU changed. */
2919 			struct pid *newpid;
2920 
2921 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2922 			if (r)
2923 				break;
2924 
2925 			newpid = get_task_pid(current, PIDTYPE_PID);
2926 			rcu_assign_pointer(vcpu->pid, newpid);
2927 			if (oldpid)
2928 				synchronize_rcu();
2929 			put_pid(oldpid);
2930 		}
2931 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2932 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2933 		break;
2934 	}
2935 	case KVM_GET_REGS: {
2936 		struct kvm_regs *kvm_regs;
2937 
2938 		r = -ENOMEM;
2939 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2940 		if (!kvm_regs)
2941 			goto out;
2942 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2943 		if (r)
2944 			goto out_free1;
2945 		r = -EFAULT;
2946 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2947 			goto out_free1;
2948 		r = 0;
2949 out_free1:
2950 		kfree(kvm_regs);
2951 		break;
2952 	}
2953 	case KVM_SET_REGS: {
2954 		struct kvm_regs *kvm_regs;
2955 
2956 		r = -ENOMEM;
2957 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2958 		if (IS_ERR(kvm_regs)) {
2959 			r = PTR_ERR(kvm_regs);
2960 			goto out;
2961 		}
2962 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2963 		kfree(kvm_regs);
2964 		break;
2965 	}
2966 	case KVM_GET_SREGS: {
2967 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2968 				    GFP_KERNEL_ACCOUNT);
2969 		r = -ENOMEM;
2970 		if (!kvm_sregs)
2971 			goto out;
2972 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2973 		if (r)
2974 			goto out;
2975 		r = -EFAULT;
2976 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2977 			goto out;
2978 		r = 0;
2979 		break;
2980 	}
2981 	case KVM_SET_SREGS: {
2982 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2983 		if (IS_ERR(kvm_sregs)) {
2984 			r = PTR_ERR(kvm_sregs);
2985 			kvm_sregs = NULL;
2986 			goto out;
2987 		}
2988 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2989 		break;
2990 	}
2991 	case KVM_GET_MP_STATE: {
2992 		struct kvm_mp_state mp_state;
2993 
2994 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2995 		if (r)
2996 			goto out;
2997 		r = -EFAULT;
2998 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2999 			goto out;
3000 		r = 0;
3001 		break;
3002 	}
3003 	case KVM_SET_MP_STATE: {
3004 		struct kvm_mp_state mp_state;
3005 
3006 		r = -EFAULT;
3007 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3008 			goto out;
3009 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3010 		break;
3011 	}
3012 	case KVM_TRANSLATE: {
3013 		struct kvm_translation tr;
3014 
3015 		r = -EFAULT;
3016 		if (copy_from_user(&tr, argp, sizeof(tr)))
3017 			goto out;
3018 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3019 		if (r)
3020 			goto out;
3021 		r = -EFAULT;
3022 		if (copy_to_user(argp, &tr, sizeof(tr)))
3023 			goto out;
3024 		r = 0;
3025 		break;
3026 	}
3027 	case KVM_SET_GUEST_DEBUG: {
3028 		struct kvm_guest_debug dbg;
3029 
3030 		r = -EFAULT;
3031 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3032 			goto out;
3033 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3034 		break;
3035 	}
3036 	case KVM_SET_SIGNAL_MASK: {
3037 		struct kvm_signal_mask __user *sigmask_arg = argp;
3038 		struct kvm_signal_mask kvm_sigmask;
3039 		sigset_t sigset, *p;
3040 
3041 		p = NULL;
3042 		if (argp) {
3043 			r = -EFAULT;
3044 			if (copy_from_user(&kvm_sigmask, argp,
3045 					   sizeof(kvm_sigmask)))
3046 				goto out;
3047 			r = -EINVAL;
3048 			if (kvm_sigmask.len != sizeof(sigset))
3049 				goto out;
3050 			r = -EFAULT;
3051 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3052 					   sizeof(sigset)))
3053 				goto out;
3054 			p = &sigset;
3055 		}
3056 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3057 		break;
3058 	}
3059 	case KVM_GET_FPU: {
3060 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3061 		r = -ENOMEM;
3062 		if (!fpu)
3063 			goto out;
3064 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3065 		if (r)
3066 			goto out;
3067 		r = -EFAULT;
3068 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3069 			goto out;
3070 		r = 0;
3071 		break;
3072 	}
3073 	case KVM_SET_FPU: {
3074 		fpu = memdup_user(argp, sizeof(*fpu));
3075 		if (IS_ERR(fpu)) {
3076 			r = PTR_ERR(fpu);
3077 			fpu = NULL;
3078 			goto out;
3079 		}
3080 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3081 		break;
3082 	}
3083 	default:
3084 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3085 	}
3086 out:
3087 	mutex_unlock(&vcpu->mutex);
3088 	kfree(fpu);
3089 	kfree(kvm_sregs);
3090 	return r;
3091 }
3092 
3093 #ifdef CONFIG_KVM_COMPAT
3094 static long kvm_vcpu_compat_ioctl(struct file *filp,
3095 				  unsigned int ioctl, unsigned long arg)
3096 {
3097 	struct kvm_vcpu *vcpu = filp->private_data;
3098 	void __user *argp = compat_ptr(arg);
3099 	int r;
3100 
3101 	if (vcpu->kvm->mm != current->mm)
3102 		return -EIO;
3103 
3104 	switch (ioctl) {
3105 	case KVM_SET_SIGNAL_MASK: {
3106 		struct kvm_signal_mask __user *sigmask_arg = argp;
3107 		struct kvm_signal_mask kvm_sigmask;
3108 		sigset_t sigset;
3109 
3110 		if (argp) {
3111 			r = -EFAULT;
3112 			if (copy_from_user(&kvm_sigmask, argp,
3113 					   sizeof(kvm_sigmask)))
3114 				goto out;
3115 			r = -EINVAL;
3116 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3117 				goto out;
3118 			r = -EFAULT;
3119 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3120 				goto out;
3121 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3122 		} else
3123 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3124 		break;
3125 	}
3126 	default:
3127 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3128 	}
3129 
3130 out:
3131 	return r;
3132 }
3133 #endif
3134 
3135 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3136 {
