xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 58fc7f73)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138 
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 	if (pfn_valid(pfn))
142 		return PageReserved(pfn_to_page(pfn));
143 
144 	return true;
145 }
146 
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 	int cpu;
153 
154 	if (mutex_lock_killable(&vcpu->mutex))
155 		return -EINTR;
156 	cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163 
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 	preempt_disable();
167 	kvm_arch_vcpu_put(vcpu);
168 	preempt_notifier_unregister(&vcpu->preempt_notifier);
169 	preempt_enable();
170 	mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173 
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 
179 	/*
180 	 * We need to wait for the VCPU to reenable interrupts and get out of
181 	 * READING_SHADOW_PAGE_TABLES mode.
182 	 */
183 	if (req & KVM_REQUEST_WAIT)
184 		return mode != OUTSIDE_GUEST_MODE;
185 
186 	/*
187 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 	 */
189 	return mode == IN_GUEST_MODE;
190 }
191 
192 static void ack_flush(void *_completed)
193 {
194 }
195 
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 	if (unlikely(!cpus))
199 		cpus = cpu_online_mask;
200 
201 	if (cpumask_empty(cpus))
202 		return false;
203 
204 	smp_call_function_many(cpus, ack_flush, NULL, wait);
205 	return true;
206 }
207 
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 	int i, cpu, me;
211 	cpumask_var_t cpus;
212 	bool called;
213 	struct kvm_vcpu *vcpu;
214 
215 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216 
217 	me = get_cpu();
218 	kvm_for_each_vcpu(i, vcpu, kvm) {
219 		kvm_make_request(req, vcpu);
220 		cpu = vcpu->cpu;
221 
222 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 			continue;
224 
225 		if (cpus != NULL && cpu != -1 && cpu != me &&
226 		    kvm_request_needs_ipi(vcpu, req))
227 			__cpumask_set_cpu(cpu, cpus);
228 	}
229 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 	put_cpu();
231 	free_cpumask_var(cpus);
232 	return called;
233 }
234 
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 	/*
239 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 	 * kvm_make_all_cpus_request.
241 	 */
242 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 
244 	/*
245 	 * We want to publish modifications to the page tables before reading
246 	 * mode. Pairs with a memory barrier in arch-specific code.
247 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 	 *
251 	 * There is already an smp_mb__after_atomic() before
252 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 	 * barrier here.
254 	 */
255 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 		++kvm->stat.remote_tlb_flush;
257 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261 
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266 
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 	struct page *page;
270 	int r;
271 
272 	mutex_init(&vcpu->mutex);
273 	vcpu->cpu = -1;
274 	vcpu->kvm = kvm;
275 	vcpu->vcpu_id = id;
276 	vcpu->pid = NULL;
277 	init_swait_queue_head(&vcpu->wq);
278 	kvm_async_pf_vcpu_init(vcpu);
279 
280 	vcpu->pre_pcpu = -1;
281 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282 
283 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 	if (!page) {
285 		r = -ENOMEM;
286 		goto fail;
287 	}
288 	vcpu->run = page_address(page);
289 
290 	kvm_vcpu_set_in_spin_loop(vcpu, false);
291 	kvm_vcpu_set_dy_eligible(vcpu, false);
292 	vcpu->preempted = false;
293 
294 	r = kvm_arch_vcpu_init(vcpu);
295 	if (r < 0)
296 		goto fail_free_run;
297 	return 0;
298 
299 fail_free_run:
300 	free_page((unsigned long)vcpu->run);
301 fail:
302 	return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305 
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 	/*
309 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 	 * will change the vcpu->pid pointer and on uninit all file
311 	 * descriptors are already gone.
312 	 */
313 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 	kvm_arch_vcpu_uninit(vcpu);
315 	free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318 
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 	return container_of(mn, struct kvm, mmu_notifier);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
473 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
474 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
475 	.clear_young		= kvm_mmu_notifier_clear_young,
476 	.test_young		= kvm_mmu_notifier_test_young,
477 	.change_pte		= kvm_mmu_notifier_change_pte,
478 	.release		= kvm_mmu_notifier_release,
479 };
480 
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486 
487 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488 
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 	return 0;
492 }
493 
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495 
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498 	int i;
499 	struct kvm_memslots *slots;
500 
501 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502 	if (!slots)
503 		return NULL;
504 
505 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 		slots->id_to_index[i] = slots->memslots[i].id = i;
507 
508 	return slots;
509 }
510 
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513 	if (!memslot->dirty_bitmap)
514 		return;
515 
516 	kvfree(memslot->dirty_bitmap);
517 	memslot->dirty_bitmap = NULL;
518 }
519 
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 			      struct kvm_memory_slot *dont)
525 {
526 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 		kvm_destroy_dirty_bitmap(free);
528 
529 	kvm_arch_free_memslot(kvm, free, dont);
530 
531 	free->npages = 0;
532 }
533 
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536 	struct kvm_memory_slot *memslot;
537 
538 	if (!slots)
539 		return;
540 
541 	kvm_for_each_memslot(memslot, slots)
542 		kvm_free_memslot(kvm, memslot, NULL);
543 
544 	kvfree(slots);
545 }
546 
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549 	int i;
550 
551 	if (!kvm->debugfs_dentry)
552 		return;
553 
554 	debugfs_remove_recursive(kvm->debugfs_dentry);
555 
556 	if (kvm->debugfs_stat_data) {
557 		for (i = 0; i < kvm_debugfs_num_entries; i++)
558 			kfree(kvm->debugfs_stat_data[i]);
559 		kfree(kvm->debugfs_stat_data);
560 	}
561 }
562 
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565 	char dir_name[ITOA_MAX_LEN * 2];
566 	struct kvm_stat_data *stat_data;
567 	struct kvm_stats_debugfs_item *p;
568 
569 	if (!debugfs_initialized())
570 		return 0;
571 
572 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574 						 kvm_debugfs_dir);
575 	if (!kvm->debugfs_dentry)
576 		return -ENOMEM;
577 
578 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 					 sizeof(*kvm->debugfs_stat_data),
580 					 GFP_KERNEL);
581 	if (!kvm->debugfs_stat_data)
582 		return -ENOMEM;
583 
584 	for (p = debugfs_entries; p->name; p++) {
585 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586 		if (!stat_data)
587 			return -ENOMEM;
588 
589 		stat_data->kvm = kvm;
590 		stat_data->offset = p->offset;
591 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 		if (!debugfs_create_file(p->name, 0644,
593 					 kvm->debugfs_dentry,
594 					 stat_data,
595 					 stat_fops_per_vm[p->kind]))
596 			return -ENOMEM;
597 	}
598 	return 0;
599 }
600 
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603 	int r, i;
604 	struct kvm *kvm = kvm_arch_alloc_vm();
605 
606 	if (!kvm)
607 		return ERR_PTR(-ENOMEM);
608 
609 	spin_lock_init(&kvm->mmu_lock);
610 	mmgrab(current->mm);
611 	kvm->mm = current->mm;
612 	kvm_eventfd_init(kvm);
613 	mutex_init(&kvm->lock);
614 	mutex_init(&kvm->irq_lock);
615 	mutex_init(&kvm->slots_lock);
616 	refcount_set(&kvm->users_count, 1);
617 	INIT_LIST_HEAD(&kvm->devices);
618 
619 	r = kvm_arch_init_vm(kvm, type);
620 	if (r)
621 		goto out_err_no_disable;
622 
623 	r = hardware_enable_all();
624 	if (r)
625 		goto out_err_no_disable;
626 
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630 
631 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632 
633 	r = -ENOMEM;
634 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 		struct kvm_memslots *slots = kvm_alloc_memslots();
636 		if (!slots)
637 			goto out_err_no_srcu;
638 		/*
639 		 * Generations must be different for each address space.
640 		 * Init kvm generation close to the maximum to easily test the
641 		 * code of handling generation number wrap-around.
642 		 */
643 		slots->generation = i * 2 - 150;
644 		rcu_assign_pointer(kvm->memslots[i], slots);
645 	}
646 
647 	if (init_srcu_struct(&kvm->srcu))
648 		goto out_err_no_srcu;
649 	if (init_srcu_struct(&kvm->irq_srcu))
650 		goto out_err_no_irq_srcu;
651 	for (i = 0; i < KVM_NR_BUSES; i++) {
652 		rcu_assign_pointer(kvm->buses[i],
653 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654 		if (!kvm->buses[i])
655 			goto out_err;
656 	}
657 
658 	r = kvm_init_mmu_notifier(kvm);
659 	if (r)
660 		goto out_err;
661 
662 	spin_lock(&kvm_lock);
663 	list_add(&kvm->vm_list, &vm_list);
664 	spin_unlock(&kvm_lock);
665 
666 	preempt_notifier_inc();
667 
668 	return kvm;
669 
670 out_err:
671 	cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673 	cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675 	hardware_disable_all();
676 out_err_no_disable:
677 	refcount_set(&kvm->users_count, 0);
678 	for (i = 0; i < KVM_NR_BUSES; i++)
679 		kfree(kvm_get_bus(kvm, i));
680 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
681 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
682 	kvm_arch_free_vm(kvm);
683 	mmdrop(current->mm);
684 	return ERR_PTR(r);
685 }
686 
687 static void kvm_destroy_devices(struct kvm *kvm)
688 {
689 	struct kvm_device *dev, *tmp;
690 
691 	/*
692 	 * We do not need to take the kvm->lock here, because nobody else
693 	 * has a reference to the struct kvm at this point and therefore
694 	 * cannot access the devices list anyhow.
695 	 */
696 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
697 		list_del(&dev->vm_node);
698 		dev->ops->destroy(dev);
699 	}
700 }
701 
702 static void kvm_destroy_vm(struct kvm *kvm)
703 {
704 	int i;
705 	struct mm_struct *mm = kvm->mm;
706 
707 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
708 	kvm_destroy_vm_debugfs(kvm);
709 	kvm_arch_sync_events(kvm);
710 	spin_lock(&kvm_lock);
711 	list_del(&kvm->vm_list);
712 	spin_unlock(&kvm_lock);
713 	kvm_free_irq_routing(kvm);
714 	for (i = 0; i < KVM_NR_BUSES; i++) {
715 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
716 
717 		if (bus)
718 			kvm_io_bus_destroy(bus);
719 		kvm->buses[i] = NULL;
720 	}
721 	kvm_coalesced_mmio_free(kvm);
722 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
723 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
724 #else
725 	kvm_arch_flush_shadow_all(kvm);
726 #endif
727 	kvm_arch_destroy_vm(kvm);
728 	kvm_destroy_devices(kvm);
729 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
730 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
731 	cleanup_srcu_struct(&kvm->irq_srcu);
732 	cleanup_srcu_struct(&kvm->srcu);
733 	kvm_arch_free_vm(kvm);
734 	preempt_notifier_dec();
735 	hardware_disable_all();
736 	mmdrop(mm);
737 }
738 
739 void kvm_get_kvm(struct kvm *kvm)
740 {
741 	refcount_inc(&kvm->users_count);
742 }
743 EXPORT_SYMBOL_GPL(kvm_get_kvm);
744 
745 void kvm_put_kvm(struct kvm *kvm)
746 {
747 	if (refcount_dec_and_test(&kvm->users_count))
748 		kvm_destroy_vm(kvm);
749 }
750 EXPORT_SYMBOL_GPL(kvm_put_kvm);
751 
752 
753 static int kvm_vm_release(struct inode *inode, struct file *filp)
754 {
755 	struct kvm *kvm = filp->private_data;
756 
757 	kvm_irqfd_release(kvm);
758 
759 	kvm_put_kvm(kvm);
760 	return 0;
761 }
762 
763 /*
764  * Allocation size is twice as large as the actual dirty bitmap size.
765  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
766  */
767 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
768 {
769 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
770 
771 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
772 	if (!memslot->dirty_bitmap)
773 		return -ENOMEM;
774 
775 	return 0;
776 }
777 
778 /*
779  * Insert memslot and re-sort memslots based on their GFN,
780  * so binary search could be used to lookup GFN.
781  * Sorting algorithm takes advantage of having initially
782  * sorted array and known changed memslot position.
783  */
784 static void update_memslots(struct kvm_memslots *slots,
785 			    struct kvm_memory_slot *new)
786 {
787 	int id = new->id;
788 	int i = slots->id_to_index[id];
789 	struct kvm_memory_slot *mslots = slots->memslots;
790 
791 	WARN_ON(mslots[i].id != id);
792 	if (!new->npages) {
793 		WARN_ON(!mslots[i].npages);
794 		if (mslots[i].npages)
795 			slots->used_slots--;
796 	} else {
797 		if (!mslots[i].npages)
798 			slots->used_slots++;
799 	}
800 
801 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
802 	       new->base_gfn <= mslots[i + 1].base_gfn) {
803 		if (!mslots[i + 1].npages)
804 			break;
805 		mslots[i] = mslots[i + 1];
806 		slots->id_to_index[mslots[i].id] = i;
807 		i++;
808 	}
809 
810 	/*
811 	 * The ">=" is needed when creating a slot with base_gfn == 0,
812 	 * so that it moves before all those with base_gfn == npages == 0.
