1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/sysdev.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 51 #include <asm/processor.h> 52 #include <asm/io.h> 53 #include <asm/uaccess.h> 54 #include <asm/pgtable.h> 55 #include <asm-generic/bitops/le.h> 56 57 #include "coalesced_mmio.h" 58 #include "async_pf.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/kvm.h> 62 63 MODULE_AUTHOR("Qumranet"); 64 MODULE_LICENSE("GPL"); 65 66 /* 67 * Ordering of locks: 68 * 69 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 70 */ 71 72 DEFINE_RAW_SPINLOCK(kvm_lock); 73 LIST_HEAD(vm_list); 74 75 static cpumask_var_t cpus_hardware_enabled; 76 static int kvm_usage_count = 0; 77 static atomic_t hardware_enable_failed; 78 79 struct kmem_cache *kvm_vcpu_cache; 80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 81 82 static __read_mostly struct preempt_ops kvm_preempt_ops; 83 84 struct dentry *kvm_debugfs_dir; 85 86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 87 unsigned long arg); 88 static int hardware_enable_all(void); 89 static void hardware_disable_all(void); 90 91 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 92 93 bool kvm_rebooting; 94 EXPORT_SYMBOL_GPL(kvm_rebooting); 95 96 static bool largepages_enabled = true; 97 98 static struct page *hwpoison_page; 99 static pfn_t hwpoison_pfn; 100 101 static struct page *fault_page; 102 static pfn_t fault_pfn; 103 104 inline int kvm_is_mmio_pfn(pfn_t pfn) 105 { 106 if (pfn_valid(pfn)) { 107 int reserved; 108 struct page *tail = pfn_to_page(pfn); 109 struct page *head = compound_trans_head(tail); 110 reserved = PageReserved(head); 111 if (head != tail) { 112 /* 113 * "head" is not a dangling pointer 114 * (compound_trans_head takes care of that) 115 * but the hugepage may have been splitted 116 * from under us (and we may not hold a 117 * reference count on the head page so it can 118 * be reused before we run PageReferenced), so 119 * we've to check PageTail before returning 120 * what we just read. 121 */ 122 smp_rmb(); 123 if (PageTail(tail)) 124 return reserved; 125 } 126 return PageReserved(tail); 127 } 128 129 return true; 130 } 131 132 /* 133 * Switches to specified vcpu, until a matching vcpu_put() 134 */ 135 void vcpu_load(struct kvm_vcpu *vcpu) 136 { 137 int cpu; 138 139 mutex_lock(&vcpu->mutex); 140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 141 /* The thread running this VCPU changed. */ 142 struct pid *oldpid = vcpu->pid; 143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 144 rcu_assign_pointer(vcpu->pid, newpid); 145 synchronize_rcu(); 146 put_pid(oldpid); 147 } 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 } 153 154 void vcpu_put(struct kvm_vcpu *vcpu) 155 { 156 preempt_disable(); 157 kvm_arch_vcpu_put(vcpu); 158 preempt_notifier_unregister(&vcpu->preempt_notifier); 159 preempt_enable(); 160 mutex_unlock(&vcpu->mutex); 161 } 162 163 static void ack_flush(void *_completed) 164 { 165 } 166 167 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 168 { 169 int i, cpu, me; 170 cpumask_var_t cpus; 171 bool called = true; 172 struct kvm_vcpu *vcpu; 173 174 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 175 176 me = get_cpu(); 177 kvm_for_each_vcpu(i, vcpu, kvm) { 178 kvm_make_request(req, vcpu); 179 cpu = vcpu->cpu; 180 181 /* Set ->requests bit before we read ->mode */ 182 smp_mb(); 183 184 if (cpus != NULL && cpu != -1 && cpu != me && 185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 186 cpumask_set_cpu(cpu, cpus); 187 } 188 if (unlikely(cpus == NULL)) 189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 190 else if (!cpumask_empty(cpus)) 191 smp_call_function_many(cpus, ack_flush, NULL, 1); 192 else 193 called = false; 194 put_cpu(); 195 free_cpumask_var(cpus); 196 return called; 197 } 198 199 void kvm_flush_remote_tlbs(struct kvm *kvm) 200 { 201 int dirty_count = kvm->tlbs_dirty; 202 203 smp_mb(); 204 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 205 ++kvm->stat.remote_tlb_flush; 206 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 207 } 208 209 void kvm_reload_remote_mmus(struct kvm *kvm) 210 { 211 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 212 } 213 214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 215 { 216 struct page *page; 217 int r; 218 219 mutex_init(&vcpu->mutex); 220 vcpu->cpu = -1; 221 vcpu->kvm = kvm; 222 vcpu->vcpu_id = id; 223 vcpu->pid = NULL; 224 init_waitqueue_head(&vcpu->wq); 225 kvm_async_pf_vcpu_init(vcpu); 226 227 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 228 if (!page) { 229 r = -ENOMEM; 230 goto fail; 231 } 232 vcpu->run = page_address(page); 233 234 r = kvm_arch_vcpu_init(vcpu); 235 if (r < 0) 236 goto fail_free_run; 237 return 0; 238 239 fail_free_run: 240 free_page((unsigned long)vcpu->run); 241 fail: 242 return r; 243 } 244 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 245 246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 247 { 248 put_pid(vcpu->pid); 249 kvm_arch_vcpu_uninit(vcpu); 250 free_page((unsigned long)vcpu->run); 251 } 252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 253 254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 256 { 257 return container_of(mn, struct kvm, mmu_notifier); 258 } 259 260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 261 struct mm_struct *mm, 262 unsigned long address) 263 { 264 struct kvm *kvm = mmu_notifier_to_kvm(mn); 265 int need_tlb_flush, idx; 266 267 /* 268 * When ->invalidate_page runs, the linux pte has been zapped 269 * already but the page is still allocated until 270 * ->invalidate_page returns. So if we increase the sequence 271 * here the kvm page fault will notice if the spte can't be 272 * established because the page is going to be freed. If 273 * instead the kvm page fault establishes the spte before 274 * ->invalidate_page runs, kvm_unmap_hva will release it 275 * before returning. 276 * 277 * The sequence increase only need to be seen at spin_unlock 278 * time, and not at spin_lock time. 279 * 280 * Increasing the sequence after the spin_unlock would be 281 * unsafe because the kvm page fault could then establish the 282 * pte after kvm_unmap_hva returned, without noticing the page 283 * is going to be freed. 284 */ 285 idx = srcu_read_lock(&kvm->srcu); 286 spin_lock(&kvm->mmu_lock); 287 kvm->mmu_notifier_seq++; 288 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 289 spin_unlock(&kvm->mmu_lock); 290 srcu_read_unlock(&kvm->srcu, idx); 291 292 /* we've to flush the tlb before the pages can be freed */ 293 if (need_tlb_flush) 294 kvm_flush_remote_tlbs(kvm); 295 296 } 297 298 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 299 struct mm_struct *mm, 300 unsigned long address, 301 pte_t pte) 302 { 303 struct kvm *kvm = mmu_notifier_to_kvm(mn); 304 int idx; 305 306 idx = srcu_read_lock(&kvm->srcu); 307 spin_lock(&kvm->mmu_lock); 308 kvm->mmu_notifier_seq++; 309 kvm_set_spte_hva(kvm, address, pte); 310 spin_unlock(&kvm->mmu_lock); 311 srcu_read_unlock(&kvm->srcu, idx); 312 } 313 314 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 315 struct mm_struct *mm, 316 unsigned long start, 317 unsigned long end) 318 { 319 struct kvm *kvm = mmu_notifier_to_kvm(mn); 320 int need_tlb_flush = 0, idx; 321 322 idx = srcu_read_lock(&kvm->srcu); 323 spin_lock(&kvm->mmu_lock); 324 /* 325 * The count increase must become visible at unlock time as no 326 * spte can be established without taking the mmu_lock and 327 * count is also read inside the mmu_lock critical section. 328 */ 329 kvm->mmu_notifier_count++; 330 for (; start < end; start += PAGE_SIZE) 331 need_tlb_flush |= kvm_unmap_hva(kvm, start); 332 need_tlb_flush |= kvm->tlbs_dirty; 333 spin_unlock(&kvm->mmu_lock); 334 srcu_read_unlock(&kvm->srcu, idx); 335 336 /* we've to flush the tlb before the pages can be freed */ 337 if (need_tlb_flush) 338 kvm_flush_remote_tlbs(kvm); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 348 spin_lock(&kvm->mmu_lock); 349 /* 350 * This sequence increase will notify the kvm page fault that 351 * the page that is going to be mapped in the spte could have 352 * been freed. 