xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_SPINLOCK(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 				unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130 
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132 
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134 
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137 
138 static bool largepages_enabled = true;
139 
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145 
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 		unsigned long start, unsigned long end, bool blockable)
148 {
149 	return 0;
150 }
151 
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154 	if (pfn_valid(pfn))
155 		return PageReserved(pfn_to_page(pfn));
156 
157 	return true;
158 }
159 
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165 	int cpu = get_cpu();
166 	preempt_notifier_register(&vcpu->preempt_notifier);
167 	kvm_arch_vcpu_load(vcpu, cpu);
168 	put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171 
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174 	preempt_disable();
175 	kvm_arch_vcpu_put(vcpu);
176 	preempt_notifier_unregister(&vcpu->preempt_notifier);
177 	preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180 
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185 
186 	/*
187 	 * We need to wait for the VCPU to reenable interrupts and get out of
188 	 * READING_SHADOW_PAGE_TABLES mode.
189 	 */
190 	if (req & KVM_REQUEST_WAIT)
191 		return mode != OUTSIDE_GUEST_MODE;
192 
193 	/*
194 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
195 	 */
196 	return mode == IN_GUEST_MODE;
197 }
198 
199 static void ack_flush(void *_completed)
200 {
201 }
202 
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205 	if (unlikely(!cpus))
206 		cpus = cpu_online_mask;
207 
208 	if (cpumask_empty(cpus))
209 		return false;
210 
211 	smp_call_function_many(cpus, ack_flush, NULL, wait);
212 	return true;
213 }
214 
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218 	int i, cpu, me;
219 	struct kvm_vcpu *vcpu;
220 	bool called;
221 
222 	me = get_cpu();
223 
224 	kvm_for_each_vcpu(i, vcpu, kvm) {
225 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226 			continue;
227 
228 		kvm_make_request(req, vcpu);
229 		cpu = vcpu->cpu;
230 
231 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 			continue;
233 
234 		if (tmp != NULL && cpu != -1 && cpu != me &&
235 		    kvm_request_needs_ipi(vcpu, req))
236 			__cpumask_set_cpu(cpu, tmp);
237 	}
238 
239 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240 	put_cpu();
241 
242 	return called;
243 }
244 
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247 	cpumask_var_t cpus;
248 	bool called;
249 
250 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251 
252 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253 
254 	free_cpumask_var(cpus);
255 	return called;
256 }
257 
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261 	/*
262 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 	 * kvm_make_all_cpus_request.
264 	 */
265 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266 
267 	/*
268 	 * We want to publish modifications to the page tables before reading
269 	 * mode. Pairs with a memory barrier in arch-specific code.
270 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 	 *
274 	 * There is already an smp_mb__after_atomic() before
275 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 	 * barrier here.
277 	 */
278 	if (!kvm_arch_flush_remote_tlb(kvm)
279 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280 		++kvm->stat.remote_tlb_flush;
281 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285 
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290 
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293 	struct page *page;
294 	int r;
295 
296 	mutex_init(&vcpu->mutex);
297 	vcpu->cpu = -1;
298 	vcpu->kvm = kvm;
299 	vcpu->vcpu_id = id;
300 	vcpu->pid = NULL;
301 	init_swait_queue_head(&vcpu->wq);
302 	kvm_async_pf_vcpu_init(vcpu);
303 
304 	vcpu->pre_pcpu = -1;
305 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306 
307 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 	if (!page) {
309 		r = -ENOMEM;
310 		goto fail;
311 	}
312 	vcpu->run = page_address(page);
313 
314 	kvm_vcpu_set_in_spin_loop(vcpu, false);
315 	kvm_vcpu_set_dy_eligible(vcpu, false);
316 	vcpu->preempted = false;
317 
318 	r = kvm_arch_vcpu_init(vcpu);
319 	if (r < 0)
320 		goto fail_free_run;
321 	return 0;
322 
323 fail_free_run:
324 	free_page((unsigned long)vcpu->run);
325 fail:
326 	return r;
327 }
328 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
329 
330 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
331 {
332 	/*
333 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
334 	 * will change the vcpu->pid pointer and on uninit all file
335 	 * descriptors are already gone.
336 	 */
337 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
338 	kvm_arch_vcpu_uninit(vcpu);
339 	free_page((unsigned long)vcpu->run);
340 }
341 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
342 
343 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
344 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
345 {
346 	return container_of(mn, struct kvm, mmu_notifier);
347 }
348 
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 					struct mm_struct *mm,
351 					unsigned long address,
352 					pte_t pte)
353 {
354 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 	int idx;
356 
357 	idx = srcu_read_lock(&kvm->srcu);
358 	spin_lock(&kvm->mmu_lock);
359 	kvm->mmu_notifier_seq++;
360 
361 	if (kvm_set_spte_hva(kvm, address, pte))
362 		kvm_flush_remote_tlbs(kvm);
363 
364 	spin_unlock(&kvm->mmu_lock);
365 	srcu_read_unlock(&kvm->srcu, idx);
366 }
367 
368 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
369 					const struct mmu_notifier_range *range)
370 {
371 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 	int need_tlb_flush = 0, idx;
373 	int ret;
374 
375 	idx = srcu_read_lock(&kvm->srcu);
376 	spin_lock(&kvm->mmu_lock);
377 	/*
378 	 * The count increase must become visible at unlock time as no
379 	 * spte can be established without taking the mmu_lock and
380 	 * count is also read inside the mmu_lock critical section.
381 	 */
382 	kvm->mmu_notifier_count++;
383 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
384 	need_tlb_flush |= kvm->tlbs_dirty;
385 	/* we've to flush the tlb before the pages can be freed */
386 	if (need_tlb_flush)
387 		kvm_flush_remote_tlbs(kvm);
388 
389 	spin_unlock(&kvm->mmu_lock);
390 
391 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
392 					range->end,
393 					mmu_notifier_range_blockable(range));
394 
395 	srcu_read_unlock(&kvm->srcu, idx);
396 
397 	return ret;
398 }
399 
400 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
401 					const struct mmu_notifier_range *range)
402 {
403 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 
405 	spin_lock(&kvm->mmu_lock);
406 	/*
407 	 * This sequence increase will notify the kvm page fault that
408 	 * the page that is going to be mapped in the spte could have
409 	 * been freed.
410 	 */
411 	kvm->mmu_notifier_seq++;
412 	smp_wmb();
413 	/*
414 	 * The above sequence increase must be visible before the
415 	 * below count decrease, which is ensured by the smp_wmb above
416 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
417 	 */
418 	kvm->mmu_notifier_count--;
419 	spin_unlock(&kvm->mmu_lock);
420 
421 	BUG_ON(kvm->mmu_notifier_count < 0);
422 }
423 
424 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
425 					      struct mm_struct *mm,
426 					      unsigned long start,
427 					      unsigned long end)
428 {
429 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
430 	int young, idx;
431 
432 	idx = srcu_read_lock(&kvm->srcu);
433 	spin_lock(&kvm->mmu_lock);
434 
435 	young = kvm_age_hva(kvm, start, end);
436 	if (young)
437 		kvm_flush_remote_tlbs(kvm);
438 
439 	spin_unlock(&kvm->mmu_lock);
440 	srcu_read_unlock(&kvm->srcu, idx);
441 
442 	return young;
443 }
444 
445 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
446 					struct mm_struct *mm,
447 					unsigned long start,
448 					unsigned long end)
449 {
450 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
451 	int young, idx;
452 
453 	idx = srcu_read_lock(&kvm->srcu);
454 	spin_lock(&kvm->mmu_lock);
455 	/*
456 	 * Even though we do not flush TLB, this will still adversely
457 	 * affect performance on pre-Haswell Intel EPT, where there is
458 	 * no EPT Access Bit to clear so that we have to tear down EPT
459 	 * tables instead. If we find this unacceptable, we can always
460 	 * add a parameter to kvm_age_hva so that it effectively doesn't
461 	 * do anything on clear_young.
462 	 *
463 	 * Also note that currently we never issue secondary TLB flushes
464 	 * from clear_young, leaving this job up to the regular system
465 	 * cadence. If we find this inaccurate, we might come up with a
466 	 * more sophisticated heuristic later.
467 	 */
468 	young = kvm_age_hva(kvm, start, end);
469 	spin_unlock(&kvm->mmu_lock);
470 	srcu_read_unlock(&kvm->srcu, idx);
471 
472 	return young;
473 }
474 
475 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
476 				       struct mm_struct *mm,
477 				       unsigned long address)
478 {
479 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
480 	int young, idx;
481 
482 	idx = srcu_read_lock(&kvm->srcu);
483 	spin_lock(&kvm->mmu_lock);
484 	young = kvm_test_age_hva(kvm, address);
485 	spin_unlock(&kvm->mmu_lock);
486 	srcu_read_unlock(&kvm->srcu, idx);
487 
488 	return young;
489 }
490 
491 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
492 				     struct mm_struct *mm)
493 {
494 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
495 	int idx;
496 
497 	idx = srcu_read_lock(&kvm->srcu);
498 	kvm_arch_flush_shadow_all(kvm);
499 	srcu_read_unlock(&kvm->srcu, idx);
500 }
501 
502 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
503 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
504 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
505 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
506 	.clear_young		= kvm_mmu_notifier_clear_young,
507 	.test_young		= kvm_mmu_notifier_test_young,
508 	.change_pte		= kvm_mmu_notifier_change_pte,
509 	.release		= kvm_mmu_notifier_release,
510 };
511 
512 static int kvm_init_mmu_notifier(struct kvm *kvm)
513 {
514 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
515 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
516 }
517 
518 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
519 
520 static int kvm_init_mmu_notifier(struct kvm *kvm)
521 {
522 	return 0;
523 }
524 
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
526 
527 static struct kvm_memslots *kvm_alloc_memslots(void)
528 {
529 	int i;
530 	struct kvm_memslots *slots;
531 
532 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
533 	if (!slots)
534 		return NULL;
535 
536 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
537 		slots->id_to_index[i] = slots->memslots[i].id = i;
538 
539 	return slots;
540 }
541 
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 	if (!memslot->dirty_bitmap)
545 		return;
546 
547 	kvfree(memslot->dirty_bitmap);
548 	memslot->dirty_bitmap = NULL;
549 }
550 
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
555 			      struct kvm_memory_slot *dont)
556 {
557 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 		kvm_destroy_dirty_bitmap(free);
559 
560 	kvm_arch_free_memslot(kvm, free, dont);
561 
562 	free->npages = 0;
563 }
564 
565 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
566 {
567 	struct kvm_memory_slot *memslot;
568 
569 	if (!slots)
570 		return;
571 
572 	kvm_for_each_memslot(memslot, slots)
573 		kvm_free_memslot(kvm, memslot, NULL);
574 
575 	kvfree(slots);
576 }
577 
578 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
579 {
580 	int i;
581 
582 	if (!kvm->debugfs_dentry)
583 		return;
584 
585 	debugfs_remove_recursive(kvm->debugfs_dentry);
586 
587 	if (kvm->debugfs_stat_data) {
588 		for (i = 0; i < kvm_debugfs_num_entries; i++)
589 			kfree(kvm->debugfs_stat_data[i]);
590 		kfree(kvm->debugfs_stat_data);
591 	}
592 }
593 
594 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
595 {
596 	char dir_name[ITOA_MAX_LEN * 2];
597 	struct kvm_stat_data *stat_data;
598 	struct kvm_stats_debugfs_item *p;
599 
600 	if (!debugfs_initialized())
601 		return 0;
602 
603 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
604 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
605 
606 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
607 					 sizeof(*kvm->debugfs_stat_data),
608 					 GFP_KERNEL_ACCOUNT);
609 	if (!kvm->debugfs_stat_data)
610 		return -ENOMEM;
611 
612 	for (p = debugfs_entries; p->name; p++) {
613 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
614 		if (!stat_data)
615 			return -ENOMEM;
616 
617 		stat_data->kvm = kvm;
618 		stat_data->offset = p->offset;
619 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
620 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
621 				    stat_data, stat_fops_per_vm[p->kind]);
622 	}
623 	return 0;
624 }
625 
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 	int r, i;
629 	struct kvm *kvm = kvm_arch_alloc_vm();
630 
631 	if (!kvm)
632 		return ERR_PTR(-ENOMEM);
633 
634 	spin_lock_init(&kvm->mmu_lock);
635 	mmgrab(current->mm);
636 	kvm->mm = current->mm;
637 	kvm_eventfd_init(kvm);
638 	mutex_init(&kvm->lock);
639 	mutex_init(&kvm->irq_lock);
640 	mutex_init(&kvm->slots_lock);
641 	refcount_set(&kvm->users_count, 1);
642 	INIT_LIST_HEAD(&kvm->devices);
643 
644 	r = kvm_arch_init_vm(kvm, type);
645 	if (r)
646 		goto out_err_no_disable;
647 
648 	r = hardware_enable_all();
649 	if (r)
650 		goto out_err_no_disable;
651 
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655 
656 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657 
658 	r = -ENOMEM;
659 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 		struct kvm_memslots *slots = kvm_alloc_memslots();
661 		if (!slots)
662 			goto out_err_no_srcu;
663 		/* Generations must be different for each address space. */
664 		slots->generation = i;
665 		rcu_assign_pointer(kvm->memslots[i], slots);
666 	}
667 
668 	if (init_srcu_struct(&kvm->srcu))
669 		goto out_err_no_srcu;
670 	if (init_srcu_struct(&kvm->irq_srcu))
671 		goto out_err_no_irq_srcu;
672 	for (i = 0; i < KVM_NR_BUSES; i++) {
673 		rcu_assign_pointer(kvm->buses[i],
674 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
675 		if (!kvm->buses[i])
676 			goto out_err;
677 	}
678 
679 	r = kvm_init_mmu_notifier(kvm);
680 	if (r)
681 		goto out_err;
682 
683 	spin_lock(&kvm_lock);
684 	list_add(&kvm->vm_list, &vm_list);
685 	spin_unlock(&kvm_lock);
686 
687 	preempt_notifier_inc();
688 
689 	return kvm;
690 
691 out_err:
692 	cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 	cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 	hardware_disable_all();
697 out_err_no_disable:
698 	refcount_set(&kvm->users_count, 0);
699 	for (i = 0; i < KVM_NR_BUSES; i++)
700 		kfree(kvm_get_bus(kvm, i));
701 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 	kvm_arch_free_vm(kvm);
704 	mmdrop(current->mm);
705 	return ERR_PTR(r);
706 }
707 
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 	struct kvm_device *dev, *tmp;
711 
712 	/*
713 	 * We do not need to take the kvm->lock here, because nobody else
714 	 * has a reference to the struct kvm at this point and therefore
715 	 * cannot access the devices list anyhow.
