xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 565d76cb)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/kvm.h>
62 
63 MODULE_AUTHOR("Qumranet");
64 MODULE_LICENSE("GPL");
65 
66 /*
67  * Ordering of locks:
68  *
69  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
70  */
71 
72 DEFINE_RAW_SPINLOCK(kvm_lock);
73 LIST_HEAD(vm_list);
74 
75 static cpumask_var_t cpus_hardware_enabled;
76 static int kvm_usage_count = 0;
77 static atomic_t hardware_enable_failed;
78 
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 
84 struct dentry *kvm_debugfs_dir;
85 
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 			   unsigned long arg);
88 static int hardware_enable_all(void);
89 static void hardware_disable_all(void);
90 
91 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92 
93 bool kvm_rebooting;
94 EXPORT_SYMBOL_GPL(kvm_rebooting);
95 
96 static bool largepages_enabled = true;
97 
98 static struct page *hwpoison_page;
99 static pfn_t hwpoison_pfn;
100 
101 static struct page *fault_page;
102 static pfn_t fault_pfn;
103 
104 inline int kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 	if (pfn_valid(pfn)) {
107 		int reserved;
108 		struct page *tail = pfn_to_page(pfn);
109 		struct page *head = compound_trans_head(tail);
110 		reserved = PageReserved(head);
111 		if (head != tail) {
112 			/*
113 			 * "head" is not a dangling pointer
114 			 * (compound_trans_head takes care of that)
115 			 * but the hugepage may have been splitted
116 			 * from under us (and we may not hold a
117 			 * reference count on the head page so it can
118 			 * be reused before we run PageReferenced), so
119 			 * we've to check PageTail before returning
120 			 * what we just read.
121 			 */
122 			smp_rmb();
123 			if (PageTail(tail))
124 				return reserved;
125 		}
126 		return PageReserved(tail);
127 	}
128 
129 	return true;
130 }
131 
132 /*
133  * Switches to specified vcpu, until a matching vcpu_put()
134  */
135 void vcpu_load(struct kvm_vcpu *vcpu)
136 {
137 	int cpu;
138 
139 	mutex_lock(&vcpu->mutex);
140 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 		/* The thread running this VCPU changed. */
142 		struct pid *oldpid = vcpu->pid;
143 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 		rcu_assign_pointer(vcpu->pid, newpid);
145 		synchronize_rcu();
146 		put_pid(oldpid);
147 	}
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 }
153 
154 void vcpu_put(struct kvm_vcpu *vcpu)
155 {
156 	preempt_disable();
157 	kvm_arch_vcpu_put(vcpu);
158 	preempt_notifier_unregister(&vcpu->preempt_notifier);
159 	preempt_enable();
160 	mutex_unlock(&vcpu->mutex);
161 }
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode */
182 		smp_mb();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 void kvm_flush_remote_tlbs(struct kvm *kvm)
200 {
201 	int dirty_count = kvm->tlbs_dirty;
202 
203 	smp_mb();
204 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
205 		++kvm->stat.remote_tlb_flush;
206 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
207 }
208 
209 void kvm_reload_remote_mmus(struct kvm *kvm)
210 {
211 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
212 }
213 
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216 	struct page *page;
217 	int r;
218 
219 	mutex_init(&vcpu->mutex);
220 	vcpu->cpu = -1;
221 	vcpu->kvm = kvm;
222 	vcpu->vcpu_id = id;
223 	vcpu->pid = NULL;
224 	init_waitqueue_head(&vcpu->wq);
225 	kvm_async_pf_vcpu_init(vcpu);
226 
227 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 	if (!page) {
229 		r = -ENOMEM;
230 		goto fail;
231 	}
232 	vcpu->run = page_address(page);
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 	kvm->mmu_notifier_seq++;
288 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
289 	spin_unlock(&kvm->mmu_lock);
290 	srcu_read_unlock(&kvm->srcu, idx);
291 
292 	/* we've to flush the tlb before the pages can be freed */
293 	if (need_tlb_flush)
294 		kvm_flush_remote_tlbs(kvm);
295 
296 }
297 
298 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
299 					struct mm_struct *mm,
300 					unsigned long address,
301 					pte_t pte)
302 {
303 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
304 	int idx;
305 
306 	idx = srcu_read_lock(&kvm->srcu);
307 	spin_lock(&kvm->mmu_lock);
308 	kvm->mmu_notifier_seq++;
309 	kvm_set_spte_hva(kvm, address, pte);
310 	spin_unlock(&kvm->mmu_lock);
311 	srcu_read_unlock(&kvm->srcu, idx);
312 }
313 
314 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
315 						    struct mm_struct *mm,
316 						    unsigned long start,
317 						    unsigned long end)
318 {
319 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 	int need_tlb_flush = 0, idx;
321 
322 	idx = srcu_read_lock(&kvm->srcu);
323 	spin_lock(&kvm->mmu_lock);
324 	/*
325 	 * The count increase must become visible at unlock time as no
326 	 * spte can be established without taking the mmu_lock and
327 	 * count is also read inside the mmu_lock critical section.
328 	 */
329 	kvm->mmu_notifier_count++;
330 	for (; start < end; start += PAGE_SIZE)
331 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
332 	need_tlb_flush |= kvm->tlbs_dirty;
333 	spin_unlock(&kvm->mmu_lock);
334 	srcu_read_unlock(&kvm->srcu, idx);
335 
336 	/* we've to flush the tlb before the pages can be freed */
337 	if (need_tlb_flush)
338 		kvm_flush_remote_tlbs(kvm);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
342 						  struct mm_struct *mm,
343 						  unsigned long start,
344 						  unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 
348 	spin_lock(&kvm->mmu_lock);
349 	/*
350 	 * This sequence increase will notify the kvm page fault that
351 	 * the page that is going to be mapped in the spte could have
352 	 * been freed.
353 	 */
354 	kvm->mmu_notifier_seq++;
355 	/*
356 	 * The above sequence increase must be visible before the
357 	 * below count decrease but both values are read by the kvm
358 	 * page fault under mmu_lock spinlock so we don't need to add
359 	 * a smb_wmb() here in between the two.
360 	 */
361 	kvm->mmu_notifier_count--;
362 	spin_unlock(&kvm->mmu_lock);
363 
364 	BUG_ON(kvm->mmu_notifier_count < 0);
365 }
366 
367 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
368 					      struct mm_struct *mm,
369 					      unsigned long address)
370 {
371 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 	int young, idx;
373 
374 	idx = srcu_read_lock(&kvm->srcu);
375 	spin_lock(&kvm->mmu_lock);
376 	young = kvm_age_hva(kvm, address);
377 	spin_unlock(&kvm->mmu_lock);
378 	srcu_read_unlock(&kvm->srcu, idx);
379 
380 	if (young)
381 		kvm_flush_remote_tlbs(kvm);
382 
383 	return young;
384 }
385 
386 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
387 				       struct mm_struct *mm,
388 				       unsigned long address)
389 {
390 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
391 	int young, idx;
392 
393 	idx = srcu_read_lock(&kvm->srcu);
394 	spin_lock(&kvm->mmu_lock);
395 	young = kvm_test_age_hva(kvm, address);
396 	spin_unlock(&kvm->mmu_lock);
397 	srcu_read_unlock(&kvm->srcu, idx);
398 
399 	return young;
400 }
401 
402 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
403 				     struct mm_struct *mm)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 	int idx;
407 
408 	idx = srcu_read_lock(&kvm->srcu);
409 	kvm_arch_flush_shadow(kvm);
410 	srcu_read_unlock(&kvm->srcu, idx);
411 }
412 
413 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
414 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
415 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
416 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
417 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
418 	.test_young		= kvm_mmu_notifier_test_young,
419 	.change_pte		= kvm_mmu_notifier_change_pte,
420 	.release		= kvm_mmu_notifier_release,
421 };
422 
423 static int kvm_init_mmu_notifier(struct kvm *kvm)
424 {
425 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
426 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
427 }
428 
429 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
430 
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433 	return 0;
434 }
435 
436 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
437 
438 static struct kvm *kvm_create_vm(void)
439 {
440 	int r, i;
441 	struct kvm *kvm = kvm_arch_alloc_vm();
442 
443 	if (!kvm)
444 		return ERR_PTR(-ENOMEM);
445 
446 	r = kvm_arch_init_vm(kvm);
447 	if (r)
448 		goto out_err_nodisable;
449 
450 	r = hardware_enable_all();
451 	if (r)
452 		goto out_err_nodisable;
453 
454 #ifdef CONFIG_HAVE_KVM_IRQCHIP
455 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
456 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
457 #endif
458 
459 	r = -ENOMEM;
460 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
461 	if (!kvm->memslots)
462 		goto out_err_nosrcu;
463 	if (init_srcu_struct(&kvm->srcu))
464 		goto out_err_nosrcu;
465 	for (i = 0; i < KVM_NR_BUSES; i++) {
466 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
467 					GFP_KERNEL);
468 		if (!kvm->buses[i])
469 			goto out_err;
470 	}
471 
472 	r = kvm_init_mmu_notifier(kvm);
473 	if (r)
474 		goto out_err;
475 
476 	kvm->mm = current->mm;
477 	atomic_inc(&kvm->mm->mm_count);
478 	spin_lock_init(&kvm->mmu_lock);
479 	kvm_eventfd_init(kvm);
480 	mutex_init(&kvm->lock);
481 	mutex_init(&kvm->irq_lock);
482 	mutex_init(&kvm->slots_lock);
483 	atomic_set(&kvm->users_count, 1);
484 	raw_spin_lock(&kvm_lock);
485 	list_add(&kvm->vm_list, &vm_list);
486 	raw_spin_unlock(&kvm_lock);
487 
488 	return kvm;
489 
490 out_err:
491 	cleanup_srcu_struct(&kvm->srcu);
492 out_err_nosrcu:
493 	hardware_disable_all();
494 out_err_nodisable:
495 	for (i = 0; i < KVM_NR_BUSES; i++)
496 		kfree(kvm->buses[i]);
497 	kfree(kvm->memslots);
498 	kvm_arch_free_vm(kvm);
499 	return ERR_PTR(r);
500 }
501 
502 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
503 {
504 	if (!memslot->dirty_bitmap)
505 		return;
506 
507 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
508 		vfree(memslot->dirty_bitmap_head);
509 	else
510 		kfree(memslot->dirty_bitmap_head);
511 
512 	memslot->dirty_bitmap = NULL;
513 	memslot->dirty_bitmap_head = NULL;
514 }
515 
516 /*
517  * Free any memory in @free but not in @dont.