353 */ 354 kvm->mmu_notifier_seq++; 355 /* 356 * The above sequence increase must be visible before the 357 * below count decrease but both values are read by the kvm 358 * page fault under mmu_lock spinlock so we don't need to add 359 * a smb_wmb() here in between the two. 360 */ 361 kvm->mmu_notifier_count--; 362 spin_unlock(&kvm->mmu_lock); 363 364 BUG_ON(kvm->mmu_notifier_count < 0); 365 } 366 367 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long address) 370 { 371 struct kvm *kvm = mmu_notifier_to_kvm(mn); 372 int young, idx; 373 374 idx = srcu_read_lock(&kvm->srcu); 375 spin_lock(&kvm->mmu_lock); 376 young = kvm_age_hva(kvm, address); 377 spin_unlock(&kvm->mmu_lock); 378 srcu_read_unlock(&kvm->srcu, idx); 379 380 if (young) 381 kvm_flush_remote_tlbs(kvm); 382 383 return young; 384 } 385 386 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 387 struct mm_struct *mm, 388 unsigned long address) 389 { 390 struct kvm *kvm = mmu_notifier_to_kvm(mn); 391 int young, idx; 392 393 idx = srcu_read_lock(&kvm->srcu); 394 spin_lock(&kvm->mmu_lock); 395 young = kvm_test_age_hva(kvm, address); 396 spin_unlock(&kvm->mmu_lock); 397 srcu_read_unlock(&kvm->srcu, idx); 398 399 return young; 400 } 401 402 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 403 struct mm_struct *mm) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 int idx; 407 408 idx = srcu_read_lock(&kvm->srcu); 409 kvm_arch_flush_shadow(kvm); 410 srcu_read_unlock(&kvm->srcu, idx); 411 } 412 413 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 414 .invalidate_page = kvm_mmu_notifier_invalidate_page, 415 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 416 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 417 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 418 .test_young = kvm_mmu_notifier_test_young, 419 .change_pte = kvm_mmu_notifier_change_pte, 420 .release = kvm_mmu_notifier_release, 421 }; 422 423 static int kvm_init_mmu_notifier(struct kvm *kvm) 424 { 425 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 426 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 427 } 428 429 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 430 431 static int kvm_init_mmu_notifier(struct kvm *kvm) 432 { 433 return 0; 434 } 435 436 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 437 438 static struct kvm *kvm_create_vm(void) 439 { 440 int r, i; 441 struct kvm *kvm = kvm_arch_alloc_vm(); 442 443 if (!kvm) 444 return ERR_PTR(-ENOMEM); 445 446 r = kvm_arch_init_vm(kvm); 447 if (r) 448 goto out_err_nodisable; 449 450 r = hardware_enable_all(); 451 if (r) 452 goto out_err_nodisable; 453 454 #ifdef CONFIG_HAVE_KVM_IRQCHIP 455 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 456 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 457 #endif 458 459 r = -ENOMEM; 460 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 461 if (!kvm->memslots) 462 goto out_err_nosrcu; 463 if (init_srcu_struct(&kvm->srcu)) 464 goto out_err_nosrcu; 465 for (i = 0; i < KVM_NR_BUSES; i++) { 466 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 467 GFP_KERNEL); 468 if (!kvm->buses[i]) 469 goto out_err; 470 } 471 472 r = kvm_init_mmu_notifier(kvm); 473 if (r) 474 goto out_err; 475 476 kvm->mm = current->mm; 477 atomic_inc(&kvm->mm->mm_count); 478 spin_lock_init(&kvm->mmu_lock); 479 kvm_eventfd_init(kvm); 480 mutex_init(&kvm->lock); 481 mutex_init(&kvm->irq_lock); 482 mutex_init(&kvm->slots_lock); 483 atomic_set(&kvm->users_count, 1); 484 raw_spin_lock(&kvm_lock); 485 list_add(&kvm->vm_list, &vm_list); 486 raw_spin_unlock(&kvm_lock); 487 488 return kvm; 489 490 out_err: 491 cleanup_srcu_struct(&kvm->srcu); 492 out_err_nosrcu: 493 hardware_disable_all(); 494 out_err_nodisable: 495 for (i = 0; i < KVM_NR_BUSES; i++) 496 kfree(kvm->buses[i]); 497 kfree(kvm->memslots); 498 kvm_arch_free_vm(kvm); 499 return ERR_PTR(r); 500 } 501 502 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 503 { 504 if (!memslot->dirty_bitmap) 505 return; 506 507 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE) 508 vfree(memslot->dirty_bitmap_head); 509 else 510 kfree(memslot->dirty_bitmap_head); 511 512 memslot->dirty_bitmap = NULL; 513 memslot->dirty_bitmap_head = NULL; 514 } 515 516 /* 517 * Free any memory in @free but not in @dont. 518 */ 519 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 520 struct kvm_memory_slot *dont) 521 { 522 int i; 523 524 if (!dont || free->rmap != dont->rmap) 525 vfree(free->rmap); 526 527 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 528 kvm_destroy_dirty_bitmap(free); 529 530 531 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 532 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) { 533 vfree(free->lpage_info[i]); 534 free->lpage_info[i] = NULL; 535 } 536 } 537 538 free->npages = 0; 539 free->rmap = NULL; 540 } 541 542 void kvm_free_physmem(struct kvm *kvm) 543 { 544 int i; 545 struct kvm_memslots *slots = kvm->memslots; 546 547 for (i = 0; i < slots->nmemslots; ++i) 548 kvm_free_physmem_slot(&slots->memslots[i], NULL); 549 550 kfree(kvm->memslots); 551 } 552 553 static void kvm_destroy_vm(struct kvm *kvm) 554 { 555 int i; 556 struct mm_struct *mm = kvm->mm; 557 558 kvm_arch_sync_events(kvm); 559 raw_spin_lock(&kvm_lock); 560 list_del(&kvm->vm_list); 561 raw_spin_unlock(&kvm_lock); 562 kvm_free_irq_routing(kvm); 563 for (i = 0; i < KVM_NR_BUSES; i++) 564 kvm_io_bus_destroy(kvm->buses[i]); 565 kvm_coalesced_mmio_free(kvm); 566 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 567 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 568 #else 569 kvm_arch_flush_shadow(kvm); 570 #endif 571 kvm_arch_destroy_vm(kvm); 572 kvm_free_physmem(kvm); 573 cleanup_srcu_struct(&kvm->srcu); 574 kvm_arch_free_vm(kvm); 575 hardware_disable_all(); 576 mmdrop(mm); 577 } 578 579 void kvm_get_kvm(struct kvm *kvm) 580 { 581 atomic_inc(&kvm->users_count); 582 } 583 EXPORT_SYMBOL_GPL(kvm_get_kvm); 584 585 void kvm_put_kvm(struct kvm *kvm) 586 { 587 if (atomic_dec_and_test(&kvm->users_count)) 588 kvm_destroy_vm(kvm); 589 } 590 EXPORT_SYMBOL_GPL(kvm_put_kvm); 591 592 593 static int kvm_vm_release(struct inode *inode, struct file *filp) 594 { 595 struct kvm *kvm = filp->private_data; 596 597 kvm_irqfd_release(kvm); 598 599 kvm_put_kvm(kvm); 600 return 0; 601 } 602 603 #ifndef CONFIG_S390 604 /* 605 * Allocation size is twice as large as the actual dirty bitmap size. 606 * This makes it possible to do double buffering: see x86's 607 * kvm_vm_ioctl_get_dirty_log(). 608 */ 609 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 610 { 611 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 612 613 if (dirty_bytes > PAGE_SIZE) 614 memslot->dirty_bitmap = vzalloc(dirty_bytes); 615 else 616 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL); 617 618 if (!memslot->dirty_bitmap) 619 return -ENOMEM; 620 621 memslot->dirty_bitmap_head = memslot->dirty_bitmap; 622 return 0; 623 } 624 #endif /* !CONFIG_S390 */ 625 626 /* 627 * Allocate some memory and give it an address in the guest physical address 628 * space. 629 * 630 * Discontiguous memory is allowed, mostly for framebuffers. 631 * 632 * Must be called holding mmap_sem for write. 633 */ 634 int __kvm_set_memory_region(struct kvm *kvm, 635 struct kvm_userspace_memory_region *mem, 636 int user_alloc) 637 { 638 int r; 639 gfn_t base_gfn; 640 unsigned long npages; 641 unsigned long i; 642 struct kvm_memory_slot *memslot; 643 struct kvm_memory_slot old, new; 644 struct kvm_memslots *slots, *old_memslots; 645 646 r = -EINVAL; 647 /* General sanity checks */ 648 if (mem->memory_size & (PAGE_SIZE - 1)) 649 goto out; 650 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 651 goto out; 652 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1))) 653 goto out; 654 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS) 655 goto out; 656 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 657 goto out; 658 659 memslot = &kvm->memslots->memslots[mem->slot]; 660 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 661 npages = mem->memory_size >> PAGE_SHIFT; 662 663 r = -EINVAL; 664 if (npages > KVM_MEM_MAX_NR_PAGES) 665 goto out; 666 667 if (!npages) 668 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 669 670 new = old = *memslot; 671 672 new.id = mem->slot; 673 new.base_gfn = base_gfn; 674 new.npages = npages; 675 new.flags = mem->flags; 676 677 /* Disallow changing a memory slot's size. */ 678 r = -EINVAL; 679 if (npages && old.npages && npages != old.npages) 680 goto out_free; 681 682 /* Check for overlaps */ 683 r = -EEXIST; 684 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 685 struct kvm_memory_slot *s = &kvm->memslots->memslots[i]; 686 687 if (s == memslot || !s->npages) 688 continue; 689 if (!