1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 134 { 135 if (pfn_valid(pfn)) 136 return PageReserved(pfn_to_page(pfn)); 137 138 return true; 139 } 140 141 /* 142 * Switches to specified vcpu, until a matching vcpu_put() 143 */ 144 int vcpu_load(struct kvm_vcpu *vcpu) 145 { 146 int cpu; 147 148 if (mutex_lock_killable(&vcpu->mutex)) 149 return -EINTR; 150 cpu = get_cpu(); 151 preempt_notifier_register(&vcpu->preempt_notifier); 152 kvm_arch_vcpu_load(vcpu, cpu); 153 put_cpu(); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(vcpu_load); 157 158 void vcpu_put(struct kvm_vcpu *vcpu) 159 { 160 preempt_disable(); 161 kvm_arch_vcpu_put(vcpu); 162 preempt_notifier_unregister(&vcpu->preempt_notifier); 163 preempt_enable(); 164 mutex_unlock(&vcpu->mutex); 165 } 166 EXPORT_SYMBOL_GPL(vcpu_put); 167 168 static void ack_flush(void *_completed) 169 { 170 } 171 172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 173 { 174 int i, cpu, me; 175 cpumask_var_t cpus; 176 bool called = true; 177 struct kvm_vcpu *vcpu; 178 179 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 180 181 me = get_cpu(); 182 kvm_for_each_vcpu(i, vcpu, kvm) { 183 kvm_make_request(req, vcpu); 184 cpu = vcpu->cpu; 185 186 /* Set ->requests bit before we read ->mode. */ 187 smp_mb__after_atomic(); 188 189 if (cpus != NULL && cpu != -1 && cpu != me && 190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 191 cpumask_set_cpu(cpu, cpus); 192 } 193 if (unlikely(cpus == NULL)) 194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 195 else if (!cpumask_empty(cpus)) 196 smp_call_function_many(cpus, ack_flush, NULL, 1); 197 else 198 called = false; 199 put_cpu(); 200 free_cpumask_var(cpus); 201 return called; 202 } 203 204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 205 void kvm_flush_remote_tlbs(struct kvm *kvm) 206 { 207 /* 208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 209 * kvm_make_all_cpus_request. 210 */ 211 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 212 213 /* 214 * We want to publish modifications to the page tables before reading 215 * mode. Pairs with a memory barrier in arch-specific code. 216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 217 * and smp_mb in walk_shadow_page_lockless_begin/end. 218 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 219 * 220 * There is already an smp_mb__after_atomic() before 221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 222 * barrier here. 223 */ 224 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 225 ++kvm->stat.remote_tlb_flush; 226 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 227 } 228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 229 #endif 230 231 void kvm_reload_remote_mmus(struct kvm *kvm) 232 { 233 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 234 } 235 236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 237 { 238 struct page *page; 239 int r; 240 241 mutex_init(&vcpu->mutex); 242 vcpu->cpu = -1; 243 vcpu->kvm = kvm; 244 vcpu->vcpu_id = id; 245 vcpu->pid = NULL; 246 init_swait_queue_head(&vcpu->wq); 247 kvm_async_pf_vcpu_init(vcpu); 248 249 vcpu->pre_pcpu = -1; 250 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 251 252 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 253 if (!page) { 254 r = -ENOMEM; 255 goto fail; 256 } 257 vcpu->run = page_address(page); 258 259 kvm_vcpu_set_in_spin_loop(vcpu, false); 260 kvm_vcpu_set_dy_eligible(vcpu, false); 261 vcpu->preempted = false; 262 263 r = kvm_arch_vcpu_init(vcpu); 264 if (r < 0) 265 goto fail_free_run; 266 return 0; 267 268 fail_free_run: 269 free_page((unsigned long)vcpu->run); 270 fail: 271 return r; 272 } 273 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 274 275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 276 { 277 put_pid(vcpu->pid); 278 kvm_arch_vcpu_uninit(vcpu); 279 free_page((unsigned long)vcpu->run); 280 } 281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 282 283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 285 { 286 return container_of(mn, struct kvm, mmu_notifier); 287 } 288 289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 290 struct mm_struct *mm, 291 unsigned long address) 292 { 293 struct kvm *kvm = mmu_notifier_to_kvm(mn); 294 int need_tlb_flush, idx; 295 296 /* 297 * When ->invalidate_page runs, the linux pte has been zapped 298 * already but the page is still allocated until 299 * ->invalidate_page returns. So if we increase the sequence 300 * here the kvm page fault will notice if the spte can't be 301 * established because the page is going to be freed. If 302 * instead the kvm page fault establishes the spte before 303 * ->invalidate_page runs, kvm_unmap_hva will release it 304 * before returning. 305 * 306 * The sequence increase only need to be seen at spin_unlock 307 * time, and not at spin_lock time. 308 * 309 * Increasing the sequence after the spin_unlock would be 310 * unsafe because the kvm page fault could then establish the 311 * pte after kvm_unmap_hva returned, without noticing the page 312 * is going to be freed. 313 */ 314 idx = srcu_read_lock(&kvm->srcu); 315 spin_lock(&kvm->mmu_lock); 316 317 kvm->mmu_notifier_seq++; 318 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 319 /* we've to flush the tlb before the pages can be freed */ 320 if (need_tlb_flush) 321 kvm_flush_remote_tlbs(kvm); 322 323 spin_unlock(&kvm->mmu_lock); 324 325 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 326 327 srcu_read_unlock(&kvm->srcu, idx); 328 } 329 330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 331 struct mm_struct *mm, 332 unsigned long address, 333 pte_t pte) 334 { 335 struct kvm *kvm = mmu_notifier_to_kvm(mn); 336 int idx; 337 338 idx = srcu_read_lock(&kvm->srcu); 339 spin_lock(&kvm->mmu_lock); 340 kvm->mmu_notifier_seq++; 341 kvm_set_spte_hva(kvm, address, pte); 342 spin_unlock(&kvm->mmu_lock); 343 srcu_read_unlock(&kvm->srcu, idx); 344 } 345 346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long start, 349 unsigned long end) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int need_tlb_flush = 0, idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 /* 357 * The count increase must become visible at unlock time as no 358 * spte can be established without taking the mmu_lock and 359 * count is also read inside the mmu_lock critical section. 360 */ 361 kvm->mmu_notifier_count++; 362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 363 need_tlb_flush |= kvm->tlbs_dirty; 364 /* we've to flush the tlb before the pages can be freed */ 365 if (need_tlb_flush) 366 kvm_flush_remote_tlbs(kvm); 367 368 spin_unlock(&kvm->mmu_lock); 369 srcu_read_unlock(&kvm->srcu, idx); 370 } 371 372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 373 struct mm_struct *mm, 374 unsigned long start, 375 unsigned long end) 376 { 377 struct kvm *kvm = mmu_notifier_to_kvm(mn); 378 379 spin_lock(&kvm->mmu_lock); 380 /* 381 * This sequence increase will notify the kvm page fault that 382 * the page that is going to be mapped in the spte could have 383 * been freed. 384 */ 385 kvm->mmu_notifier_seq++; 386 smp_wmb(); 387 /* 388 * The above sequence increase must be visible before the 389 * below count decrease, which is ensured by the smp_wmb above 390 * in conjunction with the smp_rmb in mmu_notifier_retry(). 391 */ 392 kvm->mmu_notifier_count--; 393 spin_unlock(&kvm->mmu_lock); 394 395 BUG_ON(kvm->mmu_notifier_count < 0); 396 } 397 398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 399 struct mm_struct *mm, 400 unsigned long start, 401 unsigned long end) 402 { 403 struct kvm *kvm = mmu_notifier_to_kvm(mn); 404 int young, idx; 405 406 idx = srcu_read_lock(&kvm->srcu); 407 spin_lock(&kvm->mmu_lock); 408 409 young = kvm_age_hva(kvm, start, end); 410 if (young) 411 kvm_flush_remote_tlbs(kvm); 412 413 spin_unlock(&kvm->mmu_lock); 414 srcu_read_unlock(&kvm->srcu, idx); 415 416 return young; 417 } 418 419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 420 struct mm_struct *mm, 421 unsigned long start, 422 unsigned long end) 423 { 424 struct kvm *kvm = mmu_notifier_to_kvm(mn); 425 int young, idx; 426 427 idx = srcu_read_lock(&kvm->srcu); 428 spin_lock(&kvm->mmu_lock); 429 /* 430 * Even though we do not flush TLB, this will still adversely 431 * affect performance on pre-Haswell Intel EPT, where there is 432 * no EPT Access Bit to clear so that we have to tear down EPT 433 * tables instead. If we find this unacceptable, we can always 434 * add a parameter to kvm_age_hva so that it effectively doesn't 435 * do anything on clear_young. 436 * 437 * Also note that currently we never issue secondary TLB flushes 438 * from clear_young, leaving this job up to the regular system 439 * cadence. If we find this inaccurate, we might come up with a 440 * more sophisticated heuristic later. 441 */ 442 young = kvm_age_hva(kvm, start, end); 443 spin_unlock(&kvm->mmu_lock); 444 srcu_read_unlock(&kvm->srcu, idx); 445 446 return young; 447 } 448 449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 450 struct mm_struct *mm, 451 unsigned long address) 452 { 453 struct kvm *kvm = mmu_notifier_to_kvm(mn); 454 int young, idx; 455 456 idx = srcu_read_lock(&kvm->srcu); 457 spin_lock(&kvm->mmu_lock); 458 young = kvm_test_age_hva(kvm, address); 459 spin_unlock(&kvm->mmu_lock); 460 srcu_read_unlock(&kvm->srcu, idx); 461 462 return young; 463 } 464 465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 466 struct mm_struct *mm) 467 { 468 struct kvm *kvm = mmu_notifier_to_kvm(mn); 469 int idx; 470 471 idx = srcu_read_lock(&kvm->srcu); 472 kvm_arch_flush_shadow_all(kvm); 473 srcu_read_unlock(&kvm->srcu, idx); 474 } 475 476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 477 .invalidate_page = kvm_mmu_notifier_invalidate_page, 478 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 479 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 480 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 481 .clear_young = kvm_mmu_notifier_clear_young, 482 .test_young = kvm_mmu_notifier_test_young, 483 .change_pte = kvm_mmu_notifier_change_pte, 484 .release = kvm_mmu_notifier_release, 485 }; 486 487 static int kvm_init_mmu_notifier(struct kvm *kvm) 488 { 489 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 490 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 491 } 492 493 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 494 495 static int kvm_init_mmu_notifier(struct kvm *kvm) 496 { 497 return 0; 498 } 499 500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 501 502 static struct kvm_memslots *kvm_alloc_memslots(void) 503 { 504 int i; 505 struct kvm_memslots *slots; 506 507 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 508 if (!slots) 509 return NULL; 510 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 if (kvm->debugfs_stat_data) { 563 for (i = 0; i < kvm_debugfs_num_entries; i++) 564 kfree(kvm->debugfs_stat_data[i]); 565 kfree(kvm->debugfs_stat_data); 566 } 567 } 568 569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 570 { 571 char dir_name[ITOA_MAX_LEN * 2]; 572 struct kvm_stat_data *stat_data; 573 struct kvm_stats_debugfs_item *p; 574 575 if (!debugfs_initialized()) 576 return 0; 577 578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 579 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 580 kvm_debugfs_dir); 581 if (!kvm->debugfs_dentry) 582 return -ENOMEM; 583 584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 585 sizeof(*kvm->debugfs_stat_data), 586 GFP_KERNEL); 587 if (!kvm->debugfs_stat_data) 588 return -ENOMEM; 589 590 for (p = debugfs_entries; p->name; p++) { 591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 592 if (!stat_data) 593 return -ENOMEM; 594 595 stat_data->kvm = kvm; 596 stat_data->offset = p->offset; 597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 598 if (!debugfs_create_file(p->name, 0644, 599 kvm->debugfs_dentry, 600 stat_data, 601 stat_fops_per_vm[p->kind])) 602 return -ENOMEM; 603 } 604 return 0; 605 } 606 607 static struct kvm *kvm_create_vm(unsigned long type) 608 { 609 int r, i; 610 struct kvm *kvm = kvm_arch_alloc_vm(); 611 612 if (!kvm) 613 return ERR_PTR(-ENOMEM); 614 615 spin_lock_init(&kvm->mmu_lock); 616 mmgrab(current->mm); 617 kvm->mm = current->mm; 618 kvm_eventfd_init(kvm); 619 mutex_init(&kvm->lock); 620 mutex_init(&kvm->irq_lock); 621 mutex_init(&kvm->slots_lock); 622 refcount_set(&kvm->users_count, 1); 623 INIT_LIST_HEAD(&kvm->devices); 624 625 r = kvm_arch_init_vm(kvm, type); 626 if (r) 627 goto out_err_no_disable; 628 629 r = hardware_enable_all(); 630 if (r) 631 goto out_err_no_disable; 632 633 #ifdef CONFIG_HAVE_KVM_IRQFD 634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 635 #endif 636 637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 638 639 r = -ENOMEM; 640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 641 struct kvm_memslots *slots = kvm_alloc_memslots(); 642 if (!slots) 643 goto out_err_no_srcu; 644 /* 645 * Generations must be different for each address space. 