518  */
519 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
520 				  struct kvm_memory_slot *dont)
521 {
522 	int i;
523 
524 	if (!dont || free->rmap != dont->rmap)
525 		vfree(free->rmap);
526 
527 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
528 		kvm_destroy_dirty_bitmap(free);
529 
530 
531 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
532 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
533 			vfree(free->lpage_info[i]);
534 			free->lpage_info[i] = NULL;
535 		}
536 	}
537 
538 	free->npages = 0;
539 	free->rmap = NULL;
540 }
541 
542 void kvm_free_physmem(struct kvm *kvm)
543 {
544 	int i;
545 	struct kvm_memslots *slots = kvm->memslots;
546 
547 	for (i = 0; i < slots->nmemslots; ++i)
548 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
549 
550 	kfree(kvm->memslots);
551 }
552 
553 static void kvm_destroy_vm(struct kvm *kvm)
554 {
555 	int i;
556 	struct mm_struct *mm = kvm->mm;
557 
558 	kvm_arch_sync_events(kvm);
559 	raw_spin_lock(&kvm_lock);
560 	list_del(&kvm->vm_list);
561 	raw_spin_unlock(&kvm_lock);
562 	kvm_free_irq_routing(kvm);
563 	for (i = 0; i < KVM_NR_BUSES; i++)
564 		kvm_io_bus_destroy(kvm->buses[i]);
565 	kvm_coalesced_mmio_free(kvm);
566 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
567 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
568 #else
569 	kvm_arch_flush_shadow(kvm);
570 #endif
571 	kvm_arch_destroy_vm(kvm);
572 	kvm_free_physmem(kvm);
573 	cleanup_srcu_struct(&kvm->srcu);
574 	kvm_arch_free_vm(kvm);
575 	hardware_disable_all();
576 	mmdrop(mm);
577 }
578 
579 void kvm_get_kvm(struct kvm *kvm)
580 {
581 	atomic_inc(&kvm->users_count);
582 }
583 EXPORT_SYMBOL_GPL(kvm_get_kvm);
584 
585 void kvm_put_kvm(struct kvm *kvm)
586 {
587 	if (atomic_dec_and_test(&kvm->users_count))
588 		kvm_destroy_vm(kvm);
589 }
590 EXPORT_SYMBOL_GPL(kvm_put_kvm);
591 
592 
593 static int kvm_vm_release(struct inode *inode, struct file *filp)
594 {
595 	struct kvm *kvm = filp->private_data;
596 
597 	kvm_irqfd_release(kvm);
598 
599 	kvm_put_kvm(kvm);
600 	return 0;
601 }
602 
603 #ifndef CONFIG_S390
604 /*
605  * Allocation size is twice as large as the actual dirty bitmap size.
606  * This makes it possible to do double buffering: see x86's
607  * kvm_vm_ioctl_get_dirty_log().
608  */
609 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
610 {
611 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
612 
613 	if (dirty_bytes > PAGE_SIZE)
614 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
615 	else
616 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
617 
618 	if (!memslot->dirty_bitmap)
619 		return -ENOMEM;
620 
621 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
622 	return 0;
623 }
624 #endif /* !CONFIG_S390 */
625 
626 /*
627  * Allocate some memory and give it an address in the guest physical address
628  * space.
629  *
630  * Discontiguous memory is allowed, mostly for framebuffers.
631  *
632  * Must be called holding mmap_sem for write.
633  */
634 int __kvm_set_memory_region(struct kvm *kvm,
635 			    struct kvm_userspace_memory_region *mem,
636 			    int user_alloc)
637 {
638 	int r;
639 	gfn_t base_gfn;
640 	unsigned long npages;
641 	unsigned long i;
642 	struct kvm_memory_slot *memslot;
643 	struct kvm_memory_slot old, new;
644 	struct kvm_memslots *slots, *old_memslots;
645 
646 	r = -EINVAL;
647 	/* General sanity checks */
648 	if (mem->memory_size & (PAGE_SIZE - 1))
649 		goto out;
650 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
651 		goto out;
652 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
653 		goto out;
654 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
655 		goto out;
656 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
657 		goto out;
658 
659 	memslot = &kvm->memslots->memslots[mem->slot];
660 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
661 	npages = mem->memory_size >> PAGE_SHIFT;
662 
663 	r = -EINVAL;
664 	if (npages > KVM_MEM_MAX_NR_PAGES)
665 		goto out;
666 
667 	if (!npages)
668 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
669 
670 	new = old = *memslot;
671 
672 	new.id = mem->slot;
673 	new.base_gfn = base_gfn;
674 	new.npages = npages;
675 	new.flags = mem->flags;
676 
677 	/* Disallow changing a memory slot's size. */
678 	r = -EINVAL;
679 	if (npages && old.npages && npages != old.npages)
680 		goto out_free;
681 
682 	/* Check for overlaps */
683 	r = -EEXIST;
684 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
685 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
686 
687 		if (s == memslot || !s->npages)
688 			continue;
689 		if (!((base_gfn + npages <= s->base_gfn) ||
690 		      (base_gfn >= s->base_gfn + s->npages)))
691 			goto out_free;
692 	}
693 
694 	/* Free page dirty bitmap if unneeded */
695 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
696 		new.dirty_bitmap = NULL;
697 
698 	r = -ENOMEM;
699 
700 	/* Allocate if a slot is being created */
701 #ifndef CONFIG_S390
702 	if (npages && !new.rmap) {
703 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
704 
705 		if (!new.rmap)
706 			goto out_free;
707 
708 		new.user_alloc = user_alloc;
709 		new.userspace_addr = mem->userspace_addr;
710 	}
711 	if (!npages)
712 		goto skip_lpage;
713 
714 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
715 		unsigned long ugfn;
716 		unsigned long j;
717 		int lpages;
718 		int level = i + 2;
719 
720 		/* Avoid unused variable warning if no large pages */
721 		(void)level;
722 
723 		if (new.lpage_info[i])
724 			continue;
725 
726 		lpages = 1 + ((base_gfn + npages - 1)
727 			     >> KVM_HPAGE_GFN_SHIFT(level));
728 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
729 
730 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
731 
732 		if (!new.lpage_info[i])
733 			goto out_free;
734 
735 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
736 			new.lpage_info[i][0].write_count = 1;
737 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
738 			new.lpage_info[i][lpages - 1].write_count = 1;
739 		ugfn = new.userspace_addr >> PAGE_SHIFT;
740 		/*
741 		 * If the gfn and userspace address are not aligned wrt each
742 		 * other, or if explicitly asked to, disable large page
743 		 * support for this slot
744 		 */
745 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
746 		    !largepages_enabled)
747 			for (j = 0; j < lpages; ++j)
748 				new.lpage_info[i][j].write_count = 1;
749 	}
750 
751 skip_lpage:
752 
753 	/* Allocate page dirty bitmap if needed */
754 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
755 		if (kvm_create_dirty_bitmap(&new) < 0)
756 			goto out_free;
757 		/* destroy any largepage mappings for dirty tracking */
758 	}
759 #else  /* not defined CONFIG_S390 */
760 	new.user_alloc = user_alloc;
761 	if (user_alloc)
762 		new.userspace_addr = mem->userspace_addr;
763 #endif /* not defined CONFIG_S390 */
764 
765 	if (!npages) {
766 		r = -ENOMEM;
767 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
768 		if (!slots)
769 			goto out_free;
770 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
771 		if (mem->slot >= slots->nmemslots)
772 			slots->nmemslots = mem->slot + 1;
773 		slots->generation++;
774 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
775 
776 		old_memslots = kvm->memslots;
777 		rcu_assign_pointer(kvm->memslots, slots);
778 		synchronize_srcu_expedited(&kvm->srcu);
779 		/* From this point no new shadow pages pointing to a deleted
780 		 * memslot will be created.