716 	 */
717 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 		list_del(&dev->vm_node);
719 		dev->ops->destroy(dev);
720 	}
721 }
722 
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 	int i;
726 	struct mm_struct *mm = kvm->mm;
727 
728 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 	kvm_destroy_vm_debugfs(kvm);
730 	kvm_arch_sync_events(kvm);
731 	spin_lock(&kvm_lock);
732 	list_del(&kvm->vm_list);
733 	spin_unlock(&kvm_lock);
734 	kvm_free_irq_routing(kvm);
735 	for (i = 0; i < KVM_NR_BUSES; i++) {
736 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737 
738 		if (bus)
739 			kvm_io_bus_destroy(bus);
740 		kvm->buses[i] = NULL;
741 	}
742 	kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 	kvm_arch_flush_shadow_all(kvm);
747 #endif
748 	kvm_arch_destroy_vm(kvm);
749 	kvm_destroy_devices(kvm);
750 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 	cleanup_srcu_struct(&kvm->irq_srcu);
753 	cleanup_srcu_struct(&kvm->srcu);
754 	kvm_arch_free_vm(kvm);
755 	preempt_notifier_dec();
756 	hardware_disable_all();
757 	mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 	refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 	if (refcount_dec_and_test(&kvm->users_count))
769 		kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 	struct kvm *kvm = filp->private_data;
777 
778 	kvm_irqfd_release(kvm);
779 
780 	kvm_put_kvm(kvm);
781 	return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
793 	if (!memslot->dirty_bitmap)
794 		return -ENOMEM;
795 
796 	return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806 			    struct kvm_memory_slot *new,
807 			    enum kvm_mr_change change)
808 {
809 	int id = new->id;
810 	int i = slots->id_to_index[id];
811 	struct kvm_memory_slot *mslots = slots->memslots;
812 
813 	WARN_ON(mslots[i].id != id);
814 	switch (change) {
815 	case KVM_MR_CREATE:
816 		slots->used_slots++;
817 		WARN_ON(mslots[i].npages || !new->npages);
818 		break;
819 	case KVM_MR_DELETE:
820 		slots->used_slots--;
821 		WARN_ON(new->npages || !mslots[i].npages);
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 	       new->base_gfn <= mslots[i + 1].base_gfn) {
829 		if (!mslots[i + 1].npages)
830 			break;
831 		mslots[i] = mslots[i + 1];
832 		slots->id_to_index[mslots[i].id] = i;
833 		i++;
834 	}
835 
836 	/*
837 	 * The ">=" is needed when creating a slot with base_gfn == 0,
838 	 * so that it moves before all those with base_gfn == npages == 0.
839 	 *
840 	 * On the other hand, if new->npages is zero, the above loop has
841 	 * already left i pointing to the beginning of the empty part of
842 	 * mslots, and the ">=" would move the hole backwards in this
843 	 * case---which is wrong.  So skip the loop when deleting a slot.
844 	 */
845 	if (new->npages) {
846 		while (i > 0 &&
847 		       new->base_gfn >= mslots[i - 1].base_gfn) {
848 			mslots[i] = mslots[i - 1];
849 			slots->id_to_index[mslots[i].id] = i;
850 			i--;
851 		}
852 	} else
853 		WARN_ON_ONCE(i != slots->used_slots);
854 
855 	mslots[i] = *new;
856 	slots->id_to_index[mslots[i].id] = i;
857 }
858 
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862 
863 #ifdef __KVM_HAVE_READONLY_MEM
864 	valid_flags |= KVM_MEM_READONLY;
865 #endif
866 
867 	if (mem->flags & ~valid_flags)
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 		int as_id, struct kvm_memslots *slots)
875 {
876 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877 	u64 gen = old_memslots->generation;
878 
879 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
880 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
881 
882 	rcu_assign_pointer(kvm->memslots[as_id], slots);
883 	synchronize_srcu_expedited(&kvm->srcu);
884 
885 	/*
886 	 * Increment the new memslot generation a second time, dropping the
887 	 * update in-progress flag and incrementing then generation based on
888 	 * the number of address spaces.  This provides a unique and easily
889 	 * identifiable generation number while the memslots are in flux.
890 	 */
891 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
892 
893 	/*
894 	 * Generations must be unique even across address spaces.  We do not need
895 	 * a global counter for that, instead the generation space is evenly split
896 	 * across address spaces.  For example, with two address spaces, address
897 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
898 	 * use generations 1, 3, 5, ...
899 	 */
900 	gen += KVM_ADDRESS_SPACE_NUM;
901 
902 	kvm_arch_memslots_updated(kvm, gen);
903 
904 	slots->generation = gen;
905 
906 	return old_memslots;
907 }
908 
909 /*
910  * Allocate some memory and give it an address in the guest physical address
911  * space.
912  *
913  * Discontiguous memory is allowed, mostly for framebuffers.
914  *
915  * Must be called holding kvm->slots_lock for write.
916  */
917 int __kvm_set_memory_region(struct kvm *kvm,
918 			    const struct kvm_userspace_memory_region *mem)
919 {
920 	int r;
921 	gfn_t base_gfn;
922 	unsigned long npages;
923 	struct kvm_memory_slot *slot;
924 	struct kvm_memory_slot old, new;
925 	struct kvm_memslots *slots = NULL, *old_memslots;
926 	int as_id, id;
927 	enum kvm_mr_change change;
928 
929 	r = check_memory_region_flags(mem);
930 	if (r)
931 		goto out;
932 
933 	r = -EINVAL;
934 	as_id = mem->slot >> 16;
935 	id = (u16)mem->slot;
936 
937 	/* General sanity checks */
938 	if (mem->memory_size & (PAGE_SIZE - 1))
939 		goto out;
940 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
941 		goto out;
942 	/* We can read the guest memory with __xxx_user() later on. */
943 	if ((id < KVM_USER_MEM_SLOTS) &&
944 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
945 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
946 			mem->memory_size)))
947 		goto out;
948 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
949 		goto out;
950 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
951 		goto out;
952 
953 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
954 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
955 	npages = mem->memory_size >> PAGE_SHIFT;
956 
957 	if (npages > KVM_MEM_MAX_NR_PAGES)
958 		goto out;
959 
960 	new = old = *slot;
961 
962 	new.id = id;
963 	new.base_gfn = base_gfn;
964 	new.npages = npages;
965 	new.flags = mem->flags;
966 
967 	if (npages) {
968 		if (!old.npages)
969 			change = KVM_MR_CREATE;
970 		else { /* Modify an existing slot. */
971 			if ((mem->userspace_addr != old.userspace_addr) ||
972 			    (npages != old.npages) ||
973 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
974 				goto out;
975 
976 			if (base_gfn != old.base_gfn)
977 				change = KVM_MR_MOVE;
978 			else if (new.flags != old.flags)
979 				change = KVM_MR_FLAGS_ONLY;
980 			else { /* Nothing to change. */
981 				r = 0;
982 				goto out;
983 			}
984 		}
985 	} else {
986 		if (!old.npages)
987 			goto out;
988 
989 		change = KVM_MR_DELETE;
990 		new.base_gfn = 0;
991 		new.flags = 0;
992 	}
993 
994 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
995 		/* Check for overlaps */
996 		r = -EEXIST;
997 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
998 			if (slot->id == id)
999 				continue;
1000 			if (!((base_gfn + npages <= slot->base_gfn) ||
1001 			      (base_gfn >= slot->base_gfn + slot->npages)))
1002 				goto out;
1003 		}
1004 	}
1005 
1006 	/* Free page dirty bitmap if unneeded */
1007 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1008 		new.dirty_bitmap = NULL;
1009 
1010 	r = -ENOMEM;
1011 	if (change == KVM_MR_CREATE) {
1012 		new.userspace_addr = mem->userspace_addr;
1013 
1014 		if (kvm_arch_create_memslot(kvm, &new, npages))
1015 			goto out_free;
1016 	}
1017 
1018 	/* Allocate page dirty bitmap if needed */
1019 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1020 		if (kvm_create_dirty_bitmap(&new) < 0)
1021 			goto out_free;
1022 	}
1023 
1024 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1025 	if (!slots)
1026 		goto out_free;
1027 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1028 
1029 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1030 		slot = id_to_memslot(slots, id);
1031 		slot->flags |= KVM_MEMSLOT_INVALID;
1032 
1033 		old_memslots = install_new_memslots(kvm, as_id, slots);
1034 
1035 		/* From this point no new shadow pages pointing to a deleted,
1036 		 * or moved, memslot will be created.
1037 		 *
1038 		 * validation of sp->gfn happens in:
1039 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1040 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1041 		 */
1042 		kvm_arch_flush_shadow_memslot(kvm, slot);
1043 
1044 		/*
1045 		 * We can re-use the old_memslots from above, the only difference
1046 		 * from the currently installed memslots is the invalid flag.  This
1047 		 * will get overwritten by update_memslots anyway.
1048 		 */
1049 		slots = old_memslots;
1050 	}
1051 
1052 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1053 	if (r)
1054 		goto out_slots;
1055 
1056 	/* actual memory is freed via old in kvm_free_memslot below */
1057 	if (change == KVM_MR_DELETE) {
1058 		new.dirty_bitmap = NULL;
1059 		memset(&new.arch, 0, sizeof(new.arch));
1060 	}
1061 
1062 	update_memslots(slots, &new, change);
1063 	old_memslots = install_new_memslots(kvm, as_id, slots);
1064 
1065 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1066 
1067 	kvm_free_memslot(kvm, &old, &new);
1068 	kvfree(old_memslots);
1069 	return 0;
1070 
1071 out_slots:
1072 	kvfree(slots);
1073 out_free:
1074 	kvm_free_memslot(kvm, &new, &old);
1075 out:
1076 	return r;
1077 }
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079 
1080 int kvm_set_memory_region(struct kvm *kvm,
1081 			  const struct kvm_userspace_memory_region *mem)
1082 {
1083 	int r;
1084 
1085 	mutex_lock(&kvm->slots_lock);
1086 	r = __kvm_set_memory_region(kvm, mem);
1087 	mutex_unlock(&kvm->slots_lock);
1088 	return r;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091 
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093 					  struct kvm_userspace_memory_region *mem)
1094 {
1095 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096 		return -EINVAL;
1097 
1098 	return kvm_set_memory_region(kvm, mem);
1099 }
1100 
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102 			struct kvm_dirty_log *log, int *is_dirty)
1103 {
1104 	struct kvm_memslots *slots;
1105 	struct kvm_memory_slot *memslot;
1106 	int i, as_id, id;
1107 	unsigned long n;
1108 	unsigned long any = 0;
1109 
1110 	as_id = log->slot >> 16;
1111 	id = (u16)log->slot;
1112 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113 		return -EINVAL;
1114 
1115 	slots = __kvm_memslots(kvm, as_id);
1116 	memslot = id_to_memslot(slots, id);
1117 	if (!memslot->dirty_bitmap)
1118 		return -ENOENT;
1119 
1120 	n = kvm_dirty_bitmap_bytes(memslot);
1121 
1122 	for (i = 0; !any && i < n/sizeof(long); ++i)
1123 		any = memslot->dirty_bitmap[i];
1124 
1125 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126 		return -EFAULT;
1127 
1128 	if (any)
1129 		*is_dirty = 1;
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133 
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1137  *	and reenable dirty page tracking for the corresponding pages.
1138  * @kvm:	pointer to kvm instance
1139  * @log:	slot id and address to which we copy the log
1140  * @flush:	true if TLB flush is needed by caller
1141  *
1142  * We need to keep it in mind that VCPU threads can write to the bitmap
1143  * concurrently. So, to avoid losing track of dirty pages we keep the
1144  * following order:
1145  *
1146  *    1. Take a snapshot of the bit and clear it if needed.
1147  *    2. Write protect the corresponding page.
1148  *    3. Copy the snapshot to the userspace.
1149  *    4. Upon return caller flushes TLB's if needed.
1150  *
1151  * Between 2 and 4, the guest may write to the page using the remaining TLB
1152  * entry.  This is not a problem because the page is reported dirty using
1153  * the snapshot taken before and step 4 ensures that writes done after
1154  * exiting to userspace will be logged for the next call.
1155  *
1156  */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158 			struct kvm_dirty_log *log, bool *flush)
1159 {
1160 	struct kvm_memslots *slots;
1161 	struct kvm_memory_slot *memslot;
1162 	int i, as_id, id;
1163 	unsigned long n;
1164 	unsigned long *dirty_bitmap;
1165 	unsigned long *dirty_bitmap_buffer;
1166 
1167 	as_id = log->slot >> 16;
1168 	id = (u16)log->slot;
1169 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170 		return -EINVAL;
1171 
1172 	slots = __kvm_memslots(kvm, as_id);
1173 	memslot = id_to_memslot(slots, id);
1174 
1175 	dirty_bitmap = memslot->dirty_bitmap;
1176 	if (!dirty_bitmap)
1177 		return -ENOENT;
1178 
1179 	n = kvm_dirty_bitmap_bytes(memslot);
1180 	*flush = false;
1181 	if (kvm->manual_dirty_log_protect) {
1182 		/*
1183 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1184 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1185 		 * is some code duplication between this function and
1186 		 * kvm_get_dirty_log, but hopefully all architecture
1187 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1188 		 * can be eliminated.