813 	 *
814 	 * On the other hand, if new->npages is zero, the above loop has
815 	 * already left i pointing to the beginning of the empty part of
816 	 * mslots, and the ">=" would move the hole backwards in this
817 	 * case---which is wrong.  So skip the loop when deleting a slot.
818 	 */
819 	if (new->npages) {
820 		while (i > 0 &&
821 		       new->base_gfn >= mslots[i - 1].base_gfn) {
822 			mslots[i] = mslots[i - 1];
823 			slots->id_to_index[mslots[i].id] = i;
824 			i--;
825 		}
826 	} else
827 		WARN_ON_ONCE(i != slots->used_slots);
828 
829 	mslots[i] = *new;
830 	slots->id_to_index[mslots[i].id] = i;
831 }
832 
833 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
834 {
835 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
836 
837 #ifdef __KVM_HAVE_READONLY_MEM
838 	valid_flags |= KVM_MEM_READONLY;
839 #endif
840 
841 	if (mem->flags & ~valid_flags)
842 		return -EINVAL;
843 
844 	return 0;
845 }
846 
847 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
848 		int as_id, struct kvm_memslots *slots)
849 {
850 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
851 
852 	/*
853 	 * Set the low bit in the generation, which disables SPTE caching
854 	 * until the end of synchronize_srcu_expedited.
855 	 */
856 	WARN_ON(old_memslots->generation & 1);
857 	slots->generation = old_memslots->generation + 1;
858 
859 	rcu_assign_pointer(kvm->memslots[as_id], slots);
860 	synchronize_srcu_expedited(&kvm->srcu);
861 
862 	/*
863 	 * Increment the new memslot generation a second time. This prevents
864 	 * vm exits that race with memslot updates from caching a memslot
865 	 * generation that will (potentially) be valid forever.
866 	 *
867 	 * Generations must be unique even across address spaces.  We do not need
868 	 * a global counter for that, instead the generation space is evenly split
869 	 * across address spaces.  For example, with two address spaces, address
870 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
871 	 * use generations 2, 6, 10, 14, ...
872 	 */
873 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
874 
875 	kvm_arch_memslots_updated(kvm, slots);
876 
877 	return old_memslots;
878 }
879 
880 /*
881  * Allocate some memory and give it an address in the guest physical address
882  * space.
883  *
884  * Discontiguous memory is allowed, mostly for framebuffers.
885  *
886  * Must be called holding kvm->slots_lock for write.
887  */
888 int __kvm_set_memory_region(struct kvm *kvm,
889 			    const struct kvm_userspace_memory_region *mem)
890 {
891 	int r;
892 	gfn_t base_gfn;
893 	unsigned long npages;
894 	struct kvm_memory_slot *slot;
895 	struct kvm_memory_slot old, new;
896 	struct kvm_memslots *slots = NULL, *old_memslots;
897 	int as_id, id;
898 	enum kvm_mr_change change;
899 
900 	r = check_memory_region_flags(mem);
901 	if (r)
902 		goto out;
903 
904 	r = -EINVAL;
905 	as_id = mem->slot >> 16;
906 	id = (u16)mem->slot;
907 
908 	/* General sanity checks */
909 	if (mem->memory_size & (PAGE_SIZE - 1))
910 		goto out;
911 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
912 		goto out;
913 	/* We can read the guest memory with __xxx_user() later on. */
914 	if ((id < KVM_USER_MEM_SLOTS) &&
915 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
916 	     !access_ok(VERIFY_WRITE,
917 			(void __user *)(unsigned long)mem->userspace_addr,
918 			mem->memory_size)))
919 		goto out;
920 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
921 		goto out;
922 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
923 		goto out;
924 
925 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
926 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
927 	npages = mem->memory_size >> PAGE_SHIFT;
928 
929 	if (npages > KVM_MEM_MAX_NR_PAGES)
930 		goto out;
931 
932 	new = old = *slot;
933 
934 	new.id = id;
935 	new.base_gfn = base_gfn;
936 	new.npages = npages;
937 	new.flags = mem->flags;
938 
939 	if (npages) {
940 		if (!old.npages)
941 			change = KVM_MR_CREATE;
942 		else { /* Modify an existing slot. */
943 			if ((mem->userspace_addr != old.userspace_addr) ||
944 			    (npages != old.npages) ||
945 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
946 				goto out;
947 
948 			if (base_gfn != old.base_gfn)
949 				change = KVM_MR_MOVE;
950 			else if (new.flags != old.flags)
951 				change = KVM_MR_FLAGS_ONLY;
952 			else { /* Nothing to change. */
953 				r = 0;
954 				goto out;
955 			}
956 		}
957 	} else {
958 		if (!old.npages)
959 			goto out;
960 
961 		change = KVM_MR_DELETE;
962 		new.base_gfn = 0;
963 		new.flags = 0;
964 	}
965 
966 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
967 		/* Check for overlaps */
968 		r = -EEXIST;
969 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
970 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
971 			    (slot->id == id))
972 				continue;
973 			if (!((base_gfn + npages <= slot->base_gfn) ||
974 			      (base_gfn >= slot->base_gfn + slot->npages)))
975 				goto out;
976 		}
977 	}
978 
979 	/* Free page dirty bitmap if unneeded */
980 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
981 		new.dirty_bitmap = NULL;
982 
983 	r = -ENOMEM;
984 	if (change == KVM_MR_CREATE) {
985 		new.userspace_addr = mem->userspace_addr;
986 
987 		if (kvm_arch_create_memslot(kvm, &new, npages))
988 			goto out_free;
989 	}
990 
991 	/* Allocate page dirty bitmap if needed */
992 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
993 		if (kvm_create_dirty_bitmap(&new) < 0)
994 			goto out_free;
995 	}
996 
997 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
998 	if (!slots)
999 		goto out_free;
1000 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1001 
1002 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1003 		slot = id_to_memslot(slots, id);
1004 		slot->flags |= KVM_MEMSLOT_INVALID;
1005 
1006 		old_memslots = install_new_memslots(kvm, as_id, slots);
1007 
1008 		/* From this point no new shadow pages pointing to a deleted,
1009 		 * or moved, memslot will be created.
1010 		 *
1011 		 * validation of sp->gfn happens in:
1012 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1014 		 */
1015 		kvm_arch_flush_shadow_memslot(kvm, slot);
1016 
1017 		/*
1018 		 * We can re-use the old_memslots from above, the only difference
1019 		 * from the currently installed memslots is the invalid flag.  This
1020 		 * will get overwritten by update_memslots anyway.
1021 		 */
1022 		slots = old_memslots;
1023 	}
1024 
1025 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 	if (r)
1027 		goto out_slots;
1028 
1029 	/* actual memory is freed via old in kvm_free_memslot below */
1030 	if (change == KVM_MR_DELETE) {
1031 		new.dirty_bitmap = NULL;
1032 		memset(&new.arch, 0, sizeof(new.arch));
1033 	}
1034 
1035 	update_memslots(slots, &new);
1036 	old_memslots = install_new_memslots(kvm, as_id, slots);
1037 
1038 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039 
1040 	kvm_free_memslot(kvm, &old, &new);
1041 	kvfree(old_memslots);
1042 	return 0;
1043 
1044 out_slots:
1045 	kvfree(slots);
1046 out_free:
1047 	kvm_free_memslot(kvm, &new, &old);
1048 out:
1049 	return r;
1050 }
1051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1052 
1053 int kvm_set_memory_region(struct kvm *kvm,
1054 			  const struct kvm_userspace_memory_region *mem)
1055 {
1056 	int r;
1057 
1058 	mutex_lock(&kvm->slots_lock);
1059 	r = __kvm_set_memory_region(kvm, mem);
1060 	mutex_unlock(&kvm->slots_lock);
1061 	return r;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1064 
1065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1066 					  struct kvm_userspace_memory_region *mem)
1067 {
1068 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1069 		return -EINVAL;
1070 
1071 	return kvm_set_memory_region(kvm, mem);
1072 }
1073 
1074 int kvm_get_dirty_log(struct kvm *kvm,
1075 			struct kvm_dirty_log *log, int *is_dirty)
1076 {
1077 	struct kvm_memslots *slots;
1078 	struct kvm_memory_slot *memslot;
1079 	int i, as_id, id;
1080 	unsigned long n;
1081 	unsigned long any = 0;
1082 
1083 	as_id = log->slot >> 16;
1084 	id = (u16)log->slot;
1085 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086 		return -EINVAL;
1087 
1088 	slots = __kvm_memslots(kvm, as_id);
1089 	memslot = id_to_memslot(slots, id);
1090 	if (!memslot->dirty_bitmap)
1091 		return -ENOENT;
1092 
1093 	n = kvm_dirty_bitmap_bytes(memslot);
1094 
1095 	for (i = 0; !any && i < n/sizeof(long); ++i)
1096 		any = memslot->dirty_bitmap[i];
1097 
1098 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1099 		return -EFAULT;
1100 
1101 	if (any)
1102 		*is_dirty = 1;
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1106 
1107 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1108 /**
1109  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1110  *	are dirty write protect them for next write.
1111  * @kvm:	pointer to kvm instance
1112  * @log:	slot id and address to which we copy the log
1113  * @is_dirty:	flag set if any page is dirty
1114  *
1115  * We need to keep it in mind that VCPU threads can write to the bitmap
1116  * concurrently. So, to avoid losing track of dirty pages we keep the
1117  * following order:
1118  *
1119  *    1. Take a snapshot of the bit and clear it if needed.
1120  *    2. Write protect the corresponding page.
1121  *    3. Copy the snapshot to the userspace.
1122  *    4. Upon return caller flushes TLB's if needed.
1123  *
1124  * Between 2 and 4, the guest may write to the page using the remaining TLB
1125  * entry.  This is not a problem because the page is reported dirty using
1126  * the snapshot taken before and step 4 ensures that writes done after
1127  * exiting to userspace will be logged for the next call.
1128  *
1129  */
1130 int kvm_get_dirty_log_protect(struct kvm *kvm,
1131 			struct kvm_dirty_log *log, bool *is_dirty)
1132 {
1133 	struct kvm_memslots *slots;
1134 	struct kvm_memory_slot *memslot;
1135 	int i, as_id, id;
1136 	unsigned long n;
1137 	unsigned long *dirty_bitmap;
1138 	unsigned long *dirty_bitmap_buffer;
1139 
1140 	as_id = log->slot >> 16;
1141 	id = (u16)log->slot;
1142 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1143 		return -EINVAL;
1144 
1145 	slots = __kvm_memslots(kvm, as_id);
1146 	memslot = id_to_memslot(slots, id);
1147 
1148 	dirty_bitmap = memslot->dirty_bitmap;
1149 	if (!dirty_bitmap)
1150 		return -ENOENT;
1151 
1152 	n = kvm_dirty_bitmap_bytes(memslot);
1153 
1154 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1155 	memset(dirty_bitmap_buffer, 0, n);
1156 
1157 	spin_lock(&kvm->mmu_lock);
1158 	*is_dirty = false;
1159 	for (i = 0; i < n / sizeof(long); i++) {
1160 		unsigned long mask;
1161 		gfn_t offset;
1162 
1163 		if (!dirty_bitmap[i])
1164 			continue;
1165 
1166 		*is_dirty = true;
1167 
1168 		mask = xchg(&dirty_bitmap[i], 0);
1169 		dirty_bitmap_buffer[i] = mask;
1170 
1171 		if (mask) {
1172 			offset = i * BITS_PER_LONG;
1173 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1174 								offset, mask);
1175 		}
1176 	}
1177 
1178 	spin_unlock(&kvm->mmu_lock);
1179 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1180 		return -EFAULT;
1181 	return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1184 #endif
1185 
1186 bool kvm_largepages_enabled(void)
1187 {
1188 	return largepages_enabled;
1189 }
1190 
1191 void kvm_disable_largepages(void)
1192 {
1193 	largepages_enabled = false;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1196 
1197 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1198 {
1199 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1200 }
1201 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1202 
1203 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1204 {
1205 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1206 }
1207 
1208 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1209 {
1210 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1211 
1212 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1213 	      memslot->flags & KVM_MEMSLOT_INVALID)
1214 		return false;
1215 
1216 	return true;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1219 
1220 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1221 {
1222 	struct vm_area_struct *vma;
1223 	unsigned long addr, size;
1224 
1225 	size = PAGE_SIZE;
1226 
1227 	addr = gfn_to_hva(kvm, gfn);
1228 	if (kvm_is_error_hva(addr))
1229 		return PAGE_SIZE;
1230 
1231 	down_read(&current->mm->mmap_sem);
1232 	vma = find_vma(current->mm, addr);
1233 	if (!vma)
1234 		goto out;
1235 
1236 	size = vma_kernel_pagesize(vma);
1237 
1238 out:
1239 	up_read(&current->mm->mmap_sem);
1240 
1241 	return size;
1242 }
1243 
1244 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1245 {
1246 	return slot->flags & KVM_MEM_READONLY;
1247 }
1248 
1249 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1250 				       gfn_t *nr_pages, bool write)
1251 {
1252 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1253 		return KVM_HVA_ERR_BAD;
1254 
1255 	if (memslot_is_readonly(slot) && write)
1256 		return KVM_HVA_ERR_RO_BAD;
1257 
1258 	if (nr_pages)
1259 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1260 
1261 	return __gfn_to_hva_memslot(slot, gfn);
1262 }
1263 
1264 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1265 				     gfn_t *nr_pages)
1266 {
1267 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1268 }
1269 
1270 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1271 					gfn_t gfn)
1272 {
1273 	return gfn_to_hva_many(slot, gfn, NULL);
1274 }
1275 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1276 
1277 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1278 {
1279 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1280 }
1281 EXPORT_SYMBOL_GPL(gfn_to_hva);
1282 
1283 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1284 {
1285 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1288 
1289 /*
1290  * If writable is set to false, the hva returned by this function is only
1291  * allowed to be read.
