1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_SPINLOCK(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 struct kmem_cache *kvm_vcpu_cache; 107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations *stat_fops_per_vm[]; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 125 unsigned long arg) { return -EINVAL; } 126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 127 #endif 128 static int hardware_enable_all(void); 129 static void hardware_disable_all(void); 130 131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 132 133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 134 135 __visible bool kvm_rebooting; 136 EXPORT_SYMBOL_GPL(kvm_rebooting); 137 138 static bool largepages_enabled = true; 139 140 #define KVM_EVENT_CREATE_VM 0 141 #define KVM_EVENT_DESTROY_VM 1 142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 143 static unsigned long long kvm_createvm_count; 144 static unsigned long long kvm_active_vms; 145 146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 147 unsigned long start, unsigned long end, bool blockable) 148 { 149 return 0; 150 } 151 152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 153 { 154 if (pfn_valid(pfn)) 155 return PageReserved(pfn_to_page(pfn)); 156 157 return true; 158 } 159 160 /* 161 * Switches to specified vcpu, until a matching vcpu_put() 162 */ 163 void vcpu_load(struct kvm_vcpu *vcpu) 164 { 165 int cpu = get_cpu(); 166 preempt_notifier_register(&vcpu->preempt_notifier); 167 kvm_arch_vcpu_load(vcpu, cpu); 168 put_cpu(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_load); 171 172 void vcpu_put(struct kvm_vcpu *vcpu) 173 { 174 preempt_disable(); 175 kvm_arch_vcpu_put(vcpu); 176 preempt_notifier_unregister(&vcpu->preempt_notifier); 177 preempt_enable(); 178 } 179 EXPORT_SYMBOL_GPL(vcpu_put); 180 181 /* TODO: merge with kvm_arch_vcpu_should_kick */ 182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 183 { 184 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 185 186 /* 187 * We need to wait for the VCPU to reenable interrupts and get out of 188 * READING_SHADOW_PAGE_TABLES mode. 189 */ 190 if (req & KVM_REQUEST_WAIT) 191 return mode != OUTSIDE_GUEST_MODE; 192 193 /* 194 * Need to kick a running VCPU, but otherwise there is nothing to do. 195 */ 196 return mode == IN_GUEST_MODE; 197 } 198 199 static void ack_flush(void *_completed) 200 { 201 } 202 203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 204 { 205 if (unlikely(!cpus)) 206 cpus = cpu_online_mask; 207 208 if (cpumask_empty(cpus)) 209 return false; 210 211 smp_call_function_many(cpus, ack_flush, NULL, wait); 212 return true; 213 } 214 215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 216 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 217 { 218 int i, cpu, me; 219 struct kvm_vcpu *vcpu; 220 bool called; 221 222 me = get_cpu(); 223 224 kvm_for_each_vcpu(i, vcpu, kvm) { 225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 226 continue; 227 228 kvm_make_request(req, vcpu); 229 cpu = vcpu->cpu; 230 231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 232 continue; 233 234 if (tmp != NULL && cpu != -1 && cpu != me && 235 kvm_request_needs_ipi(vcpu, req)) 236 __cpumask_set_cpu(cpu, tmp); 237 } 238 239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 240 put_cpu(); 241 242 return called; 243 } 244 245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 246 { 247 cpumask_var_t cpus; 248 bool called; 249 250 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 251 252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 253 254 free_cpumask_var(cpus); 255 return called; 256 } 257 258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 259 void kvm_flush_remote_tlbs(struct kvm *kvm) 260 { 261 /* 262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 263 * kvm_make_all_cpus_request. 264 */ 265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 266 267 /* 268 * We want to publish modifications to the page tables before reading 269 * mode. Pairs with a memory barrier in arch-specific code. 270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 271 * and smp_mb in walk_shadow_page_lockless_begin/end. 272 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 273 * 274 * There is already an smp_mb__after_atomic() before 275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 276 * barrier here. 277 */ 278 if (!kvm_arch_flush_remote_tlb(kvm) 279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 280 ++kvm->stat.remote_tlb_flush; 281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 282 } 283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 284 #endif 285 286 void kvm_reload_remote_mmus(struct kvm *kvm) 287 { 288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 289 } 290 291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 292 { 293 struct page *page; 294 int r; 295 296 mutex_init(&vcpu->mutex); 297 vcpu->cpu = -1; 298 vcpu->kvm = kvm; 299 vcpu->vcpu_id = id; 300 vcpu->pid = NULL; 301 init_swait_queue_head(&vcpu->wq); 302 kvm_async_pf_vcpu_init(vcpu); 303 304 vcpu->pre_pcpu = -1; 305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 306 307 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 308 if (!page) { 309 r = -ENOMEM; 310 goto fail; 311 } 312 vcpu->run = page_address(page); 313 314 kvm_vcpu_set_in_spin_loop(vcpu, false); 315 kvm_vcpu_set_dy_eligible(vcpu, false); 316 vcpu->preempted = false; 317 318 r = kvm_arch_vcpu_init(vcpu); 319 if (r < 0) 320 goto fail_free_run; 321 return 0; 322 323 fail_free_run: 324 free_page((unsigned long)vcpu->run); 325 fail: 326 return r; 327 } 328 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 329 330 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 331 { 332 /* 333 * no need for rcu_read_lock as VCPU_RUN is the only place that 334 * will change the vcpu->pid pointer and on uninit all file 335 * descriptors are already gone. 336 */ 337 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 338 kvm_arch_vcpu_uninit(vcpu); 339 free_page((unsigned long)vcpu->run); 340 } 341 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 342 343 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 344 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 345 { 346 return container_of(mn, struct kvm, mmu_notifier); 347 } 348 349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 350 struct mm_struct *mm, 351 unsigned long address, 352 pte_t pte) 353 { 354 struct kvm *kvm = mmu_notifier_to_kvm(mn); 355 int idx; 356 357 idx = srcu_read_lock(&kvm->srcu); 358 spin_lock(&kvm->mmu_lock); 359 kvm->mmu_notifier_seq++; 360 361 if (kvm_set_spte_hva(kvm, address, pte)) 362 kvm_flush_remote_tlbs(kvm); 363 364 spin_unlock(&kvm->mmu_lock); 365 srcu_read_unlock(&kvm->srcu, idx); 366 } 367 368 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 369 const struct mmu_notifier_range *range) 370 { 371 struct kvm *kvm = mmu_notifier_to_kvm(mn); 372 int need_tlb_flush = 0, idx; 373 int ret; 374 375 idx = srcu_read_lock(&kvm->srcu); 376 spin_lock(&kvm->mmu_lock); 377 /* 378 * The count increase must become visible at unlock time as no 379 * spte can be established without taking the mmu_lock and 380 * count is also read inside the mmu_lock critical section. 381 */ 382 kvm->mmu_notifier_count++; 383 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 384 need_tlb_flush |= kvm->tlbs_dirty; 385 /* we've to flush the tlb before the pages can be freed */ 386 if (need_tlb_flush) 387 kvm_flush_remote_tlbs(kvm); 388 389 spin_unlock(&kvm->mmu_lock); 390 391 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 392 range->end, 393 mmu_notifier_range_blockable(range)); 394 395 srcu_read_unlock(&kvm->srcu, idx); 396 397 return ret; 398 } 399 400 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 401 const struct mmu_notifier_range *range) 402 { 403 struct kvm *kvm = mmu_notifier_to_kvm(mn); 404 405 spin_lock(&kvm->mmu_lock); 406 /* 407 * This sequence increase will notify the kvm page fault that 408 * the page that is going to be mapped in the spte could have 409 * been freed. 410 */ 411 kvm->mmu_notifier_seq++; 412 smp_wmb(); 413 /* 414 * The above sequence increase must be visible before the 415 * below count decrease, which is ensured by the smp_wmb above 416 * in conjunction with the smp_rmb in mmu_notifier_retry(). 417 */ 418 kvm->mmu_notifier_count--; 419 spin_unlock(&kvm->mmu_lock); 420 421 BUG_ON(kvm->mmu_notifier_count < 0); 422 } 423 424 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 425 struct mm_struct *mm, 426 unsigned long start, 427 unsigned long end) 428 { 429 struct kvm *kvm = mmu_notifier_to_kvm(mn); 430 int young, idx; 431 432 idx = srcu_read_lock(&kvm->srcu); 433 spin_lock(&kvm->mmu_lock); 434 435 young = kvm_age_hva(kvm, start, end); 436 if (young) 437 kvm_flush_remote_tlbs(kvm); 438 439 spin_unlock(&kvm->mmu_lock); 440 srcu_read_unlock(&kvm->srcu, idx); 441 442 return young; 443 } 444 445 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 446 struct mm_struct *mm, 447 unsigned long start, 448 unsigned long end) 449 { 450 struct kvm *kvm = mmu_notifier_to_kvm(mn); 451 int young, idx; 452 453 idx = srcu_read_lock(&kvm->srcu); 454 spin_lock(&kvm->mmu_lock); 455 /* 456 * Even though we do not flush TLB, this will still adversely 457 * affect performance on pre-Haswell Intel EPT, where there is 458 * no EPT Access Bit to clear so that we have to tear down EPT 459 * tables instead. If we find this unacceptable, we can always 460 * add a parameter to kvm_age_hva so that it effectively doesn't 461 * do anything on clear_young. 462 * 463 * Also note that currently we never issue secondary TLB flushes 464 * from clear_young, leaving this job up to the regular system 465 * cadence. If we find this inaccurate, we might come up with a 466 * more sophisticated heuristic later. 467 */ 468 young = kvm_age_hva(kvm, start, end); 469 spin_unlock(&kvm->mmu_lock); 470 srcu_read_unlock(&kvm->srcu, idx); 471 472 return young; 473 } 474 475 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 476 struct mm_struct *mm, 477 unsigned long address) 478 { 479 struct kvm *kvm = mmu_notifier_to_kvm(mn); 480 int young, idx; 481 482 idx = srcu_read_lock(&kvm->srcu); 483 spin_lock(&kvm->mmu_lock); 484 young = kvm_test_age_hva(kvm, address); 485 spin_unlock(&kvm->mmu_lock); 486 srcu_read_unlock(&kvm->srcu, idx); 487 488 return young; 489 } 490 491 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 492 struct mm_struct *mm) 493 { 494 struct kvm *kvm = mmu_notifier_to_kvm(mn); 495 int idx; 496 497 idx = srcu_read_lock(&kvm->srcu); 498 kvm_arch_flush_shadow_all(kvm); 499 srcu_read_unlock(&kvm->srcu, idx); 500 } 501 502 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 503 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 504 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 505 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 506 .clear_young = kvm_mmu_notifier_clear_young, 507 .test_young = kvm_mmu_notifier_test_young, 508 .change_pte = kvm_mmu_notifier_change_pte, 509 .release = kvm_mmu_notifier_release, 510 }; 511 512 static int kvm_init_mmu_notifier(struct kvm *kvm) 513 { 514 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 515 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 516 } 517 518 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 519 520 static int kvm_init_mmu_notifier(struct kvm *kvm) 521 { 522 return 0; 523 } 524 525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 526 527 static struct kvm_memslots *kvm_alloc_memslots(void) 528 { 529 int i; 530 struct kvm_memslots *slots; 531 532 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 533 if (!slots) 534 return NULL; 535 536 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 537 slots->id_to_index[i] = slots->memslots[i].id = i; 538 539 return slots; 540 } 541 542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 543 { 544 if (!memslot->dirty_bitmap) 545 return; 546 547 kvfree(memslot->dirty_bitmap); 548 memslot->dirty_bitmap = NULL; 549 } 550 551 /* 552 * Free any memory in @free but not in @dont. 553 */ 554 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 555 struct kvm_memory_slot *dont) 556 { 557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 558 kvm_destroy_dirty_bitmap(free); 559 560 kvm_arch_free_memslot(kvm, free, dont); 561 562 free->npages = 0; 563 } 564 565 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 566 { 567 struct kvm_memory_slot *memslot; 568 569 if (!slots) 570 return; 571 572 kvm_for_each_memslot(memslot, slots) 573 kvm_free_memslot(kvm, memslot, NULL); 574 575 kvfree(slots); 576 } 577 578 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 579 { 580 int i; 581 582 if (!kvm->debugfs_dentry) 583 return; 584 585 debugfs_remove_recursive(kvm->debugfs_dentry); 586 587 if (kvm->debugfs_stat_data) { 588 for (i = 0; i < kvm_debugfs_num_entries; i++) 589 kfree(kvm->debugfs_stat_data[i]); 590 kfree(kvm->debugfs_stat_data); 591 } 592 } 593 594 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 595 { 596 char dir_name[ITOA_MAX_LEN * 2]; 597 struct kvm_stat_data *stat_data; 598 struct kvm_stats_debugfs_item *p; 599 600 if (!debugfs_initialized()) 601 return 0; 602 603 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 604 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 605 606 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 607 sizeof(*kvm->debugfs_stat_data), 608 GFP_KERNEL_ACCOUNT); 609 if (!kvm->debugfs_stat_data) 610 return -ENOMEM; 611 612 for (p = debugfs_entries; p->name; p++) { 613 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 614 if (!stat_data) 615 return -ENOMEM; 616 617 stat_data->kvm = kvm; 618 stat_data->offset = p->offset; 619 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 620 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 621 stat_data, stat_fops_per_vm[p->kind]); 622 } 623 return 0; 624 } 625 626 static struct kvm *kvm_create_vm(unsigned long type) 627 { 628 int r, i; 629 struct kvm *kvm = kvm_arch_alloc_vm(); 630 631 if (!kvm) 632 return ERR_PTR(-ENOMEM); 633 634 spin_lock_init(&kvm->mmu_lock); 635 mmgrab(current->mm); 636 kvm->mm = current->mm; 637 kvm_eventfd_init(kvm); 638 mutex_init(&kvm->lock); 639 mutex_init(&kvm->irq_lock); 640 mutex_init(&kvm->slots_lock); 641 refcount_set(&kvm->users_count, 1); 642 INIT_LIST_HEAD(&kvm->devices); 643 644 r = kvm_arch_init_vm(kvm, type); 645 if (r) 646 goto out_err_no_disable; 647 648 r = hardware_enable_all(); 649 if (r) 650 goto out_err_no_disable; 651 652 #ifdef CONFIG_HAVE_KVM_IRQFD 653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 654 #endif 655 656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 657 658 r = -ENOMEM; 659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 660 struct kvm_memslots *slots = kvm_alloc_memslots(); 661 if (!slots) 662 goto out_err_no_srcu; 663 /* Generations must be different for each address space. */ 664 slots->generation = i; 665 rcu_assign_pointer(kvm->memslots[i], slots); 666 } 667 668 if (init_srcu_struct(&kvm->srcu)) 669 goto out_err_no_srcu; 670 if (init_srcu_struct(&kvm->irq_srcu)) 671 goto out_err_no_irq_srcu; 672 for (i = 0; i < KVM_NR_BUSES; i++) { 673 rcu_assign_pointer(kvm->buses[i], 674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 675 if (!kvm->buses[i]) 676 goto out_err; 677 } 678 679 r = kvm_init_mmu_notifier(kvm); 680 if (r) 681 goto out_err; 682 683 spin_lock(&kvm_lock); 684 list_add(&kvm->vm_list, &vm_list); 685 spin_unlock(&kvm_lock); 686 687 preempt_notifier_inc(); 688 689 return kvm; 690 691 out_err: 692 cleanup_srcu_struct(&kvm->irq_srcu); 693 out_err_no_irq_srcu: 694 cleanup_srcu_struct(&kvm->srcu); 695 out_err_no_srcu: 696 hardware_disable_all(); 697 out_err_no_disable: 698 refcount_set(&kvm->users_count, 0); 699 for (i = 0; i < KVM_NR_BUSES; i++) 700 kfree(kvm_get_bus(kvm, i)); 701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 703 kvm_arch_free_vm(kvm); 704 mmdrop(current->mm); 705 return ERR_PTR(r); 706 } 707 708 static void kvm_destroy_devices(struct kvm *kvm) 709 { 710 struct kvm_device *dev, *tmp; 711 712 /* 713 * We do not need to take the kvm->lock here, because nobody else 714 * has a reference to the struct kvm at this point and therefore 715 * cannot access the devices list anyhow. 716 */ 717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 718 list_del(&dev->vm_node); 719 dev->ops->destroy(dev); 720 } 721 } 722 723 static void kvm_destroy_vm(struct kvm *kvm) 724 { 725 int i; 726 struct mm_struct *mm = kvm->mm; 727 728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 729 kvm_destroy_vm_debugfs(kvm); 730 kvm_arch_sync_events(kvm); 731 spin_lock(&kvm_lock); 732 list_del(&kvm->vm_list); 733 spin_unlock(&kvm_lock); 734 kvm_free_irq_routing(kvm); 735 for (i = 0; i < KVM_NR_BUSES; i++) { 736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 737 738 if (bus) 739 kvm_io_bus_destroy(bus); 740 kvm->buses[i] = NULL; 741 } 742 kvm_coalesced_mmio_free(kvm); 743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 745 #else 746 kvm_arch_flush_shadow_all(kvm); 747 #endif 748 kvm_arch_destroy_vm(kvm); 749 kvm_destroy_devices(kvm); 750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 752 cleanup_srcu_struct(&kvm->irq_srcu); 753 cleanup_srcu_struct(&kvm->srcu); 754 kvm_arch_free_vm(kvm); 755 preempt_notifier_dec(); 756 hardware_disable_all(); 757 mmdrop(mm); 758 } 759 760 void kvm_get_kvm(struct kvm *kvm) 761 { 762 refcount_inc(&kvm->users_count); 763 } 764 EXPORT_SYMBOL_GPL(kvm_get_kvm); 765 766 void kvm_put_kvm(struct kvm *kvm) 767 { 768 if (refcount_dec_and_test(&kvm->users_count)) 769 kvm_destroy_vm(kvm); 770 } 771 EXPORT_SYMBOL_GPL(kvm_put_kvm); 772 773 774 static int kvm_vm_release(struct inode *inode, struct file *filp) 775 { 776 struct kvm *kvm = filp->private_data; 777 778 kvm_irqfd_release(kvm); 779 780 kvm_put_kvm(kvm); 781 return 0; 782 } 783 784 /* 785 * Allocation size is twice as large as the actual dirty bitmap size. 786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 787 */ 788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 789 { 790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 791 792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 793 if (!memslot->dirty_bitmap) 794 return -ENOMEM; 795 796 return 0; 797 } 798 799 /* 800 * Insert memslot and re-sort memslots based on their GFN, 801 * so binary search could be used to lookup GFN. 802 * Sorting algorithm takes advantage of having initially 803 * sorted array and known changed memslot position. 804 */ 805 static void update_memslots(struct kvm_memslots *slots, 806 struct kvm_memory_slot *new, 807 enum kvm_mr_change change) 808 { 809 int id = new->id; 810 int i = slots->id_to_index[id]; 811 struct kvm_memory_slot *mslots = slots->memslots; 812 813 WARN_ON(mslots[i].id != id); 814 switch (change) { 815 case KVM_MR_CREATE: 816 slots->used_slots++; 817 WARN_ON(mslots[i].npages || !new->npages); 818 break; 819 case KVM_MR_DELETE: 820 slots->used_slots--; 821 WARN_ON(new->npages || !mslots[i].npages); 822 break; 823 default: 824 break; 825 } 826 827 while (i < KVM_MEM_SLOTS_NUM - 1 && 828 new->base_gfn <= mslots[i + 1].base_gfn) { 829 if (!mslots[i + 1].npages) 830 break; 831 mslots[i] = mslots[i + 1]; 832 slots->id_to_index[mslots[i].id] = i; 833 i++; 834 } 835 836 /* 837 * The ">=" is needed when creating a slot with base_gfn == 0, 838 * so that it moves before all those with base_gfn == npages == 0. 839 * 840 * On the other hand, if new->npages is zero, the above loop has 841 * already left i pointing to the beginning of the empty part of 842 * mslots, and the ">=" would move the hole backwards in this 843 * case---which is wrong. So skip the loop when deleting a slot. 844 */ 845 if (new->npages) { 846 while (i > 0 && 847 new->base_gfn >= mslots[i - 1].base_gfn) { 848 mslots[i] = mslots[i - 1]; 849 slots->id_to_index[mslots[i].id] = i; 850 i--; 851 } 852 } else 853 WARN_ON_ONCE(i != slots->used_slots); 854 855 mslots[i] = *new; 856 slots->id_to_index[mslots[i].id] = i; 857 } 858 859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 860 { 861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 862 863 #ifdef __KVM_HAVE_READONLY_MEM 864 valid_flags |= KVM_MEM_READONLY; 865 #endif 866 867 if (mem->flags & ~valid_flags) 868 return -EINVAL; 869 870 return 0; 871 } 872 873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 874 int as_id, struct kvm_memslots *slots) 875 { 876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 877 u64 gen = old_memslots->generation; 878 879 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 880 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 881 882 rcu_assign_pointer(kvm->memslots[as_id], slots); 883 synchronize_srcu_expedited(&kvm->srcu); 884 885 /* 886 * Increment the new memslot generation a second time, dropping the 887 * update in-progress flag and incrementing then generation based on 888 * the number of address spaces. This provides a unique and easily 889 * identifiable generation number while the memslots are in flux. 890 */ 891 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 892 893 /* 894 * Generations must be unique even across address spaces. We do not need 895 * a global counter for that, instead the generation space is evenly split 896 * across address spaces. For example, with two address spaces, address 897 * space 0 will use generations 0, 2, 4, ... while address space 1 will 898 * use generations 1, 3, 5, ... 899 */ 900 gen += KVM_ADDRESS_SPACE_NUM; 901 902 kvm_arch_memslots_updated(kvm, gen); 903 904 slots->generation = gen; 905 906 return old_memslots; 907 } 908 909 /* 910 * Allocate some memory and give it an address in the guest physical address 911 * space. 912 * 913 * Discontiguous memory is allowed, mostly for framebuffers. 914 * 915 * Must be called holding kvm->slots_lock for write. 916 */ 917 int __kvm_set_memory_region(struct kvm *kvm, 918 const struct kvm_userspace_memory_region *mem) 919 { 920 int r; 921 gfn_t base_gfn; 922 unsigned long npages; 923 struct kvm_memory_slot *slot; 924 struct kvm_memory_slot old, new; 925 struct kvm_memslots *slots = NULL, *old_memslots; 926 int as_id, id; 927 enum kvm_mr_change change; 928 929 r = check_memory_region_flags(mem); 930 if (r) 931 goto out; 932 933 r = -EINVAL; 934 as_id = mem->slot >> 16; 935 id = (u16)mem->slot; 936 937 /* General sanity checks */ 938 if (mem->memory_size & (PAGE_SIZE - 1)) 939 goto out; 940 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 941 goto out; 942 /* We can read the guest memory with __xxx_user() later on. */ 943 if ((id < KVM_USER_MEM_SLOTS) && 944 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 945 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 946 mem->memory_size))) 947 goto out; 948 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 949 goto out; 950 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 951 goto out; 952 953 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 954 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 955 npages = mem->memory_size >> PAGE_SHIFT; 956 957 if (npages > KVM_MEM_MAX_NR_PAGES) 958 goto out; 959 960 new = old = *slot; 961 962 new.id = id; 963 new.base_gfn = base_gfn; 964 new.npages = npages; 965 new.flags = mem->flags; 966 967 if (npages) { 968 if (!old.npages) 969 change = KVM_MR_CREATE; 970 else { /* Modify an existing slot. */ 971 if ((mem->userspace_addr != old.userspace_addr) || 972 (npages != old.npages) || 973 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 974 goto out; 975 976 if (base_gfn != old.base_gfn) 977 change = KVM_MR_MOVE; 978 else if (new.flags != old.flags) 979 change = KVM_MR_FLAGS_ONLY; 980 else { /* Nothing to change. */ 981 r = 0; 982 goto out; 983 } 984 } 985 } else { 986 if (!old.npages) 987 goto out; 988 989 change = KVM_MR_DELETE; 990 new.base_gfn = 0; 991 new.flags = 0; 992 } 993 994 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 995 /* Check for overlaps */ 996 r = -EEXIST; 997 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 998 if (slot->id == id) 999 continue; 1000 if (!((base_gfn + npages <= slot->base_gfn) || 1001 (base_gfn >= slot->base_gfn + slot->npages))) 1002 goto out; 1003 } 1004 } 1005 1006 /* Free page dirty bitmap if unneeded */ 1007 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1008 new.dirty_bitmap = NULL; 1009 1010 r = -ENOMEM; 1011 if (change == KVM_MR_CREATE) { 1012 new.userspace_addr = mem->userspace_addr; 1013 1014 if (kvm_arch_create_memslot(kvm, &new, npages)) 1015 goto out_free; 1016 } 1017 1018 /* Allocate page dirty bitmap if needed */ 1019 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1020 if (kvm_create_dirty_bitmap(&new) < 0) 1021 goto out_free; 1022 } 1023 1024 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1025 if (!slots) 1026 goto out_free; 1027 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1028 1029 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1030 slot = id_to_memslot(slots, id); 1031 slot->flags |= KVM_MEMSLOT_INVALID; 1032 1033 old_memslots = install_new_memslots(kvm, as_id, slots); 1034 1035 /* From this point no new shadow pages pointing to a deleted, 1036 * or moved, memslot will be created. 1037 * 1038 * validation of sp->gfn happens in: 1039 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1040 * - kvm_is_visible_gfn (mmu_check_roots) 1041 */ 1042 kvm_arch_flush_shadow_memslot(kvm, slot); 1043 1044 /* 1045 * We can re-use the old_memslots from above, the only difference 1046 * from the currently installed memslots is the invalid flag. This 1047 * will get overwritten by update_memslots anyway. 1048 */ 1049 slots = old_memslots; 1050 } 1051 1052 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1053 if (r) 1054 goto out_slots; 1055 1056 /* actual memory is freed via old in kvm_free_memslot below */ 1057 if (change == KVM_MR_DELETE) { 1058 new.dirty_bitmap = NULL; 1059 memset(&new.arch, 0, sizeof(new.arch)); 1060 } 1061 1062 update_memslots(slots, &new, change); 1063 old_memslots = install_new_memslots(kvm, as_id, slots); 1064 1065 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1066 1067 kvm_free_memslot(kvm, &old, &new); 1068 kvfree(old_memslots); 1069 return 0; 1070 1071 out_slots: 1072 kvfree(slots); 1073 out_free: 1074 kvm_free_memslot(kvm, &new, &old); 1075 out: 1076 return r; 1077 } 1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1079 1080 int kvm_set_memory_region(struct kvm *kvm, 1081 const struct kvm_userspace_memory_region *mem) 1082 { 1083 int r; 1084 1085 mutex_lock(&kvm->slots_lock); 1086 r = __kvm_set_memory_region(kvm, mem); 1087 mutex_unlock(&kvm->slots_lock); 1088 return r; 1089 } 1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1091 1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1093 struct kvm_userspace_memory_region *mem) 1094 { 1095 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1096 return -EINVAL; 1097 1098 return kvm_set_memory_region(kvm, mem); 1099 } 1100 1101 int kvm_get_dirty_log(struct kvm *kvm, 1102 struct kvm_dirty_log *log, int *is_dirty) 1103 { 1104 struct kvm_memslots *slots; 1105 struct kvm_memory_slot *memslot; 1106 int i, as_id, id; 1107 unsigned long n; 1108 unsigned long any = 0; 1109 1110 as_id = log->slot >> 16; 1111 id = (u16)log->slot; 1112 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1113 return -EINVAL; 1114 1115 slots = __kvm_memslots(kvm, as_id); 1116 memslot = id_to_memslot(slots, id); 1117 if (!memslot->dirty_bitmap) 1118 return -ENOENT; 1119 1120 n = kvm_dirty_bitmap_bytes(memslot); 1121 1122 for (i = 0; !any && i < n/sizeof(long); ++i) 1123 any = memslot->dirty_bitmap[i]; 1124 1125 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1126 return -EFAULT; 1127 1128 if (any) 1129 *is_dirty = 1; 1130 return 0; 1131 } 1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1133 1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1135 /** 1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1137 * and reenable dirty page tracking for the corresponding pages. 