646 * Init kvm generation close to the maximum to easily test the 647 * code of handling generation number wrap-around. 648 */ 649 slots->generation = i * 2 - 150; 650 rcu_assign_pointer(kvm->memslots[i], slots); 651 } 652 653 if (init_srcu_struct(&kvm->srcu)) 654 goto out_err_no_srcu; 655 if (init_srcu_struct(&kvm->irq_srcu)) 656 goto out_err_no_irq_srcu; 657 for (i = 0; i < KVM_NR_BUSES; i++) { 658 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 659 GFP_KERNEL); 660 if (!kvm->buses[i]) 661 goto out_err; 662 } 663 664 r = kvm_init_mmu_notifier(kvm); 665 if (r) 666 goto out_err; 667 668 spin_lock(&kvm_lock); 669 list_add(&kvm->vm_list, &vm_list); 670 spin_unlock(&kvm_lock); 671 672 preempt_notifier_inc(); 673 674 return kvm; 675 676 out_err: 677 cleanup_srcu_struct(&kvm->irq_srcu); 678 out_err_no_irq_srcu: 679 cleanup_srcu_struct(&kvm->srcu); 680 out_err_no_srcu: 681 hardware_disable_all(); 682 out_err_no_disable: 683 for (i = 0; i < KVM_NR_BUSES; i++) 684 kfree(kvm->buses[i]); 685 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 686 kvm_free_memslots(kvm, kvm->memslots[i]); 687 kvm_arch_free_vm(kvm); 688 mmdrop(current->mm); 689 return ERR_PTR(r); 690 } 691 692 /* 693 * Avoid using vmalloc for a small buffer. 694 * Should not be used when the size is statically known. 695 */ 696 void *kvm_kvzalloc(unsigned long size) 697 { 698 if (size > PAGE_SIZE) 699 return vzalloc(size); 700 else 701 return kzalloc(size, GFP_KERNEL); 702 } 703 704 static void kvm_destroy_devices(struct kvm *kvm) 705 { 706 struct kvm_device *dev, *tmp; 707 708 /* 709 * We do not need to take the kvm->lock here, because nobody else 710 * has a reference to the struct kvm at this point and therefore 711 * cannot access the devices list anyhow. 712 */ 713 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 714 list_del(&dev->vm_node); 715 dev->ops->destroy(dev); 716 } 717 } 718 719 static void kvm_destroy_vm(struct kvm *kvm) 720 { 721 int i; 722 struct mm_struct *mm = kvm->mm; 723 724 kvm_destroy_vm_debugfs(kvm); 725 kvm_arch_sync_events(kvm); 726 spin_lock(&kvm_lock); 727 list_del(&kvm->vm_list); 728 spin_unlock(&kvm_lock); 729 kvm_free_irq_routing(kvm); 730 for (i = 0; i < KVM_NR_BUSES; i++) 731 kvm_io_bus_destroy(kvm->buses[i]); 732 kvm_coalesced_mmio_free(kvm); 733 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 734 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 735 #else 736 kvm_arch_flush_shadow_all(kvm); 737 #endif 738 kvm_arch_destroy_vm(kvm); 739 kvm_destroy_devices(kvm); 740 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 741 kvm_free_memslots(kvm, kvm->memslots[i]); 742 cleanup_srcu_struct(&kvm->irq_srcu); 743 cleanup_srcu_struct(&kvm->srcu); 744 kvm_arch_free_vm(kvm); 745 preempt_notifier_dec(); 746 hardware_disable_all(); 747 mmdrop(mm); 748 } 749 750 void kvm_get_kvm(struct kvm *kvm) 751 { 752 refcount_inc(&kvm->users_count); 753 } 754 EXPORT_SYMBOL_GPL(kvm_get_kvm); 755 756 void kvm_put_kvm(struct kvm *kvm) 757 { 758 if (refcount_dec_and_test(&kvm->users_count)) 759 kvm_destroy_vm(kvm); 760 } 761 EXPORT_SYMBOL_GPL(kvm_put_kvm); 762 763 764 static int kvm_vm_release(struct inode *inode, struct file *filp) 765 { 766 struct kvm *kvm = filp->private_data; 767 768 kvm_irqfd_release(kvm); 769 770 kvm_put_kvm(kvm); 771 return 0; 772 } 773 774 /* 775 * Allocation size is twice as large as the actual dirty bitmap size. 776 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 777 */ 778 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 779 { 780 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 781 782 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 783 if (!memslot->dirty_bitmap) 784 return -ENOMEM; 785 786 return 0; 787 } 788 789 /* 790 * Insert memslot and re-sort memslots based on their GFN, 791 * so binary search could be used to lookup GFN. 792 * Sorting algorithm takes advantage of having initially 793 * sorted array and known changed memslot position. 794 */ 795 static void update_memslots(struct kvm_memslots *slots, 796 struct kvm_memory_slot *new) 797 { 798 int id = new->id; 799 int i = slots->id_to_index[id]; 800 struct kvm_memory_slot *mslots = slots->memslots; 801 802 WARN_ON(mslots[i].id != id); 803 if (!new->npages) { 804 WARN_ON(!mslots[i].npages); 805 if (mslots[i].npages) 806 slots->used_slots--; 807 } else { 808 if (!mslots[i].npages) 809 slots->used_slots++; 810 } 811 812 while (i < KVM_MEM_SLOTS_NUM - 1 && 813 new->base_gfn <= mslots[i + 1].base_gfn) { 814 if (!mslots[i + 1].npages) 815 break; 816 mslots[i] = mslots[i + 1]; 817 slots->id_to_index[mslots[i].id] = i; 818 i++; 819 } 820 821 /* 822 * The ">=" is needed when creating a slot with base_gfn == 0, 823 * so that it moves before all those with base_gfn == npages == 0. 824 * 825 * On the other hand, if new->npages is zero, the above loop has 826 * already left i pointing to the beginning of the empty part of 827 * mslots, and the ">=" would move the hole backwards in this 828 * case---which is wrong. So skip the loop when deleting a slot. 829 */ 830 if (new->npages) { 831 while (i > 0 && 832 new->base_gfn >= mslots[i - 1].base_gfn) { 833 mslots[i] = mslots[i - 1]; 834 slots->id_to_index[mslots[i].id] = i; 835 i--; 836 } 837 } else 838 WARN_ON_ONCE(i != slots->used_slots); 839 840 mslots[i] = *new; 841 slots->id_to_index[mslots[i].id] = i; 842 } 843 844 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 845 { 846 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 847 848 #ifdef __KVM_HAVE_READONLY_MEM 849 valid_flags |= KVM_MEM_READONLY; 850 #endif 851 852 if (mem->flags & ~valid_flags) 853 return -EINVAL; 854 855 return 0; 856 } 857 858 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 859 int as_id, struct kvm_memslots *slots) 860 { 861 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 862 863 /* 864 * Set the low bit in the generation, which disables SPTE caching 865 * until the end of synchronize_srcu_expedited. 866 */ 867 WARN_ON(old_memslots->generation & 1); 868 slots->generation = old_memslots->generation + 1; 869 870 rcu_assign_pointer(kvm->memslots[as_id], slots); 871 synchronize_srcu_expedited(&kvm->srcu); 872 873 /* 874 * Increment the new memslot generation a second time. This prevents 875 * vm exits that race with memslot updates from caching a memslot 876 * generation that will (potentially) be valid forever. 877 * 878 * Generations must be unique even across address spaces. We do not need 879 * a global counter for that, instead the generation space is evenly split 880 * across address spaces. For example, with two address spaces, address 881 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 882 * use generations 2, 6, 10, 14, ... 883 */ 884 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 885 886 kvm_arch_memslots_updated(kvm, slots); 887 888 return old_memslots; 889 } 890 891 /* 892 * Allocate some memory and give it an address in the guest physical address 893 * space. 894 * 895 * Discontiguous memory is allowed, mostly for framebuffers. 896 * 897 * Must be called holding kvm->slots_lock for write. 898 */ 899 int __kvm_set_memory_region(struct kvm *kvm, 900 const struct kvm_userspace_memory_region *mem) 901 { 902 int r; 903 gfn_t base_gfn; 904 unsigned long npages; 905 struct kvm_memory_slot *slot; 906 struct kvm_memory_slot old, new; 907 struct kvm_memslots *slots = NULL, *old_memslots; 908 int as_id, id; 909 enum kvm_mr_change change; 910 911 r = check_memory_region_flags(mem); 912 if (r) 913 goto out; 914 915 r = -EINVAL; 916 as_id = mem->slot >> 16; 917 id = (u16)mem->slot; 918 919 /* General sanity checks */ 920 if (mem->memory_size & (PAGE_SIZE - 1)) 921 goto out; 922 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 923 goto out; 924 /* We can read the guest memory with __xxx_user() later on. */ 925 if ((id < KVM_USER_MEM_SLOTS) && 926 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 927 !access_ok(VERIFY_WRITE, 928 (void __user *)(unsigned long)mem->userspace_addr, 929 mem->memory_size))) 930 goto out; 931 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 932 goto out; 933 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 934 goto out; 935 936 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 937 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 938 npages = mem->memory_size >> PAGE_SHIFT; 939 940 if (npages > KVM_MEM_MAX_NR_PAGES) 941 goto out; 942 943 new = old = *slot; 944 945 new.id = id; 946 new.base_gfn = base_gfn; 947 new.npages = npages; 948 new.flags = mem->flags; 949 950 if (npages) { 951 if (!old.npages) 952 change = KVM_MR_CREATE; 953 else { /* Modify an existing slot. */ 954 if ((mem->userspace_addr != old.userspace_addr) || 955 (npages != old.npages) || 956 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 957 goto out; 958 959 if (base_gfn != old.base_gfn) 960 change = KVM_MR_MOVE; 961 else if (new.flags != old.flags) 962 change = KVM_MR_FLAGS_ONLY; 963 else { /* Nothing to change. */ 964 r = 0; 965 goto out; 966 } 967 } 968 } else { 969 if (!old.npages) 970 goto out; 971 972 change = KVM_MR_DELETE; 973 new.base_gfn = 0; 974 new.flags = 0; 975 } 976 977 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 978 /* Check for overlaps */ 979 r = -EEXIST; 980 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 981 if ((slot->id >= KVM_USER_MEM_SLOTS) || 982 (slot->id == id)) 983 continue; 984 if (!((base_gfn + npages <= slot->base_gfn) || 985 (base_gfn >= slot->base_gfn + slot->npages))) 986 goto out; 987 } 988 } 989 990 /* Free page dirty bitmap if unneeded */ 991 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 992 new.dirty_bitmap = NULL; 993 994 r = -ENOMEM; 995 if (change == KVM_MR_CREATE) { 996 new.userspace_addr = mem->userspace_addr; 997 998 if (kvm_arch_create_memslot(kvm, &new, npages)) 999 goto out_free; 1000 } 1001 1002 /* Allocate page dirty bitmap if needed */ 1003 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1004 if (kvm_create_dirty_bitmap(&new) < 0) 1005 goto out_free; 1006 } 1007 1008 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 1009 if (!slots) 1010 goto out_free; 1011 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1012 1013 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1014 slot = id_to_memslot(slots, id); 1015 slot->flags |= KVM_MEMSLOT_INVALID; 1016 1017 old_memslots = install_new_memslots(kvm, as_id, slots); 1018 1019 /* slot was deleted or moved, clear iommu mapping */ 1020 kvm_iommu_unmap_pages(kvm, &old); 1021 /* From this point no new shadow pages pointing to a deleted, 1022 * or moved, memslot will be created. 1023 * 1024 * validation of sp->gfn happens in: 1025 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1026 * - kvm_is_visible_gfn (mmu_check_roots) 1027 */ 1028 kvm_arch_flush_shadow_memslot(kvm, slot); 1029 1030 /* 1031 * We can re-use the old_memslots from above, the only difference 1032 * from the currently installed memslots is the invalid flag. This 1033 * will get overwritten by update_memslots anyway. 1034 */ 1035 slots = old_memslots; 1036 } 1037 1038 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1039 if (r) 1040 goto out_slots; 1041 1042 /* actual memory is freed via old in kvm_free_memslot below */ 1043 if (change == KVM_MR_DELETE) { 1044 new.dirty_bitmap = NULL; 1045 memset(&new.arch, 0, sizeof(new.arch)); 1046 } 1047 1048 update_memslots(slots, &new); 1049 old_memslots = install_new_memslots(kvm, as_id, slots); 1050 1051 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1052 1053 kvm_free_memslot(kvm, &old, &new); 1054 kvfree(old_memslots); 1055 1056 /* 1057 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1058 * un-mapped and re-mapped if their base changes. Since base change 1059 * unmapping is handled above with slot deletion, mapping alone is 1060 * needed here. Anything else the iommu might care about for existing 1061 * slots (size changes, userspace addr changes and read-only flag 1062 * changes) is disallowed above, so any other attribute changes getting 1063 * here can be skipped. 