1292  */
1293 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1294 				      gfn_t gfn, bool *writable)
1295 {
1296 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1297 
1298 	if (!kvm_is_error_hva(hva) && writable)
1299 		*writable = !memslot_is_readonly(slot);
1300 
1301 	return hva;
1302 }
1303 
1304 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1305 {
1306 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1307 
1308 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1309 }
1310 
1311 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1312 {
1313 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1314 
1315 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317 
1318 static int get_user_page_nowait(unsigned long start, int write,
1319 		struct page **page)
1320 {
1321 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1322 
1323 	if (write)
1324 		flags |= FOLL_WRITE;
1325 
1326 	return get_user_pages(start, 1, flags, page, NULL);
1327 }
1328 
1329 static inline int check_user_page_hwpoison(unsigned long addr)
1330 {
1331 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1332 
1333 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1334 	return rc == -EHWPOISON;
1335 }
1336 
1337 /*
1338  * The atomic path to get the writable pfn which will be stored in @pfn,
1339  * true indicates success, otherwise false is returned.
1340  */
1341 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1342 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1343 {
1344 	struct page *page[1];
1345 	int npages;
1346 
1347 	if (!(async || atomic))
1348 		return false;
1349 
1350 	/*
1351 	 * Fast pin a writable pfn only if it is a write fault request
1352 	 * or the caller allows to map a writable pfn for a read fault
1353 	 * request.
1354 	 */
1355 	if (!(write_fault || writable))
1356 		return false;
1357 
1358 	npages = __get_user_pages_fast(addr, 1, 1, page);
1359 	if (npages == 1) {
1360 		*pfn = page_to_pfn(page[0]);
1361 
1362 		if (writable)
1363 			*writable = true;
1364 		return true;
1365 	}
1366 
1367 	return false;
1368 }
1369 
1370 /*
1371  * The slow path to get the pfn of the specified host virtual address,
1372  * 1 indicates success, -errno is returned if error is detected.
1373  */
1374 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1375 			   bool *writable, kvm_pfn_t *pfn)
1376 {
1377 	struct page *page[1];
1378 	int npages = 0;
1379 
1380 	might_sleep();
1381 
1382 	if (writable)
1383 		*writable = write_fault;
1384 
1385 	if (async) {
1386 		down_read(&current->mm->mmap_sem);
1387 		npages = get_user_page_nowait(addr, write_fault, page);
1388 		up_read(&current->mm->mmap_sem);
1389 	} else {
1390 		unsigned int flags = FOLL_HWPOISON;
1391 
1392 		if (write_fault)
1393 			flags |= FOLL_WRITE;
1394 
1395 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1396 	}
1397 	if (npages != 1)
1398 		return npages;
1399 
1400 	/* map read fault as writable if possible */
1401 	if (unlikely(!write_fault) && writable) {
1402 		struct page *wpage[1];
1403 
1404 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1405 		if (npages == 1) {
1406 			*writable = true;
1407 			put_page(page[0]);
1408 			page[0] = wpage[0];
1409 		}
1410 
1411 		npages = 1;
1412 	}
1413 	*pfn = page_to_pfn(page[0]);
1414 	return npages;
1415 }
1416 
1417 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1418 {
1419 	if (unlikely(!(vma->vm_flags & VM_READ)))
1420 		return false;
1421 
1422 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1423 		return false;
1424 
1425 	return true;
1426 }
1427 
1428 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1429 			       unsigned long addr, bool *async,
1430 			       bool write_fault, kvm_pfn_t *p_pfn)
1431 {
1432 	unsigned long pfn;
1433 	int r;
1434 
1435 	r = follow_pfn(vma, addr, &pfn);
1436 	if (r) {
1437 		/*
1438 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 		 * not call the fault handler, so do it here.
1440 		 */
1441 		bool unlocked = false;
1442 		r = fixup_user_fault(current, current->mm, addr,
1443 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1444 				     &unlocked);
1445 		if (unlocked)
1446 			return -EAGAIN;
1447 		if (r)
1448 			return r;
1449 
1450 		r = follow_pfn(vma, addr, &pfn);
1451 		if (r)
1452 			return r;
1453 
1454 	}
1455 
1456 
1457 	/*
1458 	 * Get a reference here because callers of *hva_to_pfn* and
1459 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1460 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1461 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1462 	 * simply do nothing for reserved pfns.
1463 	 *
1464 	 * Whoever called remap_pfn_range is also going to call e.g.
1465 	 * unmap_mapping_range before the underlying pages are freed,
1466 	 * causing a call to our MMU notifier.
1467 	 */
1468 	kvm_get_pfn(pfn);
1469 
1470 	*p_pfn = pfn;
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Pin guest page in memory and return its pfn.
1476  * @addr: host virtual address which maps memory to the guest
1477  * @atomic: whether this function can sleep
1478  * @async: whether this function need to wait IO complete if the
1479  *         host page is not in the memory
1480  * @write_fault: whether we should get a writable host page
1481  * @writable: whether it allows to map a writable host page for !@write_fault
1482  *
1483  * The function will map a writable host page for these two cases:
1484  * 1): @write_fault = true
1485  * 2): @write_fault = false && @writable, @writable will tell the caller
1486  *     whether the mapping is writable.
1487  */
1488 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1489 			bool write_fault, bool *writable)
1490 {
1491 	struct vm_area_struct *vma;
1492 	kvm_pfn_t pfn = 0;
1493 	int npages, r;
1494 
1495 	/* we can do it either atomically or asynchronously, not both */
1496 	BUG_ON(atomic && async);
1497 
1498 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1499 		return pfn;
1500 
1501 	if (atomic)
1502 		return KVM_PFN_ERR_FAULT;
1503 
1504 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1505 	if (npages == 1)
1506 		return pfn;
1507 
1508 	down_read(&current->mm->mmap_sem);
1509 	if (npages == -EHWPOISON ||
1510 	      (!async && check_user_page_hwpoison(addr))) {
1511 		pfn = KVM_PFN_ERR_HWPOISON;
1512 		goto exit;
1513 	}
1514 
1515 retry:
1516 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1517 
1518 	if (vma == NULL)
1519 		pfn = KVM_PFN_ERR_FAULT;
1520 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1521 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1522 		if (r == -EAGAIN)
1523 			goto retry;
1524 		if (r < 0)
1525 			pfn = KVM_PFN_ERR_FAULT;
1526 	} else {
1527 		if (async && vma_is_valid(vma, write_fault))
1528 			*async = true;
1529 		pfn = KVM_PFN_ERR_FAULT;
1530 	}
1531 exit:
1532 	up_read(&current->mm->mmap_sem);
1533 	return pfn;
1534 }
1535 
1536 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1537 			       bool atomic, bool *async, bool write_fault,
1538 			       bool *writable)
1539 {
1540 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1541 
1542 	if (addr == KVM_HVA_ERR_RO_BAD) {
1543 		if (writable)
1544 			*writable = false;
1545 		return KVM_PFN_ERR_RO_FAULT;
1546 	}
1547 
1548 	if (kvm_is_error_hva(addr)) {
1549 		if (writable)
1550 			*writable = false;
1551 		return KVM_PFN_NOSLOT;
1552 	}
1553 
1554 	/* Do not map writable pfn in the readonly memslot. */
1555 	if (writable && memslot_is_readonly(slot)) {
1556 		*writable = false;
1557 		writable = NULL;
1558 	}
1559 
1560 	return hva_to_pfn(addr, atomic, async, write_fault,
1561 			  writable);
1562 }
1563 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1564 
1565 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1566 		      bool *writable)
1567 {
1568 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1569 				    write_fault, writable);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1572 
1573 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1574 {
1575 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1578 
1579 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1580 {
1581 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1584 
1585 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1586 {
1587 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1590 
1591 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1592 {
1593 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1596 
1597 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1598 {
1599 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1602 
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1608 
1609 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1610 			    struct page **pages, int nr_pages)
1611 {
1612 	unsigned long addr;
1613 	gfn_t entry = 0;
1614 
1615 	addr = gfn_to_hva_many(slot, gfn, &entry);
1616 	if (kvm_is_error_hva(addr))
1617 		return -1;
1618 
1619 	if (entry < nr_pages)
1620 		return 0;
1621 
1622 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1625 
1626 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1627 {
1628 	if (is_error_noslot_pfn(pfn))
1629 		return KVM_ERR_PTR_BAD_PAGE;
1630 
1631 	if (kvm_is_reserved_pfn(pfn)) {
1632 		WARN_ON(1);
1633 		return KVM_ERR_PTR_BAD_PAGE;
1634 	}
1635 
1636 	return pfn_to_page(pfn);
1637 }
1638 
1639 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1640 {
1641 	kvm_pfn_t pfn;
1642 
1643 	pfn = gfn_to_pfn(kvm, gfn);
1644 
1645 	return kvm_pfn_to_page(pfn);
1646 }
1647 EXPORT_SYMBOL_GPL(gfn_to_page);
1648 
1649 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1650 {
1651 	kvm_pfn_t pfn;
1652 
1653 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1654 
1655 	return kvm_pfn_to_page(pfn);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1658 
1659 void kvm_release_page_clean(struct page *page)
1660 {
1661 	WARN_ON(is_error_page(page));
1662 
1663 	kvm_release_pfn_clean(page_to_pfn(page));
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1666 
1667 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1668 {
1669 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1670 		put_page(pfn_to_page(pfn));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1673 
1674 void kvm_release_page_dirty(struct page *page)
1675 {
1676 	WARN_ON(is_error_page(page));
1677 
1678 	kvm_release_pfn_dirty(page_to_pfn(page));
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1681 
1682 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1683 {
1684 	kvm_set_pfn_dirty(pfn);
1685 	kvm_release_pfn_clean(pfn);
1686 }
1687 
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690 	if (!kvm_is_reserved_pfn(pfn)) {
1691 		struct page *page = pfn_to_page(pfn);
1692 
1693 		if (!PageReserved(page))
1694 			SetPageDirty(page);
1695 	}
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698 
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700 {
1701 	if (!kvm_is_reserved_pfn(pfn))
1702 		mark_page_accessed(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705 
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1707 {
1708 	if (!kvm_is_reserved_pfn(pfn))
1709 		get_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712 
1713 static int next_segment(unsigned long len, int offset)
1714 {
1715 	if (len > PAGE_SIZE - offset)
1716 		return PAGE_SIZE - offset;
1717 	else
1718 		return len;
1719 }
1720 
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722 				 void *data, int offset, int len)
1723 {
1724 	int r;
1725 	unsigned long addr;
1726 
1727 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728 	if (kvm_is_error_hva(addr))
1729 		return -EFAULT;
1730 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1731 	if (r)
1732 		return -EFAULT;
1733 	return 0;
1734 }
1735 
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737 			int len)
1738 {
1739 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740 
1741 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744 
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746 			     int offset, int len)
1747 {
1748 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749 
1750 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753 
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755 {
1756 	gfn_t gfn = gpa >> PAGE_SHIFT;
1757 	int seg;
1758 	int offset = offset_in_page(gpa);
1759 	int ret;
1760 
1761 	while ((seg = next_segment(len, offset)) != 0) {
1762 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763 		if (ret < 0)
1764 			return ret;
1765 		offset = 0;
1766 		len -= seg;
1767 		data += seg;
1768 		++gfn;
1769 	}
1770 	return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1773 
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775 {
1776 	gfn_t gfn = gpa >> PAGE_SHIFT;
1777 	int seg;
1778 	int offset = offset_in_page(gpa);
1779 	int ret;
1780 
1781 	while ((seg = next_segment(len, offset)) != 0) {
1782 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783 		if (ret < 0)
1784 			return ret;
1785 		offset = 0;
1786 		len -= seg;
1787 		data += seg;
1788 		++gfn;
1789 	}
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793 
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795 			           void *data, int offset, unsigned long len)
1796 {
1797 	int r;
1798 	unsigned long addr;
1799 
1800 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801 	if (kvm_is_error_hva(addr))
1802 		return -EFAULT;
1803 	pagefault_disable();
1804 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805 	pagefault_enable();
1806 	if (r)
1807 		return -EFAULT;
1808 	return 0;
1809 }
1810 
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812 			  unsigned long len)
1813 {
1814 	gfn_t gfn = gpa >> PAGE_SHIFT;
1815 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816 	int offset = offset_in_page(gpa);
1817 
1818 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821 
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823 			       void *data, unsigned long len)
1824 {
1825 	gfn_t gfn = gpa >> PAGE_SHIFT;
1826 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827 	int offset = offset_in_page(gpa);
1828 
1829 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832 
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834 			          const void *data, int offset, int len)
1835 {
1836 	int r;
1837 	unsigned long addr;
1838 
1839 	addr = gfn_to_hva_memslot(memslot, gfn);
1840 	if (kvm_is_error_hva(addr))
1841 		return -EFAULT;
1842 	r = __copy_to_user((void __user *)addr + offset, data, len);
1843 	if (r)
1844 		return -EFAULT;
1845 	mark_page_dirty_in_slot(memslot, gfn);
1846 	return 0;
1847 }
1848 
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850 			 const void *data, int offset, int len)
1851 {
1852 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853 
1854 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857 
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859 			      const void *data, int offset, int len)
1860 {
1861 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862 
1863 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866 
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868 		    unsigned long len)
1869 {
1870 	gfn_t gfn = gpa >> PAGE_SHIFT;
1871 	int seg;
1872 	int offset = offset_in_page(gpa);
1873 	int ret;
1874 
1875 	while ((seg = next_segment(len, offset)) != 0) {
1876 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877 		if (ret < 0)
1878 			return ret;
1879 		offset = 0;
1880 		len -= seg;
1881 		data += seg;
1882 		++gfn;
1883 	}
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1887 
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889 		         unsigned long len)
1890 {
1891 	gfn_t gfn = gpa >> PAGE_SHIFT;
1892 	int seg;
1893 	int offset = offset_in_page(gpa);
1894 	int ret;
1895 
1896 	while ((seg = next_segment(len, offset)) != 0) {
1897 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898 		if (ret < 0)
1899 			return ret;
1900 		offset = 0;
1901 		len -= seg;
1902 		data += seg;
1903 		++gfn;
1904 	}
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908 
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910 				       struct gfn_to_hva_cache *ghc,
1911 				       gpa_t gpa, unsigned long len)
1912 {
1913 	int offset = offset_in_page(gpa);
1914 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917 	gfn_t nr_pages_avail;
1918 
1919 	ghc->gpa = gpa;
1920 	ghc->generation = slots->generation;
1921 	ghc->len = len;
1922 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925 		ghc->hva += offset;
1926 	} else {
1927 		/*
1928 		 * If the requested region crosses two memslots, we still
1929 		 * verify that the entire region is valid here.