1138 * @kvm: pointer to kvm instance 1139 * @log: slot id and address to which we copy the log 1140 * @flush: true if TLB flush is needed by caller 1141 * 1142 * We need to keep it in mind that VCPU threads can write to the bitmap 1143 * concurrently. So, to avoid losing track of dirty pages we keep the 1144 * following order: 1145 * 1146 * 1. Take a snapshot of the bit and clear it if needed. 1147 * 2. Write protect the corresponding page. 1148 * 3. Copy the snapshot to the userspace. 1149 * 4. Upon return caller flushes TLB's if needed. 1150 * 1151 * Between 2 and 4, the guest may write to the page using the remaining TLB 1152 * entry. This is not a problem because the page is reported dirty using 1153 * the snapshot taken before and step 4 ensures that writes done after 1154 * exiting to userspace will be logged for the next call. 1155 * 1156 */ 1157 int kvm_get_dirty_log_protect(struct kvm *kvm, 1158 struct kvm_dirty_log *log, bool *flush) 1159 { 1160 struct kvm_memslots *slots; 1161 struct kvm_memory_slot *memslot; 1162 int i, as_id, id; 1163 unsigned long n; 1164 unsigned long *dirty_bitmap; 1165 unsigned long *dirty_bitmap_buffer; 1166 1167 as_id = log->slot >> 16; 1168 id = (u16)log->slot; 1169 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1170 return -EINVAL; 1171 1172 slots = __kvm_memslots(kvm, as_id); 1173 memslot = id_to_memslot(slots, id); 1174 1175 dirty_bitmap = memslot->dirty_bitmap; 1176 if (!dirty_bitmap) 1177 return -ENOENT; 1178 1179 n = kvm_dirty_bitmap_bytes(memslot); 1180 *flush = false; 1181 if (kvm->manual_dirty_log_protect) { 1182 /* 1183 * Unlike kvm_get_dirty_log, we always return false in *flush, 1184 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1185 * is some code duplication between this function and 1186 * kvm_get_dirty_log, but hopefully all architecture 1187 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1188 * can be eliminated. 1189 */ 1190 dirty_bitmap_buffer = dirty_bitmap; 1191 } else { 1192 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1193 memset(dirty_bitmap_buffer, 0, n); 1194 1195 spin_lock(&kvm->mmu_lock); 1196 for (i = 0; i < n / sizeof(long); i++) { 1197 unsigned long mask; 1198 gfn_t offset; 1199 1200 if (!dirty_bitmap[i]) 1201 continue; 1202 1203 *flush = true; 1204 mask = xchg(&dirty_bitmap[i], 0); 1205 dirty_bitmap_buffer[i] = mask; 1206 1207 offset = i * BITS_PER_LONG; 1208 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1209 offset, mask); 1210 } 1211 spin_unlock(&kvm->mmu_lock); 1212 } 1213 1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1215 return -EFAULT; 1216 return 0; 1217 } 1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1219 1220 /** 1221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1222 * and reenable dirty page tracking for the corresponding pages. 1223 * @kvm: pointer to kvm instance 1224 * @log: slot id and address from which to fetch the bitmap of dirty pages 1225 * @flush: true if TLB flush is needed by caller 1226 */ 1227 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1228 struct kvm_clear_dirty_log *log, bool *flush) 1229 { 1230 struct kvm_memslots *slots; 1231 struct kvm_memory_slot *memslot; 1232 int as_id, id; 1233 gfn_t offset; 1234 unsigned long i, n; 1235 unsigned long *dirty_bitmap; 1236 unsigned long *dirty_bitmap_buffer; 1237 1238 as_id = log->slot >> 16; 1239 id = (u16)log->slot; 1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1241 return -EINVAL; 1242 1243 if (log->first_page & 63) 1244 return -EINVAL; 1245 1246 slots = __kvm_memslots(kvm, as_id); 1247 memslot = id_to_memslot(slots, id); 1248 1249 dirty_bitmap = memslot->dirty_bitmap; 1250 if (!dirty_bitmap) 1251 return -ENOENT; 1252 1253 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1254 1255 if (log->first_page > memslot->npages || 1256 log->num_pages > memslot->npages - log->first_page || 1257 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1258 return -EINVAL; 1259 1260 *flush = false; 1261 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1262 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1263 return -EFAULT; 1264 1265 spin_lock(&kvm->mmu_lock); 1266 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1267 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1268 i++, offset += BITS_PER_LONG) { 1269 unsigned long mask = *dirty_bitmap_buffer++; 1270 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1271 if (!mask) 1272 continue; 1273 1274 mask &= atomic_long_fetch_andnot(mask, p); 1275 1276 /* 1277 * mask contains the bits that really have been cleared. This 1278 * never includes any bits beyond the length of the memslot (if 1279 * the length is not aligned to 64 pages), therefore it is not 1280 * a problem if userspace sets them in log->dirty_bitmap. 1281 */ 1282 if (mask) { 1283 *flush = true; 1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1285 offset, mask); 1286 } 1287 } 1288 spin_unlock(&kvm->mmu_lock); 1289 1290 return 0; 1291 } 1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1293 #endif 1294 1295 bool kvm_largepages_enabled(void) 1296 { 1297 return largepages_enabled; 1298 } 1299 1300 void kvm_disable_largepages(void) 1301 { 1302 largepages_enabled = false; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1305 1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1307 { 1308 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1309 } 1310 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1311 1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1313 { 1314 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1315 } 1316 1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1318 { 1319 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1320 1321 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1322 memslot->flags & KVM_MEMSLOT_INVALID) 1323 return false; 1324 1325 return true; 1326 } 1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1328 1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1330 { 1331 struct vm_area_struct *vma; 1332 unsigned long addr, size; 1333 1334 size = PAGE_SIZE; 1335 1336 addr = gfn_to_hva(kvm, gfn); 1337 if (kvm_is_error_hva(addr)) 1338 return PAGE_SIZE; 1339 1340 down_read(¤t->mm->mmap_sem); 1341 vma = find_vma(current->mm, addr); 1342 if (!vma) 1343 goto out; 1344 1345 size = vma_kernel_pagesize(vma); 1346 1347 out: 1348 up_read(¤t->mm->mmap_sem); 1349 1350 return size; 1351 } 1352 1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1354 { 1355 return slot->flags & KVM_MEM_READONLY; 1356 } 1357 1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1359 gfn_t *nr_pages, bool write) 1360 { 1361 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1362 return KVM_HVA_ERR_BAD; 1363 1364 if (memslot_is_readonly(slot) && write) 1365 return KVM_HVA_ERR_RO_BAD; 1366 1367 if (nr_pages) 1368 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1369 1370 return __gfn_to_hva_memslot(slot, gfn); 1371 } 1372 1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1374 gfn_t *nr_pages) 1375 { 1376 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1377 } 1378 1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1380 gfn_t gfn) 1381 { 1382 return gfn_to_hva_many(slot, gfn, NULL); 1383 } 1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1385 1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1387 { 1388 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1389 } 1390 EXPORT_SYMBOL_GPL(gfn_to_hva); 1391 1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1393 { 1394 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1397 1398 /* 1399 * Return the hva of a @gfn and the R/W attribute if possible. 1400 * 1401 * @slot: the kvm_memory_slot which contains @gfn 1402 * @gfn: the gfn to be translated 1403 * @writable: used to return the read/write attribute of the @slot if the hva 1404 * is valid and @writable is not NULL 1405 */ 1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1407 gfn_t gfn, bool *writable) 1408 { 1409 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1410 1411 if (!kvm_is_error_hva(hva) && writable) 1412 *writable = !memslot_is_readonly(slot); 1413 1414 return hva; 1415 } 1416 1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1418 { 1419 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1420 1421 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1422 } 1423 1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1425 { 1426 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1427 1428 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1429 } 1430 1431 static inline int check_user_page_hwpoison(unsigned long addr) 1432 { 1433 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1434 1435 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1436 return rc == -EHWPOISON; 1437 } 1438 1439 /* 1440 * The fast path to get the writable pfn which will be stored in @pfn, 1441 * true indicates success, otherwise false is returned. It's also the 1442 * only part that runs if we can are in atomic context. 1443 */ 1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1445 bool *writable, kvm_pfn_t *pfn) 1446 { 1447 struct page *page[1]; 1448 int npages; 1449 1450 /* 1451 * Fast pin a writable pfn only if it is a write fault request 1452 * or the caller allows to map a writable pfn for a read fault 1453 * request. 1454 */ 1455 if (!(write_fault || writable)) 1456 return false; 1457 1458 npages = __get_user_pages_fast(addr, 1, 1, page); 1459 if (npages == 1) { 1460 *pfn = page_to_pfn(page[0]); 1461 1462 if (writable) 1463 *writable = true; 1464 return true; 1465 } 1466 1467 return false; 1468 } 1469 1470 /* 1471 * The slow path to get the pfn of the specified host virtual address, 1472 * 1 indicates success, -errno is returned if error is detected. 1473 */ 1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1475 bool *writable, kvm_pfn_t *pfn) 1476 { 1477 unsigned int flags = FOLL_HWPOISON; 1478 struct page *page; 1479 int npages = 0; 1480 1481 might_sleep(); 1482 1483 if (writable) 1484 *writable = write_fault; 1485 1486 if (write_fault) 1487 flags |= FOLL_WRITE; 1488 if (async) 1489 flags |= FOLL_NOWAIT; 1490 1491 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1492 if (npages != 1) 1493 return npages; 1494 1495 /* map read fault as writable if possible */ 1496 if (unlikely(!write_fault) && writable) { 1497 struct page *wpage; 1498 1499 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1500 *writable = true; 1501 put_page(page); 1502 page = wpage; 1503 } 1504 } 1505 *pfn = page_to_pfn(page); 1506 return npages; 1507 } 1508 1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1510 { 1511 if (unlikely(!(vma->vm_flags & VM_READ))) 1512 return false; 1513 1514 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1515 return false; 1516 1517 return true; 1518 } 1519 1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1521 unsigned long addr, bool *async, 1522 bool write_fault, bool *writable, 1523 kvm_pfn_t *p_pfn) 1524 { 1525 unsigned long pfn; 1526 int r; 1527 1528 r = follow_pfn(vma, addr, &pfn); 1529 if (r) { 1530 /* 1531 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1532 * not call the fault handler, so do it here. 1533 */ 1534 bool unlocked = false; 1535 r = fixup_user_fault(current, current->mm, addr, 1536 (write_fault ? FAULT_FLAG_WRITE : 0), 1537 &unlocked); 1538 if (unlocked) 1539 return -EAGAIN; 1540 if (r) 1541 return r; 1542 1543 r = follow_pfn(vma, addr, &pfn); 1544 if (r) 1545 return r; 1546 1547 } 1548 1549 if (writable) 1550 *writable = true; 1551 1552 /* 1553 * Get a reference here because callers of *hva_to_pfn* and 1554 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1555 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1556 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1557 * simply do nothing for reserved pfns. 1558 * 1559 * Whoever called remap_pfn_range is also going to call e.g. 1560 * unmap_mapping_range before the underlying pages are freed, 1561 * causing a call to our MMU notifier. 1562 */ 1563 kvm_get_pfn(pfn); 1564 1565 *p_pfn = pfn; 1566 return 0; 1567 } 1568 1569 /* 1570 * Pin guest page in memory and return its pfn. 1571 * @addr: host virtual address which maps memory to the guest 1572 * @atomic: whether this function can sleep 1573 * @async: whether this function need to wait IO complete if the 1574 * host page is not in the memory 1575 * @write_fault: whether we should get a writable host page 1576 * @writable: whether it allows to map a writable host page for !@write_fault 1577 * 1578 * The function will map a writable host page for these two cases: 1579 * 1): @write_fault = true 1580 * 2): @write_fault = false && @writable, @writable will tell the caller 1581 * whether the mapping is writable. 