1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 #define KVM_EVENT_CREATE_VM 0 134 #define KVM_EVENT_DESTROY_VM 1 135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 136 static unsigned long long kvm_createvm_count; 137 static unsigned long long kvm_active_vms; 138 139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 140 { 141 if (pfn_valid(pfn)) 142 return PageReserved(pfn_to_page(pfn)); 143 144 return true; 145 } 146 147 /* 148 * Switches to specified vcpu, until a matching vcpu_put() 149 */ 150 int vcpu_load(struct kvm_vcpu *vcpu) 151 { 152 int cpu; 153 154 if (mutex_lock_killable(&vcpu->mutex)) 155 return -EINTR; 156 cpu = get_cpu(); 157 preempt_notifier_register(&vcpu->preempt_notifier); 158 kvm_arch_vcpu_load(vcpu, cpu); 159 put_cpu(); 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(vcpu_load); 163 164 void vcpu_put(struct kvm_vcpu *vcpu) 165 { 166 preempt_disable(); 167 kvm_arch_vcpu_put(vcpu); 168 preempt_notifier_unregister(&vcpu->preempt_notifier); 169 preempt_enable(); 170 mutex_unlock(&vcpu->mutex); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_put); 173 174 /* TODO: merge with kvm_arch_vcpu_should_kick */ 175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 176 { 177 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 178 179 /* 180 * We need to wait for the VCPU to reenable interrupts and get out of 181 * READING_SHADOW_PAGE_TABLES mode. 182 */ 183 if (req & KVM_REQUEST_WAIT) 184 return mode != OUTSIDE_GUEST_MODE; 185 186 /* 187 * Need to kick a running VCPU, but otherwise there is nothing to do. 188 */ 189 return mode == IN_GUEST_MODE; 190 } 191 192 static void ack_flush(void *_completed) 193 { 194 } 195 196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 197 { 198 if (unlikely(!cpus)) 199 cpus = cpu_online_mask; 200 201 if (cpumask_empty(cpus)) 202 return false; 203 204 smp_call_function_many(cpus, ack_flush, NULL, wait); 205 return true; 206 } 207 208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 209 { 210 int i, cpu, me; 211 cpumask_var_t cpus; 212 bool called; 213 struct kvm_vcpu *vcpu; 214 215 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 216 217 me = get_cpu(); 218 kvm_for_each_vcpu(i, vcpu, kvm) { 219 kvm_make_request(req, vcpu); 220 cpu = vcpu->cpu; 221 222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 223 continue; 224 225 if (cpus != NULL && cpu != -1 && cpu != me && 226 kvm_request_needs_ipi(vcpu, req)) 227 __cpumask_set_cpu(cpu, cpus); 228 } 229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 230 put_cpu(); 231 free_cpumask_var(cpus); 232 return called; 233 } 234 235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 236 void kvm_flush_remote_tlbs(struct kvm *kvm) 237 { 238 /* 239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 240 * kvm_make_all_cpus_request. 241 */ 242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 243 244 /* 245 * We want to publish modifications to the page tables before reading 246 * mode. Pairs with a memory barrier in arch-specific code. 247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 248 * and smp_mb in walk_shadow_page_lockless_begin/end. 249 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 250 * 251 * There is already an smp_mb__after_atomic() before 252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 253 * barrier here. 254 */ 255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 256 ++kvm->stat.remote_tlb_flush; 257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 258 } 259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 260 #endif 261 262 void kvm_reload_remote_mmus(struct kvm *kvm) 263 { 264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 265 } 266 267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 268 { 269 struct page *page; 270 int r; 271 272 mutex_init(&vcpu->mutex); 273 vcpu->cpu = -1; 274 vcpu->kvm = kvm; 275 vcpu->vcpu_id = id; 276 vcpu->pid = NULL; 277 init_swait_queue_head(&vcpu->wq); 278 kvm_async_pf_vcpu_init(vcpu); 279 280 vcpu->pre_pcpu = -1; 281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 282 283 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 284 if (!page) { 285 r = -ENOMEM; 286 goto fail; 287 } 288 vcpu->run = page_address(page); 289 290 kvm_vcpu_set_in_spin_loop(vcpu, false); 291 kvm_vcpu_set_dy_eligible(vcpu, false); 292 vcpu->preempted = false; 293 294 r = kvm_arch_vcpu_init(vcpu); 295 if (r < 0) 296 goto fail_free_run; 297 return 0; 298 299 fail_free_run: 300 free_page((unsigned long)vcpu->run); 301 fail: 302 return r; 303 } 304 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 305 306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 307 { 308 /* 309 * no need for rcu_read_lock as VCPU_RUN is the only place that 310 * will change the vcpu->pid pointer and on uninit all file 311 * descriptors are already gone. 312 */ 313 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 314 kvm_arch_vcpu_uninit(vcpu); 315 free_page((unsigned long)vcpu->run); 316 } 317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 318 319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 321 { 322 return container_of(mn, struct kvm, mmu_notifier); 323 } 324 325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address) 328 { 329 struct kvm *kvm = mmu_notifier_to_kvm(mn); 330 int need_tlb_flush, idx; 331 332 /* 333 * When ->invalidate_page runs, the linux pte has been zapped 334 * already but the page is still allocated until 335 * ->invalidate_page returns. So if we increase the sequence 336 * here the kvm page fault will notice if the spte can't be 337 * established because the page is going to be freed. If 338 * instead the kvm page fault establishes the spte before 339 * ->invalidate_page runs, kvm_unmap_hva will release it 340 * before returning. 341 * 342 * The sequence increase only need to be seen at spin_unlock 343 * time, and not at spin_lock time. 344 * 345 * Increasing the sequence after the spin_unlock would be 346 * unsafe because the kvm page fault could then establish the 347 * pte after kvm_unmap_hva returned, without noticing the page 348 * is going to be freed. 349 */ 350 idx = srcu_read_lock(&kvm->srcu); 351 spin_lock(&kvm->mmu_lock); 352 353 kvm->mmu_notifier_seq++; 354 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 355 /* we've to flush the tlb before the pages can be freed */ 356 if (need_tlb_flush) 357 kvm_flush_remote_tlbs(kvm); 358 359 spin_unlock(&kvm->mmu_lock); 360 361 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 362 363 srcu_read_unlock(&kvm->srcu, idx); 364 } 365 366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 367 struct mm_struct *mm, 368 unsigned long address, 369 pte_t pte) 370 { 371 struct kvm *kvm = mmu_notifier_to_kvm(mn); 372 int idx; 373 374 idx = srcu_read_lock(&kvm->srcu); 375 spin_lock(&kvm->mmu_lock); 376 kvm->mmu_notifier_seq++; 377 kvm_set_spte_hva(kvm, address, pte); 378 spin_unlock(&kvm->mmu_lock); 379 srcu_read_unlock(&kvm->srcu, idx); 380 } 381 382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 383 struct mm_struct *mm, 384 unsigned long start, 385 unsigned long end) 386 { 387 struct kvm *kvm = mmu_notifier_to_kvm(mn); 388 int need_tlb_flush = 0, idx; 389 390 idx = srcu_read_lock(&kvm->srcu); 391 spin_lock(&kvm->mmu_lock); 392 /* 393 * The count increase must become visible at unlock time as no 394 * spte can be established without taking the mmu_lock and 395 * count is also read inside the mmu_lock critical section. 396 */ 397 kvm->mmu_notifier_count++; 398 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 399 need_tlb_flush |= kvm->tlbs_dirty; 400 /* we've to flush the tlb before the pages can be freed */ 401 if (need_tlb_flush) 402 kvm_flush_remote_tlbs(kvm); 403 404 spin_unlock(&kvm->mmu_lock); 405 srcu_read_unlock(&kvm->srcu, idx); 406 } 407 408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 409 struct mm_struct *mm, 410 unsigned long start, 411 unsigned long end) 412 { 413 struct kvm *kvm = mmu_notifier_to_kvm(mn); 414 415 spin_lock(&kvm->mmu_lock); 416 /* 417 * This sequence increase will notify the kvm page fault that 418 * the page that is going to be mapped in the spte could have 419 * been freed. 420 */ 421 kvm->mmu_notifier_seq++; 422 smp_wmb(); 423 /* 424 * The above sequence increase must be visible before the 425 * below count decrease, which is ensured by the smp_wmb above 426 * in conjunction with the smp_rmb in mmu_notifier_retry(). 