1930 		 */
1931 		while (start_gfn <= end_gfn) {
1932 			nr_pages_avail = 0;
1933 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935 						   &nr_pages_avail);
1936 			if (kvm_is_error_hva(ghc->hva))
1937 				return -EFAULT;
1938 			start_gfn += nr_pages_avail;
1939 		}
1940 		/* Use the slow path for cross page reads and writes. */
1941 		ghc->memslot = NULL;
1942 	}
1943 	return 0;
1944 }
1945 
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947 			      gpa_t gpa, unsigned long len)
1948 {
1949 	struct kvm_memslots *slots = kvm_memslots(kvm);
1950 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953 
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955 			   void *data, int offset, unsigned long len)
1956 {
1957 	struct kvm_memslots *slots = kvm_memslots(kvm);
1958 	int r;
1959 	gpa_t gpa = ghc->gpa + offset;
1960 
1961 	BUG_ON(len + offset > ghc->len);
1962 
1963 	if (slots->generation != ghc->generation)
1964 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965 
1966 	if (unlikely(!ghc->memslot))
1967 		return kvm_write_guest(kvm, gpa, data, len);
1968 
1969 	if (kvm_is_error_hva(ghc->hva))
1970 		return -EFAULT;
1971 
1972 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973 	if (r)
1974 		return -EFAULT;
1975 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976 
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980 
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982 			   void *data, unsigned long len)
1983 {
1984 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987 
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 			   void *data, unsigned long len)
1990 {
1991 	struct kvm_memslots *slots = kvm_memslots(kvm);
1992 	int r;
1993 
1994 	BUG_ON(len > ghc->len);
1995 
1996 	if (slots->generation != ghc->generation)
1997 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998 
1999 	if (unlikely(!ghc->memslot))
2000 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2001 
2002 	if (kvm_is_error_hva(ghc->hva))
2003 		return -EFAULT;
2004 
2005 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006 	if (r)
2007 		return -EFAULT;
2008 
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012 
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014 {
2015 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016 
2017 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020 
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022 {
2023 	gfn_t gfn = gpa >> PAGE_SHIFT;
2024 	int seg;
2025 	int offset = offset_in_page(gpa);
2026 	int ret;
2027 
2028 	while ((seg = next_segment(len, offset)) != 0) {
2029 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030 		if (ret < 0)
2031 			return ret;
2032 		offset = 0;
2033 		len -= seg;
2034 		++gfn;
2035 	}
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039 
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041 				    gfn_t gfn)
2042 {
2043 	if (memslot && memslot->dirty_bitmap) {
2044 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2045 
2046 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047 	}
2048 }
2049 
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051 {
2052 	struct kvm_memory_slot *memslot;
2053 
2054 	memslot = gfn_to_memslot(kvm, gfn);
2055 	mark_page_dirty_in_slot(memslot, gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2058 
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060 {
2061 	struct kvm_memory_slot *memslot;
2062 
2063 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064 	mark_page_dirty_in_slot(memslot, gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067 
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069 {
2070 	unsigned int old, val, grow;
2071 
2072 	old = val = vcpu->halt_poll_ns;
2073 	grow = READ_ONCE(halt_poll_ns_grow);
2074 	/* 10us base */
2075 	if (val == 0 && grow)
2076 		val = 10000;
2077 	else
2078 		val *= grow;
2079 
2080 	if (val > halt_poll_ns)
2081 		val = halt_poll_ns;
2082 
2083 	vcpu->halt_poll_ns = val;
2084 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085 }
2086 
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088 {
2089 	unsigned int old, val, shrink;
2090 
2091 	old = val = vcpu->halt_poll_ns;
2092 	shrink = READ_ONCE(halt_poll_ns_shrink);
2093 	if (shrink == 0)
2094 		val = 0;
2095 	else
2096 		val /= shrink;
2097 
2098 	vcpu->halt_poll_ns = val;
2099 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100 }
2101 
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103 {
2104 	if (kvm_arch_vcpu_runnable(vcpu)) {
2105 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106 		return -EINTR;
2107 	}
2108 	if (kvm_cpu_has_pending_timer(vcpu))
2109 		return -EINTR;
2110 	if (signal_pending(current))
2111 		return -EINTR;
2112 
2113 	return 0;
2114 }
2115 
2116 /*
2117  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118  */
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120 {
2121 	ktime_t start, cur;
2122 	DECLARE_SWAITQUEUE(wait);
2123 	bool waited = false;
2124 	u64 block_ns;
2125 
2126 	start = cur = ktime_get();
2127 	if (vcpu->halt_poll_ns) {
2128 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129 
2130 		++vcpu->stat.halt_attempted_poll;
2131 		do {
2132 			/*
2133 			 * This sets KVM_REQ_UNHALT if an interrupt
2134 			 * arrives.
2135 			 */
2136 			if (kvm_vcpu_check_block(vcpu) < 0) {
2137 				++vcpu->stat.halt_successful_poll;
2138 				if (!vcpu_valid_wakeup(vcpu))
2139 					++vcpu->stat.halt_poll_invalid;
2140 				goto out;
2141 			}
2142 			cur = ktime_get();
2143 		} while (single_task_running() && ktime_before(cur, stop));
2144 	}
2145 
2146 	kvm_arch_vcpu_blocking(vcpu);
2147 
2148 	for (;;) {
2149 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150 
2151 		if (kvm_vcpu_check_block(vcpu) < 0)
2152 			break;
2153 
2154 		waited = true;
2155 		schedule();
2156 	}
2157 
2158 	finish_swait(&vcpu->wq, &wait);
2159 	cur = ktime_get();
2160 
2161 	kvm_arch_vcpu_unblocking(vcpu);
2162 out:
2163 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164 
2165 	if (!vcpu_valid_wakeup(vcpu))
2166 		shrink_halt_poll_ns(vcpu);
2167 	else if (halt_poll_ns) {
2168 		if (block_ns <= vcpu->halt_poll_ns)
2169 			;
2170 		/* we had a long block, shrink polling */
2171 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172 			shrink_halt_poll_ns(vcpu);
2173 		/* we had a short halt and our poll time is too small */
2174 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175 			block_ns < halt_poll_ns)
2176 			grow_halt_poll_ns(vcpu);
2177 	} else
2178 		vcpu->halt_poll_ns = 0;
2179 
2180 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181 	kvm_arch_vcpu_block_finish(vcpu);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184 
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186 {
2187 	struct swait_queue_head *wqp;
2188 
2189 	wqp = kvm_arch_vcpu_wq(vcpu);
2190 	if (swq_has_sleeper(wqp)) {
2191 		swake_up(wqp);
2192 		++vcpu->stat.halt_wakeup;
2193 		return true;
2194 	}
2195 
2196 	return false;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199 
2200 #ifndef CONFIG_S390
2201 /*
2202  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203  */
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205 {
2206 	int me;
2207 	int cpu = vcpu->cpu;
2208 
2209 	if (kvm_vcpu_wake_up(vcpu))
2210 		return;
2211 
2212 	me = get_cpu();
2213 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214 		if (kvm_arch_vcpu_should_kick(vcpu))
2215 			smp_send_reschedule(cpu);
2216 	put_cpu();
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2220 
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222 {
2223 	struct pid *pid;
2224 	struct task_struct *task = NULL;
2225 	int ret = 0;
2226 
2227 	rcu_read_lock();
2228 	pid = rcu_dereference(target->pid);
2229 	if (pid)
2230 		task = get_pid_task(pid, PIDTYPE_PID);
2231 	rcu_read_unlock();
2232 	if (!task)
2233 		return ret;
2234 	ret = yield_to(task, 1);
2235 	put_task_struct(task);
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240 
2241 /*
2242  * Helper that checks whether a VCPU is eligible for directed yield.
2243  * Most eligible candidate to yield is decided by following heuristics:
2244  *
2245  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246  *  (preempted lock holder), indicated by @in_spin_loop.
2247  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2248  *
2249  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250  *  chance last time (mostly it has become eligible now since we have probably
2251  *  yielded to lockholder in last iteration. This is done by toggling
2252  *  @dy_eligible each time a VCPU checked for eligibility.)
2253  *
2254  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2256  *  burning. Giving priority for a potential lock-holder increases lock
2257  *  progress.
2258  *
2259  *  Since algorithm is based on heuristics, accessing another VCPU data without
2260  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2261  *  and continue with next VCPU and so on.
2262  */
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 {
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266 	bool eligible;
2267 
2268 	eligible = !vcpu->spin_loop.in_spin_loop ||
2269 		    vcpu->spin_loop.dy_eligible;
2270 
2271 	if (vcpu->spin_loop.in_spin_loop)
2272 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273 
2274 	return eligible;
2275 #else
2276 	return true;
2277 #endif
2278 }
2279 
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281 {
2282 	struct kvm *kvm = me->kvm;
2283 	struct kvm_vcpu *vcpu;
2284 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285 	int yielded = 0;
2286 	int try = 3;
2287 	int pass;
2288 	int i;
2289 
2290 	kvm_vcpu_set_in_spin_loop(me, true);
2291 	/*
2292 	 * We boost the priority of a VCPU that is runnable but not
2293 	 * currently running, because it got preempted by something
2294 	 * else and called schedule in __vcpu_run.  Hopefully that
2295 	 * VCPU is holding the lock that we need and will release it.