((base_gfn + npages <= s->base_gfn) || 690 (base_gfn >= s->base_gfn + s->npages))) 691 goto out_free; 692 } 693 694 /* Free page dirty bitmap if unneeded */ 695 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 696 new.dirty_bitmap = NULL; 697 698 r = -ENOMEM; 699 700 /* Allocate if a slot is being created */ 701 #ifndef CONFIG_S390 702 if (npages && !new.rmap) { 703 new.rmap = vzalloc(npages * sizeof(*new.rmap)); 704 705 if (!new.rmap) 706 goto out_free; 707 708 new.user_alloc = user_alloc; 709 new.userspace_addr = mem->userspace_addr; 710 } 711 if (!npages) 712 goto skip_lpage; 713 714 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 715 unsigned long ugfn; 716 unsigned long j; 717 int lpages; 718 int level = i + 2; 719 720 /* Avoid unused variable warning if no large pages */ 721 (void)level; 722 723 if (new.lpage_info[i]) 724 continue; 725 726 lpages = 1 + ((base_gfn + npages - 1) 727 >> KVM_HPAGE_GFN_SHIFT(level)); 728 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level); 729 730 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i])); 731 732 if (!new.lpage_info[i]) 733 goto out_free; 734 735 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 736 new.lpage_info[i][0].write_count = 1; 737 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 738 new.lpage_info[i][lpages - 1].write_count = 1; 739 ugfn = new.userspace_addr >> PAGE_SHIFT; 740 /* 741 * If the gfn and userspace address are not aligned wrt each 742 * other, or if explicitly asked to, disable large page 743 * support for this slot 744 */ 745 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 746 !largepages_enabled) 747 for (j = 0; j < lpages; ++j) 748 new.lpage_info[i][j].write_count = 1; 749 } 750 751 skip_lpage: 752 753 /* Allocate page dirty bitmap if needed */ 754 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 755 if (kvm_create_dirty_bitmap(&new) < 0) 756 goto out_free; 757 /* destroy any largepage mappings for dirty tracking */ 758 } 759 #else /* not defined CONFIG_S390 */ 760 new.user_alloc = user_alloc; 761 if (user_alloc) 762 new.userspace_addr = mem->userspace_addr; 763 #endif /* not defined CONFIG_S390 */ 764 765 if (!npages) { 766 r = -ENOMEM; 767 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 768 if (!slots) 769 goto out_free; 770 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); 771 if (mem->slot >= slots->nmemslots) 772 slots->nmemslots = mem->slot + 1; 773 slots->generation++; 774 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID; 775 776 old_memslots = kvm->memslots; 777 rcu_assign_pointer(kvm->memslots, slots); 778 synchronize_srcu_expedited(&kvm->srcu); 779 /* From this point no new shadow pages pointing to a deleted 780 * memslot will be created. 781 * 782 * validation of sp->gfn happens in: 783 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 784 * - kvm_is_visible_gfn (mmu_check_roots) 785 */ 786 kvm_arch_flush_shadow(kvm); 787 kfree(old_memslots); 788 } 789 790 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); 791 if (r) 792 goto out_free; 793 794 /* map the pages in iommu page table */ 795 if (npages) { 796 r = kvm_iommu_map_pages(kvm, &new); 797 if (r) 798 goto out_free; 799 } 800 801 r = -ENOMEM; 802 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 803 if (!slots) 804 goto out_free; 805 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); 806 if (mem->slot >= slots->nmemslots) 807 slots->nmemslots = mem->slot + 1; 808 slots->generation++; 809 810 /* actual memory is freed via old in kvm_free_physmem_slot below */ 811 if (!npages) { 812 new.rmap = NULL; 813 new.dirty_bitmap = NULL; 814 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) 815 new.lpage_info[i] = NULL; 816 } 817 818 slots->memslots[mem->slot] = new; 819 old_memslots = kvm->memslots; 820 rcu_assign_pointer(kvm->memslots, slots); 821 synchronize_srcu_expedited(&kvm->srcu); 822 823 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); 824 825 kvm_free_physmem_slot(&old, &new); 826 kfree(old_memslots); 827 828 return 0; 829 830 out_free: 831 kvm_free_physmem_slot(&new, &old); 832 out: 833 return r; 834 835 } 836 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 837 838 int kvm_set_memory_region(struct kvm *kvm, 839 struct kvm_userspace_memory_region *mem, 840 int user_alloc) 841 { 842 int r; 843 844 mutex_lock(&kvm->slots_lock); 845 r = __kvm_set_memory_region(kvm, mem, user_alloc); 846 mutex_unlock(&kvm->slots_lock); 847 return r; 848 } 849 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 850 851 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 852 struct 853 kvm_userspace_memory_region *mem, 854 int user_alloc) 855 { 856 if (mem->slot >= KVM_MEMORY_SLOTS) 857 return -EINVAL; 858 return kvm_set_memory_region(kvm, mem, user_alloc); 859 } 860 861 int kvm_get_dirty_log(struct kvm *kvm, 862 struct kvm_dirty_log *log, int *is_dirty) 863 { 864 struct kvm_memory_slot *memslot; 865 int r, i; 866 unsigned long n; 867 unsigned long any = 0; 868 869 r = -EINVAL; 870 if (log->slot >= KVM_MEMORY_SLOTS) 871 goto out; 872 873 memslot = &kvm->memslots->memslots[log->slot]; 874 r = -ENOENT; 875 if (!memslot->dirty_bitmap) 876 goto out; 877 878 n = kvm_dirty_bitmap_bytes(memslot); 879 880 for (i = 0; !any && i < n/sizeof(long); ++i) 881 any = memslot->dirty_bitmap[i]; 882 883 r = -EFAULT; 884 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 885 goto out; 886 887 if (any) 888 *is_dirty = 1; 889 890 r = 0; 891 out: 892 return r; 893 } 894 895 void kvm_disable_largepages(void) 896 { 897 largepages_enabled = false; 898 } 899 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 900 901 int is_error_page(struct page *page) 902 { 903 return page == bad_page || page == hwpoison_page || page == fault_page; 904 } 905 EXPORT_SYMBOL_GPL(is_error_page); 906 907 int is_error_pfn(pfn_t pfn) 908 { 909 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn; 910 } 911 EXPORT_SYMBOL_GPL(is_error_pfn); 912 913 int is_hwpoison_pfn(pfn_t pfn) 914 { 915 return pfn == hwpoison_pfn; 916 } 917 EXPORT_SYMBOL_GPL(is_hwpoison_pfn); 918 919 int is_fault_pfn(pfn_t pfn) 920 { 921 return pfn == fault_pfn; 922 } 923 EXPORT_SYMBOL_GPL(is_fault_pfn); 924 925 static inline unsigned long bad_hva(void) 926 { 927 return PAGE_OFFSET; 928 } 929 930 int kvm_is_error_hva(unsigned long addr) 931 { 932 return addr == bad_hva(); 933 } 934 EXPORT_SYMBOL_GPL(kvm_is_error_hva); 935 936 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots, 937 gfn_t gfn) 938 { 939 int i; 940 941 for (i = 0; i < slots->nmemslots; ++i) { 942 struct kvm_memory_slot *memslot = &slots->memslots[i]; 943 944 if (gfn >= memslot->base_gfn 945 && gfn < memslot->base_gfn + memslot->npages) 946 return memslot; 947 } 948 return NULL; 949 } 950 951 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 952 { 953 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 954 } 955 EXPORT_SYMBOL_GPL(gfn_to_memslot); 956 957 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 958 { 959 int i; 960 struct kvm_memslots *slots = kvm_memslots(kvm); 961 962 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 963 struct kvm_memory_slot *memslot = &slots->memslots[i]; 964 965 if (memslot->flags & KVM_MEMSLOT_INVALID) 966 continue; 967 968 if (gfn >= memslot->base_gfn 969 && gfn < memslot->base_gfn + memslot->npages) 970 return 1; 971 } 972 return 0; 973 } 974 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 975 976 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 977 { 978 struct vm_area_struct *vma; 979 unsigned long addr, size; 980 981 size = PAGE_SIZE; 982 983 addr = gfn_to_hva(kvm, gfn); 984 if (kvm_is_error_hva(addr)) 985 return PAGE_SIZE; 986 987 down_read(¤t->mm->mmap_sem); 988 vma = find_vma(current->mm, addr); 989 if (!vma) 990 goto out; 991 992 size = vma_kernel_pagesize(vma); 993 994 out: 995 up_read(¤t->mm->mmap_sem); 996 997 return size; 998 } 999 1000 int memslot_id(struct kvm *kvm, gfn_t gfn) 