3137 	struct kvm_device *dev = filp->private_data;
3138 
3139 	if (dev->ops->mmap)
3140 		return dev->ops->mmap(dev, vma);
3141 
3142 	return -ENODEV;
3143 }
3144 
3145 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3146 				 int (*accessor)(struct kvm_device *dev,
3147 						 struct kvm_device_attr *attr),
3148 				 unsigned long arg)
3149 {
3150 	struct kvm_device_attr attr;
3151 
3152 	if (!accessor)
3153 		return -EPERM;
3154 
3155 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3156 		return -EFAULT;
3157 
3158 	return accessor(dev, &attr);
3159 }
3160 
3161 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3162 			     unsigned long arg)
3163 {
3164 	struct kvm_device *dev = filp->private_data;
3165 
3166 	if (dev->kvm->mm != current->mm)
3167 		return -EIO;
3168 
3169 	switch (ioctl) {
3170 	case KVM_SET_DEVICE_ATTR:
3171 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3172 	case KVM_GET_DEVICE_ATTR:
3173 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3174 	case KVM_HAS_DEVICE_ATTR:
3175 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3176 	default:
3177 		if (dev->ops->ioctl)
3178 			return dev->ops->ioctl(dev, ioctl, arg);
3179 
3180 		return -ENOTTY;
3181 	}
3182 }
3183 
3184 static int kvm_device_release(struct inode *inode, struct file *filp)
3185 {
3186 	struct kvm_device *dev = filp->private_data;
3187 	struct kvm *kvm = dev->kvm;
3188 
3189 	if (dev->ops->release) {
3190 		mutex_lock(&kvm->lock);
3191 		list_del(&dev->vm_node);
3192 		dev->ops->release(dev);
3193 		mutex_unlock(&kvm->lock);
3194 	}
3195 
3196 	kvm_put_kvm(kvm);
3197 	return 0;
3198 }
3199 
3200 static const struct file_operations kvm_device_fops = {
3201 	.unlocked_ioctl = kvm_device_ioctl,
3202 	.release = kvm_device_release,
3203 	KVM_COMPAT(kvm_device_ioctl),
3204 	.mmap = kvm_device_mmap,
3205 };
3206 
3207 struct kvm_device *kvm_device_from_filp(struct file *filp)
3208 {
3209 	if (filp->f_op != &kvm_device_fops)
3210 		return NULL;
3211 
3212 	return filp->private_data;
3213 }
3214 
3215 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3216 #ifdef CONFIG_KVM_MPIC
3217 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3218 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3219 #endif
3220 };
3221 
3222 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3223 {
3224 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3225 		return -ENOSPC;
3226 
3227 	if (kvm_device_ops_table[type] != NULL)
3228 		return -EEXIST;
3229 
3230 	kvm_device_ops_table[type] = ops;
3231 	return 0;
3232 }
3233 
3234 void kvm_unregister_device_ops(u32 type)
3235 {
3236 	if (kvm_device_ops_table[type] != NULL)
3237 		kvm_device_ops_table[type] = NULL;
3238 }
3239 
3240 static int kvm_ioctl_create_device(struct kvm *kvm,
3241 				   struct kvm_create_device *cd)
3242 {
3243 	const struct kvm_device_ops *ops = NULL;
3244 	struct kvm_device *dev;
3245 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3246 	int type;
3247 	int ret;
3248 
3249 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3250 		return -ENODEV;
3251 
3252 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3253 	ops = kvm_device_ops_table[type];
3254 	if (ops == NULL)
3255 		return -ENODEV;
3256 
3257 	if (test)
3258 		return 0;
3259 
3260 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3261 	if (!dev)
3262 		return -ENOMEM;
3263 
3264 	dev->ops = ops;
3265 	dev->kvm = kvm;
3266 
3267 	mutex_lock(&kvm->lock);
3268 	ret = ops->create(dev, type);
3269 	if (ret < 0) {
3270 		mutex_unlock(&kvm->lock);
3271 		kfree(dev);
3272 		return ret;
3273 	}
3274 	list_add(&dev->vm_node, &kvm->devices);
3275 	mutex_unlock(&kvm->lock);
3276 
3277 	if (ops->init)
3278 		ops->init(dev);
3279 
3280 	kvm_get_kvm(kvm);
3281 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3282 	if (ret < 0) {
3283 		kvm_put_kvm_no_destroy(kvm);
3284 		mutex_lock(&kvm->lock);
3285 		list_del(&dev->vm_node);
3286 		mutex_unlock(&kvm->lock);
3287 		ops->destroy(dev);
3288 		return ret;
3289 	}
3290 
3291 	cd->fd = ret;
3292 	return 0;
3293 }
3294 
3295 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3296 {
3297 	switch (arg) {
3298 	case KVM_CAP_USER_MEMORY:
3299 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3300 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3301 	case KVM_CAP_INTERNAL_ERROR_DATA:
3302 #ifdef CONFIG_HAVE_KVM_MSI
3303 	case KVM_CAP_SIGNAL_MSI:
3304 #endif
3305 #ifdef CONFIG_HAVE_KVM_IRQFD
3306 	case KVM_CAP_IRQFD:
3307 	case KVM_CAP_IRQFD_RESAMPLE:
3308 #endif
3309 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3310 	case KVM_CAP_CHECK_EXTENSION_VM:
3311 	case KVM_CAP_ENABLE_CAP_VM:
3312 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3313 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3314 #endif
3315 		return 1;
3316 #ifdef CONFIG_KVM_MMIO
3317 	case KVM_CAP_COALESCED_MMIO:
3318 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3319 	case KVM_CAP_COALESCED_PIO:
3320 		return 1;
3321 #endif
3322 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3323 	case KVM_CAP_IRQ_ROUTING:
3324 		return KVM_MAX_IRQ_ROUTES;
3325 #endif
3326 #if KVM_ADDRESS_SPACE_NUM > 1
3327 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3328 		return KVM_ADDRESS_SPACE_NUM;
3329 #endif
3330 	case KVM_CAP_NR_MEMSLOTS:
3331 		return KVM_USER_MEM_SLOTS;
3332 	default:
3333 		break;
3334 	}
3335 	return kvm_vm_ioctl_check_extension(kvm, arg);
3336 }
3337 
3338 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3339 						  struct kvm_enable_cap *cap)
3340 {
3341 	return -EINVAL;
3342 }
3343 
3344 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3345 					   struct kvm_enable_cap *cap)
3346 {
3347 	switch (cap->cap) {
