xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 	if (pfn_valid(pfn))
136 		return PageReserved(pfn_to_page(pfn));
137 
138 	return true;
139 }
140 
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 	int cpu;
147 
148 	if (mutex_lock_killable(&vcpu->mutex))
149 		return -EINTR;
150 	cpu = get_cpu();
151 	preempt_notifier_register(&vcpu->preempt_notifier);
152 	kvm_arch_vcpu_load(vcpu, cpu);
153 	put_cpu();
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157 
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 	preempt_disable();
161 	kvm_arch_vcpu_put(vcpu);
162 	preempt_notifier_unregister(&vcpu->preempt_notifier);
163 	preempt_enable();
164 	mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167 
168 static void ack_flush(void *_completed)
169 {
170 }
171 
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 	int i, cpu, me;
175 	cpumask_var_t cpus;
176 	bool called = true;
177 	struct kvm_vcpu *vcpu;
178 
179 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180 
181 	me = get_cpu();
182 	kvm_for_each_vcpu(i, vcpu, kvm) {
183 		kvm_make_request(req, vcpu);
184 		cpu = vcpu->cpu;
185 
186 		/* Set ->requests bit before we read ->mode. */
187 		smp_mb__after_atomic();
188 
189 		if (cpus != NULL && cpu != -1 && cpu != me &&
190 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 			cpumask_set_cpu(cpu, cpus);
192 	}
193 	if (unlikely(cpus == NULL))
194 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 	else if (!cpumask_empty(cpus))
196 		smp_call_function_many(cpus, ack_flush, NULL, 1);
197 	else
198 		called = false;
199 	put_cpu();
200 	free_cpumask_var(cpus);
201 	return called;
202 }
203 
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 	/*
208 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 	 * kvm_make_all_cpus_request.
210 	 */
211 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212 
213 	/*
214 	 * We want to publish modifications to the page tables before reading
215 	 * mode. Pairs with a memory barrier in arch-specific code.
216 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219 	 *
220 	 * There is already an smp_mb__after_atomic() before
221 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222 	 * barrier here.
223 	 */
224 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225 		++kvm->stat.remote_tlb_flush;
226 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230 
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235 
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238 	struct page *page;
239 	int r;
240 
241 	mutex_init(&vcpu->mutex);
242 	vcpu->cpu = -1;
243 	vcpu->kvm = kvm;
244 	vcpu->vcpu_id = id;
245 	vcpu->pid = NULL;
246 	init_swait_queue_head(&vcpu->wq);
247 	kvm_async_pf_vcpu_init(vcpu);
248 
249 	vcpu->pre_pcpu = -1;
250 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251 
252 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253 	if (!page) {
254 		r = -ENOMEM;
255 		goto fail;
256 	}
257 	vcpu->run = page_address(page);
258 
259 	kvm_vcpu_set_in_spin_loop(vcpu, false);
260 	kvm_vcpu_set_dy_eligible(vcpu, false);
261 	vcpu->preempted = false;
262 
263 	r = kvm_arch_vcpu_init(vcpu);
264 	if (r < 0)
265 		goto fail_free_run;
266 	return 0;
267 
268 fail_free_run:
269 	free_page((unsigned long)vcpu->run);
270 fail:
271 	return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274 
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277 	put_pid(vcpu->pid);
278 	kvm_arch_vcpu_uninit(vcpu);
279 	free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282 
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286 	return container_of(mn, struct kvm, mmu_notifier);
287 }
288 
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290 					     struct mm_struct *mm,
291 					     unsigned long address)
292 {
293 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
294 	int need_tlb_flush, idx;
295 
296 	/*
297 	 * When ->invalidate_page runs, the linux pte has been zapped
298 	 * already but the page is still allocated until
299 	 * ->invalidate_page returns. So if we increase the sequence
300 	 * here the kvm page fault will notice if the spte can't be
301 	 * established because the page is going to be freed. If
302 	 * instead the kvm page fault establishes the spte before
303 	 * ->invalidate_page runs, kvm_unmap_hva will release it
304 	 * before returning.
305 	 *
306 	 * The sequence increase only need to be seen at spin_unlock
307 	 * time, and not at spin_lock time.
308 	 *
309 	 * Increasing the sequence after the spin_unlock would be
310 	 * unsafe because the kvm page fault could then establish the
311 	 * pte after kvm_unmap_hva returned, without noticing the page
312 	 * is going to be freed.
313 	 */
314 	idx = srcu_read_lock(&kvm->srcu);
315 	spin_lock(&kvm->mmu_lock);
316 
317 	kvm->mmu_notifier_seq++;
318 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319 	/* we've to flush the tlb before the pages can be freed */
320 	if (need_tlb_flush)
321 		kvm_flush_remote_tlbs(kvm);
322 
323 	spin_unlock(&kvm->mmu_lock);
324 
325 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326 
327 	srcu_read_unlock(&kvm->srcu, idx);
328 }
329 
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 					struct mm_struct *mm,
332 					unsigned long address,
333 					pte_t pte)
334 {
335 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 	int idx;
337 
338 	idx = srcu_read_lock(&kvm->srcu);
339 	spin_lock(&kvm->mmu_lock);
340 	kvm->mmu_notifier_seq++;
341 	kvm_set_spte_hva(kvm, address, pte);
342 	spin_unlock(&kvm->mmu_lock);
343 	srcu_read_unlock(&kvm->srcu, idx);
344 }
345 
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 						    struct mm_struct *mm,
348 						    unsigned long start,
349 						    unsigned long end)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int need_tlb_flush = 0, idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	/*
357 	 * The count increase must become visible at unlock time as no
358 	 * spte can be established without taking the mmu_lock and
359 	 * count is also read inside the mmu_lock critical section.
360 	 */
361 	kvm->mmu_notifier_count++;
362 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 	need_tlb_flush |= kvm->tlbs_dirty;
364 	/* we've to flush the tlb before the pages can be freed */
365 	if (need_tlb_flush)
366 		kvm_flush_remote_tlbs(kvm);
367 
368 	spin_unlock(&kvm->mmu_lock);
369 	srcu_read_unlock(&kvm->srcu, idx);
370 }
371 
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373 						  struct mm_struct *mm,
374 						  unsigned long start,
375 						  unsigned long end)
376 {
377 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 
379 	spin_lock(&kvm->mmu_lock);
380 	/*
381 	 * This sequence increase will notify the kvm page fault that
382 	 * the page that is going to be mapped in the spte could have
383 	 * been freed.
384 	 */
385 	kvm->mmu_notifier_seq++;
386 	smp_wmb();
387 	/*
388 	 * The above sequence increase must be visible before the
389 	 * below count decrease, which is ensured by the smp_wmb above
390 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
391 	 */
392 	kvm->mmu_notifier_count--;
393 	spin_unlock(&kvm->mmu_lock);
394 
395 	BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397 
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399 					      struct mm_struct *mm,
400 					      unsigned long start,
401 					      unsigned long end)
402 {
403 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 	int young, idx;
405 
406 	idx = srcu_read_lock(&kvm->srcu);
407 	spin_lock(&kvm->mmu_lock);
408 
409 	young = kvm_age_hva(kvm, start, end);
410 	if (young)
411 		kvm_flush_remote_tlbs(kvm);
412 
413 	spin_unlock(&kvm->mmu_lock);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 
416 	return young;
417 }
418 
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420 					struct mm_struct *mm,
421 					unsigned long start,
422 					unsigned long end)
423 {
424 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
425 	int young, idx;
426 
427 	idx = srcu_read_lock(&kvm->srcu);
428 	spin_lock(&kvm->mmu_lock);
429 	/*
430 	 * Even though we do not flush TLB, this will still adversely
431 	 * affect performance on pre-Haswell Intel EPT, where there is
432 	 * no EPT Access Bit to clear so that we have to tear down EPT
433 	 * tables instead. If we find this unacceptable, we can always
434 	 * add a parameter to kvm_age_hva so that it effectively doesn't
435 	 * do anything on clear_young.
436 	 *
437 	 * Also note that currently we never issue secondary TLB flushes
438 	 * from clear_young, leaving this job up to the regular system
439 	 * cadence. If we find this inaccurate, we might come up with a
440 	 * more sophisticated heuristic later.
441 	 */
442 	young = kvm_age_hva(kvm, start, end);
443 	spin_unlock(&kvm->mmu_lock);
444 	srcu_read_unlock(&kvm->srcu, idx);
445 
446 	return young;
447 }
448 
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450 				       struct mm_struct *mm,
451 				       unsigned long address)
452 {
453 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 	int young, idx;
455 
456 	idx = srcu_read_lock(&kvm->srcu);
457 	spin_lock(&kvm->mmu_lock);
458 	young = kvm_test_age_hva(kvm, address);
459 	spin_unlock(&kvm->mmu_lock);
460 	srcu_read_unlock(&kvm->srcu, idx);
461 
462 	return young;
463 }
464 
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466 				     struct mm_struct *mm)
467 {
468 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
469 	int idx;
470 
471 	idx = srcu_read_lock(&kvm->srcu);
472 	kvm_arch_flush_shadow_all(kvm);
473 	srcu_read_unlock(&kvm->srcu, idx);
474 }
475 
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
478 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
479 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
480 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
481 	.clear_young		= kvm_mmu_notifier_clear_young,
482 	.test_young		= kvm_mmu_notifier_test_young,
483 	.change_pte		= kvm_mmu_notifier_change_pte,
484 	.release		= kvm_mmu_notifier_release,
485 };
486 
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492 
493 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494 
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497 	return 0;
498 }
499 
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501 
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504 	int i;
505 	struct kvm_memslots *slots;
506 
507 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
508 	if (!slots)
509 		return NULL;
510 
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	if (kvm->debugfs_stat_data) {
563 		for (i = 0; i < kvm_debugfs_num_entries; i++)
564 			kfree(kvm->debugfs_stat_data[i]);
565 		kfree(kvm->debugfs_stat_data);
566 	}
567 }
568 
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 	char dir_name[ITOA_MAX_LEN * 2];
572 	struct kvm_stat_data *stat_data;
573 	struct kvm_stats_debugfs_item *p;
574 
575 	if (!debugfs_initialized())
576 		return 0;
577 
578 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 						 kvm_debugfs_dir);
581 	if (!kvm->debugfs_dentry)
582 		return -ENOMEM;
583 
584 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 					 sizeof(*kvm->debugfs_stat_data),
586 					 GFP_KERNEL);
587 	if (!kvm->debugfs_stat_data)
588 		return -ENOMEM;
589 
590 	for (p = debugfs_entries; p->name; p++) {
591 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 		if (!stat_data)
593 			return -ENOMEM;
594 
595 		stat_data->kvm = kvm;
596 		stat_data->offset = p->offset;
597 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 		if (!debugfs_create_file(p->name, 0644,
599 					 kvm->debugfs_dentry,
600 					 stat_data,
601 					 stat_fops_per_vm[p->kind]))
602 			return -ENOMEM;
603 	}
604 	return 0;
605 }
606 
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 	int r, i;
610 	struct kvm *kvm = kvm_arch_alloc_vm();
611 
612 	if (!kvm)
613 		return ERR_PTR(-ENOMEM);
614 
615 	spin_lock_init(&kvm->mmu_lock);
616 	mmgrab(current->mm);
617 	kvm->mm = current->mm;
618 	kvm_eventfd_init(kvm);
619 	mutex_init(&kvm->lock);
620 	mutex_init(&kvm->irq_lock);
621 	mutex_init(&kvm->slots_lock);
622 	refcount_set(&kvm->users_count, 1);
623 	INIT_LIST_HEAD(&kvm->devices);
624 
625 	r = kvm_arch_init_vm(kvm, type);
626 	if (r)
627 		goto out_err_no_disable;
628 
629 	r = hardware_enable_all();
630 	if (r)
631 		goto out_err_no_disable;
632 
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636 
637 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638 
639 	r = -ENOMEM;
640 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 		struct kvm_memslots *slots = kvm_alloc_memslots();
642 		if (!slots)
643 			goto out_err_no_srcu;
644 		/*
645 		 * Generations must be different for each address space.
646 		 * Init kvm generation close to the maximum to easily test the
647 		 * code of handling generation number wrap-around.