2296 	 * We approximate round-robin by starting at the last boosted VCPU.
2297 	 */
2298 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299 		kvm_for_each_vcpu(i, vcpu, kvm) {
2300 			if (!pass && i <= last_boosted_vcpu) {
2301 				i = last_boosted_vcpu;
2302 				continue;
2303 			} else if (pass && i > last_boosted_vcpu)
2304 				break;
2305 			if (!ACCESS_ONCE(vcpu->preempted))
2306 				continue;
2307 			if (vcpu == me)
2308 				continue;
2309 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310 				continue;
2311 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312 				continue;
2313 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314 				continue;
2315 
2316 			yielded = kvm_vcpu_yield_to(vcpu);
2317 			if (yielded > 0) {
2318 				kvm->last_boosted_vcpu = i;
2319 				break;
2320 			} else if (yielded < 0) {
2321 				try--;
2322 				if (!try)
2323 					break;
2324 			}
2325 		}
2326 	}
2327 	kvm_vcpu_set_in_spin_loop(me, false);
2328 
2329 	/* Ensure vcpu is not eligible during next spinloop */
2330 	kvm_vcpu_set_dy_eligible(me, false);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333 
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2335 {
2336 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337 	struct page *page;
2338 
2339 	if (vmf->pgoff == 0)
2340 		page = virt_to_page(vcpu->run);
2341 #ifdef CONFIG_X86
2342 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343 		page = virt_to_page(vcpu->arch.pio_data);
2344 #endif
2345 #ifdef CONFIG_KVM_MMIO
2346 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348 #endif
2349 	else
2350 		return kvm_arch_vcpu_fault(vcpu, vmf);
2351 	get_page(page);
2352 	vmf->page = page;
2353 	return 0;
2354 }
2355 
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357 	.fault = kvm_vcpu_fault,
2358 };
2359 
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361 {
2362 	vma->vm_ops = &kvm_vcpu_vm_ops;
2363 	return 0;
2364 }
2365 
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367 {
2368 	struct kvm_vcpu *vcpu = filp->private_data;
2369 
2370 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2371 	kvm_put_kvm(vcpu->kvm);
2372 	return 0;
2373 }
2374 
2375 static struct file_operations kvm_vcpu_fops = {
2376 	.release        = kvm_vcpu_release,
2377 	.unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2380 #endif
2381 	.mmap           = kvm_vcpu_mmap,
2382 	.llseek		= noop_llseek,
2383 };
2384 
2385 /*
2386  * Allocates an inode for the vcpu.
2387  */
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 {
2390 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391 }
2392 
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394 {
2395 	char dir_name[ITOA_MAX_LEN * 2];
2396 	int ret;
2397 
2398 	if (!kvm_arch_has_vcpu_debugfs())
2399 		return 0;
2400 
2401 	if (!debugfs_initialized())
2402 		return 0;
2403 
2404 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406 								vcpu->kvm->debugfs_dentry);
2407 	if (!vcpu->debugfs_dentry)
2408 		return -ENOMEM;
2409 
2410 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411 	if (ret < 0) {
2412 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 		return ret;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Creates some virtual cpus.  Good luck creating more than one.
2421  */
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423 {
2424 	int r;
2425 	struct kvm_vcpu *vcpu;
2426 
2427 	if (id >= KVM_MAX_VCPU_ID)
2428 		return -EINVAL;
2429 
2430 	mutex_lock(&kvm->lock);
2431 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432 		mutex_unlock(&kvm->lock);
2433 		return -EINVAL;
2434 	}
2435 
2436 	kvm->created_vcpus++;
2437 	mutex_unlock(&kvm->lock);
2438 
2439 	vcpu = kvm_arch_vcpu_create(kvm, id);
2440 	if (IS_ERR(vcpu)) {
2441 		r = PTR_ERR(vcpu);
2442 		goto vcpu_decrement;
2443 	}
2444 
2445 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446 
2447 	r = kvm_arch_vcpu_setup(vcpu);
2448 	if (r)
2449 		goto vcpu_destroy;
2450 
2451 	r = kvm_create_vcpu_debugfs(vcpu);
2452 	if (r)
2453 		goto vcpu_destroy;
2454 
2455 	mutex_lock(&kvm->lock);
2456 	if (kvm_get_vcpu_by_id(kvm, id)) {
2457 		r = -EEXIST;
2458 		goto unlock_vcpu_destroy;
2459 	}
2460 
2461 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462 
2463 	/* Now it's all set up, let userspace reach it */
2464 	kvm_get_kvm(kvm);
2465 	r = create_vcpu_fd(vcpu);
2466 	if (r < 0) {
2467 		kvm_put_kvm(kvm);
2468 		goto unlock_vcpu_destroy;
2469 	}
2470 
2471 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472 
2473 	/*
2474 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2475 	 * before kvm->online_vcpu's incremented value.
2476 	 */
2477 	smp_wmb();
2478 	atomic_inc(&kvm->online_vcpus);
2479 
2480 	mutex_unlock(&kvm->lock);
2481 	kvm_arch_vcpu_postcreate(vcpu);
2482 	return r;
2483 
2484 unlock_vcpu_destroy:
2485 	mutex_unlock(&kvm->lock);
2486 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2487 vcpu_destroy:
2488 	kvm_arch_vcpu_destroy(vcpu);
2489 vcpu_decrement:
2490 	mutex_lock(&kvm->lock);
2491 	kvm->created_vcpus--;
2492 	mutex_unlock(&kvm->lock);
2493 	return r;
2494 }
2495 
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497 {
2498 	if (sigset) {
2499 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500 		vcpu->sigset_active = 1;
2501 		vcpu->sigset = *sigset;
2502 	} else
2503 		vcpu->sigset_active = 0;
2504 	return 0;
2505 }
2506 
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508 			   unsigned int ioctl, unsigned long arg)
2509 {
2510 	struct kvm_vcpu *vcpu = filp->private_data;
2511 	void __user *argp = (void __user *)arg;
2512 	int r;
2513 	struct kvm_fpu *fpu = NULL;
2514 	struct kvm_sregs *kvm_sregs = NULL;
2515 
2516 	if (vcpu->kvm->mm != current->mm)
2517 		return -EIO;
2518 
2519 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520 		return -EINVAL;
2521 
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523 	/*
2524 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525 	 * so vcpu_load() would break it.
2526 	 */
2527 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529 #endif
2530 
2531 
2532 	r = vcpu_load(vcpu);
2533 	if (r)
2534 		return r;
2535 	switch (ioctl) {
2536 	case KVM_RUN: {
2537 		struct pid *oldpid;
2538 		r = -EINVAL;
2539 		if (arg)
2540 			goto out;
2541 		oldpid = rcu_access_pointer(vcpu->pid);
2542 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543 			/* The thread running this VCPU changed. */
2544 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545 
2546 			rcu_assign_pointer(vcpu->pid, newpid);
2547 			if (oldpid)
2548 				synchronize_rcu();
2549 			put_pid(oldpid);
2550 		}
2551 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553 		break;
2554 	}
2555 	case KVM_GET_REGS: {
2556 		struct kvm_regs *kvm_regs;
2557 
2558 		r = -ENOMEM;
2559 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560 		if (!kvm_regs)
2561 			goto out;
2562 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563 		if (r)
2564 			goto out_free1;
2565 		r = -EFAULT;
2566 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567 			goto out_free1;
2568 		r = 0;
2569 out_free1:
2570 		kfree(kvm_regs);
2571 		break;
2572 	}
2573 	case KVM_SET_REGS: {
2574 		struct kvm_regs *kvm_regs;
2575 
2576 		r = -ENOMEM;
2577 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578 		if (IS_ERR(kvm_regs)) {
2579 			r = PTR_ERR(kvm_regs);
2580 			goto out;
2581 		}
2582 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583 		kfree(kvm_regs);
2584 		break;
2585 	}
2586 	case KVM_GET_SREGS: {
2587 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588 		r = -ENOMEM;
2589 		if (!kvm_sregs)
2590 			goto out;
2591 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592 		if (r)
2593 			goto out;
2594 		r = -EFAULT;
2595 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596 			goto out;
2597 		r = 0;
2598 		break;
2599 	}
2600 	case KVM_SET_SREGS: {
2601 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602 		if (IS_ERR(kvm_sregs)) {
2603 			r = PTR_ERR(kvm_sregs);
2604 			kvm_sregs = NULL;
2605 			goto out;
2606 		}
2607 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608 		break;
2609 	}
2610 	case KVM_GET_MP_STATE: {
2611 		struct kvm_mp_state mp_state;
2612 
2613 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614 		if (r)
2615 			goto out;
2616 		r = -EFAULT;
2617 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618 			goto out;
2619 		r = 0;
2620 		break;
2621 	}
2622 	case KVM_SET_MP_STATE: {
2623 		struct kvm_mp_state mp_state;
2624 
2625 		r = -EFAULT;
2626 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627 			goto out;
2628 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629 		break;
2630 	}
2631 	case KVM_TRANSLATE: {
2632 		struct kvm_translation tr;
2633 
2634 		r = -EFAULT;
2635 		if (copy_from_user(&tr, argp, sizeof(tr)))
2636 			goto out;
2637 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638 		if (r)
2639 			goto out;
2640 		r = -EFAULT;
2641 		if (copy_to_user(argp, &tr, sizeof(tr)))
2642 			goto out;
2643 		r = 0;
2644 		break;
2645 	}
2646 	case KVM_SET_GUEST_DEBUG: {
2647 		struct kvm_guest_debug dbg;
2648 
2649 		r = -EFAULT;
2650 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651 			goto out;
2652 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653 		break;
2654 	}
2655 	case KVM_SET_SIGNAL_MASK: {
2656 		struct kvm_signal_mask __user *sigmask_arg = argp;
2657 		struct kvm_signal_mask kvm_sigmask;
2658 		sigset_t sigset, *p;
2659 
2660 		p = NULL;
2661 		if (argp) {
2662 			r = -EFAULT;
2663 			if (copy_from_user(&kvm_sigmask, argp,
2664 					   sizeof(kvm_sigmask)))
2665 				goto out;
2666 			r = -EINVAL;
2667 			if (kvm_sigmask.len != sizeof(sigset))
2668 				goto out;
2669 			r = -EFAULT;
2670 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2671 					   sizeof(sigset)))
2672 				goto out;
2673 			p = &sigset;
2674 		}
2675 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676 		break;
2677 	}
2678 	case KVM_GET_FPU: {
2679 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680 		r = -ENOMEM;
2681 		if (!fpu)
2682 			goto out;
2683 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684 		if (r)
2685 			goto out;
2686 		r = -EFAULT;
2687 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688 			goto out;
2689 		r = 0;
2690 		break;
2691 	}
2692 	case KVM_SET_FPU: {
2693 		fpu = memdup_user(argp, sizeof(*fpu));
2694 		if (IS_ERR(fpu)) {
2695 			r = PTR_ERR(fpu);
2696 			fpu = NULL;
2697 			goto out;
2698 		}
2699 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700 		break;
2701 	}
2702 	default:
2703 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704 	}
2705 out:
2706 	vcpu_put(vcpu);
2707 	kfree(fpu);
2708 	kfree(kvm_sregs);
2709 	return r;
2710 }
2711 
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714 				  unsigned int ioctl, unsigned long arg)
2715 {
2716 	struct kvm_vcpu *vcpu = filp->private_data;
2717 	void __user *argp = compat_ptr(arg);
2718 	int r;
2719 
2720 	if (vcpu->kvm->mm != current->mm)
2721 		return -EIO;
2722 
2723 	switch (ioctl) {
2724 	case KVM_SET_SIGNAL_MASK: {
2725 		struct kvm_signal_mask __user *sigmask_arg = argp;
2726 		struct kvm_signal_mask kvm_sigmask;
2727 		compat_sigset_t csigset;
2728 		sigset_t sigset;
2729 
2730 		if (argp) {
2731 			r = -EFAULT;
2732 			if (copy_from_user(&kvm_sigmask, argp,
2733 					   sizeof(kvm_sigmask)))
2734 				goto out;
2735 			r = -EINVAL;
2736 			if (kvm_sigmask.len != sizeof(csigset))
2737 				goto out;
2738 			r = -EFAULT;
2739 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2740 					   sizeof(csigset)))
2741 				goto out;
2742 			sigset_from_compat(&sigset, &csigset);
2743 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2744 		} else