427 */ 428 kvm->mmu_notifier_count--; 429 spin_unlock(&kvm->mmu_lock); 430 431 BUG_ON(kvm->mmu_notifier_count < 0); 432 } 433 434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 435 struct mm_struct *mm, 436 unsigned long start, 437 unsigned long end) 438 { 439 struct kvm *kvm = mmu_notifier_to_kvm(mn); 440 int young, idx; 441 442 idx = srcu_read_lock(&kvm->srcu); 443 spin_lock(&kvm->mmu_lock); 444 445 young = kvm_age_hva(kvm, start, end); 446 if (young) 447 kvm_flush_remote_tlbs(kvm); 448 449 spin_unlock(&kvm->mmu_lock); 450 srcu_read_unlock(&kvm->srcu, idx); 451 452 return young; 453 } 454 455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 456 struct mm_struct *mm, 457 unsigned long start, 458 unsigned long end) 459 { 460 struct kvm *kvm = mmu_notifier_to_kvm(mn); 461 int young, idx; 462 463 idx = srcu_read_lock(&kvm->srcu); 464 spin_lock(&kvm->mmu_lock); 465 /* 466 * Even though we do not flush TLB, this will still adversely 467 * affect performance on pre-Haswell Intel EPT, where there is 468 * no EPT Access Bit to clear so that we have to tear down EPT 469 * tables instead. If we find this unacceptable, we can always 470 * add a parameter to kvm_age_hva so that it effectively doesn't 471 * do anything on clear_young. 472 * 473 * Also note that currently we never issue secondary TLB flushes 474 * from clear_young, leaving this job up to the regular system 475 * cadence. If we find this inaccurate, we might come up with a 476 * more sophisticated heuristic later. 477 */ 478 young = kvm_age_hva(kvm, start, end); 479 spin_unlock(&kvm->mmu_lock); 480 srcu_read_unlock(&kvm->srcu, idx); 481 482 return young; 483 } 484 485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 486 struct mm_struct *mm, 487 unsigned long address) 488 { 489 struct kvm *kvm = mmu_notifier_to_kvm(mn); 490 int young, idx; 491 492 idx = srcu_read_lock(&kvm->srcu); 493 spin_lock(&kvm->mmu_lock); 494 young = kvm_test_age_hva(kvm, address); 495 spin_unlock(&kvm->mmu_lock); 496 srcu_read_unlock(&kvm->srcu, idx); 497 498 return young; 499 } 500 501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 502 struct mm_struct *mm) 503 { 504 struct kvm *kvm = mmu_notifier_to_kvm(mn); 505 int idx; 506 507 idx = srcu_read_lock(&kvm->srcu); 508 kvm_arch_flush_shadow_all(kvm); 509 srcu_read_unlock(&kvm->srcu, idx); 510 } 511 512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 513 .invalidate_page = kvm_mmu_notifier_invalidate_page, 514 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 515 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 516 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 517 .clear_young = kvm_mmu_notifier_clear_young, 518 .test_young = kvm_mmu_notifier_test_young, 519 .change_pte = kvm_mmu_notifier_change_pte, 520 .release = kvm_mmu_notifier_release, 521 }; 522 523 static int kvm_init_mmu_notifier(struct kvm *kvm) 524 { 525 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 526 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 527 } 528 529 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 530 531 static int kvm_init_mmu_notifier(struct kvm *kvm) 532 { 533 return 0; 534 } 535 536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 537 538 static struct kvm_memslots *kvm_alloc_memslots(void) 539 { 540 int i; 541 struct kvm_memslots *slots; 542 543 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 544 if (!slots) 545 return NULL; 546 547 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 548 slots->id_to_index[i] = slots->memslots[i].id = i; 549 550 return slots; 551 } 552 553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 554 { 555 if (!memslot->dirty_bitmap) 556 return; 557 558 kvfree(memslot->dirty_bitmap); 559 memslot->dirty_bitmap = NULL; 560 } 561 562 /* 563 * Free any memory in @free but not in @dont. 564 */ 565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 566 struct kvm_memory_slot *dont) 567 { 568 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 569 kvm_destroy_dirty_bitmap(free); 570 571 kvm_arch_free_memslot(kvm, free, dont); 572 573 free->npages = 0; 574 } 575 576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 577 { 578 struct kvm_memory_slot *memslot; 579 580 if (!slots) 581 return; 582 583 kvm_for_each_memslot(memslot, slots) 584 kvm_free_memslot(kvm, memslot, NULL); 585 586 kvfree(slots); 587 } 588 589 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 590 { 591 int i; 592 593 if (!kvm->debugfs_dentry) 594 return; 595 596 debugfs_remove_recursive(kvm->debugfs_dentry); 597 598 if (kvm->debugfs_stat_data) { 599 for (i = 0; i < kvm_debugfs_num_entries; i++) 600 kfree(kvm->debugfs_stat_data[i]); 601 kfree(kvm->debugfs_stat_data); 602 } 603 } 604 605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 606 { 607 char dir_name[ITOA_MAX_LEN * 2]; 608 struct kvm_stat_data *stat_data; 609 struct kvm_stats_debugfs_item *p; 610 611 if (!debugfs_initialized()) 612 return 0; 613 614 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 615 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 616 kvm_debugfs_dir); 617 if (!kvm->debugfs_dentry) 618 return -ENOMEM; 619 620 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 621 sizeof(*kvm->debugfs_stat_data), 622 GFP_KERNEL); 623 if (!kvm->debugfs_stat_data) 624 return -ENOMEM; 625 626 for (p = debugfs_entries; p->name; p++) { 627 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 628 if (!stat_data) 629 return -ENOMEM; 630 631 stat_data->kvm = kvm; 632 stat_data->offset = p->offset; 633 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 634 if (!debugfs_create_file(p->name, 0644, 635 kvm->debugfs_dentry, 636 stat_data, 637 stat_fops_per_vm[p->kind])) 638 return -ENOMEM; 639 } 640 return 0; 641 } 642 643 static struct kvm *kvm_create_vm(unsigned long type) 644 { 645 int r, i; 646 struct kvm *kvm = kvm_arch_alloc_vm(); 647 648 if (!kvm) 649 return ERR_PTR(-ENOMEM); 650 651 spin_lock_init(&kvm->mmu_lock); 652 mmgrab(current->mm); 653 kvm->mm = current->mm; 654 kvm_eventfd_init(kvm); 655 mutex_init(&kvm->lock); 656 mutex_init(&kvm->irq_lock); 657 mutex_init(&kvm->slots_lock); 658 refcount_set(&kvm->users_count, 1); 659 INIT_LIST_HEAD(&kvm->devices); 660 661 r = kvm_arch_init_vm(kvm, type); 662 if (r) 663 goto out_err_no_disable; 664 665 r = hardware_enable_all(); 666 if (r) 667 goto out_err_no_disable; 668 669 #ifdef CONFIG_HAVE_KVM_IRQFD 670 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 671 #endif 672 673 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 674 675 r = -ENOMEM; 676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 677 struct kvm_memslots *slots = kvm_alloc_memslots(); 678 if (!slots) 679 goto out_err_no_srcu; 680 /* 681 * Generations must be different for each address space. 682 * Init kvm generation close to the maximum to easily test the 683 * code of handling generation number wrap-around. 684 */ 685 slots->generation = i * 2 - 150; 686 rcu_assign_pointer(kvm->memslots[i], slots); 687 } 688 689 if (init_srcu_struct(&kvm->srcu)) 690 goto out_err_no_srcu; 691 if (init_srcu_struct(&kvm->irq_srcu)) 692 goto out_err_no_irq_srcu; 693 for (i = 0; i < KVM_NR_BUSES; i++) { 694 rcu_assign_pointer(kvm->buses[i], 695 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 696 if (!kvm->buses[i]) 697 goto out_err; 698 } 699 700 r = kvm_init_mmu_notifier(kvm); 701 if (r) 702 goto out_err; 703 704 spin_lock(&kvm_lock); 705 list_add(&kvm->vm_list, &vm_list); 706 spin_unlock(&kvm_lock); 707 708 preempt_notifier_inc(); 709 710 return kvm; 711 712 out_err: 713 cleanup_srcu_struct(&kvm->irq_srcu); 714 out_err_no_irq_srcu: 715 cleanup_srcu_struct(&kvm->srcu); 716 out_err_no_srcu: 717 hardware_disable_all(); 718 out_err_no_disable: 719 for (i = 0; i < KVM_NR_BUSES; i++) 720 kfree(rcu_access_pointer(kvm->buses[i])); 721 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 722 kvm_free_memslots(kvm, 723 rcu_dereference_protected(kvm->memslots[i], 1)); 724 kvm_arch_free_vm(kvm); 725 mmdrop(current->mm); 726 return ERR_PTR(r); 727 } 728 729 static void kvm_destroy_devices(struct kvm *kvm) 730 { 731 struct kvm_device *dev, *tmp; 732 733 /* 734 * We do not need to take the kvm->lock here, because nobody else 735 * has a reference to the struct kvm at this point and therefore 736 * cannot access the devices list anyhow. 