648 		 */
649 		slots->generation = i * 2 - 150;
650 		rcu_assign_pointer(kvm->memslots[i], slots);
651 	}
652 
653 	if (init_srcu_struct(&kvm->srcu))
654 		goto out_err_no_srcu;
655 	if (init_srcu_struct(&kvm->irq_srcu))
656 		goto out_err_no_irq_srcu;
657 	for (i = 0; i < KVM_NR_BUSES; i++) {
658 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659 					GFP_KERNEL);
660 		if (!kvm->buses[i])
661 			goto out_err;
662 	}
663 
664 	r = kvm_init_mmu_notifier(kvm);
665 	if (r)
666 		goto out_err;
667 
668 	spin_lock(&kvm_lock);
669 	list_add(&kvm->vm_list, &vm_list);
670 	spin_unlock(&kvm_lock);
671 
672 	preempt_notifier_inc();
673 
674 	return kvm;
675 
676 out_err:
677 	cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679 	cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681 	hardware_disable_all();
682 out_err_no_disable:
683 	for (i = 0; i < KVM_NR_BUSES; i++)
684 		kfree(kvm->buses[i]);
685 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686 		kvm_free_memslots(kvm, kvm->memslots[i]);
687 	kvm_arch_free_vm(kvm);
688 	mmdrop(current->mm);
689 	return ERR_PTR(r);
690 }
691 
692 /*
693  * Avoid using vmalloc for a small buffer.
694  * Should not be used when the size is statically known.
695  */
696 void *kvm_kvzalloc(unsigned long size)
697 {
698 	if (size > PAGE_SIZE)
699 		return vzalloc(size);
700 	else
701 		return kzalloc(size, GFP_KERNEL);
702 }
703 
704 static void kvm_destroy_devices(struct kvm *kvm)
705 {
706 	struct kvm_device *dev, *tmp;
707 
708 	/*
709 	 * We do not need to take the kvm->lock here, because nobody else
710 	 * has a reference to the struct kvm at this point and therefore
711 	 * cannot access the devices list anyhow.
712 	 */
713 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
714 		list_del(&dev->vm_node);
715 		dev->ops->destroy(dev);
716 	}
717 }
718 
719 static void kvm_destroy_vm(struct kvm *kvm)
720 {
721 	int i;
722 	struct mm_struct *mm = kvm->mm;
723 
724 	kvm_destroy_vm_debugfs(kvm);
725 	kvm_arch_sync_events(kvm);
726 	spin_lock(&kvm_lock);
727 	list_del(&kvm->vm_list);
728 	spin_unlock(&kvm_lock);
729 	kvm_free_irq_routing(kvm);
730 	for (i = 0; i < KVM_NR_BUSES; i++)
731 		kvm_io_bus_destroy(kvm->buses[i]);
732 	kvm_coalesced_mmio_free(kvm);
733 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
734 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
735 #else
736 	kvm_arch_flush_shadow_all(kvm);
737 #endif
738 	kvm_arch_destroy_vm(kvm);
739 	kvm_destroy_devices(kvm);
740 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
741 		kvm_free_memslots(kvm, kvm->memslots[i]);
742 	cleanup_srcu_struct(&kvm->irq_srcu);
743 	cleanup_srcu_struct(&kvm->srcu);
744 	kvm_arch_free_vm(kvm);
745 	preempt_notifier_dec();
746 	hardware_disable_all();
747 	mmdrop(mm);
748 }
749 
750 void kvm_get_kvm(struct kvm *kvm)
751 {
752 	refcount_inc(&kvm->users_count);
753 }
754 EXPORT_SYMBOL_GPL(kvm_get_kvm);
755 
756 void kvm_put_kvm(struct kvm *kvm)
757 {
758 	if (refcount_dec_and_test(&kvm->users_count))
759 		kvm_destroy_vm(kvm);
760 }
761 EXPORT_SYMBOL_GPL(kvm_put_kvm);
762 
763 
764 static int kvm_vm_release(struct inode *inode, struct file *filp)
765 {
766 	struct kvm *kvm = filp->private_data;
767 
768 	kvm_irqfd_release(kvm);
769 
770 	kvm_put_kvm(kvm);
771 	return 0;
772 }
773 
774 /*
775  * Allocation size is twice as large as the actual dirty bitmap size.
776  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
777  */
778 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
779 {
780 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
781 
782 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
783 	if (!memslot->dirty_bitmap)
784 		return -ENOMEM;
785 
786 	return 0;
787 }
788 
789 /*
790  * Insert memslot and re-sort memslots based on their GFN,
791  * so binary search could be used to lookup GFN.
792  * Sorting algorithm takes advantage of having initially
793  * sorted array and known changed memslot position.
794  */
795 static void update_memslots(struct kvm_memslots *slots,
796 			    struct kvm_memory_slot *new)
797 {
798 	int id = new->id;
799 	int i = slots->id_to_index[id];
800 	struct kvm_memory_slot *mslots = slots->memslots;
801 
802 	WARN_ON(mslots[i].id != id);
803 	if (!new->npages) {
804 		WARN_ON(!mslots[i].npages);
805 		if (mslots[i].npages)
806 			slots->used_slots--;
807 	} else {
808 		if (!mslots[i].npages)
809 			slots->used_slots++;
810 	}
811 
812 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
813 	       new->base_gfn <= mslots[i + 1].base_gfn) {
814 		if (!mslots[i + 1].npages)
815 			break;
816 		mslots[i] = mslots[i + 1];
817 		slots->id_to_index[mslots[i].id] = i;
818 		i++;
819 	}
820 
821 	/*
822 	 * The ">=" is needed when creating a slot with base_gfn == 0,
823 	 * so that it moves before all those with base_gfn == npages == 0.
824 	 *
825 	 * On the other hand, if new->npages is zero, the above loop has
826 	 * already left i pointing to the beginning of the empty part of
827 	 * mslots, and the ">=" would move the hole backwards in this
828 	 * case---which is wrong.  So skip the loop when deleting a slot.
829 	 */
830 	if (new->npages) {
831 		while (i > 0 &&
832 		       new->base_gfn >= mslots[i - 1].base_gfn) {
833 			mslots[i] = mslots[i - 1];
834 			slots->id_to_index[mslots[i].id] = i;
835 			i--;
836 		}
837 	} else
838 		WARN_ON_ONCE(i != slots->used_slots);
839 
840 	mslots[i] = *new;
841 	slots->id_to_index[mslots[i].id] = i;
842 }
843 
844 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
845 {
846 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
847 
848 #ifdef __KVM_HAVE_READONLY_MEM
849 	valid_flags |= KVM_MEM_READONLY;
850 #endif
851 
852 	if (mem->flags & ~valid_flags)
853 		return -EINVAL;
854 
855 	return 0;
856 }
857 
858 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
859 		int as_id, struct kvm_memslots *slots)
860 {
861 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
862 
863 	/*
864 	 * Set the low bit in the generation, which disables SPTE caching
865 	 * until the end of synchronize_srcu_expedited.
866 	 */
867 	WARN_ON(old_memslots->generation & 1);
868 	slots->generation = old_memslots->generation + 1;
869 
870 	rcu_assign_pointer(kvm->memslots[as_id], slots);
871 	synchronize_srcu_expedited(&kvm->srcu);
872 
873 	/*
874 	 * Increment the new memslot generation a second time. This prevents
875 	 * vm exits that race with memslot updates from caching a memslot
876 	 * generation that will (potentially) be valid forever.
877 	 *
878 	 * Generations must be unique even across address spaces.  We do not need
879 	 * a global counter for that, instead the generation space is evenly split
880 	 * across address spaces.  For example, with two address spaces, address
881 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
882 	 * use generations 2, 6, 10, 14, ...
883 	 */
884 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
885 
886 	kvm_arch_memslots_updated(kvm, slots);
887 
888 	return old_memslots;
889 }
890 
891 /*
892  * Allocate some memory and give it an address in the guest physical address
893  * space.
894  *
895  * Discontiguous memory is allowed, mostly for framebuffers.
896  *
897  * Must be called holding kvm->slots_lock for write.
898  */
899 int __kvm_set_memory_region(struct kvm *kvm,
900 			    const struct kvm_userspace_memory_region *mem)
901 {
902 	int r;
903 	gfn_t base_gfn;
904 	unsigned long npages;
905 	struct kvm_memory_slot *slot;
906 	struct kvm_memory_slot old, new;
907 	struct kvm_memslots *slots = NULL, *old_memslots;
908 	int as_id, id;
909 	enum kvm_mr_change change;
910 
911 	r = check_memory_region_flags(mem);
912 	if (r)
913 		goto out;
914 
915 	r = -EINVAL;
916 	as_id = mem->slot >> 16;
917 	id = (u16)mem->slot;
918 
919 	/* General sanity checks */
920 	if (mem->memory_size & (PAGE_SIZE - 1))
921 		goto out;
922 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
923 		goto out;
924 	/* We can read the guest memory with __xxx_user() later on. */
925 	if ((id < KVM_USER_MEM_SLOTS) &&
926 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
927 	     !access_ok(VERIFY_WRITE,
928 			(void __user *)(unsigned long)mem->userspace_addr,
929 			mem->memory_size)))
930 		goto out;
931 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
932 		goto out;
933 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
934 		goto out;
935 
936 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
937 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
938 	npages = mem->memory_size >> PAGE_SHIFT;
939 
940 	if (npages > KVM_MEM_MAX_NR_PAGES)
941 		goto out;
942 
943 	new = old = *slot;
944 
945 	new.id = id;
946 	new.base_gfn = base_gfn;
947 	new.npages = npages;
948 	new.flags = mem->flags;
949 
950 	if (npages) {
951 		if (!old.npages)
952 			change = KVM_MR_CREATE;
953 		else { /* Modify an existing slot. */
954 			if ((mem->userspace_addr != old.userspace_addr) ||
955 			    (npages != old.npages) ||
956 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
957 				goto out;
958 
959 			if (base_gfn != old.base_gfn)
960 				change = KVM_MR_MOVE;
961 			else if (new.flags != old.flags)
962 				change = KVM_MR_FLAGS_ONLY;
963 			else { /* Nothing to change. */
964 				r = 0;
965 				goto out;
966 			}
967 		}
968 	} else {
969 		if (!old.npages)
970 			goto out;
971 
972 		change = KVM_MR_DELETE;
973 		new.base_gfn = 0;
974 		new.flags = 0;
975 	}
976 
977 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
978 		/* Check for overlaps */
979 		r = -EEXIST;
980 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
981 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
982 			    (slot->id == id))
983 				continue;
984 			if (!((base_gfn + npages <= slot->base_gfn) ||
985 			      (base_gfn >= slot->base_gfn + slot->npages)))
986 				goto out;
987 		}
988 	}
989 
990 	/* Free page dirty bitmap if unneeded */
991 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
992 		new.dirty_bitmap = NULL;
993 
994 	r = -ENOMEM;
995 	if (change == KVM_MR_CREATE) {
996 		new.userspace_addr = mem->userspace_addr;
997 
998 		if (kvm_arch_create_memslot(kvm, &new, npages))
999 			goto out_free;
1000 	}
1001 
1002 	/* Allocate page dirty bitmap if needed */
1003 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1004 		if (kvm_create_dirty_bitmap(&new) < 0)
1005 			goto out_free;
1006 	}
1007 
1008 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1009 	if (!slots)
1010 		goto out_free;
1011 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1012 
1013 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1014 		slot = id_to_memslot(slots, id);
1015 		slot->flags |= KVM_MEMSLOT_INVALID;
1016 
1017 		old_memslots = install_new_memslots(kvm, as_id, slots);
1018 
1019 		/* slot was deleted or moved, clear iommu mapping */
1020 		kvm_iommu_unmap_pages(kvm, &old);
1021 		/* From this point no new shadow pages pointing to a deleted,
1022 		 * or moved, memslot will be created.
1023 		 *
1024 		 * validation of sp->gfn happens in:
1025 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1026 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1027 		 */
1028 		kvm_arch_flush_shadow_memslot(kvm, slot);
1029 
1030 		/*
1031 		 * We can re-use the old_memslots from above, the only difference
1032 		 * from the currently installed memslots is the invalid flag.  This
1033 		 * will get overwritten by update_memslots anyway.
1034 		 */
1035 		slots = old_memslots;
1036 	}
1037 
1038 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1039 	if (r)
1040 		goto out_slots;
1041 
1042 	/* actual memory is freed via old in kvm_free_memslot below */
1043 	if (change == KVM_MR_DELETE) {
1044 		new.dirty_bitmap = NULL;
1045 		memset(&new.arch, 0, sizeof(new.arch));
1046 	}
1047 
1048 	update_memslots(slots, &new);
1049 	old_memslots = install_new_memslots(kvm, as_id, slots);
1050 
1051 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1052 
1053 	kvm_free_memslot(kvm, &old, &new);
1054 	kvfree(old_memslots);
1055 
1056 	/*
1057 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1058 	 * un-mapped and re-mapped if their base changes.  Since base change
1059 	 * unmapping is handled above with slot deletion, mapping alone is
1060 	 * needed here.  Anything else the iommu might care about for existing
1061 	 * slots (size changes, userspace addr changes and read-only flag
1062 	 * changes) is disallowed above, so any other attribute changes getting
1063 	 * here can be skipped.