1064 */ 1065 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1066 r = kvm_iommu_map_pages(kvm, &new); 1067 return r; 1068 } 1069 1070 return 0; 1071 1072 out_slots: 1073 kvfree(slots); 1074 out_free: 1075 kvm_free_memslot(kvm, &new, &old); 1076 out: 1077 return r; 1078 } 1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1080 1081 int kvm_set_memory_region(struct kvm *kvm, 1082 const struct kvm_userspace_memory_region *mem) 1083 { 1084 int r; 1085 1086 mutex_lock(&kvm->slots_lock); 1087 r = __kvm_set_memory_region(kvm, mem); 1088 mutex_unlock(&kvm->slots_lock); 1089 return r; 1090 } 1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1092 1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1094 struct kvm_userspace_memory_region *mem) 1095 { 1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1097 return -EINVAL; 1098 1099 return kvm_set_memory_region(kvm, mem); 1100 } 1101 1102 int kvm_get_dirty_log(struct kvm *kvm, 1103 struct kvm_dirty_log *log, int *is_dirty) 1104 { 1105 struct kvm_memslots *slots; 1106 struct kvm_memory_slot *memslot; 1107 int i, as_id, id; 1108 unsigned long n; 1109 unsigned long any = 0; 1110 1111 as_id = log->slot >> 16; 1112 id = (u16)log->slot; 1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1114 return -EINVAL; 1115 1116 slots = __kvm_memslots(kvm, as_id); 1117 memslot = id_to_memslot(slots, id); 1118 if (!memslot->dirty_bitmap) 1119 return -ENOENT; 1120 1121 n = kvm_dirty_bitmap_bytes(memslot); 1122 1123 for (i = 0; !any && i < n/sizeof(long); ++i) 1124 any = memslot->dirty_bitmap[i]; 1125 1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1127 return -EFAULT; 1128 1129 if (any) 1130 *is_dirty = 1; 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1134 1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1136 /** 1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1138 * are dirty write protect them for next write. 1139 * @kvm: pointer to kvm instance 1140 * @log: slot id and address to which we copy the log 1141 * @is_dirty: flag set if any page is dirty 1142 * 1143 * We need to keep it in mind that VCPU threads can write to the bitmap 1144 * concurrently. So, to avoid losing track of dirty pages we keep the 1145 * following order: 1146 * 1147 * 1. Take a snapshot of the bit and clear it if needed. 1148 * 2. Write protect the corresponding page. 1149 * 3. Copy the snapshot to the userspace. 1150 * 4. Upon return caller flushes TLB's if needed. 1151 * 1152 * Between 2 and 4, the guest may write to the page using the remaining TLB 1153 * entry. This is not a problem because the page is reported dirty using 1154 * the snapshot taken before and step 4 ensures that writes done after 1155 * exiting to userspace will be logged for the next call. 1156 * 1157 */ 1158 int kvm_get_dirty_log_protect(struct kvm *kvm, 1159 struct kvm_dirty_log *log, bool *is_dirty) 1160 { 1161 struct kvm_memslots *slots; 1162 struct kvm_memory_slot *memslot; 1163 int i, as_id, id; 1164 unsigned long n; 1165 unsigned long *dirty_bitmap; 1166 unsigned long *dirty_bitmap_buffer; 1167 1168 as_id = log->slot >> 16; 1169 id = (u16)log->slot; 1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1171 return -EINVAL; 1172 1173 slots = __kvm_memslots(kvm, as_id); 1174 memslot = id_to_memslot(slots, id); 1175 1176 dirty_bitmap = memslot->dirty_bitmap; 1177 if (!dirty_bitmap) 1178 return -ENOENT; 1179 1180 n = kvm_dirty_bitmap_bytes(memslot); 1181 1182 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1183 memset(dirty_bitmap_buffer, 0, n); 1184 1185 spin_lock(&kvm->mmu_lock); 1186 *is_dirty = false; 1187 for (i = 0; i < n / sizeof(long); i++) { 1188 unsigned long mask; 1189 gfn_t offset; 1190 1191 if (!dirty_bitmap[i]) 1192 continue; 1193 1194 *is_dirty = true; 1195 1196 mask = xchg(&dirty_bitmap[i], 0); 1197 dirty_bitmap_buffer[i] = mask; 1198 1199 if (mask) { 1200 offset = i * BITS_PER_LONG; 1201 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1202 offset, mask); 1203 } 1204 } 1205 1206 spin_unlock(&kvm->mmu_lock); 1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1208 return -EFAULT; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1212 #endif 1213 1214 bool kvm_largepages_enabled(void) 1215 { 1216 return largepages_enabled; 1217 } 1218 1219 void kvm_disable_largepages(void) 1220 { 1221 largepages_enabled = false; 1222 } 1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1224 1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1226 { 1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1228 } 1229 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1230 1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1232 { 1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1234 } 1235 1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1237 { 1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1239 1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1241 memslot->flags & KVM_MEMSLOT_INVALID) 1242 return false; 1243 1244 return true; 1245 } 1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1247 1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1249 { 1250 struct vm_area_struct *vma; 1251 unsigned long addr, size; 1252 1253 size = PAGE_SIZE; 1254 1255 addr = gfn_to_hva(kvm, gfn); 1256 if (kvm_is_error_hva(addr)) 1257 return PAGE_SIZE; 1258 1259 down_read(¤t->mm->mmap_sem); 1260 vma = find_vma(current->mm, addr); 1261 if (!vma) 1262 goto out; 1263 1264 size = vma_kernel_pagesize(vma); 1265 1266 out: 1267 up_read(¤t->mm->mmap_sem); 1268 1269 return size; 1270 } 1271 1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1273 { 1274 return slot->flags & KVM_MEM_READONLY; 1275 } 1276 1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1278 gfn_t *nr_pages, bool write) 1279 { 1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1281 return KVM_HVA_ERR_BAD; 1282 1283 if (memslot_is_readonly(slot) && write) 1284 return KVM_HVA_ERR_RO_BAD; 1285 1286 if (nr_pages) 1287 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1288 1289 return __gfn_to_hva_memslot(slot, gfn); 1290 } 1291 1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1293 gfn_t *nr_pages) 1294 { 1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1296 } 1297 1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1299 gfn_t gfn) 1300 { 1301 return gfn_to_hva_many(slot, gfn, NULL); 1302 } 1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1304 1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1306 { 1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_hva); 1310 1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1312 { 1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1314 } 1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1316 1317 /* 1318 * If writable is set to false, the hva returned by this function is only 1319 * allowed to be read. 1320 */ 1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1322 gfn_t gfn, bool *writable) 1323 { 1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1325 1326 if (!kvm_is_error_hva(hva) && writable) 1327 *writable = !memslot_is_readonly(slot); 1328 1329 return hva; 1330 } 1331 1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1333 { 1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1335 1336 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1337 } 1338 1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1340 { 1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1342 1343 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1344 } 1345 1346 static int get_user_page_nowait(unsigned long start, int write, 1347 struct page **page) 1348 { 1349 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1350 1351 if (write) 1352 flags |= FOLL_WRITE; 1353 1354 return get_user_pages(start, 1, flags, page, NULL); 1355 } 1356 1357 static inline int check_user_page_hwpoison(unsigned long addr) 1358 { 1359 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1360 1361 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1362 return rc == -EHWPOISON; 1363 } 1364 1365 /* 1366 * The atomic path to get the writable pfn which will be stored in @pfn, 1367 * true indicates success, otherwise false is returned. 1368 */ 1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1370 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1371 { 1372 struct page *page[1]; 1373 int npages; 1374 1375 if (!(async || atomic)) 1376 return false; 1377 1378 /* 1379 * Fast pin a writable pfn only if it is a write fault request 1380 * or the caller allows to map a writable pfn for a read fault 1381 * request. 1382 */ 1383 if (!(write_fault || writable)) 1384 return false; 1385 1386 npages = __get_user_pages_fast(addr, 1, 1, page); 1387 if (npages == 1) { 1388 *pfn = page_to_pfn(page[0]); 1389 1390 if (writable) 1391 *writable = true; 1392 return true; 1393 } 1394 1395 return false; 1396 } 1397 1398 /* 1399 * The slow path to get the pfn of the specified host virtual address, 1400 * 1 indicates success, -errno is returned if error is detected. 1401 */ 1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1403 bool *writable, kvm_pfn_t *pfn) 1404 { 1405 struct page *page[1]; 1406 int npages = 0; 1407 1408 might_sleep(); 1409 1410 if (writable) 1411 *writable = write_fault; 1412 1413 if (async) { 1414 down_read(¤t->mm->mmap_sem); 1415 npages = get_user_page_nowait(addr, write_fault, page); 1416 up_read(¤t->mm->mmap_sem); 1417 } else { 1418 unsigned int flags = FOLL_HWPOISON; 1419 1420 if (write_fault) 1421 flags |= FOLL_WRITE; 1422 1423 npages = get_user_pages_unlocked(addr, 1, page, flags); 1424 } 1425 if (npages != 1) 1426 return npages; 1427 1428 /* map read fault as writable if possible */ 1429 if (unlikely(!write_fault) && writable) { 1430 struct page *wpage[1]; 1431 1432 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1433 if (npages == 1) { 1434 *writable = true; 1435 put_page(page[0]); 1436 page[0] = wpage[0]; 1437 } 1438 1439 npages = 1; 1440 } 1441 *pfn = page_to_pfn(page[0]); 1442 return npages; 1443 } 1444 1445 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1446 { 1447 if (unlikely(!(vma->vm_flags & VM_READ))) 1448 return false; 1449 1450 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1451 return false; 1452 1453 return true; 1454 } 1455 1456 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1457 unsigned long addr, bool *async, 1458 bool write_fault, kvm_pfn_t *p_pfn) 1459 { 1460 unsigned long pfn; 1461 int r; 1462 1463 r = follow_pfn(vma, addr, &pfn); 1464 if (r) { 1465 /* 1466 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1467 * not call the fault handler, so do it here. 1468 */ 1469 bool unlocked = false; 1470 r = fixup_user_fault(current, current->mm, addr, 1471 (write_fault ? FAULT_FLAG_WRITE : 0), 1472 &unlocked); 1473 if (unlocked) 1474 return -EAGAIN; 1475 if (r) 1476 return r; 1477 1478 r = follow_pfn(vma, addr, &pfn); 1479 if (r) 1480 return r; 1481 1482 } 1483 1484 1485 /* 1486 * Get a reference here because callers of *hva_to_pfn* and 1487 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1488 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1489 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1490 * simply do nothing for reserved pfns. 1491 * 1492 * Whoever called remap_pfn_range is also going to call e.g. 1493 * unmap_mapping_range before the underlying pages are freed, 1494 * causing a call to our MMU notifier. 1495 */ 1496 kvm_get_pfn(pfn); 1497 1498 *p_pfn = pfn; 1499 return 0; 1500 } 1501 1502 /* 1503 * Pin guest page in memory and return its pfn. 1504 * @addr: host virtual address which maps memory to the guest 1505 * @atomic: whether this function can sleep 1506 * @async: whether this function need to wait IO complete if the 1507 * host page is not in the memory 1508 * @write_fault: whether we should get a writable host page 1509 * @writable: whether it allows to map a writable host page for !@write_fault 1510 * 1511 * The function will map a writable host page for these two cases: 1512 * 1): @write_fault = true 1513 * 2): @write_fault = false && @writable, @writable will tell the caller 1514 * whether the mapping is writable. 