737 */ 738 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 739 list_del(&dev->vm_node); 740 dev->ops->destroy(dev); 741 } 742 } 743 744 static void kvm_destroy_vm(struct kvm *kvm) 745 { 746 int i; 747 struct mm_struct *mm = kvm->mm; 748 749 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 750 kvm_destroy_vm_debugfs(kvm); 751 kvm_arch_sync_events(kvm); 752 spin_lock(&kvm_lock); 753 list_del(&kvm->vm_list); 754 spin_unlock(&kvm_lock); 755 kvm_free_irq_routing(kvm); 756 for (i = 0; i < KVM_NR_BUSES; i++) { 757 struct kvm_io_bus *bus; 758 759 bus = rcu_dereference_protected(kvm->buses[i], 1); 760 if (bus) 761 kvm_io_bus_destroy(bus); 762 kvm->buses[i] = NULL; 763 } 764 kvm_coalesced_mmio_free(kvm); 765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 766 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 767 #else 768 kvm_arch_flush_shadow_all(kvm); 769 #endif 770 kvm_arch_destroy_vm(kvm); 771 kvm_destroy_devices(kvm); 772 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 773 kvm_free_memslots(kvm, 774 rcu_dereference_protected(kvm->memslots[i], 1)); 775 cleanup_srcu_struct(&kvm->irq_srcu); 776 cleanup_srcu_struct(&kvm->srcu); 777 kvm_arch_free_vm(kvm); 778 preempt_notifier_dec(); 779 hardware_disable_all(); 780 mmdrop(mm); 781 } 782 783 void kvm_get_kvm(struct kvm *kvm) 784 { 785 refcount_inc(&kvm->users_count); 786 } 787 EXPORT_SYMBOL_GPL(kvm_get_kvm); 788 789 void kvm_put_kvm(struct kvm *kvm) 790 { 791 if (refcount_dec_and_test(&kvm->users_count)) 792 kvm_destroy_vm(kvm); 793 } 794 EXPORT_SYMBOL_GPL(kvm_put_kvm); 795 796 797 static int kvm_vm_release(struct inode *inode, struct file *filp) 798 { 799 struct kvm *kvm = filp->private_data; 800 801 kvm_irqfd_release(kvm); 802 803 kvm_put_kvm(kvm); 804 return 0; 805 } 806 807 /* 808 * Allocation size is twice as large as the actual dirty bitmap size. 809 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 810 */ 811 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 812 { 813 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 814 815 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 816 if (!memslot->dirty_bitmap) 817 return -ENOMEM; 818 819 return 0; 820 } 821 822 /* 823 * Insert memslot and re-sort memslots based on their GFN, 824 * so binary search could be used to lookup GFN. 825 * Sorting algorithm takes advantage of having initially 826 * sorted array and known changed memslot position. 827 */ 828 static void update_memslots(struct kvm_memslots *slots, 829 struct kvm_memory_slot *new) 830 { 831 int id = new->id; 832 int i = slots->id_to_index[id]; 833 struct kvm_memory_slot *mslots = slots->memslots; 834 835 WARN_ON(mslots[i].id != id); 836 if (!new->npages) { 837 WARN_ON(!mslots[i].npages); 838 if (mslots[i].npages) 839 slots->used_slots--; 840 } else { 841 if (!mslots[i].npages) 842 slots->used_slots++; 843 } 844 845 while (i < KVM_MEM_SLOTS_NUM - 1 && 846 new->base_gfn <= mslots[i + 1].base_gfn) { 847 if (!mslots[i + 1].npages) 848 break; 849 mslots[i] = mslots[i + 1]; 850 slots->id_to_index[mslots[i].id] = i; 851 i++; 852 } 853 854 /* 855 * The ">=" is needed when creating a slot with base_gfn == 0, 856 * so that it moves before all those with base_gfn == npages == 0. 857 * 858 * On the other hand, if new->npages is zero, the above loop has 859 * already left i pointing to the beginning of the empty part of 860 * mslots, and the ">=" would move the hole backwards in this 861 * case---which is wrong. So skip the loop when deleting a slot. 862 */ 863 if (new->npages) { 864 while (i > 0 && 865 new->base_gfn >= mslots[i - 1].base_gfn) { 866 mslots[i] = mslots[i - 1]; 867 slots->id_to_index[mslots[i].id] = i; 868 i--; 869 } 870 } else 871 WARN_ON_ONCE(i != slots->used_slots); 872 873 mslots[i] = *new; 874 slots->id_to_index[mslots[i].id] = i; 875 } 876 877 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 878 { 879 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 880 881 #ifdef __KVM_HAVE_READONLY_MEM 882 valid_flags |= KVM_MEM_READONLY; 883 #endif 884 885 if (mem->flags & ~valid_flags) 886 return -EINVAL; 887 888 return 0; 889 } 890 891 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 892 int as_id, struct kvm_memslots *slots) 893 { 894 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 895 896 /* 897 * Set the low bit in the generation, which disables SPTE caching 898 * until the end of synchronize_srcu_expedited. 899 */ 900 WARN_ON(old_memslots->generation & 1); 901 slots->generation = old_memslots->generation + 1; 902 903 rcu_assign_pointer(kvm->memslots[as_id], slots); 904 synchronize_srcu_expedited(&kvm->srcu); 905 906 /* 907 * Increment the new memslot generation a second time. This prevents 908 * vm exits that race with memslot updates from caching a memslot 909 * generation that will (potentially) be valid forever. 910 * 911 * Generations must be unique even across address spaces. We do not need 912 * a global counter for that, instead the generation space is evenly split 913 * across address spaces. For example, with two address spaces, address 914 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 915 * use generations 2, 6, 10, 14, ... 916 */ 917 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 918 919 kvm_arch_memslots_updated(kvm, slots); 920 921 return old_memslots; 922 } 923 924 /* 925 * Allocate some memory and give it an address in the guest physical address 926 * space. 927 * 928 * Discontiguous memory is allowed, mostly for framebuffers. 929 * 930 * Must be called holding kvm->slots_lock for write. 931 */ 932 int __kvm_set_memory_region(struct kvm *kvm, 933 const struct kvm_userspace_memory_region *mem) 934 { 935 int r; 936 gfn_t base_gfn; 937 unsigned long npages; 938 struct kvm_memory_slot *slot; 939 struct kvm_memory_slot old, new; 940 struct kvm_memslots *slots = NULL, *old_memslots; 941 int as_id, id; 942 enum kvm_mr_change change; 943 944 r = check_memory_region_flags(mem); 945 if (r) 946 goto out; 947 948 r = -EINVAL; 949 as_id = mem->slot >> 16; 950 id = (u16)mem->slot; 951 952 /* General sanity checks */ 953 if (mem->memory_size & (PAGE_SIZE - 1)) 954 goto out; 955 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 956 goto out; 957 /* We can read the guest memory with __xxx_user() later on. */ 958 if ((id < KVM_USER_MEM_SLOTS) && 959 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 960 !access_ok(VERIFY_WRITE, 961 (void __user *)(unsigned long)mem->userspace_addr, 962 mem->memory_size))) 963 goto out; 964 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 965 goto out; 966 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 967 goto out; 968 969 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 970 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 971 npages = mem->memory_size >> PAGE_SHIFT; 972 973 if (npages > KVM_MEM_MAX_NR_PAGES) 974 goto out; 975 976 new = old = *slot; 977 978 new.id = id; 979 new.base_gfn = base_gfn; 980 new.npages = npages; 981 new.flags = mem->flags; 982 983 if (npages) { 984 if (!old.npages) 985 change = KVM_MR_CREATE; 986 else { /* Modify an existing slot. */ 987 if ((mem->userspace_addr != old.userspace_addr) || 988 (npages != old.npages) || 989 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 990 goto out; 991 992 if (base_gfn != old.base_gfn) 993 change = KVM_MR_MOVE; 994 else if (new.flags != old.flags) 995 change = KVM_MR_FLAGS_ONLY; 996 else { /* Nothing to change. */ 997 r = 0; 998 goto out; 999 } 1000 } 1001 } else { 1002 if (!old.npages) 1003 goto out; 1004 1005 change = KVM_MR_DELETE; 1006 new.base_gfn = 0; 1007 new.flags = 0; 1008 } 1009 1010 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1011 /* Check for overlaps */ 1012 r = -EEXIST; 1013 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1014 if ((slot->id >= KVM_USER_MEM_SLOTS) || 1015 (slot->id == id)) 1016 continue; 1017 if (!((base_gfn + npages <= slot->base_gfn) || 1018 (base_gfn >= slot->base_gfn + slot->npages))) 1019 goto out; 1020 } 1021 } 1022 1023 /* Free page dirty bitmap if unneeded */ 1024 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1025 new.dirty_bitmap = NULL; 1026 1027 r = -ENOMEM; 1028 if (change == KVM_MR_CREATE) { 1029 new.userspace_addr = mem->userspace_addr; 1030 1031 if (kvm_arch_create_memslot(kvm, &new, npages)) 1032 goto out_free; 1033 } 1034 1035 /* Allocate page dirty bitmap if needed */ 1036 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1037 if (kvm_create_dirty_bitmap(&new) < 0) 1038 goto out_free; 1039 } 1040 1041 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1042 if (!slots) 1043 goto out_free; 1044 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1045 1046 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1047 slot = id_to_memslot(slots, id); 1048 slot->flags |= KVM_MEMSLOT_INVALID; 1049 1050 old_memslots = install_new_memslots(kvm, as_id, slots); 1051 1052 /* From this point no new shadow pages pointing to a deleted, 1053 * or moved, memslot will be created. 