1064 	 */
1065 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1066 		r = kvm_iommu_map_pages(kvm, &new);
1067 		return r;
1068 	}
1069 
1070 	return 0;
1071 
1072 out_slots:
1073 	kvfree(slots);
1074 out_free:
1075 	kvm_free_memslot(kvm, &new, &old);
1076 out:
1077 	return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080 
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 			  const struct kvm_userspace_memory_region *mem)
1083 {
1084 	int r;
1085 
1086 	mutex_lock(&kvm->slots_lock);
1087 	r = __kvm_set_memory_region(kvm, mem);
1088 	mutex_unlock(&kvm->slots_lock);
1089 	return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092 
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 					  struct kvm_userspace_memory_region *mem)
1095 {
1096 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 		return -EINVAL;
1098 
1099 	return kvm_set_memory_region(kvm, mem);
1100 }
1101 
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103 			struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105 	struct kvm_memslots *slots;
1106 	struct kvm_memory_slot *memslot;
1107 	int i, as_id, id;
1108 	unsigned long n;
1109 	unsigned long any = 0;
1110 
1111 	as_id = log->slot >> 16;
1112 	id = (u16)log->slot;
1113 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 		return -EINVAL;
1115 
1116 	slots = __kvm_memslots(kvm, as_id);
1117 	memslot = id_to_memslot(slots, id);
1118 	if (!memslot->dirty_bitmap)
1119 		return -ENOENT;
1120 
1121 	n = kvm_dirty_bitmap_bytes(memslot);
1122 
1123 	for (i = 0; !any && i < n/sizeof(long); ++i)
1124 		any = memslot->dirty_bitmap[i];
1125 
1126 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 		return -EFAULT;
1128 
1129 	if (any)
1130 		*is_dirty = 1;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134 
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138  *	are dirty write protect them for next write.
1139  * @kvm:	pointer to kvm instance
1140  * @log:	slot id and address to which we copy the log
1141  * @is_dirty:	flag set if any page is dirty
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159 			struct kvm_dirty_log *log, bool *is_dirty)
1160 {
1161 	struct kvm_memslots *slots;
1162 	struct kvm_memory_slot *memslot;
1163 	int i, as_id, id;
1164 	unsigned long n;
1165 	unsigned long *dirty_bitmap;
1166 	unsigned long *dirty_bitmap_buffer;
1167 
1168 	as_id = log->slot >> 16;
1169 	id = (u16)log->slot;
1170 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 		return -EINVAL;
1172 
1173 	slots = __kvm_memslots(kvm, as_id);
1174 	memslot = id_to_memslot(slots, id);
1175 
1176 	dirty_bitmap = memslot->dirty_bitmap;
1177 	if (!dirty_bitmap)
1178 		return -ENOENT;
1179 
1180 	n = kvm_dirty_bitmap_bytes(memslot);
1181 
1182 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1183 	memset(dirty_bitmap_buffer, 0, n);
1184 
1185 	spin_lock(&kvm->mmu_lock);
1186 	*is_dirty = false;
1187 	for (i = 0; i < n / sizeof(long); i++) {
1188 		unsigned long mask;
1189 		gfn_t offset;
1190 
1191 		if (!dirty_bitmap[i])
1192 			continue;
1193 
1194 		*is_dirty = true;
1195 
1196 		mask = xchg(&dirty_bitmap[i], 0);
1197 		dirty_bitmap_buffer[i] = mask;
1198 
1199 		if (mask) {
1200 			offset = i * BITS_PER_LONG;
1201 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1202 								offset, mask);
1203 		}
1204 	}
1205 
1206 	spin_unlock(&kvm->mmu_lock);
1207 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 		return -EFAULT;
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213 
1214 bool kvm_largepages_enabled(void)
1215 {
1216 	return largepages_enabled;
1217 }
1218 
1219 void kvm_disable_largepages(void)
1220 {
1221 	largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224 
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230 
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235 
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239 
1240 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 	      memslot->flags & KVM_MEMSLOT_INVALID)
1242 		return false;
1243 
1244 	return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247 
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 	struct vm_area_struct *vma;
1251 	unsigned long addr, size;
1252 
1253 	size = PAGE_SIZE;
1254 
1255 	addr = gfn_to_hva(kvm, gfn);
1256 	if (kvm_is_error_hva(addr))
1257 		return PAGE_SIZE;
1258 
1259 	down_read(&current->mm->mmap_sem);
1260 	vma = find_vma(current->mm, addr);
1261 	if (!vma)
1262 		goto out;
1263 
1264 	size = vma_kernel_pagesize(vma);
1265 
1266 out:
1267 	up_read(&current->mm->mmap_sem);
1268 
1269 	return size;
1270 }
1271 
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 	return slot->flags & KVM_MEM_READONLY;
1275 }
1276 
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 				       gfn_t *nr_pages, bool write)
1279 {
1280 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 		return KVM_HVA_ERR_BAD;
1282 
1283 	if (memslot_is_readonly(slot) && write)
1284 		return KVM_HVA_ERR_RO_BAD;
1285 
1286 	if (nr_pages)
1287 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1288 
1289 	return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291 
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 				     gfn_t *nr_pages)
1294 {
1295 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297 
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 					gfn_t gfn)
1300 {
1301 	return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304 
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310 
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316 
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 				      gfn_t gfn, bool *writable)
1323 {
1324 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325 
1326 	if (!kvm_is_error_hva(hva) && writable)
1327 		*writable = !memslot_is_readonly(slot);
1328 
1329 	return hva;
1330 }
1331 
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342 
1343 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345 
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 		struct page **page)
1348 {
1349 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350 
1351 	if (write)
1352 		flags |= FOLL_WRITE;
1353 
1354 	return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356 
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360 
1361 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362 	return rc == -EHWPOISON;
1363 }
1364 
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372 	struct page *page[1];
1373 	int npages;
1374 
1375 	if (!(async || atomic))
1376 		return false;
1377 
1378 	/*
1379 	 * Fast pin a writable pfn only if it is a write fault request
1380 	 * or the caller allows to map a writable pfn for a read fault
1381 	 * request.
1382 	 */
1383 	if (!(write_fault || writable))
1384 		return false;
1385 
1386 	npages = __get_user_pages_fast(addr, 1, 1, page);
1387 	if (npages == 1) {
1388 		*pfn = page_to_pfn(page[0]);
1389 
1390 		if (writable)
1391 			*writable = true;
1392 		return true;
1393 	}
1394 
1395 	return false;
1396 }
1397 
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403 			   bool *writable, kvm_pfn_t *pfn)
1404 {
1405 	struct page *page[1];
1406 	int npages = 0;
1407 
1408 	might_sleep();
1409 
1410 	if (writable)
1411 		*writable = write_fault;
1412 
1413 	if (async) {
1414 		down_read(&current->mm->mmap_sem);
1415 		npages = get_user_page_nowait(addr, write_fault, page);
1416 		up_read(&current->mm->mmap_sem);
1417 	} else {
1418 		unsigned int flags = FOLL_HWPOISON;
1419 
1420 		if (write_fault)
1421 			flags |= FOLL_WRITE;
1422 
1423 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1424 	}
1425 	if (npages != 1)
1426 		return npages;
1427 
1428 	/* map read fault as writable if possible */
1429 	if (unlikely(!write_fault) && writable) {
1430 		struct page *wpage[1];
1431 
1432 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1433 		if (npages == 1) {
1434 			*writable = true;
1435 			put_page(page[0]);
1436 			page[0] = wpage[0];
1437 		}
1438 
1439 		npages = 1;
1440 	}
1441 	*pfn = page_to_pfn(page[0]);
1442 	return npages;
1443 }
1444 
1445 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1446 {
1447 	if (unlikely(!(vma->vm_flags & VM_READ)))
1448 		return false;
1449 
1450 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1451 		return false;
1452 
1453 	return true;
1454 }
1455 
1456 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1457 			       unsigned long addr, bool *async,
1458 			       bool write_fault, kvm_pfn_t *p_pfn)
1459 {
1460 	unsigned long pfn;
1461 	int r;
1462 
1463 	r = follow_pfn(vma, addr, &pfn);
1464 	if (r) {
1465 		/*
1466 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1467 		 * not call the fault handler, so do it here.
1468 		 */
1469 		bool unlocked = false;
1470 		r = fixup_user_fault(current, current->mm, addr,
1471 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1472 				     &unlocked);
1473 		if (unlocked)
1474 			return -EAGAIN;
1475 		if (r)
1476 			return r;
1477 
1478 		r = follow_pfn(vma, addr, &pfn);
1479 		if (r)
1480 			return r;
1481 
1482 	}
1483 
1484 
1485 	/*
1486 	 * Get a reference here because callers of *hva_to_pfn* and
1487 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1488 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1489 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1490 	 * simply do nothing for reserved pfns.
1491 	 *
1492 	 * Whoever called remap_pfn_range is also going to call e.g.
1493 	 * unmap_mapping_range before the underlying pages are freed,
1494 	 * causing a call to our MMU notifier.
1495 	 */
1496 	kvm_get_pfn(pfn);
1497 
1498 	*p_pfn = pfn;
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Pin guest page in memory and return its pfn.
1504  * @addr: host virtual address which maps memory to the guest
1505  * @atomic: whether this function can sleep
1506  * @async: whether this function need to wait IO complete if the
1507  *         host page is not in the memory
1508  * @write_fault: whether we should get a writable host page
1509  * @writable: whether it allows to map a writable host page for !@write_fault
1510  *
1511  * The function will map a writable host page for these two cases:
1512  * 1): @write_fault = true
1513  * 2): @write_fault = false && @writable, @writable will tell the caller
1514  *     whether the mapping is writable.