3348 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3349 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3350 		if (cap->flags || (cap->args[0] & ~1))
3351 			return -EINVAL;
3352 		kvm->manual_dirty_log_protect = cap->args[0];
3353 		return 0;
3354 #endif
3355 	default:
3356 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3357 	}
3358 }
3359 
3360 static long kvm_vm_ioctl(struct file *filp,
3361 			   unsigned int ioctl, unsigned long arg)
3362 {
3363 	struct kvm *kvm = filp->private_data;
3364 	void __user *argp = (void __user *)arg;
3365 	int r;
3366 
3367 	if (kvm->mm != current->mm)
3368 		return -EIO;
3369 	switch (ioctl) {
3370 	case KVM_CREATE_VCPU:
3371 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3372 		break;
3373 	case KVM_ENABLE_CAP: {
3374 		struct kvm_enable_cap cap;
3375 
3376 		r = -EFAULT;
3377 		if (copy_from_user(&cap, argp, sizeof(cap)))
3378 			goto out;
3379 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3380 		break;
3381 	}
3382 	case KVM_SET_USER_MEMORY_REGION: {
3383 		struct kvm_userspace_memory_region kvm_userspace_mem;
3384 
3385 		r = -EFAULT;
3386 		if (copy_from_user(&kvm_userspace_mem, argp,
3387 						sizeof(kvm_userspace_mem)))
3388 			goto out;
3389 
3390 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3391 		break;
3392 	}
3393 	case KVM_GET_DIRTY_LOG: {
3394 		struct kvm_dirty_log log;
3395 
3396 		r = -EFAULT;
3397 		if (copy_from_user(&log, argp, sizeof(log)))
3398 			goto out;
3399 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3400 		break;
3401 	}
3402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3403 	case KVM_CLEAR_DIRTY_LOG: {
3404 		struct kvm_clear_dirty_log log;
3405 
3406 		r = -EFAULT;
3407 		if (copy_from_user(&log, argp, sizeof(log)))
3408 			goto out;
3409 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3410 		break;
3411 	}
3412 #endif
3413 #ifdef CONFIG_KVM_MMIO
3414 	case KVM_REGISTER_COALESCED_MMIO: {
3415 		struct kvm_coalesced_mmio_zone zone;
3416 
3417 		r = -EFAULT;
3418 		if (copy_from_user(&zone, argp, sizeof(zone)))
3419 			goto out;
3420 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3421 		break;
3422 	}
3423 	case KVM_UNREGISTER_COALESCED_MMIO: {
3424 		struct kvm_coalesced_mmio_zone zone;
3425 
3426 		r = -EFAULT;
3427 		if (copy_from_user(&zone, argp, sizeof(zone)))
3428 			goto out;
3429 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3430 		break;
3431 	}
3432 #endif
3433 	case KVM_IRQFD: {
3434 		struct kvm_irqfd data;
3435 
3436 		r = -EFAULT;
3437 		if (copy_from_user(&data, argp, sizeof(data)))
3438 			goto out;
3439 		r = kvm_irqfd(kvm, &data);
3440 		break;
3441 	}
3442 	case KVM_IOEVENTFD: {
3443 		struct kvm_ioeventfd data;
3444 
3445 		r = -EFAULT;
3446 		if (copy_from_user(&data, argp, sizeof(data)))
3447 			goto out;
3448 		r = kvm_ioeventfd(kvm, &data);
3449 		break;
3450 	}
3451 #ifdef CONFIG_HAVE_KVM_MSI
3452 	case KVM_SIGNAL_MSI: {
3453 		struct kvm_msi msi;
3454 
3455 		r = -EFAULT;
3456 		if (copy_from_user(&msi, argp, sizeof(msi)))
3457 			goto out;
3458 		r = kvm_send_userspace_msi(kvm, &msi);
3459 		break;
3460 	}
3461 #endif
3462 #ifdef __KVM_HAVE_IRQ_LINE
3463 	case KVM_IRQ_LINE_STATUS:
3464 	case KVM_IRQ_LINE: {
3465 		struct kvm_irq_level irq_event;
3466 
3467 		r = -EFAULT;
3468 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3469 			goto out;
3470 
3471 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3472 					ioctl == KVM_IRQ_LINE_STATUS);
3473 		if (r)
3474 			goto out;
3475 
3476 		r = -EFAULT;
3477 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3478 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3479 				goto out;
3480 		}
3481 
3482 		r = 0;
3483 		break;
3484 	}
3485 #endif
3486 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3487 	case KVM_SET_GSI_ROUTING: {
3488 		struct kvm_irq_routing routing;
3489 		struct kvm_irq_routing __user *urouting;
3490 		struct kvm_irq_routing_entry *entries = NULL;
3491 
3492 		r = -EFAULT;
3493 		if (copy_from_user(&routing, argp, sizeof(routing)))
3494 			goto out;
3495 		r = -EINVAL;
3496 		if (!kvm_arch_can_set_irq_routing(kvm))
3497 			goto out;
3498 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3499 			goto out;
3500 		if (routing.flags)
3501 			goto out;
3502 		if (routing.nr) {
3503 			r = -ENOMEM;
3504 			entries = vmalloc(array_size(sizeof(*entries),
3505 						     routing.nr));
3506 			if (!entries)
3507 				goto out;
3508 			r = -EFAULT;
3509 			urouting = argp;
3510 			if (copy_from_user(entries, urouting->entries,
3511 					   routing.nr * sizeof(*entries)))
3512 				goto out_free_irq_routing;
3513 		}
3514 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3515 					routing.flags);
3516 out_free_irq_routing:
3517 		vfree(entries);
3518 		break;
3519 	}
3520 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3521 	case KVM_CREATE_DEVICE: {
3522 		struct kvm_create_device cd;
3523 
3524 		r = -EFAULT;
3525 		if (copy_from_user(&cd, argp, sizeof(cd)))
3526 			goto out;
3527 
3528 		r = kvm_ioctl_create_device(kvm, &cd);
3529 		if (r)
3530 			goto out;
3531 
3532 		r = -EFAULT;
3533 		if (copy_to_user(argp, &cd, sizeof(cd)))
3534 			goto out;
3535 
3536 		r = 0;
3537 		break;
3538 	}
3539 	case KVM_CHECK_EXTENSION:
3540 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3541 		break;
3542 	default:
3543 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3544 	}
3545 out:
3546 	return r;
3547 }
3548 
3549 #ifdef CONFIG_KVM_COMPAT
3550 struct compat_kvm_dirty_log {
3551 	__u32 slot;
3552 	__u32 padding1;
3553 	union {
3554 		compat_uptr_t dirty_bitmap; /* one bit per page */
3555 		__u64 padding2;
3556 	};
3557 };
3558 
3559 static long kvm_vm_compat_ioctl(struct file *filp,
3560 			   unsigned int ioctl, unsigned long arg)