1189 		 */
1190 		dirty_bitmap_buffer = dirty_bitmap;
1191 	} else {
1192 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1193 		memset(dirty_bitmap_buffer, 0, n);
1194 
1195 		spin_lock(&kvm->mmu_lock);
1196 		for (i = 0; i < n / sizeof(long); i++) {
1197 			unsigned long mask;
1198 			gfn_t offset;
1199 
1200 			if (!dirty_bitmap[i])
1201 				continue;
1202 
1203 			*flush = true;
1204 			mask = xchg(&dirty_bitmap[i], 0);
1205 			dirty_bitmap_buffer[i] = mask;
1206 
1207 			offset = i * BITS_PER_LONG;
1208 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1209 								offset, mask);
1210 		}
1211 		spin_unlock(&kvm->mmu_lock);
1212 	}
1213 
1214 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 		return -EFAULT;
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1219 
1220 /**
1221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222  *	and reenable dirty page tracking for the corresponding pages.
1223  * @kvm:	pointer to kvm instance
1224  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1225  * @flush:	true if TLB flush is needed by caller
1226  */
1227 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 				struct kvm_clear_dirty_log *log, bool *flush)
1229 {
1230 	struct kvm_memslots *slots;
1231 	struct kvm_memory_slot *memslot;
1232 	int as_id, id;
1233 	gfn_t offset;
1234 	unsigned long i, n;
1235 	unsigned long *dirty_bitmap;
1236 	unsigned long *dirty_bitmap_buffer;
1237 
1238 	as_id = log->slot >> 16;
1239 	id = (u16)log->slot;
1240 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 		return -EINVAL;
1242 
1243 	if (log->first_page & 63)
1244 		return -EINVAL;
1245 
1246 	slots = __kvm_memslots(kvm, as_id);
1247 	memslot = id_to_memslot(slots, id);
1248 
1249 	dirty_bitmap = memslot->dirty_bitmap;
1250 	if (!dirty_bitmap)
1251 		return -ENOENT;
1252 
1253 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1254 
1255 	if (log->first_page > memslot->npages ||
1256 	    log->num_pages > memslot->npages - log->first_page ||
1257 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1258 	    return -EINVAL;
1259 
1260 	*flush = false;
1261 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1262 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1263 		return -EFAULT;
1264 
1265 	spin_lock(&kvm->mmu_lock);
1266 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1267 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1268 	     i++, offset += BITS_PER_LONG) {
1269 		unsigned long mask = *dirty_bitmap_buffer++;
1270 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1271 		if (!mask)
1272 			continue;
1273 
1274 		mask &= atomic_long_fetch_andnot(mask, p);
1275 
1276 		/*
1277 		 * mask contains the bits that really have been cleared.  This
1278 		 * never includes any bits beyond the length of the memslot (if
1279 		 * the length is not aligned to 64 pages), therefore it is not
1280 		 * a problem if userspace sets them in log->dirty_bitmap.
1281 		*/
1282 		if (mask) {
1283 			*flush = true;
1284 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285 								offset, mask);
1286 		}
1287 	}
1288 	spin_unlock(&kvm->mmu_lock);
1289 
1290 	return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1293 #endif
1294 
1295 bool kvm_largepages_enabled(void)
1296 {
1297 	return largepages_enabled;
1298 }
1299 
1300 void kvm_disable_largepages(void)
1301 {
1302 	largepages_enabled = false;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1305 
1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1307 {
1308 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1311 
1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1313 {
1314 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1315 }
1316 
1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1318 {
1319 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1320 
1321 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1322 	      memslot->flags & KVM_MEMSLOT_INVALID)
1323 		return false;
1324 
1325 	return true;
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1328 
1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1330 {
1331 	struct vm_area_struct *vma;
1332 	unsigned long addr, size;
1333 
1334 	size = PAGE_SIZE;
1335 
1336 	addr = gfn_to_hva(kvm, gfn);
1337 	if (kvm_is_error_hva(addr))
1338 		return PAGE_SIZE;
1339 
1340 	down_read(&current->mm->mmap_sem);
1341 	vma = find_vma(current->mm, addr);
1342 	if (!vma)
1343 		goto out;
1344 
1345 	size = vma_kernel_pagesize(vma);
1346 
1347 out:
1348 	up_read(&current->mm->mmap_sem);
1349 
1350 	return size;
1351 }
1352 
1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1354 {
1355 	return slot->flags & KVM_MEM_READONLY;
1356 }
1357 
1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1359 				       gfn_t *nr_pages, bool write)
1360 {
1361 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1362 		return KVM_HVA_ERR_BAD;
1363 
1364 	if (memslot_is_readonly(slot) && write)
1365 		return KVM_HVA_ERR_RO_BAD;
1366 
1367 	if (nr_pages)
1368 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1369 
1370 	return __gfn_to_hva_memslot(slot, gfn);
1371 }
1372 
1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1374 				     gfn_t *nr_pages)
1375 {
1376 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1377 }
1378 
1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1380 					gfn_t gfn)
1381 {
1382 	return gfn_to_hva_many(slot, gfn, NULL);
1383 }
1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1385 
1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1387 {
1388 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_hva);
1391 
1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1397 
1398 /*
1399  * Return the hva of a @gfn and the R/W attribute if possible.
1400  *
1401  * @slot: the kvm_memory_slot which contains @gfn
1402  * @gfn: the gfn to be translated
1403  * @writable: used to return the read/write attribute of the @slot if the hva
1404  * is valid and @writable is not NULL
1405  */
1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1407 				      gfn_t gfn, bool *writable)
1408 {
1409 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1410 
1411 	if (!kvm_is_error_hva(hva) && writable)
1412 		*writable = !memslot_is_readonly(slot);
1413 
1414 	return hva;
1415 }
1416 
1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1418 {
1419 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1420 
1421 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423 
1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1425 {
1426 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1427 
1428 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1429 }
1430 
1431 static inline int check_user_page_hwpoison(unsigned long addr)
1432 {
1433 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1434 
1435 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1436 	return rc == -EHWPOISON;
1437 }
1438 
1439 /*
1440  * The fast path to get the writable pfn which will be stored in @pfn,
1441  * true indicates success, otherwise false is returned.  It's also the
1442  * only part that runs if we can are in atomic context.
1443  */
1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1445 			    bool *writable, kvm_pfn_t *pfn)
1446 {
1447 	struct page *page[1];
1448 	int npages;
1449 
1450 	/*
1451 	 * Fast pin a writable pfn only if it is a write fault request
1452 	 * or the caller allows to map a writable pfn for a read fault
1453 	 * request.
1454 	 */
1455 	if (!(write_fault || writable))
1456 		return false;
1457 
1458 	npages = __get_user_pages_fast(addr, 1, 1, page);
1459 	if (npages == 1) {
1460 		*pfn = page_to_pfn(page[0]);
1461 
1462 		if (writable)
1463 			*writable = true;
1464 		return true;
1465 	}
1466 
1467 	return false;
1468 }
1469 
1470 /*
1471  * The slow path to get the pfn of the specified host virtual address,
1472  * 1 indicates success, -errno is returned if error is detected.
1473  */
1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1475 			   bool *writable, kvm_pfn_t *pfn)
1476 {
1477 	unsigned int flags = FOLL_HWPOISON;
1478 	struct page *page;
1479 	int npages = 0;
1480 
1481 	might_sleep();
1482 
1483 	if (writable)
1484 		*writable = write_fault;
1485 
1486 	if (write_fault)
1487 		flags |= FOLL_WRITE;
1488 	if (async)
1489 		flags |= FOLL_NOWAIT;
1490 
1491 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1492 	if (npages != 1)
1493 		return npages;
1494 
1495 	/* map read fault as writable if possible */
1496 	if (unlikely(!write_fault) && writable) {
1497 		struct page *wpage;
1498 
1499 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1500 			*writable = true;
1501 			put_page(page);
1502 			page = wpage;
1503 		}
1504 	}
1505 	*pfn = page_to_pfn(page);
1506 	return npages;
1507 }
1508 
1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1510 {
1511 	if (unlikely(!(vma->vm_flags & VM_READ)))
1512 		return false;
1513 
1514 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1515 		return false;
1516 
1517 	return true;
1518 }
1519 
1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1521 			       unsigned long addr, bool *async,
1522 			       bool write_fault, bool *writable,
1523 			       kvm_pfn_t *p_pfn)
1524 {
1525 	unsigned long pfn;
1526 	int r;
1527 
1528 	r = follow_pfn(vma, addr, &pfn);
1529 	if (r) {
1530 		/*
1531 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532 		 * not call the fault handler, so do it here.
1533 		 */
1534 		bool unlocked = false;
1535 		r = fixup_user_fault(current, current->mm, addr,
1536 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1537 				     &unlocked);
1538 		if (unlocked)
1539 			return -EAGAIN;
1540 		if (r)
1541 			return r;
1542 
1543 		r = follow_pfn(vma, addr, &pfn);
1544 		if (r)
1545 			return r;
1546 
1547 	}
1548 
1549 	if (writable)
1550 		*writable = true;
1551 
1552 	/*
1553 	 * Get a reference here because callers of *hva_to_pfn* and
1554 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1556 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557 	 * simply do nothing for reserved pfns.
1558 	 *
1559 	 * Whoever called remap_pfn_range is also going to call e.g.
1560 	 * unmap_mapping_range before the underlying pages are freed,
1561 	 * causing a call to our MMU notifier.
1562 	 */
1563 	kvm_get_pfn(pfn);
1564 
1565 	*p_pfn = pfn;
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Pin guest page in memory and return its pfn.
1571  * @addr: host virtual address which maps memory to the guest
1572  * @atomic: whether this function can sleep
1573  * @async: whether this function need to wait IO complete if the
1574  *         host page is not in the memory
1575  * @write_fault: whether we should get a writable host page
1576  * @writable: whether it allows to map a writable host page for !@write_fault
1577  *
1578  * The function will map a writable host page for these two cases:
1579  * 1): @write_fault = true
1580  * 2): @write_fault = false && @writable, @writable will tell the caller
1581  *     whether the mapping is writable.
1582  */
1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1584 			bool write_fault, bool *writable)
1585 {
1586 	struct vm_area_struct *vma;
1587 	kvm_pfn_t pfn = 0;
1588 	int npages, r;
1589 
1590 	/* we can do it either atomically or asynchronously, not both */
1591 	BUG_ON(atomic && async);
1592 
1593 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1594 		return pfn;
1595 
1596 	if (atomic)
1597 		return KVM_PFN_ERR_FAULT;
1598 
1599 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1600 	if (npages == 1)
1601 		return pfn;
1602 
1603 	down_read(&current->mm->mmap_sem);
1604 	if (npages == -EHWPOISON ||
1605 	      (!async && check_user_page_hwpoison(addr))) {
1606 		pfn = KVM_PFN_ERR_HWPOISON;
1607 		goto exit;
1608 	}
1609 
1610 retry:
1611 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1612 
1613 	if (vma == NULL)
1614 		pfn = KVM_PFN_ERR_FAULT;
1615 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1616 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1617 		if (r == -EAGAIN)
1618 			goto retry;
1619 		if (r < 0)
1620 			pfn = KVM_PFN_ERR_FAULT;
1621 	} else {
1622 		if (async && vma_is_valid(vma, write_fault))
1623 			*async = true;
1624 		pfn = KVM_PFN_ERR_FAULT;
1625 	}
1626 exit:
1627 	up_read(&current->mm->mmap_sem);
1628 	return pfn;
1629 }
1630 
1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1632 			       bool atomic, bool *async, bool write_fault,
1633 			       bool *writable)
1634 {
1635 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1636 
1637 	if (addr == KVM_HVA_ERR_RO_BAD) {
1638 		if (writable)
1639 			*writable = false;
1640 		return KVM_PFN_ERR_RO_FAULT;
1641 	}
1642 
1643 	if (kvm_is_error_hva(addr)) {
1644 		if (writable)
1645 			*writable = false;
1646 		return KVM_PFN_NOSLOT;
1647 	}
1648 
1649 	/* Do not map writable pfn in the readonly memslot. */
1650 	if (writable && memslot_is_readonly(slot)) {
1651 		*writable = false;
1652 		writable = NULL;
1653 	}
1654 
1655 	return hva_to_pfn(addr, atomic, async, write_fault,
1656 			  writable);
1657 }
1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1659 
1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1661 		      bool *writable)
1662 {
1663 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1664 				    write_fault, writable);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1667 
1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1669 {
1670 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1673 
1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1675 {
1676 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1679 
1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1681 {
1682 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1685 
1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1691 
1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1693 {
1694 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1695 }
1696 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1697 
1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1699 {
1700 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1703 
1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 			    struct page **pages, int nr_pages)
1706 {
1707 	unsigned long addr;
1708 	gfn_t entry = 0;
1709 
1710 	addr = gfn_to_hva_many(slot, gfn, &entry);
1711 	if (kvm_is_error_hva(addr))
1712 		return -1;
1713 
1714 	if (entry < nr_pages)
1715 		return 0;
1716 
1717 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1718 }
1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1720 
1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1722 {
1723 	if (is_error_noslot_pfn(pfn))
1724 		return KVM_ERR_PTR_BAD_PAGE;
1725 
1726 	if (kvm_is_reserved_pfn(pfn)) {
1727 		WARN_ON(1);
1728 		return KVM_ERR_PTR_BAD_PAGE;
1729 	}
1730 
1731 	return pfn_to_page(pfn);
1732 }
1733 
1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1735 {
1736 	kvm_pfn_t pfn;
1737 
1738 	pfn = gfn_to_pfn(kvm, gfn);
1739 
1740 	return kvm_pfn_to_page(pfn);
1741 }
1742 EXPORT_SYMBOL_GPL(gfn_to_page);
1743 
1744 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1745 			 struct kvm_host_map *map)
1746 {
1747 	kvm_pfn_t pfn;