781 		 *
782 		 * validation of sp->gfn happens in:
783 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
784 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
785 		 */
786 		kvm_arch_flush_shadow(kvm);
787 		kfree(old_memslots);
788 	}
789 
790 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
791 	if (r)
792 		goto out_free;
793 
794 	/* map the pages in iommu page table */
795 	if (npages) {
796 		r = kvm_iommu_map_pages(kvm, &new);
797 		if (r)
798 			goto out_free;
799 	}
800 
801 	r = -ENOMEM;
802 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
803 	if (!slots)
804 		goto out_free;
805 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
806 	if (mem->slot >= slots->nmemslots)
807 		slots->nmemslots = mem->slot + 1;
808 	slots->generation++;
809 
810 	/* actual memory is freed via old in kvm_free_physmem_slot below */
811 	if (!npages) {
812 		new.rmap = NULL;
813 		new.dirty_bitmap = NULL;
814 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
815 			new.lpage_info[i] = NULL;
816 	}
817 
818 	slots->memslots[mem->slot] = new;
819 	old_memslots = kvm->memslots;
820 	rcu_assign_pointer(kvm->memslots, slots);
821 	synchronize_srcu_expedited(&kvm->srcu);
822 
823 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
824 
825 	kvm_free_physmem_slot(&old, &new);
826 	kfree(old_memslots);
827 
828 	return 0;
829 
830 out_free:
831 	kvm_free_physmem_slot(&new, &old);
832 out:
833 	return r;
834 
835 }
836 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
837 
838 int kvm_set_memory_region(struct kvm *kvm,
839 			  struct kvm_userspace_memory_region *mem,
840 			  int user_alloc)
841 {
842 	int r;
843 
844 	mutex_lock(&kvm->slots_lock);
845 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
846 	mutex_unlock(&kvm->slots_lock);
847 	return r;
848 }
849 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
850 
851 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
852 				   struct
853 				   kvm_userspace_memory_region *mem,
854 				   int user_alloc)
855 {
856 	if (mem->slot >= KVM_MEMORY_SLOTS)
857 		return -EINVAL;
858 	return kvm_set_memory_region(kvm, mem, user_alloc);
859 }
860 
861 int kvm_get_dirty_log(struct kvm *kvm,
862 			struct kvm_dirty_log *log, int *is_dirty)
863 {
864 	struct kvm_memory_slot *memslot;
865 	int r, i;
866 	unsigned long n;
867 	unsigned long any = 0;
868 
869 	r = -EINVAL;
870 	if (log->slot >= KVM_MEMORY_SLOTS)
871 		goto out;
872 
873 	memslot = &kvm->memslots->memslots[log->slot];
874 	r = -ENOENT;
875 	if (!memslot->dirty_bitmap)
876 		goto out;
877 
878 	n = kvm_dirty_bitmap_bytes(memslot);
879 
880 	for (i = 0; !any && i < n/sizeof(long); ++i)
881 		any = memslot->dirty_bitmap[i];
882 
883 	r = -EFAULT;
884 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
885 		goto out;
886 
887 	if (any)
888 		*is_dirty = 1;
889 
890 	r = 0;
891 out:
892 	return r;
893 }
894 
895 void kvm_disable_largepages(void)
896 {
897 	largepages_enabled = false;
898 }
899 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
900 
901 int is_error_page(struct page *page)
902 {
903 	return page == bad_page || page == hwpoison_page || page == fault_page;
904 }
905 EXPORT_SYMBOL_GPL(is_error_page);
906 
907 int is_error_pfn(pfn_t pfn)
908 {
909 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
910 }
911 EXPORT_SYMBOL_GPL(is_error_pfn);
912 
913 int is_hwpoison_pfn(pfn_t pfn)
914 {
915 	return pfn == hwpoison_pfn;
916 }
917 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
918 
919 int is_fault_pfn(pfn_t pfn)
920 {
921 	return pfn == fault_pfn;
922 }
923 EXPORT_SYMBOL_GPL(is_fault_pfn);
924 
925 static inline unsigned long bad_hva(void)
926 {
927 	return PAGE_OFFSET;
928 }
929 
930 int kvm_is_error_hva(unsigned long addr)
931 {
932 	return addr == bad_hva();
933 }
934 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
935 
936 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
937 						gfn_t gfn)
938 {
939 	int i;
940 
941 	for (i = 0; i < slots->nmemslots; ++i) {
942 		struct kvm_memory_slot *memslot = &slots->memslots[i];
943 
944 		if (gfn >= memslot->base_gfn
945 		    && gfn < memslot->base_gfn + memslot->npages)
946 			return memslot;
947 	}
948 	return NULL;
949 }
950 
951 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
952 {
953 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
954 }
955 EXPORT_SYMBOL_GPL(gfn_to_memslot);
956 
957 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
958 {
959 	int i;
960 	struct kvm_memslots *slots = kvm_memslots(kvm);
961 
962 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
963 		struct kvm_memory_slot *memslot = &slots->memslots[i];
964 
965 		if (memslot->flags & KVM_MEMSLOT_INVALID)
966 			continue;
967 
968 		if (gfn >= memslot->base_gfn
969 		    && gfn < memslot->base_gfn + memslot->npages)
970 			return 1;
971 	}
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
975 
976 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
977 {
978 	struct vm_area_struct *vma;
979 	unsigned long addr, size;
980 
981 	size = PAGE_SIZE;
982 
983 	addr = gfn_to_hva(kvm, gfn);
984 	if (kvm_is_error_hva(addr))
985 		return PAGE_SIZE;
986 
987 	down_read(&current->mm->mmap_sem);
988 	vma = find_vma(current->mm, addr);
989 	if (!vma)
990 		goto out;
991 
992 	size = vma_kernel_pagesize(vma);
993 
994 out:
995 	up_read(&current->mm->mmap_sem);
996 
997 	return size;
998 }
999 
1000 int memslot_id(struct kvm *kvm, gfn_t gfn)
1001 {
1002 	int i;
1003 	struct kvm_memslots *slots = kvm_memslots(kvm);
1004 	struct kvm_memory_slot *memslot = NULL;
1005 
1006 	for (i = 0; i < slots->nmemslots; ++i) {
1007 		memslot = &slots->memslots[i];
1008 
1009 		if (gfn >= memslot->base_gfn
1010 		    && gfn < memslot->base_gfn + memslot->npages)
1011 			break;
1012 	}
1013 
1014 	return memslot - slots->memslots;
1015 }
1016 
1017 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1018 				     gfn_t *nr_pages)
1019 {
1020 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1021 		return bad_hva();
1022 
1023 	if (nr_pages)
1024 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1025 
1026 	return gfn_to_hva_memslot(slot, gfn);
1027 }
1028 
1029 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1030 {
1031 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1032 }
1033 EXPORT_SYMBOL_GPL(gfn_to_hva);
1034 
1035 static pfn_t get_fault_pfn(void)
1036 {
1037 	get_page(fault_page);
1038 	return fault_pfn;
1039 }
1040 
1041 static inline int check_user_page_hwpoison(unsigned long addr)
1042 {
1043 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1044 
1045 	rc = __get_user_pages(current, current->mm, addr, 1,
1046 			      flags, NULL, NULL, NULL);
1047 	return rc == -EHWPOISON;
1048 }
1049 
1050 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1051 			bool *async, bool write_fault, bool *writable)
1052 {
1053 	struct page *page[1];
1054 	int npages = 0;
1055 	pfn_t pfn;
1056 
1057 	/* we can do it either atomically or asynchronously, not both */
1058 	BUG_ON(atomic && async);
1059 
1060 	BUG_ON(!write_fault && !writable);
1061 
1062 	if (writable)
1063 		*writable = true;
1064 
1065 	if (atomic || async)
1066 		npages = __get_user_pages_fast(addr, 1, 1, page);
1067 
1068 	if (unlikely(npages != 1) && !atomic) {
1069 		might_sleep();
1070 
1071 		if (writable)
1072 			*writable = write_fault;
1073 
1074 		npages = get_user_pages_fast(addr, 1, write_fault, page);
1075 
1076 		/* map read fault as writable if possible */
1077 		if (unlikely(!write_fault) && npages == 1) {
1078 			struct page *wpage[1];
1079 
1080 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1081 			if (npages == 1) {
1082 				*writable = true;
1083 				put_page(page[0]);
1084 				page[0] = wpage[0];
1085 			}
1086 			npages = 1;
1087 		}
1088 	}
1089 
1090 	if (unlikely(npages != 1)) {
1091 		struct vm_area_struct *vma;
1092 
1093 		if (atomic)
1094 			return get_fault_pfn();
1095 
1096 		down_read(&current->mm->mmap_sem);
1097 		if (check_user_page_hwpoison(addr)) {
1098 			up_read(&current->mm->mmap_sem);
1099 			get_page(hwpoison_page);
1100 			return page_to_pfn(hwpoison_page);
1101 		}
1102 
1103 		vma = find_vma_intersection(current->mm, addr, addr+1);
1104 
1105 		if (vma == NULL)
1106 			pfn = get_fault_pfn();
1107 		else if ((vma->vm_flags & VM_PFNMAP)) {
1108 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1109 				vma->vm_pgoff;
1110 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1111 		} else {
1112 			if (async && (vma->vm_flags & VM_WRITE))
1113 				*async = true;
1114 			pfn = get_fault_pfn();
1115 		}
1116 		up_read(&current->mm->mmap_sem);
1117 	} else
1118 		pfn = page_to_pfn(page[0]);
1119 
1120 	return pfn;
1121 }
1122 
1123 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1124 {
1125 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1126 }
1127 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1128 
1129 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1130 			  bool write_fault, bool *writable)
1131 {
1132 	unsigned long addr;
1133 
1134 	if (async)
1135 		*async = false;
1136 
1137 	addr = gfn_to_hva(kvm, gfn);
1138 	if (kvm_is_error_hva(addr)) {
1139 		get_page(bad_page);
1140 		return page_to_pfn(bad_page);
1141 	}
1142 
1143 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1144 }
1145 
1146 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1147 {