1054 * 1055 * validation of sp->gfn happens in: 1056 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1057 * - kvm_is_visible_gfn (mmu_check_roots) 1058 */ 1059 kvm_arch_flush_shadow_memslot(kvm, slot); 1060 1061 /* 1062 * We can re-use the old_memslots from above, the only difference 1063 * from the currently installed memslots is the invalid flag. This 1064 * will get overwritten by update_memslots anyway. 1065 */ 1066 slots = old_memslots; 1067 } 1068 1069 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1070 if (r) 1071 goto out_slots; 1072 1073 /* actual memory is freed via old in kvm_free_memslot below */ 1074 if (change == KVM_MR_DELETE) { 1075 new.dirty_bitmap = NULL; 1076 memset(&new.arch, 0, sizeof(new.arch)); 1077 } 1078 1079 update_memslots(slots, &new); 1080 old_memslots = install_new_memslots(kvm, as_id, slots); 1081 1082 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1083 1084 kvm_free_memslot(kvm, &old, &new); 1085 kvfree(old_memslots); 1086 return 0; 1087 1088 out_slots: 1089 kvfree(slots); 1090 out_free: 1091 kvm_free_memslot(kvm, &new, &old); 1092 out: 1093 return r; 1094 } 1095 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1096 1097 int kvm_set_memory_region(struct kvm *kvm, 1098 const struct kvm_userspace_memory_region *mem) 1099 { 1100 int r; 1101 1102 mutex_lock(&kvm->slots_lock); 1103 r = __kvm_set_memory_region(kvm, mem); 1104 mutex_unlock(&kvm->slots_lock); 1105 return r; 1106 } 1107 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1108 1109 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1110 struct kvm_userspace_memory_region *mem) 1111 { 1112 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1113 return -EINVAL; 1114 1115 return kvm_set_memory_region(kvm, mem); 1116 } 1117 1118 int kvm_get_dirty_log(struct kvm *kvm, 1119 struct kvm_dirty_log *log, int *is_dirty) 1120 { 1121 struct kvm_memslots *slots; 1122 struct kvm_memory_slot *memslot; 1123 int i, as_id, id; 1124 unsigned long n; 1125 unsigned long any = 0; 1126 1127 as_id = log->slot >> 16; 1128 id = (u16)log->slot; 1129 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1130 return -EINVAL; 1131 1132 slots = __kvm_memslots(kvm, as_id); 1133 memslot = id_to_memslot(slots, id); 1134 if (!memslot->dirty_bitmap) 1135 return -ENOENT; 1136 1137 n = kvm_dirty_bitmap_bytes(memslot); 1138 1139 for (i = 0; !any && i < n/sizeof(long); ++i) 1140 any = memslot->dirty_bitmap[i]; 1141 1142 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1143 return -EFAULT; 1144 1145 if (any) 1146 *is_dirty = 1; 1147 return 0; 1148 } 1149 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1150 1151 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1152 /** 1153 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1154 * are dirty write protect them for next write. 1155 * @kvm: pointer to kvm instance 1156 * @log: slot id and address to which we copy the log 1157 * @is_dirty: flag set if any page is dirty 1158 * 1159 * We need to keep it in mind that VCPU threads can write to the bitmap 1160 * concurrently. So, to avoid losing track of dirty pages we keep the 1161 * following order: 1162 * 1163 * 1. Take a snapshot of the bit and clear it if needed. 1164 * 2. Write protect the corresponding page. 1165 * 3. Copy the snapshot to the userspace. 1166 * 4. Upon return caller flushes TLB's if needed. 1167 * 1168 * Between 2 and 4, the guest may write to the page using the remaining TLB 1169 * entry. This is not a problem because the page is reported dirty using 1170 * the snapshot taken before and step 4 ensures that writes done after 1171 * exiting to userspace will be logged for the next call. 1172 * 1173 */ 1174 int kvm_get_dirty_log_protect(struct kvm *kvm, 1175 struct kvm_dirty_log *log, bool *is_dirty) 1176 { 1177 struct kvm_memslots *slots; 1178 struct kvm_memory_slot *memslot; 1179 int i, as_id, id; 1180 unsigned long n; 1181 unsigned long *dirty_bitmap; 1182 unsigned long *dirty_bitmap_buffer; 1183 1184 as_id = log->slot >> 16; 1185 id = (u16)log->slot; 1186 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1187 return -EINVAL; 1188 1189 slots = __kvm_memslots(kvm, as_id); 1190 memslot = id_to_memslot(slots, id); 1191 1192 dirty_bitmap = memslot->dirty_bitmap; 1193 if (!dirty_bitmap) 1194 return -ENOENT; 1195 1196 n = kvm_dirty_bitmap_bytes(memslot); 1197 1198 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1199 memset(dirty_bitmap_buffer, 0, n); 1200 1201 spin_lock(&kvm->mmu_lock); 1202 *is_dirty = false; 1203 for (i = 0; i < n / sizeof(long); i++) { 1204 unsigned long mask; 1205 gfn_t offset; 1206 1207 if (!dirty_bitmap[i]) 1208 continue; 1209 1210 *is_dirty = true; 1211 1212 mask = xchg(&dirty_bitmap[i], 0); 1213 dirty_bitmap_buffer[i] = mask; 1214 1215 if (mask) { 1216 offset = i * BITS_PER_LONG; 1217 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1218 offset, mask); 1219 } 1220 } 1221 1222 spin_unlock(&kvm->mmu_lock); 1223 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1224 return -EFAULT; 1225 return 0; 1226 } 1227 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1228 #endif 1229 1230 bool kvm_largepages_enabled(void) 1231 { 1232 return largepages_enabled; 1233 } 1234 1235 void kvm_disable_largepages(void) 1236 { 1237 largepages_enabled = false; 1238 } 1239 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1240 1241 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1242 { 1243 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1244 } 1245 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1246 1247 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1248 { 1249 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1250 } 1251 1252 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1253 { 1254 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1255 1256 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1257 memslot->flags & KVM_MEMSLOT_INVALID) 1258 return false; 1259 1260 return true; 1261 } 1262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1263 1264 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1265 { 1266 struct vm_area_struct *vma; 1267 unsigned long addr, size; 1268 1269 size = PAGE_SIZE; 1270 1271 addr = gfn_to_hva(kvm, gfn); 1272 if (kvm_is_error_hva(addr)) 1273 return PAGE_SIZE; 1274 1275 down_read(¤t->mm->mmap_sem); 1276 vma = find_vma(current->mm, addr); 1277 if (!vma) 1278 goto out; 1279 1280 size = vma_kernel_pagesize(vma); 1281 1282 out: 1283 up_read(¤t->mm->mmap_sem); 1284 1285 return size; 1286 } 1287 1288 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1289 { 1290 return slot->flags & KVM_MEM_READONLY; 1291 } 1292 1293 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1294 gfn_t *nr_pages, bool write) 1295 { 1296 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1297 return KVM_HVA_ERR_BAD; 1298 1299 if (memslot_is_readonly(slot) && write) 1300 return KVM_HVA_ERR_RO_BAD; 1301 1302 if (nr_pages) 1303 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1304 1305 return __gfn_to_hva_memslot(slot, gfn); 1306 } 1307 1308 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1309 gfn_t *nr_pages) 1310 { 1311 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1312 } 1313 1314 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1315 gfn_t gfn) 1316 { 1317 return gfn_to_hva_many(slot, gfn, NULL); 1318 } 1319 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1320 1321 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1322 { 1323 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1324 } 1325 EXPORT_SYMBOL_GPL(gfn_to_hva); 1326 1327 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1328 { 1329 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1330 } 1331 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1332 1333 /* 1334 * If writable is set to false, the hva returned by this function is only 1335 * allowed to be read. 1336 */ 1337 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1338 gfn_t gfn, bool *writable) 1339 { 1340 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1341 1342 if (!kvm_is_error_hva(hva) && writable) 1343 *writable = !memslot_is_readonly(slot); 1344 1345 return hva; 1346 } 1347 1348 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1349 { 1350 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1351 1352 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1353 } 1354 1355 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1356 { 1357 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1358 1359 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1360 } 1361 1362 static int get_user_page_nowait(unsigned long start, int write, 1363 struct page **page) 1364 { 1365 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1366 1367 if (write) 1368 flags |= FOLL_WRITE; 1369 1370 return get_user_pages(start, 1, flags, page, NULL); 1371 } 1372 1373 static inline int check_user_page_hwpoison(unsigned long addr) 1374 { 1375 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1376 1377 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1378 return rc == -EHWPOISON; 1379 } 1380 1381 /* 1382 * The atomic path to get the writable pfn which will be stored in @pfn, 1383 * true indicates success, otherwise false is returned. 