3561 {
3562 	struct kvm *kvm = filp->private_data;
3563 	int r;
3564 
3565 	if (kvm->mm != current->mm)
3566 		return -EIO;
3567 	switch (ioctl) {
3568 	case KVM_GET_DIRTY_LOG: {
3569 		struct compat_kvm_dirty_log compat_log;
3570 		struct kvm_dirty_log log;
3571 
3572 		if (copy_from_user(&compat_log, (void __user *)arg,
3573 				   sizeof(compat_log)))
3574 			return -EFAULT;
3575 		log.slot	 = compat_log.slot;
3576 		log.padding1	 = compat_log.padding1;
3577 		log.padding2	 = compat_log.padding2;
3578 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3579 
3580 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3581 		break;
3582 	}
3583 	default:
3584 		r = kvm_vm_ioctl(filp, ioctl, arg);
3585 	}
3586 	return r;
3587 }
3588 #endif
3589 
3590 static struct file_operations kvm_vm_fops = {
3591 	.release        = kvm_vm_release,
3592 	.unlocked_ioctl = kvm_vm_ioctl,
3593 	.llseek		= noop_llseek,
3594 	KVM_COMPAT(kvm_vm_compat_ioctl),
3595 };
3596 
3597 static int kvm_dev_ioctl_create_vm(unsigned long type)
3598 {
3599 	int r;
3600 	struct kvm *kvm;
3601 	struct file *file;
3602 
3603 	kvm = kvm_create_vm(type);
3604 	if (IS_ERR(kvm))
3605 		return PTR_ERR(kvm);
3606 #ifdef CONFIG_KVM_MMIO
3607 	r = kvm_coalesced_mmio_init(kvm);
3608 	if (r < 0)
3609 		goto put_kvm;
3610 #endif
3611 	r = get_unused_fd_flags(O_CLOEXEC);
3612 	if (r < 0)
3613 		goto put_kvm;
3614 
3615 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3616 	if (IS_ERR(file)) {
3617 		put_unused_fd(r);
3618 		r = PTR_ERR(file);
3619 		goto put_kvm;
3620 	}
3621 
3622 	/*
3623 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3624 	 * already set, with ->release() being kvm_vm_release().  In error
3625 	 * cases it will be called by the final fput(file) and will take
3626 	 * care of doing kvm_put_kvm(kvm).
3627 	 */
3628 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3629 		put_unused_fd(r);
3630 		fput(file);
3631 		return -ENOMEM;
3632 	}
3633 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3634 
3635 	fd_install(r, file);
3636 	return r;
3637 
3638 put_kvm:
3639 	kvm_put_kvm(kvm);
3640 	return r;
3641 }
3642 
3643 static long kvm_dev_ioctl(struct file *filp,
3644 			  unsigned int ioctl, unsigned long arg)
3645 {
3646 	long r = -EINVAL;
3647 
3648 	switch (ioctl) {
3649 	case KVM_GET_API_VERSION:
3650 		if (arg)
3651 			goto out;
3652 		r = KVM_API_VERSION;
3653 		break;
3654 	case KVM_CREATE_VM:
3655 		r = kvm_dev_ioctl_create_vm(arg);
3656 		break;
3657 	case KVM_CHECK_EXTENSION:
3658 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3659 		break;
3660 	case KVM_GET_VCPU_MMAP_SIZE:
3661 		if (arg)
3662 			goto out;
3663 		r = PAGE_SIZE;     /* struct kvm_run */
3664 #ifdef CONFIG_X86
3665 		r += PAGE_SIZE;    /* pio data page */
3666 #endif
3667 #ifdef CONFIG_KVM_MMIO
3668 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3669 #endif
3670 		break;
3671 	case KVM_TRACE_ENABLE:
3672 	case KVM_TRACE_PAUSE:
3673 	case KVM_TRACE_DISABLE:
3674 		r = -EOPNOTSUPP;
3675 		break;
3676 	default:
3677 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3678 	}
3679 out:
3680 	return r;
3681 }
3682 
3683 static struct file_operations kvm_chardev_ops = {
3684 	.unlocked_ioctl = kvm_dev_ioctl,
3685 	.llseek		= noop_llseek,
3686 	KVM_COMPAT(kvm_dev_ioctl),
3687 };
3688 
3689 static struct miscdevice kvm_dev = {
3690 	KVM_MINOR,
3691 	"kvm",
3692 	&kvm_chardev_ops,
3693 };
3694 
3695 static void hardware_enable_nolock(void *junk)
3696 {
3697 	int cpu = raw_smp_processor_id();
3698 	int r;
3699 
3700 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3701 		return;
3702 
3703 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3704 
3705 	r = kvm_arch_hardware_enable();
3706 
3707 	if (r) {
3708 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3709 		atomic_inc(&hardware_enable_failed);
3710 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3711 	}
3712 }
3713 
3714 static int kvm_starting_cpu(unsigned int cpu)
3715 {
3716 	raw_spin_lock(&kvm_count_lock);
3717 	if (kvm_usage_count)
3718 		hardware_enable_nolock(NULL);
3719 	raw_spin_unlock(&kvm_count_lock);
3720 	return 0;
3721 }
3722 
3723 static void hardware_disable_nolock(void *junk)
3724 {
3725 	int cpu = raw_smp_processor_id();
3726 
3727 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3728 		return;
3729 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3730 	kvm_arch_hardware_disable();
3731 }
3732 
3733 static int kvm_dying_cpu(unsigned int cpu)
3734 {
3735 	raw_spin_lock(&kvm_count_lock);
3736 	if (kvm_usage_count)
3737 		hardware_disable_nolock(NULL);
3738 	raw_spin_unlock(&kvm_count_lock);
3739 	return 0;
3740 }
3741 
3742 static void hardware_disable_all_nolock(void)
3743 {
3744 	BUG_ON(!kvm_usage_count);
3745 
3746 	kvm_usage_count--;
3747 	if (!kvm_usage_count)
3748 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3749 }
3750 
3751 static void hardware_disable_all(void)
3752 {
3753 	raw_spin_lock(&kvm_count_lock);
3754 	hardware_disable_all_nolock();
3755 	raw_spin_unlock(&kvm_count_lock);
3756 }
3757 
3758 static int hardware_enable_all(void)
3759 {
3760 	int r = 0;
3761 
3762 	raw_spin_lock(&kvm_count_lock);
3763 
3764 	kvm_usage_count++;
3765 	if (kvm_usage_count == 1) {
3766 		atomic_set(&hardware_enable_failed, 0);
3767 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3768 
3769 		if (atomic_read(&hardware_enable_failed)) {
3770 			hardware_disable_all_nolock();
3771 			r = -EBUSY;
3772 		}
3773 	}
3774 
3775 	raw_spin_unlock(&kvm_count_lock);
3776 
3777 	return r;
3778 }
3779 
3780 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3781 		      void *v)
3782 {
3783 	/*
3784 	 * Some (well, at least mine) BIOSes hang on reboot if
3785 	 * in vmx root mode.