1001 { 1002 int i; 1003 struct kvm_memslots *slots = kvm_memslots(kvm); 1004 struct kvm_memory_slot *memslot = NULL; 1005 1006 for (i = 0; i < slots->nmemslots; ++i) { 1007 memslot = &slots->memslots[i]; 1008 1009 if (gfn >= memslot->base_gfn 1010 && gfn < memslot->base_gfn + memslot->npages) 1011 break; 1012 } 1013 1014 return memslot - slots->memslots; 1015 } 1016 1017 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1018 gfn_t *nr_pages) 1019 { 1020 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1021 return bad_hva(); 1022 1023 if (nr_pages) 1024 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1025 1026 return gfn_to_hva_memslot(slot, gfn); 1027 } 1028 1029 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1030 { 1031 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1032 } 1033 EXPORT_SYMBOL_GPL(gfn_to_hva); 1034 1035 static pfn_t get_fault_pfn(void) 1036 { 1037 get_page(fault_page); 1038 return fault_pfn; 1039 } 1040 1041 static inline int check_user_page_hwpoison(unsigned long addr) 1042 { 1043 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1044 1045 rc = __get_user_pages(current, current->mm, addr, 1, 1046 flags, NULL, NULL, NULL); 1047 return rc == -EHWPOISON; 1048 } 1049 1050 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic, 1051 bool *async, bool write_fault, bool *writable) 1052 { 1053 struct page *page[1]; 1054 int npages = 0; 1055 pfn_t pfn; 1056 1057 /* we can do it either atomically or asynchronously, not both */ 1058 BUG_ON(atomic && async); 1059 1060 BUG_ON(!write_fault && !writable); 1061 1062 if (writable) 1063 *writable = true; 1064 1065 if (atomic || async) 1066 npages = __get_user_pages_fast(addr, 1, 1, page); 1067 1068 if (unlikely(npages != 1) && !atomic) { 1069 might_sleep(); 1070 1071 if (writable) 1072 *writable = write_fault; 1073 1074 npages = get_user_pages_fast(addr, 1, write_fault, page); 1075 1076 /* map read fault as writable if possible */ 1077 if (unlikely(!write_fault) && npages == 1) { 1078 struct page *wpage[1]; 1079 1080 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1081 if (npages == 1) { 1082 *writable = true; 1083 put_page(page[0]); 1084 page[0] = wpage[0]; 1085 } 1086 npages = 1; 1087 } 1088 } 1089 1090 if (unlikely(npages != 1)) { 1091 struct vm_area_struct *vma; 1092 1093 if (atomic) 1094 return get_fault_pfn(); 1095 1096 down_read(¤t->mm->mmap_sem); 1097 if (check_user_page_hwpoison(addr)) { 1098 up_read(¤t->mm->mmap_sem); 1099 get_page(hwpoison_page); 1100 return page_to_pfn(hwpoison_page); 1101 } 1102 1103 vma = find_vma_intersection(current->mm, addr, addr+1); 1104 1105 if (vma == NULL) 1106 pfn = get_fault_pfn(); 1107 else if ((vma->vm_flags & VM_PFNMAP)) { 1108 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1109 vma->vm_pgoff; 1110 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1111 } else { 1112 if (async && (vma->vm_flags & VM_WRITE)) 1113 *async = true; 1114 pfn = get_fault_pfn(); 1115 } 1116 up_read(¤t->mm->mmap_sem); 1117 } else 1118 pfn = page_to_pfn(page[0]); 1119 1120 return pfn; 1121 } 1122 1123 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr) 1124 { 1125 return hva_to_pfn(kvm, addr, true, NULL, true, NULL); 1126 } 1127 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic); 1128 1129 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1130 bool write_fault, bool *writable) 1131 { 1132 unsigned long addr; 1133 1134 if (async) 1135 *async = false; 1136 1137 addr = gfn_to_hva(kvm, gfn); 1138 if (kvm_is_error_hva(addr)) { 1139 get_page(bad_page); 1140 return page_to_pfn(bad_page); 1141 } 1142 1143 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable); 1144 } 1145 1146 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1147 { 1148 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1149 } 1150 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1151 1152 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1153 bool write_fault, bool *writable) 1154 { 1155 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1156 } 1157 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1158 1159 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1160 { 1161 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1162 } 1163 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1164 1165 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1166 bool *writable) 1167 { 1168 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1169 } 1170 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1171 1172 pfn_t gfn_to_pfn_memslot(struct kvm *kvm, 1173 struct kvm_memory_slot *slot, gfn_t gfn) 1174 { 1175 unsigned long addr = gfn_to_hva_memslot(slot, gfn); 1176 return hva_to_pfn(kvm, addr, false, NULL, true, NULL); 1177 } 1178 1179 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1180 int nr_pages) 1181 { 1182 unsigned long addr; 1183 gfn_t entry; 1184 1185 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1186 if (kvm_is_error_hva(addr)) 1187 return -1; 1188 1189 if (entry < nr_pages) 1190 return 0; 1191 1192 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1193 } 1194 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1195 1196 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1197 { 1198 pfn_t pfn; 1199 1200 pfn = gfn_to_pfn(kvm, gfn); 1201 if (!kvm_is_mmio_pfn(pfn)) 1202 return pfn_to_page(pfn); 1203 1204 WARN_ON(kvm_is_mmio_pfn(pfn)); 1205 1206 get_page(bad_page); 1207 return bad_page; 1208 } 1209 1210 EXPORT_SYMBOL_GPL(gfn_to_page); 1211 1212 void kvm_release_page_clean(struct page *page) 1213 { 1214 kvm_release_pfn_clean(page_to_pfn(page)); 1215 } 1216 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1217 1218 void kvm_release_pfn_clean(pfn_t pfn) 1219 { 1220 if (!kvm_is_mmio_pfn(pfn)) 1221 put_page(pfn_to_page(pfn)); 1222 } 1223 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1224 1225 void kvm_release_page_dirty(struct page *page) 1226 { 1227 kvm_release_pfn_dirty(page_to_pfn(page)); 1228 } 1229 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1230 1231 void kvm_release_pfn_dirty(pfn_t pfn) 1232 { 1233 kvm_set_pfn_dirty(pfn); 1234 kvm_release_pfn_clean(pfn); 1235 } 1236 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1237 1238 void kvm_set_page_dirty(struct page *page) 1239 { 1240 kvm_set_pfn_dirty(page_to_pfn(page)); 1241 } 1242 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1243 1244 void kvm_set_pfn_dirty(pfn_t pfn) 1245 { 1246 if (!kvm_is_mmio_pfn(pfn)) { 1247 struct page *page = pfn_to_page(pfn); 1248 if (!PageReserved(page)) 1249 SetPageDirty(page); 1250 } 1251 } 1252 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1253 1254 void kvm_set_pfn_accessed(pfn_t pfn) 1255 { 1256 if (!kvm_is_mmio_pfn(pfn)) 1257 mark_page_accessed(pfn_to_page(pfn)); 1258 } 1259 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1260 1261 void kvm_get_pfn(pfn_t pfn) 1262 { 1263 if (!kvm_is_mmio_pfn(pfn)) 1264 get_page(pfn_to_page(pfn)); 1265 } 1266 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1267 1268 static int next_segment(unsigned long len, int offset) 1269 { 1270 if (len > PAGE_SIZE - offset) 1271 return PAGE_SIZE - offset; 1272 else 1273 return len; 1274 } 1275 1276 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1277 int len) 1278 { 1279 int r; 1280 unsigned long addr; 1281 1282 addr = gfn_to_hva(kvm, gfn); 1283 if (kvm_is_error_hva(addr)) 1284 return -EFAULT; 1285 r = copy_from_user(data, (void __user *)addr + offset, len); 1286 if (r) 1287 return -EFAULT; 1288 return 0; 1289 } 1290 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1291 1292 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1293 { 1294 gfn_t gfn = gpa >> PAGE_SHIFT; 1295 int seg; 1296 int offset = offset_in_page(gpa); 1297 int ret; 1298 1299 while ((seg = next_segment(len, offset)) != 0) { 1300 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1301 if (ret < 0) 1302 return ret; 1303 offset = 0; 1304 len -= seg; 1305 data += seg; 1306 ++gfn; 1307 } 1308 return 0; 1309 } 1310 EXPORT_SYMBOL_GPL(kvm_read_guest); 1311 1312 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1313 unsigned long len) 1314 { 1315 int r; 1316 unsigned long addr; 1317 gfn_t gfn = gpa >> PAGE_SHIFT; 1318 int offset = offset_in_page(gpa); 1319 1320 addr = gfn_to_hva(kvm, gfn); 