1148 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1149 }
1150 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1151 
1152 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1153 		       bool write_fault, bool *writable)
1154 {
1155 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1156 }
1157 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1158 
1159 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1160 {
1161 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1162 }
1163 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1164 
1165 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1166 		      bool *writable)
1167 {
1168 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1169 }
1170 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1171 
1172 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1173 			 struct kvm_memory_slot *slot, gfn_t gfn)
1174 {
1175 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1176 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1177 }
1178 
1179 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1180 								  int nr_pages)
1181 {
1182 	unsigned long addr;
1183 	gfn_t entry;
1184 
1185 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1186 	if (kvm_is_error_hva(addr))
1187 		return -1;
1188 
1189 	if (entry < nr_pages)
1190 		return 0;
1191 
1192 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1193 }
1194 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1195 
1196 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1197 {
1198 	pfn_t pfn;
1199 
1200 	pfn = gfn_to_pfn(kvm, gfn);
1201 	if (!kvm_is_mmio_pfn(pfn))
1202 		return pfn_to_page(pfn);
1203 
1204 	WARN_ON(kvm_is_mmio_pfn(pfn));
1205 
1206 	get_page(bad_page);
1207 	return bad_page;
1208 }
1209 
1210 EXPORT_SYMBOL_GPL(gfn_to_page);
1211 
1212 void kvm_release_page_clean(struct page *page)
1213 {
1214 	kvm_release_pfn_clean(page_to_pfn(page));
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1217 
1218 void kvm_release_pfn_clean(pfn_t pfn)
1219 {
1220 	if (!kvm_is_mmio_pfn(pfn))
1221 		put_page(pfn_to_page(pfn));
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1224 
1225 void kvm_release_page_dirty(struct page *page)
1226 {
1227 	kvm_release_pfn_dirty(page_to_pfn(page));
1228 }
1229 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1230 
1231 void kvm_release_pfn_dirty(pfn_t pfn)
1232 {
1233 	kvm_set_pfn_dirty(pfn);
1234 	kvm_release_pfn_clean(pfn);
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1237 
1238 void kvm_set_page_dirty(struct page *page)
1239 {
1240 	kvm_set_pfn_dirty(page_to_pfn(page));
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1243 
1244 void kvm_set_pfn_dirty(pfn_t pfn)
1245 {
1246 	if (!kvm_is_mmio_pfn(pfn)) {
1247 		struct page *page = pfn_to_page(pfn);
1248 		if (!PageReserved(page))
1249 			SetPageDirty(page);
1250 	}
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1253 
1254 void kvm_set_pfn_accessed(pfn_t pfn)
1255 {
1256 	if (!kvm_is_mmio_pfn(pfn))
1257 		mark_page_accessed(pfn_to_page(pfn));
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1260 
1261 void kvm_get_pfn(pfn_t pfn)
1262 {
1263 	if (!kvm_is_mmio_pfn(pfn))
1264 		get_page(pfn_to_page(pfn));
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1267 
1268 static int next_segment(unsigned long len, int offset)
1269 {
1270 	if (len > PAGE_SIZE - offset)
1271 		return PAGE_SIZE - offset;
1272 	else
1273 		return len;
1274 }
1275 
1276 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1277 			int len)
1278 {
1279 	int r;
1280 	unsigned long addr;
1281 
1282 	addr = gfn_to_hva(kvm, gfn);
1283 	if (kvm_is_error_hva(addr))
1284 		return -EFAULT;
1285 	r = copy_from_user(data, (void __user *)addr + offset, len);
1286 	if (r)
1287 		return -EFAULT;
1288 	return 0;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1291 
1292 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1293 {
1294 	gfn_t gfn = gpa >> PAGE_SHIFT;
1295 	int seg;
1296 	int offset = offset_in_page(gpa);
1297 	int ret;
1298 
1299 	while ((seg = next_segment(len, offset)) != 0) {
1300 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1301 		if (ret < 0)
1302 			return ret;
1303 		offset = 0;
1304 		len -= seg;
1305 		data += seg;
1306 		++gfn;
1307 	}
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_read_guest);
1311 
1312 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1313 			  unsigned long len)
1314 {
1315 	int r;
1316 	unsigned long addr;
1317 	gfn_t gfn = gpa >> PAGE_SHIFT;
1318 	int offset = offset_in_page(gpa);
1319 
1320 	addr = gfn_to_hva(kvm, gfn);
1321 	if (kvm_is_error_hva(addr))
1322 		return -EFAULT;
1323 	pagefault_disable();
1324 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1325 	pagefault_enable();
1326 	if (r)
1327 		return -EFAULT;
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL(kvm_read_guest_atomic);
1331 
1332 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1333 			 int offset, int len)
1334 {
1335 	int r;
1336 	unsigned long addr;
1337 
1338 	addr = gfn_to_hva(kvm, gfn);
1339 	if (kvm_is_error_hva(addr))
1340 		return -EFAULT;
1341 	r = copy_to_user((void __user *)addr + offset, data, len);
1342 	if (r)
1343 		return -EFAULT;
1344 	mark_page_dirty(kvm, gfn);
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1348 
1349 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1350 		    unsigned long len)
1351 {
1352 	gfn_t gfn = gpa >> PAGE_SHIFT;
1353 	int seg;
1354 	int offset = offset_in_page(gpa);
1355 	int ret;
1356 
1357 	while ((seg = next_segment(len, offset)) != 0) {
1358 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1359 		if (ret < 0)
1360 			return ret;
1361 		offset = 0;
1362 		len -= seg;
1363 		data += seg;
1364 		++gfn;
1365 	}
1366 	return 0;
1367 }
1368 
1369 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1370 			      gpa_t gpa)
1371 {
1372 	struct kvm_memslots *slots = kvm_memslots(kvm);
1373 	int offset = offset_in_page(gpa);
1374 	gfn_t gfn = gpa >> PAGE_SHIFT;
1375 
1376 	ghc->gpa = gpa;
1377 	ghc->generation = slots->generation;
1378 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1379 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1380 	if (!kvm_is_error_hva(ghc->hva))
1381 		ghc->hva += offset;
1382 	else
1383 		return -EFAULT;
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1388 
1389 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1390 			   void *data, unsigned long len)
1391 {
1392 	struct kvm_memslots *slots = kvm_memslots(kvm);
1393 	int r;
1394 
1395 	if (slots->generation != ghc->generation)
1396 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1397 
1398 	if (kvm_is_error_hva(ghc->hva))
1399 		return -EFAULT;
1400 
1401 	r = copy_to_user((void __user *)ghc->hva, data, len);
1402 	if (r)
1403 		return -EFAULT;
1404 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1405 
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1409 
1410 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1411 {
1412 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1413 				    offset, len);
1414 }
1415 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1416 
1417 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1418 {
1419 	gfn_t gfn = gpa >> PAGE_SHIFT;
1420 	int seg;
1421 	int offset = offset_in_page(gpa);
1422 	int ret;
1423 
1424         while ((seg = next_segment(len, offset)) != 0) {
1425 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1426 		if (ret < 0)
1427 			return ret;
1428 		offset = 0;
1429 		len -= seg;
1430 		++gfn;
1431 	}
1432 	return 0;
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1435 
1436 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1437 			     gfn_t gfn)
1438 {
1439 	if (memslot && memslot->dirty_bitmap) {
1440 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1441 
1442 		generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1443 	}
1444 }
1445 
1446 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1447 {
1448 	struct kvm_memory_slot *memslot;
1449 
1450 	memslot = gfn_to_memslot(kvm, gfn);
1451 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1452 }
1453 
1454 /*
1455  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1456  */
1457 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1458 {
1459 	DEFINE_WAIT(wait);
1460 
1461 	for (;;) {
1462 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1463 
1464 		if (kvm_arch_vcpu_runnable(vcpu)) {
1465 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1466 			break;
1467 		}
1468 		if (kvm_cpu_has_pending_timer(vcpu))
1469 			break;
1470 		if (signal_pending(current))
1471 			break;
1472 
1473 		schedule();
1474 	}
1475 
1476 	finish_wait(&vcpu->wq, &wait);
1477 }
1478 
1479 void kvm_resched(struct kvm_vcpu *vcpu)
1480 {
1481 	if (!need_resched())
1482 		return;
1483 	cond_resched();
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_resched);
1486 
1487 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1488 {
1489 	struct kvm *kvm = me->kvm;
1490 	struct kvm_vcpu *vcpu;
1491 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1492 	int yielded = 0;
1493 	int pass;
1494 	int i;
1495 
1496 	/*
1497 	 * We boost the priority of a VCPU that is runnable but not
1498 	 * currently running, because it got preempted by something
1499 	 * else and called schedule in __vcpu_run.  Hopefully that
1500 	 * VCPU is holding the lock that we need and will release it.