1582 */ 1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1584 bool write_fault, bool *writable) 1585 { 1586 struct vm_area_struct *vma; 1587 kvm_pfn_t pfn = 0; 1588 int npages, r; 1589 1590 /* we can do it either atomically or asynchronously, not both */ 1591 BUG_ON(atomic && async); 1592 1593 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1594 return pfn; 1595 1596 if (atomic) 1597 return KVM_PFN_ERR_FAULT; 1598 1599 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1600 if (npages == 1) 1601 return pfn; 1602 1603 down_read(¤t->mm->mmap_sem); 1604 if (npages == -EHWPOISON || 1605 (!async && check_user_page_hwpoison(addr))) { 1606 pfn = KVM_PFN_ERR_HWPOISON; 1607 goto exit; 1608 } 1609 1610 retry: 1611 vma = find_vma_intersection(current->mm, addr, addr + 1); 1612 1613 if (vma == NULL) 1614 pfn = KVM_PFN_ERR_FAULT; 1615 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1616 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1617 if (r == -EAGAIN) 1618 goto retry; 1619 if (r < 0) 1620 pfn = KVM_PFN_ERR_FAULT; 1621 } else { 1622 if (async && vma_is_valid(vma, write_fault)) 1623 *async = true; 1624 pfn = KVM_PFN_ERR_FAULT; 1625 } 1626 exit: 1627 up_read(¤t->mm->mmap_sem); 1628 return pfn; 1629 } 1630 1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1632 bool atomic, bool *async, bool write_fault, 1633 bool *writable) 1634 { 1635 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1636 1637 if (addr == KVM_HVA_ERR_RO_BAD) { 1638 if (writable) 1639 *writable = false; 1640 return KVM_PFN_ERR_RO_FAULT; 1641 } 1642 1643 if (kvm_is_error_hva(addr)) { 1644 if (writable) 1645 *writable = false; 1646 return KVM_PFN_NOSLOT; 1647 } 1648 1649 /* Do not map writable pfn in the readonly memslot. */ 1650 if (writable && memslot_is_readonly(slot)) { 1651 *writable = false; 1652 writable = NULL; 1653 } 1654 1655 return hva_to_pfn(addr, atomic, async, write_fault, 1656 writable); 1657 } 1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1659 1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1661 bool *writable) 1662 { 1663 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1664 write_fault, writable); 1665 } 1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1667 1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1669 { 1670 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1671 } 1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1673 1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1675 { 1676 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1679 1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1681 { 1682 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1683 } 1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1685 1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1687 { 1688 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1691 1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1693 { 1694 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1695 } 1696 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1697 1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1699 { 1700 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1701 } 1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1703 1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1705 struct page **pages, int nr_pages) 1706 { 1707 unsigned long addr; 1708 gfn_t entry = 0; 1709 1710 addr = gfn_to_hva_many(slot, gfn, &entry); 1711 if (kvm_is_error_hva(addr)) 1712 return -1; 1713 1714 if (entry < nr_pages) 1715 return 0; 1716 1717 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1718 } 1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1720 1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1722 { 1723 if (is_error_noslot_pfn(pfn)) 1724 return KVM_ERR_PTR_BAD_PAGE; 1725 1726 if (kvm_is_reserved_pfn(pfn)) { 1727 WARN_ON(1); 1728 return KVM_ERR_PTR_BAD_PAGE; 1729 } 1730 1731 return pfn_to_page(pfn); 1732 } 1733 1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1735 { 1736 kvm_pfn_t pfn; 1737 1738 pfn = gfn_to_pfn(kvm, gfn); 1739 1740 return kvm_pfn_to_page(pfn); 1741 } 1742 EXPORT_SYMBOL_GPL(gfn_to_page); 1743 1744 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1745 struct kvm_host_map *map) 1746 { 1747 kvm_pfn_t pfn; 1748 void *hva = NULL; 1749 struct page *page = KVM_UNMAPPED_PAGE; 1750 1751 if (!map) 1752 return -EINVAL; 1753 1754 pfn = gfn_to_pfn_memslot(slot, gfn); 1755 if (is_error_noslot_pfn(pfn)) 1756 return -EINVAL; 1757 1758 if (pfn_valid(pfn)) { 1759 page = pfn_to_page(pfn); 1760 hva = kmap(page); 1761 #ifdef CONFIG_HAS_IOMEM 1762 } else { 1763 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1764 #endif 1765 } 1766 1767 if (!hva) 1768 return -EFAULT; 1769 1770 map->page = page; 1771 map->hva = hva; 1772 map->pfn = pfn; 1773 map->gfn = gfn; 1774 1775 return 0; 1776 } 1777 1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1779 { 1780 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1783 1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1785 bool dirty) 1786 { 1787 if (!map) 1788 return; 1789 1790 if (!map->hva) 1791 return; 1792 1793 if (map->page) 1794 kunmap(map->page); 1795 #ifdef CONFIG_HAS_IOMEM 1796 else 1797 memunmap(map->hva); 1798 #endif 1799 1800 if (dirty) { 1801 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1802 kvm_release_pfn_dirty(map->pfn); 1803 } else { 1804 kvm_release_pfn_clean(map->pfn); 1805 } 1806 1807 map->hva = NULL; 1808 map->page = NULL; 1809 } 1810 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1811 1812 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1813 { 1814 kvm_pfn_t pfn; 1815 1816 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1817 1818 return kvm_pfn_to_page(pfn); 1819 } 1820 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1821 1822 void kvm_release_page_clean(struct page *page) 1823 { 1824 WARN_ON(is_error_page(page)); 1825 1826 kvm_release_pfn_clean(page_to_pfn(page)); 1827 } 1828 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1829 1830 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1831 { 1832 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1833 put_page(pfn_to_page(pfn)); 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1836 1837 void kvm_release_page_dirty(struct page *page) 1838 { 1839 WARN_ON(is_error_page(page)); 1840 1841 kvm_release_pfn_dirty(page_to_pfn(page)); 1842 } 1843 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1844 1845 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1846 { 1847 kvm_set_pfn_dirty(pfn); 1848 kvm_release_pfn_clean(pfn); 1849 } 1850 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1851 1852 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1853 { 1854 if (!kvm_is_reserved_pfn(pfn)) { 1855 struct page *page = pfn_to_page(pfn); 1856 1857 if (!PageReserved(page)) 1858 SetPageDirty(page); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1862 1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1864 { 1865 if (!kvm_is_reserved_pfn(pfn)) 1866 mark_page_accessed(pfn_to_page(pfn)); 1867 } 1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1869 1870 void kvm_get_pfn(kvm_pfn_t pfn) 1871 { 1872 if (!kvm_is_reserved_pfn(pfn)) 1873 get_page(pfn_to_page(pfn)); 1874 } 1875 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1876 1877 static int next_segment(unsigned long len, int offset) 1878 { 1879 if (len > PAGE_SIZE - offset) 1880 return PAGE_SIZE - offset; 1881 else 1882 return len; 1883 } 1884 1885 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1886 void *data, int offset, int len) 1887 { 1888 int r; 1889 unsigned long addr; 1890 1891 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1892 if (kvm_is_error_hva(addr)) 1893 return -EFAULT; 1894 r = __copy_from_user(data, (void __user *)addr + offset, len); 1895 if (r) 1896 return -EFAULT; 1897 return 0; 1898 } 1899 1900 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1901 int len) 1902 { 1903 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1904 1905 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1906 } 1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1908 1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1910 int offset, int len) 1911 { 1912 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1913 1914 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1915 } 1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1917 1918 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1919 { 1920 gfn_t gfn = gpa >> PAGE_SHIFT; 1921 int seg; 1922 int offset = offset_in_page(gpa); 1923 int ret; 1924 1925 while ((seg = next_segment(len, offset)) != 0) { 1926 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1927 if (ret < 0) 1928 return ret; 1929 offset = 0; 1930 len -= seg; 1931 data += seg; 1932 ++gfn; 1933 } 1934 return 0; 1935 } 1936 EXPORT_SYMBOL_GPL(kvm_read_guest); 1937 1938 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1939 { 1940 gfn_t gfn = gpa >> PAGE_SHIFT; 1941 int seg; 1942 int offset = offset_in_page(gpa); 1943 int ret; 1944 1945 while ((seg = next_segment(len, offset)) != 0) { 1946 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1947 if (ret < 0) 1948 return ret; 1949 offset = 0; 1950 len -= seg; 1951 data += seg; 1952 ++gfn; 1953 } 1954 return 0; 1955 } 1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1957 1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1959 void *data, int offset, unsigned long len) 1960 { 1961 int r; 1962 unsigned long addr; 1963 1964 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1965 if (kvm_is_error_hva(addr)) 1966 return -EFAULT; 1967 pagefault_disable(); 1968 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1969 pagefault_enable(); 1970 if (r) 1971 return -EFAULT; 1972 return 0; 1973 } 1974 1975 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1976 unsigned long len) 1977 { 1978 gfn_t gfn = gpa >> PAGE_SHIFT; 1979 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1980 int offset = offset_in_page(gpa); 1981 1982 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1983 } 1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1985 1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1987 void *data, unsigned long len) 1988 { 1989 gfn_t gfn = gpa >> PAGE_SHIFT; 1990 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1991 int offset = offset_in_page(gpa); 1992 1993 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1996 1997 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1998 const void *data, int offset, int len) 1999 { 2000 int r; 2001 unsigned long addr; 2002 2003 addr = gfn_to_hva_memslot(memslot, gfn); 2004 if (kvm_is_error_hva(addr)) 2005 return -EFAULT; 2006 r = __copy_to_user((void __user *)addr + offset, data, len); 2007 if (r) 2008 return -EFAULT; 2009 mark_page_dirty_in_slot(memslot, gfn); 2010 return 0; 2011 } 2012 2013 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2014 const void *data, int offset, int len) 2015 { 2016 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2017 2018 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2019 } 2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2021 2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2023 const void *data, int offset, int len) 2024 { 2025 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2026 2027 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2030 2031 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2032 unsigned long len) 2033 { 2034 gfn_t gfn = gpa >> PAGE_SHIFT; 2035 int seg; 2036 int offset = offset_in_page(gpa); 2037 int ret; 2038 2039 while ((seg = next_segment(len, offset)) != 0) { 2040 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2041 if (ret < 0) 2042 return ret; 2043 offset = 0; 2044 len -= seg; 2045 data += seg; 2046 ++gfn; 2047 } 2048 return 0; 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_write_guest); 2051 2052 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2053 unsigned long len) 2054 { 2055 gfn_t gfn = gpa >> PAGE_SHIFT; 2056 int seg; 2057 int offset = offset_in_page(gpa); 2058 int ret; 2059 2060 while ((seg = next_segment(len, offset)) != 0) { 2061 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2062 if (ret < 0) 2063 return ret; 2064 offset = 0; 2065 len -= seg; 2066 data += seg; 2067 ++gfn; 2068 } 2069 return 0; 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2072 2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2074 struct gfn_to_hva_cache *ghc, 2075 gpa_t gpa, unsigned long len) 2076 { 2077 int offset = offset_in_page(gpa); 2078 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2079 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2080 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2081 gfn_t nr_pages_avail; 2082 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2083 2084 ghc->gpa = gpa; 2085 ghc->generation = slots->generation; 2086 ghc->len = len; 2087 ghc->hva = KVM_HVA_ERR_BAD; 2088 2089 /* 2090 * If the requested region crosses two memslots, we still 2091 * verify that the entire region is valid here. 2092 */ 2093 while (!r && start_gfn <= end_gfn) { 2094 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2095 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2096 &nr_pages_avail); 2097 if (kvm_is_error_hva(ghc->hva)) 2098 r = -EFAULT; 2099 start_gfn += nr_pages_avail; 2100 } 2101 2102 /* Use the slow path for cross page reads and writes. */ 2103 if (!r && nr_pages_needed == 1) 2104 ghc->hva += offset; 2105 else 2106 ghc->memslot = NULL; 2107 2108 return r; 2109 } 2110 2111 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2112 gpa_t gpa, unsigned long len) 2113 { 2114 struct kvm_memslots *slots = kvm_memslots(kvm); 2115 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2118 2119 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2120 void *data, unsigned int offset, 2121 unsigned long len) 2122 { 2123 struct kvm_memslots *slots = kvm_memslots(kvm); 2124 int r; 2125 gpa_t gpa = ghc->gpa + offset; 2126 2127 BUG_ON(len + offset > ghc->len); 2128 2129 if (slots->generation != ghc->generation) 2130 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2131 2132 if (unlikely(!ghc->memslot)) 2133 return kvm_write_guest(kvm, gpa, data, len); 2134 2135 if (kvm_is_error_hva(ghc->hva)) 2136 return -EFAULT; 2137 2138 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2139 if (r) 2140 return -EFAULT; 2141 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2146 2147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2148 void *data, unsigned long len) 2149 { 2150 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2151 } 2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2153 2154 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2155 void *data, unsigned long len) 2156 { 2157 struct kvm_memslots *slots = kvm_memslots(kvm); 2158 int r; 2159 2160 BUG_ON(len > ghc->len); 2161 2162 if (slots->generation != ghc->generation) 2163 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2164 2165 if (unlikely(!ghc->memslot)) 2166 return kvm_read_guest(kvm, ghc->gpa, data, len); 2167 2168 if (kvm_is_error_hva(ghc->hva)) 2169 return -EFAULT; 2170 2171 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2172 if (r) 2173 return -EFAULT; 2174 2175 return 0; 2176 } 2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2178 2179 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2180 { 2181 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2182 2183 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2184 } 2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2186 2187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2188 { 2189 gfn_t gfn = gpa >> PAGE_SHIFT; 2190 int seg; 2191 int offset = offset_in_page(gpa); 2192 int ret; 2193 2194 while ((seg = next_segment(len, offset)) != 0) { 2195 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2196 if (ret < 0) 2197 return ret; 2198 offset = 0; 2199 len -= seg; 2200 ++gfn; 2201 } 2202 return 0; 2203 } 2204 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2205 2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2207 gfn_t gfn) 2208 { 2209 if (memslot && memslot->dirty_bitmap) { 2210 unsigned long rel_gfn = gfn - memslot->base_gfn; 2211 2212 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2213 } 2214 } 2215 2216 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2217 { 2218 struct kvm_memory_slot *memslot; 2219 2220 memslot = gfn_to_memslot(kvm, gfn); 2221 mark_page_dirty_in_slot(memslot, gfn); 2222 } 2223 EXPORT_SYMBOL_GPL(mark_page_dirty); 2224 2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2226 { 2227 struct kvm_memory_slot *memslot; 2228 2229 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2230 mark_page_dirty_in_slot(memslot, gfn); 2231 } 2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2233 2234 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2235 { 2236 if (!vcpu->sigset_active) 2237 return; 2238 2239 /* 2240 * This does a lockless modification of ->real_blocked, which is fine 2241 * because, only current can change ->real_blocked and all readers of 2242 * ->real_blocked don't care as long ->real_blocked is always a subset 2243 * of ->blocked. 