1748 	void *hva = NULL;
1749 	struct page *page = KVM_UNMAPPED_PAGE;
1750 
1751 	if (!map)
1752 		return -EINVAL;
1753 
1754 	pfn = gfn_to_pfn_memslot(slot, gfn);
1755 	if (is_error_noslot_pfn(pfn))
1756 		return -EINVAL;
1757 
1758 	if (pfn_valid(pfn)) {
1759 		page = pfn_to_page(pfn);
1760 		hva = kmap(page);
1761 #ifdef CONFIG_HAS_IOMEM
1762 	} else {
1763 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1764 #endif
1765 	}
1766 
1767 	if (!hva)
1768 		return -EFAULT;
1769 
1770 	map->page = page;
1771 	map->hva = hva;
1772 	map->pfn = pfn;
1773 	map->gfn = gfn;
1774 
1775 	return 0;
1776 }
1777 
1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1779 {
1780 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1783 
1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1785 		    bool dirty)
1786 {
1787 	if (!map)
1788 		return;
1789 
1790 	if (!map->hva)
1791 		return;
1792 
1793 	if (map->page)
1794 		kunmap(map->page);
1795 #ifdef CONFIG_HAS_IOMEM
1796 	else
1797 		memunmap(map->hva);
1798 #endif
1799 
1800 	if (dirty) {
1801 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1802 		kvm_release_pfn_dirty(map->pfn);
1803 	} else {
1804 		kvm_release_pfn_clean(map->pfn);
1805 	}
1806 
1807 	map->hva = NULL;
1808 	map->page = NULL;
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1811 
1812 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1813 {
1814 	kvm_pfn_t pfn;
1815 
1816 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1817 
1818 	return kvm_pfn_to_page(pfn);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1821 
1822 void kvm_release_page_clean(struct page *page)
1823 {
1824 	WARN_ON(is_error_page(page));
1825 
1826 	kvm_release_pfn_clean(page_to_pfn(page));
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1829 
1830 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1831 {
1832 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1833 		put_page(pfn_to_page(pfn));
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1836 
1837 void kvm_release_page_dirty(struct page *page)
1838 {
1839 	WARN_ON(is_error_page(page));
1840 
1841 	kvm_release_pfn_dirty(page_to_pfn(page));
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1844 
1845 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1846 {
1847 	kvm_set_pfn_dirty(pfn);
1848 	kvm_release_pfn_clean(pfn);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1851 
1852 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1853 {
1854 	if (!kvm_is_reserved_pfn(pfn)) {
1855 		struct page *page = pfn_to_page(pfn);
1856 
1857 		if (!PageReserved(page))
1858 			SetPageDirty(page);
1859 	}
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1862 
1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1864 {
1865 	if (!kvm_is_reserved_pfn(pfn))
1866 		mark_page_accessed(pfn_to_page(pfn));
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1869 
1870 void kvm_get_pfn(kvm_pfn_t pfn)
1871 {
1872 	if (!kvm_is_reserved_pfn(pfn))
1873 		get_page(pfn_to_page(pfn));
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1876 
1877 static int next_segment(unsigned long len, int offset)
1878 {
1879 	if (len > PAGE_SIZE - offset)
1880 		return PAGE_SIZE - offset;
1881 	else
1882 		return len;
1883 }
1884 
1885 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1886 				 void *data, int offset, int len)
1887 {
1888 	int r;
1889 	unsigned long addr;
1890 
1891 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1892 	if (kvm_is_error_hva(addr))
1893 		return -EFAULT;
1894 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1895 	if (r)
1896 		return -EFAULT;
1897 	return 0;
1898 }
1899 
1900 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1901 			int len)
1902 {
1903 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1904 
1905 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1908 
1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1910 			     int offset, int len)
1911 {
1912 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1913 
1914 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1917 
1918 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1919 {
1920 	gfn_t gfn = gpa >> PAGE_SHIFT;
1921 	int seg;
1922 	int offset = offset_in_page(gpa);
1923 	int ret;
1924 
1925 	while ((seg = next_segment(len, offset)) != 0) {
1926 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1927 		if (ret < 0)
1928 			return ret;
1929 		offset = 0;
1930 		len -= seg;
1931 		data += seg;
1932 		++gfn;
1933 	}
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_read_guest);
1937 
1938 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1939 {
1940 	gfn_t gfn = gpa >> PAGE_SHIFT;
1941 	int seg;
1942 	int offset = offset_in_page(gpa);
1943 	int ret;
1944 
1945 	while ((seg = next_segment(len, offset)) != 0) {
1946 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1947 		if (ret < 0)
1948 			return ret;
1949 		offset = 0;
1950 		len -= seg;
1951 		data += seg;
1952 		++gfn;
1953 	}
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1957 
1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1959 			           void *data, int offset, unsigned long len)
1960 {
1961 	int r;
1962 	unsigned long addr;
1963 
1964 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1965 	if (kvm_is_error_hva(addr))
1966 		return -EFAULT;
1967 	pagefault_disable();
1968 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1969 	pagefault_enable();
1970 	if (r)
1971 		return -EFAULT;
1972 	return 0;
1973 }
1974 
1975 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1976 			  unsigned long len)
1977 {
1978 	gfn_t gfn = gpa >> PAGE_SHIFT;
1979 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1980 	int offset = offset_in_page(gpa);
1981 
1982 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1985 
1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1987 			       void *data, unsigned long len)
1988 {
1989 	gfn_t gfn = gpa >> PAGE_SHIFT;
1990 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1991 	int offset = offset_in_page(gpa);
1992 
1993 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1996 
1997 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1998 			          const void *data, int offset, int len)
1999 {
2000 	int r;
2001 	unsigned long addr;
2002 
2003 	addr = gfn_to_hva_memslot(memslot, gfn);
2004 	if (kvm_is_error_hva(addr))
2005 		return -EFAULT;
2006 	r = __copy_to_user((void __user *)addr + offset, data, len);
2007 	if (r)
2008 		return -EFAULT;
2009 	mark_page_dirty_in_slot(memslot, gfn);
2010 	return 0;
2011 }
2012 
2013 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2014 			 const void *data, int offset, int len)
2015 {
2016 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2017 
2018 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2021 
2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2023 			      const void *data, int offset, int len)
2024 {
2025 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2026 
2027 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2030 
2031 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2032 		    unsigned long len)
2033 {
2034 	gfn_t gfn = gpa >> PAGE_SHIFT;
2035 	int seg;
2036 	int offset = offset_in_page(gpa);
2037 	int ret;
2038 
2039 	while ((seg = next_segment(len, offset)) != 0) {
2040 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2041 		if (ret < 0)
2042 			return ret;
2043 		offset = 0;
2044 		len -= seg;
2045 		data += seg;
2046 		++gfn;
2047 	}
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_write_guest);
2051 
2052 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2053 		         unsigned long len)
2054 {
2055 	gfn_t gfn = gpa >> PAGE_SHIFT;
2056 	int seg;
2057 	int offset = offset_in_page(gpa);
2058 	int ret;
2059 
2060 	while ((seg = next_segment(len, offset)) != 0) {
2061 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2062 		if (ret < 0)
2063 			return ret;
2064 		offset = 0;
2065 		len -= seg;
2066 		data += seg;
2067 		++gfn;
2068 	}
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2072 
2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2074 				       struct gfn_to_hva_cache *ghc,
2075 				       gpa_t gpa, unsigned long len)
2076 {
2077 	int offset = offset_in_page(gpa);
2078 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2079 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2080 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2081 	gfn_t nr_pages_avail;
2082 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2083 
2084 	ghc->gpa = gpa;
2085 	ghc->generation = slots->generation;
2086 	ghc->len = len;
2087 	ghc->hva = KVM_HVA_ERR_BAD;
2088 
2089 	/*
2090 	 * If the requested region crosses two memslots, we still
2091 	 * verify that the entire region is valid here.
2092 	 */
2093 	while (!r && start_gfn <= end_gfn) {
2094 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2095 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2096 					   &nr_pages_avail);
2097 		if (kvm_is_error_hva(ghc->hva))
2098 			r = -EFAULT;
2099 		start_gfn += nr_pages_avail;
2100 	}
2101 
2102 	/* Use the slow path for cross page reads and writes. */
2103 	if (!r && nr_pages_needed == 1)
2104 		ghc->hva += offset;
2105 	else
2106 		ghc->memslot = NULL;
2107 
2108 	return r;
2109 }
2110 
2111 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2112 			      gpa_t gpa, unsigned long len)
2113 {
2114 	struct kvm_memslots *slots = kvm_memslots(kvm);
2115 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2118 
2119 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2120 				  void *data, unsigned int offset,
2121 				  unsigned long len)
2122 {
2123 	struct kvm_memslots *slots = kvm_memslots(kvm);
2124 	int r;
2125 	gpa_t gpa = ghc->gpa + offset;
2126 
2127 	BUG_ON(len + offset > ghc->len);
2128 
2129 	if (slots->generation != ghc->generation)
2130 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2131 
2132 	if (unlikely(!ghc->memslot))
2133 		return kvm_write_guest(kvm, gpa, data, len);
2134 
2135 	if (kvm_is_error_hva(ghc->hva))
2136 		return -EFAULT;
2137 
2138 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2139 	if (r)
2140 		return -EFAULT;
2141 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2146 
2147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2148 			   void *data, unsigned long len)
2149 {
2150 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2151 }
2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2153 
2154 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2155 			   void *data, unsigned long len)
2156 {
2157 	struct kvm_memslots *slots = kvm_memslots(kvm);
2158 	int r;
2159 
2160 	BUG_ON(len > ghc->len);
2161 
2162 	if (slots->generation != ghc->generation)
2163 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2164 
2165 	if (unlikely(!ghc->memslot))
2166 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2167 
2168 	if (kvm_is_error_hva(ghc->hva))
2169 		return -EFAULT;
2170 
2171 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2172 	if (r)
2173 		return -EFAULT;
2174 
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2178 
2179 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2180 {
2181 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2182 
2183 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2186 
2187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2188 {
2189 	gfn_t gfn = gpa >> PAGE_SHIFT;
2190 	int seg;
2191 	int offset = offset_in_page(gpa);
2192 	int ret;
2193 
2194 	while ((seg = next_segment(len, offset)) != 0) {
2195 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2196 		if (ret < 0)
2197 			return ret;
2198 		offset = 0;
2199 		len -= seg;
2200 		++gfn;
2201 	}
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2205 
2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2207 				    gfn_t gfn)
2208 {
2209 	if (memslot && memslot->dirty_bitmap) {
2210 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2211 
2212 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2213 	}
2214 }
2215 
2216 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2217 {
2218 	struct kvm_memory_slot *memslot;
2219 
2220 	memslot = gfn_to_memslot(kvm, gfn);
2221 	mark_page_dirty_in_slot(memslot, gfn);
2222 }
2223 EXPORT_SYMBOL_GPL(mark_page_dirty);
2224 
2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2226 {
2227 	struct kvm_memory_slot *memslot;
2228 
2229 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2230 	mark_page_dirty_in_slot(memslot, gfn);
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2233 
2234 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2235 {
2236 	if (!vcpu->sigset_active)
2237 		return;
2238 
2239 	/*
2240 	 * This does a lockless modification of ->real_blocked, which is fine
2241 	 * because, only current can change ->real_blocked and all readers of
2242 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2243 	 * of ->blocked.
2244 	 */
2245 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2246 }
2247 
2248 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2249 {
2250 	if (!vcpu->sigset_active)
2251 		return;
2252 
2253 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2254 	sigemptyset(&current->real_blocked);
2255 }
2256 
2257 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2258 {
2259 	unsigned int old, val, grow, grow_start;
2260 
2261 	old = val = vcpu->halt_poll_ns;
2262 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2263 	grow = READ_ONCE(halt_poll_ns_grow);
2264 	if (!grow)
2265 		goto out;
2266 
2267 	val *= grow;
2268 	if (val < grow_start)
2269 		val = grow_start;
2270 
2271 	if (val > halt_poll_ns)
2272 		val = halt_poll_ns;
2273 
2274 	vcpu->halt_poll_ns = val;
2275 out:
2276 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2277 }
2278 
2279 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2280 {
2281 	unsigned int old, val, shrink;
2282 
2283 	old = val = vcpu->halt_poll_ns;
2284 	shrink = READ_ONCE(halt_poll_ns_shrink);
2285 	if (shrink == 0)
2286 		val = 0;
2287 	else
2288 		val /= shrink;
2289 
2290 	vcpu->halt_poll_ns = val;
2291 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2292 }
2293 
2294 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2295 {
2296 	int ret = -EINTR;
2297 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2298 
2299 	if (kvm_arch_vcpu_runnable(vcpu)) {
2300 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2301 		goto out;
2302 	}
2303 	if (kvm_cpu_has_pending_timer(vcpu))
2304 		goto out;
2305 	if (signal_pending(current))
2306 		goto out;
2307 
2308 	ret = 0;
2309 out:
2310 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2311 	return ret;
2312 }
2313 
2314 /*
2315  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2316  */
2317 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2318 {
2319 	ktime_t start, cur;
2320 	DECLARE_SWAITQUEUE(wait);
2321 	bool waited = false;
2322 	u64 block_ns;
2323 
2324 	start = cur = ktime_get();
2325 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2326 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2327 
2328 		++vcpu->stat.halt_attempted_poll;
2329 		do {
2330 			/*
2331 			 * This sets KVM_REQ_UNHALT if an interrupt
2332 			 * arrives.