1501 	 * We approximate round-robin by starting at the last boosted VCPU.
1502 	 */
1503 	for (pass = 0; pass < 2 && !yielded; pass++) {
1504 		kvm_for_each_vcpu(i, vcpu, kvm) {
1505 			struct task_struct *task = NULL;
1506 			struct pid *pid;
1507 			if (!pass && i < last_boosted_vcpu) {
1508 				i = last_boosted_vcpu;
1509 				continue;
1510 			} else if (pass && i > last_boosted_vcpu)
1511 				break;
1512 			if (vcpu == me)
1513 				continue;
1514 			if (waitqueue_active(&vcpu->wq))
1515 				continue;
1516 			rcu_read_lock();
1517 			pid = rcu_dereference(vcpu->pid);
1518 			if (pid)
1519 				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1520 			rcu_read_unlock();
1521 			if (!task)
1522 				continue;
1523 			if (task->flags & PF_VCPU) {
1524 				put_task_struct(task);
1525 				continue;
1526 			}
1527 			if (yield_to(task, 1)) {
1528 				put_task_struct(task);
1529 				kvm->last_boosted_vcpu = i;
1530 				yielded = 1;
1531 				break;
1532 			}
1533 			put_task_struct(task);
1534 		}
1535 	}
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1538 
1539 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1540 {
1541 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1542 	struct page *page;
1543 
1544 	if (vmf->pgoff == 0)
1545 		page = virt_to_page(vcpu->run);
1546 #ifdef CONFIG_X86
1547 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1548 		page = virt_to_page(vcpu->arch.pio_data);
1549 #endif
1550 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1551 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1552 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1553 #endif
1554 	else
1555 		return VM_FAULT_SIGBUS;
1556 	get_page(page);
1557 	vmf->page = page;
1558 	return 0;
1559 }
1560 
1561 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1562 	.fault = kvm_vcpu_fault,
1563 };
1564 
1565 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1566 {
1567 	vma->vm_ops = &kvm_vcpu_vm_ops;
1568 	return 0;
1569 }
1570 
1571 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1572 {
1573 	struct kvm_vcpu *vcpu = filp->private_data;
1574 
1575 	kvm_put_kvm(vcpu->kvm);
1576 	return 0;
1577 }
1578 
1579 static struct file_operations kvm_vcpu_fops = {
1580 	.release        = kvm_vcpu_release,
1581 	.unlocked_ioctl = kvm_vcpu_ioctl,
1582 	.compat_ioctl   = kvm_vcpu_ioctl,
1583 	.mmap           = kvm_vcpu_mmap,
1584 	.llseek		= noop_llseek,
1585 };
1586 
1587 /*
1588  * Allocates an inode for the vcpu.
1589  */
1590 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1591 {
1592 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1593 }
1594 
1595 /*
1596  * Creates some virtual cpus.  Good luck creating more than one.
1597  */
1598 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1599 {
1600 	int r;
1601 	struct kvm_vcpu *vcpu, *v;
1602 
1603 	vcpu = kvm_arch_vcpu_create(kvm, id);
1604 	if (IS_ERR(vcpu))
1605 		return PTR_ERR(vcpu);
1606 
1607 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1608 
1609 	r = kvm_arch_vcpu_setup(vcpu);
1610 	if (r)
1611 		return r;
1612 
1613 	mutex_lock(&kvm->lock);
1614 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1615 		r = -EINVAL;
1616 		goto vcpu_destroy;
1617 	}
1618 
1619 	kvm_for_each_vcpu(r, v, kvm)
1620 		if (v->vcpu_id == id) {
1621 			r = -EEXIST;
1622 			goto vcpu_destroy;
1623 		}
1624 
1625 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1626 
1627 	/* Now it's all set up, let userspace reach it */
1628 	kvm_get_kvm(kvm);
1629 	r = create_vcpu_fd(vcpu);
1630 	if (r < 0) {
1631 		kvm_put_kvm(kvm);
1632 		goto vcpu_destroy;
1633 	}
1634 
1635 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1636 	smp_wmb();
1637 	atomic_inc(&kvm->online_vcpus);
1638 
1639 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1640 	if (kvm->bsp_vcpu_id == id)
1641 		kvm->bsp_vcpu = vcpu;
1642 #endif
1643 	mutex_unlock(&kvm->lock);
1644 	return r;
1645 
1646 vcpu_destroy:
1647 	mutex_unlock(&kvm->lock);
1648 	kvm_arch_vcpu_destroy(vcpu);
1649 	return r;
1650 }
1651 
1652 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1653 {
1654 	if (sigset) {
1655 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1656 		vcpu->sigset_active = 1;
1657 		vcpu->sigset = *sigset;
1658 	} else
1659 		vcpu->sigset_active = 0;
1660 	return 0;
1661 }
1662 
1663 static long kvm_vcpu_ioctl(struct file *filp,
1664 			   unsigned int ioctl, unsigned long arg)
1665 {
1666 	struct kvm_vcpu *vcpu = filp->private_data;
1667 	void __user *argp = (void __user *)arg;
1668 	int r;
1669 	struct kvm_fpu *fpu = NULL;
1670 	struct kvm_sregs *kvm_sregs = NULL;
1671 
1672 	if (vcpu->kvm->mm != current->mm)
1673 		return -EIO;
1674 
1675 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1676 	/*
1677 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1678 	 * so vcpu_load() would break it.