1515  */
1516 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1517 			bool write_fault, bool *writable)
1518 {
1519 	struct vm_area_struct *vma;
1520 	kvm_pfn_t pfn = 0;
1521 	int npages, r;
1522 
1523 	/* we can do it either atomically or asynchronously, not both */
1524 	BUG_ON(atomic && async);
1525 
1526 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1527 		return pfn;
1528 
1529 	if (atomic)
1530 		return KVM_PFN_ERR_FAULT;
1531 
1532 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1533 	if (npages == 1)
1534 		return pfn;
1535 
1536 	down_read(&current->mm->mmap_sem);
1537 	if (npages == -EHWPOISON ||
1538 	      (!async && check_user_page_hwpoison(addr))) {
1539 		pfn = KVM_PFN_ERR_HWPOISON;
1540 		goto exit;
1541 	}
1542 
1543 retry:
1544 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1545 
1546 	if (vma == NULL)
1547 		pfn = KVM_PFN_ERR_FAULT;
1548 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1549 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1550 		if (r == -EAGAIN)
1551 			goto retry;
1552 		if (r < 0)
1553 			pfn = KVM_PFN_ERR_FAULT;
1554 	} else {
1555 		if (async && vma_is_valid(vma, write_fault))
1556 			*async = true;
1557 		pfn = KVM_PFN_ERR_FAULT;
1558 	}
1559 exit:
1560 	up_read(&current->mm->mmap_sem);
1561 	return pfn;
1562 }
1563 
1564 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1565 			       bool atomic, bool *async, bool write_fault,
1566 			       bool *writable)
1567 {
1568 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1569 
1570 	if (addr == KVM_HVA_ERR_RO_BAD) {
1571 		if (writable)
1572 			*writable = false;
1573 		return KVM_PFN_ERR_RO_FAULT;
1574 	}
1575 
1576 	if (kvm_is_error_hva(addr)) {
1577 		if (writable)
1578 			*writable = false;
1579 		return KVM_PFN_NOSLOT;
1580 	}
1581 
1582 	/* Do not map writable pfn in the readonly memslot. */
1583 	if (writable && memslot_is_readonly(slot)) {
1584 		*writable = false;
1585 		writable = NULL;
1586 	}
1587 
1588 	return hva_to_pfn(addr, atomic, async, write_fault,
1589 			  writable);
1590 }
1591 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1592 
1593 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1594 		      bool *writable)
1595 {
1596 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1597 				    write_fault, writable);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1600 
1601 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1602 {
1603 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1604 }
1605 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1606 
1607 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1610 }
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1612 
1613 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1614 {
1615 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1618 
1619 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1620 {
1621 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1624 
1625 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1626 {
1627 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1628 }
1629 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1630 
1631 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1632 {
1633 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1634 }
1635 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1636 
1637 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1638 			    struct page **pages, int nr_pages)
1639 {
1640 	unsigned long addr;
1641 	gfn_t entry;
1642 
1643 	addr = gfn_to_hva_many(slot, gfn, &entry);
1644 	if (kvm_is_error_hva(addr))
1645 		return -1;
1646 
1647 	if (entry < nr_pages)
1648 		return 0;
1649 
1650 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1651 }
1652 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1653 
1654 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1655 {
1656 	if (is_error_noslot_pfn(pfn))
1657 		return KVM_ERR_PTR_BAD_PAGE;
1658 
1659 	if (kvm_is_reserved_pfn(pfn)) {
1660 		WARN_ON(1);
1661 		return KVM_ERR_PTR_BAD_PAGE;
1662 	}
1663 
1664 	return pfn_to_page(pfn);
1665 }
1666 
1667 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1668 {
1669 	kvm_pfn_t pfn;
1670 
1671 	pfn = gfn_to_pfn(kvm, gfn);
1672 
1673 	return kvm_pfn_to_page(pfn);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_page);
1676 
1677 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1678 {
1679 	kvm_pfn_t pfn;
1680 
1681 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1682 
1683 	return kvm_pfn_to_page(pfn);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1686 
1687 void kvm_release_page_clean(struct page *page)
1688 {
1689 	WARN_ON(is_error_page(page));
1690 
1691 	kvm_release_pfn_clean(page_to_pfn(page));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1694 
1695 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1696 {
1697 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1698 		put_page(pfn_to_page(pfn));
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1701 
1702 void kvm_release_page_dirty(struct page *page)
1703 {
1704 	WARN_ON(is_error_page(page));
1705 
1706 	kvm_release_pfn_dirty(page_to_pfn(page));
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1709 
1710 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1711 {
1712 	kvm_set_pfn_dirty(pfn);
1713 	kvm_release_pfn_clean(pfn);
1714 }
1715 
1716 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1717 {
1718 	if (!kvm_is_reserved_pfn(pfn)) {
1719 		struct page *page = pfn_to_page(pfn);
1720 
1721 		if (!PageReserved(page))
1722 			SetPageDirty(page);
1723 	}
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1726 
1727 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1728 {
1729 	if (!kvm_is_reserved_pfn(pfn))
1730 		mark_page_accessed(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1733 
1734 void kvm_get_pfn(kvm_pfn_t pfn)
1735 {
1736 	if (!kvm_is_reserved_pfn(pfn))
1737 		get_page(pfn_to_page(pfn));
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1740 
1741 static int next_segment(unsigned long len, int offset)
1742 {
1743 	if (len > PAGE_SIZE - offset)
1744 		return PAGE_SIZE - offset;
1745 	else
1746 		return len;
1747 }
1748 
1749 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1750 				 void *data, int offset, int len)
1751 {
1752 	int r;
1753 	unsigned long addr;
1754 
1755 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1756 	if (kvm_is_error_hva(addr))
1757 		return -EFAULT;
1758 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1759 	if (r)
1760 		return -EFAULT;
1761 	return 0;
1762 }
1763 
1764 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1765 			int len)
1766 {
1767 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1768 
1769 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1772 
1773 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1774 			     int offset, int len)
1775 {
1776 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1777 
1778 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1781 
1782 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1783 {
1784 	gfn_t gfn = gpa >> PAGE_SHIFT;
1785 	int seg;
1786 	int offset = offset_in_page(gpa);
1787 	int ret;
1788 
1789 	while ((seg = next_segment(len, offset)) != 0) {
1790 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1791 		if (ret < 0)
1792 			return ret;
1793 		offset = 0;
1794 		len -= seg;
1795 		data += seg;
1796 		++gfn;
1797 	}
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_read_guest);
1801 
1802 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1803 {
1804 	gfn_t gfn = gpa >> PAGE_SHIFT;
1805 	int seg;
1806 	int offset = offset_in_page(gpa);
1807 	int ret;
1808 
1809 	while ((seg = next_segment(len, offset)) != 0) {
1810 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1811 		if (ret < 0)
1812 			return ret;
1813 		offset = 0;
1814 		len -= seg;
1815 		data += seg;
1816 		++gfn;
1817 	}
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1821 
1822 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1823 			           void *data, int offset, unsigned long len)
1824 {
1825 	int r;
1826 	unsigned long addr;
1827 
1828 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1829 	if (kvm_is_error_hva(addr))
1830 		return -EFAULT;
1831 	pagefault_disable();
1832 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1833 	pagefault_enable();
1834 	if (r)
1835 		return -EFAULT;
1836 	return 0;
1837 }
1838 
1839 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1840 			  unsigned long len)
1841 {
1842 	gfn_t gfn = gpa >> PAGE_SHIFT;
1843 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1844 	int offset = offset_in_page(gpa);
1845 
1846 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1849 
1850 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1851 			       void *data, unsigned long len)
1852 {
1853 	gfn_t gfn = gpa >> PAGE_SHIFT;
1854 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1855 	int offset = offset_in_page(gpa);
1856 
1857 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1860 
1861 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1862 			          const void *data, int offset, int len)
1863 {
1864 	int r;
1865 	unsigned long addr;
1866 
1867 	addr = gfn_to_hva_memslot(memslot, gfn);
1868 	if (kvm_is_error_hva(addr))
1869 		return -EFAULT;
1870 	r = __copy_to_user((void __user *)addr + offset, data, len);
1871 	if (r)
1872 		return -EFAULT;
1873 	mark_page_dirty_in_slot(memslot, gfn);
1874 	return 0;
1875 }
1876 
1877 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1878 			 const void *data, int offset, int len)
1879 {
1880 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1881 
1882 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1885 
1886 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1887 			      const void *data, int offset, int len)
1888 {
1889 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1890 
1891 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1894 
1895 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1896 		    unsigned long len)
1897 {
1898 	gfn_t gfn = gpa >> PAGE_SHIFT;
1899 	int seg;
1900 	int offset = offset_in_page(gpa);
1901 	int ret;
1902 
1903 	while ((seg = next_segment(len, offset)) != 0) {
1904 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1905 		if (ret < 0)
1906 			return ret;
1907 		offset = 0;
1908 		len -= seg;
1909 		data += seg;
1910 		++gfn;
1911 	}
1912 	return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_write_guest);
1915 
1916 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1917 		         unsigned long len)
1918 {
1919 	gfn_t gfn = gpa >> PAGE_SHIFT;
1920 	int seg;
1921 	int offset = offset_in_page(gpa);
1922 	int ret;
1923 
1924 	while ((seg = next_segment(len, offset)) != 0) {
1925 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1926 		if (ret < 0)
1927 			return ret;
1928 		offset = 0;
1929 		len -= seg;
1930 		data += seg;
1931 		++gfn;
1932 	}
1933 	return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1936 
1937 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1938 				       struct gfn_to_hva_cache *ghc,
1939 				       gpa_t gpa, unsigned long len)
1940 {
1941 	int offset = offset_in_page(gpa);
1942 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1943 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1944 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1945 	gfn_t nr_pages_avail;
1946 
1947 	ghc->gpa = gpa;
1948 	ghc->generation = slots->generation;
1949 	ghc->len = len;
1950 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1951 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1952 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1953 		ghc->hva += offset;
1954 	} else {
1955 		/*
1956 		 * If the requested region crosses two memslots, we still
1957 		 * verify that the entire region is valid here.
1958 		 */
1959 		while (start_gfn <= end_gfn) {
1960 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1961 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1962 						   &nr_pages_avail);
1963 			if (kvm_is_error_hva(ghc->hva))
1964 				return -EFAULT;
1965 			start_gfn += nr_pages_avail;
1966 		}
1967 		/* Use the slow path for cross page reads and writes. */
1968 		ghc->memslot = NULL;
1969 	}
1970 	return 0;
1971 }
1972 
1973 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1974 			      gpa_t gpa, unsigned long len)
1975 {
1976 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1977 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1980 
1981 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1982 				       void *data, int offset, unsigned long len)
1983 {
1984 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1985 	int r;
1986 	gpa_t gpa = ghc->gpa + offset;
1987 
1988 	BUG_ON(len + offset > ghc->len);
1989 
1990 	if (slots->generation != ghc->generation)
1991 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1992 
1993 	if (unlikely(!ghc->memslot))
1994 		return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1995 
1996 	if (kvm_is_error_hva(ghc->hva))
1997 		return -EFAULT;
1998 
1999 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2000 	if (r)
2001 		return -EFAULT;
2002 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2003 
2004 	return 0;
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2007 
2008 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2009 			       void *data, unsigned long len)
2010 {
2011 	return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2014 
2015 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2016 			       void *data, unsigned long len)
2017 {
2018 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2019 	int r;
2020 
2021 	BUG_ON(len > ghc->len);
2022 
2023 	if (slots->generation != ghc->generation)
2024 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2025 
2026 	if (unlikely(!ghc->memslot))
2027 		return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2028 
2029 	if (kvm_is_error_hva(ghc->hva))
2030 		return -EFAULT;
2031 
2032 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2033 	if (r)
2034 		return -EFAULT;
2035 
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2039 
2040 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2041 {
2042 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2043 
2044 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2047 
2048 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2049 {
2050 	gfn_t gfn = gpa >> PAGE_SHIFT;
2051 	int seg;
2052 	int offset = offset_in_page(gpa);
2053 	int ret;
2054 
2055 	while ((seg = next_segment(len, offset)) != 0) {
2056 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2057 		if (ret < 0)
2058 			return ret;
2059 		offset = 0;
2060 		len -= seg;
2061 		++gfn;
2062 	}
2063 	return 0;
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2066 
2067 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2068 				    gfn_t gfn)
2069 {
2070 	if (memslot && memslot->dirty_bitmap) {
2071 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2072 
2073 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2074 	}
2075 }
2076 
2077 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2078 {
2079 	struct kvm_memory_slot *memslot;
2080 
2081 	memslot = gfn_to_memslot(kvm, gfn);
2082 	mark_page_dirty_in_slot(memslot, gfn);
2083 }
2084 EXPORT_SYMBOL_GPL(mark_page_dirty);
2085 
2086 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2087 {
2088 	struct kvm_memory_slot *memslot;
2089 
2090 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2091 	mark_page_dirty_in_slot(memslot, gfn);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2094 
2095 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097 	unsigned int old, val, grow;
2098 
2099 	old = val = vcpu->halt_poll_ns;
2100 	grow = READ_ONCE(halt_poll_ns_grow);
2101 	/* 10us base */
2102 	if (val == 0 && grow)
2103 		val = 10000;
2104 	else
2105 		val *= grow;
2106 
2107 	if (val > halt_poll_ns)
2108 		val = halt_poll_ns;
2109 
2110 	vcpu->halt_poll_ns = val;
2111 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2112 }
2113 
2114 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2115 {
2116 	unsigned int old, val, shrink;
2117 
2118 	old = val = vcpu->halt_poll_ns;
2119 	shrink = READ_ONCE(halt_poll_ns_shrink);
2120 	if (shrink == 0)
2121 		val = 0;
2122 	else
2123 		val /= shrink;
2124 
2125 	vcpu->halt_poll_ns = val;
2126 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2127 }
2128 
2129 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2130 {
2131 	if (kvm_arch_vcpu_runnable(vcpu)) {
2132 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2133 		return -EINTR;
2134 	}
2135 	if (kvm_cpu_has_pending_timer(vcpu))
2136 		return -EINTR;
2137 	if (signal_pending(current))
2138 		return -EINTR;
2139 
2140 	return 0;
2141 }
2142 
2143 /*
2144  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2145  */
2146 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2147 {
2148 	ktime_t start, cur;
2149 	DECLARE_SWAITQUEUE(wait);
2150 	bool waited = false;
2151 	u64 block_ns;
2152 
2153 	start = cur = ktime_get();
2154 	if (vcpu->halt_poll_ns) {
2155 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2156 
2157 		++vcpu->stat.halt_attempted_poll;
2158 		do {
2159 			/*
2160 			 * This sets KVM_REQ_UNHALT if an interrupt
2161 			 * arrives.