3786 	 *
3787 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3788 	 */
3789 	pr_info("kvm: exiting hardware virtualization\n");
3790 	kvm_rebooting = true;
3791 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3792 	return NOTIFY_OK;
3793 }
3794 
3795 static struct notifier_block kvm_reboot_notifier = {
3796 	.notifier_call = kvm_reboot,
3797 	.priority = 0,
3798 };
3799 
3800 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3801 {
3802 	int i;
3803 
3804 	for (i = 0; i < bus->dev_count; i++) {
3805 		struct kvm_io_device *pos = bus->range[i].dev;
3806 
3807 		kvm_iodevice_destructor(pos);
3808 	}
3809 	kfree(bus);
3810 }
3811 
3812 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3813 				 const struct kvm_io_range *r2)
3814 {
3815 	gpa_t addr1 = r1->addr;
3816 	gpa_t addr2 = r2->addr;
3817 
3818 	if (addr1 < addr2)
3819 		return -1;
3820 
3821 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3822 	 * accept any overlapping write.  Any order is acceptable for
3823 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3824 	 * we process all of them.
3825 	 */
3826 	if (r2->len) {
3827 		addr1 += r1->len;
3828 		addr2 += r2->len;
3829 	}
3830 
3831 	if (addr1 > addr2)
3832 		return 1;
3833 
3834 	return 0;
3835 }
3836 
3837 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3838 {
3839 	return kvm_io_bus_cmp(p1, p2);
3840 }
3841 
3842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3843 			     gpa_t addr, int len)
3844 {
3845 	struct kvm_io_range *range, key;
3846 	int off;
3847 
3848 	key = (struct kvm_io_range) {
3849 		.addr = addr,
3850 		.len = len,
3851 	};
3852 
3853 	range = bsearch(&key, bus->range, bus->dev_count,
3854 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3855 	if (range == NULL)
3856 		return -ENOENT;
3857 
3858 	off = range - bus->range;
3859 
3860 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3861 		off--;
3862 
3863 	return off;
3864 }
3865 
3866 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3867 			      struct kvm_io_range *range, const void *val)
3868 {
3869 	int idx;
3870 
3871 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3872 	if (idx < 0)
3873 		return -EOPNOTSUPP;
3874 
3875 	while (idx < bus->dev_count &&
3876 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3877 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3878 					range->len, val))
3879 			return idx;
3880 		idx++;
3881 	}
3882 
3883 	return -EOPNOTSUPP;
3884 }
3885 
3886 /* kvm_io_bus_write - called under kvm->slots_lock */
3887 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3888 		     int len, const void *val)
3889 {
3890 	struct kvm_io_bus *bus;
3891 	struct kvm_io_range range;
3892 	int r;
3893 
3894 	range = (struct kvm_io_range) {
3895 		.addr = addr,
3896 		.len = len,
3897 	};
3898 
3899 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3900 	if (!bus)
3901 		return -ENOMEM;
3902 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3903 	return r < 0 ? r : 0;
3904 }
3905 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3906 
3907 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3908 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3909 			    gpa_t addr, int len, const void *val, long cookie)
3910 {
3911 	struct kvm_io_bus *bus;
3912 	struct kvm_io_range range;
3913 
3914 	range = (struct kvm_io_range) {
3915 		.addr = addr,
3916 		.len = len,
3917 	};
3918 
3919 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3920 	if (!bus)
3921 		return -ENOMEM;
3922 
3923 	/* First try the device referenced by cookie. */
3924 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3925 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3926 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3927 					val))
3928 			return cookie;
3929 
3930 	/*
3931 	 * cookie contained garbage; fall back to search and return the
3932 	 * correct cookie value.