1679 	 */
1680 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1681 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1682 #endif
1683 
1684 
1685 	vcpu_load(vcpu);
1686 	switch (ioctl) {
1687 	case KVM_RUN:
1688 		r = -EINVAL;
1689 		if (arg)
1690 			goto out;
1691 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1692 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1693 		break;
1694 	case KVM_GET_REGS: {
1695 		struct kvm_regs *kvm_regs;
1696 
1697 		r = -ENOMEM;
1698 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1699 		if (!kvm_regs)
1700 			goto out;
1701 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1702 		if (r)
1703 			goto out_free1;
1704 		r = -EFAULT;
1705 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1706 			goto out_free1;
1707 		r = 0;
1708 out_free1:
1709 		kfree(kvm_regs);
1710 		break;
1711 	}
1712 	case KVM_SET_REGS: {
1713 		struct kvm_regs *kvm_regs;
1714 
1715 		r = -ENOMEM;
1716 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1717 		if (!kvm_regs)
1718 			goto out;
1719 		r = -EFAULT;
1720 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1721 			goto out_free2;
1722 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1723 		if (r)
1724 			goto out_free2;
1725 		r = 0;
1726 out_free2:
1727 		kfree(kvm_regs);
1728 		break;
1729 	}
1730 	case KVM_GET_SREGS: {
1731 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1732 		r = -ENOMEM;
1733 		if (!kvm_sregs)
1734 			goto out;
1735 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1736 		if (r)
1737 			goto out;
1738 		r = -EFAULT;
1739 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1740 			goto out;
1741 		r = 0;
1742 		break;
1743 	}
1744 	case KVM_SET_SREGS: {
1745 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1746 		r = -ENOMEM;
1747 		if (!kvm_sregs)
1748 			goto out;
1749 		r = -EFAULT;
1750 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1751 			goto out;
1752 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1753 		if (r)
1754 			goto out;
1755 		r = 0;
1756 		break;
1757 	}
1758 	case KVM_GET_MP_STATE: {
1759 		struct kvm_mp_state mp_state;
1760 
1761 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1762 		if (r)
1763 			goto out;
1764 		r = -EFAULT;
1765 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1766 			goto out;
1767 		r = 0;
1768 		break;
1769 	}
1770 	case KVM_SET_MP_STATE: {
1771 		struct kvm_mp_state mp_state;
1772 
1773 		r = -EFAULT;
1774 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1775 			goto out;
1776 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1777 		if (r)
1778 			goto out;
1779 		r = 0;
1780 		break;
1781 	}
1782 	case KVM_TRANSLATE: {
1783 		struct kvm_translation tr;
1784 
1785 		r = -EFAULT;
1786 		if (copy_from_user(&tr, argp, sizeof tr))
1787 			goto out;
1788 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1789 		if (r)
1790 			goto out;
1791 		r = -EFAULT;
1792 		if (copy_to_user(argp, &tr, sizeof tr))
1793 			goto out;
1794 		r = 0;
1795 		break;
1796 	}
1797 	case KVM_SET_GUEST_DEBUG: {
1798 		struct kvm_guest_debug dbg;
1799 
1800 		r = -EFAULT;
1801 		if (copy_from_user(&dbg, argp, sizeof dbg))
1802 			goto out;
1803 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1804 		if (r)
1805 			goto out;
1806 		r = 0;
1807 		break;
1808 	}
1809 	case KVM_SET_SIGNAL_MASK: {
1810 		struct kvm_signal_mask __user *sigmask_arg = argp;
1811 		struct kvm_signal_mask kvm_sigmask;
1812 		sigset_t sigset, *p;
1813 
1814 		p = NULL;
1815 		if (argp) {
1816 			r = -EFAULT;
1817 			if (copy_from_user(&kvm_sigmask, argp,
1818 					   sizeof kvm_sigmask))
1819 				goto out;
1820 			r = -EINVAL;
1821 			if (kvm_sigmask.len != sizeof sigset)
1822 				goto out;
1823 			r = -EFAULT;
1824 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1825 					   sizeof sigset))
1826 				goto out;
1827 			p = &sigset;
1828 		}
1829 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1830 		break;
1831 	}
1832 	case KVM_GET_FPU: {
1833 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1834 		r = -ENOMEM;
1835 		if (!fpu)
1836 			goto out;
1837 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1838 		if (r)
1839 			goto out;
1840 		r = -EFAULT;
1841 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1842 			goto out;
1843 		r = 0;
1844 		break;
1845 	}
1846 	case KVM_SET_FPU: {
1847 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1848 		r = -ENOMEM;
1849 		if (!fpu)
1850 			goto out;
1851 		r = -EFAULT;
1852 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1853 			goto out;
1854 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1855 		if (r)
1856 			goto out;
1857 		r = 0;
1858 		break;
1859 	}
1860 	default:
1861 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1862 	}
1863 out:
1864 	vcpu_put(vcpu);
1865 	kfree(fpu);
1866 	kfree(kvm_sregs);
1867 	return r;
1868 }
1869 
1870 static long kvm_vm_ioctl(struct file *filp,
1871 			   unsigned int ioctl, unsigned long arg)
1872 {
1873 	struct kvm *kvm = filp->private_data;
1874 	void __user *argp = (void __user *)arg;
1875 	int r;
1876 
1877 	if (kvm->mm != current->mm)
1878 		return -EIO;
1879 	switch (ioctl) {
1880 	case KVM_CREATE_VCPU:
1881 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1882 		if (r < 0)
1883 			goto out;
1884 		break;
1885 	case KVM_SET_USER_MEMORY_REGION: {
1886 		struct kvm_userspace_memory_region kvm_userspace_mem;
1887 
1888 		r = -EFAULT;
1889 		if (copy_from_user(&kvm_userspace_mem, argp,
1890 						sizeof kvm_userspace_mem))
1891 			goto out;
1892 
1893 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1894 		if (r)
1895 			goto out;
1896 		break;
1897 	}
1898 	case KVM_GET_DIRTY_LOG: {
1899 		struct kvm_dirty_log log;
1900 
1901 		r = -EFAULT;
1902 		if (copy_from_user(&log, argp, sizeof log))
1903 			goto out;
1904 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1905 		if (r)
1906 			goto out;
1907 		break;
1908 	}
1909 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1910 	case KVM_REGISTER_COALESCED_MMIO: {
1911 		struct kvm_coalesced_mmio_zone zone;
1912 		r = -EFAULT;
1913 		if (copy_from_user(&zone, argp, sizeof zone))
1914 			goto out;
1915 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1916 		if (r)
1917 			goto out;
1918 		r = 0;
1919 		break;
1920 	}
1921 	case KVM_UNREGISTER_COALESCED_MMIO: {
1922 		struct kvm_coalesced_mmio_zone zone;
1923 		r = -EFAULT;
1924 		if (copy_from_user(&zone, argp, sizeof zone))
1925 			goto out;
1926 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1927 		if (r)
1928 			goto out;
1929 		r = 0;
1930 		break;
1931 	}
1932 #endif
1933 	case KVM_IRQFD: {
1934 		struct kvm_irqfd data;
1935 
1936 		r = -EFAULT;
1937 		if (copy_from_user(&data, argp, sizeof data))
1938 			goto out;
1939 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1940 		break;
1941 	}
1942 	case KVM_IOEVENTFD: {
1943 		struct kvm_ioeventfd data;
1944 
1945 		r = -EFAULT;
1946 		if (copy_from_user(&data, argp, sizeof data))
1947 			goto out;
1948 		r = kvm_ioeventfd(kvm, &data);
1949 		break;
1950 	}
1951 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1952 	case KVM_SET_BOOT_CPU_ID:
1953 		r = 0;
1954 		mutex_lock(&kvm->lock);
1955 		if (atomic_read(&kvm->online_vcpus) != 0)
1956 			r = -EBUSY;
1957 		else
1958 			kvm->bsp_vcpu_id = arg;
1959 		mutex_unlock(&kvm->lock);
1960 		break;
1961 #endif
1962 	default:
1963 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1964 		if (r == -ENOTTY)
1965 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1966 	}
1967 out:
1968 	return r;
1969 }
1970 
1971 #ifdef CONFIG_COMPAT
1972 struct compat_kvm_dirty_log {
1973 	__u32 slot;