1384 */ 1385 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1386 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1387 { 1388 struct page *page[1]; 1389 int npages; 1390 1391 if (!(async || atomic)) 1392 return false; 1393 1394 /* 1395 * Fast pin a writable pfn only if it is a write fault request 1396 * or the caller allows to map a writable pfn for a read fault 1397 * request. 1398 */ 1399 if (!(write_fault || writable)) 1400 return false; 1401 1402 npages = __get_user_pages_fast(addr, 1, 1, page); 1403 if (npages == 1) { 1404 *pfn = page_to_pfn(page[0]); 1405 1406 if (writable) 1407 *writable = true; 1408 return true; 1409 } 1410 1411 return false; 1412 } 1413 1414 /* 1415 * The slow path to get the pfn of the specified host virtual address, 1416 * 1 indicates success, -errno is returned if error is detected. 1417 */ 1418 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1419 bool *writable, kvm_pfn_t *pfn) 1420 { 1421 struct page *page[1]; 1422 int npages = 0; 1423 1424 might_sleep(); 1425 1426 if (writable) 1427 *writable = write_fault; 1428 1429 if (async) { 1430 down_read(¤t->mm->mmap_sem); 1431 npages = get_user_page_nowait(addr, write_fault, page); 1432 up_read(¤t->mm->mmap_sem); 1433 } else { 1434 unsigned int flags = FOLL_HWPOISON; 1435 1436 if (write_fault) 1437 flags |= FOLL_WRITE; 1438 1439 npages = get_user_pages_unlocked(addr, 1, page, flags); 1440 } 1441 if (npages != 1) 1442 return npages; 1443 1444 /* map read fault as writable if possible */ 1445 if (unlikely(!write_fault) && writable) { 1446 struct page *wpage[1]; 1447 1448 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1449 if (npages == 1) { 1450 *writable = true; 1451 put_page(page[0]); 1452 page[0] = wpage[0]; 1453 } 1454 1455 npages = 1; 1456 } 1457 *pfn = page_to_pfn(page[0]); 1458 return npages; 1459 } 1460 1461 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1462 { 1463 if (unlikely(!(vma->vm_flags & VM_READ))) 1464 return false; 1465 1466 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1467 return false; 1468 1469 return true; 1470 } 1471 1472 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1473 unsigned long addr, bool *async, 1474 bool write_fault, kvm_pfn_t *p_pfn) 1475 { 1476 unsigned long pfn; 1477 int r; 1478 1479 r = follow_pfn(vma, addr, &pfn); 1480 if (r) { 1481 /* 1482 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1483 * not call the fault handler, so do it here. 1484 */ 1485 bool unlocked = false; 1486 r = fixup_user_fault(current, current->mm, addr, 1487 (write_fault ? FAULT_FLAG_WRITE : 0), 1488 &unlocked); 1489 if (unlocked) 1490 return -EAGAIN; 1491 if (r) 1492 return r; 1493 1494 r = follow_pfn(vma, addr, &pfn); 1495 if (r) 1496 return r; 1497 1498 } 1499 1500 1501 /* 1502 * Get a reference here because callers of *hva_to_pfn* and 1503 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1504 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1505 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1506 * simply do nothing for reserved pfns. 1507 * 1508 * Whoever called remap_pfn_range is also going to call e.g. 1509 * unmap_mapping_range before the underlying pages are freed, 1510 * causing a call to our MMU notifier. 1511 */ 1512 kvm_get_pfn(pfn); 1513 1514 *p_pfn = pfn; 1515 return 0; 1516 } 1517 1518 /* 1519 * Pin guest page in memory and return its pfn. 1520 * @addr: host virtual address which maps memory to the guest 1521 * @atomic: whether this function can sleep 1522 * @async: whether this function need to wait IO complete if the 1523 * host page is not in the memory 1524 * @write_fault: whether we should get a writable host page 1525 * @writable: whether it allows to map a writable host page for !@write_fault 1526 * 1527 * The function will map a writable host page for these two cases: 1528 * 1): @write_fault = true 1529 * 2): @write_fault = false && @writable, @writable will tell the caller 1530 * whether the mapping is writable. 1531 */ 1532 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1533 bool write_fault, bool *writable) 1534 { 1535 struct vm_area_struct *vma; 1536 kvm_pfn_t pfn = 0; 1537 int npages, r; 1538 1539 /* we can do it either atomically or asynchronously, not both */ 1540 BUG_ON(atomic && async); 1541 1542 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1543 return pfn; 1544 1545 if (atomic) 1546 return KVM_PFN_ERR_FAULT; 1547 1548 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1549 if (npages == 1) 1550 return pfn; 1551 1552 down_read(¤t->mm->mmap_sem); 1553 if (npages == -EHWPOISON || 1554 (!async && check_user_page_hwpoison(addr))) { 1555 pfn = KVM_PFN_ERR_HWPOISON; 1556 goto exit; 1557 } 1558 1559 retry: 1560 vma = find_vma_intersection(current->mm, addr, addr + 1); 1561 1562 if (vma == NULL) 1563 pfn = KVM_PFN_ERR_FAULT; 1564 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1565 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1566 if (r == -EAGAIN) 1567 goto retry; 1568 if (r < 0) 1569 pfn = KVM_PFN_ERR_FAULT; 1570 } else { 1571 if (async && vma_is_valid(vma, write_fault)) 1572 *async = true; 1573 pfn = KVM_PFN_ERR_FAULT; 1574 } 1575 exit: 1576 up_read(¤t->mm->mmap_sem); 1577 return pfn; 1578 } 1579 1580 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1581 bool atomic, bool *async, bool write_fault, 1582 bool *writable) 1583 { 1584 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1585 1586 if (addr == KVM_HVA_ERR_RO_BAD) { 1587 if (writable) 1588 *writable = false; 1589 return KVM_PFN_ERR_RO_FAULT; 1590 } 1591 1592 if (kvm_is_error_hva(addr)) { 1593 if (writable) 1594 *writable = false; 1595 return KVM_PFN_NOSLOT; 1596 } 1597 1598 /* Do not map writable pfn in the readonly memslot. */ 1599 if (writable && memslot_is_readonly(slot)) { 1600 *writable = false; 1601 writable = NULL; 1602 } 1603 1604 return hva_to_pfn(addr, atomic, async, write_fault, 1605 writable); 1606 } 1607 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1608 1609 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1610 bool *writable) 1611 { 1612 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1613 write_fault, writable); 1614 } 1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1616 1617 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1618 { 1619 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1620 } 1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1622 1623 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1624 { 1625 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1626 } 1627 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1628 1629 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1630 { 1631 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1632 } 1633 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1634 1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1636 { 1637 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1638 } 1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1640 1641 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1642 { 1643 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1644 } 1645 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1646 1647 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1648 { 1649 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1650 } 1651 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1652 1653 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1654 struct page **pages, int nr_pages) 1655 { 1656 unsigned long addr; 1657 gfn_t entry; 1658 1659 addr = gfn_to_hva_many(slot, gfn, &entry); 1660 if (kvm_is_error_hva(addr)) 1661 return -1; 1662 1663 if (entry < nr_pages) 1664 return 0; 1665 1666 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1667 } 1668 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1669 1670 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1671 { 1672 if (is_error_noslot_pfn(pfn)) 1673 return KVM_ERR_PTR_BAD_PAGE; 1674 1675 if (kvm_is_reserved_pfn(pfn)) { 1676 WARN_ON(1); 1677 return KVM_ERR_PTR_BAD_PAGE; 1678 } 1679 1680 return pfn_to_page(pfn); 1681 } 1682 1683 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1684 { 1685 kvm_pfn_t pfn; 1686 1687 pfn = gfn_to_pfn(kvm, gfn); 1688 1689 return kvm_pfn_to_page(pfn); 1690 } 1691 