3933 	 */
3934 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3935 }
3936 
3937 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3938 			     struct kvm_io_range *range, void *val)
3939 {
3940 	int idx;
3941 
3942 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3943 	if (idx < 0)
3944 		return -EOPNOTSUPP;
3945 
3946 	while (idx < bus->dev_count &&
3947 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3948 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3949 				       range->len, val))
3950 			return idx;
3951 		idx++;
3952 	}
3953 
3954 	return -EOPNOTSUPP;
3955 }
3956 
3957 /* kvm_io_bus_read - called under kvm->slots_lock */
3958 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3959 		    int len, void *val)
3960 {
3961 	struct kvm_io_bus *bus;
3962 	struct kvm_io_range range;
3963 	int r;
3964 
3965 	range = (struct kvm_io_range) {
3966 		.addr = addr,
3967 		.len = len,
3968 	};
3969 
3970 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3971 	if (!bus)
3972 		return -ENOMEM;
3973 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3974 	return r < 0 ? r : 0;
3975 }
3976 
3977 /* Caller must hold slots_lock. */
3978 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3979 			    int len, struct kvm_io_device *dev)
3980 {
3981 	int i;
3982 	struct kvm_io_bus *new_bus, *bus;
3983 	struct kvm_io_range range;
3984 
3985 	bus = kvm_get_bus(kvm, bus_idx);
3986 	if (!bus)
3987 		return -ENOMEM;
3988 
3989 	/* exclude ioeventfd which is limited by maximum fd */
3990 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3991 		return -ENOSPC;
3992 
3993 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3994 			  GFP_KERNEL_ACCOUNT);
3995 	if (!new_bus)
3996 		return -ENOMEM;
3997 
3998 	range = (struct kvm_io_range) {
3999 		.addr = addr,
4000 		.len = len,
4001 		.dev = dev,
4002 	};
4003 
4004 	for (i = 0; i < bus->dev_count; i++)
4005 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4006 			break;
4007 
4008 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4009 	new_bus->dev_count++;
4010 	new_bus->range[i] = range;
4011 	memcpy(new_bus->range + i + 1, bus->range + i,
4012 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4013 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4014 	synchronize_srcu_expedited(&kvm->srcu);
4015 	kfree(bus);
4016 
4017 	return 0;
4018 }
4019 
4020 /* Caller must hold slots_lock. */
4021 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4022 			       struct kvm_io_device *dev)
4023 {
4024 	int i;
4025 	struct kvm_io_bus *new_bus, *bus;
4026 
4027 	bus = kvm_get_bus(kvm, bus_idx);
4028 	if (!bus)
4029 		return;
4030 
4031 	for (i = 0; i < bus->dev_count; i++)
4032 		if (bus->range[i].dev == dev) {
4033 			break;
4034 		}
4035 
4036 	if (i == bus->dev_count)
4037 		return;
4038 
4039 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4040 			  GFP_KERNEL_ACCOUNT);
4041 	if (!new_bus)  {
4042 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4043 		goto broken;
4044 	}
4045 
4046 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4047 	new_bus->dev_count--;
4048 	memcpy(new_bus->range + i, bus->range + i + 1,
4049 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4050 
4051 broken:
4052 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4053 	synchronize_srcu_expedited(&kvm->srcu);
4054 	kfree(bus);
4055 	return;
4056 }
4057 
4058 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4059 					 gpa_t addr)
4060 {
4061 	struct kvm_io_bus *bus;
4062 	int dev_idx, srcu_idx;
4063 	struct kvm_io_device *iodev = NULL;
4064 
4065 	srcu_idx = srcu_read_lock(&kvm->srcu);
4066 
4067 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4068 	if (!bus)
4069 		goto out_unlock;
4070 
4071 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4072 	if (dev_idx < 0)
4073 		goto out_unlock;
4074 
4075 	iodev = bus->range[dev_idx].dev;
4076 
4077 out_unlock:
4078 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4079 
4080 	return iodev;
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4083 
4084 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4085 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4086 			   const char *fmt)
4087 {
4088 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4089 					  inode->i_private;
4090 
4091 	/* The debugfs files are a reference to the kvm struct which
4092 	 * is still valid when kvm_destroy_vm is called.
4093 	 * To avoid the race between open and the removal of the debugfs
4094 	 * directory we test against the users count.
4095 	 */
4096 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4097 		return -ENOENT;
4098 
4099 	if (simple_attr_open(inode, file, get,
4100 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4101 		    ? set : NULL,
4102 		    fmt)) {
4103 		kvm_put_kvm(stat_data->kvm);
4104 		return -ENOMEM;
4105 	}
4106 
4107 	return 0;
4108 }
4109 
4110 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4111 {
4112 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4113 					  inode->i_private;
4114 
4115 	simple_attr_release(inode, file);
4116 	kvm_put_kvm(stat_data->kvm);
4117 
4118 	return 0;
4119 }
4120 
4121 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4122 {
4123 	*val = *(ulong *)((void *)kvm + offset);
4124 
4125 	return 0;
4126 }
4127 
4128 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4129 {
4130 	*(ulong *)((void *)kvm + offset) = 0;
4131 
4132 	return 0;
4133 }
4134 
4135 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4136 {
4137 	int i;
4138 	struct kvm_vcpu *vcpu;
4139 
4140 	*val = 0;
4141 
4142 	kvm_for_each_vcpu(i, vcpu, kvm)
4143 		*val += *(u64 *)((void *)vcpu + offset);
4144 
4145 	return 0;
4146 }
4147 
4148 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4149 {
4150 	int i;
4151 	struct kvm_vcpu *vcpu;
4152 
4153 	kvm_for_each_vcpu(i, vcpu, kvm)
4154 		*(u64 *)((void *)vcpu + offset) = 0;
4155 
4156 	return 0;
4157 }
4158 
4159 static int kvm_stat_data_get(void *data, u64 *val)
4160 {
4161 	int r = -EFAULT;
4162 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4163 
4164 	switch (stat_data->dbgfs_item->kind) {
4165 	case KVM_STAT_VM:
4166 		r = kvm_get_stat_per_vm(stat_data->kvm,
4167 					stat_data->dbgfs_item->offset, val);
4168 		break;
4169 	case KVM_STAT_VCPU:
4170 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4171 					  stat_data->dbgfs_item->offset, val);
4172 		break;
4173 	}
4174 
4175 	return r;
4176 }
4177 
4178 static int kvm_stat_data_clear(void *data, u64 val)
4179 {
4180 	int r = -EFAULT;
4181 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4182 
4183 	if (val)
4184 		return -EINVAL;
4185 
4186 	switch (stat_data->dbgfs_item->kind) {
4187 	case KVM_STAT_VM:
4188 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4189 					  stat_data->dbgfs_item->offset);
4190 		break;
4191 	case KVM_STAT_VCPU:
4192 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4193 					    stat_data->dbgfs_item->offset);
4194 		break;
4195 	}
4196 
4197 	return r;
4198 }
4199 
4200 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4201 {
4202 	__simple_attr_check_format("%llu\n", 0ull);
4203 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4204 				kvm_stat_data_clear, "%llu\n");
4205 }
4206 
4207 static const struct file_operations stat_fops_per_vm = {
4208 	.owner = THIS_MODULE,
4209 	.open = kvm_stat_data_open,
4210 	.release = kvm_debugfs_release,
4211 	.read = simple_attr_read,
4212 	.write = simple_attr_write,
4213 	.llseek = no_llseek,
4214 };
4215 
4216 static int vm_stat_get(void *_offset, u64 *val)
4217 {
4218 	unsigned offset = (long)_offset;
4219 	struct kvm *kvm;
4220 	u64 tmp_val;
4221 
4222 	*val = 0;
4223 	mutex_lock(&kvm_lock);
4224 	list_for_each_entry(kvm, &vm_list, vm_list) {
4225 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4226 		*val += tmp_val;
4227 	}
4228 	mutex_unlock(&kvm_lock);
4229 	return 0;
4230 }
4231 
4232 static int vm_stat_clear(void *_offset, u64 val)
4233 {
4234 	unsigned offset = (long)_offset;
4235 	struct kvm *kvm;
4236 
4237 	if (val)
4238 		return -EINVAL;
4239 
4240 	mutex_lock(&kvm_lock);
4241 	list_for_each_entry(kvm, &vm_list, vm_list) {
4242 		kvm_clear_stat_per_vm(kvm, offset);
4243 	}
4244 	mutex_unlock(&kvm_lock);
4245 
4246 	return 0;
4247 }
4248 
4249 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4250 
4251 static int vcpu_stat_get(void *_offset, u64 *val)
4252 {
4253 	unsigned offset = (long)_offset;
4254 	struct kvm *kvm;
4255 	u64 tmp_val;
4256 
4257 	*val = 0;
4258 	mutex_lock(&kvm_lock);
4259 	list_for_each_entry(kvm, &vm_list, vm_list) {
4260 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4261 		*val += tmp_val;
4262 	}
4263 	mutex_unlock(&kvm_lock);
4264 	return 0;
4265 }
4266 
4267 static int vcpu_stat_clear(void *_offset, u64 val)
4268 {
4269 	unsigned offset = (long)_offset;
4270 	struct kvm *kvm;
4271 
4272 	if (val)
4273 		return -EINVAL;
4274 
4275 	mutex_lock(&kvm_lock);
4276 	list_for_each_entry(kvm, &vm_list, vm_list) {
4277 		kvm_clear_stat_per_vcpu(kvm, offset);
4278 	}
4279 	mutex_unlock(&kvm_lock);
4280 
4281 	return 0;
4282 }
4283 
4284 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4285 			"%llu\n");
4286 
4287 static const struct file_operations *stat_fops[] = {
4288 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4289 	[KVM_STAT_VM]   = &vm_stat_fops,
4290 };
4291 
4292 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4293 {
4294 	struct kobj_uevent_env *env;
4295 	unsigned long long created, active;
4296 
4297 	if (!kvm_dev.this_device || !kvm)
4298 		return;
4299 
4300 	mutex_lock(&kvm_lock);
4301 	if (type == KVM_EVENT_CREATE_VM) {
4302 		kvm_createvm_count++;
4303 		kvm_active_vms++;
4304 	} else if (type == KVM_EVENT_DESTROY_VM) {
4305 		kvm_active_vms--;
4306 	}
4307 	created = kvm_createvm_count;
4308 	active = kvm_active_vms;
4309 	mutex_unlock(&kvm_lock);
4310 
4311 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4312 	if (!env)
4313 		return;
4314 
4315 	add_uevent_var(env, "CREATED=%llu", created);
4316 	add_uevent_var(env, "COUNT=%llu", active);
4317 
4318 	if (type == KVM_EVENT_CREATE_VM) {
4319 		add_uevent_var(env, "EVENT=create");
4320 		kvm->userspace_pid = task_pid_nr(current);
4321 	} else if (type == KVM_EVENT_DESTROY_VM) {
4322 		add_uevent_var(env, "EVENT=destroy");
4323 	}
4324 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4325 
4326 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4327 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4328 
4329 		if (p) {
4330 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4331 			if (!IS_ERR(tmp))
4332 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4333 			kfree(p);
4334 		}
4335 	}
4336 	/* no need for checks, since we are adding at most only 5 keys */
4337 	env->envp[env->envp_idx++] = NULL;
4338 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4339 	kfree(env);
4340 }
4341 
4342 static void kvm_init_debug(void)
4343 {
4344 	struct kvm_stats_debugfs_item *p;
4345 
4346 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4347 
4348 	kvm_debugfs_num_entries = 0;
4349 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4350 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4351 				    kvm_debugfs_dir, (void *)(long)p->offset,
4352 				    stat_fops[p->kind]);
4353 	}
4354 }
4355 
4356 static int kvm_suspend(void)
4357 {
4358 	if (kvm_usage_count)
4359 		hardware_disable_nolock(NULL);
4360 	return 0;
4361 }
4362 
4363 static void kvm_resume(void)
4364 {
4365 	if (kvm_usage_count) {
4366 #ifdef CONFIG_LOCKDEP
4367 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4368 #endif
4369 		hardware_enable_nolock(NULL);
4370 	}
4371 }
4372 
4373 static struct syscore_ops kvm_syscore_ops = {
4374 	.suspend = kvm_suspend,
4375 	.resume = kvm_resume,
4376 };
4377 
4378 static inline
4379 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4380 {
4381 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4382 }
4383 
4384 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4385 {
4386 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4387 
4388 	WRITE_ONCE(vcpu->preempted, false);
4389 	WRITE_ONCE(vcpu->ready, false);
4390 
4391 	__this_cpu_write(kvm_running_vcpu, vcpu);
4392 	kvm_arch_sched_in(vcpu, cpu);
4393 	kvm_arch_vcpu_load(vcpu, cpu);
4394 }
4395 
4396 static void kvm_sched_out(struct preempt_notifier *pn,
4397 			  struct task_struct *next)
4398 {
4399 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4400 
4401 	if (current->state == TASK_RUNNING) {
4402 		WRITE_ONCE(vcpu->preempted, true);
4403 		WRITE_ONCE(vcpu->ready, true);
4404 	}
4405 	kvm_arch_vcpu_put(vcpu);
4406 	__this_cpu_write(kvm_running_vcpu, NULL);
4407 }
4408 
4409 /**
4410  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4411  * Thanks to preempt notifiers, this can also be called from
4412  * preemptible context.
4413  */
4414 struct kvm_vcpu *kvm_get_running_vcpu(void)
4415 {
4416         return __this_cpu_read(kvm_running_vcpu);
4417 }
4418 
4419 /**
4420  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4421  */
4422 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4423 {
4424         return &kvm_running_vcpu;
4425 }
4426 
4427 static void check_processor_compat(void *rtn)
4428 {
4429 	*(int *)rtn = kvm_arch_check_processor_compat();
4430 }
4431 
4432 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4433 		  struct module *module)
4434 {
4435 	int r;
4436 	int cpu;
4437 
4438 	r = kvm_arch_init(opaque);
4439 	if (r)
4440 		goto out_fail;
4441 
4442 	/*
4443 	 * kvm_arch_init makes sure there's at most one caller
4444 	 * for architectures that support multiple implementations,
4445 	 * like intel and amd on x86.