1515 */ 1516 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1517 bool write_fault, bool *writable) 1518 { 1519 struct vm_area_struct *vma; 1520 kvm_pfn_t pfn = 0; 1521 int npages, r; 1522 1523 /* we can do it either atomically or asynchronously, not both */ 1524 BUG_ON(atomic && async); 1525 1526 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1527 return pfn; 1528 1529 if (atomic) 1530 return KVM_PFN_ERR_FAULT; 1531 1532 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1533 if (npages == 1) 1534 return pfn; 1535 1536 down_read(¤t->mm->mmap_sem); 1537 if (npages == -EHWPOISON || 1538 (!async && check_user_page_hwpoison(addr))) { 1539 pfn = KVM_PFN_ERR_HWPOISON; 1540 goto exit; 1541 } 1542 1543 retry: 1544 vma = find_vma_intersection(current->mm, addr, addr + 1); 1545 1546 if (vma == NULL) 1547 pfn = KVM_PFN_ERR_FAULT; 1548 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1549 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1550 if (r == -EAGAIN) 1551 goto retry; 1552 if (r < 0) 1553 pfn = KVM_PFN_ERR_FAULT; 1554 } else { 1555 if (async && vma_is_valid(vma, write_fault)) 1556 *async = true; 1557 pfn = KVM_PFN_ERR_FAULT; 1558 } 1559 exit: 1560 up_read(¤t->mm->mmap_sem); 1561 return pfn; 1562 } 1563 1564 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1565 bool atomic, bool *async, bool write_fault, 1566 bool *writable) 1567 { 1568 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1569 1570 if (addr == KVM_HVA_ERR_RO_BAD) { 1571 if (writable) 1572 *writable = false; 1573 return KVM_PFN_ERR_RO_FAULT; 1574 } 1575 1576 if (kvm_is_error_hva(addr)) { 1577 if (writable) 1578 *writable = false; 1579 return KVM_PFN_NOSLOT; 1580 } 1581 1582 /* Do not map writable pfn in the readonly memslot. */ 1583 if (writable && memslot_is_readonly(slot)) { 1584 *writable = false; 1585 writable = NULL; 1586 } 1587 1588 return hva_to_pfn(addr, atomic, async, write_fault, 1589 writable); 1590 } 1591 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1592 1593 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1594 bool *writable) 1595 { 1596 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1597 write_fault, writable); 1598 } 1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1600 1601 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1602 { 1603 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1604 } 1605 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1606 1607 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1608 { 1609 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1610 } 1611 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1612 1613 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1614 { 1615 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1616 } 1617 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1618 1619 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1620 { 1621 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1622 } 1623 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1624 1625 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1626 { 1627 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1628 } 1629 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1630 1631 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1632 { 1633 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1634 } 1635 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1636 1637 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1638 struct page **pages, int nr_pages) 1639 { 1640 unsigned long addr; 1641 gfn_t entry; 1642 1643 addr = gfn_to_hva_many(slot, gfn, &entry); 1644 if (kvm_is_error_hva(addr)) 1645 return -1; 1646 1647 if (entry < nr_pages) 1648 return 0; 1649 1650 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1651 } 1652 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1653 1654 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1655 { 1656 if (is_error_noslot_pfn(pfn)) 1657 return KVM_ERR_PTR_BAD_PAGE; 1658 1659 if (kvm_is_reserved_pfn(pfn)) { 1660 WARN_ON(1); 1661 return KVM_ERR_PTR_BAD_PAGE; 1662 } 1663 1664 return pfn_to_page(pfn); 1665 } 1666 1667 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1668 { 1669 kvm_pfn_t pfn; 1670 1671 pfn = gfn_to_pfn(kvm, gfn); 1672 1673 return kvm_pfn_to_page(pfn); 1674 } 1675 EXPORT_SYMBOL_GPL(gfn_to_page); 1676 1677 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1678 { 1679 kvm_pfn_t pfn; 1680 1681 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1682 1683 return kvm_pfn_to_page(pfn); 1684 } 1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1686 1687 void kvm_release_page_clean(struct page *page) 1688 { 1689 WARN_ON(is_error_page(page)); 1690 1691 kvm_release_pfn_clean(page_to_pfn(page)); 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1694 1695 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1696 { 1697 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1698 put_page(pfn_to_page(pfn)); 1699 } 1700 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1701 1702 void kvm_release_page_dirty(struct page *page) 1703 { 1704 WARN_ON(is_error_page(page)); 1705 1706 kvm_release_pfn_dirty(page_to_pfn(page)); 1707 } 1708 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1709 1710 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1711 { 1712 kvm_set_pfn_dirty(pfn); 1713 kvm_release_pfn_clean(pfn); 1714 } 1715 1716 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1717 { 1718 if (!kvm_is_reserved_pfn(pfn)) { 1719 struct page *page = pfn_to_page(pfn); 1720 1721 if (!PageReserved(page)) 1722 SetPageDirty(page); 1723 } 1724 } 1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1726 1727 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1728 { 1729 if (!kvm_is_reserved_pfn(pfn)) 1730 mark_page_accessed(pfn_to_page(pfn)); 1731 } 1732 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1733 1734 void kvm_get_pfn(kvm_pfn_t pfn) 1735 { 1736 if (!kvm_is_reserved_pfn(pfn)) 1737 get_page(pfn_to_page(pfn)); 1738 } 1739 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1740 1741 static int next_segment(unsigned long len, int offset) 1742 { 1743 if (len > PAGE_SIZE - offset) 1744 return PAGE_SIZE - offset; 1745 else 1746 return len; 1747 } 1748 1749 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1750 void *data, int offset, int len) 1751 { 1752 int r; 1753 unsigned long addr; 1754 1755 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1756 if (kvm_is_error_hva(addr)) 1757 return -EFAULT; 1758 r = __copy_from_user(data, (void __user *)addr + offset, len); 1759 if (r) 1760 return -EFAULT; 1761 return 0; 1762 } 1763 1764 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1765 int len) 1766 { 1767 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1768 1769 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1770 } 1771 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1772 1773 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1774 int offset, int len) 1775 { 1776 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1777 1778 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1779 } 1780 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1781 1782 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1783 { 1784 gfn_t gfn = gpa >> PAGE_SHIFT; 1785 int seg; 1786 int offset = offset_in_page(gpa); 1787 int ret; 1788 1789 while ((seg = next_segment(len, offset)) != 0) { 1790 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1791 if (ret < 0) 1792 return ret; 1793 offset = 0; 1794 len -= seg; 1795 data += seg; 1796 ++gfn; 1797 } 1798 return 0; 1799 } 1800 EXPORT_SYMBOL_GPL(kvm_read_guest); 1801 1802 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1803 { 1804 gfn_t gfn = gpa >> PAGE_SHIFT; 1805 int seg; 1806 int offset = offset_in_page(gpa); 1807 int ret; 1808 1809 while ((seg = next_segment(len, offset)) != 0) { 1810 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1811 if (ret < 0) 1812 return ret; 1813 offset = 0; 1814 len -= seg; 1815 data += seg; 1816 ++gfn; 1817 } 1818 return 0; 1819 } 1820 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1821 1822 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1823 void *data, int offset, unsigned long len) 1824 { 1825 int r; 1826 unsigned long addr; 1827 1828 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1829 if (kvm_is_error_hva(addr)) 1830 return -EFAULT; 1831 pagefault_disable(); 1832 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1833 pagefault_enable(); 1834 if (r) 1835 return -EFAULT; 1836 return 0; 1837 } 1838 1839 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1840 unsigned long len) 1841 { 1842 gfn_t gfn = gpa >> PAGE_SHIFT; 1843 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1844 int offset = offset_in_page(gpa); 1845 1846 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1847 } 1848 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1849 1850 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1851 void *data, unsigned long len) 1852 { 1853 gfn_t gfn = gpa >> PAGE_SHIFT; 1854 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1855 int offset = offset_in_page(gpa); 1856 1857 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1858 } 1859 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1860 1861 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1862 const void *data, int offset, int len) 1863 { 1864 int r; 1865 unsigned long addr; 1866 1867 addr = gfn_to_hva_memslot(memslot, gfn); 1868 if (kvm_is_error_hva(addr)) 1869 return -EFAULT; 1870 r = __copy_to_user((void __user *)addr + offset, data, len); 1871 if (r) 1872 return -EFAULT; 1873 mark_page_dirty_in_slot(memslot, gfn); 1874 return 0; 1875 } 1876 1877 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1878 const void *data, int offset, int len) 1879 { 1880 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1881 1882 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1883 } 1884 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1885 1886 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1887 const void *data, int offset, int len) 1888 { 1889 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1890 1891 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1892 } 1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1894 1895 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1896 unsigned long len) 1897 { 1898 gfn_t gfn = gpa >> PAGE_SHIFT; 1899 int seg; 1900 int offset = offset_in_page(gpa); 1901 int ret; 1902 1903 while ((seg = next_segment(len, offset)) != 0) { 1904 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1905 if (ret < 0) 1906 return ret; 1907 offset = 0; 1908 len -= seg; 1909 data += seg; 1910 ++gfn; 1911 } 1912 return 0; 1913 } 1914 EXPORT_SYMBOL_GPL(kvm_write_guest); 1915 1916 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1917 unsigned long len) 1918 { 1919 gfn_t gfn = gpa >> PAGE_SHIFT; 1920 int seg; 1921 int offset = offset_in_page(gpa); 1922 int ret; 1923 1924 while ((seg = next_segment(len, offset)) != 0) { 1925 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1926 if (ret < 0) 1927 return ret; 1928 offset = 0; 1929 len -= seg; 1930 data += seg; 1931 ++gfn; 1932 } 1933 return 0; 1934 } 1935 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1936 1937 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1938 struct gfn_to_hva_cache *ghc, 1939 gpa_t gpa, unsigned long len) 1940 { 1941 int offset = offset_in_page(gpa); 1942 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1943 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1944 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1945 gfn_t nr_pages_avail; 1946 1947 ghc->gpa = gpa; 1948 ghc->generation = slots->generation; 1949 ghc->len = len; 1950 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1951 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1952 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1953 ghc->hva += offset; 1954 } else { 1955 /* 1956 * If the requested region crosses two memslots, we still 1957 * verify that the entire region is valid here. 1958 */ 1959 while (start_gfn <= end_gfn) { 1960 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1961 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1962 &nr_pages_avail); 1963 if (kvm_is_error_hva(ghc->hva)) 1964 return -EFAULT; 1965 start_gfn += nr_pages_avail; 1966 } 1967 /* Use the slow path for cross page reads and writes. */ 1968 ghc->memslot = NULL; 1969 } 1970 return 0; 1971 } 1972 1973 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1974 gpa_t gpa, unsigned long len) 1975 { 1976 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1977 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1978 } 1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init); 1980 1981 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 1982 void *data, int offset, unsigned long len) 1983 { 1984 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 1985 int r; 1986 gpa_t gpa = ghc->gpa + offset; 1987 1988 BUG_ON(len + offset > ghc->len); 1989 1990 if (slots->generation != ghc->generation) 1991 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1992 1993 if (unlikely(!ghc->memslot)) 1994 return kvm_vcpu_write_guest(vcpu, gpa, data, len); 1995 1996 if (kvm_is_error_hva(ghc->hva)) 1997 return -EFAULT; 1998 1999 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2000 if (r) 2001 return -EFAULT; 2002 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2003 2004 return 0; 2005 } 2006 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached); 2007 2008 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2009 void *data, unsigned long len) 2010 { 2011 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len); 2012 } 2013 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached); 2014 2015 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc, 2016 void *data, unsigned long len) 2017 { 2018 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2019 int r; 2020 2021 BUG_ON(len > ghc->len); 2022 2023 if (slots->generation != ghc->generation) 2024 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2025 2026 if (unlikely(!ghc->memslot)) 2027 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len); 2028 2029 if (kvm_is_error_hva(ghc->hva)) 2030 return -EFAULT; 2031 2032 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2033 