2333 			 */
2334 			if (kvm_vcpu_check_block(vcpu) < 0) {
2335 				++vcpu->stat.halt_successful_poll;
2336 				if (!vcpu_valid_wakeup(vcpu))
2337 					++vcpu->stat.halt_poll_invalid;
2338 				goto out;
2339 			}
2340 			cur = ktime_get();
2341 		} while (single_task_running() && ktime_before(cur, stop));
2342 	}
2343 
2344 	kvm_arch_vcpu_blocking(vcpu);
2345 
2346 	for (;;) {
2347 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2348 
2349 		if (kvm_vcpu_check_block(vcpu) < 0)
2350 			break;
2351 
2352 		waited = true;
2353 		schedule();
2354 	}
2355 
2356 	finish_swait(&vcpu->wq, &wait);
2357 	cur = ktime_get();
2358 
2359 	kvm_arch_vcpu_unblocking(vcpu);
2360 out:
2361 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2362 
2363 	if (!vcpu_valid_wakeup(vcpu))
2364 		shrink_halt_poll_ns(vcpu);
2365 	else if (halt_poll_ns) {
2366 		if (block_ns <= vcpu->halt_poll_ns)
2367 			;
2368 		/* we had a long block, shrink polling */
2369 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2370 			shrink_halt_poll_ns(vcpu);
2371 		/* we had a short halt and our poll time is too small */
2372 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2373 			block_ns < halt_poll_ns)
2374 			grow_halt_poll_ns(vcpu);
2375 	} else
2376 		vcpu->halt_poll_ns = 0;
2377 
2378 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2379 	kvm_arch_vcpu_block_finish(vcpu);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2382 
2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2384 {
2385 	struct swait_queue_head *wqp;
2386 
2387 	wqp = kvm_arch_vcpu_wq(vcpu);
2388 	if (swq_has_sleeper(wqp)) {
2389 		swake_up_one(wqp);
2390 		++vcpu->stat.halt_wakeup;
2391 		return true;
2392 	}
2393 
2394 	return false;
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2397 
2398 #ifndef CONFIG_S390
2399 /*
2400  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2401  */
2402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2403 {
2404 	int me;
2405 	int cpu = vcpu->cpu;
2406 
2407 	if (kvm_vcpu_wake_up(vcpu))
2408 		return;
2409 
2410 	me = get_cpu();
2411 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2412 		if (kvm_arch_vcpu_should_kick(vcpu))
2413 			smp_send_reschedule(cpu);
2414 	put_cpu();
2415 }
2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2417 #endif /* !CONFIG_S390 */
2418 
2419 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2420 {
2421 	struct pid *pid;
2422 	struct task_struct *task = NULL;
2423 	int ret = 0;
2424 
2425 	rcu_read_lock();
2426 	pid = rcu_dereference(target->pid);
2427 	if (pid)
2428 		task = get_pid_task(pid, PIDTYPE_PID);
2429 	rcu_read_unlock();
2430 	if (!task)
2431 		return ret;
2432 	ret = yield_to(task, 1);
2433 	put_task_struct(task);
2434 
2435 	return ret;
2436 }
2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2438 
2439 /*
2440  * Helper that checks whether a VCPU is eligible for directed yield.
2441  * Most eligible candidate to yield is decided by following heuristics:
2442  *
2443  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2444  *  (preempted lock holder), indicated by @in_spin_loop.
2445  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2446  *
2447  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2448  *  chance last time (mostly it has become eligible now since we have probably
2449  *  yielded to lockholder in last iteration. This is done by toggling
2450  *  @dy_eligible each time a VCPU checked for eligibility.)
2451  *
2452  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2453  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2454  *  burning. Giving priority for a potential lock-holder increases lock
2455  *  progress.
2456  *
2457  *  Since algorithm is based on heuristics, accessing another VCPU data without
2458  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2459  *  and continue with next VCPU and so on.
2460  */
2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2462 {
2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2464 	bool eligible;
2465 
2466 	eligible = !vcpu->spin_loop.in_spin_loop ||
2467 		    vcpu->spin_loop.dy_eligible;
2468 
2469 	if (vcpu->spin_loop.in_spin_loop)
2470 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2471 
2472 	return eligible;
2473 #else
2474 	return true;
2475 #endif
2476 }
2477 
2478 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2479 {
2480 	struct kvm *kvm = me->kvm;
2481 	struct kvm_vcpu *vcpu;
2482 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2483 	int yielded = 0;
2484 	int try = 3;
2485 	int pass;
2486 	int i;
2487 
2488 	kvm_vcpu_set_in_spin_loop(me, true);
2489 	/*
2490 	 * We boost the priority of a VCPU that is runnable but not
2491 	 * currently running, because it got preempted by something
2492 	 * else and called schedule in __vcpu_run.  Hopefully that
2493 	 * VCPU is holding the lock that we need and will release it.
2494 	 * We approximate round-robin by starting at the last boosted VCPU.
2495 	 */
2496 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2497 		kvm_for_each_vcpu(i, vcpu, kvm) {
2498 			if (!pass && i <= last_boosted_vcpu) {
2499 				i = last_boosted_vcpu;
2500 				continue;
2501 			} else if (pass && i > last_boosted_vcpu)
2502 				break;
2503 			if (!READ_ONCE(vcpu->preempted))
2504 				continue;
2505 			if (vcpu == me)
2506 				continue;
2507 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2508 				continue;
2509 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2510 				continue;
2511 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2512 				continue;
2513 
2514 			yielded = kvm_vcpu_yield_to(vcpu);
2515 			if (yielded > 0) {
2516 				kvm->last_boosted_vcpu = i;
2517 				break;
2518 			} else if (yielded < 0) {
2519 				try--;
2520 				if (!try)
2521 					break;
2522 			}
2523 		}
2524 	}
2525 	kvm_vcpu_set_in_spin_loop(me, false);
2526 
2527 	/* Ensure vcpu is not eligible during next spinloop */
2528 	kvm_vcpu_set_dy_eligible(me, false);
2529 }
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2531 
2532 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2533 {
2534 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2535 	struct page *page;
2536 
2537 	if (vmf->pgoff == 0)
2538 		page = virt_to_page(vcpu->run);
2539 #ifdef CONFIG_X86
2540 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2541 		page = virt_to_page(vcpu->arch.pio_data);
2542 #endif
2543 #ifdef CONFIG_KVM_MMIO
2544 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2545 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2546 #endif
2547 	else
2548 		return kvm_arch_vcpu_fault(vcpu, vmf);
2549 	get_page(page);
2550 	vmf->page = page;
2551 	return 0;
2552 }
2553 
2554 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2555 	.fault = kvm_vcpu_fault,
2556 };
2557 
2558 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2559 {
2560 	vma->vm_ops = &kvm_vcpu_vm_ops;
2561 	return 0;
2562 }
2563 
2564 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2565 {
2566 	struct kvm_vcpu *vcpu = filp->private_data;
2567 
2568 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2569 	kvm_put_kvm(vcpu->kvm);
2570 	return 0;
2571 }
2572 
2573 static struct file_operations kvm_vcpu_fops = {
2574 	.release        = kvm_vcpu_release,
2575 	.unlocked_ioctl = kvm_vcpu_ioctl,
2576 	.mmap           = kvm_vcpu_mmap,
2577 	.llseek		= noop_llseek,
2578 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2579 };
2580 
2581 /*
2582  * Allocates an inode for the vcpu.
2583  */
2584 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2585 {
2586 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2587 
2588 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2589 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2590 }
2591 
2592 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2593 {
2594 	char dir_name[ITOA_MAX_LEN * 2];
2595 	int ret;
2596 
2597 	if (!kvm_arch_has_vcpu_debugfs())
2598 		return 0;
2599 
2600 	if (!debugfs_initialized())
2601 		return 0;
2602 
2603 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2604 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2605 								vcpu->kvm->debugfs_dentry);
2606 	if (!vcpu->debugfs_dentry)
2607 		return -ENOMEM;
2608 
2609 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2610 	if (ret < 0) {
2611 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2612 		return ret;
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 /*
2619  * Creates some virtual cpus.  Good luck creating more than one.
2620  */
2621 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2622 {
2623 	int r;
2624 	struct kvm_vcpu *vcpu;
2625 
2626 	if (id >= KVM_MAX_VCPU_ID)
2627 		return -EINVAL;
2628 
2629 	mutex_lock(&kvm->lock);
2630 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2631 		mutex_unlock(&kvm->lock);
2632 		return -EINVAL;
2633 	}
2634 
2635 	kvm->created_vcpus++;
2636 	mutex_unlock(&kvm->lock);
2637 
2638 	vcpu = kvm_arch_vcpu_create(kvm, id);
2639 	if (IS_ERR(vcpu)) {
2640 		r = PTR_ERR(vcpu);
2641 		goto vcpu_decrement;
2642 	}
2643 
2644 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2645 
2646 	r = kvm_arch_vcpu_setup(vcpu);
2647 	if (r)
2648 		goto vcpu_destroy;
2649 
2650 	r = kvm_create_vcpu_debugfs(vcpu);
2651 	if (r)
2652 		goto vcpu_destroy;
2653 
2654 	mutex_lock(&kvm->lock);
2655 	if (kvm_get_vcpu_by_id(kvm, id)) {
2656 		r = -EEXIST;
2657 		goto unlock_vcpu_destroy;
2658 	}
2659 
2660 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2661 
2662 	/* Now it's all set up, let userspace reach it */
2663 	kvm_get_kvm(kvm);
2664 	r = create_vcpu_fd(vcpu);
2665 	if (r < 0) {
2666 		kvm_put_kvm(kvm);
2667 		goto unlock_vcpu_destroy;
2668 	}
2669 
2670 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2671 
2672 	/*
2673 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2674 	 * before kvm->online_vcpu's incremented value.
2675 	 */
2676 	smp_wmb();
2677 	atomic_inc(&kvm->online_vcpus);
2678 
2679 	mutex_unlock(&kvm->lock);
2680 	kvm_arch_vcpu_postcreate(vcpu);
2681 	return r;
2682 
2683 unlock_vcpu_destroy:
2684 	mutex_unlock(&kvm->lock);
2685 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2686 vcpu_destroy:
2687 	kvm_arch_vcpu_destroy(vcpu);
2688 vcpu_decrement:
2689 	mutex_lock(&kvm->lock);
2690 	kvm->created_vcpus--;
2691 	mutex_unlock(&kvm->lock);
2692 	return r;
2693 }
2694 
2695 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2696 {
2697 	if (sigset) {
2698 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2699 		vcpu->sigset_active = 1;
2700 		vcpu->sigset = *sigset;
2701 	} else
2702 		vcpu->sigset_active = 0;
2703 	return 0;
2704 }
2705 
2706 static long kvm_vcpu_ioctl(struct file *filp,
2707 			   unsigned int ioctl, unsigned long arg)
2708 {
2709 	struct kvm_vcpu *vcpu = filp->private_data;
2710 	void __user *argp = (void __user *)arg;
2711 	int r;
2712 	struct kvm_fpu *fpu = NULL;
2713 	struct kvm_sregs *kvm_sregs = NULL;
2714 
2715 	if (vcpu->kvm->mm != current->mm)
2716 		return -EIO;
2717 
2718 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2719 		return -EINVAL;
2720 
2721 	/*
2722 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2723 	 * execution; mutex_lock() would break them.
2724 	 */
2725 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2726 	if (r != -ENOIOCTLCMD)
2727 		return r;
2728 
2729 	if (mutex_lock_killable(&vcpu->mutex))
2730 		return -EINTR;
2731 	switch (ioctl) {
2732 	case KVM_RUN: {
2733 		struct pid *oldpid;
2734 		r = -EINVAL;
2735 		if (arg)
2736 			goto out;
2737 		oldpid = rcu_access_pointer(vcpu->pid);
2738 		if (unlikely(oldpid != task_pid(current))) {
2739 			/* The thread running this VCPU changed. */
2740 			struct pid *newpid;
2741 
2742 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2743 			if (r)
2744 				break;
2745 
2746 			newpid = get_task_pid(current, PIDTYPE_PID);
2747 			rcu_assign_pointer(vcpu->pid, newpid);
2748 			if (oldpid)
2749 				synchronize_rcu();
2750 			put_pid(oldpid);
2751 		}
2752 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2753 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2754 		break;
2755 	}
2756 	case KVM_GET_REGS: {
2757 		struct kvm_regs *kvm_regs;
2758 
2759 		r = -ENOMEM;
2760 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2761 		if (!kvm_regs)
2762 			goto out;
2763 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2764 		if (r)
2765 			goto out_free1;
2766 		r = -EFAULT;
2767 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2768 			goto out_free1;
2769 		r = 0;
2770 out_free1:
2771 		kfree(kvm_regs);
2772 		break;
2773 	}
2774 	case KVM_SET_REGS: {
2775 		struct kvm_regs *kvm_regs;
2776 
2777 		r = -ENOMEM;
2778 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2779 		if (IS_ERR(kvm_regs)) {
2780 			r = PTR_ERR(kvm_regs);
2781 			goto out;
2782 		}
2783 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2784 		kfree(kvm_regs);
2785 		break;
2786 	}
2787 	case KVM_GET_SREGS: {
2788 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2789 				    GFP_KERNEL_ACCOUNT);
2790 		r = -ENOMEM;
2791 		if (!kvm_sregs)
2792 			goto out;
2793 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2794 		if (r)
2795 			goto out;
2796 		r = -EFAULT;
2797 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2798 			goto out;
2799 		r = 0;
2800 		break;
2801 	}
2802 	case KVM_SET_SREGS: {
2803 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2804 		if (IS_ERR(kvm_sregs)) {
2805 			r = PTR_ERR(kvm_sregs);
2806 			kvm_sregs = NULL;
2807 			goto out;
2808 		}
2809 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2810 		break;
2811 	}
2812 	case KVM_GET_MP_STATE: {
2813 		struct kvm_mp_state mp_state;
2814 
2815 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2816 		if (r)
2817 			goto out;
2818 		r = -EFAULT;
2819 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2820 			goto out;
2821 		r = 0;
2822 		break;
2823 	}
2824 	case KVM_SET_MP_STATE: {
2825 		struct kvm_mp_state mp_state;
2826 
2827 		r = -EFAULT;
2828 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2829 			goto out;
2830 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2831 		break;
2832 	}
2833 	case KVM_TRANSLATE: {
2834 		struct kvm_translation tr;
2835 
2836 		r = -EFAULT;
2837 		if (copy_from_user(&tr, argp, sizeof(tr)))
2838 			goto out;
2839 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2840 		if (r)
2841 			goto out;
2842 		r = -EFAULT;
2843 		if (copy_to_user(argp, &tr, sizeof(tr)))
2844 			goto out;
2845 		r = 0;
2846 		break;
2847 	}
2848 	case KVM_SET_GUEST_DEBUG: {
2849 		struct kvm_guest_debug dbg;
2850 
2851 		r = -EFAULT;
2852 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2853 			goto out;
2854 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2855 		break;
2856 	}
2857 	case KVM_SET_SIGNAL_MASK: {
2858 		struct kvm_signal_mask __user *sigmask_arg = argp;
2859 		struct kvm_signal_mask kvm_sigmask;
2860 		sigset_t sigset, *p;
2861 
2862 		p = NULL;
2863 		if (argp) {
2864 			r = -EFAULT;
2865 			if (copy_from_user(&kvm_sigmask, argp,
2866 					   sizeof(kvm_sigmask)))
2867 				goto out;
2868 			r = -EINVAL;
2869 			if (kvm_sigmask.len != sizeof(sigset))
2870 				goto out;
2871 			r = -EFAULT;
2872 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2873 					   sizeof(sigset)))
2874 				goto out;
2875 			p = &sigset;
2876 		}