EXPORT_SYMBOL_GPL(gfn_to_page); 1692 1693 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1694 { 1695 kvm_pfn_t pfn; 1696 1697 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1698 1699 return kvm_pfn_to_page(pfn); 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1702 1703 void kvm_release_page_clean(struct page *page) 1704 { 1705 WARN_ON(is_error_page(page)); 1706 1707 kvm_release_pfn_clean(page_to_pfn(page)); 1708 } 1709 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1710 1711 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1712 { 1713 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1714 put_page(pfn_to_page(pfn)); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1717 1718 void kvm_release_page_dirty(struct page *page) 1719 { 1720 WARN_ON(is_error_page(page)); 1721 1722 kvm_release_pfn_dirty(page_to_pfn(page)); 1723 } 1724 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1725 1726 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1727 { 1728 kvm_set_pfn_dirty(pfn); 1729 kvm_release_pfn_clean(pfn); 1730 } 1731 1732 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1733 { 1734 if (!kvm_is_reserved_pfn(pfn)) { 1735 struct page *page = pfn_to_page(pfn); 1736 1737 if (!PageReserved(page)) 1738 SetPageDirty(page); 1739 } 1740 } 1741 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1742 1743 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1744 { 1745 if (!kvm_is_reserved_pfn(pfn)) 1746 mark_page_accessed(pfn_to_page(pfn)); 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1749 1750 void kvm_get_pfn(kvm_pfn_t pfn) 1751 { 1752 if (!kvm_is_reserved_pfn(pfn)) 1753 get_page(pfn_to_page(pfn)); 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1756 1757 static int next_segment(unsigned long len, int offset) 1758 { 1759 if (len > PAGE_SIZE - offset) 1760 return PAGE_SIZE - offset; 1761 else 1762 return len; 1763 } 1764 1765 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1766 void *data, int offset, int len) 1767 { 1768 int r; 1769 unsigned long addr; 1770 1771 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1772 if (kvm_is_error_hva(addr)) 1773 return -EFAULT; 1774 r = __copy_from_user(data, (void __user *)addr + offset, len); 1775 if (r) 1776 return -EFAULT; 1777 return 0; 1778 } 1779 1780 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1781 int len) 1782 { 1783 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1784 1785 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1786 } 1787 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1788 1789 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1790 int offset, int len) 1791 { 1792 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1793 1794 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1795 } 1796 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1797 1798 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1799 { 1800 gfn_t gfn = gpa >> PAGE_SHIFT; 1801 int seg; 1802 int offset = offset_in_page(gpa); 1803 int ret; 1804 1805 while ((seg = next_segment(len, offset)) != 0) { 1806 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1807 if (ret < 0) 1808 return ret; 1809 offset = 0; 1810 len -= seg; 1811 data += seg; 1812 ++gfn; 1813 } 1814 return 0; 1815 } 1816 EXPORT_SYMBOL_GPL(kvm_read_guest); 1817 1818 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1819 { 1820 gfn_t gfn = gpa >> PAGE_SHIFT; 1821 int seg; 1822 int offset = offset_in_page(gpa); 1823 int ret; 1824 1825 while ((seg = next_segment(len, offset)) != 0) { 1826 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1827 if (ret < 0) 1828 return ret; 1829 offset = 0; 1830 len -= seg; 1831 data += seg; 1832 ++gfn; 1833 } 1834 return 0; 1835 } 1836 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1837 1838 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1839 void *data, int offset, unsigned long len) 1840 { 1841 int r; 1842 unsigned long addr; 1843 1844 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1845 if (kvm_is_error_hva(addr)) 1846 return -EFAULT; 1847 pagefault_disable(); 1848 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1849 pagefault_enable(); 1850 if (r) 1851 return -EFAULT; 1852 return 0; 1853 } 1854 1855 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1856 unsigned long len) 1857 { 1858 gfn_t gfn = gpa >> PAGE_SHIFT; 1859 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1860 int offset = offset_in_page(gpa); 1861 1862 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1863 } 1864 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1865 1866 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1867 void *data, unsigned long len) 1868 { 1869 gfn_t gfn = gpa >> PAGE_SHIFT; 1870 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1871 int offset = offset_in_page(gpa); 1872 1873 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1874 } 1875 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1876 1877 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1878 const void *data, int offset, int len) 1879 { 1880 int r; 1881 unsigned long addr; 1882 1883 addr = gfn_to_hva_memslot(memslot, gfn); 1884 if (kvm_is_error_hva(addr)) 1885 return -EFAULT; 1886 r = __copy_to_user((void __user *)addr + offset, data, len); 1887 if (r) 1888 return -EFAULT; 1889 mark_page_dirty_in_slot(memslot, gfn); 1890 return 0; 1891 } 1892 1893 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1894 const void *data, int offset, int len) 1895 { 1896 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1897 1898 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1899 } 1900 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1901 1902 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1903 const void *data, int offset, int len) 1904 { 1905 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1906 1907 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1908 } 1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1910 1911 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1912 unsigned long len) 1913 { 1914 gfn_t gfn = gpa >> PAGE_SHIFT; 1915 int seg; 1916 int offset = offset_in_page(gpa); 1917 int ret; 1918 1919 while ((seg = next_segment(len, offset)) != 0) { 1920 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1921 if (ret < 0) 1922 return ret; 1923 offset = 0; 1924 len -= seg; 1925 data += seg; 1926 ++gfn; 1927 } 1928 return 0; 1929 } 1930 EXPORT_SYMBOL_GPL(kvm_write_guest); 1931 1932 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1933 unsigned long len) 1934 { 1935 gfn_t gfn = gpa >> PAGE_SHIFT; 1936 int seg; 1937 int offset = offset_in_page(gpa); 1938 int ret; 1939 1940 while ((seg = next_segment(len, offset)) != 0) { 1941 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1942 if (ret < 0) 1943 return ret; 1944 offset = 0; 1945 len -= seg; 1946 data += seg; 1947 ++gfn; 1948 } 1949 return 0; 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1952 1953 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1954 struct gfn_to_hva_cache *ghc, 1955 gpa_t gpa, unsigned long len) 1956 { 1957 int offset = offset_in_page(gpa); 1958 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1959 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1960 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1961 gfn_t nr_pages_avail; 1962 1963 ghc->gpa = gpa; 1964 ghc->generation = slots->generation; 1965 ghc->len = len; 1966 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1967 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1968 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1969 ghc->hva += offset; 1970 } else { 1971 /* 1972 * If the requested region crosses two memslots, we still 1973 * verify that the entire region is valid here. 1974 */ 1975 while (start_gfn <= end_gfn) { 1976 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1977 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1978 &nr_pages_avail); 1979 if (kvm_is_error_hva(ghc->hva)) 1980 return -EFAULT; 1981 start_gfn += nr_pages_avail; 1982 } 1983 /* Use the slow path for cross page reads and writes. */ 1984 ghc->memslot = NULL; 1985 } 1986 return 0; 1987 } 1988 1989 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1990 gpa_t gpa, unsigned long len) 1991 { 1992 struct kvm_memslots *slots = kvm_memslots(kvm); 1993 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1996 1997 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1998 void *data, int offset, unsigned long len) 1999 { 2000 struct kvm_memslots *slots = kvm_memslots(kvm); 2001 int r; 2002 gpa_t gpa = ghc->gpa + offset; 2003 2004 BUG_ON(len + offset > ghc->len); 2005 2006 if (slots->generation != ghc->generation) 2007 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2008 2009 if (unlikely(!ghc->memslot)) 2010 return kvm_write_guest(kvm, gpa, data, len); 2011 2012 if (kvm_is_error_hva(ghc->hva)) 2013 return -EFAULT; 2014 2015 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2016 if (r) 2017 return -EFAULT; 2018 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2019 2020 return 0; 2021 } 2022 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2023 2024 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2025 void *data, unsigned long len) 2026 { 2027 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2030 2031 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2032 void *data, unsigned long len) 2033 { 2034 struct kvm_memslots *slots = kvm_memslots(kvm); 2035 int r; 2036 2037 BUG_ON(len > ghc->len); 2038 2039 if (slots->generation != ghc->generation) 2040 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2041 2042 if (unlikely(!ghc->memslot)) 2043 return kvm_read_guest(kvm, ghc->gpa, data, len); 2044 2045 if (kvm_is_error_hva(ghc->hva)) 2046 return -EFAULT; 2047 2048 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2049 if (r) 2050 return -EFAULT; 2051 2052 return 0; 2053 } 2054 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2055 2056 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2057 { 2058 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2059 2060 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2061 } 2062 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2063 2064 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2065 { 2066 gfn_t gfn = gpa >> PAGE_SHIFT; 2067 int seg; 2068 int offset = offset_in_page(gpa); 2069 int ret; 2070 2071 while ((seg = next_segment(len, offset)) != 0) { 2072 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2073 if (ret < 0) 2074 return ret; 2075 offset = 0; 2076 len -= seg; 2077 ++gfn; 2078 } 2079 return 0; 2080 } 2081 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2082 2083 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2084 gfn_t gfn) 2085 { 2086 if (memslot && memslot->dirty_bitmap) { 2087 unsigned long rel_gfn = gfn - memslot->base_gfn; 2088 2089 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2090 } 2091 } 2092 2093 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2094 { 2095 struct kvm_memory_slot *memslot; 2096 2097 memslot = gfn_to_memslot(kvm, gfn); 2098 mark_page_dirty_in_slot(memslot, gfn); 2099 } 2100 EXPORT_SYMBOL_GPL(mark_page_dirty); 2101 2102 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2103 { 2104 struct kvm_memory_slot *memslot; 2105 2106 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2107 mark_page_dirty_in_slot(memslot, gfn); 2108 } 2109 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2110 2111 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2112 { 2113 unsigned int old, val, grow; 2114 2115 old = val = vcpu->halt_poll_ns; 2116 grow = READ_ONCE(halt_poll_ns_grow); 2117 /* 10us base */ 2118 if (val == 0 && grow) 2119 val = 10000; 2120 else 2121 val *= grow; 2122 2123 if (val > halt_poll_ns) 2124 val = halt_poll_ns; 2125 2126 vcpu->halt_poll_ns = val; 2127 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2128 } 2129 2130 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2131 { 2132 unsigned int old, val, shrink; 2133 2134 old = val = vcpu->halt_poll_ns; 2135 shrink = READ_ONCE(halt_poll_ns_shrink); 2136 if (shrink == 0) 2137 val = 0; 2138 else 2139 val /= shrink; 2140 2141 vcpu->halt_poll_ns = val; 2142 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2143 } 2144 2145 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2146 { 2147 if (kvm_arch_vcpu_runnable(vcpu)) { 2148 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2149 return -EINTR; 2150 } 2151 if (kvm_cpu_has_pending_timer(vcpu)) 2152 return -EINTR; 2153 if (signal_pending(current)) 2154 return -EINTR; 2155 2156 return 0; 2157 } 2158 2159 /* 2160 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2161 */ 2162 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2163 { 2164 ktime_t start, cur; 2165 DECLARE_SWAITQUEUE(wait); 2166 bool waited = false; 2167 u64 block_ns; 2168 2169 start = cur = ktime_get(); 2170 if (vcpu->halt_poll_ns) { 2171 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2172 2173 ++vcpu->stat.halt_attempted_poll; 2174 do { 2175 /* 2176 * This sets KVM_REQ_UNHALT if an interrupt 2177 * arrives. 2178 */ 2179 if (kvm_vcpu_check_block(vcpu) < 0) { 2180 ++vcpu->stat.halt_successful_poll; 2181 if (!vcpu_valid_wakeup(vcpu)) 2182 ++vcpu->stat.halt_poll_invalid; 2183 goto out; 2184 } 2185 cur = ktime_get(); 2186 } while (single_task_running() && ktime_before(cur, stop)); 2187 } 2188 2189 kvm_arch_vcpu_blocking(vcpu); 2190 2191 for (;;) { 2192 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2193 2194 if (kvm_vcpu_check_block(vcpu) < 0) 2195 break; 2196 2197 waited = true; 2198 schedule(); 2199 } 2200 2201 finish_swait(&vcpu->wq, &wait); 2202 cur = ktime_get(); 2203 2204 kvm_arch_vcpu_unblocking(vcpu); 2205 out: 2206 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2207 2208 if (!vcpu_valid_wakeup(vcpu)) 2209 shrink_halt_poll_ns(vcpu); 2210 else if (halt_poll_ns) { 2211 if (block_ns <= vcpu->halt_poll_ns) 2212 ; 2213 /* we had a long block, shrink polling */ 2214 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2215 shrink_halt_poll_ns(vcpu); 2216 /* we had a short halt and our poll time is too small */ 2217 else if (vcpu->halt_poll_ns < halt_poll_ns && 2218 block_ns < halt_poll_ns) 2219 grow_halt_poll_ns(vcpu); 2220 } else 2221 vcpu->halt_poll_ns = 0; 2222 2223 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2224 kvm_arch_vcpu_block_finish(vcpu); 2225 } 2226 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2227 2228 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2229 { 2230 struct swait_queue_head *wqp; 2231 2232 wqp = kvm_arch_vcpu_wq(vcpu); 2233 if (swait_active(wqp)) { 2234 swake_up(wqp); 2235 ++vcpu->stat.halt_wakeup; 2236 return true; 2237 } 2238 2239 return false; 2240 } 2241 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2242 2243 #ifndef CONFIG_S390 2244 /* 2245 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2246 */ 2247 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2248 { 2249 int me; 2250 int cpu = vcpu->cpu; 2251 2252 if (kvm_vcpu_wake_up(vcpu)) 2253 return; 2254 2255 me = get_cpu(); 2256 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2257 if (kvm_arch_vcpu_should_kick(vcpu)) 2258 smp_send_reschedule(cpu); 2259 put_cpu(); 2260 } 2261 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2262 #endif /* !CONFIG_S390 */ 2263 2264 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2265 { 2266 struct pid *pid; 2267 struct task_struct *task = NULL; 2268 int ret = 0; 2269 2270 rcu_read_lock(); 2271 pid = rcu_dereference(target->pid); 2272 if (pid) 2273 task = get_pid_task(pid, PIDTYPE_PID); 2274 rcu_read_unlock(); 2275 if (!task) 2276 return ret; 2277 ret = yield_to(task, 1); 2278 put_task_struct(task); 2279 2280 return ret; 2281 } 2282 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2283 2284 /* 2285 * Helper that checks whether a VCPU is eligible for directed yield. 2286 * Most eligible candidate to yield is decided by following heuristics: 2287 * 2288 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2289 * (preempted lock holder), indicated by @in_spin_loop. 2290 * Set at the beiginning and cleared at the end of interception/PLE handler. 2291 * 2292 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2293 * chance last time (mostly it has become eligible now since we have probably 2294 * yielded to lockholder in last iteration. This is done by toggling 2295 * @dy_eligible each time a VCPU checked for eligibility.) 2296 * 2297 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2298 * to preempted lock-holder could result in wrong VCPU selection and CPU 2299 * burning. Giving priority for a potential lock-holder increases lock 2300 * progress. 