if (r) 2034 return -EFAULT; 2035 2036 return 0; 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached); 2039 2040 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2041 { 2042 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2043 2044 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2045 } 2046 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2047 2048 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2049 { 2050 gfn_t gfn = gpa >> PAGE_SHIFT; 2051 int seg; 2052 int offset = offset_in_page(gpa); 2053 int ret; 2054 2055 while ((seg = next_segment(len, offset)) != 0) { 2056 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2057 if (ret < 0) 2058 return ret; 2059 offset = 0; 2060 len -= seg; 2061 ++gfn; 2062 } 2063 return 0; 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2066 2067 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2068 gfn_t gfn) 2069 { 2070 if (memslot && memslot->dirty_bitmap) { 2071 unsigned long rel_gfn = gfn - memslot->base_gfn; 2072 2073 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2074 } 2075 } 2076 2077 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2078 { 2079 struct kvm_memory_slot *memslot; 2080 2081 memslot = gfn_to_memslot(kvm, gfn); 2082 mark_page_dirty_in_slot(memslot, gfn); 2083 } 2084 EXPORT_SYMBOL_GPL(mark_page_dirty); 2085 2086 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2087 { 2088 struct kvm_memory_slot *memslot; 2089 2090 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2091 mark_page_dirty_in_slot(memslot, gfn); 2092 } 2093 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2094 2095 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2096 { 2097 unsigned int old, val, grow; 2098 2099 old = val = vcpu->halt_poll_ns; 2100 grow = READ_ONCE(halt_poll_ns_grow); 2101 /* 10us base */ 2102 if (val == 0 && grow) 2103 val = 10000; 2104 else 2105 val *= grow; 2106 2107 if (val > halt_poll_ns) 2108 val = halt_poll_ns; 2109 2110 vcpu->halt_poll_ns = val; 2111 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2112 } 2113 2114 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2115 { 2116 unsigned int old, val, shrink; 2117 2118 old = val = vcpu->halt_poll_ns; 2119 shrink = READ_ONCE(halt_poll_ns_shrink); 2120 if (shrink == 0) 2121 val = 0; 2122 else 2123 val /= shrink; 2124 2125 vcpu->halt_poll_ns = val; 2126 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2127 } 2128 2129 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2130 { 2131 if (kvm_arch_vcpu_runnable(vcpu)) { 2132 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2133 return -EINTR; 2134 } 2135 if (kvm_cpu_has_pending_timer(vcpu)) 2136 return -EINTR; 2137 if (signal_pending(current)) 2138 return -EINTR; 2139 2140 return 0; 2141 } 2142 2143 /* 2144 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2145 */ 2146 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2147 { 2148 ktime_t start, cur; 2149 DECLARE_SWAITQUEUE(wait); 2150 bool waited = false; 2151 u64 block_ns; 2152 2153 start = cur = ktime_get(); 2154 if (vcpu->halt_poll_ns) { 2155 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2156 2157 ++vcpu->stat.halt_attempted_poll; 2158 do { 2159 /* 2160 * This sets KVM_REQ_UNHALT if an interrupt 2161 * arrives. 2162 */ 2163 if (kvm_vcpu_check_block(vcpu) < 0) { 2164 ++vcpu->stat.halt_successful_poll; 2165 if (!vcpu_valid_wakeup(vcpu)) 2166 ++vcpu->stat.halt_poll_invalid; 2167 goto out; 2168 } 2169 cur = ktime_get(); 2170 } while (single_task_running() && ktime_before(cur, stop)); 2171 } 2172 2173 kvm_arch_vcpu_blocking(vcpu); 2174 2175 for (;;) { 2176 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2177 2178 if (kvm_vcpu_check_block(vcpu) < 0) 2179 break; 2180 2181 waited = true; 2182 schedule(); 2183 } 2184 2185 finish_swait(&vcpu->wq, &wait); 2186 cur = ktime_get(); 2187 2188 kvm_arch_vcpu_unblocking(vcpu); 2189 out: 2190 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2191 2192 if (!vcpu_valid_wakeup(vcpu)) 2193 shrink_halt_poll_ns(vcpu); 2194 else if (halt_poll_ns) { 2195 if (block_ns <= vcpu->halt_poll_ns) 2196 ; 2197 /* we had a long block, shrink polling */ 2198 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2199 shrink_halt_poll_ns(vcpu); 2200 /* we had a short halt and our poll time is too small */ 2201 else if (vcpu->halt_poll_ns < halt_poll_ns && 2202 block_ns < halt_poll_ns) 2203 grow_halt_poll_ns(vcpu); 2204 } else 2205 vcpu->halt_poll_ns = 0; 2206 2207 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2208 kvm_arch_vcpu_block_finish(vcpu); 2209 } 2210 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2211 2212 #ifndef CONFIG_S390 2213 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2214 { 2215 struct swait_queue_head *wqp; 2216 2217 wqp = kvm_arch_vcpu_wq(vcpu); 2218 if (swait_active(wqp)) { 2219 swake_up(wqp); 2220 ++vcpu->stat.halt_wakeup; 2221 } 2222 2223 } 2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2225 2226 /* 2227 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2228 */ 2229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2230 { 2231 int me; 2232 int cpu = vcpu->cpu; 2233 2234 kvm_vcpu_wake_up(vcpu); 2235 me = get_cpu(); 2236 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2237 if (kvm_arch_vcpu_should_kick(vcpu)) 2238 smp_send_reschedule(cpu); 2239 put_cpu(); 2240 } 2241 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2242 #endif /* !CONFIG_S390 */ 2243 2244 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2245 { 2246 struct pid *pid; 2247 struct task_struct *task = NULL; 2248 int ret = 0; 2249 2250 rcu_read_lock(); 2251 pid = rcu_dereference(target->pid); 2252 if (pid) 2253 task = get_pid_task(pid, PIDTYPE_PID); 2254 rcu_read_unlock(); 2255 if (!task) 2256 return ret; 2257 ret = yield_to(task, 1); 2258 put_task_struct(task); 2259 2260 return ret; 2261 } 2262 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2263 2264 /* 2265 * Helper that checks whether a VCPU is eligible for directed yield. 2266 * Most eligible candidate to yield is decided by following heuristics: 2267 * 2268 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2269 * (preempted lock holder), indicated by @in_spin_loop. 2270 * Set at the beiginning and cleared at the end of interception/PLE handler. 2271 * 2272 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2273 * chance last time (mostly it has become eligible now since we have probably 2274 * yielded to lockholder in last iteration. This is done by toggling 2275 * @dy_eligible each time a VCPU checked for eligibility.) 2276 * 2277 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2278 * to preempted lock-holder could result in wrong VCPU selection and CPU 2279 * burning. Giving priority for a potential lock-holder increases lock 2280 * progress. 2281 * 2282 * Since algorithm is based on heuristics, accessing another VCPU data without 2283 * locking does not harm. It may result in trying to yield to same VCPU, fail 2284 * and continue with next VCPU and so on. 2285 */ 2286 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2287 { 2288 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2289 bool eligible; 2290 2291 eligible = !vcpu->spin_loop.in_spin_loop || 2292 vcpu->spin_loop.dy_eligible; 2293 2294 if (vcpu->spin_loop.in_spin_loop) 2295 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2296 2297 return eligible; 2298 #else 2299 return true; 2300 #endif 2301 } 2302 2303 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2304 { 2305 struct kvm *kvm = me->kvm; 2306 struct kvm_vcpu *vcpu; 2307 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2308 int yielded = 0; 2309 int try = 3; 2310 int pass; 2311 int i; 2312 2313 kvm_vcpu_set_in_spin_loop(me, true); 2314 /* 2315 * We boost the priority of a VCPU that is runnable but not 2316 * currently running, because it got preempted by something 2317 * else and called schedule in __vcpu_run. Hopefully that 2318 * VCPU is holding the lock that we need and will release it. 2319 * We approximate round-robin by starting at the last boosted VCPU. 2320 */ 2321 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2322 kvm_for_each_vcpu(i, vcpu, kvm) { 2323 if (!pass && i <= last_boosted_vcpu) { 2324 i = last_boosted_vcpu; 2325 continue; 2326 } else if (pass && i > last_boosted_vcpu) 2327 break; 2328 if (!ACCESS_ONCE(vcpu->preempted)) 2329 continue; 2330 if (vcpu == me) 2331 continue; 2332 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2333 continue; 2334 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2335 continue; 2336 2337 yielded = kvm_vcpu_yield_to(vcpu); 2338 if (yielded > 0) { 2339 kvm->last_boosted_vcpu = i; 2340 break; 2341 } else if (yielded < 0) { 2342 try--; 2343 if (!try) 2344 break; 2345 } 2346 } 2347 } 2348 kvm_vcpu_set_in_spin_loop(me, false); 2349 2350 /* Ensure vcpu is not eligible during next spinloop */ 2351 kvm_vcpu_set_dy_eligible(me, false); 2352 } 2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2354 2355 static int kvm_vcpu_fault(struct vm_fault *vmf) 2356 { 2357 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2358 struct page *page; 2359 2360 if (vmf->pgoff == 0) 2361 page = virt_to_page(vcpu->run); 2362 #ifdef CONFIG_X86 2363 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2364 page = virt_to_page(vcpu->arch.pio_data); 2365 #endif 2366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2367 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2368 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2369 #endif 2370 else 2371 return kvm_arch_vcpu_fault(vcpu, vmf); 2372 get_page(page); 2373 vmf->page = page; 2374 return 0; 2375 } 2376 2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2378 .fault = kvm_vcpu_fault, 2379 }; 2380 2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2382 { 2383 vma->vm_ops = &kvm_vcpu_vm_ops; 2384 return 0; 2385 } 2386 2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2388 { 2389 struct kvm_vcpu *vcpu = filp->private_data; 2390 2391 debugfs_remove_recursive(vcpu->debugfs_dentry); 2392 kvm_put_kvm(vcpu->kvm); 2393 return 0; 2394 } 2395 2396 static struct file_operations kvm_vcpu_fops = { 2397 .release = kvm_vcpu_release, 2398 .unlocked_ioctl = kvm_vcpu_ioctl, 2399 #ifdef CONFIG_KVM_COMPAT 2400 .compat_ioctl = kvm_vcpu_compat_ioctl, 2401 #endif 2402 .mmap = kvm_vcpu_mmap, 2403 .llseek = noop_llseek, 2404 }; 2405 2406 /* 2407 * Allocates an inode for the vcpu. 2408 */ 2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2410 { 2411 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2412 } 2413 2414 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2415 { 2416 char dir_name[ITOA_MAX_LEN * 2]; 2417 int ret; 2418 2419 if (!kvm_arch_has_vcpu_debugfs()) 2420 return 0; 2421 2422 if (!debugfs_initialized()) 2423 return 0; 2424 2425 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2426 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2427 vcpu->kvm->debugfs_dentry); 2428 if (!vcpu->debugfs_dentry) 2429 return -ENOMEM; 2430 2431 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2432 if (ret < 0) { 2433 debugfs_remove_recursive(vcpu->debugfs_dentry); 2434 return ret; 2435 } 2436 2437 return 0; 2438 } 2439 2440 /* 2441 * Creates some virtual cpus. Good luck creating more than one. 2442 */ 2443 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2444 { 2445 int r; 2446 struct kvm_vcpu *vcpu; 2447 2448 if (id >= KVM_MAX_VCPU_ID) 2449 return -EINVAL; 2450 2451 mutex_lock(&kvm->lock); 2452 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2453 mutex_unlock(&kvm->lock); 2454 return -EINVAL; 2455 } 2456 2457 kvm->created_vcpus++; 2458 mutex_unlock(&kvm->lock); 2459 2460 vcpu = kvm_arch_vcpu_create(kvm, id); 2461 if (IS_ERR(vcpu)) { 2462 r = PTR_ERR(vcpu); 2463 goto vcpu_decrement; 2464 } 2465 2466 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2467 2468 r = kvm_arch_vcpu_setup(vcpu); 2469 if (r) 2470 goto vcpu_destroy; 2471 2472 r = kvm_create_vcpu_debugfs(vcpu); 2473 if (r) 2474 goto vcpu_destroy; 2475 2476 mutex_lock(&kvm->lock); 2477 if (kvm_get_vcpu_by_id(kvm, id)) { 2478 r = -EEXIST; 2479 goto unlock_vcpu_destroy; 2480 } 2481 2482 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2483 2484 /* Now it's all set up, let userspace reach it */ 2485 kvm_get_kvm(kvm); 2486 r = create_vcpu_fd(vcpu); 2487 if (r < 0) { 2488 kvm_put_kvm(kvm); 2489 goto unlock_vcpu_destroy; 2490 } 2491 2492 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2493 2494 /* 2495 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2496 * before kvm->online_vcpu's incremented value. 