2877 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2878 		break;
2879 	}
2880 	case KVM_GET_FPU: {
2881 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2882 		r = -ENOMEM;
2883 		if (!fpu)
2884 			goto out;
2885 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2886 		if (r)
2887 			goto out;
2888 		r = -EFAULT;
2889 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2890 			goto out;
2891 		r = 0;
2892 		break;
2893 	}
2894 	case KVM_SET_FPU: {
2895 		fpu = memdup_user(argp, sizeof(*fpu));
2896 		if (IS_ERR(fpu)) {
2897 			r = PTR_ERR(fpu);
2898 			fpu = NULL;
2899 			goto out;
2900 		}
2901 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2902 		break;
2903 	}
2904 	default:
2905 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2906 	}
2907 out:
2908 	mutex_unlock(&vcpu->mutex);
2909 	kfree(fpu);
2910 	kfree(kvm_sregs);
2911 	return r;
2912 }
2913 
2914 #ifdef CONFIG_KVM_COMPAT
2915 static long kvm_vcpu_compat_ioctl(struct file *filp,
2916 				  unsigned int ioctl, unsigned long arg)
2917 {
2918 	struct kvm_vcpu *vcpu = filp->private_data;
2919 	void __user *argp = compat_ptr(arg);
2920 	int r;
2921 
2922 	if (vcpu->kvm->mm != current->mm)
2923 		return -EIO;
2924 
2925 	switch (ioctl) {
2926 	case KVM_SET_SIGNAL_MASK: {
2927 		struct kvm_signal_mask __user *sigmask_arg = argp;
2928 		struct kvm_signal_mask kvm_sigmask;
2929 		sigset_t sigset;
2930 
2931 		if (argp) {
2932 			r = -EFAULT;
2933 			if (copy_from_user(&kvm_sigmask, argp,
2934 					   sizeof(kvm_sigmask)))
2935 				goto out;
2936 			r = -EINVAL;
2937 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2938 				goto out;
2939 			r = -EFAULT;
2940 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2941 				goto out;
2942 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2943 		} else
2944 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2945 		break;
2946 	}
2947 	default:
2948 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2949 	}
2950 
2951 out:
2952 	return r;
2953 }
2954 #endif
2955 
2956 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2957 {
2958 	struct kvm_device *dev = filp->private_data;
2959 
2960 	if (dev->ops->mmap)
2961 		return dev->ops->mmap(dev, vma);
2962 
2963 	return -ENODEV;
2964 }
2965 
2966 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2967 				 int (*accessor)(struct kvm_device *dev,
2968 						 struct kvm_device_attr *attr),
2969 				 unsigned long arg)
2970 {
2971 	struct kvm_device_attr attr;
2972 
2973 	if (!accessor)
2974 		return -EPERM;
2975 
2976 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2977 		return -EFAULT;
2978 
2979 	return accessor(dev, &attr);
2980 }
2981 
2982 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2983 			     unsigned long arg)
2984 {
2985 	struct kvm_device *dev = filp->private_data;
2986 
2987 	if (dev->kvm->mm != current->mm)
2988 		return -EIO;
2989 
2990 	switch (ioctl) {
2991 	case KVM_SET_DEVICE_ATTR:
2992 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2993 	case KVM_GET_DEVICE_ATTR:
2994 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2995 	case KVM_HAS_DEVICE_ATTR:
2996 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2997 	default:
2998 		if (dev->ops->ioctl)
2999 			return dev->ops->ioctl(dev, ioctl, arg);
3000 
3001 		return -ENOTTY;
3002 	}
3003 }
3004 
3005 static int kvm_device_release(struct inode *inode, struct file *filp)
3006 {
3007 	struct kvm_device *dev = filp->private_data;
3008 	struct kvm *kvm = dev->kvm;
3009 
3010 	if (dev->ops->release) {
3011 		mutex_lock(&kvm->lock);
3012 		list_del(&dev->vm_node);
3013 		dev->ops->release(dev);
3014 		mutex_unlock(&kvm->lock);
3015 	}
3016 
3017 	kvm_put_kvm(kvm);
3018 	return 0;
3019 }
3020 
3021 static const struct file_operations kvm_device_fops = {
3022 	.unlocked_ioctl = kvm_device_ioctl,
3023 	.release = kvm_device_release,
3024 	KVM_COMPAT(kvm_device_ioctl),
3025 	.mmap = kvm_device_mmap,
3026 };
3027 
3028 struct kvm_device *kvm_device_from_filp(struct file *filp)
3029 {
3030 	if (filp->f_op != &kvm_device_fops)
3031 		return NULL;
3032 
3033 	return filp->private_data;
3034 }
3035 
3036 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3037 #ifdef CONFIG_KVM_MPIC
3038 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3039 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3040 #endif
3041 };
3042 
3043 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3044 {
3045 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3046 		return -ENOSPC;
3047 
3048 	if (kvm_device_ops_table[type] != NULL)
3049 		return -EEXIST;
3050 
3051 	kvm_device_ops_table[type] = ops;
3052 	return 0;
3053 }
3054 
3055 void kvm_unregister_device_ops(u32 type)
3056 {
3057 	if (kvm_device_ops_table[type] != NULL)
3058 		kvm_device_ops_table[type] = NULL;
3059 }
3060 
3061 static int kvm_ioctl_create_device(struct kvm *kvm,
3062 				   struct kvm_create_device *cd)
3063 {
3064 	struct kvm_device_ops *ops = NULL;
3065 	struct kvm_device *dev;
3066 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3067 	int type;
3068 	int ret;
3069 
3070 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3071 		return -ENODEV;
3072 
3073 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3074 	ops = kvm_device_ops_table[type];
3075 	if (ops == NULL)
3076 		return -ENODEV;
3077 
3078 	if (test)
3079 		return 0;
3080 
3081 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3082 	if (!dev)
3083 		return -ENOMEM;
3084 
3085 	dev->ops = ops;
3086 	dev->kvm = kvm;
3087 
3088 	mutex_lock(&kvm->lock);
3089 	ret = ops->create(dev, type);
3090 	if (ret < 0) {
3091 		mutex_unlock(&kvm->lock);
3092 		kfree(dev);
3093 		return ret;
3094 	}
3095 	list_add(&dev->vm_node, &kvm->devices);
3096 	mutex_unlock(&kvm->lock);
3097 
3098 	if (ops->init)
3099 		ops->init(dev);
3100 
3101 	kvm_get_kvm(kvm);
3102 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3103 	if (ret < 0) {
3104 		kvm_put_kvm(kvm);
3105 		mutex_lock(&kvm->lock);
3106 		list_del(&dev->vm_node);
3107 		mutex_unlock(&kvm->lock);
3108 		ops->destroy(dev);
3109 		return ret;
3110 	}
3111 
3112 	cd->fd = ret;
3113 	return 0;
3114 }
3115 
3116 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3117 {
3118 	switch (arg) {
3119 	case KVM_CAP_USER_MEMORY:
3120 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3121 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3122 	case KVM_CAP_INTERNAL_ERROR_DATA:
3123 #ifdef CONFIG_HAVE_KVM_MSI
3124 	case KVM_CAP_SIGNAL_MSI:
3125 #endif
3126 #ifdef CONFIG_HAVE_KVM_IRQFD
3127 	case KVM_CAP_IRQFD:
3128 	case KVM_CAP_IRQFD_RESAMPLE:
3129 #endif
3130 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3131 	case KVM_CAP_CHECK_EXTENSION_VM:
3132 	case KVM_CAP_ENABLE_CAP_VM:
3133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3134 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3135 #endif
3136 		return 1;
3137 #ifdef CONFIG_KVM_MMIO
3138 	case KVM_CAP_COALESCED_MMIO:
3139 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3140 	case KVM_CAP_COALESCED_PIO:
3141 		return 1;
3142 #endif
3143 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3144 	case KVM_CAP_IRQ_ROUTING:
3145 		return KVM_MAX_IRQ_ROUTES;
3146 #endif
3147 #if KVM_ADDRESS_SPACE_NUM > 1
3148 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3149 		return KVM_ADDRESS_SPACE_NUM;
3150 #endif
3151 	case KVM_CAP_NR_MEMSLOTS:
3152 		return KVM_USER_MEM_SLOTS;
3153 	default:
3154 		break;
3155 	}
3156 	return kvm_vm_ioctl_check_extension(kvm, arg);
3157 }
3158 
3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3160 						  struct kvm_enable_cap *cap)
3161 {
3162 	return -EINVAL;
3163 }
3164 
3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3166 					   struct kvm_enable_cap *cap)
3167 {
3168 	switch (cap->cap) {
3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3170 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3171 		if (cap->flags || (cap->args[0] & ~1))
3172 			return -EINVAL;
3173 		kvm->manual_dirty_log_protect = cap->args[0];
3174 		return 0;
3175 #endif
3176 	default:
3177 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3178 	}
3179 }
3180 
3181 static long kvm_vm_ioctl(struct file *filp,
3182 			   unsigned int ioctl, unsigned long arg)
3183 {
3184 	struct kvm *kvm = filp->private_data;
3185 	void __user *argp = (void __user *)arg;
3186 	int r;
3187 
3188 	if (kvm->mm != current->mm)
3189 		return -EIO;
3190 	switch (ioctl) {
3191 	case KVM_CREATE_VCPU:
3192 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3193 		break;
3194 	case KVM_ENABLE_CAP: {
3195 		struct kvm_enable_cap cap;
3196 
3197 		r = -EFAULT;
3198 		if (copy_from_user(&cap, argp, sizeof(cap)))
3199 			goto out;
3200 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3201 		break;
3202 	}
3203 	case KVM_SET_USER_MEMORY_REGION: {
3204 		struct kvm_userspace_memory_region kvm_userspace_mem;
3205 
3206 		r = -EFAULT;
3207 		if (copy_from_user(&kvm_userspace_mem, argp,
3208 						sizeof(kvm_userspace_mem)))
3209 			goto out;
3210 
3211 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3212 		break;
3213 	}
3214 	case KVM_GET_DIRTY_LOG: {
3215 		struct kvm_dirty_log log;
3216 
3217 		r = -EFAULT;
3218 		if (copy_from_user(&log, argp, sizeof(log)))
3219 			goto out;
3220 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3221 		break;
3222 	}
3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3224 	case KVM_CLEAR_DIRTY_LOG: {
3225 		struct kvm_clear_dirty_log log;
3226 
3227 		r = -EFAULT;
3228 		if (copy_from_user(&log, argp, sizeof(log)))
3229 			goto out;
3230 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3231 		break;
3232 	}
3233 #endif
3234 #ifdef CONFIG_KVM_MMIO
3235 	case KVM_REGISTER_COALESCED_MMIO: {
3236 		struct kvm_coalesced_mmio_zone zone;
3237 
3238 		r = -EFAULT;
3239 		if (copy_from_user(&zone, argp, sizeof(zone)))
3240 			goto out;
3241 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3242 		break;
3243 	}
3244 	case KVM_UNREGISTER_COALESCED_MMIO: {
3245 		struct kvm_coalesced_mmio_zone zone;
3246 
3247 		r = -EFAULT;
3248 		if (copy_from_user(&zone, argp, sizeof(zone)))
3249 			goto out;
3250 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3251 		break;
3252 	}
3253 #endif
3254 	case KVM_IRQFD: {
3255 		struct kvm_irqfd data;
3256 
3257 		r = -EFAULT;
3258 		if (copy_from_user(&data, argp, sizeof(data)))
3259 			goto out;
3260 		r = kvm_irqfd(kvm, &data);
3261 		break;
3262 	}
3263 	case KVM_IOEVENTFD: {
3264 		struct kvm_ioeventfd data;
3265 
3266 		r = -EFAULT;
3267 		if (copy_from_user(&data, argp, sizeof(data)))
3268 			goto out;
3269 		r = kvm_ioeventfd(kvm, &data);
3270 		break;
3271 	}
3272 #ifdef CONFIG_HAVE_KVM_MSI
3273 	case KVM_SIGNAL_MSI: {
3274 		struct kvm_msi msi;
3275 
3276 		r = -EFAULT;
3277 		if (copy_from_user(&msi, argp, sizeof(msi)))
3278 			goto out;
3279 		r = kvm_send_userspace_msi(kvm, &msi);
3280 		break;
3281 	}
3282 #endif
3283 #ifdef __KVM_HAVE_IRQ_LINE
3284 	case KVM_IRQ_LINE_STATUS:
3285 	case KVM_IRQ_LINE: {
3286 		struct kvm_irq_level irq_event;
3287 
3288 		r = -EFAULT;
3289 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3290 			goto out;
3291 
3292 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3293 					ioctl == KVM_IRQ_LINE_STATUS);
3294 		if (r)
3295 			goto out;
3296 
3297 		r = -EFAULT;
3298 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3299 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3300 				goto out;
3301 		}
3302 
3303 		r = 0;
3304 		break;
3305 	}
3306 #endif
3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3308 	case KVM_SET_GSI_ROUTING: {
3309 		struct kvm_irq_routing routing;
3310 		struct kvm_irq_routing __user *urouting;
3311 		struct kvm_irq_routing_entry *entries = NULL;
3312 
3313 		r = -EFAULT;
3314 		if (copy_from_user(&routing, argp, sizeof(routing)))
3315 			goto out;
3316 		r = -EINVAL;
3317 		if (!kvm_arch_can_set_irq_routing(kvm))
3318 			goto out;
3319 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3320 			goto out;
3321 		if (routing.flags)
3322 			goto out;
3323 		if (routing.nr) {
3324 			r = -ENOMEM;
3325 			entries = vmalloc(array_size(sizeof(*entries),
3326 						     routing.nr));
3327 			if (!entries)
3328 				goto out;
3329 			r = -EFAULT;
3330 			urouting = argp;
3331 			if (copy_from_user(entries, urouting->entries,
3332 					   routing.nr * sizeof(*entries)))
3333 				goto out_free_irq_routing;
3334 		}
3335 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3336 					routing.flags);
3337 out_free_irq_routing:
3338 		vfree(entries);
3339 		break;
3340 	}
3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3342 	case KVM_CREATE_DEVICE: {
3343 		struct kvm_create_device cd;
3344 
3345 		r = -EFAULT;
3346 		if (copy_from_user(&cd, argp, sizeof(cd)))
3347 			goto out;
3348 
3349 		r = kvm_ioctl_create_device(kvm, &cd);
3350 		if (r)
3351 			goto out;
3352 
3353 		r = -EFAULT;
3354 		if (copy_to_user(argp, &cd, sizeof(cd)))
3355 			goto out;
3356 
3357 		r = 0;
3358 		break;
3359 	}
3360 	case KVM_CHECK_EXTENSION:
3361 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3362 		break;
3363 	default:
3364 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3365 	}
3366 out:
3367 	return r;
3368 }
3369 
3370 #ifdef CONFIG_KVM_COMPAT
3371 struct compat_kvm_dirty_log {
3372 	__u32 slot;
3373 	__u32 padding1;
3374 	union {
3375 		compat_uptr_t dirty_bitmap; /* one bit per page */
3376 		__u64 padding2;
3377 	};
3378 };
3379 
3380 static long kvm_vm_compat_ioctl(struct file *filp,
3381 			   unsigned int ioctl, unsigned long arg)
3382 {
3383 	struct kvm *kvm = filp->private_data;
3384 	int r;
3385 
3386 	if (kvm->mm != current->mm)
3387 		return -EIO;
3388 	switch (ioctl) {
3389 	case KVM_GET_DIRTY_LOG: {
3390 		struct compat_kvm_dirty_log compat_log;
3391 		struct kvm_dirty_log log;
3392 
3393 		if (copy_from_user(&compat_log, (void __user *)arg,
3394 				   sizeof(compat_log)))
3395 			return -EFAULT;
3396 		log.slot	 = compat_log.slot;
3397 		log.padding1	 = compat_log.padding1;
3398 		log.padding2	 = compat_log.padding2;
3399 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3400 
3401 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3402 		break;
3403 	}
3404 	default:
3405 		r = kvm_vm_ioctl(filp, ioctl, arg);
3406 	}
3407 	return r;
3408 }
3409 #endif
3410 
3411 static struct file_operations kvm_vm_fops = {
3412 	.release        = kvm_vm_release,
3413 	.unlocked_ioctl = kvm_vm_ioctl,
3414 	.llseek		= noop_llseek,
3415 	KVM_COMPAT(kvm_vm_compat_ioctl),
3416 };
3417 
3418 static int kvm_dev_ioctl_create_vm(unsigned long type)
3419 {
3420 	int r;
3421 	struct kvm *kvm;
3422 	struct file *file;
3423 
3424 	kvm = kvm_create_vm(type);
3425 	if (IS_ERR(kvm))
3426 		return PTR_ERR(kvm);
3427 #ifdef CONFIG_KVM_MMIO
3428 	r = kvm_coalesced_mmio_init(kvm);
3429 	if (r < 0)
3430 		goto put_kvm;
3431 #endif
3432 	r = get_unused_fd_flags(O_CLOEXEC);
3433 	if (r < 0)
3434 		goto put_kvm;
3435 
3436 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3437 	if (IS_ERR(file)) {
3438 		put_unused_fd(r);
3439 		r = PTR_ERR(file);
3440 		goto put_kvm;
3441 	}
3442 
3443 	/*
3444 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3445 	 * already set, with ->release() being kvm_vm_release().  In error
3446 	 * cases it will be called by the final fput(file) and will take
3447 	 * care of doing kvm_put_kvm(kvm).