1974 	__u32 padding1;
1975 	union {
1976 		compat_uptr_t dirty_bitmap; /* one bit per page */
1977 		__u64 padding2;
1978 	};
1979 };
1980 
1981 static long kvm_vm_compat_ioctl(struct file *filp,
1982 			   unsigned int ioctl, unsigned long arg)
1983 {
1984 	struct kvm *kvm = filp->private_data;
1985 	int r;
1986 
1987 	if (kvm->mm != current->mm)
1988 		return -EIO;
1989 	switch (ioctl) {
1990 	case KVM_GET_DIRTY_LOG: {
1991 		struct compat_kvm_dirty_log compat_log;
1992 		struct kvm_dirty_log log;
1993 
1994 		r = -EFAULT;
1995 		if (copy_from_user(&compat_log, (void __user *)arg,
1996 				   sizeof(compat_log)))
1997 			goto out;
1998 		log.slot	 = compat_log.slot;
1999 		log.padding1	 = compat_log.padding1;
2000 		log.padding2	 = compat_log.padding2;
2001 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2002 
2003 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2004 		if (r)
2005 			goto out;
2006 		break;
2007 	}
2008 	default:
2009 		r = kvm_vm_ioctl(filp, ioctl, arg);
2010 	}
2011 
2012 out:
2013 	return r;
2014 }
2015 #endif
2016 
2017 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2018 {
2019 	struct page *page[1];
2020 	unsigned long addr;
2021 	int npages;
2022 	gfn_t gfn = vmf->pgoff;
2023 	struct kvm *kvm = vma->vm_file->private_data;
2024 
2025 	addr = gfn_to_hva(kvm, gfn);
2026 	if (kvm_is_error_hva(addr))
2027 		return VM_FAULT_SIGBUS;
2028 
2029 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2030 				NULL);
2031 	if (unlikely(npages != 1))
2032 		return VM_FAULT_SIGBUS;
2033 
2034 	vmf->page = page[0];
2035 	return 0;
2036 }
2037 
2038 static const struct vm_operations_struct kvm_vm_vm_ops = {
2039 	.fault = kvm_vm_fault,
2040 };
2041 
2042 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2043 {
2044 	vma->vm_ops = &kvm_vm_vm_ops;
2045 	return 0;
2046 }
2047 
2048 static struct file_operations kvm_vm_fops = {
2049 	.release        = kvm_vm_release,
2050 	.unlocked_ioctl = kvm_vm_ioctl,
2051 #ifdef CONFIG_COMPAT
2052 	.compat_ioctl   = kvm_vm_compat_ioctl,
2053 #endif
2054 	.mmap           = kvm_vm_mmap,
2055 	.llseek		= noop_llseek,
2056 };
2057 
2058 static int kvm_dev_ioctl_create_vm(void)
2059 {
2060 	int r;
2061 	struct kvm *kvm;
2062 
2063 	kvm = kvm_create_vm();
2064 	if (IS_ERR(kvm))
2065 		return PTR_ERR(kvm);
2066 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2067 	r = kvm_coalesced_mmio_init(kvm);
2068 	if (r < 0) {
2069 		kvm_put_kvm(kvm);
2070 		return r;
2071 	}
2072 #endif
2073 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2074 	if (r < 0)
2075 		kvm_put_kvm(kvm);
2076 
2077 	return r;
2078 }
2079 
2080 static long kvm_dev_ioctl_check_extension_generic(long arg)
2081 {
2082 	switch (arg) {
2083 	case KVM_CAP_USER_MEMORY:
2084 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2085 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2086 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2087 	case KVM_CAP_SET_BOOT_CPU_ID:
2088 #endif
2089 	case KVM_CAP_INTERNAL_ERROR_DATA:
2090 		return 1;
2091 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2092 	case KVM_CAP_IRQ_ROUTING:
2093 		return KVM_MAX_IRQ_ROUTES;
2094 #endif
2095 	default:
2096 		break;
2097 	}
2098 	return kvm_dev_ioctl_check_extension(arg);
2099 }
2100 
2101 static long kvm_dev_ioctl(struct file *filp,
2102 			  unsigned int ioctl, unsigned long arg)
2103 {
2104 	long r = -EINVAL;
2105 
2106 	switch (ioctl) {
2107 	case KVM_GET_API_VERSION:
2108 		r = -EINVAL;
2109 		if (arg)
2110 			goto out;
2111 		r = KVM_API_VERSION;
2112 		break;
2113 	case KVM_CREATE_VM:
2114 		r = -EINVAL;
2115 		if (arg)
2116 			goto out;
2117 		r = kvm_dev_ioctl_create_vm();
2118 		break;
2119 	case KVM_CHECK_EXTENSION:
2120 		r = kvm_dev_ioctl_check_extension_generic(arg);
2121 		break;
2122 	case KVM_GET_VCPU_MMAP_SIZE:
2123 		r = -EINVAL;
2124 		if (arg)
2125 			goto out;
2126 		r = PAGE_SIZE;     /* struct kvm_run */
2127 #ifdef CONFIG_X86
2128 		r += PAGE_SIZE;    /* pio data page */
2129 #endif
2130 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2131 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2132 #endif
2133 		break;
2134 	case KVM_TRACE_ENABLE:
2135 	case KVM_TRACE_PAUSE:
2136 	case KVM_TRACE_DISABLE:
2137 		r = -EOPNOTSUPP;
2138 		break;
2139 	default:
2140 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2141 	}
2142 out:
2143 	return r;
2144 }
2145 
2146 static struct file_operations kvm_chardev_ops = {
2147 	.unlocked_ioctl = kvm_dev_ioctl,
2148 	.compat_ioctl   = kvm_dev_ioctl,
2149 	.llseek		= noop_llseek,
2150 };
2151 
2152 static struct miscdevice kvm_dev = {
2153 	KVM_MINOR,
2154 	"kvm",
2155 	&kvm_chardev_ops,
2156 };
2157 
2158 static void hardware_enable_nolock(void *junk)
2159 {
2160 	int cpu = raw_smp_processor_id();
2161 	int r;
2162 
2163 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2164 		return;
2165 
2166 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2167 
2168 	r = kvm_arch_hardware_enable(NULL);
2169 
2170 	if (r) {
2171 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2172 		atomic_inc(&hardware_enable_failed);
2173 		printk(KERN_INFO "kvm: enabling virtualization on "
2174 				 "CPU%d failed\n", cpu);
2175 	}
2176 }
2177 
2178 static void hardware_enable(void *junk)
2179 {
2180 	raw_spin_lock(&kvm_lock);
2181 	hardware_enable_nolock(junk);
2182 	raw_spin_unlock(&kvm_lock);
2183 }
2184 
2185 static void hardware_disable_nolock(void *junk)
2186 {
2187 	int cpu = raw_smp_processor_id();
2188 
2189 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2190 		return;
2191 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2192 	kvm_arch_hardware_disable(NULL);
2193 }
2194 
2195 static void hardware_disable(void *junk)
2196 {
2197 	raw_spin_lock(&kvm_lock);
2198 	hardware_disable_nolock(junk);
2199 	raw_spin_unlock(&kvm_lock);
2200 }
2201 
2202 static void hardware_disable_all_nolock(void)
2203 {
2204 	BUG_ON(!kvm_usage_count);
2205 
2206 	kvm_usage_count--;
2207 	if (!kvm_usage_count)
2208 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2209 }
2210 
2211 static void hardware_disable_all(void)
2212 {
2213 	raw_spin_lock(&kvm_lock);
2214 	hardware_disable_all_nolock();
2215 	raw_spin_unlock(&kvm_lock);
2216 }
2217 
2218 static int hardware_enable_all(void)
2219 {
2220 	int r = 0;
2221 
2222 	raw_spin_lock(&kvm_lock);
2223 
2224 	kvm_usage_count++;
2225 	if (kvm_usage_count == 1) {
2226 		atomic_set(&hardware_enable_failed, 0);
2227 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2228 
2229 		if (atomic_read(&hardware_enable_failed)) {
2230 			hardware_disable_all_nolock();
2231 			r = -EBUSY;
2232 		}
2233 	}
2234 
2235 	raw_spin_unlock(&kvm_lock);
2236 
2237 	return r;
2238 }
2239 
2240 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2241 			   void *v)
2242 {
2243 	int cpu = (long)v;
2244 
2245 	if (!kvm_usage_count)
2246 		return NOTIFY_OK;
2247 
2248 	val &= ~CPU_TASKS_FROZEN;
2249 	switch (val) {
2250 	case CPU_DYING:
2251 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2252 		       cpu);
2253 		hardware_disable(NULL);
2254 		break;
2255 	case CPU_STARTING:
2256 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2257 		       cpu);
2258 		hardware_enable(NULL);
2259 		break;
2260 	}
2261 	return NOTIFY_OK;
2262 }
2263 
2264 
2265 asmlinkage void kvm_spurious_fault(void)
2266 {
2267 	/* Fault while not rebooting.  We want the trace. */
2268 	BUG();
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2271 
2272 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2273 		      void *v)
2274 {
2275 	/*
2276 	 * Some (well, at least mine) BIOSes hang on reboot if
2277 	 * in vmx root mode.