2244 */ 2245 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2246 } 2247 2248 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2249 { 2250 if (!vcpu->sigset_active) 2251 return; 2252 2253 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2254 sigemptyset(¤t->real_blocked); 2255 } 2256 2257 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2258 { 2259 unsigned int old, val, grow, grow_start; 2260 2261 old = val = vcpu->halt_poll_ns; 2262 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2263 grow = READ_ONCE(halt_poll_ns_grow); 2264 if (!grow) 2265 goto out; 2266 2267 val *= grow; 2268 if (val < grow_start) 2269 val = grow_start; 2270 2271 if (val > halt_poll_ns) 2272 val = halt_poll_ns; 2273 2274 vcpu->halt_poll_ns = val; 2275 out: 2276 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2277 } 2278 2279 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2280 { 2281 unsigned int old, val, shrink; 2282 2283 old = val = vcpu->halt_poll_ns; 2284 shrink = READ_ONCE(halt_poll_ns_shrink); 2285 if (shrink == 0) 2286 val = 0; 2287 else 2288 val /= shrink; 2289 2290 vcpu->halt_poll_ns = val; 2291 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2292 } 2293 2294 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2295 { 2296 int ret = -EINTR; 2297 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2298 2299 if (kvm_arch_vcpu_runnable(vcpu)) { 2300 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2301 goto out; 2302 } 2303 if (kvm_cpu_has_pending_timer(vcpu)) 2304 goto out; 2305 if (signal_pending(current)) 2306 goto out; 2307 2308 ret = 0; 2309 out: 2310 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2311 return ret; 2312 } 2313 2314 /* 2315 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2316 */ 2317 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2318 { 2319 ktime_t start, cur; 2320 DECLARE_SWAITQUEUE(wait); 2321 bool waited = false; 2322 u64 block_ns; 2323 2324 start = cur = ktime_get(); 2325 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2326 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2327 2328 ++vcpu->stat.halt_attempted_poll; 2329 do { 2330 /* 2331 * This sets KVM_REQ_UNHALT if an interrupt 2332 * arrives. 2333 */ 2334 if (kvm_vcpu_check_block(vcpu) < 0) { 2335 ++vcpu->stat.halt_successful_poll; 2336 if (!vcpu_valid_wakeup(vcpu)) 2337 ++vcpu->stat.halt_poll_invalid; 2338 goto out; 2339 } 2340 cur = ktime_get(); 2341 } while (single_task_running() && ktime_before(cur, stop)); 2342 } 2343 2344 kvm_arch_vcpu_blocking(vcpu); 2345 2346 for (;;) { 2347 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2348 2349 if (kvm_vcpu_check_block(vcpu) < 0) 2350 break; 2351 2352 waited = true; 2353 schedule(); 2354 } 2355 2356 finish_swait(&vcpu->wq, &wait); 2357 cur = ktime_get(); 2358 2359 kvm_arch_vcpu_unblocking(vcpu); 2360 out: 2361 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2362 2363 if (!vcpu_valid_wakeup(vcpu)) 2364 shrink_halt_poll_ns(vcpu); 2365 else if (halt_poll_ns) { 2366 if (block_ns <= vcpu->halt_poll_ns) 2367 ; 2368 /* we had a long block, shrink polling */ 2369 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2370 shrink_halt_poll_ns(vcpu); 2371 /* we had a short halt and our poll time is too small */ 2372 else if (vcpu->halt_poll_ns < halt_poll_ns && 2373 block_ns < halt_poll_ns) 2374 grow_halt_poll_ns(vcpu); 2375 } else 2376 vcpu->halt_poll_ns = 0; 2377 2378 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2379 kvm_arch_vcpu_block_finish(vcpu); 2380 } 2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2382 2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2384 { 2385 struct swait_queue_head *wqp; 2386 2387 wqp = kvm_arch_vcpu_wq(vcpu); 2388 if (swq_has_sleeper(wqp)) { 2389 swake_up_one(wqp); 2390 ++vcpu->stat.halt_wakeup; 2391 return true; 2392 } 2393 2394 return false; 2395 } 2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2397 2398 #ifndef CONFIG_S390 2399 /* 2400 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2401 */ 2402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2403 { 2404 int me; 2405 int cpu = vcpu->cpu; 2406 2407 if (kvm_vcpu_wake_up(vcpu)) 2408 return; 2409 2410 me = get_cpu(); 2411 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2412 if (kvm_arch_vcpu_should_kick(vcpu)) 2413 smp_send_reschedule(cpu); 2414 put_cpu(); 2415 } 2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2417 #endif /* !CONFIG_S390 */ 2418 2419 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2420 { 2421 struct pid *pid; 2422 struct task_struct *task = NULL; 2423 int ret = 0; 2424 2425 rcu_read_lock(); 2426 pid = rcu_dereference(target->pid); 2427 if (pid) 2428 task = get_pid_task(pid, PIDTYPE_PID); 2429 rcu_read_unlock(); 2430 if (!task) 2431 return ret; 2432 ret = yield_to(task, 1); 2433 put_task_struct(task); 2434 2435 return ret; 2436 } 2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2438 2439 /* 2440 * Helper that checks whether a VCPU is eligible for directed yield. 2441 * Most eligible candidate to yield is decided by following heuristics: 2442 * 2443 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2444 * (preempted lock holder), indicated by @in_spin_loop. 2445 * Set at the beiginning and cleared at the end of interception/PLE handler. 2446 * 2447 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2448 * chance last time (mostly it has become eligible now since we have probably 2449 * yielded to lockholder in last iteration. This is done by toggling 2450 * @dy_eligible each time a VCPU checked for eligibility.) 2451 * 2452 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2453 * to preempted lock-holder could result in wrong VCPU selection and CPU 2454 * burning. Giving priority for a potential lock-holder increases lock 2455 * progress. 2456 * 2457 * Since algorithm is based on heuristics, accessing another VCPU data without 2458 * locking does not harm. It may result in trying to yield to same VCPU, fail 2459 * and continue with next VCPU and so on. 2460 */ 2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2464 bool eligible; 2465 2466 eligible = !vcpu->spin_loop.in_spin_loop || 2467 vcpu->spin_loop.dy_eligible; 2468 2469 if (vcpu->spin_loop.in_spin_loop) 2470 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2471 2472 return eligible; 2473 #else 2474 return true; 2475 #endif 2476 } 2477 2478 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2479 { 2480 struct kvm *kvm = me->kvm; 2481 struct kvm_vcpu *vcpu; 2482 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2483 int yielded = 0; 2484 int try = 3; 2485 int pass; 2486 int i; 2487 2488 kvm_vcpu_set_in_spin_loop(me, true); 2489 /* 2490 * We boost the priority of a VCPU that is runnable but not 2491 * currently running, because it got preempted by something 2492 * else and called schedule in __vcpu_run. Hopefully that 2493 * VCPU is holding the lock that we need and will release it. 2494 * We approximate round-robin by starting at the last boosted VCPU. 2495 */ 2496 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2497 kvm_for_each_vcpu(i, vcpu, kvm) { 2498 if (!pass && i <= last_boosted_vcpu) { 2499 i = last_boosted_vcpu; 2500 continue; 2501 } else if (pass && i > last_boosted_vcpu) 2502 break; 2503 if (!READ_ONCE(vcpu->preempted)) 2504 continue; 2505 if (vcpu == me) 2506 continue; 2507 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2508 continue; 2509 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2510 continue; 2511 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2512 continue; 2513 2514 yielded = kvm_vcpu_yield_to(vcpu); 2515 if (yielded > 0) { 2516 kvm->last_boosted_vcpu = i; 2517 break; 2518 } else if (yielded < 0) { 2519 try--; 2520 if (!try) 2521 break; 2522 } 2523 } 2524 } 2525 kvm_vcpu_set_in_spin_loop(me, false); 2526 2527 /* Ensure vcpu is not eligible during next spinloop */ 2528 kvm_vcpu_set_dy_eligible(me, false); 2529 } 2530 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2531 2532 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2533 { 2534 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2535 struct page *page; 2536 2537 if (vmf->pgoff == 0) 2538 page = virt_to_page(vcpu->run); 2539 #ifdef CONFIG_X86 2540 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2541 page = virt_to_page(vcpu->arch.pio_data); 2542 #endif 2543 #ifdef CONFIG_KVM_MMIO 2544 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2545 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2546 #endif 2547 else 2548 return kvm_arch_vcpu_fault(vcpu, vmf); 2549 get_page(page); 2550 vmf->page = page; 2551 return 0; 2552 } 2553 2554 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2555 .fault = kvm_vcpu_fault, 2556 }; 2557 2558 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2559 { 2560 vma->vm_ops = &kvm_vcpu_vm_ops; 2561 return 0; 2562 } 2563 2564 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2565 { 2566 struct kvm_vcpu *vcpu = filp->private_data; 2567 2568 debugfs_remove_recursive(vcpu->debugfs_dentry); 2569 kvm_put_kvm(vcpu->kvm); 2570 return 0; 2571 } 2572 2573 static struct file_operations kvm_vcpu_fops = { 2574 .release = kvm_vcpu_release, 2575 .unlocked_ioctl = kvm_vcpu_ioctl, 2576 .mmap = kvm_vcpu_mmap, 2577 .llseek = noop_llseek, 2578 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2579 }; 2580 2581 /* 2582 * Allocates an inode for the vcpu. 2583 */ 2584 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2585 { 2586 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2587 2588 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2589 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2590 } 2591 2592 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2593 { 2594 char dir_name[ITOA_MAX_LEN * 2]; 2595 int ret; 2596 2597 if (!kvm_arch_has_vcpu_debugfs()) 2598 return 0; 2599 2600 if (!debugfs_initialized()) 2601 return 0; 2602 2603 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2604 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2605 vcpu->kvm->debugfs_dentry); 2606 if (!vcpu->debugfs_dentry) 2607 return -ENOMEM; 2608 2609 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2610 if (ret < 0) { 2611 debugfs_remove_recursive(vcpu->debugfs_dentry); 2612 return ret; 2613 } 2614 2615 return 0; 2616 } 2617 2618 /* 2619 * Creates some virtual cpus. Good luck creating more than one. 2620 */ 2621 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2622 { 2623 int r; 2624 struct kvm_vcpu *vcpu; 2625 2626 if (id >= KVM_MAX_VCPU_ID) 2627 return -EINVAL; 2628 2629 mutex_lock(&kvm->lock); 2630 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2631 mutex_unlock(&kvm->lock); 2632 return -EINVAL; 2633 } 2634 2635 kvm->created_vcpus++; 2636 mutex_unlock(&kvm->lock); 2637 2638 vcpu = kvm_arch_vcpu_create(kvm, id); 2639 if (IS_ERR(vcpu)) { 2640 r = PTR_ERR(vcpu); 2641 goto vcpu_decrement; 2642 } 2643 2644 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2645 2646 r = kvm_arch_vcpu_setup(vcpu); 2647 if (r) 2648 goto vcpu_destroy; 2649 2650 r = kvm_create_vcpu_debugfs(vcpu); 2651 if (r) 2652 goto vcpu_destroy; 2653 2654 mutex_lock(&kvm->lock); 2655 if (kvm_get_vcpu_by_id(kvm, id)) { 2656 r = -EEXIST; 2657 goto unlock_vcpu_destroy; 2658 } 2659 2660 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2661 2662 /* Now it's all set up, let userspace reach it */ 2663 kvm_get_kvm(kvm); 2664 r = create_vcpu_fd(vcpu); 2665 if (r < 0) { 2666 kvm_put_kvm(kvm); 2667 goto unlock_vcpu_destroy; 2668 } 2669 2670 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2671 2672 /* 2673 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2674 * before kvm->online_vcpu's incremented value. 