2497 */ 2498 smp_wmb(); 2499 atomic_inc(&kvm->online_vcpus); 2500 2501 mutex_unlock(&kvm->lock); 2502 kvm_arch_vcpu_postcreate(vcpu); 2503 return r; 2504 2505 unlock_vcpu_destroy: 2506 mutex_unlock(&kvm->lock); 2507 debugfs_remove_recursive(vcpu->debugfs_dentry); 2508 vcpu_destroy: 2509 kvm_arch_vcpu_destroy(vcpu); 2510 vcpu_decrement: 2511 mutex_lock(&kvm->lock); 2512 kvm->created_vcpus--; 2513 mutex_unlock(&kvm->lock); 2514 return r; 2515 } 2516 2517 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2518 { 2519 if (sigset) { 2520 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2521 vcpu->sigset_active = 1; 2522 vcpu->sigset = *sigset; 2523 } else 2524 vcpu->sigset_active = 0; 2525 return 0; 2526 } 2527 2528 static long kvm_vcpu_ioctl(struct file *filp, 2529 unsigned int ioctl, unsigned long arg) 2530 { 2531 struct kvm_vcpu *vcpu = filp->private_data; 2532 void __user *argp = (void __user *)arg; 2533 int r; 2534 struct kvm_fpu *fpu = NULL; 2535 struct kvm_sregs *kvm_sregs = NULL; 2536 2537 if (vcpu->kvm->mm != current->mm) 2538 return -EIO; 2539 2540 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2541 return -EINVAL; 2542 2543 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2544 /* 2545 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2546 * so vcpu_load() would break it. 2547 */ 2548 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2549 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2550 #endif 2551 2552 2553 r = vcpu_load(vcpu); 2554 if (r) 2555 return r; 2556 switch (ioctl) { 2557 case KVM_RUN: 2558 r = -EINVAL; 2559 if (arg) 2560 goto out; 2561 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2562 /* The thread running this VCPU changed. */ 2563 struct pid *oldpid = vcpu->pid; 2564 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2565 2566 rcu_assign_pointer(vcpu->pid, newpid); 2567 if (oldpid) 2568 synchronize_rcu(); 2569 put_pid(oldpid); 2570 } 2571 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2572 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2573 break; 2574 case KVM_GET_REGS: { 2575 struct kvm_regs *kvm_regs; 2576 2577 r = -ENOMEM; 2578 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2579 if (!kvm_regs) 2580 goto out; 2581 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2582 if (r) 2583 goto out_free1; 2584 r = -EFAULT; 2585 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2586 goto out_free1; 2587 r = 0; 2588 out_free1: 2589 kfree(kvm_regs); 2590 break; 2591 } 2592 case KVM_SET_REGS: { 2593 struct kvm_regs *kvm_regs; 2594 2595 r = -ENOMEM; 2596 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2597 if (IS_ERR(kvm_regs)) { 2598 r = PTR_ERR(kvm_regs); 2599 goto out; 2600 } 2601 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2602 kfree(kvm_regs); 2603 break; 2604 } 2605 case KVM_GET_SREGS: { 2606 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2607 r = -ENOMEM; 2608 if (!kvm_sregs) 2609 goto out; 2610 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2611 if (r) 2612 goto out; 2613 r = -EFAULT; 2614 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2615 goto out; 2616 r = 0; 2617 break; 2618 } 2619 case KVM_SET_SREGS: { 2620 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2621 if (IS_ERR(kvm_sregs)) { 2622 r = PTR_ERR(kvm_sregs); 2623 kvm_sregs = NULL; 2624 goto out; 2625 } 2626 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2627 break; 2628 } 2629 case KVM_GET_MP_STATE: { 2630 struct kvm_mp_state mp_state; 2631 2632 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2633 if (r) 2634 goto out; 2635 r = -EFAULT; 2636 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2637 goto out; 2638 r = 0; 2639 break; 2640 } 2641 case KVM_SET_MP_STATE: { 2642 struct kvm_mp_state mp_state; 2643 2644 r = -EFAULT; 2645 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2646 goto out; 2647 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2648 break; 2649 } 2650 case KVM_TRANSLATE: { 2651 struct kvm_translation tr; 2652 2653 r = -EFAULT; 2654 if (copy_from_user(&tr, argp, sizeof(tr))) 2655 goto out; 2656 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2657 if (r) 2658 goto out; 2659 r = -EFAULT; 2660 if (copy_to_user(argp, &tr, sizeof(tr))) 2661 goto out; 2662 r = 0; 2663 break; 2664 } 2665 case KVM_SET_GUEST_DEBUG: { 2666 struct kvm_guest_debug dbg; 2667 2668 r = -EFAULT; 2669 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2670 goto out; 2671 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2672 break; 2673 } 2674 case KVM_SET_SIGNAL_MASK: { 2675 struct kvm_signal_mask __user *sigmask_arg = argp; 2676 struct kvm_signal_mask kvm_sigmask; 2677 sigset_t sigset, *p; 2678 2679 p = NULL; 2680 if (argp) { 2681 r = -EFAULT; 2682 if (copy_from_user(&kvm_sigmask, argp, 2683 sizeof(kvm_sigmask))) 2684 goto out; 2685 r = -EINVAL; 2686 if (kvm_sigmask.len != sizeof(sigset)) 2687 goto out; 2688 r = -EFAULT; 2689 if (copy_from_user(&sigset, sigmask_arg->sigset, 2690 sizeof(sigset))) 2691 goto out; 2692 p = &sigset; 2693 } 2694 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2695 break; 2696 } 2697 case KVM_GET_FPU: { 2698 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2699 r = -ENOMEM; 2700 if (!fpu) 2701 goto out; 2702 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2703 if (r) 2704 goto out; 2705 r = -EFAULT; 2706 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2707 goto out; 2708 r = 0; 2709 break; 2710 } 2711 case KVM_SET_FPU: { 2712 fpu = memdup_user(argp, sizeof(*fpu)); 2713 if (IS_ERR(fpu)) { 2714 r = PTR_ERR(fpu); 2715 fpu = NULL; 2716 goto out; 2717 } 2718 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2719 break; 2720 } 2721 default: 2722 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2723 } 2724 out: 2725 vcpu_put(vcpu); 2726 kfree(fpu); 2727 kfree(kvm_sregs); 2728 return r; 2729 } 2730 2731 #ifdef CONFIG_KVM_COMPAT 2732 static long kvm_vcpu_compat_ioctl(struct file *filp, 2733 unsigned int ioctl, unsigned long arg) 2734 { 2735 struct kvm_vcpu *vcpu = filp->private_data; 2736 void __user *argp = compat_ptr(arg); 2737 int r; 2738 2739 if (vcpu->kvm->mm != current->mm) 2740 return -EIO; 2741 2742 switch (ioctl) { 2743 case KVM_SET_SIGNAL_MASK: { 2744 struct kvm_signal_mask __user *sigmask_arg = argp; 2745 struct kvm_signal_mask kvm_sigmask; 2746 compat_sigset_t csigset; 2747 sigset_t sigset; 2748 2749 if (argp) { 2750 r = -EFAULT; 2751 if (copy_from_user(&kvm_sigmask, argp, 2752 sizeof(kvm_sigmask))) 2753 goto out; 2754 r = -EINVAL; 2755 if (kvm_sigmask.len != sizeof(csigset)) 2756 goto out; 2757 r = -EFAULT; 2758 if (copy_from_user(&csigset, sigmask_arg->sigset, 2759 sizeof(csigset))) 2760 goto out; 2761 sigset_from_compat(&sigset, &csigset); 2762 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2763 } else 2764 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2765 break; 2766 } 2767 default: 2768 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2769 } 2770 2771 out: 2772 return r; 2773 } 2774 #endif 2775 2776 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2777 int (*accessor)(struct kvm_device *dev, 2778 struct kvm_device_attr *attr), 2779 unsigned long arg) 2780 { 2781 struct kvm_device_attr attr; 2782 2783 if (!accessor) 2784 return -EPERM; 2785 2786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2787 return -EFAULT; 2788 2789 return accessor(dev, &attr); 2790 } 2791 2792 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2793 unsigned long arg) 2794 { 2795 struct kvm_device *dev = filp->private_data; 2796 2797 switch (ioctl) { 2798 case KVM_SET_DEVICE_ATTR: 2799 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2800 case KVM_GET_DEVICE_ATTR: 2801 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2802 case KVM_HAS_DEVICE_ATTR: 2803 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2804 default: 2805 if (dev->ops->ioctl) 2806 return dev->ops->ioctl(dev, ioctl, arg); 2807 2808 return -ENOTTY; 2809 } 2810 } 2811 2812 static int kvm_device_release(struct inode *inode, struct file *filp) 2813 { 2814 struct kvm_device *dev = filp->private_data; 2815 struct kvm *kvm = dev->kvm; 2816 2817 kvm_put_kvm(kvm); 2818 return 0; 2819 } 2820 2821 static const struct file_operations kvm_device_fops = { 2822 .unlocked_ioctl = kvm_device_ioctl, 2823 #ifdef CONFIG_KVM_COMPAT 2824 .compat_ioctl = kvm_device_ioctl, 2825 #endif 2826 .release = kvm_device_release, 2827 }; 2828 2829 struct kvm_device *kvm_device_from_filp(struct file *filp) 2830 { 2831 if (filp->f_op != &kvm_device_fops) 2832 return NULL; 2833 2834 return filp->private_data; 2835 } 2836 2837 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2838 #ifdef CONFIG_KVM_MPIC 2839 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2840 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2841 #endif 2842 2843 #ifdef CONFIG_KVM_XICS 2844 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2845 #endif 2846 }; 2847 2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2849 { 2850 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2851 return -ENOSPC; 2852 2853 if (kvm_device_ops_table[type] != NULL) 2854 return -EEXIST; 2855 2856 kvm_device_ops_table[type] = ops; 2857 return 0; 2858 } 2859 2860 void kvm_unregister_device_ops(u32 type) 2861 { 2862 if (kvm_device_ops_table[type] != NULL) 2863 kvm_device_ops_table[type] = NULL; 2864 } 2865 2866 static int kvm_ioctl_create_device(struct kvm *kvm, 2867 struct kvm_create_device *cd) 2868 { 2869 struct kvm_device_ops *ops = NULL; 2870 struct kvm_device *dev; 2871 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2872 int ret; 2873 2874 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2875 return -ENODEV; 2876 2877 ops = kvm_device_ops_table[cd->type]; 2878 if (ops == NULL) 2879 return -ENODEV; 2880 2881 if (test) 2882 return 0; 2883 2884 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2885 if (!dev) 2886 return -ENOMEM; 2887 2888 dev->ops = ops; 2889 dev->kvm = kvm; 2890 2891 mutex_lock(&kvm->lock); 2892 ret = ops->create(dev, cd->type); 2893 if (ret < 0) { 2894 mutex_unlock(&kvm->lock); 2895 kfree(dev); 2896 return ret; 2897 } 2898 list_add(&dev->vm_node, &kvm->devices); 2899 mutex_unlock(&kvm->lock); 2900 2901 if (ops->init) 2902 ops->init(dev); 2903 2904 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2905 if (ret < 0) { 2906 mutex_lock(&kvm->lock); 2907 list_del(&dev->vm_node); 2908 mutex_unlock(&kvm->lock); 2909 ops->destroy(dev); 2910 return ret; 2911 } 2912 2913 kvm_get_kvm(kvm); 2914 cd->fd = ret; 2915 return 0; 2916 } 2917 2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2919 { 2920 switch (arg) { 2921 case KVM_CAP_USER_MEMORY: 2922 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2923 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2924 case KVM_CAP_INTERNAL_ERROR_DATA: 2925 #ifdef CONFIG_HAVE_KVM_MSI 2926 case KVM_CAP_SIGNAL_MSI: 2927 #endif 2928 #ifdef CONFIG_HAVE_KVM_IRQFD 2929 case KVM_CAP_IRQFD: 2930 case KVM_CAP_IRQFD_RESAMPLE: 2931 #endif 2932 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2933 case KVM_CAP_CHECK_EXTENSION_VM: 2934 return 1; 2935 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2936 case KVM_CAP_IRQ_ROUTING: 2937 return KVM_MAX_IRQ_ROUTES; 2938 #endif 2939 #if KVM_ADDRESS_SPACE_NUM > 1 2940 case KVM_CAP_MULTI_ADDRESS_SPACE: 2941 return KVM_ADDRESS_SPACE_NUM; 2942 #endif 2943 case KVM_CAP_MAX_VCPU_ID: 2944 return KVM_MAX_VCPU_ID; 2945 default: 2946 break; 2947 } 2948 return kvm_vm_ioctl_check_extension(kvm, arg); 2949 } 2950 2951 static long kvm_vm_ioctl(struct file *filp, 2952 unsigned int ioctl, unsigned long arg) 2953 { 2954 struct kvm *kvm = filp->private_data; 2955 void __user *argp = (void __user *)arg; 2956 int r; 2957 2958 if (kvm->mm != current->mm) 2959 return -EIO; 2960 switch (ioctl) { 2961 case KVM_CREATE_VCPU: 2962 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2963 break; 2964 case KVM_SET_USER_MEMORY_REGION: { 2965 struct kvm_userspace_memory_region kvm_userspace_mem; 2966 2967 r = -EFAULT; 2968 if (copy_from_user(&kvm_userspace_mem, argp, 2969 sizeof(kvm_userspace_mem))) 2970 goto out; 2971 2972 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2973 break; 2974 } 2975 case KVM_GET_DIRTY_LOG: { 2976 struct kvm_dirty_log log; 2977 2978 r = -EFAULT; 2979 if (copy_from_user(&log, argp, sizeof(log))) 2980 goto out; 2981 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2982 break; 2983 } 2984 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2985 case KVM_REGISTER_COALESCED_MMIO: { 2986 struct kvm_coalesced_mmio_zone zone; 2987 2988 r = -EFAULT; 2989 if (copy_from_user(&zone, argp, sizeof(zone))) 2990 goto out; 2991 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2992 break; 2993 } 2994 case KVM_UNREGISTER_COALESCED_MMIO: { 2995 struct kvm_coalesced_mmio_zone zone; 2996 2997 r = -EFAULT; 2998 if (copy_from_user(&zone, argp, sizeof(zone))) 2999 goto out; 3000 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3001 break; 3002 } 3003 #endif 3004 case KVM_IRQFD: { 3005 struct kvm_irqfd data; 3006 3007 r = -EFAULT; 3008 if (copy_from_user(&data, argp, sizeof(data))) 3009 goto out; 3010 r = kvm_irqfd(kvm, &data); 3011 