2745 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2746 		break;
2747 	}
2748 	default:
2749 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2750 	}
2751 
2752 out:
2753 	return r;
2754 }
2755 #endif
2756 
2757 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2758 				 int (*accessor)(struct kvm_device *dev,
2759 						 struct kvm_device_attr *attr),
2760 				 unsigned long arg)
2761 {
2762 	struct kvm_device_attr attr;
2763 
2764 	if (!accessor)
2765 		return -EPERM;
2766 
2767 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2768 		return -EFAULT;
2769 
2770 	return accessor(dev, &attr);
2771 }
2772 
2773 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2774 			     unsigned long arg)
2775 {
2776 	struct kvm_device *dev = filp->private_data;
2777 
2778 	switch (ioctl) {
2779 	case KVM_SET_DEVICE_ATTR:
2780 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2781 	case KVM_GET_DEVICE_ATTR:
2782 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2783 	case KVM_HAS_DEVICE_ATTR:
2784 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2785 	default:
2786 		if (dev->ops->ioctl)
2787 			return dev->ops->ioctl(dev, ioctl, arg);
2788 
2789 		return -ENOTTY;
2790 	}
2791 }
2792 
2793 static int kvm_device_release(struct inode *inode, struct file *filp)
2794 {
2795 	struct kvm_device *dev = filp->private_data;
2796 	struct kvm *kvm = dev->kvm;
2797 
2798 	kvm_put_kvm(kvm);
2799 	return 0;
2800 }
2801 
2802 static const struct file_operations kvm_device_fops = {
2803 	.unlocked_ioctl = kvm_device_ioctl,
2804 #ifdef CONFIG_KVM_COMPAT
2805 	.compat_ioctl = kvm_device_ioctl,
2806 #endif
2807 	.release = kvm_device_release,
2808 };
2809 
2810 struct kvm_device *kvm_device_from_filp(struct file *filp)
2811 {
2812 	if (filp->f_op != &kvm_device_fops)
2813 		return NULL;
2814 
2815 	return filp->private_data;
2816 }
2817 
2818 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2819 #ifdef CONFIG_KVM_MPIC
2820 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2821 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2822 #endif
2823 };
2824 
2825 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2826 {
2827 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2828 		return -ENOSPC;
2829 
2830 	if (kvm_device_ops_table[type] != NULL)
2831 		return -EEXIST;
2832 
2833 	kvm_device_ops_table[type] = ops;
2834 	return 0;
2835 }
2836 
2837 void kvm_unregister_device_ops(u32 type)
2838 {
2839 	if (kvm_device_ops_table[type] != NULL)
2840 		kvm_device_ops_table[type] = NULL;
2841 }
2842 
2843 static int kvm_ioctl_create_device(struct kvm *kvm,
2844 				   struct kvm_create_device *cd)
2845 {
2846 	struct kvm_device_ops *ops = NULL;
2847 	struct kvm_device *dev;
2848 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2849 	int ret;
2850 
2851 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2852 		return -ENODEV;
2853 
2854 	ops = kvm_device_ops_table[cd->type];
2855 	if (ops == NULL)
2856 		return -ENODEV;
2857 
2858 	if (test)
2859 		return 0;
2860 
2861 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2862 	if (!dev)
2863 		return -ENOMEM;
2864 
2865 	dev->ops = ops;
2866 	dev->kvm = kvm;
2867 
2868 	mutex_lock(&kvm->lock);
2869 	ret = ops->create(dev, cd->type);
2870 	if (ret < 0) {
2871 		mutex_unlock(&kvm->lock);
2872 		kfree(dev);
2873 		return ret;
2874 	}
2875 	list_add(&dev->vm_node, &kvm->devices);
2876 	mutex_unlock(&kvm->lock);
2877 
2878 	if (ops->init)
2879 		ops->init(dev);
2880 
2881 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2882 	if (ret < 0) {
2883 		mutex_lock(&kvm->lock);
2884 		list_del(&dev->vm_node);
2885 		mutex_unlock(&kvm->lock);
2886 		ops->destroy(dev);
2887 		return ret;
2888 	}
2889 
2890 	kvm_get_kvm(kvm);
2891 	cd->fd = ret;
2892 	return 0;
2893 }
2894 
2895 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2896 {
2897 	switch (arg) {
2898 	case KVM_CAP_USER_MEMORY:
2899 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2900 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2901 	case KVM_CAP_INTERNAL_ERROR_DATA:
2902 #ifdef CONFIG_HAVE_KVM_MSI
2903 	case KVM_CAP_SIGNAL_MSI:
2904 #endif
2905 #ifdef CONFIG_HAVE_KVM_IRQFD
2906 	case KVM_CAP_IRQFD:
2907 	case KVM_CAP_IRQFD_RESAMPLE:
2908 #endif
2909 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2910 	case KVM_CAP_CHECK_EXTENSION_VM:
2911 		return 1;
2912 #ifdef CONFIG_KVM_MMIO
2913 	case KVM_CAP_COALESCED_MMIO:
2914 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2915 #endif
2916 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2917 	case KVM_CAP_IRQ_ROUTING:
2918 		return KVM_MAX_IRQ_ROUTES;
2919 #endif
2920 #if KVM_ADDRESS_SPACE_NUM > 1
2921 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2922 		return KVM_ADDRESS_SPACE_NUM;
2923 #endif
2924 	case KVM_CAP_MAX_VCPU_ID:
2925 		return KVM_MAX_VCPU_ID;
2926 	default:
2927 		break;
2928 	}
2929 	return kvm_vm_ioctl_check_extension(kvm, arg);
2930 }
2931 
2932 static long kvm_vm_ioctl(struct file *filp,
2933 			   unsigned int ioctl, unsigned long arg)
2934 {
2935 	struct kvm *kvm = filp->private_data;
2936 	void __user *argp = (void __user *)arg;
2937 	int r;
2938 
2939 	if (kvm->mm != current->mm)
2940 		return -EIO;
2941 	switch (ioctl) {
2942 	case KVM_CREATE_VCPU:
2943 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2944 		break;
2945 	case KVM_SET_USER_MEMORY_REGION: {
2946 		struct kvm_userspace_memory_region kvm_userspace_mem;
2947 
2948 		r = -EFAULT;
2949 		if (copy_from_user(&kvm_userspace_mem, argp,
2950 						sizeof(kvm_userspace_mem)))
2951 			goto out;
2952 
2953 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2954 		break;
2955 	}
2956 	case KVM_GET_DIRTY_LOG: {
2957 		struct kvm_dirty_log log;
2958 
2959 		r = -EFAULT;
2960 		if (copy_from_user(&log, argp, sizeof(log)))
2961 			goto out;
2962 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2963 		break;
2964 	}
2965 #ifdef CONFIG_KVM_MMIO
2966 	case KVM_REGISTER_COALESCED_MMIO: {
2967 		struct kvm_coalesced_mmio_zone zone;
2968 
2969 		r = -EFAULT;
2970 		if (copy_from_user(&zone, argp, sizeof(zone)))
2971 			goto out;
2972 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2973 		break;
2974 	}
2975 	case KVM_UNREGISTER_COALESCED_MMIO: {
2976 		struct kvm_coalesced_mmio_zone zone;
2977 
2978 		r = -EFAULT;
2979 		if (copy_from_user(&zone, argp, sizeof(zone)))
2980 			goto out;
2981 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2982 		break;
2983 	}
2984 #endif
2985 	case KVM_IRQFD: {
2986 		struct kvm_irqfd data;
2987 
2988 		r = -EFAULT;
2989 		if (copy_from_user(&data, argp, sizeof(data)))
2990 			goto out;
2991 		r = kvm_irqfd(kvm, &data);
2992 		break;
2993 	}
2994 	case KVM_IOEVENTFD: {
2995 		struct kvm_ioeventfd data;
2996 
2997 		r = -EFAULT;
2998 		if (copy_from_user(&data, argp, sizeof(data)))
2999 			goto out;
3000 		r = kvm_ioeventfd(kvm, &data);
3001 		break;
3002 	}
3003 #ifdef CONFIG_HAVE_KVM_MSI
3004 	case KVM_SIGNAL_MSI: {
3005 		struct kvm_msi msi;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&msi, argp, sizeof(msi)))
3009 			goto out;
3010 		r = kvm_send_userspace_msi(kvm, &msi);
3011 		break;
3012 	}
3013 #endif
3014 #ifdef __KVM_HAVE_IRQ_LINE
3015 	case KVM_IRQ_LINE_STATUS:
3016 	case KVM_IRQ_LINE: {
3017 		struct kvm_irq_level irq_event;
3018 
3019 		r = -EFAULT;
3020 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3021 			goto out;
3022 
3023 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3024 					ioctl == KVM_IRQ_LINE_STATUS);
3025 		if (r)
3026 			goto out;
3027 
3028 		r = -EFAULT;
3029 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3030 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3031 				goto out;
3032 		}
3033 
3034 		r = 0;
3035 		break;
3036 	}
3037 #endif
3038 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3039 	case KVM_SET_GSI_ROUTING: {
3040 		struct kvm_irq_routing routing;
3041 		struct kvm_irq_routing __user *urouting;
3042 		struct kvm_irq_routing_entry *entries = NULL;
3043 
3044 		r = -EFAULT;
3045 		if (copy_from_user(&routing, argp, sizeof(routing)))
3046 			goto out;
3047 		r = -EINVAL;
3048 		if (!kvm_arch_can_set_irq_routing(kvm))
3049 			goto out;
3050 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051 			goto out;
3052 		if (routing.flags)
3053 			goto out;
3054 		if (routing.nr) {
3055 			r = -ENOMEM;
3056 			entries = vmalloc(routing.nr * sizeof(*entries));
3057 			if (!entries)
3058 				goto out;
3059 			r = -EFAULT;
3060 			urouting = argp;
3061 			if (copy_from_user(entries, urouting->entries,
3062 					   routing.nr * sizeof(*entries)))
3063 				goto out_free_irq_routing;
3064 		}
3065 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066 					routing.flags);
3067 out_free_irq_routing:
3068 		vfree(entries);
3069 		break;
3070 	}
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072 	case KVM_CREATE_DEVICE: {
3073 		struct kvm_create_device cd;
3074 
3075 		r = -EFAULT;
3076 		if (copy_from_user(&cd, argp, sizeof(cd)))
3077 			goto out;
3078 
3079 		r = kvm_ioctl_create_device(kvm, &cd);
3080 		if (r)
3081 			goto out;
3082 
3083 		r = -EFAULT;
3084 		if (copy_to_user(argp, &cd, sizeof(cd)))
3085 			goto out;
3086 
3087 		r = 0;
3088 		break;
3089 	}
3090 	case KVM_CHECK_EXTENSION:
3091 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092 		break;
3093 	default:
3094 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095 	}
3096 out:
3097 	return r;
3098 }
3099 
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102 	__u32 slot;
3103 	__u32 padding1;
3104 	union {
3105 		compat_uptr_t dirty_bitmap; /* one bit per page */
3106 		__u64 padding2;
3107 	};
3108 };
3109 
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111 			   unsigned int ioctl, unsigned long arg)
3112 {
3113 	struct kvm *kvm = filp->private_data;
3114 	int r;
3115 
3116 	if (kvm->mm != current->mm)
3117 		return -EIO;
3118 	switch (ioctl) {
3119 	case KVM_GET_DIRTY_LOG: {
3120 		struct compat_kvm_dirty_log compat_log;
3121 		struct kvm_dirty_log log;
3122 
3123 		if (copy_from_user(&compat_log, (void __user *)arg,
3124 				   sizeof(compat_log)))
3125 			return -EFAULT;
3126 		log.slot	 = compat_log.slot;
3127 		log.padding1	 = compat_log.padding1;
3128 		log.padding2	 = compat_log.padding2;
3129 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3130 
3131 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132 		break;
3133 	}
3134 	default:
3135 		r = kvm_vm_ioctl(filp, ioctl, arg);
3136 	}
3137 	return r;
3138 }
3139 #endif
3140 
3141 static struct file_operations kvm_vm_fops = {
3142 	.release        = kvm_vm_release,
3143 	.unlocked_ioctl = kvm_vm_ioctl,
3144 #ifdef CONFIG_KVM_COMPAT
3145 	.compat_ioctl   = kvm_vm_compat_ioctl,
3146 #endif
3147 	.llseek		= noop_llseek,
3148 };
3149 
3150 static int kvm_dev_ioctl_create_vm(unsigned long type)
3151 {
3152 	int r;
3153 	struct kvm *kvm;
3154 	struct file *file;
3155 
3156 	kvm = kvm_create_vm(type);
3157 	if (IS_ERR(kvm))
3158 		return PTR_ERR(kvm);
3159 #ifdef CONFIG_KVM_MMIO
3160 	r = kvm_coalesced_mmio_init(kvm);
3161 	if (r < 0) {
3162 		kvm_put_kvm(kvm);
3163 		return r;
3164 	}
3165 #endif
3166 	r = get_unused_fd_flags(O_CLOEXEC);
3167 	if (r < 0) {
3168 		kvm_put_kvm(kvm);
3169 		return r;
3170 	}
3171 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3172 	if (IS_ERR(file)) {
3173 		put_unused_fd(r);
3174 		kvm_put_kvm(kvm);
3175 		return PTR_ERR(file);
3176 	}
3177 
3178 	/*
3179 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3180 	 * already set, with ->release() being kvm_vm_release().  In error
3181 	 * cases it will be called by the final fput(file) and will take
3182 	 * care of doing kvm_put_kvm(kvm).