1321 if (kvm_is_error_hva(addr)) 1322 return -EFAULT; 1323 pagefault_disable(); 1324 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1325 pagefault_enable(); 1326 if (r) 1327 return -EFAULT; 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(kvm_read_guest_atomic); 1331 1332 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1333 int offset, int len) 1334 { 1335 int r; 1336 unsigned long addr; 1337 1338 addr = gfn_to_hva(kvm, gfn); 1339 if (kvm_is_error_hva(addr)) 1340 return -EFAULT; 1341 r = copy_to_user((void __user *)addr + offset, data, len); 1342 if (r) 1343 return -EFAULT; 1344 mark_page_dirty(kvm, gfn); 1345 return 0; 1346 } 1347 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1348 1349 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1350 unsigned long len) 1351 { 1352 gfn_t gfn = gpa >> PAGE_SHIFT; 1353 int seg; 1354 int offset = offset_in_page(gpa); 1355 int ret; 1356 1357 while ((seg = next_segment(len, offset)) != 0) { 1358 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1359 if (ret < 0) 1360 return ret; 1361 offset = 0; 1362 len -= seg; 1363 data += seg; 1364 ++gfn; 1365 } 1366 return 0; 1367 } 1368 1369 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1370 gpa_t gpa) 1371 { 1372 struct kvm_memslots *slots = kvm_memslots(kvm); 1373 int offset = offset_in_page(gpa); 1374 gfn_t gfn = gpa >> PAGE_SHIFT; 1375 1376 ghc->gpa = gpa; 1377 ghc->generation = slots->generation; 1378 ghc->memslot = __gfn_to_memslot(slots, gfn); 1379 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); 1380 if (!kvm_is_error_hva(ghc->hva)) 1381 ghc->hva += offset; 1382 else 1383 return -EFAULT; 1384 1385 return 0; 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1388 1389 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1390 void *data, unsigned long len) 1391 { 1392 struct kvm_memslots *slots = kvm_memslots(kvm); 1393 int r; 1394 1395 if (slots->generation != ghc->generation) 1396 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1397 1398 if (kvm_is_error_hva(ghc->hva)) 1399 return -EFAULT; 1400 1401 r = copy_to_user((void __user *)ghc->hva, data, len); 1402 if (r) 1403 return -EFAULT; 1404 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1405 1406 return 0; 1407 } 1408 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1409 1410 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1411 { 1412 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1413 offset, len); 1414 } 1415 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1416 1417 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1418 { 1419 gfn_t gfn = gpa >> PAGE_SHIFT; 1420 int seg; 1421 int offset = offset_in_page(gpa); 1422 int ret; 1423 1424 while ((seg = next_segment(len, offset)) != 0) { 1425 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1426 if (ret < 0) 1427 return ret; 1428 offset = 0; 1429 len -= seg; 1430 ++gfn; 1431 } 1432 return 0; 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1435 1436 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1437 gfn_t gfn) 1438 { 1439 if (memslot && memslot->dirty_bitmap) { 1440 unsigned long rel_gfn = gfn - memslot->base_gfn; 1441 1442 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap); 1443 } 1444 } 1445 1446 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1447 { 1448 struct kvm_memory_slot *memslot; 1449 1450 memslot = gfn_to_memslot(kvm, gfn); 1451 mark_page_dirty_in_slot(kvm, memslot, gfn); 1452 } 1453 1454 /* 1455 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1456 */ 1457 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1458 { 1459 DEFINE_WAIT(wait); 1460 1461 for (;;) { 1462 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1463 1464 if (kvm_arch_vcpu_runnable(vcpu)) { 1465 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1466 break; 1467 } 1468 if (kvm_cpu_has_pending_timer(vcpu)) 1469 break; 1470 if (signal_pending(current)) 1471 break; 1472 1473 schedule(); 1474 } 1475 1476 finish_wait(&vcpu->wq, &wait); 1477 } 1478 1479 void kvm_resched(struct kvm_vcpu *vcpu) 1480 { 1481 if (!need_resched()) 1482 return; 1483 cond_resched(); 1484 } 1485 EXPORT_SYMBOL_GPL(kvm_resched); 1486 1487 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1488 { 1489 struct kvm *kvm = me->kvm; 1490 struct kvm_vcpu *vcpu; 1491 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1492 int yielded = 0; 1493 int pass; 1494 int i; 1495 1496 /* 1497 * We boost the priority of a VCPU that is runnable but not 1498 * currently running, because it got preempted by something 1499 * else and called schedule in __vcpu_run. Hopefully that 1500 * VCPU is holding the lock that we need and will release it. 1501 * We approximate round-robin by starting at the last boosted VCPU. 1502 */ 1503 for (pass = 0; pass < 2 && !yielded; pass++) { 1504 kvm_for_each_vcpu(i, vcpu, kvm) { 1505 struct task_struct *task = NULL; 1506 struct pid *pid; 1507 if (!pass && i < last_boosted_vcpu) { 1508 i = last_boosted_vcpu; 1509 continue; 1510 } else if (pass && i > last_boosted_vcpu) 1511 break; 1512 if (vcpu == me) 1513 continue; 1514 if (waitqueue_active(&vcpu->wq)) 1515 continue; 1516 rcu_read_lock(); 1517 pid = rcu_dereference(vcpu->pid); 1518 if (pid) 1519 task = get_pid_task(vcpu->pid, PIDTYPE_PID); 1520 rcu_read_unlock(); 1521 if (!task) 1522 continue; 1523 if (task->flags & PF_VCPU) { 1524 put_task_struct(task); 1525 continue; 1526 } 1527 if (yield_to(task, 1)) { 1528 put_task_struct(task); 1529 kvm->last_boosted_vcpu = i; 1530 yielded = 1; 1531 break; 1532 } 1533 put_task_struct(task); 1534 } 1535 } 1536 } 1537 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1538 1539 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1540 { 1541 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1542 struct page *page; 1543 1544 if (vmf->pgoff == 0) 1545 page = virt_to_page(vcpu->run); 1546 #ifdef CONFIG_X86 1547 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1548 page = virt_to_page(vcpu->arch.pio_data); 1549 #endif 1550 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1551 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1552 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1553 #endif 1554 else 1555 return VM_FAULT_SIGBUS; 1556 get_page(page); 1557 vmf->page = page; 1558 return 0; 1559 } 1560 1561 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1562 .fault = kvm_vcpu_fault, 1563 }; 1564 1565 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1566 { 1567 vma->vm_ops = &kvm_vcpu_vm_ops; 1568 return 0; 1569 } 1570 1571 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1572 { 1573 struct kvm_vcpu *vcpu = filp->private_data; 1574 1575 kvm_put_kvm(vcpu->kvm); 1576 return 0; 1577 } 1578 1579 static struct file_operations kvm_vcpu_fops = { 1580 .release = kvm_vcpu_release, 1581 .unlocked_ioctl = kvm_vcpu_ioctl, 1582 .compat_ioctl = kvm_vcpu_ioctl, 1583 .mmap = kvm_vcpu_mmap, 1584 .llseek = noop_llseek, 1585 }; 1586 1587 /* 1588 * Allocates an inode for the vcpu. 1589 */ 1590 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1591 { 1592 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1593 } 1594 1595 /* 1596 * Creates some virtual cpus. Good luck creating more than one. 1597 */ 1598 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1599 { 1600 int r; 1601 struct kvm_vcpu *vcpu, *v; 1602 1603 vcpu = kvm_arch_vcpu_create(kvm, id); 1604 if (IS_ERR(vcpu)) 1605 return PTR_ERR(vcpu); 1606 1607 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1608 1609 r = kvm_arch_vcpu_setup(vcpu); 1610 if (r) 1611 return r; 1612 1613 mutex_lock(&kvm->lock); 1614 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1615 r = -EINVAL; 1616 goto vcpu_destroy; 1617 } 1618 1619 kvm_for_each_vcpu(r, v, kvm) 1620 if (v->vcpu_id == id) { 1621 r = -EEXIST; 1622 goto vcpu_destroy; 1623 } 1624 1625 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1626 1627 /* Now it's all set up, let userspace reach it */ 1628 kvm_get_kvm(kvm); 1629 r = create_vcpu_fd(vcpu); 1630 if (r < 0) { 1631 kvm_put_kvm(kvm); 1632 goto vcpu_destroy; 1633 } 1634 1635 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1636 smp_wmb(); 1637 atomic_inc(&kvm->online_vcpus); 1638 1639 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1640 if (kvm->bsp_vcpu_id == id) 1641 kvm->bsp_vcpu = vcpu; 1642 #endif 1643 mutex_unlock(&kvm->lock); 1644 return r; 1645 1646 vcpu_destroy: 1647 mutex_unlock(&kvm->lock); 1648 kvm_arch_vcpu_destroy(vcpu); 1649 return r; 1650 } 1651 1652 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1653 { 1654 if (sigset) { 1655 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1656 vcpu->sigset_active = 1; 1657 vcpu->sigset = *sigset; 1658 } else 1659 vcpu->sigset_active = 0; 1660 return 0; 1661 } 1662 1663 static long kvm_vcpu_ioctl(struct file *filp, 1664 unsigned int ioctl, unsigned long arg) 1665 { 1666 struct kvm_vcpu *vcpu = filp->private_data; 1667 void __user *argp = (void __user *)arg; 1668 int r; 1669 struct kvm_fpu *fpu = NULL; 1670 struct kvm_sregs *kvm_sregs = NULL; 1671 1672 if (vcpu->kvm->mm != current->mm) 1673 return -EIO; 1674 1675 #if defined(CONFIG_S390) || defined(CONFIG_PPC) 1676 /* 1677 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1678 * so vcpu_load() would break it. 1679 */ 1680 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1681 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1682 #endif 1683 1684 1685 vcpu_load(vcpu); 1686 switch (ioctl) { 1687 case KVM_RUN: 1688 r = -EINVAL; 1689 if (arg) 1690 goto out; 1691 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1692 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1693 break; 1694 case KVM_GET_REGS: { 1695 struct kvm_regs *kvm_regs; 1696 1697 r = -ENOMEM; 1698 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1699 if (!kvm_regs) 1700 goto out; 1701 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1702 if (r) 1703 goto out_free1; 1704 r = -EFAULT; 1705 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1706 goto out_free1; 1707 r = 0; 1708 out_free1: 1709 kfree(kvm_regs); 1710 break; 1711 } 1712 case KVM_SET_REGS: { 1713 struct kvm_regs *kvm_regs; 1714 1715 r = -ENOMEM; 1716 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1717 if (!kvm_regs) 1718 goto out; 1719 r = -EFAULT; 1720 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs))) 1721 goto out_free2; 1722 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1723 if (r) 1724 goto out_free2; 1725 r = 0; 1726 out_free2: 1727 kfree(kvm_regs); 1728 break; 1729 } 1730 case KVM_GET_SREGS: { 1731 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1732 r = -ENOMEM; 1733 if (!kvm_sregs) 1734 goto out; 1735 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1736 if (r) 1737 goto out; 1738 r = -EFAULT; 1739 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1740 goto out; 1741 r = 0; 1742 break; 1743 } 1744 case KVM_SET_SREGS: { 1745 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1746 r = -ENOMEM; 1747 if (!kvm_sregs) 1748 goto out; 1749 r = -EFAULT; 1750 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs))) 1751 goto out; 1752 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1753 if (r) 1754 goto out; 1755 r = 0; 1756 break; 1757 } 1758 case KVM_GET_MP_STATE: { 1759 struct kvm_mp_state mp_state; 1760 1761 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1762 if (r) 1763 goto out; 1764 r = -EFAULT; 1765 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1766 goto out; 1767 r = 0; 1768 break; 1769 } 1770 case KVM_SET_MP_STATE: { 1771 struct kvm_mp_state mp_state; 1772 1773 r = -EFAULT; 1774 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1775 goto out; 1776 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1777 if (r) 1778 goto out; 1779 r = 0; 1780 break; 1781 } 1782 case KVM_TRANSLATE: { 1783 struct kvm_translation tr; 1784 1785 r = -EFAULT; 1786 if (copy_from_user(&tr, argp, sizeof tr)) 1787 goto out; 1788 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 1789 if (r) 1790 goto out; 1791 r = -EFAULT; 1792 if (copy_to_user(argp, &tr, sizeof tr)) 1793 goto out; 1794 r = 0; 1795 break; 1796 } 1797 case KVM_SET_GUEST_DEBUG: { 1798 struct kvm_guest_debug dbg; 1799 1800 r = -EFAULT; 1801 if (copy_from_user(&dbg, argp, sizeof dbg)) 1802 goto out; 1803 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 1804 if (r) 1805 goto out; 1806 r = 0; 1807 break; 1808 } 1809 case KVM_SET_SIGNAL_MASK: { 1810 struct kvm_signal_mask __user *sigmask_arg = argp; 1811 struct kvm_signal_mask kvm_sigmask; 1812 sigset_t sigset, *p; 1813 1814 p = NULL; 1815 if (argp) { 1816 r = -EFAULT; 1817 if (copy_from_user(&kvm_sigmask, argp, 1818 sizeof kvm_sigmask)) 1819 goto out; 1820 r = -EINVAL; 1821 if (kvm_sigmask.len != sizeof sigset) 1822 goto out; 1823 r = -EFAULT; 1824 if (copy_from_user(&sigset, sigmask_arg->sigset, 1825 sizeof sigset)) 1826 goto out; 1827 p = &sigset; 1828 } 1829 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 1830 break; 1831 } 1832 case KVM_GET_FPU: { 1833 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1834 r = -ENOMEM; 1835 if (!fpu) 1836 goto out; 1837 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 1838 if (r) 1839 goto out; 1840 r = -EFAULT; 1841 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 1842 goto out; 1843 r = 0; 1844 break; 1845 } 1846 case KVM_SET_FPU: { 1847 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1848 r = -ENOMEM; 1849 if (!fpu) 1850 goto out; 1851 r = -EFAULT; 1852 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu))) 1853 goto out; 1854 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 1855 if (r) 1856 goto out; 1857 r = 0; 1858 break; 1859 } 1860 default: 1861 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1862 } 1863 out: 1864 vcpu_put(vcpu); 1865 kfree(fpu); 1866 kfree(kvm_sregs); 1867 return r; 1868 } 1869 1870 static long kvm_vm_ioctl(struct file *filp, 1871 unsigned int ioctl, unsigned long arg) 1872 { 1873 struct kvm *kvm = filp->private_data; 1874 void __user *argp = (void __user *)arg; 1875 int r; 1876 1877 if (kvm->mm != current->mm) 1878 return -EIO; 1879 switch (ioctl) { 1880 case KVM_CREATE_VCPU: 1881 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 1882 if (r < 0) 1883 goto out; 1884 break; 1885 case KVM_SET_USER_MEMORY_REGION: { 1886 struct kvm_userspace_memory_region kvm_userspace_mem; 1887 1888 r = -EFAULT; 1889 if (copy_from_user(&kvm_userspace_mem, argp, 1890 sizeof kvm_userspace_mem)) 1891 goto out; 1892 1893 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 1894 if (r) 1895 goto out; 1896 break; 1897 } 1898 case KVM_GET_DIRTY_LOG: { 1899 struct kvm_dirty_log log; 1900 1901 r = -EFAULT; 1902 if (copy_from_user(&log, argp, sizeof log)) 1903 goto out; 1904 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 1905 if (r) 1906 goto out; 1907 break; 1908 } 1909 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1910 case KVM_REGISTER_COALESCED_MMIO: { 1911 struct kvm_coalesced_mmio_zone zone; 1912 r = -EFAULT; 1913 if (copy_from_user(&zone, argp, sizeof zone)) 1914 goto out; 1915 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 1916 if (r) 1917 goto out; 1918 r = 0; 1919 break; 1920 } 1921 case KVM_UNREGISTER_COALESCED_MMIO: { 1922 struct kvm_coalesced_mmio_zone zone; 1923 r = -EFAULT; 1924 if (copy_from_user(&zone, argp, sizeof zone)) 1925 goto out; 1926 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 1927 if (r) 1928 goto out; 1929 r = 0; 1930 break; 1931 } 1932 #endif 1933 case KVM_IRQFD: { 1934 struct kvm_irqfd data; 1935 1936 r = -EFAULT; 1937 if (copy_from_user(&data, argp, sizeof data)) 1938 goto out; 1939 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags); 1940 break; 1941 } 1942 case KVM_IOEVENTFD: { 1943 struct kvm_ioeventfd data; 1944 1945 r = -EFAULT; 1946 if (copy_from_user(&data, argp, sizeof data)) 1947 goto out; 1948 r = kvm_ioeventfd(kvm, &data); 1949 break; 1950 } 1951 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 1952 case KVM_SET_BOOT_CPU_ID: 1953 r = 0; 1954 mutex_lock(&kvm->lock); 1955 if (atomic_read(&kvm->online_vcpus) != 0) 1956 r = -EBUSY; 1957 else 1958 kvm->bsp_vcpu_id = arg; 1959 mutex_unlock(&kvm->lock); 1960 break; 1961 #endif 1962 default: 1963 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 1964 if (r == -ENOTTY) 1965 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 1966 } 1967 out: 1968 return r; 1969 } 1970 1971 #ifdef CONFIG_COMPAT 1972 struct compat_kvm_dirty_log { 1973 __u32 slot; 1974 __u32 padding1; 1975 union { 1976 compat_uptr_t dirty_bitmap; /* one