2162 			 */
2163 			if (kvm_vcpu_check_block(vcpu) < 0) {
2164 				++vcpu->stat.halt_successful_poll;
2165 				if (!vcpu_valid_wakeup(vcpu))
2166 					++vcpu->stat.halt_poll_invalid;
2167 				goto out;
2168 			}
2169 			cur = ktime_get();
2170 		} while (single_task_running() && ktime_before(cur, stop));
2171 	}
2172 
2173 	kvm_arch_vcpu_blocking(vcpu);
2174 
2175 	for (;;) {
2176 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2177 
2178 		if (kvm_vcpu_check_block(vcpu) < 0)
2179 			break;
2180 
2181 		waited = true;
2182 		schedule();
2183 	}
2184 
2185 	finish_swait(&vcpu->wq, &wait);
2186 	cur = ktime_get();
2187 
2188 	kvm_arch_vcpu_unblocking(vcpu);
2189 out:
2190 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2191 
2192 	if (!vcpu_valid_wakeup(vcpu))
2193 		shrink_halt_poll_ns(vcpu);
2194 	else if (halt_poll_ns) {
2195 		if (block_ns <= vcpu->halt_poll_ns)
2196 			;
2197 		/* we had a long block, shrink polling */
2198 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2199 			shrink_halt_poll_ns(vcpu);
2200 		/* we had a short halt and our poll time is too small */
2201 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2202 			block_ns < halt_poll_ns)
2203 			grow_halt_poll_ns(vcpu);
2204 	} else
2205 		vcpu->halt_poll_ns = 0;
2206 
2207 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2208 	kvm_arch_vcpu_block_finish(vcpu);
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2211 
2212 #ifndef CONFIG_S390
2213 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2214 {
2215 	struct swait_queue_head *wqp;
2216 
2217 	wqp = kvm_arch_vcpu_wq(vcpu);
2218 	if (swait_active(wqp)) {
2219 		swake_up(wqp);
2220 		++vcpu->stat.halt_wakeup;
2221 	}
2222 
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2225 
2226 /*
2227  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228  */
2229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2230 {
2231 	int me;
2232 	int cpu = vcpu->cpu;
2233 
2234 	kvm_vcpu_wake_up(vcpu);
2235 	me = get_cpu();
2236 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2237 		if (kvm_arch_vcpu_should_kick(vcpu))
2238 			smp_send_reschedule(cpu);
2239 	put_cpu();
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2242 #endif /* !CONFIG_S390 */
2243 
2244 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2245 {
2246 	struct pid *pid;
2247 	struct task_struct *task = NULL;
2248 	int ret = 0;
2249 
2250 	rcu_read_lock();
2251 	pid = rcu_dereference(target->pid);
2252 	if (pid)
2253 		task = get_pid_task(pid, PIDTYPE_PID);
2254 	rcu_read_unlock();
2255 	if (!task)
2256 		return ret;
2257 	ret = yield_to(task, 1);
2258 	put_task_struct(task);
2259 
2260 	return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2263 
2264 /*
2265  * Helper that checks whether a VCPU is eligible for directed yield.
2266  * Most eligible candidate to yield is decided by following heuristics:
2267  *
2268  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2269  *  (preempted lock holder), indicated by @in_spin_loop.
2270  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2271  *
2272  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2273  *  chance last time (mostly it has become eligible now since we have probably
2274  *  yielded to lockholder in last iteration. This is done by toggling
2275  *  @dy_eligible each time a VCPU checked for eligibility.)
2276  *
2277  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2278  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2279  *  burning. Giving priority for a potential lock-holder increases lock
2280  *  progress.
2281  *
2282  *  Since algorithm is based on heuristics, accessing another VCPU data without
2283  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2284  *  and continue with next VCPU and so on.
2285  */
2286 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2287 {
2288 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2289 	bool eligible;
2290 
2291 	eligible = !vcpu->spin_loop.in_spin_loop ||
2292 		    vcpu->spin_loop.dy_eligible;
2293 
2294 	if (vcpu->spin_loop.in_spin_loop)
2295 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2296 
2297 	return eligible;
2298 #else
2299 	return true;
2300 #endif
2301 }
2302 
2303 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2304 {
2305 	struct kvm *kvm = me->kvm;
2306 	struct kvm_vcpu *vcpu;
2307 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2308 	int yielded = 0;
2309 	int try = 3;
2310 	int pass;
2311 	int i;
2312 
2313 	kvm_vcpu_set_in_spin_loop(me, true);
2314 	/*
2315 	 * We boost the priority of a VCPU that is runnable but not
2316 	 * currently running, because it got preempted by something
2317 	 * else and called schedule in __vcpu_run.  Hopefully that
2318 	 * VCPU is holding the lock that we need and will release it.
2319 	 * We approximate round-robin by starting at the last boosted VCPU.
2320 	 */
2321 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2322 		kvm_for_each_vcpu(i, vcpu, kvm) {
2323 			if (!pass && i <= last_boosted_vcpu) {
2324 				i = last_boosted_vcpu;
2325 				continue;
2326 			} else if (pass && i > last_boosted_vcpu)
2327 				break;
2328 			if (!ACCESS_ONCE(vcpu->preempted))
2329 				continue;
2330 			if (vcpu == me)
2331 				continue;
2332 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2333 				continue;
2334 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2335 				continue;
2336 
2337 			yielded = kvm_vcpu_yield_to(vcpu);
2338 			if (yielded > 0) {
2339 				kvm->last_boosted_vcpu = i;
2340 				break;
2341 			} else if (yielded < 0) {
2342 				try--;
2343 				if (!try)
2344 					break;
2345 			}
2346 		}
2347 	}
2348 	kvm_vcpu_set_in_spin_loop(me, false);
2349 
2350 	/* Ensure vcpu is not eligible during next spinloop */
2351 	kvm_vcpu_set_dy_eligible(me, false);
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354 
2355 static int kvm_vcpu_fault(struct vm_fault *vmf)
2356 {
2357 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2358 	struct page *page;
2359 
2360 	if (vmf->pgoff == 0)
2361 		page = virt_to_page(vcpu->run);
2362 #ifdef CONFIG_X86
2363 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2364 		page = virt_to_page(vcpu->arch.pio_data);
2365 #endif
2366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2367 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2368 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2369 #endif
2370 	else
2371 		return kvm_arch_vcpu_fault(vcpu, vmf);
2372 	get_page(page);
2373 	vmf->page = page;
2374 	return 0;
2375 }
2376 
2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2378 	.fault = kvm_vcpu_fault,
2379 };
2380 
2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383 	vma->vm_ops = &kvm_vcpu_vm_ops;
2384 	return 0;
2385 }
2386 
2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 {
2389 	struct kvm_vcpu *vcpu = filp->private_data;
2390 
2391 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2392 	kvm_put_kvm(vcpu->kvm);
2393 	return 0;
2394 }
2395 
2396 static struct file_operations kvm_vcpu_fops = {
2397 	.release        = kvm_vcpu_release,
2398 	.unlocked_ioctl = kvm_vcpu_ioctl,
2399 #ifdef CONFIG_KVM_COMPAT
2400 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2401 #endif
2402 	.mmap           = kvm_vcpu_mmap,
2403 	.llseek		= noop_llseek,
2404 };
2405 
2406 /*
2407  * Allocates an inode for the vcpu.
2408  */
2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 {
2411 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2412 }
2413 
2414 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2415 {
2416 	char dir_name[ITOA_MAX_LEN * 2];
2417 	int ret;
2418 
2419 	if (!kvm_arch_has_vcpu_debugfs())
2420 		return 0;
2421 
2422 	if (!debugfs_initialized())
2423 		return 0;
2424 
2425 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2426 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2427 								vcpu->kvm->debugfs_dentry);
2428 	if (!vcpu->debugfs_dentry)
2429 		return -ENOMEM;
2430 
2431 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2432 	if (ret < 0) {
2433 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2434 		return ret;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 /*
2441  * Creates some virtual cpus.  Good luck creating more than one.
2442  */
2443 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2444 {
2445 	int r;
2446 	struct kvm_vcpu *vcpu;
2447 
2448 	if (id >= KVM_MAX_VCPU_ID)
2449 		return -EINVAL;
2450 
2451 	mutex_lock(&kvm->lock);
2452 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2453 		mutex_unlock(&kvm->lock);
2454 		return -EINVAL;
2455 	}
2456 
2457 	kvm->created_vcpus++;
2458 	mutex_unlock(&kvm->lock);
2459 
2460 	vcpu = kvm_arch_vcpu_create(kvm, id);
2461 	if (IS_ERR(vcpu)) {
2462 		r = PTR_ERR(vcpu);
2463 		goto vcpu_decrement;
2464 	}
2465 
2466 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2467 
2468 	r = kvm_arch_vcpu_setup(vcpu);
2469 	if (r)
2470 		goto vcpu_destroy;
2471 
2472 	r = kvm_create_vcpu_debugfs(vcpu);
2473 	if (r)
2474 		goto vcpu_destroy;
2475 
2476 	mutex_lock(&kvm->lock);
2477 	if (kvm_get_vcpu_by_id(kvm, id)) {
2478 		r = -EEXIST;
2479 		goto unlock_vcpu_destroy;
2480 	}
2481 
2482 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2483 
2484 	/* Now it's all set up, let userspace reach it */
2485 	kvm_get_kvm(kvm);
2486 	r = create_vcpu_fd(vcpu);
2487 	if (r < 0) {
2488 		kvm_put_kvm(kvm);
2489 		goto unlock_vcpu_destroy;
2490 	}
2491 
2492 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2493 
2494 	/*
2495 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2496 	 * before kvm->online_vcpu's incremented value.
2497 	 */
2498 	smp_wmb();
2499 	atomic_inc(&kvm->online_vcpus);
2500 
2501 	mutex_unlock(&kvm->lock);
2502 	kvm_arch_vcpu_postcreate(vcpu);
2503 	return r;
2504 
2505 unlock_vcpu_destroy:
2506 	mutex_unlock(&kvm->lock);
2507 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2508 vcpu_destroy:
2509 	kvm_arch_vcpu_destroy(vcpu);
2510 vcpu_decrement:
2511 	mutex_lock(&kvm->lock);
2512 	kvm->created_vcpus--;
2513 	mutex_unlock(&kvm->lock);
2514 	return r;
2515 }
2516 
2517 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2518 {
2519 	if (sigset) {
2520 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2521 		vcpu->sigset_active = 1;
2522 		vcpu->sigset = *sigset;
2523 	} else
2524 		vcpu->sigset_active = 0;
2525 	return 0;
2526 }
2527 
2528 static long kvm_vcpu_ioctl(struct file *filp,
2529 			   unsigned int ioctl, unsigned long arg)
2530 {
2531 	struct kvm_vcpu *vcpu = filp->private_data;
2532 	void __user *argp = (void __user *)arg;
2533 	int r;
2534 	struct kvm_fpu *fpu = NULL;
2535 	struct kvm_sregs *kvm_sregs = NULL;
2536 
2537 	if (vcpu->kvm->mm != current->mm)
2538 		return -EIO;
2539 
2540 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2541 		return -EINVAL;
2542 
2543 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2544 	/*
2545 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2546 	 * so vcpu_load() would break it.