2675 */ 2676 smp_wmb(); 2677 atomic_inc(&kvm->online_vcpus); 2678 2679 mutex_unlock(&kvm->lock); 2680 kvm_arch_vcpu_postcreate(vcpu); 2681 return r; 2682 2683 unlock_vcpu_destroy: 2684 mutex_unlock(&kvm->lock); 2685 debugfs_remove_recursive(vcpu->debugfs_dentry); 2686 vcpu_destroy: 2687 kvm_arch_vcpu_destroy(vcpu); 2688 vcpu_decrement: 2689 mutex_lock(&kvm->lock); 2690 kvm->created_vcpus--; 2691 mutex_unlock(&kvm->lock); 2692 return r; 2693 } 2694 2695 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2696 { 2697 if (sigset) { 2698 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2699 vcpu->sigset_active = 1; 2700 vcpu->sigset = *sigset; 2701 } else 2702 vcpu->sigset_active = 0; 2703 return 0; 2704 } 2705 2706 static long kvm_vcpu_ioctl(struct file *filp, 2707 unsigned int ioctl, unsigned long arg) 2708 { 2709 struct kvm_vcpu *vcpu = filp->private_data; 2710 void __user *argp = (void __user *)arg; 2711 int r; 2712 struct kvm_fpu *fpu = NULL; 2713 struct kvm_sregs *kvm_sregs = NULL; 2714 2715 if (vcpu->kvm->mm != current->mm) 2716 return -EIO; 2717 2718 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2719 return -EINVAL; 2720 2721 /* 2722 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2723 * execution; mutex_lock() would break them. 2724 */ 2725 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2726 if (r != -ENOIOCTLCMD) 2727 return r; 2728 2729 if (mutex_lock_killable(&vcpu->mutex)) 2730 return -EINTR; 2731 switch (ioctl) { 2732 case KVM_RUN: { 2733 struct pid *oldpid; 2734 r = -EINVAL; 2735 if (arg) 2736 goto out; 2737 oldpid = rcu_access_pointer(vcpu->pid); 2738 if (unlikely(oldpid != task_pid(current))) { 2739 /* The thread running this VCPU changed. */ 2740 struct pid *newpid; 2741 2742 r = kvm_arch_vcpu_run_pid_change(vcpu); 2743 if (r) 2744 break; 2745 2746 newpid = get_task_pid(current, PIDTYPE_PID); 2747 rcu_assign_pointer(vcpu->pid, newpid); 2748 if (oldpid) 2749 synchronize_rcu(); 2750 put_pid(oldpid); 2751 } 2752 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2753 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2754 break; 2755 } 2756 case KVM_GET_REGS: { 2757 struct kvm_regs *kvm_regs; 2758 2759 r = -ENOMEM; 2760 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2761 if (!kvm_regs) 2762 goto out; 2763 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2764 if (r) 2765 goto out_free1; 2766 r = -EFAULT; 2767 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2768 goto out_free1; 2769 r = 0; 2770 out_free1: 2771 kfree(kvm_regs); 2772 break; 2773 } 2774 case KVM_SET_REGS: { 2775 struct kvm_regs *kvm_regs; 2776 2777 r = -ENOMEM; 2778 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2779 if (IS_ERR(kvm_regs)) { 2780 r = PTR_ERR(kvm_regs); 2781 goto out; 2782 } 2783 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2784 kfree(kvm_regs); 2785 break; 2786 } 2787 case KVM_GET_SREGS: { 2788 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2789 GFP_KERNEL_ACCOUNT); 2790 r = -ENOMEM; 2791 if (!kvm_sregs) 2792 goto out; 2793 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2794 if (r) 2795 goto out; 2796 r = -EFAULT; 2797 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2798 goto out; 2799 r = 0; 2800 break; 2801 } 2802 case KVM_SET_SREGS: { 2803 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2804 if (IS_ERR(kvm_sregs)) { 2805 r = PTR_ERR(kvm_sregs); 2806 kvm_sregs = NULL; 2807 goto out; 2808 } 2809 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2810 break; 2811 } 2812 case KVM_GET_MP_STATE: { 2813 struct kvm_mp_state mp_state; 2814 2815 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2816 if (r) 2817 goto out; 2818 r = -EFAULT; 2819 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2820 goto out; 2821 r = 0; 2822 break; 2823 } 2824 case KVM_SET_MP_STATE: { 2825 struct kvm_mp_state mp_state; 2826 2827 r = -EFAULT; 2828 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2829 goto out; 2830 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2831 break; 2832 } 2833 case KVM_TRANSLATE: { 2834 struct kvm_translation tr; 2835 2836 r = -EFAULT; 2837 if (copy_from_user(&tr, argp, sizeof(tr))) 2838 goto out; 2839 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2840 if (r) 2841 goto out; 2842 r = -EFAULT; 2843 if (copy_to_user(argp, &tr, sizeof(tr))) 2844 goto out; 2845 r = 0; 2846 break; 2847 } 2848 case KVM_SET_GUEST_DEBUG: { 2849 struct kvm_guest_debug dbg; 2850 2851 r = -EFAULT; 2852 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2853 goto out; 2854 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2855 break; 2856 } 2857 case KVM_SET_SIGNAL_MASK: { 2858 struct kvm_signal_mask __user *sigmask_arg = argp; 2859 struct kvm_signal_mask kvm_sigmask; 2860 sigset_t sigset, *p; 2861 2862 p = NULL; 2863 if (argp) { 2864 r = -EFAULT; 2865 if (copy_from_user(&kvm_sigmask, argp, 2866 sizeof(kvm_sigmask))) 2867 goto out; 2868 r = -EINVAL; 2869 if (kvm_sigmask.len != sizeof(sigset)) 2870 goto out; 2871 r = -EFAULT; 2872 if (copy_from_user(&sigset, sigmask_arg->sigset, 2873 sizeof(sigset))) 2874 goto out; 2875 p = &sigset; 2876 } 2877 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2878 break; 2879 } 2880 case KVM_GET_FPU: { 2881 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2882 r = -ENOMEM; 2883 if (!fpu) 2884 goto out; 2885 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2886 if (r) 2887 goto out; 2888 r = -EFAULT; 2889 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2890 goto out; 2891 r = 0; 2892 break; 2893 } 2894 case KVM_SET_FPU: { 2895 fpu = memdup_user(argp, sizeof(*fpu)); 2896 if (IS_ERR(fpu)) { 2897 r = PTR_ERR(fpu); 2898 fpu = NULL; 2899 goto out; 2900 } 2901 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2902 break; 2903 } 2904 default: 2905 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2906 } 2907 out: 2908 mutex_unlock(&vcpu->mutex); 2909 kfree(fpu); 2910 kfree(kvm_sregs); 2911 return r; 2912 } 2913 2914 #ifdef CONFIG_KVM_COMPAT 2915 static long kvm_vcpu_compat_ioctl(struct file *filp, 2916 unsigned int ioctl, unsigned long arg) 2917 { 2918 struct kvm_vcpu *vcpu = filp->private_data; 2919 void __user *argp = compat_ptr(arg); 2920 int r; 2921 2922 if (vcpu->kvm->mm != current->mm) 2923 return -EIO; 2924 2925 switch (ioctl) { 2926 case KVM_SET_SIGNAL_MASK: { 2927 struct kvm_signal_mask __user *sigmask_arg = argp; 2928 struct kvm_signal_mask kvm_sigmask; 2929 sigset_t sigset; 2930 2931 if (argp) { 2932 r = -EFAULT; 2933 if (copy_from_user(&kvm_sigmask, argp, 2934 sizeof(kvm_sigmask))) 2935 goto out; 2936 r = -EINVAL; 2937 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2938 goto out; 2939 r = -EFAULT; 2940 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2941 goto out; 2942 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2943 } else 2944 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2945 break; 2946 } 2947 default: 2948 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2949 } 2950 2951 out: 2952 return r; 2953 } 2954 #endif 2955 2956 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2957 { 2958 struct kvm_device *dev = filp->private_data; 2959 2960 if (dev->ops->mmap) 2961 return dev->ops->mmap(dev, vma); 2962 2963 return -ENODEV; 2964 } 2965 2966 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2967 int (*accessor)(struct kvm_device *dev, 2968 struct kvm_device_attr *attr), 2969 unsigned long arg) 2970 { 2971 struct kvm_device_attr attr; 2972 2973 if (!accessor) 2974 return -EPERM; 2975 2976 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2977 return -EFAULT; 2978 2979 return accessor(dev, &attr); 2980 } 2981 2982 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2983 unsigned long arg) 2984 { 2985 struct kvm_device *dev = filp->private_data; 2986 2987 if (dev->kvm->mm != current->mm) 2988 return -EIO; 2989 2990 switch (ioctl) { 2991 case KVM_SET_DEVICE_ATTR: 2992 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2993 case KVM_GET_DEVICE_ATTR: 2994 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2995 case KVM_HAS_DEVICE_ATTR: 2996 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2997 default: 2998 if (dev->ops->ioctl) 2999 return dev->ops->ioctl(dev, ioctl, arg); 3000 3001 return -ENOTTY; 3002 } 3003 } 3004 3005 static int kvm_device_release(struct inode *inode, struct file *filp) 3006 { 3007 struct kvm_device *dev = filp->private_data; 3008 struct kvm *kvm = dev->kvm; 3009 3010 if (dev->ops->release) { 3011 mutex_lock(&kvm->lock); 3012 list_del(&dev->vm_node); 3013 dev->ops->release(dev); 3014 mutex_unlock(&kvm->lock); 3015 } 3016 3017 kvm_put_kvm(kvm); 3018 return 0; 3019 } 3020 3021 static const struct file_operations kvm_device_fops = { 3022 .unlocked_ioctl = kvm_device_ioctl, 3023 .release = kvm_device_release, 3024 KVM_COMPAT(kvm_device_ioctl), 3025 .mmap = kvm_device_mmap, 3026 }; 3027 3028 struct kvm_device *kvm_device_from_filp(struct file *filp) 3029 { 3030 if (filp->f_op != &kvm_device_fops) 3031 return NULL; 3032 3033 return filp->private_data; 3034 } 3035 3036 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3037 #ifdef CONFIG_KVM_MPIC 3038 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3039 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3040 #endif 3041 }; 3042 3043 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3044 { 3045 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3046 return -ENOSPC; 3047 3048 if (kvm_device_ops_table[type] != NULL) 3049 return -EEXIST; 3050 3051 kvm_device_ops_table[type] = ops; 3052 return 0; 3053 } 3054 3055 void kvm_unregister_device_ops(u32 type) 3056 { 3057 if (kvm_device_ops_table[type] != NULL) 3058 kvm_device_ops_table[type] = NULL; 3059 } 3060 3061 static int kvm_ioctl_create_device(struct kvm *kvm, 3062 struct kvm_create_device *cd) 3063 { 3064 struct kvm_device_ops *ops = NULL; 3065 struct kvm_device *dev; 3066 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3067 int type; 3068 int ret; 3069 3070 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3071 return -ENODEV; 3072 3073 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3074 ops = kvm_device_ops_table[type]; 3075 if (ops == NULL) 3076 return -ENODEV; 3077 3078 if (test) 3079 return 0; 3080 3081 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3082 if (!dev) 3083 return -ENOMEM; 3084 3085 dev->ops = ops; 3086 dev->kvm = kvm; 3087 3088 mutex_lock(&kvm->lock); 3089 ret = ops->create(dev, type); 3090 if (ret < 0) { 3091 mutex_unlock(&kvm->lock); 3092 kfree(dev); 3093 return ret; 3094 } 3095 list_add(&dev->vm_node, &kvm->devices); 3096 mutex_unlock(&kvm->lock); 3097 3098 if (ops->init) 3099 ops->init(dev); 3100 3101 kvm_get_kvm(kvm); 3102 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3103 if (ret < 0) { 3104 kvm_put_kvm(kvm); 3105 mutex_lock(&kvm->lock); 3106 list_del(&dev->vm_node); 3107 mutex_unlock(&kvm->lock); 3108 ops->destroy(dev); 3109 return ret; 3110 } 3111 3112 cd->fd = ret; 3113 return 0; 3114 } 3115 3116 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3117 { 3118 switch (arg) { 3119 case KVM_CAP_USER_MEMORY: 3120 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3121 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3122 case KVM_CAP_INTERNAL_ERROR_DATA: 3123 #ifdef CONFIG_HAVE_KVM_MSI 3124 case KVM_CAP_SIGNAL_MSI: 3125 #endif 3126 #ifdef CONFIG_HAVE_KVM_IRQFD 3127 case KVM_CAP_IRQFD: 3128 case KVM_CAP_IRQFD_RESAMPLE: 3129 #endif 3130 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3131 case KVM_CAP_CHECK_EXTENSION_VM: 3132 case KVM_CAP_ENABLE_CAP_VM: 3133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3134 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3135 #endif 3136 return 1; 3137 #ifdef CONFIG_KVM_MMIO 3138 case KVM_CAP_COALESCED_MMIO: 3139 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3140 case KVM_CAP_COALESCED_PIO: 3141 return 1; 3142 #endif 3143 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3144 case KVM_CAP_IRQ_ROUTING: 3145 return KVM_MAX_IRQ_ROUTES; 3146 #endif 3147 #if KVM_ADDRESS_SPACE_NUM > 1 3148 case KVM_CAP_MULTI_ADDRESS_SPACE: 3149 return KVM_ADDRESS_SPACE_NUM; 3150 #endif 3151 case KVM_CAP_NR_MEMSLOTS: 3152 return KVM_USER_MEM_SLOTS; 3153 default: 3154 break; 3155 } 3156 return kvm_vm_ioctl_check_extension(kvm, arg); 3157 } 3158 3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3160 struct kvm_enable_cap *cap) 3161 { 3162 return -EINVAL; 3163 } 3164 3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3166 struct kvm_enable_cap *cap) 3167 { 3168 switch (cap->cap) { 3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3170 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3171 if (cap->flags || (cap->args[0] & ~1)) 3172 return -EINVAL; 3173 kvm->manual_dirty_log_protect = cap->args[0]; 3174 return 0; 3175 #endif 3176 default: 3177 return kvm_vm_ioctl_enable_cap(kvm, cap); 3178 } 3179 } 3180 3181 static long kvm_vm_ioctl(struct file *filp, 3182 unsigned int ioctl, unsigned long arg) 3183 { 3184 struct kvm *kvm = filp->private_data; 3185 void __user *argp = (void __user *)arg; 3186 int r; 3187 3188 if (kvm->mm != current->mm) 3189 return -EIO; 3190 switch (ioctl) { 3191 case KVM_CREATE_VCPU: 3192 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3193 break; 3194 case KVM_ENABLE_CAP: { 3195 struct kvm_enable_cap cap; 3196 3197 r = -EFAULT; 3198 if (copy_from_user(&cap, argp, sizeof(cap))) 3199 goto out; 3200 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3201 break; 3202 } 3203 case KVM_SET_USER_MEMORY_REGION: { 3204 struct kvm_userspace_memory_region kvm_userspace_mem; 3205 3206 r = -EFAULT; 3207 if (copy_from_user(&kvm_userspace_mem, argp, 3208 sizeof(kvm_userspace_mem))) 3209 goto out; 3210 3211 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3212 break; 3213 } 3214 case KVM_GET_DIRTY_LOG: { 3215 struct kvm_dirty_log log; 3216 3217 r = -EFAULT; 3218 if (copy_from_user(&log, argp, sizeof(log))) 3219 goto out; 3220 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3221 break; 3222 } 3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3224 case KVM_CLEAR_DIRTY_LOG: { 3225 struct kvm_clear_dirty_log log; 3226 3227 r = -EFAULT; 3228 if (copy_from_user(&log, argp, sizeof(log))) 3229 goto out; 3230 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3231 break; 3232 } 3233 #endif 3234 #ifdef CONFIG_KVM_MMIO 3235 case KVM_REGISTER_COALESCED_MMIO: { 3236 struct kvm_coalesced_mmio_zone zone; 3237 3238 r = -EFAULT; 3239 if (copy_from_user(&zone, argp, sizeof(zone))) 3240 goto out; 3241 