bit per page */ 1977 __u64 padding2; 1978 }; 1979 }; 1980 1981 static long kvm_vm_compat_ioctl(struct file *filp, 1982 unsigned int ioctl, unsigned long arg) 1983 { 1984 struct kvm *kvm = filp->private_data; 1985 int r; 1986 1987 if (kvm->mm != current->mm) 1988 return -EIO; 1989 switch (ioctl) { 1990 case KVM_GET_DIRTY_LOG: { 1991 struct compat_kvm_dirty_log compat_log; 1992 struct kvm_dirty_log log; 1993 1994 r = -EFAULT; 1995 if (copy_from_user(&compat_log, (void __user *)arg, 1996 sizeof(compat_log))) 1997 goto out; 1998 log.slot = compat_log.slot; 1999 log.padding1 = compat_log.padding1; 2000 log.padding2 = compat_log.padding2; 2001 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2002 2003 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2004 if (r) 2005 goto out; 2006 break; 2007 } 2008 default: 2009 r = kvm_vm_ioctl(filp, ioctl, arg); 2010 } 2011 2012 out: 2013 return r; 2014 } 2015 #endif 2016 2017 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2018 { 2019 struct page *page[1]; 2020 unsigned long addr; 2021 int npages; 2022 gfn_t gfn = vmf->pgoff; 2023 struct kvm *kvm = vma->vm_file->private_data; 2024 2025 addr = gfn_to_hva(kvm, gfn); 2026 if (kvm_is_error_hva(addr)) 2027 return VM_FAULT_SIGBUS; 2028 2029 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2030 NULL); 2031 if (unlikely(npages != 1)) 2032 return VM_FAULT_SIGBUS; 2033 2034 vmf->page = page[0]; 2035 return 0; 2036 } 2037 2038 static const struct vm_operations_struct kvm_vm_vm_ops = { 2039 .fault = kvm_vm_fault, 2040 }; 2041 2042 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2043 { 2044 vma->vm_ops = &kvm_vm_vm_ops; 2045 return 0; 2046 } 2047 2048 static struct file_operations kvm_vm_fops = { 2049 .release = kvm_vm_release, 2050 .unlocked_ioctl = kvm_vm_ioctl, 2051 #ifdef CONFIG_COMPAT 2052 .compat_ioctl = kvm_vm_compat_ioctl, 2053 #endif 2054 .mmap = kvm_vm_mmap, 2055 .llseek = noop_llseek, 2056 }; 2057 2058 static int kvm_dev_ioctl_create_vm(void) 2059 { 2060 int r; 2061 struct kvm *kvm; 2062 2063 kvm = kvm_create_vm(); 2064 if (IS_ERR(kvm)) 2065 return PTR_ERR(kvm); 2066 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2067 r = kvm_coalesced_mmio_init(kvm); 2068 if (r < 0) { 2069 kvm_put_kvm(kvm); 2070 return r; 2071 } 2072 #endif 2073 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2074 if (r < 0) 2075 kvm_put_kvm(kvm); 2076 2077 return r; 2078 } 2079 2080 static long kvm_dev_ioctl_check_extension_generic(long arg) 2081 { 2082 switch (arg) { 2083 case KVM_CAP_USER_MEMORY: 2084 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2085 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2086 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2087 case KVM_CAP_SET_BOOT_CPU_ID: 2088 #endif 2089 case KVM_CAP_INTERNAL_ERROR_DATA: 2090 return 1; 2091 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2092 case KVM_CAP_IRQ_ROUTING: 2093 return KVM_MAX_IRQ_ROUTES; 2094 #endif 2095 default: 2096 break; 2097 } 2098 return kvm_dev_ioctl_check_extension(arg); 2099 } 2100 2101 static long kvm_dev_ioctl(struct file *filp, 2102 unsigned int ioctl, unsigned long arg) 2103 { 2104 long r = -EINVAL; 2105 2106 switch (ioctl) { 2107 case KVM_GET_API_VERSION: 2108 r = -EINVAL; 2109 if (arg) 2110 goto out; 2111 r = KVM_API_VERSION; 2112 break; 2113 case KVM_CREATE_VM: 2114 r = -EINVAL; 2115 if (arg) 2116 goto out; 2117 r = kvm_dev_ioctl_create_vm(); 2118 break; 2119 case KVM_CHECK_EXTENSION: 2120 r = kvm_dev_ioctl_check_extension_generic(arg); 2121 break; 2122 case KVM_GET_VCPU_MMAP_SIZE: 2123 r = -EINVAL; 2124 if (arg) 2125 goto out; 2126 r = PAGE_SIZE; /* struct kvm_run */ 2127 #ifdef CONFIG_X86 2128 r += PAGE_SIZE; /* pio data page */ 2129 #endif 2130 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2131 r += PAGE_SIZE; /* coalesced mmio ring page */ 2132 #endif 2133 break; 2134 case KVM_TRACE_ENABLE: 2135 case KVM_TRACE_PAUSE: 2136 case KVM_TRACE_DISABLE: 2137 r = -EOPNOTSUPP; 2138 break; 2139 default: 2140 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2141 } 2142 out: 2143 return r; 2144 } 2145 2146 static struct file_operations kvm_chardev_ops = { 2147 .unlocked_ioctl = kvm_dev_ioctl, 2148 .compat_ioctl = kvm_dev_ioctl, 2149 .llseek = noop_llseek, 2150 }; 2151 2152 static struct miscdevice kvm_dev = { 2153 KVM_MINOR, 2154 "kvm", 2155 &kvm_chardev_ops, 2156 }; 2157 2158 static void hardware_enable_nolock(void *junk) 2159 { 2160 int cpu = raw_smp_processor_id(); 2161 int r; 2162 2163 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2164 return; 2165 2166 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2167 2168 r = kvm_arch_hardware_enable(NULL); 2169 2170 if (r) { 2171 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2172 atomic_inc(&hardware_enable_failed); 2173 printk(KERN_INFO "kvm: enabling virtualization on " 2174 "CPU%d failed\n", cpu); 2175 } 2176 } 2177 2178 static void hardware_enable(void *junk) 2179 { 2180 raw_spin_lock(&kvm_lock); 2181 hardware_enable_nolock(junk); 2182 raw_spin_unlock(&kvm_lock); 2183 } 2184 2185 static void hardware_disable_nolock(void *junk) 2186 { 2187 int cpu = raw_smp_processor_id(); 2188 2189 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2190 return; 2191 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2192 kvm_arch_hardware_disable(NULL); 2193 } 2194 2195 static void hardware_disable(void *junk) 2196 { 2197 raw_spin_lock(&kvm_lock); 2198 hardware_disable_nolock(junk); 2199 raw_spin_unlock(&kvm_lock); 2200 } 2201 2202 static void hardware_disable_all_nolock(void) 2203 { 2204 BUG_ON(!kvm_usage_count); 2205 2206 kvm_usage_count--; 2207 if (!kvm_usage_count) 2208 on_each_cpu(hardware_disable_nolock, NULL, 1); 2209 } 2210 2211 static void hardware_disable_all(void) 2212 { 2213 raw_spin_lock(&kvm_lock); 2214 hardware_disable_all_nolock(); 2215 raw_spin_unlock(&kvm_lock); 2216 } 2217 2218 static int hardware_enable_all(void) 2219 { 2220 int r = 0; 2221 2222 raw_spin_lock(&kvm_lock); 2223 2224 kvm_usage_count++; 2225 if (kvm_usage_count == 1) { 2226 atomic_set(&hardware_enable_failed, 0); 2227 on_each_cpu(hardware_enable_nolock, NULL, 1); 2228 2229 if (atomic_read(&hardware_enable_failed)) { 2230 hardware_disable_all_nolock(); 2231 r = -EBUSY; 2232 } 2233 } 2234 2235 raw_spin_unlock(&kvm_lock); 2236 2237 return r; 2238 } 2239 2240 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2241 void *v) 2242 { 2243 int cpu = (long)v; 2244 2245 if (!kvm_usage_count) 2246 return NOTIFY_OK; 2247 2248 val &= ~CPU_TASKS_FROZEN; 2249 switch (val) { 2250 case CPU_DYING: 2251 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2252 cpu); 2253 hardware_disable(NULL); 2254 break; 2255 case CPU_STARTING: 2256 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2257 cpu); 2258 hardware_enable(NULL); 2259 break; 2260 } 2261 return NOTIFY_OK; 2262 } 2263 2264 2265 asmlinkage void kvm_spurious_fault(void) 2266 { 2267 /* Fault while not rebooting. We want the trace. */ 2268 BUG(); 2269 } 2270 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 2271 2272 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2273 void *v) 2274 { 2275 /* 2276 * Some (well, at least mine) BIOSes hang on reboot if 2277 * in vmx root mode. 2278 * 2279 * And Intel TXT required VMX off for all cpu when system shutdown. 