2547 	 */
2548 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2549 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2550 #endif
2551 
2552 
2553 	r = vcpu_load(vcpu);
2554 	if (r)
2555 		return r;
2556 	switch (ioctl) {
2557 	case KVM_RUN:
2558 		r = -EINVAL;
2559 		if (arg)
2560 			goto out;
2561 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2562 			/* The thread running this VCPU changed. */
2563 			struct pid *oldpid = vcpu->pid;
2564 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2565 
2566 			rcu_assign_pointer(vcpu->pid, newpid);
2567 			if (oldpid)
2568 				synchronize_rcu();
2569 			put_pid(oldpid);
2570 		}
2571 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2572 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2573 		break;
2574 	case KVM_GET_REGS: {
2575 		struct kvm_regs *kvm_regs;
2576 
2577 		r = -ENOMEM;
2578 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2579 		if (!kvm_regs)
2580 			goto out;
2581 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2582 		if (r)
2583 			goto out_free1;
2584 		r = -EFAULT;
2585 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2586 			goto out_free1;
2587 		r = 0;
2588 out_free1:
2589 		kfree(kvm_regs);
2590 		break;
2591 	}
2592 	case KVM_SET_REGS: {
2593 		struct kvm_regs *kvm_regs;
2594 
2595 		r = -ENOMEM;
2596 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2597 		if (IS_ERR(kvm_regs)) {
2598 			r = PTR_ERR(kvm_regs);
2599 			goto out;
2600 		}
2601 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2602 		kfree(kvm_regs);
2603 		break;
2604 	}
2605 	case KVM_GET_SREGS: {
2606 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2607 		r = -ENOMEM;
2608 		if (!kvm_sregs)
2609 			goto out;
2610 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2611 		if (r)
2612 			goto out;
2613 		r = -EFAULT;
2614 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2615 			goto out;
2616 		r = 0;
2617 		break;
2618 	}
2619 	case KVM_SET_SREGS: {
2620 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2621 		if (IS_ERR(kvm_sregs)) {
2622 			r = PTR_ERR(kvm_sregs);
2623 			kvm_sregs = NULL;
2624 			goto out;
2625 		}
2626 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2627 		break;
2628 	}
2629 	case KVM_GET_MP_STATE: {
2630 		struct kvm_mp_state mp_state;
2631 
2632 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2633 		if (r)
2634 			goto out;
2635 		r = -EFAULT;
2636 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2637 			goto out;
2638 		r = 0;
2639 		break;
2640 	}
2641 	case KVM_SET_MP_STATE: {
2642 		struct kvm_mp_state mp_state;
2643 
2644 		r = -EFAULT;
2645 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2646 			goto out;
2647 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2648 		break;
2649 	}
2650 	case KVM_TRANSLATE: {
2651 		struct kvm_translation tr;
2652 
2653 		r = -EFAULT;
2654 		if (copy_from_user(&tr, argp, sizeof(tr)))
2655 			goto out;
2656 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2657 		if (r)
2658 			goto out;
2659 		r = -EFAULT;
2660 		if (copy_to_user(argp, &tr, sizeof(tr)))
2661 			goto out;
2662 		r = 0;
2663 		break;
2664 	}
2665 	case KVM_SET_GUEST_DEBUG: {
2666 		struct kvm_guest_debug dbg;
2667 
2668 		r = -EFAULT;
2669 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2670 			goto out;
2671 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2672 		break;
2673 	}
2674 	case KVM_SET_SIGNAL_MASK: {
2675 		struct kvm_signal_mask __user *sigmask_arg = argp;
2676 		struct kvm_signal_mask kvm_sigmask;
2677 		sigset_t sigset, *p;
2678 
2679 		p = NULL;
2680 		if (argp) {
2681 			r = -EFAULT;
2682 			if (copy_from_user(&kvm_sigmask, argp,
2683 					   sizeof(kvm_sigmask)))
2684 				goto out;
2685 			r = -EINVAL;
2686 			if (kvm_sigmask.len != sizeof(sigset))
2687 				goto out;
2688 			r = -EFAULT;
2689 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2690 					   sizeof(sigset)))
2691 				goto out;
2692 			p = &sigset;
2693 		}
2694 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2695 		break;
2696 	}
2697 	case KVM_GET_FPU: {
2698 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2699 		r = -ENOMEM;
2700 		if (!fpu)
2701 			goto out;
2702 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2703 		if (r)
2704 			goto out;
2705 		r = -EFAULT;
2706 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2707 			goto out;
2708 		r = 0;
2709 		break;
2710 	}
2711 	case KVM_SET_FPU: {
2712 		fpu = memdup_user(argp, sizeof(*fpu));
2713 		if (IS_ERR(fpu)) {
2714 			r = PTR_ERR(fpu);
2715 			fpu = NULL;
2716 			goto out;
2717 		}
2718 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2719 		break;
2720 	}
2721 	default:
2722 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2723 	}
2724 out:
2725 	vcpu_put(vcpu);
2726 	kfree(fpu);
2727 	kfree(kvm_sregs);
2728 	return r;
2729 }
2730 
2731 #ifdef CONFIG_KVM_COMPAT
2732 static long kvm_vcpu_compat_ioctl(struct file *filp,
2733 				  unsigned int ioctl, unsigned long arg)
2734 {
2735 	struct kvm_vcpu *vcpu = filp->private_data;
2736 	void __user *argp = compat_ptr(arg);
2737 	int r;
2738 
2739 	if (vcpu->kvm->mm != current->mm)
2740 		return -EIO;
2741 
2742 	switch (ioctl) {
2743 	case KVM_SET_SIGNAL_MASK: {
2744 		struct kvm_signal_mask __user *sigmask_arg = argp;
2745 		struct kvm_signal_mask kvm_sigmask;
2746 		compat_sigset_t csigset;
2747 		sigset_t sigset;
2748 
2749 		if (argp) {
2750 			r = -EFAULT;
2751 			if (copy_from_user(&kvm_sigmask, argp,
2752 					   sizeof(kvm_sigmask)))
2753 				goto out;
2754 			r = -EINVAL;
2755 			if (kvm_sigmask.len != sizeof(csigset))
2756 				goto out;
2757 			r = -EFAULT;
2758 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2759 					   sizeof(csigset)))
2760 				goto out;
2761 			sigset_from_compat(&sigset, &csigset);
2762 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2763 		} else
2764 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2765 		break;
2766 	}
2767 	default:
2768 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2769 	}
2770 
2771 out:
2772 	return r;
2773 }
2774 #endif
2775 
2776 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2777 				 int (*accessor)(struct kvm_device *dev,
2778 						 struct kvm_device_attr *attr),
2779 				 unsigned long arg)
2780 {
2781 	struct kvm_device_attr attr;
2782 
2783 	if (!accessor)
2784 		return -EPERM;
2785 
2786 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2787 		return -EFAULT;
2788 
2789 	return accessor(dev, &attr);
2790 }
2791 
2792 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2793 			     unsigned long arg)
2794 {
2795 	struct kvm_device *dev = filp->private_data;
2796 
2797 	switch (ioctl) {
2798 	case KVM_SET_DEVICE_ATTR:
2799 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2800 	case KVM_GET_DEVICE_ATTR:
2801 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2802 	case KVM_HAS_DEVICE_ATTR:
2803 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2804 	default:
2805 		if (dev->ops->ioctl)
2806 			return dev->ops->ioctl(dev, ioctl, arg);
2807 
2808 		return -ENOTTY;
2809 	}
2810 }
2811 
2812 static int kvm_device_release(struct inode *inode, struct file *filp)
2813 {
2814 	struct kvm_device *dev = filp->private_data;
2815 	struct kvm *kvm = dev->kvm;
2816 
2817 	kvm_put_kvm(kvm);
2818 	return 0;
2819 }
2820 
2821 static const struct file_operations kvm_device_fops = {
2822 	.unlocked_ioctl = kvm_device_ioctl,
2823 #ifdef CONFIG_KVM_COMPAT
2824 	.compat_ioctl = kvm_device_ioctl,
2825 #endif
2826 	.release = kvm_device_release,
2827 };
2828 
2829 struct kvm_device *kvm_device_from_filp(struct file *filp)
2830 {
2831 	if (filp->f_op != &kvm_device_fops)
2832 		return NULL;
2833 
2834 	return filp->private_data;
2835 }
2836 
2837 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2838 #ifdef CONFIG_KVM_MPIC
2839 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2840 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2841 #endif
2842 
2843 #ifdef CONFIG_KVM_XICS
2844 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2845 #endif
2846 };
2847 
2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2849 {
2850 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2851 		return -ENOSPC;
2852 
2853 	if (kvm_device_ops_table[type] != NULL)
2854 		return -EEXIST;
2855 
2856 	kvm_device_ops_table[type] = ops;
2857 	return 0;
2858 }
2859 
2860 void kvm_unregister_device_ops(u32 type)
2861 {
2862 	if (kvm_device_ops_table[type] != NULL)
2863 		kvm_device_ops_table[type] = NULL;
2864 }
2865 
2866 static int kvm_ioctl_create_device(struct kvm *kvm,
2867 				   struct kvm_create_device *cd)
2868 {
2869 	struct kvm_device_ops *ops = NULL;
2870 	struct kvm_device *dev;
2871 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2872 	int ret;
2873 
2874 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2875 		return -ENODEV;
2876 
2877 	ops = kvm_device_ops_table[cd->type];
2878 	if (ops == NULL)
2879 		return -ENODEV;
2880 
2881 	if (test)
2882 		return 0;
2883 
2884 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2885 	if (!dev)
2886 		return -ENOMEM;
2887 
2888 	dev->ops = ops;
2889 	dev->kvm = kvm;
2890 
2891 	mutex_lock(&kvm->lock);
2892 	ret = ops->create(dev, cd->type);
2893 	if (ret < 0) {
2894 		mutex_unlock(&kvm->lock);
2895 		kfree(dev);
2896 		return ret;
2897 	}
2898 	list_add(&dev->vm_node, &kvm->devices);
2899 	mutex_unlock(&kvm->lock);
2900 
2901 	if (ops->init)
2902 		ops->init(dev);
2903 
2904 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2905 	if (ret < 0) {
2906 		mutex_lock(&kvm->lock);
2907 		list_del(&dev->vm_node);
2908 		mutex_unlock(&kvm->lock);
2909 		ops->destroy(dev);
2910 		return ret;
2911 	}
2912 
2913 	kvm_get_kvm(kvm);
2914 	cd->fd = ret;
2915 	return 0;
2916 }
2917 
2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2919 {
2920 	switch (arg) {
2921 	case KVM_CAP_USER_MEMORY:
2922 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2923 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2924 	case KVM_CAP_INTERNAL_ERROR_DATA:
2925 #ifdef CONFIG_HAVE_KVM_MSI
2926 	case KVM_CAP_SIGNAL_MSI:
2927 #endif
2928 #ifdef CONFIG_HAVE_KVM_IRQFD
2929 	case KVM_CAP_IRQFD:
2930 	case KVM_CAP_IRQFD_RESAMPLE:
2931 #endif
2932 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2933 	case KVM_CAP_CHECK_EXTENSION_VM:
2934 		return 1;
2935 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2936 	case KVM_CAP_IRQ_ROUTING:
2937 		return KVM_MAX_IRQ_ROUTES;
2938 #endif
2939 #if KVM_ADDRESS_SPACE_NUM > 1
2940 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2941 		return KVM_ADDRESS_SPACE_NUM;
2942 #endif
2943 	case KVM_CAP_MAX_VCPU_ID:
2944 		return KVM_MAX_VCPU_ID;
2945 	default:
2946 		break;
2947 	}
2948 	return kvm_vm_ioctl_check_extension(kvm, arg);
2949 }
2950 
2951 static long kvm_vm_ioctl(struct file *filp,
2952 			   unsigned int ioctl, unsigned long arg)
2953 {
2954 	struct kvm *kvm = filp->private_data;
2955 	void __user *argp = (void __user *)arg;
2956 	int r;
2957 
2958 	if (kvm->mm != current->mm)
2959 		return -EIO;
2960 	switch (ioctl) {
2961 	case KVM_CREATE_VCPU:
2962 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2963 		break;
2964 	case KVM_SET_USER_MEMORY_REGION: {
2965 		struct kvm_userspace_memory_region kvm_userspace_mem;
2966 
2967 		r = -EFAULT;
2968 		if (copy_from_user(&kvm_userspace_mem, argp,
2969 						sizeof(kvm_userspace_mem)))
2970 			goto out;
2971 
2972 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2973 		break;
2974 	}
2975 	case KVM_GET_DIRTY_LOG: {
2976 		struct kvm_dirty_log log;
2977 
2978 		r = -EFAULT;
2979 		if (copy_from_user(&log, argp, sizeof(log)))
2980 			goto out;
2981 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2982 		break;
2983 	}
2984 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2985 	case KVM_REGISTER_COALESCED_MMIO: {
2986 		struct kvm_coalesced_mmio_zone zone;
2987 
2988 		r = -EFAULT;
2989 		if (copy_from_user(&zone, argp, sizeof(zone)))
2990 			goto out;
2991 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2992 		break;
2993 	}
2994 	case KVM_UNREGISTER_COALESCED_MMIO: {
2995 		struct kvm_coalesced_mmio_zone zone;
2996 
2997 		r = -EFAULT;
2998 		if (copy_from_user(&zone, argp, sizeof(zone)))
2999 			goto out;
3000 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3001 		break;
3002 	}
3003 #endif
3004 	case KVM_IRQFD: {
3005 		struct kvm_irqfd data;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&data, argp, sizeof(data)))
3009 			goto out;
3010 		r = kvm_irqfd(kvm, &data);
3011 		break;
3012 	}
3013 	case KVM_IOEVENTFD: {
3014 		struct kvm_ioeventfd data;
3015 
3016 		r = -EFAULT;
3017 		if (copy_from_user(&data, argp, sizeof(data)))
3018 			goto out;
3019 		r = kvm_ioeventfd(kvm, &data);
3020 		break;
3021 	}
3022 #ifdef CONFIG_HAVE_KVM_MSI
3023 	case KVM_SIGNAL_MSI: {
3024 		struct kvm_msi msi;
3025 
3026 		r = -EFAULT;
3027 		if (copy_from_user(&msi, argp, sizeof(msi)))
3028 			goto out;
3029 		r = kvm_send_userspace_msi(kvm, &msi);
3030 		break;
3031 	}
3032 #endif
3033 #ifdef __KVM_HAVE_IRQ_LINE
3034 	case KVM_IRQ_LINE_STATUS:
3035 	case KVM_IRQ_LINE: {
3036 		struct kvm_irq_level irq_event;
3037 
3038 		r = -EFAULT;
3039 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3040 			goto out;
3041 
3042 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3043 					ioctl == KVM_IRQ_LINE_STATUS);
3044 		if (r)
3045 			goto out;
3046 
3047 		r = -EFAULT;
3048 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3049 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3050 				goto out;
3051 		}
3052 
3053 		r = 0;
3054 		break;
3055 	}
3056 #endif
3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058 	case KVM_SET_GSI_ROUTING: {
3059 		struct kvm_irq_routing routing;
3060 		struct kvm_irq_routing __user *urouting;
3061 		struct kvm_irq_routing_entry *entries = NULL;
3062 
3063 		r = -EFAULT;
3064 		if (copy_from_user(&routing, argp, sizeof(routing)))
3065 			goto out;
3066 		r = -EINVAL;
3067 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3068 			goto out;
3069 		if (routing.flags)
3070 			goto out;
3071 		if (routing.nr) {
3072 			r = -ENOMEM;
3073 			entries = vmalloc(routing.nr * sizeof(*entries));
3074 			if (!entries)
3075 				goto out;
3076 			r = -EFAULT;