3183 	 */
3184 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185 		put_unused_fd(r);
3186 		fput(file);
3187 		return -ENOMEM;
3188 	}
3189 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3190 
3191 	fd_install(r, file);
3192 	return r;
3193 }
3194 
3195 static long kvm_dev_ioctl(struct file *filp,
3196 			  unsigned int ioctl, unsigned long arg)
3197 {
3198 	long r = -EINVAL;
3199 
3200 	switch (ioctl) {
3201 	case KVM_GET_API_VERSION:
3202 		if (arg)
3203 			goto out;
3204 		r = KVM_API_VERSION;
3205 		break;
3206 	case KVM_CREATE_VM:
3207 		r = kvm_dev_ioctl_create_vm(arg);
3208 		break;
3209 	case KVM_CHECK_EXTENSION:
3210 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3211 		break;
3212 	case KVM_GET_VCPU_MMAP_SIZE:
3213 		if (arg)
3214 			goto out;
3215 		r = PAGE_SIZE;     /* struct kvm_run */
3216 #ifdef CONFIG_X86
3217 		r += PAGE_SIZE;    /* pio data page */
3218 #endif
3219 #ifdef CONFIG_KVM_MMIO
3220 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3221 #endif
3222 		break;
3223 	case KVM_TRACE_ENABLE:
3224 	case KVM_TRACE_PAUSE:
3225 	case KVM_TRACE_DISABLE:
3226 		r = -EOPNOTSUPP;
3227 		break;
3228 	default:
3229 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3230 	}
3231 out:
3232 	return r;
3233 }
3234 
3235 static struct file_operations kvm_chardev_ops = {
3236 	.unlocked_ioctl = kvm_dev_ioctl,
3237 	.compat_ioctl   = kvm_dev_ioctl,
3238 	.llseek		= noop_llseek,
3239 };
3240 
3241 static struct miscdevice kvm_dev = {
3242 	KVM_MINOR,
3243 	"kvm",
3244 	&kvm_chardev_ops,
3245 };
3246 
3247 static void hardware_enable_nolock(void *junk)
3248 {
3249 	int cpu = raw_smp_processor_id();
3250 	int r;
3251 
3252 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3253 		return;
3254 
3255 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3256 
3257 	r = kvm_arch_hardware_enable();
3258 
3259 	if (r) {
3260 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3261 		atomic_inc(&hardware_enable_failed);
3262 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3263 	}
3264 }
3265 
3266 static int kvm_starting_cpu(unsigned int cpu)
3267 {
3268 	raw_spin_lock(&kvm_count_lock);
3269 	if (kvm_usage_count)
3270 		hardware_enable_nolock(NULL);
3271 	raw_spin_unlock(&kvm_count_lock);
3272 	return 0;
3273 }
3274 
3275 static void hardware_disable_nolock(void *junk)
3276 {
3277 	int cpu = raw_smp_processor_id();
3278 
3279 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3280 		return;
3281 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3282 	kvm_arch_hardware_disable();
3283 }
3284 
3285 static int kvm_dying_cpu(unsigned int cpu)
3286 {
3287 	raw_spin_lock(&kvm_count_lock);
3288 	if (kvm_usage_count)
3289 		hardware_disable_nolock(NULL);
3290 	raw_spin_unlock(&kvm_count_lock);
3291 	return 0;
3292 }
3293 
3294 static void hardware_disable_all_nolock(void)
3295 {
3296 	BUG_ON(!kvm_usage_count);
3297 
3298 	kvm_usage_count--;
3299 	if (!kvm_usage_count)
3300 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3301 }
3302 
3303 static void hardware_disable_all(void)
3304 {
3305 	raw_spin_lock(&kvm_count_lock);
3306 	hardware_disable_all_nolock();
3307 	raw_spin_unlock(&kvm_count_lock);
3308 }
3309 
3310 static int hardware_enable_all(void)
3311 {
3312 	int r = 0;
3313 
3314 	raw_spin_lock(&kvm_count_lock);
3315 
3316 	kvm_usage_count++;
3317 	if (kvm_usage_count == 1) {
3318 		atomic_set(&hardware_enable_failed, 0);
3319 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3320 
3321 		if (atomic_read(&hardware_enable_failed)) {
3322 			hardware_disable_all_nolock();
3323 			r = -EBUSY;
3324 		}
3325 	}
3326 
3327 	raw_spin_unlock(&kvm_count_lock);
3328 
3329 	return r;
3330 }
3331 
3332 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3333 		      void *v)
3334 {
3335 	/*
3336 	 * Some (well, at least mine) BIOSes hang on reboot if
3337 	 * in vmx root mode.
3338 	 *
3339 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3340 	 */
3341 	pr_info("kvm: exiting hardware virtualization\n");
3342 	kvm_rebooting = true;
3343 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3344 	return NOTIFY_OK;
3345 }
3346 
3347 static struct notifier_block kvm_reboot_notifier = {
3348 	.notifier_call = kvm_reboot,
3349 	.priority = 0,
3350 };
3351 
3352 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3353 {
3354 	int i;
3355 
3356 	for (i = 0; i < bus->dev_count; i++) {
3357 		struct kvm_io_device *pos = bus->range[i].dev;
3358 
3359 		kvm_iodevice_destructor(pos);
3360 	}
3361 	kfree(bus);
3362 }
3363 
3364 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3365 				 const struct kvm_io_range *r2)
3366 {
3367 	gpa_t addr1 = r1->addr;
3368 	gpa_t addr2 = r2->addr;
3369 
3370 	if (addr1 < addr2)
3371 		return -1;
3372 
3373 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3374 	 * accept any overlapping write.  Any order is acceptable for
3375 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3376 	 * we process all of them.
3377 	 */
3378 	if (r2->len) {
3379 		addr1 += r1->len;
3380 		addr2 += r2->len;
3381 	}
3382 
3383 	if (addr1 > addr2)
3384 		return 1;
3385 
3386 	return 0;
3387 }
3388 
3389 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3390 {
3391 	return kvm_io_bus_cmp(p1, p2);
3392 }
3393 
3394 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3395 			  gpa_t addr, int len)
3396 {
3397 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3398 		.addr = addr,
3399 		.len = len,
3400 		.dev = dev,
3401 	};
3402 
3403 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3404 		kvm_io_bus_sort_cmp, NULL);
3405 
3406 	return 0;
3407 }
3408 
3409 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3410 			     gpa_t addr, int len)
3411 {
3412 	struct kvm_io_range *range, key;
3413 	int off;
3414 
3415 	key = (struct kvm_io_range) {
3416 		.addr = addr,
3417 		.len = len,
3418 	};
3419 
3420 	range = bsearch(&key, bus->range, bus->dev_count,
3421 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3422 	if (range == NULL)
3423 		return -ENOENT;
3424 
3425 	off = range - bus->range;
3426 
3427 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3428 		off--;
3429 
3430 	return off;
3431 }
3432 
3433 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3434 			      struct kvm_io_range *range, const void *val)
3435 {
3436 	int idx;
3437 
3438 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3439 	if (idx < 0)
3440 		return -EOPNOTSUPP;
3441 
3442 	while (idx < bus->dev_count &&
3443 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3444 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3445 					range->len, val))
3446 			return idx;
3447 		idx++;
3448 	}
3449 
3450 	return -EOPNOTSUPP;
3451 }
3452 
3453 /* kvm_io_bus_write - called under kvm->slots_lock */
3454 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3455 		     int len, const void *val)
3456 {
3457 	struct kvm_io_bus *bus;
3458 	struct kvm_io_range range;
3459 	int r;
3460 
3461 	range = (struct kvm_io_range) {
3462 		.addr = addr,
3463 		.len = len,
3464 	};
3465 
3466 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3467 	if (!bus)
3468 		return -ENOMEM;
3469 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470 	return r < 0 ? r : 0;
3471 }
3472 
3473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475 			    gpa_t addr, int len, const void *val, long cookie)
3476 {
3477 	struct kvm_io_bus *bus;
3478 	struct kvm_io_range range;
3479 
3480 	range = (struct kvm_io_range) {
3481 		.addr = addr,
3482 		.len = len,
3483 	};
3484 
3485 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486 	if (!bus)
3487 		return -ENOMEM;
3488 
3489 	/* First try the device referenced by cookie. */
3490 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3491 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3492 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3493 					val))
3494 			return cookie;
3495 
3496 	/*
3497 	 * cookie contained garbage; fall back to search and return the
3498 	 * correct cookie value.
3499 	 */
3500 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3501 }
3502 
3503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3504 			     struct kvm_io_range *range, void *val)
3505 {
3506 	int idx;
3507 
3508 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3509 	if (idx < 0)
3510 		return -EOPNOTSUPP;
3511 
3512 	while (idx < bus->dev_count &&
3513 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3514 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3515 				       range->len, val))
3516 			return idx;
3517 		idx++;
3518 	}
3519 
3520 	return -EOPNOTSUPP;
3521 }
3522 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3523 
3524 /* kvm_io_bus_read - called under kvm->slots_lock */
3525 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3526 		    int len, void *val)
3527 {
3528 	struct kvm_io_bus *bus;
3529 	struct kvm_io_range range;
3530 	int r;
3531 
3532 	range = (struct kvm_io_range) {
3533 		.addr = addr,
3534 		.len = len,
3535 	};
3536 
3537 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3538 	if (!bus)
3539 		return -ENOMEM;
3540 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3541 	return r < 0 ? r : 0;
3542 }
3543 
3544 
3545 /* Caller must hold slots_lock. */
3546 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3547 			    int len, struct kvm_io_device *dev)
3548 {
3549 	struct kvm_io_bus *new_bus, *bus;
3550 
3551 	bus = kvm_get_bus(kvm, bus_idx);
3552 	if (!bus)
3553 		return -ENOMEM;
3554 
3555 	/* exclude ioeventfd which is limited by maximum fd */
3556 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557 		return -ENOSPC;
3558 
3559 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3561 	if (!new_bus)
3562 		return -ENOMEM;
3563 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 	       sizeof(struct kvm_io_range)));
3565 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 	synchronize_srcu_expedited(&kvm->srcu);
3568 	kfree(bus);
3569 
3570 	return 0;
3571 }
3572 
3573 /* Caller must hold slots_lock. */
3574 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 			       struct kvm_io_device *dev)
3576 {
3577 	int i;
3578 	struct kvm_io_bus *new_bus, *bus;
3579 
3580 	bus = kvm_get_bus(kvm, bus_idx);
3581 	if (!bus)
3582 		return;
3583 
3584 	for (i = 0; i < bus->dev_count; i++)
3585 		if (bus->range[i].dev == dev) {
3586 			break;
3587 		}
3588 
3589 	if (i == bus->dev_count)
3590 		return;
3591 
3592 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 	if (!new_bus)  {
3595 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3596 		goto broken;
3597 	}
3598 
3599 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3600 	new_bus->dev_count--;
3601 	memcpy(new_bus->range + i, bus->range + i + 1,
3602 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3603 
3604 broken:
3605 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3606 	synchronize_srcu_expedited(&kvm->srcu);
3607 	kfree(bus);
3608 	return;
3609 }
3610 
3611 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3612 					 gpa_t addr)
3613 {
3614 	struct kvm_io_bus *bus;
3615 	int dev_idx, srcu_idx;
3616 	struct kvm_io_device *iodev = NULL;
3617 
3618 	srcu_idx = srcu_read_lock(&kvm->srcu);
3619 
3620 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3621 	if (!bus)
3622 		goto out_unlock;
3623 
3624 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3625 	if (dev_idx < 0)
3626 		goto out_unlock;
3627 
3628 	iodev = bus->range[dev_idx].dev;
3629 
3630 out_unlock:
3631 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3632 
3633 	return iodev;
3634 }
3635 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3636 
3637 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3638 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3639 			   const char *fmt)
3640 {
3641 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3642 					  inode->i_private;
3643 
3644 	/* The debugfs files are a reference to the kvm struct which
3645 	 * is still valid when kvm_destroy_vm is called.
3646 	 * To avoid the race between open and the removal of the debugfs
3647 	 * directory we test against the users count.