3448 	 */
3449 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3450 		put_unused_fd(r);
3451 		fput(file);
3452 		return -ENOMEM;
3453 	}
3454 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3455 
3456 	fd_install(r, file);
3457 	return r;
3458 
3459 put_kvm:
3460 	kvm_put_kvm(kvm);
3461 	return r;
3462 }
3463 
3464 static long kvm_dev_ioctl(struct file *filp,
3465 			  unsigned int ioctl, unsigned long arg)
3466 {
3467 	long r = -EINVAL;
3468 
3469 	switch (ioctl) {
3470 	case KVM_GET_API_VERSION:
3471 		if (arg)
3472 			goto out;
3473 		r = KVM_API_VERSION;
3474 		break;
3475 	case KVM_CREATE_VM:
3476 		r = kvm_dev_ioctl_create_vm(arg);
3477 		break;
3478 	case KVM_CHECK_EXTENSION:
3479 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3480 		break;
3481 	case KVM_GET_VCPU_MMAP_SIZE:
3482 		if (arg)
3483 			goto out;
3484 		r = PAGE_SIZE;     /* struct kvm_run */
3485 #ifdef CONFIG_X86
3486 		r += PAGE_SIZE;    /* pio data page */
3487 #endif
3488 #ifdef CONFIG_KVM_MMIO
3489 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3490 #endif
3491 		break;
3492 	case KVM_TRACE_ENABLE:
3493 	case KVM_TRACE_PAUSE:
3494 	case KVM_TRACE_DISABLE:
3495 		r = -EOPNOTSUPP;
3496 		break;
3497 	default:
3498 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3499 	}
3500 out:
3501 	return r;
3502 }
3503 
3504 static struct file_operations kvm_chardev_ops = {
3505 	.unlocked_ioctl = kvm_dev_ioctl,
3506 	.llseek		= noop_llseek,
3507 	KVM_COMPAT(kvm_dev_ioctl),
3508 };
3509 
3510 static struct miscdevice kvm_dev = {
3511 	KVM_MINOR,
3512 	"kvm",
3513 	&kvm_chardev_ops,
3514 };
3515 
3516 static void hardware_enable_nolock(void *junk)
3517 {
3518 	int cpu = raw_smp_processor_id();
3519 	int r;
3520 
3521 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3522 		return;
3523 
3524 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3525 
3526 	r = kvm_arch_hardware_enable();
3527 
3528 	if (r) {
3529 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3530 		atomic_inc(&hardware_enable_failed);
3531 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3532 	}
3533 }
3534 
3535 static int kvm_starting_cpu(unsigned int cpu)
3536 {
3537 	raw_spin_lock(&kvm_count_lock);
3538 	if (kvm_usage_count)
3539 		hardware_enable_nolock(NULL);
3540 	raw_spin_unlock(&kvm_count_lock);
3541 	return 0;
3542 }
3543 
3544 static void hardware_disable_nolock(void *junk)
3545 {
3546 	int cpu = raw_smp_processor_id();
3547 
3548 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3549 		return;
3550 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3551 	kvm_arch_hardware_disable();
3552 }
3553 
3554 static int kvm_dying_cpu(unsigned int cpu)
3555 {
3556 	raw_spin_lock(&kvm_count_lock);
3557 	if (kvm_usage_count)
3558 		hardware_disable_nolock(NULL);
3559 	raw_spin_unlock(&kvm_count_lock);
3560 	return 0;
3561 }
3562 
3563 static void hardware_disable_all_nolock(void)
3564 {
3565 	BUG_ON(!kvm_usage_count);
3566 
3567 	kvm_usage_count--;
3568 	if (!kvm_usage_count)
3569 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3570 }
3571 
3572 static void hardware_disable_all(void)
3573 {
3574 	raw_spin_lock(&kvm_count_lock);
3575 	hardware_disable_all_nolock();
3576 	raw_spin_unlock(&kvm_count_lock);
3577 }
3578 
3579 static int hardware_enable_all(void)
3580 {
3581 	int r = 0;
3582 
3583 	raw_spin_lock(&kvm_count_lock);
3584 
3585 	kvm_usage_count++;
3586 	if (kvm_usage_count == 1) {
3587 		atomic_set(&hardware_enable_failed, 0);
3588 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3589 
3590 		if (atomic_read(&hardware_enable_failed)) {
3591 			hardware_disable_all_nolock();
3592 			r = -EBUSY;
3593 		}
3594 	}
3595 
3596 	raw_spin_unlock(&kvm_count_lock);
3597 
3598 	return r;
3599 }
3600 
3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3602 		      void *v)
3603 {
3604 	/*
3605 	 * Some (well, at least mine) BIOSes hang on reboot if
3606 	 * in vmx root mode.
3607 	 *
3608 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3609 	 */
3610 	pr_info("kvm: exiting hardware virtualization\n");
3611 	kvm_rebooting = true;
3612 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3613 	return NOTIFY_OK;
3614 }
3615 
3616 static struct notifier_block kvm_reboot_notifier = {
3617 	.notifier_call = kvm_reboot,
3618 	.priority = 0,
3619 };
3620 
3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3622 {
3623 	int i;
3624 
3625 	for (i = 0; i < bus->dev_count; i++) {
3626 		struct kvm_io_device *pos = bus->range[i].dev;
3627 
3628 		kvm_iodevice_destructor(pos);
3629 	}
3630 	kfree(bus);
3631 }
3632 
3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3634 				 const struct kvm_io_range *r2)
3635 {
3636 	gpa_t addr1 = r1->addr;
3637 	gpa_t addr2 = r2->addr;
3638 
3639 	if (addr1 < addr2)
3640 		return -1;
3641 
3642 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3643 	 * accept any overlapping write.  Any order is acceptable for
3644 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3645 	 * we process all of them.
3646 	 */
3647 	if (r2->len) {
3648 		addr1 += r1->len;
3649 		addr2 += r2->len;
3650 	}
3651 
3652 	if (addr1 > addr2)
3653 		return 1;
3654 
3655 	return 0;
3656 }
3657 
3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3659 {
3660 	return kvm_io_bus_cmp(p1, p2);
3661 }
3662 
3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3664 			     gpa_t addr, int len)
3665 {
3666 	struct kvm_io_range *range, key;
3667 	int off;
3668 
3669 	key = (struct kvm_io_range) {
3670 		.addr = addr,
3671 		.len = len,
3672 	};
3673 
3674 	range = bsearch(&key, bus->range, bus->dev_count,
3675 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3676 	if (range == NULL)
3677 		return -ENOENT;
3678 
3679 	off = range - bus->range;
3680 
3681 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3682 		off--;
3683 
3684 	return off;
3685 }
3686 
3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3688 			      struct kvm_io_range *range, const void *val)
3689 {
3690 	int idx;
3691 
3692 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3693 	if (idx < 0)
3694 		return -EOPNOTSUPP;
3695 
3696 	while (idx < bus->dev_count &&
3697 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3698 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3699 					range->len, val))
3700 			return idx;
3701 		idx++;
3702 	}
3703 
3704 	return -EOPNOTSUPP;
3705 }
3706 
3707 /* kvm_io_bus_write - called under kvm->slots_lock */
3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3709 		     int len, const void *val)
3710 {
3711 	struct kvm_io_bus *bus;
3712 	struct kvm_io_range range;
3713 	int r;
3714 
3715 	range = (struct kvm_io_range) {
3716 		.addr = addr,
3717 		.len = len,
3718 	};
3719 
3720 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3721 	if (!bus)
3722 		return -ENOMEM;
3723 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3724 	return r < 0 ? r : 0;
3725 }
3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3727 
3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3730 			    gpa_t addr, int len, const void *val, long cookie)
3731 {
3732 	struct kvm_io_bus *bus;
3733 	struct kvm_io_range range;
3734 
3735 	range = (struct kvm_io_range) {
3736 		.addr = addr,
3737 		.len = len,
3738 	};
3739 
3740 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741 	if (!bus)
3742 		return -ENOMEM;
3743 
3744 	/* First try the device referenced by cookie. */
3745 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3746 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3747 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3748 					val))
3749 			return cookie;
3750 
3751 	/*
3752 	 * cookie contained garbage; fall back to search and return the
3753 	 * correct cookie value.
3754 	 */
3755 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3756 }
3757 
3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3759 			     struct kvm_io_range *range, void *val)
3760 {
3761 	int idx;
3762 
3763 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3764 	if (idx < 0)
3765 		return -EOPNOTSUPP;
3766 
3767 	while (idx < bus->dev_count &&
3768 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3769 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3770 				       range->len, val))
3771 			return idx;
3772 		idx++;
3773 	}
3774 
3775 	return -EOPNOTSUPP;
3776 }
3777 
3778 /* kvm_io_bus_read - called under kvm->slots_lock */
3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3780 		    int len, void *val)
3781 {
3782 	struct kvm_io_bus *bus;
3783 	struct kvm_io_range range;
3784 	int r;
3785 
3786 	range = (struct kvm_io_range) {
3787 		.addr = addr,
3788 		.len = len,
3789 	};
3790 
3791 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3792 	if (!bus)
3793 		return -ENOMEM;
3794 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3795 	return r < 0 ? r : 0;
3796 }
3797 
3798 /* Caller must hold slots_lock. */
3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3800 			    int len, struct kvm_io_device *dev)
3801 {
3802 	int i;
3803 	struct kvm_io_bus *new_bus, *bus;
3804 	struct kvm_io_range range;
3805 
3806 	bus = kvm_get_bus(kvm, bus_idx);
3807 	if (!bus)
3808 		return -ENOMEM;
3809 
3810 	/* exclude ioeventfd which is limited by maximum fd */
3811 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3812 		return -ENOSPC;
3813 
3814 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3815 			  GFP_KERNEL_ACCOUNT);
3816 	if (!new_bus)
3817 		return -ENOMEM;
3818 
3819 	range = (struct kvm_io_range) {
3820 		.addr = addr,
3821 		.len = len,
3822 		.dev = dev,
3823 	};
3824 
3825 	for (i = 0; i < bus->dev_count; i++)
3826 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3827 			break;
3828 
3829 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3830 	new_bus->dev_count++;
3831 	new_bus->range[i] = range;
3832 	memcpy(new_bus->range + i + 1, bus->range + i,
3833 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3834 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3835 	synchronize_srcu_expedited(&kvm->srcu);
3836 	kfree(bus);
3837 
3838 	return 0;
3839 }
3840 
3841 /* Caller must hold slots_lock. */
3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3843 			       struct kvm_io_device *dev)
3844 {
3845 	int i;
3846 	struct kvm_io_bus *new_bus, *bus;
3847 
3848 	bus = kvm_get_bus(kvm, bus_idx);
3849 	if (!bus)
3850 		return;
3851 
3852 	for (i = 0; i < bus->dev_count; i++)
3853 		if (bus->range[i].dev == dev) {
3854 			break;
3855 		}
3856 
3857 	if (i == bus->dev_count)
3858 		return;
3859 
3860 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3861 			  GFP_KERNEL_ACCOUNT);
3862 	if (!new_bus)  {
3863 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3864 		goto broken;
3865 	}
3866 
3867 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3868 	new_bus->dev_count--;
3869 	memcpy(new_bus->range + i, bus->range + i + 1,
3870 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3871 
3872 broken:
3873 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3874 	synchronize_srcu_expedited(&kvm->srcu);
3875 	kfree(bus);
3876 	return;
3877 }
3878 
3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3880 					 gpa_t addr)
3881 {
3882 	struct kvm_io_bus *bus;
3883 	int dev_idx, srcu_idx;
3884 	struct kvm_io_device *iodev = NULL;
3885 
3886 	srcu_idx = srcu_read_lock(&kvm->srcu);
3887 
3888 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3889 	if (!bus)
3890 		goto out_unlock;
3891 
3892 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3893 	if (dev_idx < 0)
3894 		goto out_unlock;
3895 
3896 	iodev = bus->range[dev_idx].dev;
3897 
3898 out_unlock:
3899 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3900 
3901 	return iodev;
3902 }
3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3904 
3905 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3906 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3907 			   const char *fmt)
3908 {
3909 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3910 					  inode->i_private;
3911 
3912 	/* The debugfs files are a reference to the kvm struct which
3913 	 * is still valid when kvm_destroy_vm is called.