break; 3012 } 3013 case KVM_IOEVENTFD: { 3014 struct kvm_ioeventfd data; 3015 3016 r = -EFAULT; 3017 if (copy_from_user(&data, argp, sizeof(data))) 3018 goto out; 3019 r = kvm_ioeventfd(kvm, &data); 3020 break; 3021 } 3022 #ifdef CONFIG_HAVE_KVM_MSI 3023 case KVM_SIGNAL_MSI: { 3024 struct kvm_msi msi; 3025 3026 r = -EFAULT; 3027 if (copy_from_user(&msi, argp, sizeof(msi))) 3028 goto out; 3029 r = kvm_send_userspace_msi(kvm, &msi); 3030 break; 3031 } 3032 #endif 3033 #ifdef __KVM_HAVE_IRQ_LINE 3034 case KVM_IRQ_LINE_STATUS: 3035 case KVM_IRQ_LINE: { 3036 struct kvm_irq_level irq_event; 3037 3038 r = -EFAULT; 3039 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3040 goto out; 3041 3042 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3043 ioctl == KVM_IRQ_LINE_STATUS); 3044 if (r) 3045 goto out; 3046 3047 r = -EFAULT; 3048 if (ioctl == KVM_IRQ_LINE_STATUS) { 3049 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3050 goto out; 3051 } 3052 3053 r = 0; 3054 break; 3055 } 3056 #endif 3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3058 case KVM_SET_GSI_ROUTING: { 3059 struct kvm_irq_routing routing; 3060 struct kvm_irq_routing __user *urouting; 3061 struct kvm_irq_routing_entry *entries = NULL; 3062 3063 r = -EFAULT; 3064 if (copy_from_user(&routing, argp, sizeof(routing))) 3065 goto out; 3066 r = -EINVAL; 3067 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3068 goto out; 3069 if (routing.flags) 3070 goto out; 3071 if (routing.nr) { 3072 r = -ENOMEM; 3073 entries = vmalloc(routing.nr * sizeof(*entries)); 3074 if (!entries) 3075 goto out; 3076 r = -EFAULT; 3077 urouting = argp; 3078 if (copy_from_user(entries, urouting->entries, 3079 routing.nr * sizeof(*entries))) 3080 goto out_free_irq_routing; 3081 } 3082 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3083 routing.flags); 3084 out_free_irq_routing: 3085 vfree(entries); 3086 break; 3087 } 3088 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3089 case KVM_CREATE_DEVICE: { 3090 struct kvm_create_device cd; 3091 3092 r = -EFAULT; 3093 if (copy_from_user(&cd, argp, sizeof(cd))) 3094 goto out; 3095 3096 r = kvm_ioctl_create_device(kvm, &cd); 3097 if (r) 3098 goto out; 3099 3100 r = -EFAULT; 3101 if (copy_to_user(argp, &cd, sizeof(cd))) 3102 goto out; 3103 3104 r = 0; 3105 break; 3106 } 3107 case KVM_CHECK_EXTENSION: 3108 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3109 break; 3110 default: 3111 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3112 } 3113 out: 3114 return r; 3115 } 3116 3117 #ifdef CONFIG_KVM_COMPAT 3118 struct compat_kvm_dirty_log { 3119 __u32 slot; 3120 __u32 padding1; 3121 union { 3122 compat_uptr_t dirty_bitmap; /* one bit per page */ 3123 __u64 padding2; 3124 }; 3125 }; 3126 3127 static long kvm_vm_compat_ioctl(struct file *filp, 3128 unsigned int ioctl, unsigned long arg) 3129 { 3130 struct kvm *kvm = filp->private_data; 3131 int r; 3132 3133 if (kvm->mm != current->mm) 3134 return -EIO; 3135 switch (ioctl) { 3136 case KVM_GET_DIRTY_LOG: { 3137 struct compat_kvm_dirty_log compat_log; 3138 struct kvm_dirty_log log; 3139 3140 if (copy_from_user(&compat_log, (void __user *)arg, 3141 sizeof(compat_log))) 3142 return -EFAULT; 3143 log.slot = compat_log.slot; 3144 log.padding1 = compat_log.padding1; 3145 log.padding2 = compat_log.padding2; 3146 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3147 3148 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3149 break; 3150 } 3151 default: 3152 r = kvm_vm_ioctl(filp, ioctl, arg); 3153 } 3154 return r; 3155 } 3156 #endif 3157 3158 static struct file_operations kvm_vm_fops = { 3159 .release = kvm_vm_release, 3160 .unlocked_ioctl = kvm_vm_ioctl, 3161 #ifdef CONFIG_KVM_COMPAT 3162 .compat_ioctl = kvm_vm_compat_ioctl, 3163 #endif 3164 .llseek = noop_llseek, 3165 }; 3166 3167 static int kvm_dev_ioctl_create_vm(unsigned long type) 3168 { 3169 int r; 3170 struct kvm *kvm; 3171 struct file *file; 3172 3173 kvm = kvm_create_vm(type); 3174 if (IS_ERR(kvm)) 3175 return PTR_ERR(kvm); 3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3177 r = kvm_coalesced_mmio_init(kvm); 3178 if (r < 0) { 3179 kvm_put_kvm(kvm); 3180 return r; 3181 } 3182 #endif 3183 r = get_unused_fd_flags(O_CLOEXEC); 3184 if (r < 0) { 3185 kvm_put_kvm(kvm); 3186 return r; 3187 } 3188 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3189 if (IS_ERR(file)) { 3190 put_unused_fd(r); 3191 kvm_put_kvm(kvm); 3192 return PTR_ERR(file); 3193 } 3194 3195 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3196 put_unused_fd(r); 3197 fput(file); 3198 return -ENOMEM; 3199 } 3200 3201 fd_install(r, file); 3202 return r; 3203 } 3204 3205 static long kvm_dev_ioctl(struct file *filp, 3206 unsigned int ioctl, unsigned long arg) 3207 { 3208 long r = -EINVAL; 3209 3210 switch (ioctl) { 3211 case KVM_GET_API_VERSION: 3212 if (arg) 3213 goto out; 3214 r = KVM_API_VERSION; 3215 break; 3216 case KVM_CREATE_VM: 3217 r = kvm_dev_ioctl_create_vm(arg); 3218 break; 3219 case KVM_CHECK_EXTENSION: 3220 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3221 break; 3222 case KVM_GET_VCPU_MMAP_SIZE: 3223 if (arg) 3224 goto out; 3225 r = PAGE_SIZE; /* struct kvm_run */ 3226 #ifdef CONFIG_X86 3227 r += PAGE_SIZE; /* pio data page */ 3228 #endif 3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3230 r += PAGE_SIZE; /* coalesced mmio ring page */ 3231 #endif 3232 break; 3233 case KVM_TRACE_ENABLE: 3234 case KVM_TRACE_PAUSE: 3235 case KVM_TRACE_DISABLE: 3236 r = -EOPNOTSUPP; 3237 break; 3238 default: 3239 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3240 } 3241 out: 3242 return r; 3243 } 3244 3245 static struct file_operations kvm_chardev_ops = { 3246 .unlocked_ioctl = kvm_dev_ioctl, 3247 .compat_ioctl = kvm_dev_ioctl, 3248 .llseek = noop_llseek, 3249 }; 3250 3251 static struct miscdevice kvm_dev = { 3252 KVM_MINOR, 3253 "kvm", 3254 &kvm_chardev_ops, 3255 }; 3256 3257 static void hardware_enable_nolock(void *junk) 3258 { 3259 int cpu = raw_smp_processor_id(); 3260 int r; 3261 3262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3263 return; 3264 3265 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3266 3267 r = kvm_arch_hardware_enable(); 3268 3269 if (r) { 3270 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3271 atomic_inc(&hardware_enable_failed); 3272 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3273 } 3274 } 3275 3276 static int kvm_starting_cpu(unsigned int cpu) 3277 { 3278 raw_spin_lock(&kvm_count_lock); 3279 if (kvm_usage_count) 3280 hardware_enable_nolock(NULL); 3281 raw_spin_unlock(&kvm_count_lock); 3282 return 0; 3283 } 3284 3285 static void hardware_disable_nolock(void *junk) 3286 { 3287 int cpu = raw_smp_processor_id(); 3288 3289 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3290 return; 3291 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3292 kvm_arch_hardware_disable(); 3293 } 3294 3295 static int kvm_dying_cpu(unsigned int cpu) 3296 { 3297 raw_spin_lock(&kvm_count_lock); 3298 if (kvm_usage_count) 3299 hardware_disable_nolock(NULL); 3300 raw_spin_unlock(&kvm_count_lock); 3301 return 0; 3302 } 3303 3304 static void hardware_disable_all_nolock(void) 3305 { 3306 BUG_ON(!kvm_usage_count); 3307 3308 kvm_usage_count--; 3309 if (!kvm_usage_count) 3310 on_each_cpu(hardware_disable_nolock, NULL, 1); 3311 } 3312 3313 static void hardware_disable_all(void) 3314 { 3315 raw_spin_lock(&kvm_count_lock); 3316 hardware_disable_all_nolock(); 3317 raw_spin_unlock(&kvm_count_lock); 3318 } 3319 3320 static int hardware_enable_all(void) 3321 { 3322 int r = 0; 3323 3324 raw_spin_lock(&kvm_count_lock); 3325 3326 kvm_usage_count++; 3327 if (kvm_usage_count == 1) { 3328 atomic_set(&hardware_enable_failed, 0); 3329 on_each_cpu(hardware_enable_nolock, NULL, 1); 3330 3331 if (atomic_read(&hardware_enable_failed)) { 3332 hardware_disable_all_nolock(); 3333 r = -EBUSY; 3334 } 3335 } 3336 3337 raw_spin_unlock(&kvm_count_lock); 3338 3339 return r; 3340 } 3341 3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3343 void *v) 3344 { 3345 /* 3346 * Some (well, at least mine) BIOSes hang on reboot if 3347 * in vmx root mode. 3348 * 3349 * And Intel TXT required VMX off for all cpu when system shutdown. 3350 */ 3351 pr_info("kvm: exiting hardware virtualization\n"); 3352 kvm_rebooting = true; 3353 on_each_cpu(hardware_disable_nolock, NULL, 1); 3354 return NOTIFY_OK; 3355 } 3356 3357 static struct notifier_block kvm_reboot_notifier = { 3358 .notifier_call = kvm_reboot, 3359 .priority = 0, 3360 }; 3361 3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3363 { 3364 int i; 3365 3366 for (i = 0; i < bus->dev_count; i++) { 3367 struct kvm_io_device *pos = bus->range[i].dev; 3368 3369 kvm_iodevice_destructor(pos); 3370 } 3371 kfree(bus); 3372 } 3373 3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3375 const struct kvm_io_range *r2) 3376 { 3377 gpa_t addr1 = r1->addr; 3378 gpa_t addr2 = r2->addr; 3379 3380 if (addr1 < addr2) 3381 return -1; 3382 3383 /* If r2->len == 0, match the exact address. If r2->len != 0, 3384 * accept any overlapping write. Any order is acceptable for 3385 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3386 * we process all of them. 3387 */ 3388 if (r2->len) { 3389 addr1 += r1->len; 3390 addr2 += r2->len; 3391 } 3392 3393 if (addr1 > addr2) 3394 return 1; 3395 3396 return 0; 3397 } 3398 3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3400 { 3401 return kvm_io_bus_cmp(p1, p2); 3402 } 3403 3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3405 gpa_t addr, int len) 3406 { 3407 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3408 .addr = addr, 3409 .len = len, 3410 .dev = dev, 3411 }; 3412 3413 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3414 kvm_io_bus_sort_cmp, NULL); 3415 3416 return 0; 3417 } 3418 3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3420 gpa_t addr, int len) 3421 { 3422 struct kvm_io_range *range, key; 3423 int off; 3424 3425 key = (struct kvm_io_range) { 3426 .addr = addr, 3427 .len = len, 3428 }; 3429 3430 range = bsearch(&key, bus->range, bus->dev_count, 3431 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3432 if (range == NULL) 3433 return -ENOENT; 3434 3435 off = range - bus->range; 3436 3437 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3438 off--; 3439 3440 return off; 3441 } 3442 3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3444 struct kvm_io_range *range, const void *val) 3445 { 3446 int idx; 3447 3448 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3449 if (idx < 0) 3450 return -EOPNOTSUPP; 3451 3452 while (idx < bus->dev_count && 3453 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3454 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3455 range->len, val)) 3456 return idx; 3457 idx++; 3458 } 3459 3460 return -EOPNOTSUPP; 3461 } 3462 3463 /* kvm_io_bus_write - called under kvm->slots_lock */ 3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3465 int len, const void *val) 3466 { 3467 struct kvm_io_bus *bus; 3468 struct kvm_io_range range; 3469 int r; 3470 3471 range = (struct kvm_io_range) { 3472 .addr = addr, 3473 .len = len, 3474 }; 3475 3476 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3477 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3478 return r < 0 ? r : 0; 3479 } 3480 3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3483 gpa_t addr, int len, const void *val, long cookie) 3484 { 3485 struct kvm_io_bus *bus; 3486 struct kvm_io_range range; 3487 3488 range = (struct kvm_io_range) { 3489 .addr = addr, 3490 .len = len, 3491 }; 3492 3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3494 3495 /* First try the device referenced by cookie. */ 3496 if ((cookie >= 0) && (cookie < bus->dev_count) && 3497 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3498 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3499 val)) 3500 return cookie; 3501 3502 /* 3503 * cookie contained garbage; fall back to search and return the 3504 * correct cookie value. 