4446 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4447 	 * conflicts in case kvm is already setup for another implementation.
4448 	 */
4449 	r = kvm_irqfd_init();
4450 	if (r)
4451 		goto out_irqfd;
4452 
4453 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4454 		r = -ENOMEM;
4455 		goto out_free_0;
4456 	}
4457 
4458 	r = kvm_arch_hardware_setup();
4459 	if (r < 0)
4460 		goto out_free_1;
4461 
4462 	for_each_online_cpu(cpu) {
4463 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4464 		if (r < 0)
4465 			goto out_free_2;
4466 	}
4467 
4468 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4469 				      kvm_starting_cpu, kvm_dying_cpu);
4470 	if (r)
4471 		goto out_free_2;
4472 	register_reboot_notifier(&kvm_reboot_notifier);
4473 
4474 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4475 	if (!vcpu_align)
4476 		vcpu_align = __alignof__(struct kvm_vcpu);
4477 	kvm_vcpu_cache =
4478 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4479 					   SLAB_ACCOUNT,
4480 					   offsetof(struct kvm_vcpu, arch),
4481 					   sizeof_field(struct kvm_vcpu, arch),
4482 					   NULL);
4483 	if (!kvm_vcpu_cache) {
4484 		r = -ENOMEM;
4485 		goto out_free_3;
4486 	}
4487 
4488 	r = kvm_async_pf_init();
4489 	if (r)
4490 		goto out_free;
4491 
4492 	kvm_chardev_ops.owner = module;
4493 	kvm_vm_fops.owner = module;
4494 	kvm_vcpu_fops.owner = module;
4495 
4496 	r = misc_register(&kvm_dev);
4497 	if (r) {
4498 		pr_err("kvm: misc device register failed\n");
4499 		goto out_unreg;
4500 	}
4501 
4502 	register_syscore_ops(&kvm_syscore_ops);
4503 
4504 	kvm_preempt_ops.sched_in = kvm_sched_in;
4505 	kvm_preempt_ops.sched_out = kvm_sched_out;
4506 
4507 	kvm_init_debug();
4508 
4509 	r = kvm_vfio_ops_init();
4510 	WARN_ON(r);
4511 
4512 	return 0;
4513 
4514 out_unreg:
4515 	kvm_async_pf_deinit();
4516 out_free:
4517 	kmem_cache_destroy(kvm_vcpu_cache);
4518 out_free_3:
4519 	unregister_reboot_notifier(&kvm_reboot_notifier);
4520 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4521 out_free_2:
4522 	kvm_arch_hardware_unsetup();
4523 out_free_1:
4524 	free_cpumask_var(cpus_hardware_enabled);
4525 out_free_0:
4526 	kvm_irqfd_exit();
4527 out_irqfd:
4528 	kvm_arch_exit();
4529 out_fail:
4530 	return r;
4531 }
4532 EXPORT_SYMBOL_GPL(kvm_init);
4533 
4534 void kvm_exit(void)
4535 {
4536 	debugfs_remove_recursive(kvm_debugfs_dir);
4537 	misc_deregister(&kvm_dev);
4538 	kmem_cache_destroy(kvm_vcpu_cache);
4539 	kvm_async_pf_deinit();
4540 	unregister_syscore_ops(&kvm_syscore_ops);
4541 	unregister_reboot_notifier(&kvm_reboot_notifier);
4542 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4543 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4544 	kvm_arch_hardware_unsetup();
4545 	kvm_arch_exit();
4546 	kvm_irqfd_exit();
4547 	free_cpumask_var(cpus_hardware_enabled);
4548 	kvm_vfio_ops_exit();
4549 }
4550 EXPORT_SYMBOL_GPL(kvm_exit);
4551 
4552 struct kvm_vm_worker_thread_context {
4553 	struct kvm *kvm;
4554 	struct task_struct *parent;
4555 	struct completion init_done;
4556 	kvm_vm_thread_fn_t thread_fn;
4557 	uintptr_t data;
4558 	int err;
4559 };
4560 
4561 static int kvm_vm_worker_thread(void *context)
4562 {
4563 	/*
4564 	 * The init_context is allocated on the stack of the parent thread, so
4565 	 * we have to locally copy anything that is needed beyond initialization
4566 	 */
4567 	struct kvm_vm_worker_thread_context *init_context = context;
4568 	struct kvm *kvm = init_context->kvm;
4569 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4570 	uintptr_t data = init_context->data;
4571 	int err;
4572 
4573 	err = kthread_park(current);
4574 	/* kthread_park(current) is never supposed to return an error */
4575 	WARN_ON(err != 0);
4576 	if (err)
4577 		goto init_complete;
4578 
4579 	err = cgroup_attach_task_all(init_context->parent, current);
4580 	if (err) {
4581 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4582 			__func__, err);
4583 		goto init_complete;
4584 	}
4585 
4586 	set_user_nice(current, task_nice(init_context->parent));
4587 
4588 init_complete:
4589 	init_context->err = err;
4590 	complete(&init_context->init_done);
4591 	init_context = NULL;
4592 
4593 	if (err)
4594 		return err;
4595 
4596 	/* Wait to be woken up by the spawner before proceeding. */
4597 	kthread_parkme();
4598 
4599 	if (!kthread_should_stop())
4600 		err = thread_fn(kvm, data);
4601 
4602 	return err;
4603 }
4604 
4605 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4606 				uintptr_t data, const char *name,
4607 				struct task_struct **thread_ptr)
4608 {
4609 	struct kvm_vm_worker_thread_context init_context = {};
4610 	struct task_struct *thread;
4611 
4612 	*thread_ptr = NULL;
4613 	init_context.kvm = kvm;
4614 	init_context.parent = current;
4615 	init_context.thread_fn = thread_fn;
4616 	init_context.data = data;
4617 	init_completion(&init_context.init_done);
4618 
4619 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4620 			     "%s-%d", name, task_pid_nr(current));
4621 	if (IS_ERR(thread))
4622 		return PTR_ERR(thread);
4623 
4624 	/* kthread_run is never supposed to return NULL */
4625 	WARN_ON(thread == NULL);
4626 
4627 	wait_for_completion(&init_context.init_done);
4628 
4629 	if (!init_context.err)
4630 		*thread_ptr = thread;
4631 
4632 	return init_context.err;
4633 }
4634