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3242 break; 3243 } 3244 case KVM_UNREGISTER_COALESCED_MMIO: { 3245 struct kvm_coalesced_mmio_zone zone; 3246 3247 r = -EFAULT; 3248 if (copy_from_user(&zone, argp, sizeof(zone))) 3249 goto out; 3250 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3251 break; 3252 } 3253 #endif 3254 case KVM_IRQFD: { 3255 struct kvm_irqfd data; 3256 3257 r = -EFAULT; 3258 if (copy_from_user(&data, argp, sizeof(data))) 3259 goto out; 3260 r = kvm_irqfd(kvm, &data); 3261 break; 3262 } 3263 case KVM_IOEVENTFD: { 3264 struct kvm_ioeventfd data; 3265 3266 r = -EFAULT; 3267 if (copy_from_user(&data, argp, sizeof(data))) 3268 goto out; 3269 r = kvm_ioeventfd(kvm, &data); 3270 break; 3271 } 3272 #ifdef CONFIG_HAVE_KVM_MSI 3273 case KVM_SIGNAL_MSI: { 3274 struct kvm_msi msi; 3275 3276 r = -EFAULT; 3277 if (copy_from_user(&msi, argp, sizeof(msi))) 3278 goto out; 3279 r = kvm_send_userspace_msi(kvm, &msi); 3280 break; 3281 } 3282 #endif 3283 #ifdef __KVM_HAVE_IRQ_LINE 3284 case KVM_IRQ_LINE_STATUS: 3285 case KVM_IRQ_LINE: { 3286 struct kvm_irq_level irq_event; 3287 3288 r = -EFAULT; 3289 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3290 goto out; 3291 3292 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3293 ioctl == KVM_IRQ_LINE_STATUS); 3294 if (r) 3295 goto out; 3296 3297 r = -EFAULT; 3298 if (ioctl == KVM_IRQ_LINE_STATUS) { 3299 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3300 goto out; 3301 } 3302 3303 r = 0; 3304 break; 3305 } 3306 #endif 3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3308 case KVM_SET_GSI_ROUTING: { 3309 struct kvm_irq_routing routing; 3310 struct kvm_irq_routing __user *urouting; 3311 struct kvm_irq_routing_entry *entries = NULL; 3312 3313 r = -EFAULT; 3314 if (copy_from_user(&routing, argp, sizeof(routing))) 3315 goto out; 3316 r = -EINVAL; 3317 if (!kvm_arch_can_set_irq_routing(kvm)) 3318 goto out; 3319 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3320 goto out; 3321 if (routing.flags) 3322 goto out; 3323 if (routing.nr) { 3324 r = -ENOMEM; 3325 entries = vmalloc(array_size(sizeof(*entries), 3326 routing.nr)); 3327 if (!entries) 3328 goto out; 3329 r = -EFAULT; 3330 urouting = argp; 3331 if (copy_from_user(entries, urouting->entries, 3332 routing.nr * sizeof(*entries))) 3333 goto out_free_irq_routing; 3334 } 3335 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3336 routing.flags); 3337 out_free_irq_routing: 3338 vfree(entries); 3339 break; 3340 } 3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3342 case KVM_CREATE_DEVICE: { 3343 struct kvm_create_device cd; 3344 3345 r = -EFAULT; 3346 if (copy_from_user(&cd, argp, sizeof(cd))) 3347 goto out; 3348 3349 r = kvm_ioctl_create_device(kvm, &cd); 3350 if (r) 3351 goto out; 3352 3353 r = -EFAULT; 3354 if (copy_to_user(argp, &cd, sizeof(cd))) 3355 goto out; 3356 3357 r = 0; 3358 break; 3359 } 3360 case KVM_CHECK_EXTENSION: 3361 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3362 break; 3363 default: 3364 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3365 } 3366 out: 3367 return r; 3368 } 3369 3370 #ifdef CONFIG_KVM_COMPAT 3371 struct compat_kvm_dirty_log { 3372 __u32 slot; 3373 __u32 padding1; 3374 union { 3375 compat_uptr_t dirty_bitmap; /* one bit per page */ 3376 __u64 padding2; 3377 }; 3378 }; 3379 3380 static long kvm_vm_compat_ioctl(struct file *filp, 3381 unsigned int ioctl, unsigned long arg) 3382 { 3383 struct kvm *kvm = filp->private_data; 3384 int r; 3385 3386 if (kvm->mm != current->mm) 3387 return -EIO; 3388 switch (ioctl) { 3389 case KVM_GET_DIRTY_LOG: { 3390 struct compat_kvm_dirty_log compat_log; 3391 struct kvm_dirty_log log; 3392 3393 if (copy_from_user(&compat_log, (void __user *)arg, 3394 sizeof(compat_log))) 3395 return -EFAULT; 3396 log.slot = compat_log.slot; 3397 log.padding1 = compat_log.padding1; 3398 log.padding2 = compat_log.padding2; 3399 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3400 3401 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3402 break; 3403 } 3404 default: 3405 r = kvm_vm_ioctl(filp, ioctl, arg); 3406 } 3407 return r; 3408 } 3409 #endif 3410 3411 static struct file_operations kvm_vm_fops = { 3412 .release = kvm_vm_release, 3413 .unlocked_ioctl = kvm_vm_ioctl, 3414 .llseek = noop_llseek, 3415 KVM_COMPAT(kvm_vm_compat_ioctl), 3416 }; 3417 3418 static int kvm_dev_ioctl_create_vm(unsigned long type) 3419 { 3420 int r; 3421 struct kvm *kvm; 3422 struct file *file; 3423 3424 kvm = kvm_create_vm(type); 3425 if (IS_ERR(kvm)) 3426 return PTR_ERR(kvm); 3427 #ifdef CONFIG_KVM_MMIO 3428 r = kvm_coalesced_mmio_init(kvm); 3429 if (r < 0) 3430 goto put_kvm; 3431 #endif 3432 r = get_unused_fd_flags(O_CLOEXEC); 3433 if (r < 0) 3434 goto put_kvm; 3435 3436 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3437 if (IS_ERR(file)) { 3438 put_unused_fd(r); 3439 r = PTR_ERR(file); 3440 goto put_kvm; 3441 } 3442 3443 /* 3444 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3445 * already set, with ->release() being kvm_vm_release(). In error 3446 * cases it will be called by the final fput(file) and will take 3447 * care of doing kvm_put_kvm(kvm). 3448 */ 3449 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3450 put_unused_fd(r); 3451 fput(file); 3452 return -ENOMEM; 3453 } 3454 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3455 3456 fd_install(r, file); 3457 return r; 3458 3459 put_kvm: 3460 kvm_put_kvm(kvm); 3461 return r; 3462 } 3463 3464 static long kvm_dev_ioctl(struct file *filp, 3465 unsigned int ioctl, unsigned long arg) 3466 { 3467 long r = -EINVAL; 3468 3469 switch (ioctl) { 3470 case KVM_GET_API_VERSION: 3471 if (arg) 3472 goto out; 3473 r = KVM_API_VERSION; 3474 break; 3475 case KVM_CREATE_VM: 3476 r = kvm_dev_ioctl_create_vm(arg); 3477 break; 3478 case KVM_CHECK_EXTENSION: 3479 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3480 break; 3481 case KVM_GET_VCPU_MMAP_SIZE: 3482 if (arg) 3483 goto out; 3484 r = PAGE_SIZE; /* struct kvm_run */ 3485 #ifdef CONFIG_X86 3486 r += PAGE_SIZE; /* pio data page */ 3487 #endif 3488 #ifdef CONFIG_KVM_MMIO 3489 r += PAGE_SIZE; /* coalesced mmio ring page */ 3490 #endif 3491 break; 3492 case KVM_TRACE_ENABLE: 3493 case KVM_TRACE_PAUSE: 3494 case KVM_TRACE_DISABLE: 3495 r = -EOPNOTSUPP; 3496 break; 3497 default: 3498 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3499 } 3500 out: 3501 return r; 3502 } 3503 3504 static struct file_operations kvm_chardev_ops = { 3505 .unlocked_ioctl = kvm_dev_ioctl, 3506 .llseek = noop_llseek, 3507 KVM_COMPAT(kvm_dev_ioctl), 3508 }; 3509 3510 static struct miscdevice kvm_dev = { 3511 KVM_MINOR, 3512 "kvm", 3513 &kvm_chardev_ops, 3514 }; 3515 3516 static void hardware_enable_nolock(void *junk) 3517 { 3518 int cpu = raw_smp_processor_id(); 3519 int r; 3520 3521 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3522 return; 3523 3524 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3525 3526 r = kvm_arch_hardware_enable(); 3527 3528 if (r) { 3529 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3530 atomic_inc(&hardware_enable_failed); 3531 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3532 } 3533 } 3534 3535 static int kvm_starting_cpu(unsigned int cpu) 3536 { 3537 raw_spin_lock(&kvm_count_lock); 3538 if (kvm_usage_count) 3539 hardware_enable_nolock(NULL); 3540 raw_spin_unlock(&kvm_count_lock); 3541 return 0; 3542 } 3543 3544 static void hardware_disable_nolock(void *junk) 3545 { 3546 int cpu = raw_smp_processor_id(); 3547 3548 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3549 return; 3550 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3551 kvm_arch_hardware_disable(); 3552 } 3553 3554 static int kvm_dying_cpu(unsigned int cpu) 3555 { 3556 raw_spin_lock(&kvm_count_lock); 3557 if (kvm_usage_count) 3558 hardware_disable_nolock(NULL); 3559 raw_spin_unlock(&kvm_count_lock); 3560 return 0; 3561 } 3562 3563 static void hardware_disable_all_nolock(void) 3564 { 3565 BUG_ON(!kvm_usage_count); 3566 3567 kvm_usage_count--; 3568 if (!kvm_usage_count) 3569 on_each_cpu(hardware_disable_nolock, NULL, 1); 3570 } 3571 3572 static void hardware_disable_all(void) 3573 { 3574 raw_spin_lock(&kvm_count_lock); 3575 hardware_disable_all_nolock(); 3576 raw_spin_unlock(&kvm_count_lock); 3577 } 3578 3579 static int hardware_enable_all(void) 3580 { 3581 int r = 0; 3582 3583 raw_spin_lock(&kvm_count_lock); 3584 3585 kvm_usage_count++; 3586 if (kvm_usage_count == 1) { 3587 atomic_set(&hardware_enable_failed, 0); 3588 on_each_cpu(hardware_enable_nolock, NULL, 1); 3589 3590 if (atomic_read(&hardware_enable_failed)) { 3591 hardware_disable_all_nolock(); 3592 r = -EBUSY; 3593 } 3594 } 3595 3596 raw_spin_unlock(&kvm_count_lock); 3597 3598 return r; 3599 } 3600 3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3602 void *v) 3603 { 3604 /* 3605 * Some (well, at least mine) BIOSes hang on reboot if 3606 * in vmx root mode. 3607 * 3608 * And Intel TXT required VMX off for all cpu when system shutdown. 3609 */ 3610 pr_info("kvm: exiting hardware virtualization\n"); 3611 kvm_rebooting = true; 3612 on_each_cpu(hardware_disable_nolock, NULL, 1); 3613 return NOTIFY_OK; 3614 } 3615 3616 static struct notifier_block kvm_reboot_notifier = { 3617 .notifier_call = kvm_reboot, 3618 .priority = 0, 3619 }; 3620 3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3622 { 3623 int i; 3624 3625 for (i = 0; i < bus->dev_count; i++) { 3626 struct kvm_io_device *pos = bus->range[i].dev; 3627 3628 kvm_iodevice_destructor(pos); 3629 } 3630 kfree(bus); 3631 } 3632 3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3634 const struct kvm_io_range *r2) 3635 { 3636 gpa_t addr1 = r1->addr; 3637 gpa_t addr2 = r2->addr; 3638 3639 if (addr1 < addr2) 3640 return -1; 3641 3642 /* If r2->len == 0, match the exact address. If r2->len != 0, 3643 * accept any overlapping write. Any order is acceptable for 3644 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3645 * we process all of them. 3646 */ 3647 if (r2->len) { 3648 addr1 += r1->len; 3649 addr2 += r2->len; 3650 } 3651 3652 if (addr1 > addr2) 3653 return 1; 3654 3655 return 0; 3656 } 3657 3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3659 { 3660 return kvm_io_bus_cmp(p1, p2); 3661 } 3662 3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3664 gpa_t addr, int len) 3665 { 3666 struct kvm_io_range *range, key; 3667 int off; 3668 3669 key = (struct kvm_io_range) { 3670 .addr = addr, 3671 .len = len, 3672 }; 3673 3674 range = bsearch(&key, bus->range, bus->dev_count, 3675 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3676 if (range == NULL) 3677 return -ENOENT; 3678 3679 off = range - bus->range; 3680 3681 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3682 off--; 3683 3684 return off; 3685 } 3686 3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3688 struct kvm_io_range *range, const void *val) 3689 { 3690 int idx; 3691 3692 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3693 if (idx < 0) 3694 return -EOPNOTSUPP; 3695 3696 while (idx < bus->dev_count && 3697 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3698 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3699 range->len, val)) 3700 return idx; 3701 idx++; 3702 } 3703 3704 return -EOPNOTSUPP; 3705 } 3706 3707 /* kvm_io_bus_write - called under kvm->slots_lock */ 3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3709 int len, const void *val) 3710 { 3711 struct kvm_io_bus *bus; 3712 struct kvm_io_range range; 3713 int r; 3714 3715 range = (struct kvm_io_range) { 3716 .addr = addr, 3717 .len = len, 3718 }; 3719 3720 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3721 if (!bus) 3722 return -ENOMEM; 3723 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3724 return r < 0 ? r : 0; 3725 } 3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3727 3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3730 gpa_t addr, int len, const void *val, long cookie) 3731 { 3732 struct kvm_io_bus *bus; 3733 struct kvm_io_range range; 3734 3735 range = (struct kvm_io_range) { 3736 .addr = addr, 3737 .len = len, 3738 }; 3739 3740 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3741 if (!bus) 3742 return -ENOMEM; 3743 3744 /* First try the device referenced by cookie. */ 3745 if ((cookie >= 0) && (cookie < bus->dev_count) && 3746 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3747 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3748 val)) 3749 return cookie; 3750 3751 /* 3752 * cookie contained garbage; fall back to search and return the 3753 * correct cookie value. 