2278 	 *
2279 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2280 	 */
2281 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2282 	kvm_rebooting = true;
2283 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2284 	return NOTIFY_OK;
2285 }
2286 
2287 static struct notifier_block kvm_reboot_notifier = {
2288 	.notifier_call = kvm_reboot,
2289 	.priority = 0,
2290 };
2291 
2292 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2293 {
2294 	int i;
2295 
2296 	for (i = 0; i < bus->dev_count; i++) {
2297 		struct kvm_io_device *pos = bus->devs[i];
2298 
2299 		kvm_iodevice_destructor(pos);
2300 	}
2301 	kfree(bus);
2302 }
2303 
2304 /* kvm_io_bus_write - called under kvm->slots_lock */
2305 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2306 		     int len, const void *val)
2307 {
2308 	int i;
2309 	struct kvm_io_bus *bus;
2310 
2311 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2312 	for (i = 0; i < bus->dev_count; i++)
2313 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2314 			return 0;
2315 	return -EOPNOTSUPP;
2316 }
2317 
2318 /* kvm_io_bus_read - called under kvm->slots_lock */
2319 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2320 		    int len, void *val)
2321 {
2322 	int i;
2323 	struct kvm_io_bus *bus;
2324 
2325 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2326 	for (i = 0; i < bus->dev_count; i++)
2327 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2328 			return 0;
2329 	return -EOPNOTSUPP;
2330 }
2331 
2332 /* Caller must hold slots_lock. */
2333 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2334 			    struct kvm_io_device *dev)
2335 {
2336 	struct kvm_io_bus *new_bus, *bus;
2337 
2338 	bus = kvm->buses[bus_idx];
2339 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2340 		return -ENOSPC;
2341 
2342 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2343 	if (!new_bus)
2344 		return -ENOMEM;
2345 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2346 	new_bus->devs[new_bus->dev_count++] = dev;
2347 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2348 	synchronize_srcu_expedited(&kvm->srcu);
2349 	kfree(bus);
2350 
2351 	return 0;
2352 }
2353 
2354 /* Caller must hold slots_lock. */
2355 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2356 			      struct kvm_io_device *dev)
2357 {
2358 	int i, r;
2359 	struct kvm_io_bus *new_bus, *bus;
2360 
2361 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2362 	if (!new_bus)
2363 		return -ENOMEM;
2364 
2365 	bus = kvm->buses[bus_idx];
2366 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2367 
2368 	r = -ENOENT;
2369 	for (i = 0; i < new_bus->dev_count; i++)
2370 		if (new_bus->devs[i] == dev) {
2371 			r = 0;
2372 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2373 			break;
2374 		}
2375 
2376 	if (r) {
2377 		kfree(new_bus);
2378 		return r;
2379 	}
2380 
2381 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2382 	synchronize_srcu_expedited(&kvm->srcu);
2383 	kfree(bus);
2384 	return r;
2385 }
2386 
2387 static struct notifier_block kvm_cpu_notifier = {
2388 	.notifier_call = kvm_cpu_hotplug,
2389 };
2390 
2391 static int vm_stat_get(void *_offset, u64 *val)
2392 {
2393 	unsigned offset = (long)_offset;
2394 	struct kvm *kvm;
2395 
2396 	*val = 0;
2397 	raw_spin_lock(&kvm_lock);
2398 	list_for_each_entry(kvm, &vm_list, vm_list)
2399 		*val += *(u32 *)((void *)kvm + offset);
2400 	raw_spin_unlock(&kvm_lock);
2401 	return 0;
2402 }
2403 
2404 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2405 
2406 static int vcpu_stat_get(void *_offset, u64 *val)
2407 {
2408 	unsigned offset = (long)_offset;
2409 	struct kvm *kvm;
2410 	struct kvm_vcpu *vcpu;
2411 	int i;
2412 
2413 	*val = 0;
2414 	raw_spin_lock(&kvm_lock);
2415 	list_for_each_entry(kvm, &vm_list, vm_list)
2416 		kvm_for_each_vcpu(i, vcpu, kvm)
2417 			*val += *(u32 *)((void *)vcpu + offset);
2418 
2419 	raw_spin_unlock(&kvm_lock);
2420 	return 0;
2421 }
2422 
2423 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2424 
2425 static const struct file_operations *stat_fops[] = {
2426 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2427 	[KVM_STAT_VM]   = &vm_stat_fops,
2428 };
2429 
2430 static void kvm_init_debug(void)
2431 {
2432 	struct kvm_stats_debugfs_item *p;
2433 
2434 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2435 	for (p = debugfs_entries; p->name; ++p)
2436 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2437 						(void *)(long)p->offset,
2438 						stat_fops[p->kind]);
2439 }
2440 
2441 static void kvm_exit_debug(void)
2442 {
2443 	struct kvm_stats_debugfs_item *p;
2444 
2445 	for (p = debugfs_entries; p->name; ++p)
2446 		debugfs_remove(p->dentry);
2447 	debugfs_remove(kvm_debugfs_dir);
2448 }
2449 
2450 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2451 {
2452 	if (kvm_usage_count)
2453 		hardware_disable_nolock(NULL);
2454 	return 0;
2455 }
2456 
2457 static int kvm_resume(struct sys_device *dev)
2458 {
2459 	if (kvm_usage_count) {
2460 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2461 		hardware_enable_nolock(NULL);
2462 	}
2463 	return 0;
2464 }
2465 
2466 static struct sysdev_class kvm_sysdev_class = {
2467 	.name = "kvm",
2468 	.suspend = kvm_suspend,
2469 	.resume = kvm_resume,
2470 };
2471 
2472 static struct sys_device kvm_sysdev = {
2473 	.id = 0,
2474 	.cls = &kvm_sysdev_class,
2475 };
2476 
2477 struct page *bad_page;
2478 pfn_t bad_pfn;
2479 
2480 static inline
2481 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2482 {
2483 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2484 }
2485 
2486 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2487 {
2488 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2489 
2490 	kvm_arch_vcpu_load(vcpu, cpu);
2491 }
2492 
2493 static void kvm_sched_out(struct preempt_notifier *pn,
2494 			  struct task_struct *next)
2495 {
2496 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2497 
2498 	kvm_arch_vcpu_put(vcpu);
2499 }
2500 
2501 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2502 		  struct module *module)
2503 {
2504 	int r;
2505 	int cpu;
2506 
2507 	r = kvm_arch_init(opaque);
2508 	if (r)
2509 		goto out_fail;
2510 
2511 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2512 
2513 	if (bad_page == NULL) {
2514 		r = -ENOMEM;
2515 		goto out;
2516 	}
2517 
2518 	bad_pfn = page_to_pfn(bad_page);
2519 
2520 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2521 
2522 	if (hwpoison_page == NULL) {
2523 		r = -ENOMEM;
2524 		goto out_free_0;
2525 	}
2526 
2527 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2528 
2529 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2530 
2531 	if (fault_page == NULL) {
2532 		r = -ENOMEM;
2533 		goto out_free_0;
2534 	}
2535 
2536 	fault_pfn = page_to_pfn(fault_page);
2537 
2538 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2539 		r = -ENOMEM;
2540 		goto out_free_0;
2541 	}
2542 
2543 	r = kvm_arch_hardware_setup();
2544 	if (r < 0)
2545 		goto out_free_0a;
2546 
2547 	for_each_online_cpu(cpu) {
2548 		smp_call_function_single(cpu,
2549 				kvm_arch_check_processor_compat,
2550 				&r, 1);
2551 		if (r < 0)
2552 			goto out_free_1;
2553 	}
2554 
2555 	r = register_cpu_notifier(&kvm_cpu_notifier);
2556 	if (r)
2557 		goto out_free_2;
2558 	register_reboot_notifier(&kvm_reboot_notifier);
2559 
2560 	r = sysdev_class_register(&kvm_sysdev_class);
2561 	if (r)
2562 		goto out_free_3;
2563 
2564 	r = sysdev_register(&kvm_sysdev);
2565 	if (r)
2566 		goto out_free_4;
2567 
2568 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2569 	if (!vcpu_align)
2570 		vcpu_align = __alignof__(struct kvm_vcpu);
2571 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2572 					   0, NULL);
2573 	if (!kvm_vcpu_cache) {
2574 		r = -ENOMEM;
2575 		goto out_free_5;
2576 	}
2577 
2578 	r = kvm_async_pf_init();
2579 	if (r)
2580 		goto out_free;
2581 
2582 	kvm_chardev_ops.owner = module;
2583 	kvm_vm_fops.owner = module;
2584 	kvm_vcpu_fops.owner = module;
2585 
2586 	r = misc_register(&kvm_dev);
2587 	if (r) {
2588 		printk(KERN_ERR "kvm: misc device register failed\n");
2589 		goto out_unreg;
2590 	}
2591 
2592 	kvm_preempt_ops.sched_in = kvm_sched_in;
2593 	kvm_preempt_ops.sched_out = kvm_sched_out;
2594 
2595 	kvm_init_debug();
2596 
2597 	return 0;
2598 
2599 out_unreg:
2600 	kvm_async_pf_deinit();
2601 out_free:
2602 	kmem_cache_destroy(kvm_vcpu_cache);
2603 out_free_5:
2604 	sysdev_unregister(&kvm_sysdev);
2605 out_free_4:
2606 	sysdev_class_unregister(&kvm_sysdev_class);
2607 out_free_3:
2608 	unregister_reboot_notifier(&kvm_reboot_notifier);
2609 	unregister_cpu_notifier(&kvm_cpu_notifier);
2610 out_free_2:
2611 out_free_1:
2612 	kvm_arch_hardware_unsetup();
2613 out_free_0a:
2614 	free_cpumask_var(cpus_hardware_enabled);
2615 out_free_0:
2616 	if (fault_page)
2617 		__free_page(fault_page);
2618 	if (hwpoison_page)
2619 		__free_page(hwpoison_page);
2620 	__free_page(bad_page);
2621 out:
2622 	kvm_arch_exit();
2623 out_fail:
2624 	return r;
2625 }
2626 EXPORT_SYMBOL_GPL(kvm_init);
2627 
2628 void kvm_exit(void)
2629 {
2630 	kvm_exit_debug();
2631 	misc_deregister(&kvm_dev);
2632 	kmem_cache_destroy(kvm_vcpu_cache);
2633 	kvm_async_pf_deinit();
2634 	sysdev_unregister(&kvm_sysdev);
2635 	sysdev_class_unregister(&kvm_sysdev_class);
2636 	unregister_reboot_notifier(&kvm_reboot_notifier);
2637 	unregister_cpu_notifier(&kvm_cpu_notifier);
2638 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2639 	kvm_arch_hardware_unsetup();
2640 	kvm_arch_exit();
2641 	free_cpumask_var(cpus_hardware_enabled);
2642 	__free_page(hwpoison_page);
2643 	__free_page(bad_page);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_exit);
2646