2280 */ 2281 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2282 kvm_rebooting = true; 2283 on_each_cpu(hardware_disable_nolock, NULL, 1); 2284 return NOTIFY_OK; 2285 } 2286 2287 static struct notifier_block kvm_reboot_notifier = { 2288 .notifier_call = kvm_reboot, 2289 .priority = 0, 2290 }; 2291 2292 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2293 { 2294 int i; 2295 2296 for (i = 0; i < bus->dev_count; i++) { 2297 struct kvm_io_device *pos = bus->devs[i]; 2298 2299 kvm_iodevice_destructor(pos); 2300 } 2301 kfree(bus); 2302 } 2303 2304 /* kvm_io_bus_write - called under kvm->slots_lock */ 2305 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2306 int len, const void *val) 2307 { 2308 int i; 2309 struct kvm_io_bus *bus; 2310 2311 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2312 for (i = 0; i < bus->dev_count; i++) 2313 if (!kvm_iodevice_write(bus->devs[i], addr, len, val)) 2314 return 0; 2315 return -EOPNOTSUPP; 2316 } 2317 2318 /* kvm_io_bus_read - called under kvm->slots_lock */ 2319 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2320 int len, void *val) 2321 { 2322 int i; 2323 struct kvm_io_bus *bus; 2324 2325 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2326 for (i = 0; i < bus->dev_count; i++) 2327 if (!kvm_iodevice_read(bus->devs[i], addr, len, val)) 2328 return 0; 2329 return -EOPNOTSUPP; 2330 } 2331 2332 /* Caller must hold slots_lock. */ 2333 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2334 struct kvm_io_device *dev) 2335 { 2336 struct kvm_io_bus *new_bus, *bus; 2337 2338 bus = kvm->buses[bus_idx]; 2339 if (bus->dev_count > NR_IOBUS_DEVS-1) 2340 return -ENOSPC; 2341 2342 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL); 2343 if (!new_bus) 2344 return -ENOMEM; 2345 memcpy(new_bus, bus, sizeof(struct kvm_io_bus)); 2346 new_bus->devs[new_bus->dev_count++] = dev; 2347 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2348 synchronize_srcu_expedited(&kvm->srcu); 2349 kfree(bus); 2350 2351 return 0; 2352 } 2353 2354 /* Caller must hold slots_lock. */ 2355 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2356 struct kvm_io_device *dev) 2357 { 2358 int i, r; 2359 struct kvm_io_bus *new_bus, *bus; 2360 2361 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL); 2362 if (!new_bus) 2363 return -ENOMEM; 2364 2365 bus = kvm->buses[bus_idx]; 2366 memcpy(new_bus, bus, sizeof(struct kvm_io_bus)); 2367 2368 r = -ENOENT; 2369 for (i = 0; i < new_bus->dev_count; i++) 2370 if (new_bus->devs[i] == dev) { 2371 r = 0; 2372 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count]; 2373 break; 2374 } 2375 2376 if (r) { 2377 kfree(new_bus); 2378 return r; 2379 } 2380 2381 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2382 synchronize_srcu_expedited(&kvm->srcu); 2383 kfree(bus); 2384 return r; 2385 } 2386 2387 static struct notifier_block kvm_cpu_notifier = { 2388 .notifier_call = kvm_cpu_hotplug, 2389 }; 2390 2391 static int vm_stat_get(void *_offset, u64 *val) 2392 { 2393 unsigned offset = (long)_offset; 2394 struct kvm *kvm; 2395 2396 *val = 0; 2397 raw_spin_lock(&kvm_lock); 2398 list_for_each_entry(kvm, &vm_list, vm_list) 2399 *val += *(u32 *)((void *)kvm + offset); 2400 raw_spin_unlock(&kvm_lock); 2401 return 0; 2402 } 2403 2404 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2405 2406 static int vcpu_stat_get(void *_offset, u64 *val) 2407 { 2408 unsigned offset = (long)_offset; 2409 struct kvm *kvm; 2410 struct kvm_vcpu *vcpu; 2411 int i; 2412 2413 *val = 0; 2414 raw_spin_lock(&kvm_lock); 2415 list_for_each_entry(kvm, &vm_list, vm_list) 2416 kvm_for_each_vcpu(i, vcpu, kvm) 2417 *val += *(u32 *)((void *)vcpu + offset); 2418 2419 raw_spin_unlock(&kvm_lock); 2420 return 0; 2421 } 2422 2423 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 2424 2425 static const struct file_operations *stat_fops[] = { 2426 [KVM_STAT_VCPU] = &vcpu_stat_fops, 2427 [KVM_STAT_VM] = &vm_stat_fops, 2428 }; 2429 2430 static void kvm_init_debug(void) 2431 { 2432 struct kvm_stats_debugfs_item *p; 2433 2434 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 2435 for (p = debugfs_entries; p->name; ++p) 2436 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 2437 (void *)(long)p->offset, 2438 stat_fops[p->kind]); 2439 } 2440 2441 static void kvm_exit_debug(void) 2442 { 2443 struct kvm_stats_debugfs_item *p; 2444 2445 for (p = debugfs_entries; p->name; ++p) 2446 debugfs_remove(p->dentry); 2447 debugfs_remove(kvm_debugfs_dir); 2448 } 2449 2450 static int kvm_suspend(struct sys_device *dev, pm_message_t state) 2451 { 2452 if (kvm_usage_count) 2453 hardware_disable_nolock(NULL); 2454 return 0; 2455 } 2456 2457 static int kvm_resume(struct sys_device *dev) 2458 { 2459 if (kvm_usage_count) { 2460 WARN_ON(raw_spin_is_locked(&kvm_lock)); 2461 hardware_enable_nolock(NULL); 2462 } 2463 return 0; 2464 } 2465 2466 static struct sysdev_class kvm_sysdev_class = { 2467 .name = "kvm", 2468 .suspend = kvm_suspend, 2469 .resume = kvm_resume, 2470 }; 2471 2472 static struct sys_device kvm_sysdev = { 2473 .id = 0, 2474 .cls = &kvm_sysdev_class, 2475 }; 2476 2477 struct page *bad_page; 2478 pfn_t bad_pfn; 2479 2480 static inline 2481 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2482 { 2483 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2484 } 2485 2486 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2487 { 2488 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2489 2490 kvm_arch_vcpu_load(vcpu, cpu); 2491 } 2492 2493 static void kvm_sched_out(struct preempt_notifier *pn, 2494 struct task_struct *next) 2495 { 2496 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2497 2498 kvm_arch_vcpu_put(vcpu); 2499 } 2500 2501 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 2502 struct module *module) 2503 { 2504 int r; 2505 int cpu; 2506 2507 r = kvm_arch_init(opaque); 2508 if (r) 2509 goto out_fail; 2510 2511 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2512 2513 if (bad_page == NULL) { 2514 r = -ENOMEM; 2515 goto out; 2516 } 2517 2518 bad_pfn = page_to_pfn(bad_page); 2519 2520 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2521 2522 if (hwpoison_page == NULL) { 2523 r = -ENOMEM; 2524 goto out_free_0; 2525 } 2526 2527 hwpoison_pfn = page_to_pfn(hwpoison_page); 2528 2529 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2530 2531 if (fault_page == NULL) { 2532 r = -ENOMEM; 2533 goto out_free_0; 2534 } 2535 2536 fault_pfn = page_to_pfn(fault_page); 2537 2538 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2539 r = -ENOMEM; 2540 goto out_free_0; 2541 } 2542 2543 r = kvm_arch_hardware_setup(); 2544 if (r < 0) 2545 goto out_free_0a; 2546 2547 for_each_online_cpu(cpu) { 2548 smp_call_function_single(cpu, 2549 kvm_arch_check_processor_compat, 2550 &r, 1); 2551 if (r < 0) 2552 goto out_free_1; 2553 } 2554 2555 r = register_cpu_notifier(&kvm_cpu_notifier); 2556 if (r) 2557 goto out_free_2; 2558 register_reboot_notifier(&kvm_reboot_notifier); 2559 2560 r = sysdev_class_register(&kvm_sysdev_class); 2561 if (r) 2562 goto out_free_3; 2563 2564 r = sysdev_register(&kvm_sysdev); 2565 if (r) 2566 goto out_free_4; 2567 2568 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2569 if (!vcpu_align) 2570 vcpu_align = __alignof__(struct kvm_vcpu); 2571 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 2572 0, NULL); 2573 if (!kvm_vcpu_cache) { 2574 r = -ENOMEM; 2575 goto out_free_5; 2576 } 2577 2578 r = kvm_async_pf_init(); 2579 if (r) 2580 goto out_free; 2581 2582 kvm_chardev_ops.owner = module; 2583 kvm_vm_fops.owner = module; 2584 kvm_vcpu_fops.owner = module; 2585 2586 r = misc_register(&kvm_dev); 2587 if (r) { 2588 printk(KERN_ERR "kvm: misc device register failed\n"); 2589 goto out_unreg; 2590 } 2591 2592 kvm_preempt_ops.sched_in = kvm_sched_in; 2593 kvm_preempt_ops.sched_out = kvm_sched_out; 2594 2595 kvm_init_debug(); 2596 2597 return 0; 2598 2599 out_unreg: 2600 kvm_async_pf_deinit(); 2601 out_free: 2602 kmem_cache_destroy(kvm_vcpu_cache); 2603 out_free_5: 2604 sysdev_unregister(&kvm_sysdev); 2605 out_free_4: 2606 sysdev_class_unregister(&kvm_sysdev_class); 2607 out_free_3: 2608 unregister_reboot_notifier(&kvm_reboot_notifier); 2609 unregister_cpu_notifier(&kvm_cpu_notifier); 2610 out_free_2: 2611 out_free_1: 2612 kvm_arch_hardware_unsetup(); 2613 out_free_0a: 2614 free_cpumask_var(cpus_hardware_enabled); 2615 out_free_0: 2616 if (fault_page) 2617 __free_page(fault_page); 2618 if (hwpoison_page) 2619 __free_page(hwpoison_page); 2620 __free_page(bad_page); 2621 out: 2622 kvm_arch_exit(); 2623 out_fail: 2624 return r; 2625 } 2626 EXPORT_SYMBOL_GPL(kvm_init); 2627 2628 void kvm_exit(void) 2629 { 2630 kvm_exit_debug(); 2631 misc_deregister(&kvm_dev); 2632 kmem_cache_destroy(kvm_vcpu_cache); 2633 kvm_async_pf_deinit(); 2634 sysdev_unregister(&kvm_sysdev); 2635 sysdev_class_unregister(&kvm_sysdev_class); 2636 unregister_reboot_notifier(&kvm_reboot_notifier); 2637 unregister_cpu_notifier(&kvm_cpu_notifier); 2638 on_each_cpu(hardware_disable_nolock, NULL, 1); 2639 kvm_arch_hardware_unsetup(); 2640 kvm_arch_exit(); 2641 free_cpumask_var(cpus_hardware_enabled); 2642 __free_page(hwpoison_page); 2643 __free_page(bad_page); 2644 } 2645 EXPORT_SYMBOL_GPL(kvm_exit); 2646