3648 	 */
3649 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3650 		return -ENOENT;
3651 
3652 	if (simple_attr_open(inode, file, get, set, fmt)) {
3653 		kvm_put_kvm(stat_data->kvm);
3654 		return -ENOMEM;
3655 	}
3656 
3657 	return 0;
3658 }
3659 
3660 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3661 {
3662 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3663 					  inode->i_private;
3664 
3665 	simple_attr_release(inode, file);
3666 	kvm_put_kvm(stat_data->kvm);
3667 
3668 	return 0;
3669 }
3670 
3671 static int vm_stat_get_per_vm(void *data, u64 *val)
3672 {
3673 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3674 
3675 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3676 
3677 	return 0;
3678 }
3679 
3680 static int vm_stat_clear_per_vm(void *data, u64 val)
3681 {
3682 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683 
3684 	if (val)
3685 		return -EINVAL;
3686 
3687 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3688 
3689 	return 0;
3690 }
3691 
3692 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3693 {
3694 	__simple_attr_check_format("%llu\n", 0ull);
3695 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3696 				vm_stat_clear_per_vm, "%llu\n");
3697 }
3698 
3699 static const struct file_operations vm_stat_get_per_vm_fops = {
3700 	.owner   = THIS_MODULE,
3701 	.open    = vm_stat_get_per_vm_open,
3702 	.release = kvm_debugfs_release,
3703 	.read    = simple_attr_read,
3704 	.write   = simple_attr_write,
3705 	.llseek  = no_llseek,
3706 };
3707 
3708 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3709 {
3710 	int i;
3711 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712 	struct kvm_vcpu *vcpu;
3713 
3714 	*val = 0;
3715 
3716 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3717 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3718 
3719 	return 0;
3720 }
3721 
3722 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3723 {
3724 	int i;
3725 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3726 	struct kvm_vcpu *vcpu;
3727 
3728 	if (val)
3729 		return -EINVAL;
3730 
3731 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3733 
3734 	return 0;
3735 }
3736 
3737 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3738 {
3739 	__simple_attr_check_format("%llu\n", 0ull);
3740 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3741 				 vcpu_stat_clear_per_vm, "%llu\n");
3742 }
3743 
3744 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3745 	.owner   = THIS_MODULE,
3746 	.open    = vcpu_stat_get_per_vm_open,
3747 	.release = kvm_debugfs_release,
3748 	.read    = simple_attr_read,
3749 	.write   = simple_attr_write,
3750 	.llseek  = no_llseek,
3751 };
3752 
3753 static const struct file_operations *stat_fops_per_vm[] = {
3754 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3755 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3756 };
3757 
3758 static int vm_stat_get(void *_offset, u64 *val)
3759 {
3760 	unsigned offset = (long)_offset;
3761 	struct kvm *kvm;
3762 	struct kvm_stat_data stat_tmp = {.offset = offset};
3763 	u64 tmp_val;
3764 
3765 	*val = 0;
3766 	spin_lock(&kvm_lock);
3767 	list_for_each_entry(kvm, &vm_list, vm_list) {
3768 		stat_tmp.kvm = kvm;
3769 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3770 		*val += tmp_val;
3771 	}
3772 	spin_unlock(&kvm_lock);
3773 	return 0;
3774 }
3775 
3776 static int vm_stat_clear(void *_offset, u64 val)
3777 {
3778 	unsigned offset = (long)_offset;
3779 	struct kvm *kvm;
3780 	struct kvm_stat_data stat_tmp = {.offset = offset};
3781 
3782 	if (val)
3783 		return -EINVAL;
3784 
3785 	spin_lock(&kvm_lock);
3786 	list_for_each_entry(kvm, &vm_list, vm_list) {
3787 		stat_tmp.kvm = kvm;
3788 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3789 	}
3790 	spin_unlock(&kvm_lock);
3791 
3792 	return 0;
3793 }
3794 
3795 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3796 
3797 static int vcpu_stat_get(void *_offset, u64 *val)
3798 {
3799 	unsigned offset = (long)_offset;
3800 	struct kvm *kvm;
3801 	struct kvm_stat_data stat_tmp = {.offset = offset};
3802 	u64 tmp_val;
3803 
3804 	*val = 0;
3805 	spin_lock(&kvm_lock);
3806 	list_for_each_entry(kvm, &vm_list, vm_list) {
3807 		stat_tmp.kvm = kvm;
3808 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3809 		*val += tmp_val;
3810 	}
3811 	spin_unlock(&kvm_lock);
3812 	return 0;
3813 }
3814 
3815 static int vcpu_stat_clear(void *_offset, u64 val)
3816 {
3817 	unsigned offset = (long)_offset;
3818 	struct kvm *kvm;
3819 	struct kvm_stat_data stat_tmp = {.offset = offset};
3820 
3821 	if (val)
3822 		return -EINVAL;
3823 
3824 	spin_lock(&kvm_lock);
3825 	list_for_each_entry(kvm, &vm_list, vm_list) {
3826 		stat_tmp.kvm = kvm;
3827 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3828 	}
3829 	spin_unlock(&kvm_lock);
3830 
3831 	return 0;
3832 }
3833 
3834 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3835 			"%llu\n");
3836 
3837 static const struct file_operations *stat_fops[] = {
3838 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3839 	[KVM_STAT_VM]   = &vm_stat_fops,
3840 };
3841 
3842 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3843 {
3844 	struct kobj_uevent_env *env;
3845 	unsigned long long created, active;
3846 
3847 	if (!kvm_dev.this_device || !kvm)
3848 		return;
3849 
3850 	spin_lock(&kvm_lock);
3851 	if (type == KVM_EVENT_CREATE_VM) {
3852 		kvm_createvm_count++;
3853 		kvm_active_vms++;
3854 	} else if (type == KVM_EVENT_DESTROY_VM) {
3855 		kvm_active_vms--;
3856 	}
3857 	created = kvm_createvm_count;
3858 	active = kvm_active_vms;
3859 	spin_unlock(&kvm_lock);
3860 
3861 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3862 	if (!env)
3863 		return;
3864 
3865 	add_uevent_var(env, "CREATED=%llu", created);
3866 	add_uevent_var(env, "COUNT=%llu", active);
3867 
3868 	if (type == KVM_EVENT_CREATE_VM) {
3869 		add_uevent_var(env, "EVENT=create");
3870 		kvm->userspace_pid = task_pid_nr(current);
3871 	} else if (type == KVM_EVENT_DESTROY_VM) {
3872 		add_uevent_var(env, "EVENT=destroy");
3873 	}
3874 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3875 
3876 	if (kvm->debugfs_dentry) {
3877 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3878 
3879 		if (p) {
3880 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3881 			if (!IS_ERR(tmp))
3882 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3883 			kfree(p);
3884 		}
3885 	}
3886 	/* no need for checks, since we are adding at most only 5 keys */
3887 	env->envp[env->envp_idx++] = NULL;
3888 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3889 	kfree(env);
3890 }
3891 
3892 static int kvm_init_debug(void)
3893 {
3894 	int r = -EEXIST;
3895 	struct kvm_stats_debugfs_item *p;
3896 
3897 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3898 	if (kvm_debugfs_dir == NULL)
3899 		goto out;
3900 
3901 	kvm_debugfs_num_entries = 0;
3902 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3903 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3904 					 (void *)(long)p->offset,
3905 					 stat_fops[p->kind]))
3906 			goto out_dir;
3907 	}
3908 
3909 	return 0;
3910 
3911 out_dir:
3912 	debugfs_remove_recursive(kvm_debugfs_dir);
3913 out:
3914 	return r;
3915 }
3916 
3917 static int kvm_suspend(void)
3918 {
3919 	if (kvm_usage_count)
3920 		hardware_disable_nolock(NULL);
3921 	return 0;
3922 }
3923 
3924 static void kvm_resume(void)
3925 {
3926 	if (kvm_usage_count) {
3927 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3928 		hardware_enable_nolock(NULL);
3929 	}
3930 }
3931 
3932 static struct syscore_ops kvm_syscore_ops = {
3933 	.suspend = kvm_suspend,
3934 	.resume = kvm_resume,
3935 };
3936 
3937 static inline
3938 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3939 {
3940 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3941 }
3942 
3943 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3944 {
3945 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3946 
3947 	if (vcpu->preempted)
3948 		vcpu->preempted = false;
3949 
3950 	kvm_arch_sched_in(vcpu, cpu);
3951 
3952 	kvm_arch_vcpu_load(vcpu, cpu);
3953 }
3954 
3955 static void kvm_sched_out(struct preempt_notifier *pn,
3956 			  struct task_struct *next)
3957 {
3958 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959 
3960 	if (current->state == TASK_RUNNING)
3961 		vcpu->preempted = true;
3962 	kvm_arch_vcpu_put(vcpu);
3963 }
3964 
3965 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3966 		  struct module *module)
3967 {
3968 	int r;
3969 	int cpu;
3970 
3971 	r = kvm_arch_init(opaque);
3972 	if (r)
3973 		goto out_fail;
3974 
3975 	/*
3976 	 * kvm_arch_init makes sure there's at most one caller
3977 	 * for architectures that support multiple implementations,
3978 	 * like intel and amd on x86.
3979 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3980 	 * conflicts in case kvm is already setup for another implementation.
3981 	 */
3982 	r = kvm_irqfd_init();
3983 	if (r)
3984 		goto out_irqfd;
3985 
3986 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3987 		r = -ENOMEM;
3988 		goto out_free_0;
3989 	}
3990 
3991 	r = kvm_arch_hardware_setup();
3992 	if (r < 0)
3993 		goto out_free_0a;
3994 
3995 	for_each_online_cpu(cpu) {
3996 		smp_call_function_single(cpu,
3997 				kvm_arch_check_processor_compat,
3998 				&r, 1);
3999 		if (r < 0)
4000 			goto out_free_1;
4001 	}
4002 
4003 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4004 				      kvm_starting_cpu, kvm_dying_cpu);
4005 	if (r)
4006 		goto out_free_2;
4007 	register_reboot_notifier(&kvm_reboot_notifier);
4008 
4009 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4010 	if (!vcpu_align)
4011 		vcpu_align = __alignof__(struct kvm_vcpu);
4012 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4013 					   0, NULL);
4014 	if (!kvm_vcpu_cache) {
4015 		r = -ENOMEM;
4016 		goto out_free_3;
4017 	}
4018 
4019 	r = kvm_async_pf_init();
4020 	if (r)
4021 		goto out_free;
4022 
4023 	kvm_chardev_ops.owner = module;
4024 	kvm_vm_fops.owner = module;
4025 	kvm_vcpu_fops.owner = module;
4026 
4027 	r = misc_register(&kvm_dev);
4028 	if (r) {
4029 		pr_err("kvm: misc device register failed\n");
4030 		goto out_unreg;
4031 	}
4032 
4033 	register_syscore_ops(&kvm_syscore_ops);
4034 
4035 	kvm_preempt_ops.sched_in = kvm_sched_in;
4036 	kvm_preempt_ops.sched_out = kvm_sched_out;
4037 
4038 	r = kvm_init_debug();
4039 	if (r) {
4040 		pr_err("kvm: create debugfs files failed\n");
4041 		goto out_undebugfs;
4042 	}
4043 
4044 	r = kvm_vfio_ops_init();
4045 	WARN_ON(r);
4046 
4047 	return 0;
4048 
4049 out_undebugfs:
4050 	unregister_syscore_ops(&kvm_syscore_ops);
4051 	misc_deregister(&kvm_dev);
4052 out_unreg:
4053 	kvm_async_pf_deinit();
4054 out_free:
4055 	kmem_cache_destroy(kvm_vcpu_cache);
4056 out_free_3:
4057 	unregister_reboot_notifier(&kvm_reboot_notifier);
4058 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4059 out_free_2:
4060 out_free_1:
4061 	kvm_arch_hardware_unsetup();
4062 out_free_0a:
4063 	free_cpumask_var(cpus_hardware_enabled);
4064 out_free_0:
4065 	kvm_irqfd_exit();
4066 out_irqfd:
4067 	kvm_arch_exit();
4068 out_fail:
4069 	return r;
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_init);
4072 
4073 void kvm_exit(void)
4074 {
4075 	debugfs_remove_recursive(kvm_debugfs_dir);
4076 	misc_deregister(&kvm_dev);
4077 	kmem_cache_destroy(kvm_vcpu_cache);
4078 	kvm_async_pf_deinit();
4079 	unregister_syscore_ops(&kvm_syscore_ops);
4080 	unregister_reboot_notifier(&kvm_reboot_notifier);
4081 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4083 	kvm_arch_hardware_unsetup();
4084 	kvm_arch_exit();
4085 	kvm_irqfd_exit();
4086 	free_cpumask_var(cpus_hardware_enabled);
4087 	kvm_vfio_ops_exit();
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_exit);
4090