3077 			urouting = argp;
3078 			if (copy_from_user(entries, urouting->entries,
3079 					   routing.nr * sizeof(*entries)))
3080 				goto out_free_irq_routing;
3081 		}
3082 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3083 					routing.flags);
3084 out_free_irq_routing:
3085 		vfree(entries);
3086 		break;
3087 	}
3088 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3089 	case KVM_CREATE_DEVICE: {
3090 		struct kvm_create_device cd;
3091 
3092 		r = -EFAULT;
3093 		if (copy_from_user(&cd, argp, sizeof(cd)))
3094 			goto out;
3095 
3096 		r = kvm_ioctl_create_device(kvm, &cd);
3097 		if (r)
3098 			goto out;
3099 
3100 		r = -EFAULT;
3101 		if (copy_to_user(argp, &cd, sizeof(cd)))
3102 			goto out;
3103 
3104 		r = 0;
3105 		break;
3106 	}
3107 	case KVM_CHECK_EXTENSION:
3108 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3109 		break;
3110 	default:
3111 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3112 	}
3113 out:
3114 	return r;
3115 }
3116 
3117 #ifdef CONFIG_KVM_COMPAT
3118 struct compat_kvm_dirty_log {
3119 	__u32 slot;
3120 	__u32 padding1;
3121 	union {
3122 		compat_uptr_t dirty_bitmap; /* one bit per page */
3123 		__u64 padding2;
3124 	};
3125 };
3126 
3127 static long kvm_vm_compat_ioctl(struct file *filp,
3128 			   unsigned int ioctl, unsigned long arg)
3129 {
3130 	struct kvm *kvm = filp->private_data;
3131 	int r;
3132 
3133 	if (kvm->mm != current->mm)
3134 		return -EIO;
3135 	switch (ioctl) {
3136 	case KVM_GET_DIRTY_LOG: {
3137 		struct compat_kvm_dirty_log compat_log;
3138 		struct kvm_dirty_log log;
3139 
3140 		if (copy_from_user(&compat_log, (void __user *)arg,
3141 				   sizeof(compat_log)))
3142 			return -EFAULT;
3143 		log.slot	 = compat_log.slot;
3144 		log.padding1	 = compat_log.padding1;
3145 		log.padding2	 = compat_log.padding2;
3146 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3147 
3148 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3149 		break;
3150 	}
3151 	default:
3152 		r = kvm_vm_ioctl(filp, ioctl, arg);
3153 	}
3154 	return r;
3155 }
3156 #endif
3157 
3158 static struct file_operations kvm_vm_fops = {
3159 	.release        = kvm_vm_release,
3160 	.unlocked_ioctl = kvm_vm_ioctl,
3161 #ifdef CONFIG_KVM_COMPAT
3162 	.compat_ioctl   = kvm_vm_compat_ioctl,
3163 #endif
3164 	.llseek		= noop_llseek,
3165 };
3166 
3167 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 {
3169 	int r;
3170 	struct kvm *kvm;
3171 	struct file *file;
3172 
3173 	kvm = kvm_create_vm(type);
3174 	if (IS_ERR(kvm))
3175 		return PTR_ERR(kvm);
3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3177 	r = kvm_coalesced_mmio_init(kvm);
3178 	if (r < 0) {
3179 		kvm_put_kvm(kvm);
3180 		return r;
3181 	}
3182 #endif
3183 	r = get_unused_fd_flags(O_CLOEXEC);
3184 	if (r < 0) {
3185 		kvm_put_kvm(kvm);
3186 		return r;
3187 	}
3188 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3189 	if (IS_ERR(file)) {
3190 		put_unused_fd(r);
3191 		kvm_put_kvm(kvm);
3192 		return PTR_ERR(file);
3193 	}
3194 
3195 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3196 		put_unused_fd(r);
3197 		fput(file);
3198 		return -ENOMEM;
3199 	}
3200 
3201 	fd_install(r, file);
3202 	return r;
3203 }
3204 
3205 static long kvm_dev_ioctl(struct file *filp,
3206 			  unsigned int ioctl, unsigned long arg)
3207 {
3208 	long r = -EINVAL;
3209 
3210 	switch (ioctl) {
3211 	case KVM_GET_API_VERSION:
3212 		if (arg)
3213 			goto out;
3214 		r = KVM_API_VERSION;
3215 		break;
3216 	case KVM_CREATE_VM:
3217 		r = kvm_dev_ioctl_create_vm(arg);
3218 		break;
3219 	case KVM_CHECK_EXTENSION:
3220 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221 		break;
3222 	case KVM_GET_VCPU_MMAP_SIZE:
3223 		if (arg)
3224 			goto out;
3225 		r = PAGE_SIZE;     /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227 		r += PAGE_SIZE;    /* pio data page */
3228 #endif
3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3230 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3231 #endif
3232 		break;
3233 	case KVM_TRACE_ENABLE:
3234 	case KVM_TRACE_PAUSE:
3235 	case KVM_TRACE_DISABLE:
3236 		r = -EOPNOTSUPP;
3237 		break;
3238 	default:
3239 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 	}
3241 out:
3242 	return r;
3243 }
3244 
3245 static struct file_operations kvm_chardev_ops = {
3246 	.unlocked_ioctl = kvm_dev_ioctl,
3247 	.compat_ioctl   = kvm_dev_ioctl,
3248 	.llseek		= noop_llseek,
3249 };
3250 
3251 static struct miscdevice kvm_dev = {
3252 	KVM_MINOR,
3253 	"kvm",
3254 	&kvm_chardev_ops,
3255 };
3256 
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259 	int cpu = raw_smp_processor_id();
3260 	int r;
3261 
3262 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263 		return;
3264 
3265 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266 
3267 	r = kvm_arch_hardware_enable();
3268 
3269 	if (r) {
3270 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271 		atomic_inc(&hardware_enable_failed);
3272 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 	}
3274 }
3275 
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278 	raw_spin_lock(&kvm_count_lock);
3279 	if (kvm_usage_count)
3280 		hardware_enable_nolock(NULL);
3281 	raw_spin_unlock(&kvm_count_lock);
3282 	return 0;
3283 }
3284 
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287 	int cpu = raw_smp_processor_id();
3288 
3289 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290 		return;
3291 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292 	kvm_arch_hardware_disable();
3293 }
3294 
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297 	raw_spin_lock(&kvm_count_lock);
3298 	if (kvm_usage_count)
3299 		hardware_disable_nolock(NULL);
3300 	raw_spin_unlock(&kvm_count_lock);
3301 	return 0;
3302 }
3303 
3304 static void hardware_disable_all_nolock(void)
3305 {
3306 	BUG_ON(!kvm_usage_count);
3307 
3308 	kvm_usage_count--;
3309 	if (!kvm_usage_count)
3310 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312 
3313 static void hardware_disable_all(void)
3314 {
3315 	raw_spin_lock(&kvm_count_lock);
3316 	hardware_disable_all_nolock();
3317 	raw_spin_unlock(&kvm_count_lock);
3318 }
3319 
3320 static int hardware_enable_all(void)
3321 {
3322 	int r = 0;
3323 
3324 	raw_spin_lock(&kvm_count_lock);
3325 
3326 	kvm_usage_count++;
3327 	if (kvm_usage_count == 1) {
3328 		atomic_set(&hardware_enable_failed, 0);
3329 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3330 
3331 		if (atomic_read(&hardware_enable_failed)) {
3332 			hardware_disable_all_nolock();
3333 			r = -EBUSY;
3334 		}
3335 	}
3336 
3337 	raw_spin_unlock(&kvm_count_lock);
3338 
3339 	return r;
3340 }
3341 
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343 		      void *v)
3344 {
3345 	/*
3346 	 * Some (well, at least mine) BIOSes hang on reboot if
3347 	 * in vmx root mode.
3348 	 *
3349 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 	 */
3351 	pr_info("kvm: exiting hardware virtualization\n");
3352 	kvm_rebooting = true;
3353 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3354 	return NOTIFY_OK;
3355 }
3356 
3357 static struct notifier_block kvm_reboot_notifier = {
3358 	.notifier_call = kvm_reboot,
3359 	.priority = 0,
3360 };
3361 
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bus->dev_count; i++) {
3367 		struct kvm_io_device *pos = bus->range[i].dev;
3368 
3369 		kvm_iodevice_destructor(pos);
3370 	}
3371 	kfree(bus);
3372 }
3373 
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375 				 const struct kvm_io_range *r2)
3376 {
3377 	gpa_t addr1 = r1->addr;
3378 	gpa_t addr2 = r2->addr;
3379 
3380 	if (addr1 < addr2)
3381 		return -1;
3382 
3383 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3384 	 * accept any overlapping write.  Any order is acceptable for
3385 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386 	 * we process all of them.
3387 	 */
3388 	if (r2->len) {
3389 		addr1 += r1->len;
3390 		addr2 += r2->len;
3391 	}
3392 
3393 	if (addr1 > addr2)
3394 		return 1;
3395 
3396 	return 0;
3397 }
3398 
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401 	return kvm_io_bus_cmp(p1, p2);
3402 }
3403 
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405 			  gpa_t addr, int len)
3406 {
3407 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408 		.addr = addr,
3409 		.len = len,
3410 		.dev = dev,
3411 	};
3412 
3413 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414 		kvm_io_bus_sort_cmp, NULL);
3415 
3416 	return 0;
3417 }
3418 
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 			     gpa_t addr, int len)
3421 {
3422 	struct kvm_io_range *range, key;
3423 	int off;
3424 
3425 	key = (struct kvm_io_range) {
3426 		.addr = addr,
3427 		.len = len,
3428 	};
3429 
3430 	range = bsearch(&key, bus->range, bus->dev_count,
3431 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 	if (range == NULL)
3433 		return -ENOENT;
3434 
3435 	off = range - bus->range;
3436 
3437 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 		off--;
3439 
3440 	return off;
3441 }
3442 
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 			      struct kvm_io_range *range, const void *val)
3445 {
3446 	int idx;
3447 
3448 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 	if (idx < 0)
3450 		return -EOPNOTSUPP;
3451 
3452 	while (idx < bus->dev_count &&
3453 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 					range->len, val))
3456 			return idx;
3457 		idx++;
3458 	}
3459 
3460 	return -EOPNOTSUPP;
3461 }
3462 
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 		     int len, const void *val)
3466 {
3467 	struct kvm_io_bus *bus;
3468 	struct kvm_io_range range;
3469 	int r;
3470 
3471 	range = (struct kvm_io_range) {
3472 		.addr = addr,
3473 		.len = len,
3474 	};
3475 
3476 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 	return r < 0 ? r : 0;
3479 }
3480 
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 			    gpa_t addr, int len, const void *val, long cookie)
3484 {
3485 	struct kvm_io_bus *bus;
3486 	struct kvm_io_range range;
3487 
3488 	range = (struct kvm_io_range) {
3489 		.addr = addr,
3490 		.len = len,
3491 	};
3492 
3493 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494 
3495 	/* First try the device referenced by cookie. */
3496 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3497 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3498 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3499 					val))
3500 			return cookie;
3501 
3502 	/*
3503 	 * cookie contained garbage; fall back to search and return the
3504 	 * correct cookie value.
3505 	 */
3506 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3507 }
3508 
3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3510 			     struct kvm_io_range *range, void *val)
3511 {
3512 	int idx;
3513 
3514 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3515 	if (idx < 0)
3516 		return -EOPNOTSUPP;
3517 
3518 	while (idx < bus->dev_count &&
3519 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3520 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3521 				       range->len, val))
3522 			return idx;
3523 		idx++;
3524 	}
3525 
3526 	return -EOPNOTSUPP;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3529 
3530 /* kvm_io_bus_read - called under kvm->slots_lock */
3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3532 		    int len, void *val)
3533 {
3534 	struct kvm_io_bus *bus;
3535 	struct kvm_io_range range;
3536 	int r;
3537 
3538 	range = (struct kvm_io_range) {
3539 		.addr = addr,
3540 		.len = len,
3541 	};
3542 
3543 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3544 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3545 	return r < 0 ? r : 0;
3546 }
3547 
3548 
3549 /* Caller must hold slots_lock. */
3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3551 			    int len, struct kvm_io_device *dev)
3552 {
3553 	struct kvm_io_bus *new_bus, *bus;
3554 
3555 	bus = kvm->buses[bus_idx];
3556 	/* exclude ioeventfd which is limited by maximum fd */
3557 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558 		return -ENOSPC;
3559 
3560 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3562 	if (!new_bus)
3563 		return -ENOMEM;
3564 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565 	       sizeof(struct kvm_io_range)));
3566 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568 	synchronize_srcu_expedited(&kvm->srcu);
3569 	kfree(bus);
3570 
3571 	return 0;
3572 }
3573 
3574 /* Caller must hold slots_lock. */
3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576 			      struct kvm_io_device *dev)
3577 {
3578 	int i, r;
3579 	struct kvm_io_bus *new_bus, *bus;
3580 
3581 	bus = kvm->buses[bus_idx];
3582 	r = -ENOENT;
3583 	for (i = 0; i < bus->dev_count; i++)
3584 		if (bus->range[i].dev == dev) {
3585 			r = 0;
3586 			break;
3587 		}
3588 
3589 	if (r)
3590 		return r;
3591 
3592 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 	if (!new_bus)
3595 		return -ENOMEM;
3596 
3597 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3598 	new_bus->dev_count--;
3599 	memcpy(new_bus->range + i, bus->range + i + 1,
3600 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3601 
3602 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603 	synchronize_srcu_expedited(&kvm->srcu);
3604 	kfree(bus);
3605 	return r;
3606 }
3607 
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 					 gpa_t addr)
3610 {
3611 	struct kvm_io_bus *bus;
3612 	int dev_idx, srcu_idx;
3613 	struct kvm_io_device *iodev = NULL;
3614 
3615 	srcu_idx = srcu_read_lock(&kvm->srcu);
3616 
3617 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618 
3619 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3620 	if (dev_idx < 0)
3621 		goto out_unlock;
3622 
3623 	iodev = bus->range[dev_idx].dev;
3624 
3625 out_unlock:
3626 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3627 
3628 	return iodev;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3631 
3632 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3633 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3634 			   const char *fmt)
3635 {
3636 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3637 					  inode->i_private;
3638 
3639 	/* The debugfs files are a reference to the kvm struct which
3640 	 * is still valid when kvm_destroy_vm is called.