3505 */ 3506 return __kvm_io_bus_write(vcpu, bus, &range, val); 3507 } 3508 3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3510 struct kvm_io_range *range, void *val) 3511 { 3512 int idx; 3513 3514 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3515 if (idx < 0) 3516 return -EOPNOTSUPP; 3517 3518 while (idx < bus->dev_count && 3519 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3520 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3521 range->len, val)) 3522 return idx; 3523 idx++; 3524 } 3525 3526 return -EOPNOTSUPP; 3527 } 3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3529 3530 /* kvm_io_bus_read - called under kvm->slots_lock */ 3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3532 int len, void *val) 3533 { 3534 struct kvm_io_bus *bus; 3535 struct kvm_io_range range; 3536 int r; 3537 3538 range = (struct kvm_io_range) { 3539 .addr = addr, 3540 .len = len, 3541 }; 3542 3543 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3544 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3545 return r < 0 ? r : 0; 3546 } 3547 3548 3549 /* Caller must hold slots_lock. */ 3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3551 int len, struct kvm_io_device *dev) 3552 { 3553 struct kvm_io_bus *new_bus, *bus; 3554 3555 bus = kvm->buses[bus_idx]; 3556 /* exclude ioeventfd which is limited by maximum fd */ 3557 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3558 return -ENOSPC; 3559 3560 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3561 sizeof(struct kvm_io_range)), GFP_KERNEL); 3562 if (!new_bus) 3563 return -ENOMEM; 3564 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3565 sizeof(struct kvm_io_range))); 3566 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3567 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3568 synchronize_srcu_expedited(&kvm->srcu); 3569 kfree(bus); 3570 3571 return 0; 3572 } 3573 3574 /* Caller must hold slots_lock. */ 3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3576 struct kvm_io_device *dev) 3577 { 3578 int i, r; 3579 struct kvm_io_bus *new_bus, *bus; 3580 3581 bus = kvm->buses[bus_idx]; 3582 r = -ENOENT; 3583 for (i = 0; i < bus->dev_count; i++) 3584 if (bus->range[i].dev == dev) { 3585 r = 0; 3586 break; 3587 } 3588 3589 if (r) 3590 return r; 3591 3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3593 sizeof(struct kvm_io_range)), GFP_KERNEL); 3594 if (!new_bus) 3595 return -ENOMEM; 3596 3597 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3598 new_bus->dev_count--; 3599 memcpy(new_bus->range + i, bus->range + i + 1, 3600 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3601 3602 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3603 synchronize_srcu_expedited(&kvm->srcu); 3604 kfree(bus); 3605 return r; 3606 } 3607 3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3609 gpa_t addr) 3610 { 3611 struct kvm_io_bus *bus; 3612 int dev_idx, srcu_idx; 3613 struct kvm_io_device *iodev = NULL; 3614 3615 srcu_idx = srcu_read_lock(&kvm->srcu); 3616 3617 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3618 3619 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3620 if (dev_idx < 0) 3621 goto out_unlock; 3622 3623 iodev = bus->range[dev_idx].dev; 3624 3625 out_unlock: 3626 srcu_read_unlock(&kvm->srcu, srcu_idx); 3627 3628 return iodev; 3629 } 3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3631 3632 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3633 int (*get)(void *, u64 *), int (*set)(void *, u64), 3634 const char *fmt) 3635 { 3636 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3637 inode->i_private; 3638 3639 /* The debugfs files are a reference to the kvm struct which 3640 * is still valid when kvm_destroy_vm is called. 3641 * To avoid the race between open and the removal of the debugfs 3642 * directory we test against the users count. 3643 */ 3644 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3645 return -ENOENT; 3646 3647 if (simple_attr_open(inode, file, get, set, fmt)) { 3648 kvm_put_kvm(stat_data->kvm); 3649 return -ENOMEM; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3656 { 3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3658 inode->i_private; 3659 3660 simple_attr_release(inode, file); 3661 kvm_put_kvm(stat_data->kvm); 3662 3663 return 0; 3664 } 3665 3666 static int vm_stat_get_per_vm(void *data, u64 *val) 3667 { 3668 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3669 3670 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3671 3672 return 0; 3673 } 3674 3675 static int vm_stat_clear_per_vm(void *data, u64 val) 3676 { 3677 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3678 3679 if (val) 3680 return -EINVAL; 3681 3682 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3683 3684 return 0; 3685 } 3686 3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3688 { 3689 __simple_attr_check_format("%llu\n", 0ull); 3690 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3691 vm_stat_clear_per_vm, "%llu\n"); 3692 } 3693 3694 static const struct file_operations vm_stat_get_per_vm_fops = { 3695 .owner = THIS_MODULE, 3696 .open = vm_stat_get_per_vm_open, 3697 .release = kvm_debugfs_release, 3698 .read = simple_attr_read, 3699 .write = simple_attr_write, 3700 .llseek = generic_file_llseek, 3701 }; 3702 3703 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3704 { 3705 int i; 3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3707 struct kvm_vcpu *vcpu; 3708 3709 *val = 0; 3710 3711 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3712 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3713 3714 return 0; 3715 } 3716 3717 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3718 { 3719 int i; 3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3721 struct kvm_vcpu *vcpu; 3722 3723 if (val) 3724 return -EINVAL; 3725 3726 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3727 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3728 3729 return 0; 3730 } 3731 3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3733 { 3734 __simple_attr_check_format("%llu\n", 0ull); 3735 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3736 vcpu_stat_clear_per_vm, "%llu\n"); 3737 } 3738 3739 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3740 .owner = THIS_MODULE, 3741 .open = vcpu_stat_get_per_vm_open, 3742 .release = kvm_debugfs_release, 3743 .read = simple_attr_read, 3744 .write = simple_attr_write, 3745 .llseek = generic_file_llseek, 3746 }; 3747 3748 static const struct file_operations *stat_fops_per_vm[] = { 3749 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3750 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3751 }; 3752 3753 static int vm_stat_get(void *_offset, u64 *val) 3754 { 3755 unsigned offset = (long)_offset; 3756 struct kvm *kvm; 3757 struct kvm_stat_data stat_tmp = {.offset = offset}; 3758 u64 tmp_val; 3759 3760 *val = 0; 3761 spin_lock(&kvm_lock); 3762 list_for_each_entry(kvm, &vm_list, vm_list) { 3763 stat_tmp.kvm = kvm; 3764 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3765 *val += tmp_val; 3766 } 3767 spin_unlock(&kvm_lock); 3768 return 0; 3769 } 3770 3771 static int vm_stat_clear(void *_offset, u64 val) 3772 { 3773 unsigned offset = (long)_offset; 3774 struct kvm *kvm; 3775 struct kvm_stat_data stat_tmp = {.offset = offset}; 3776 3777 if (val) 3778 return -EINVAL; 3779 3780 spin_lock(&kvm_lock); 3781 list_for_each_entry(kvm, &vm_list, vm_list) { 3782 stat_tmp.kvm = kvm; 3783 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3784 } 3785 spin_unlock(&kvm_lock); 3786 3787 return 0; 3788 } 3789 3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3791 3792 static int vcpu_stat_get(void *_offset, u64 *val) 3793 { 3794 unsigned offset = (long)_offset; 3795 struct kvm *kvm; 3796 struct kvm_stat_data stat_tmp = {.offset = offset}; 3797 u64 tmp_val; 3798 3799 *val = 0; 3800 spin_lock(&kvm_lock); 3801 list_for_each_entry(kvm, &vm_list, vm_list) { 3802 stat_tmp.kvm = kvm; 3803 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3804 *val += tmp_val; 3805 } 3806 spin_unlock(&kvm_lock); 3807 return 0; 3808 } 3809 3810 static int vcpu_stat_clear(void *_offset, u64 val) 3811 { 3812 unsigned offset = (long)_offset; 3813 struct kvm *kvm; 3814 struct kvm_stat_data stat_tmp = {.offset = offset}; 3815 3816 if (val) 3817 return -EINVAL; 3818 3819 spin_lock(&kvm_lock); 3820 list_for_each_entry(kvm, &vm_list, vm_list) { 3821 stat_tmp.kvm = kvm; 3822 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3823 } 3824 spin_unlock(&kvm_lock); 3825 3826 return 0; 3827 } 3828 3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3830 "%llu\n"); 3831 3832 static const struct file_operations *stat_fops[] = { 3833 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3834 [KVM_STAT_VM] = &vm_stat_fops, 3835 }; 3836 3837 static int kvm_init_debug(void) 3838 { 3839 int r = -EEXIST; 3840 struct kvm_stats_debugfs_item *p; 3841 3842 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3843 if (kvm_debugfs_dir == NULL) 3844 goto out; 3845 3846 kvm_debugfs_num_entries = 0; 3847 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3848 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3849 (void *)(long)p->offset, 3850 stat_fops[p->kind])) 3851 goto out_dir; 3852 } 3853 3854 return 0; 3855 3856 out_dir: 3857 debugfs_remove_recursive(kvm_debugfs_dir); 3858 out: 3859 return r; 3860 } 3861 3862 static int kvm_suspend(void) 3863 { 3864 if (kvm_usage_count) 3865 hardware_disable_nolock(NULL); 3866 return 0; 3867 } 3868 3869 static void kvm_resume(void) 3870 { 3871 if (kvm_usage_count) { 3872 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3873 hardware_enable_nolock(NULL); 3874 } 3875 } 3876 3877 static struct syscore_ops kvm_syscore_ops = { 3878 .suspend = kvm_suspend, 3879 .resume = kvm_resume, 3880 }; 3881 3882 static inline 3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3884 { 3885 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3886 } 3887 3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3889 { 3890 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3891 3892 if (vcpu->preempted) 3893 vcpu->preempted = false; 3894 3895 kvm_arch_sched_in(vcpu, cpu); 3896 3897 kvm_arch_vcpu_load(vcpu, cpu); 3898 } 3899 3900 static void kvm_sched_out(struct preempt_notifier *pn, 3901 struct task_struct *next) 3902 { 3903 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3904 3905 if (current->state == TASK_RUNNING) 3906 vcpu->preempted = true; 3907 kvm_arch_vcpu_put(vcpu); 3908 } 3909 3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3911 struct module *module) 3912 { 3913 int r; 3914 int cpu; 3915 3916 r = kvm_arch_init(opaque); 3917 if (r) 3918 goto out_fail; 3919 3920 /* 3921 * kvm_arch_init makes sure there's at most one caller 3922 * for architectures that support multiple implementations, 3923 * like intel and amd on x86. 3924 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3925 * conflicts in case kvm is already setup for another implementation. 3926 */ 3927 r = kvm_irqfd_init(); 3928 if (r) 3929 goto out_irqfd; 3930 3931 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3932 r = -ENOMEM; 3933 goto out_free_0; 3934 } 3935 3936 r = kvm_arch_hardware_setup(); 3937 if (r < 0) 3938 goto out_free_0a; 3939 3940 for_each_online_cpu(cpu) { 3941 smp_call_function_single(cpu, 3942 kvm_arch_check_processor_compat, 3943 &r, 1); 3944 if (r < 0) 3945 goto out_free_1; 3946 } 3947 3948 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 3949 kvm_starting_cpu, kvm_dying_cpu); 3950 if (r) 3951 goto out_free_2; 3952 register_reboot_notifier(&kvm_reboot_notifier); 3953 3954 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3955 if (!vcpu_align) 3956 vcpu_align = __alignof__(struct kvm_vcpu); 3957 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3958 0, NULL); 3959 if (!kvm_vcpu_cache) { 3960 r = -ENOMEM; 3961 goto out_free_3; 3962 } 3963 3964 r = kvm_async_pf_init(); 3965 if (r) 3966 goto out_free; 3967 3968 kvm_chardev_ops.owner = module; 3969 kvm_vm_fops.owner = module; 3970 kvm_vcpu_fops.owner = module; 3971 3972 r = misc_register(&kvm_dev); 3973 if (r) { 3974 pr_err("kvm: misc device register failed\n"); 3975 goto out_unreg; 3976 } 3977 3978 register_syscore_ops(&kvm_syscore_ops); 3979 3980 kvm_preempt_ops.sched_in = kvm_sched_in; 3981 kvm_preempt_ops.sched_out = kvm_sched_out; 3982 3983 r = kvm_init_debug(); 3984 if (r) { 3985 pr_err("kvm: create debugfs files failed\n"); 3986 goto out_undebugfs; 3987 } 3988 3989 r = kvm_vfio_ops_init(); 3990 WARN_ON(r); 3991 3992 return 0; 3993 3994 out_undebugfs: 3995 unregister_syscore_ops(&kvm_syscore_ops); 3996 misc_deregister(&kvm_dev); 3997 out_unreg: 3998 kvm_async_pf_deinit(); 3999 out_free: 4000 kmem_cache_destroy(kvm_vcpu_cache); 4001 out_free_3: 4002 unregister_reboot_notifier(&kvm_reboot_notifier); 4003 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4004 out_free_2: 4005 out_free_1: 4006 kvm_arch_hardware_unsetup(); 4007 out_free_0a: 4008 free_cpumask_var(cpus_hardware_enabled); 4009 out_free_0: 4010 kvm_irqfd_exit(); 4011 out_irqfd: 4012 kvm_arch_exit(); 4013 out_fail: 4014 return r; 4015 } 4016 EXPORT_SYMBOL_GPL(kvm_init); 4017 4018 void kvm_exit(void) 4019 { 4020 debugfs_remove_recursive(kvm_debugfs_dir); 4021 misc_deregister(&kvm_dev); 4022 kmem_cache_destroy(kvm_vcpu_cache); 4023 kvm_async_pf_deinit(); 4024 unregister_syscore_ops(&kvm_syscore_ops); 4025 unregister_reboot_notifier(&kvm_reboot_notifier); 4026 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4027 on_each_cpu(hardware_disable_nolock, NULL, 1); 4028 kvm_arch_hardware_unsetup(); 4029 kvm_arch_exit(); 4030 kvm_irqfd_exit(); 4031 free_cpumask_var(cpus_hardware_enabled); 4032 kvm_vfio_ops_exit(); 4033 } 4034 EXPORT_SYMBOL_GPL(kvm_exit); 4035