3914 	 * To avoid the race between open and the removal of the debugfs
3915 	 * directory we test against the users count.
3916 	 */
3917 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3918 		return -ENOENT;
3919 
3920 	if (simple_attr_open(inode, file, get, set, fmt)) {
3921 		kvm_put_kvm(stat_data->kvm);
3922 		return -ENOMEM;
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3929 {
3930 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3931 					  inode->i_private;
3932 
3933 	simple_attr_release(inode, file);
3934 	kvm_put_kvm(stat_data->kvm);
3935 
3936 	return 0;
3937 }
3938 
3939 static int vm_stat_get_per_vm(void *data, u64 *val)
3940 {
3941 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3942 
3943 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3944 
3945 	return 0;
3946 }
3947 
3948 static int vm_stat_clear_per_vm(void *data, u64 val)
3949 {
3950 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3951 
3952 	if (val)
3953 		return -EINVAL;
3954 
3955 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3956 
3957 	return 0;
3958 }
3959 
3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3961 {
3962 	__simple_attr_check_format("%llu\n", 0ull);
3963 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3964 				vm_stat_clear_per_vm, "%llu\n");
3965 }
3966 
3967 static const struct file_operations vm_stat_get_per_vm_fops = {
3968 	.owner   = THIS_MODULE,
3969 	.open    = vm_stat_get_per_vm_open,
3970 	.release = kvm_debugfs_release,
3971 	.read    = simple_attr_read,
3972 	.write   = simple_attr_write,
3973 	.llseek  = no_llseek,
3974 };
3975 
3976 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3977 {
3978 	int i;
3979 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3980 	struct kvm_vcpu *vcpu;
3981 
3982 	*val = 0;
3983 
3984 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3985 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3986 
3987 	return 0;
3988 }
3989 
3990 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3991 {
3992 	int i;
3993 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3994 	struct kvm_vcpu *vcpu;
3995 
3996 	if (val)
3997 		return -EINVAL;
3998 
3999 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4001 
4002 	return 0;
4003 }
4004 
4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4006 {
4007 	__simple_attr_check_format("%llu\n", 0ull);
4008 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4009 				 vcpu_stat_clear_per_vm, "%llu\n");
4010 }
4011 
4012 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4013 	.owner   = THIS_MODULE,
4014 	.open    = vcpu_stat_get_per_vm_open,
4015 	.release = kvm_debugfs_release,
4016 	.read    = simple_attr_read,
4017 	.write   = simple_attr_write,
4018 	.llseek  = no_llseek,
4019 };
4020 
4021 static const struct file_operations *stat_fops_per_vm[] = {
4022 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4023 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4024 };
4025 
4026 static int vm_stat_get(void *_offset, u64 *val)
4027 {
4028 	unsigned offset = (long)_offset;
4029 	struct kvm *kvm;
4030 	struct kvm_stat_data stat_tmp = {.offset = offset};
4031 	u64 tmp_val;
4032 
4033 	*val = 0;
4034 	spin_lock(&kvm_lock);
4035 	list_for_each_entry(kvm, &vm_list, vm_list) {
4036 		stat_tmp.kvm = kvm;
4037 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4038 		*val += tmp_val;
4039 	}
4040 	spin_unlock(&kvm_lock);
4041 	return 0;
4042 }
4043 
4044 static int vm_stat_clear(void *_offset, u64 val)
4045 {
4046 	unsigned offset = (long)_offset;
4047 	struct kvm *kvm;
4048 	struct kvm_stat_data stat_tmp = {.offset = offset};
4049 
4050 	if (val)
4051 		return -EINVAL;
4052 
4053 	spin_lock(&kvm_lock);
4054 	list_for_each_entry(kvm, &vm_list, vm_list) {
4055 		stat_tmp.kvm = kvm;
4056 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4057 	}
4058 	spin_unlock(&kvm_lock);
4059 
4060 	return 0;
4061 }
4062 
4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4064 
4065 static int vcpu_stat_get(void *_offset, u64 *val)
4066 {
4067 	unsigned offset = (long)_offset;
4068 	struct kvm *kvm;
4069 	struct kvm_stat_data stat_tmp = {.offset = offset};
4070 	u64 tmp_val;
4071 
4072 	*val = 0;
4073 	spin_lock(&kvm_lock);
4074 	list_for_each_entry(kvm, &vm_list, vm_list) {
4075 		stat_tmp.kvm = kvm;
4076 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4077 		*val += tmp_val;
4078 	}
4079 	spin_unlock(&kvm_lock);
4080 	return 0;
4081 }
4082 
4083 static int vcpu_stat_clear(void *_offset, u64 val)
4084 {
4085 	unsigned offset = (long)_offset;
4086 	struct kvm *kvm;
4087 	struct kvm_stat_data stat_tmp = {.offset = offset};
4088 
4089 	if (val)
4090 		return -EINVAL;
4091 
4092 	spin_lock(&kvm_lock);
4093 	list_for_each_entry(kvm, &vm_list, vm_list) {
4094 		stat_tmp.kvm = kvm;
4095 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4096 	}
4097 	spin_unlock(&kvm_lock);
4098 
4099 	return 0;
4100 }
4101 
4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4103 			"%llu\n");
4104 
4105 static const struct file_operations *stat_fops[] = {
4106 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4107 	[KVM_STAT_VM]   = &vm_stat_fops,
4108 };
4109 
4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4111 {
4112 	struct kobj_uevent_env *env;
4113 	unsigned long long created, active;
4114 
4115 	if (!kvm_dev.this_device || !kvm)
4116 		return;
4117 
4118 	spin_lock(&kvm_lock);
4119 	if (type == KVM_EVENT_CREATE_VM) {
4120 		kvm_createvm_count++;
4121 		kvm_active_vms++;
4122 	} else if (type == KVM_EVENT_DESTROY_VM) {
4123 		kvm_active_vms--;
4124 	}
4125 	created = kvm_createvm_count;
4126 	active = kvm_active_vms;
4127 	spin_unlock(&kvm_lock);
4128 
4129 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4130 	if (!env)
4131 		return;
4132 
4133 	add_uevent_var(env, "CREATED=%llu", created);
4134 	add_uevent_var(env, "COUNT=%llu", active);
4135 
4136 	if (type == KVM_EVENT_CREATE_VM) {
4137 		add_uevent_var(env, "EVENT=create");
4138 		kvm->userspace_pid = task_pid_nr(current);
4139 	} else if (type == KVM_EVENT_DESTROY_VM) {
4140 		add_uevent_var(env, "EVENT=destroy");
4141 	}
4142 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4143 
4144 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4145 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4146 
4147 		if (p) {
4148 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4149 			if (!IS_ERR(tmp))
4150 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4151 			kfree(p);
4152 		}
4153 	}
4154 	/* no need for checks, since we are adding at most only 5 keys */
4155 	env->envp[env->envp_idx++] = NULL;
4156 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4157 	kfree(env);
4158 }
4159 
4160 static void kvm_init_debug(void)
4161 {
4162 	struct kvm_stats_debugfs_item *p;
4163 
4164 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4165 
4166 	kvm_debugfs_num_entries = 0;
4167 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4168 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4169 				    (void *)(long)p->offset,
4170 				    stat_fops[p->kind]);
4171 	}
4172 }
4173 
4174 static int kvm_suspend(void)
4175 {
4176 	if (kvm_usage_count)
4177 		hardware_disable_nolock(NULL);
4178 	return 0;
4179 }
4180 
4181 static void kvm_resume(void)
4182 {
4183 	if (kvm_usage_count) {
4184 #ifdef CONFIG_LOCKDEP
4185 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4186 #endif
4187 		hardware_enable_nolock(NULL);
4188 	}
4189 }
4190 
4191 static struct syscore_ops kvm_syscore_ops = {
4192 	.suspend = kvm_suspend,
4193 	.resume = kvm_resume,
4194 };
4195 
4196 static inline
4197 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4198 {
4199 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4200 }
4201 
4202 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4203 {
4204 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4205 
4206 	if (vcpu->preempted)
4207 		vcpu->preempted = false;
4208 
4209 	kvm_arch_sched_in(vcpu, cpu);
4210 
4211 	kvm_arch_vcpu_load(vcpu, cpu);
4212 }
4213 
4214 static void kvm_sched_out(struct preempt_notifier *pn,
4215 			  struct task_struct *next)
4216 {
4217 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4218 
4219 	if (current->state == TASK_RUNNING)
4220 		vcpu->preempted = true;
4221 	kvm_arch_vcpu_put(vcpu);
4222 }
4223 
4224 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4225 		  struct module *module)
4226 {
4227 	int r;
4228 	int cpu;
4229 
4230 	r = kvm_arch_init(opaque);
4231 	if (r)
4232 		goto out_fail;
4233 
4234 	/*
4235 	 * kvm_arch_init makes sure there's at most one caller
4236 	 * for architectures that support multiple implementations,
4237 	 * like intel and amd on x86.
4238 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4239 	 * conflicts in case kvm is already setup for another implementation.
4240 	 */
4241 	r = kvm_irqfd_init();
4242 	if (r)
4243 		goto out_irqfd;
4244 
4245 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4246 		r = -ENOMEM;
4247 		goto out_free_0;
4248 	}
4249 
4250 	r = kvm_arch_hardware_setup();
4251 	if (r < 0)
4252 		goto out_free_0a;
4253 
4254 	for_each_online_cpu(cpu) {
4255 		smp_call_function_single(cpu,
4256 				kvm_arch_check_processor_compat,
4257 				&r, 1);
4258 		if (r < 0)
4259 			goto out_free_1;
4260 	}
4261 
4262 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4263 				      kvm_starting_cpu, kvm_dying_cpu);
4264 	if (r)
4265 		goto out_free_2;
4266 	register_reboot_notifier(&kvm_reboot_notifier);
4267 
4268 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4269 	if (!vcpu_align)
4270 		vcpu_align = __alignof__(struct kvm_vcpu);
4271 	kvm_vcpu_cache =
4272 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4273 					   SLAB_ACCOUNT,
4274 					   offsetof(struct kvm_vcpu, arch),
4275 					   sizeof_field(struct kvm_vcpu, arch),
4276 					   NULL);
4277 	if (!kvm_vcpu_cache) {
4278 		r = -ENOMEM;
4279 		goto out_free_3;
4280 	}
4281 
4282 	r = kvm_async_pf_init();
4283 	if (r)
4284 		goto out_free;
4285 
4286 	kvm_chardev_ops.owner = module;
4287 	kvm_vm_fops.owner = module;
4288 	kvm_vcpu_fops.owner = module;
4289 
4290 	r = misc_register(&kvm_dev);
4291 	if (r) {
4292 		pr_err("kvm: misc device register failed\n");
4293 		goto out_unreg;
4294 	}
4295 
4296 	register_syscore_ops(&kvm_syscore_ops);
4297 
4298 	kvm_preempt_ops.sched_in = kvm_sched_in;
4299 	kvm_preempt_ops.sched_out = kvm_sched_out;
4300 
4301 	kvm_init_debug();
4302 
4303 	r = kvm_vfio_ops_init();
4304 	WARN_ON(r);
4305 
4306 	return 0;
4307 
4308 out_unreg:
4309 	kvm_async_pf_deinit();
4310 out_free:
4311 	kmem_cache_destroy(kvm_vcpu_cache);
4312 out_free_3:
4313 	unregister_reboot_notifier(&kvm_reboot_notifier);
4314 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4315 out_free_2:
4316 out_free_1:
4317 	kvm_arch_hardware_unsetup();
4318 out_free_0a:
4319 	free_cpumask_var(cpus_hardware_enabled);
4320 out_free_0:
4321 	kvm_irqfd_exit();
4322 out_irqfd:
4323 	kvm_arch_exit();
4324 out_fail:
4325 	return r;
4326 }
4327 EXPORT_SYMBOL_GPL(kvm_init);
4328 
4329 void kvm_exit(void)
4330 {
4331 	debugfs_remove_recursive(kvm_debugfs_dir);
4332 	misc_deregister(&kvm_dev);
4333 	kmem_cache_destroy(kvm_vcpu_cache);
4334 	kvm_async_pf_deinit();
4335 	unregister_syscore_ops(&kvm_syscore_ops);
4336 	unregister_reboot_notifier(&kvm_reboot_notifier);
4337 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4338 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4339 	kvm_arch_hardware_unsetup();
4340 	kvm_arch_exit();
4341 	kvm_irqfd_exit();
4342 	free_cpumask_var(cpus_hardware_enabled);
4343 	kvm_vfio_ops_exit();
4344 }
4345 EXPORT_SYMBOL_GPL(kvm_exit);
4346