3754 */ 3755 return __kvm_io_bus_write(vcpu, bus, &range, val); 3756 } 3757 3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3759 struct kvm_io_range *range, void *val) 3760 { 3761 int idx; 3762 3763 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3764 if (idx < 0) 3765 return -EOPNOTSUPP; 3766 3767 while (idx < bus->dev_count && 3768 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3769 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3770 range->len, val)) 3771 return idx; 3772 idx++; 3773 } 3774 3775 return -EOPNOTSUPP; 3776 } 3777 3778 /* kvm_io_bus_read - called under kvm->slots_lock */ 3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3780 int len, void *val) 3781 { 3782 struct kvm_io_bus *bus; 3783 struct kvm_io_range range; 3784 int r; 3785 3786 range = (struct kvm_io_range) { 3787 .addr = addr, 3788 .len = len, 3789 }; 3790 3791 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3792 if (!bus) 3793 return -ENOMEM; 3794 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3795 return r < 0 ? r : 0; 3796 } 3797 3798 /* Caller must hold slots_lock. */ 3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3800 int len, struct kvm_io_device *dev) 3801 { 3802 int i; 3803 struct kvm_io_bus *new_bus, *bus; 3804 struct kvm_io_range range; 3805 3806 bus = kvm_get_bus(kvm, bus_idx); 3807 if (!bus) 3808 return -ENOMEM; 3809 3810 /* exclude ioeventfd which is limited by maximum fd */ 3811 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3812 return -ENOSPC; 3813 3814 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3815 GFP_KERNEL_ACCOUNT); 3816 if (!new_bus) 3817 return -ENOMEM; 3818 3819 range = (struct kvm_io_range) { 3820 .addr = addr, 3821 .len = len, 3822 .dev = dev, 3823 }; 3824 3825 for (i = 0; i < bus->dev_count; i++) 3826 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3827 break; 3828 3829 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3830 new_bus->dev_count++; 3831 new_bus->range[i] = range; 3832 memcpy(new_bus->range + i + 1, bus->range + i, 3833 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3834 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3835 synchronize_srcu_expedited(&kvm->srcu); 3836 kfree(bus); 3837 3838 return 0; 3839 } 3840 3841 /* Caller must hold slots_lock. */ 3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3843 struct kvm_io_device *dev) 3844 { 3845 int i; 3846 struct kvm_io_bus *new_bus, *bus; 3847 3848 bus = kvm_get_bus(kvm, bus_idx); 3849 if (!bus) 3850 return; 3851 3852 for (i = 0; i < bus->dev_count; i++) 3853 if (bus->range[i].dev == dev) { 3854 break; 3855 } 3856 3857 if (i == bus->dev_count) 3858 return; 3859 3860 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3861 GFP_KERNEL_ACCOUNT); 3862 if (!new_bus) { 3863 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3864 goto broken; 3865 } 3866 3867 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3868 new_bus->dev_count--; 3869 memcpy(new_bus->range + i, bus->range + i + 1, 3870 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3871 3872 broken: 3873 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3874 synchronize_srcu_expedited(&kvm->srcu); 3875 kfree(bus); 3876 return; 3877 } 3878 3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3880 gpa_t addr) 3881 { 3882 struct kvm_io_bus *bus; 3883 int dev_idx, srcu_idx; 3884 struct kvm_io_device *iodev = NULL; 3885 3886 srcu_idx = srcu_read_lock(&kvm->srcu); 3887 3888 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3889 if (!bus) 3890 goto out_unlock; 3891 3892 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3893 if (dev_idx < 0) 3894 goto out_unlock; 3895 3896 iodev = bus->range[dev_idx].dev; 3897 3898 out_unlock: 3899 srcu_read_unlock(&kvm->srcu, srcu_idx); 3900 3901 return iodev; 3902 } 3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3904 3905 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3906 int (*get)(void *, u64 *), int (*set)(void *, u64), 3907 const char *fmt) 3908 { 3909 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3910 inode->i_private; 3911 3912 /* The debugfs files are a reference to the kvm struct which 3913 * is still valid when kvm_destroy_vm is called. 3914 * To avoid the race between open and the removal of the debugfs 3915 * directory we test against the users count. 3916 */ 3917 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3918 return -ENOENT; 3919 3920 if (simple_attr_open(inode, file, get, set, fmt)) { 3921 kvm_put_kvm(stat_data->kvm); 3922 return -ENOMEM; 3923 } 3924 3925 return 0; 3926 } 3927 3928 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3929 { 3930 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3931 inode->i_private; 3932 3933 simple_attr_release(inode, file); 3934 kvm_put_kvm(stat_data->kvm); 3935 3936 return 0; 3937 } 3938 3939 static int vm_stat_get_per_vm(void *data, u64 *val) 3940 { 3941 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3942 3943 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3944 3945 return 0; 3946 } 3947 3948 static int vm_stat_clear_per_vm(void *data, u64 val) 3949 { 3950 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3951 3952 if (val) 3953 return -EINVAL; 3954 3955 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3956 3957 return 0; 3958 } 3959 3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3961 { 3962 __simple_attr_check_format("%llu\n", 0ull); 3963 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3964 vm_stat_clear_per_vm, "%llu\n"); 3965 } 3966 3967 static const struct file_operations vm_stat_get_per_vm_fops = { 3968 .owner = THIS_MODULE, 3969 .open = vm_stat_get_per_vm_open, 3970 .release = kvm_debugfs_release, 3971 .read = simple_attr_read, 3972 .write = simple_attr_write, 3973 .llseek = no_llseek, 3974 }; 3975 3976 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3977 { 3978 int i; 3979 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3980 struct kvm_vcpu *vcpu; 3981 3982 *val = 0; 3983 3984 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3985 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3986 3987 return 0; 3988 } 3989 3990 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3991 { 3992 int i; 3993 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3994 struct kvm_vcpu *vcpu; 3995 3996 if (val) 3997 return -EINVAL; 3998 3999 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4000 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4001 4002 return 0; 4003 } 4004 4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4006 { 4007 __simple_attr_check_format("%llu\n", 0ull); 4008 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4009 vcpu_stat_clear_per_vm, "%llu\n"); 4010 } 4011 4012 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4013 .owner = THIS_MODULE, 4014 .open = vcpu_stat_get_per_vm_open, 4015 .release = kvm_debugfs_release, 4016 .read = simple_attr_read, 4017 .write = simple_attr_write, 4018 .llseek = no_llseek, 4019 }; 4020 4021 static const struct file_operations *stat_fops_per_vm[] = { 4022 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4023 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4024 }; 4025 4026 static int vm_stat_get(void *_offset, u64 *val) 4027 { 4028 unsigned offset = (long)_offset; 4029 struct kvm *kvm; 4030 struct kvm_stat_data stat_tmp = {.offset = offset}; 4031 u64 tmp_val; 4032 4033 *val = 0; 4034 spin_lock(&kvm_lock); 4035 list_for_each_entry(kvm, &vm_list, vm_list) { 4036 stat_tmp.kvm = kvm; 4037 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4038 *val += tmp_val; 4039 } 4040 spin_unlock(&kvm_lock); 4041 return 0; 4042 } 4043 4044 static int vm_stat_clear(void *_offset, u64 val) 4045 { 4046 unsigned offset = (long)_offset; 4047 struct kvm *kvm; 4048 struct kvm_stat_data stat_tmp = {.offset = offset}; 4049 4050 if (val) 4051 return -EINVAL; 4052 4053 spin_lock(&kvm_lock); 4054 list_for_each_entry(kvm, &vm_list, vm_list) { 4055 stat_tmp.kvm = kvm; 4056 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4057 } 4058 spin_unlock(&kvm_lock); 4059 4060 return 0; 4061 } 4062 4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4064 4065 static int vcpu_stat_get(void *_offset, u64 *val) 4066 { 4067 unsigned offset = (long)_offset; 4068 struct kvm *kvm; 4069 struct kvm_stat_data stat_tmp = {.offset = offset}; 4070 u64 tmp_val; 4071 4072 *val = 0; 4073 spin_lock(&kvm_lock); 4074 list_for_each_entry(kvm, &vm_list, vm_list) { 4075 stat_tmp.kvm = kvm; 4076 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4077 *val += tmp_val; 4078 } 4079 spin_unlock(&kvm_lock); 4080 return 0; 4081 } 4082 4083 static int vcpu_stat_clear(void *_offset, u64 val) 4084 { 4085 unsigned offset = (long)_offset; 4086 struct kvm *kvm; 4087 struct kvm_stat_data stat_tmp = {.offset = offset}; 4088 4089 if (val) 4090 return -EINVAL; 4091 4092 spin_lock(&kvm_lock); 4093 list_for_each_entry(kvm, &vm_list, vm_list) { 4094 stat_tmp.kvm = kvm; 4095 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4096 } 4097 spin_unlock(&kvm_lock); 4098 4099 return 0; 4100 } 4101 4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4103 "%llu\n"); 4104 4105 static const struct file_operations *stat_fops[] = { 4106 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4107 [KVM_STAT_VM] = &vm_stat_fops, 4108 }; 4109 4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4111 { 4112 struct kobj_uevent_env *env; 4113 unsigned long long created, active; 4114 4115 if (!kvm_dev.this_device || !kvm) 4116 return; 4117 4118 spin_lock(&kvm_lock); 4119 if (type == KVM_EVENT_CREATE_VM) { 4120 kvm_createvm_count++; 4121 kvm_active_vms++; 4122 } else if (type == KVM_EVENT_DESTROY_VM) { 4123 kvm_active_vms--; 4124 } 4125 created = kvm_createvm_count; 4126 active = kvm_active_vms; 4127 spin_unlock(&kvm_lock); 4128 4129 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4130 if (!env) 4131 return; 4132 4133 add_uevent_var(env, "CREATED=%llu", created); 4134 add_uevent_var(env, "COUNT=%llu", active); 4135 4136 if (type == KVM_EVENT_CREATE_VM) { 4137 add_uevent_var(env, "EVENT=create"); 4138 kvm->userspace_pid = task_pid_nr(current); 4139 } else if (type == KVM_EVENT_DESTROY_VM) { 4140 add_uevent_var(env, "EVENT=destroy"); 4141 } 4142 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4143 4144 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4145 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4146 4147 if (p) { 4148 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4149 if (!IS_ERR(tmp)) 4150 add_uevent_var(env, "STATS_PATH=%s", tmp); 4151 kfree(p); 4152 } 4153 } 4154 /* no need for checks, since we are adding at most only 5 keys */ 4155 env->envp[env->envp_idx++] = NULL; 4156 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4157 kfree(env); 4158 } 4159 4160 static void kvm_init_debug(void) 4161 { 4162 struct kvm_stats_debugfs_item *p; 4163 4164 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4165 4166 kvm_debugfs_num_entries = 0; 4167 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4168 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4169 (void *)(long)p->offset, 4170 stat_fops[p->kind]); 4171 } 4172 } 4173 4174 static int kvm_suspend(void) 4175 { 4176 if (kvm_usage_count) 4177 hardware_disable_nolock(NULL); 4178 return 0; 4179 } 4180 4181 static void kvm_resume(void) 4182 { 4183 if (kvm_usage_count) { 4184 #ifdef CONFIG_LOCKDEP 4185 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4186 #endif 4187 hardware_enable_nolock(NULL); 4188 } 4189 } 4190 4191 static struct syscore_ops kvm_syscore_ops = { 4192 .suspend = kvm_suspend, 4193 .resume = kvm_resume, 4194 }; 4195 4196 static inline 4197 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4198 { 4199 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4200 } 4201 4202 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4203 { 4204 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4205 4206 if (vcpu->preempted) 4207 vcpu->preempted = false; 4208 4209 kvm_arch_sched_in(vcpu, cpu); 4210 4211 kvm_arch_vcpu_load(vcpu, cpu); 4212 } 4213 4214 static void kvm_sched_out(struct preempt_notifier *pn, 4215 struct task_struct *next) 4216 { 4217 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4218 4219 if (current->state == TASK_RUNNING) 4220 vcpu->preempted = true; 4221 kvm_arch_vcpu_put(vcpu); 4222 } 4223 4224 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4225 struct module *module) 4226 { 4227 int r; 4228 int cpu; 4229 4230 r = kvm_arch_init(opaque); 4231 if (r) 4232 goto out_fail; 4233 4234 /* 4235 * kvm_arch_init makes sure there's at most one caller 4236 * for architectures that support multiple implementations, 4237 * like intel and amd on x86. 4238 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4239 * conflicts in case kvm is already setup for another implementation. 4240 */ 4241 r = kvm_irqfd_init(); 4242 if (r) 4243 goto out_irqfd; 4244 4245 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4246 r = -ENOMEM; 4247 goto out_free_0; 4248 } 4249 4250 r = kvm_arch_hardware_setup(); 4251 if (r < 0) 4252 goto out_free_0a; 4253 4254 for_each_online_cpu(cpu) { 4255 smp_call_function_single(cpu, 4256 kvm_arch_check_processor_compat, 4257 &r, 1); 4258 if (r < 0) 4259 goto out_free_1; 4260 } 4261 4262 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4263 kvm_starting_cpu, kvm_dying_cpu); 4264 if (r) 4265 goto out_free_2; 4266 register_reboot_notifier(&kvm_reboot_notifier); 4267 4268 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4269 if (!vcpu_align) 4270 vcpu_align = __alignof__(struct kvm_vcpu); 4271 kvm_vcpu_cache = 4272 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4273 SLAB_ACCOUNT, 4274 offsetof(struct kvm_vcpu, arch), 4275 sizeof_field(struct kvm_vcpu, arch), 4276 NULL); 4277 if (!kvm_vcpu_cache) { 4278 r = -ENOMEM; 4279 goto out_free_3; 4280 } 4281 4282 r = kvm_async_pf_init(); 4283 if (r) 4284 goto out_free; 4285 4286 kvm_chardev_ops.owner = module; 4287 kvm_vm_fops.owner = module; 4288 kvm_vcpu_fops.owner = module; 4289 4290 r = misc_register(&kvm_dev); 4291 if (r) { 4292 pr_err("kvm: misc device register failed\n"); 4293 goto out_unreg; 4294 } 4295 4296 register_syscore_ops(&kvm_syscore_ops); 4297 4298 kvm_preempt_ops.sched_in = kvm_sched_in; 4299 kvm_preempt_ops.sched_out = kvm_sched_out; 4300 4301 kvm_init_debug(); 4302 4303 r = kvm_vfio_ops_init(); 4304 WARN_ON(r); 4305 4306 return 0; 4307 4308 out_unreg: 4309 kvm_async_pf_deinit(); 4310 out_free: 4311 kmem_cache_destroy(kvm_vcpu_cache); 4312 out_free_3: 4313 unregister_reboot_notifier(&kvm_reboot_notifier); 4314 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4315 out_free_2: 4316 out_free_1: 4317 kvm_arch_hardware_unsetup(); 4318 out_free_0a: 4319 free_cpumask_var(cpus_hardware_enabled); 4320 out_free_0: 4321 kvm_irqfd_exit(); 4322 out_irqfd: 4323 kvm_arch_exit(); 4324 out_fail: 4325 return r; 4326 } 4327 EXPORT_SYMBOL_GPL(kvm_init); 4328 4329 void kvm_exit(void) 4330 { 4331 debugfs_remove_recursive(kvm_debugfs_dir); 4332 misc_deregister(&kvm_dev); 4333 kmem_cache_destroy(kvm_vcpu_cache); 4334 kvm_async_pf_deinit(); 4335 unregister_syscore_ops(&kvm_syscore_ops); 4336 unregister_reboot_notifier(&kvm_reboot_notifier); 4337 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4338 on_each_cpu(hardware_disable_nolock, NULL, 1); 4339 kvm_arch_hardware_unsetup(); 4340 kvm_arch_exit(); 4341 kvm_irqfd_exit(); 4342 free_cpumask_var(cpus_hardware_enabled); 4343 kvm_vfio_ops_exit(); 4344 } 4345 EXPORT_SYMBOL_GPL(kvm_exit); 4346