3641 	 * To avoid the race between open and the removal of the debugfs
3642 	 * directory we test against the users count.
3643 	 */
3644 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3645 		return -ENOENT;
3646 
3647 	if (simple_attr_open(inode, file, get, set, fmt)) {
3648 		kvm_put_kvm(stat_data->kvm);
3649 		return -ENOMEM;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3656 {
3657 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658 					  inode->i_private;
3659 
3660 	simple_attr_release(inode, file);
3661 	kvm_put_kvm(stat_data->kvm);
3662 
3663 	return 0;
3664 }
3665 
3666 static int vm_stat_get_per_vm(void *data, u64 *val)
3667 {
3668 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3669 
3670 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3671 
3672 	return 0;
3673 }
3674 
3675 static int vm_stat_clear_per_vm(void *data, u64 val)
3676 {
3677 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3678 
3679 	if (val)
3680 		return -EINVAL;
3681 
3682 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3683 
3684 	return 0;
3685 }
3686 
3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3688 {
3689 	__simple_attr_check_format("%llu\n", 0ull);
3690 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3691 				vm_stat_clear_per_vm, "%llu\n");
3692 }
3693 
3694 static const struct file_operations vm_stat_get_per_vm_fops = {
3695 	.owner   = THIS_MODULE,
3696 	.open    = vm_stat_get_per_vm_open,
3697 	.release = kvm_debugfs_release,
3698 	.read    = simple_attr_read,
3699 	.write   = simple_attr_write,
3700 	.llseek  = generic_file_llseek,
3701 };
3702 
3703 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3704 {
3705 	int i;
3706 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707 	struct kvm_vcpu *vcpu;
3708 
3709 	*val = 0;
3710 
3711 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3712 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3713 
3714 	return 0;
3715 }
3716 
3717 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3718 {
3719 	int i;
3720 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 	struct kvm_vcpu *vcpu;
3722 
3723 	if (val)
3724 		return -EINVAL;
3725 
3726 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3728 
3729 	return 0;
3730 }
3731 
3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3733 {
3734 	__simple_attr_check_format("%llu\n", 0ull);
3735 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3736 				 vcpu_stat_clear_per_vm, "%llu\n");
3737 }
3738 
3739 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3740 	.owner   = THIS_MODULE,
3741 	.open    = vcpu_stat_get_per_vm_open,
3742 	.release = kvm_debugfs_release,
3743 	.read    = simple_attr_read,
3744 	.write   = simple_attr_write,
3745 	.llseek  = generic_file_llseek,
3746 };
3747 
3748 static const struct file_operations *stat_fops_per_vm[] = {
3749 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3750 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3751 };
3752 
3753 static int vm_stat_get(void *_offset, u64 *val)
3754 {
3755 	unsigned offset = (long)_offset;
3756 	struct kvm *kvm;
3757 	struct kvm_stat_data stat_tmp = {.offset = offset};
3758 	u64 tmp_val;
3759 
3760 	*val = 0;
3761 	spin_lock(&kvm_lock);
3762 	list_for_each_entry(kvm, &vm_list, vm_list) {
3763 		stat_tmp.kvm = kvm;
3764 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3765 		*val += tmp_val;
3766 	}
3767 	spin_unlock(&kvm_lock);
3768 	return 0;
3769 }
3770 
3771 static int vm_stat_clear(void *_offset, u64 val)
3772 {
3773 	unsigned offset = (long)_offset;
3774 	struct kvm *kvm;
3775 	struct kvm_stat_data stat_tmp = {.offset = offset};
3776 
3777 	if (val)
3778 		return -EINVAL;
3779 
3780 	spin_lock(&kvm_lock);
3781 	list_for_each_entry(kvm, &vm_list, vm_list) {
3782 		stat_tmp.kvm = kvm;
3783 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3784 	}
3785 	spin_unlock(&kvm_lock);
3786 
3787 	return 0;
3788 }
3789 
3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3791 
3792 static int vcpu_stat_get(void *_offset, u64 *val)
3793 {
3794 	unsigned offset = (long)_offset;
3795 	struct kvm *kvm;
3796 	struct kvm_stat_data stat_tmp = {.offset = offset};
3797 	u64 tmp_val;
3798 
3799 	*val = 0;
3800 	spin_lock(&kvm_lock);
3801 	list_for_each_entry(kvm, &vm_list, vm_list) {
3802 		stat_tmp.kvm = kvm;
3803 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 		*val += tmp_val;
3805 	}
3806 	spin_unlock(&kvm_lock);
3807 	return 0;
3808 }
3809 
3810 static int vcpu_stat_clear(void *_offset, u64 val)
3811 {
3812 	unsigned offset = (long)_offset;
3813 	struct kvm *kvm;
3814 	struct kvm_stat_data stat_tmp = {.offset = offset};
3815 
3816 	if (val)
3817 		return -EINVAL;
3818 
3819 	spin_lock(&kvm_lock);
3820 	list_for_each_entry(kvm, &vm_list, vm_list) {
3821 		stat_tmp.kvm = kvm;
3822 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 	}
3824 	spin_unlock(&kvm_lock);
3825 
3826 	return 0;
3827 }
3828 
3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3830 			"%llu\n");
3831 
3832 static const struct file_operations *stat_fops[] = {
3833 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3834 	[KVM_STAT_VM]   = &vm_stat_fops,
3835 };
3836 
3837 static int kvm_init_debug(void)
3838 {
3839 	int r = -EEXIST;
3840 	struct kvm_stats_debugfs_item *p;
3841 
3842 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3843 	if (kvm_debugfs_dir == NULL)
3844 		goto out;
3845 
3846 	kvm_debugfs_num_entries = 0;
3847 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3848 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3849 					 (void *)(long)p->offset,
3850 					 stat_fops[p->kind]))
3851 			goto out_dir;
3852 	}
3853 
3854 	return 0;
3855 
3856 out_dir:
3857 	debugfs_remove_recursive(kvm_debugfs_dir);
3858 out:
3859 	return r;
3860 }
3861 
3862 static int kvm_suspend(void)
3863 {
3864 	if (kvm_usage_count)
3865 		hardware_disable_nolock(NULL);
3866 	return 0;
3867 }
3868 
3869 static void kvm_resume(void)
3870 {
3871 	if (kvm_usage_count) {
3872 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3873 		hardware_enable_nolock(NULL);
3874 	}
3875 }
3876 
3877 static struct syscore_ops kvm_syscore_ops = {
3878 	.suspend = kvm_suspend,
3879 	.resume = kvm_resume,
3880 };
3881 
3882 static inline
3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3884 {
3885 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3886 }
3887 
3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3889 {
3890 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3891 
3892 	if (vcpu->preempted)
3893 		vcpu->preempted = false;
3894 
3895 	kvm_arch_sched_in(vcpu, cpu);
3896 
3897 	kvm_arch_vcpu_load(vcpu, cpu);
3898 }
3899 
3900 static void kvm_sched_out(struct preempt_notifier *pn,
3901 			  struct task_struct *next)
3902 {
3903 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3904 
3905 	if (current->state == TASK_RUNNING)
3906 		vcpu->preempted = true;
3907 	kvm_arch_vcpu_put(vcpu);
3908 }
3909 
3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3911 		  struct module *module)
3912 {
3913 	int r;
3914 	int cpu;
3915 
3916 	r = kvm_arch_init(opaque);
3917 	if (r)
3918 		goto out_fail;
3919 
3920 	/*
3921 	 * kvm_arch_init makes sure there's at most one caller
3922 	 * for architectures that support multiple implementations,
3923 	 * like intel and amd on x86.
3924 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3925 	 * conflicts in case kvm is already setup for another implementation.
3926 	 */
3927 	r = kvm_irqfd_init();
3928 	if (r)
3929 		goto out_irqfd;
3930 
3931 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3932 		r = -ENOMEM;
3933 		goto out_free_0;
3934 	}
3935 
3936 	r = kvm_arch_hardware_setup();
3937 	if (r < 0)
3938 		goto out_free_0a;
3939 
3940 	for_each_online_cpu(cpu) {
3941 		smp_call_function_single(cpu,
3942 				kvm_arch_check_processor_compat,
3943 				&r, 1);
3944 		if (r < 0)
3945 			goto out_free_1;
3946 	}
3947 
3948 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3949 				      kvm_starting_cpu, kvm_dying_cpu);
3950 	if (r)
3951 		goto out_free_2;
3952 	register_reboot_notifier(&kvm_reboot_notifier);
3953 
3954 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3955 	if (!vcpu_align)
3956 		vcpu_align = __alignof__(struct kvm_vcpu);
3957 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3958 					   0, NULL);
3959 	if (!kvm_vcpu_cache) {
3960 		r = -ENOMEM;
3961 		goto out_free_3;
3962 	}
3963 
3964 	r = kvm_async_pf_init();
3965 	if (r)
3966 		goto out_free;
3967 
3968 	kvm_chardev_ops.owner = module;
3969 	kvm_vm_fops.owner = module;
3970 	kvm_vcpu_fops.owner = module;
3971 
3972 	r = misc_register(&kvm_dev);
3973 	if (r) {
3974 		pr_err("kvm: misc device register failed\n");
3975 		goto out_unreg;
3976 	}
3977 
3978 	register_syscore_ops(&kvm_syscore_ops);
3979 
3980 	kvm_preempt_ops.sched_in = kvm_sched_in;
3981 	kvm_preempt_ops.sched_out = kvm_sched_out;
3982 
3983 	r = kvm_init_debug();
3984 	if (r) {
3985 		pr_err("kvm: create debugfs files failed\n");
3986 		goto out_undebugfs;
3987 	}
3988 
3989 	r = kvm_vfio_ops_init();
3990 	WARN_ON(r);
3991 
3992 	return 0;
3993 
3994 out_undebugfs:
3995 	unregister_syscore_ops(&kvm_syscore_ops);
3996 	misc_deregister(&kvm_dev);
3997 out_unreg:
3998 	kvm_async_pf_deinit();
3999 out_free:
4000 	kmem_cache_destroy(kvm_vcpu_cache);
4001 out_free_3:
4002 	unregister_reboot_notifier(&kvm_reboot_notifier);
4003 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4004 out_free_2:
4005 out_free_1:
4006 	kvm_arch_hardware_unsetup();
4007 out_free_0a:
4008 	free_cpumask_var(cpus_hardware_enabled);
4009 out_free_0:
4010 	kvm_irqfd_exit();
4011 out_irqfd:
4012 	kvm_arch_exit();
4013 out_fail:
4014 	return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_init);
4017 
4018 void kvm_exit(void)
4019 {
4020 	debugfs_remove_recursive(kvm_debugfs_dir);
4021 	misc_deregister(&kvm_dev);
4022 	kmem_cache_destroy(kvm_vcpu_cache);
4023 	kvm_async_pf_deinit();
4024 	unregister_syscore_ops(&kvm_syscore_ops);
4025 	unregister_reboot_notifier(&kvm_reboot_notifier);
4026 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4027 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4028 	kvm_arch_hardware_unsetup();
4029 	kvm_arch_exit();
4030 	kvm_irqfd_exit();
4031 	free_cpumask_var(cpus_hardware_enabled);
4032 	kvm_vfio_ops_exit();
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_exit);
4035