2301 * 2302 * Since algorithm is based on heuristics, accessing another VCPU data without 2303 * locking does not harm. It may result in trying to yield to same VCPU, fail 2304 * and continue with next VCPU and so on. 2305 */ 2306 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2307 { 2308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2309 bool eligible; 2310 2311 eligible = !vcpu->spin_loop.in_spin_loop || 2312 vcpu->spin_loop.dy_eligible; 2313 2314 if (vcpu->spin_loop.in_spin_loop) 2315 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2316 2317 return eligible; 2318 #else 2319 return true; 2320 #endif 2321 } 2322 2323 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2324 { 2325 struct kvm *kvm = me->kvm; 2326 struct kvm_vcpu *vcpu; 2327 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2328 int yielded = 0; 2329 int try = 3; 2330 int pass; 2331 int i; 2332 2333 kvm_vcpu_set_in_spin_loop(me, true); 2334 /* 2335 * We boost the priority of a VCPU that is runnable but not 2336 * currently running, because it got preempted by something 2337 * else and called schedule in __vcpu_run. Hopefully that 2338 * VCPU is holding the lock that we need and will release it. 2339 * We approximate round-robin by starting at the last boosted VCPU. 2340 */ 2341 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2342 kvm_for_each_vcpu(i, vcpu, kvm) { 2343 if (!pass && i <= last_boosted_vcpu) { 2344 i = last_boosted_vcpu; 2345 continue; 2346 } else if (pass && i > last_boosted_vcpu) 2347 break; 2348 if (!ACCESS_ONCE(vcpu->preempted)) 2349 continue; 2350 if (vcpu == me) 2351 continue; 2352 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2353 continue; 2354 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2355 continue; 2356 2357 yielded = kvm_vcpu_yield_to(vcpu); 2358 if (yielded > 0) { 2359 kvm->last_boosted_vcpu = i; 2360 break; 2361 } else if (yielded < 0) { 2362 try--; 2363 if (!try) 2364 break; 2365 } 2366 } 2367 } 2368 kvm_vcpu_set_in_spin_loop(me, false); 2369 2370 /* Ensure vcpu is not eligible during next spinloop */ 2371 kvm_vcpu_set_dy_eligible(me, false); 2372 } 2373 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2374 2375 static int kvm_vcpu_fault(struct vm_fault *vmf) 2376 { 2377 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2378 struct page *page; 2379 2380 if (vmf->pgoff == 0) 2381 page = virt_to_page(vcpu->run); 2382 #ifdef CONFIG_X86 2383 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2384 page = virt_to_page(vcpu->arch.pio_data); 2385 #endif 2386 #ifdef CONFIG_KVM_MMIO 2387 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2388 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2389 #endif 2390 else 2391 return kvm_arch_vcpu_fault(vcpu, vmf); 2392 get_page(page); 2393 vmf->page = page; 2394 return 0; 2395 } 2396 2397 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2398 .fault = kvm_vcpu_fault, 2399 }; 2400 2401 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2402 { 2403 vma->vm_ops = &kvm_vcpu_vm_ops; 2404 return 0; 2405 } 2406 2407 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2408 { 2409 struct kvm_vcpu *vcpu = filp->private_data; 2410 2411 debugfs_remove_recursive(vcpu->debugfs_dentry); 2412 kvm_put_kvm(vcpu->kvm); 2413 return 0; 2414 } 2415 2416 static struct file_operations kvm_vcpu_fops = { 2417 .release = kvm_vcpu_release, 2418 .unlocked_ioctl = kvm_vcpu_ioctl, 2419 #ifdef CONFIG_KVM_COMPAT 2420 .compat_ioctl = kvm_vcpu_compat_ioctl, 2421 #endif 2422 .mmap = kvm_vcpu_mmap, 2423 .llseek = noop_llseek, 2424 }; 2425 2426 /* 2427 * Allocates an inode for the vcpu. 2428 */ 2429 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2430 { 2431 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2432 } 2433 2434 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2435 { 2436 char dir_name[ITOA_MAX_LEN * 2]; 2437 int ret; 2438 2439 if (!kvm_arch_has_vcpu_debugfs()) 2440 return 0; 2441 2442 if (!debugfs_initialized()) 2443 return 0; 2444 2445 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2446 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2447 vcpu->kvm->debugfs_dentry); 2448 if (!vcpu->debugfs_dentry) 2449 return -ENOMEM; 2450 2451 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2452 if (ret < 0) { 2453 debugfs_remove_recursive(vcpu->debugfs_dentry); 2454 return ret; 2455 } 2456 2457 return 0; 2458 } 2459 2460 /* 2461 * Creates some virtual cpus. Good luck creating more than one. 2462 */ 2463 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2464 { 2465 int r; 2466 struct kvm_vcpu *vcpu; 2467 2468 if (id >= KVM_MAX_VCPU_ID) 2469 return -EINVAL; 2470 2471 mutex_lock(&kvm->lock); 2472 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2473 mutex_unlock(&kvm->lock); 2474 return -EINVAL; 2475 } 2476 2477 kvm->created_vcpus++; 2478 mutex_unlock(&kvm->lock); 2479 2480 vcpu = kvm_arch_vcpu_create(kvm, id); 2481 if (IS_ERR(vcpu)) { 2482 r = PTR_ERR(vcpu); 2483 goto vcpu_decrement; 2484 } 2485 2486 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2487 2488 r = kvm_arch_vcpu_setup(vcpu); 2489 if (r) 2490 goto vcpu_destroy; 2491 2492 r = kvm_create_vcpu_debugfs(vcpu); 2493 if (r) 2494 goto vcpu_destroy; 2495 2496 mutex_lock(&kvm->lock); 2497 if (kvm_get_vcpu_by_id(kvm, id)) { 2498 r = -EEXIST; 2499 goto unlock_vcpu_destroy; 2500 } 2501 2502 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2503 2504 /* Now it's all set up, let userspace reach it */ 2505 kvm_get_kvm(kvm); 2506 r = create_vcpu_fd(vcpu); 2507 if (r < 0) { 2508 kvm_put_kvm(kvm); 2509 goto unlock_vcpu_destroy; 2510 } 2511 2512 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2513 2514 /* 2515 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2516 * before kvm->online_vcpu's incremented value. 2517 */ 2518 smp_wmb(); 2519 atomic_inc(&kvm->online_vcpus); 2520 2521 mutex_unlock(&kvm->lock); 2522 kvm_arch_vcpu_postcreate(vcpu); 2523 return r; 2524 2525 unlock_vcpu_destroy: 2526 mutex_unlock(&kvm->lock); 2527 debugfs_remove_recursive(vcpu->debugfs_dentry); 2528 vcpu_destroy: 2529 kvm_arch_vcpu_destroy(vcpu); 2530 vcpu_decrement: 2531 mutex_lock(&kvm->lock); 2532 kvm->created_vcpus--; 2533 mutex_unlock(&kvm->lock); 2534 return r; 2535 } 2536 2537 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2538 { 2539 if (sigset) { 2540 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2541 vcpu->sigset_active = 1; 2542 vcpu->sigset = *sigset; 2543 } else 2544 vcpu->sigset_active = 0; 2545 return 0; 2546 } 2547 2548 static long kvm_vcpu_ioctl(struct file *filp, 2549 unsigned int ioctl, unsigned long arg) 2550 { 2551 struct kvm_vcpu *vcpu = filp->private_data; 2552 void __user *argp = (void __user *)arg; 2553 int r; 2554 struct kvm_fpu *fpu = NULL; 2555 struct kvm_sregs *kvm_sregs = NULL; 2556 2557 if (vcpu->kvm->mm != current->mm) 2558 return -EIO; 2559 2560 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2561 return -EINVAL; 2562 2563 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2564 /* 2565 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2566 * so vcpu_load() would break it. 2567 */ 2568 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2569 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2570 #endif 2571 2572 2573 r = vcpu_load(vcpu); 2574 if (r) 2575 return r; 2576 switch (ioctl) { 2577 case KVM_RUN: { 2578 struct pid *oldpid; 2579 r = -EINVAL; 2580 if (arg) 2581 goto out; 2582 oldpid = rcu_access_pointer(vcpu->pid); 2583 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2584 /* The thread running this VCPU changed. */ 2585 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2586 2587 rcu_assign_pointer(vcpu->pid, newpid); 2588 if (oldpid) 2589 synchronize_rcu(); 2590 put_pid(oldpid); 2591 } 2592 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2593 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2594 break; 2595 } 2596 case KVM_GET_REGS: { 2597 struct kvm_regs *kvm_regs; 2598 2599 r = -ENOMEM; 2600 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2601 if (!kvm_regs) 2602 goto out; 2603 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2604 if (r) 2605 goto out_free1; 2606 r = -EFAULT; 2607 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2608 goto out_free1; 2609 r = 0; 2610 out_free1: 2611 kfree(kvm_regs); 2612 break; 2613 } 2614 case KVM_SET_REGS: { 2615 struct kvm_regs *kvm_regs; 2616 2617 r = -ENOMEM; 2618 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2619 if (IS_ERR(kvm_regs)) { 2620 r = PTR_ERR(kvm_regs); 2621 goto out; 2622 } 2623 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2624 kfree(kvm_regs); 2625 break; 2626 } 2627 case KVM_GET_SREGS: { 2628 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2629 r = -ENOMEM; 2630 if (!kvm_sregs) 2631 goto out; 2632 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2633 if (r) 2634 goto out; 2635 r = -EFAULT; 2636 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2637 goto out; 2638 r = 0; 2639 break; 2640 } 2641 case KVM_SET_SREGS: { 2642 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2643 if (IS_ERR(kvm_sregs)) { 2644 r = PTR_ERR(kvm_sregs); 2645 kvm_sregs = NULL; 2646 goto out; 2647 } 2648 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2649 break; 2650 } 2651 case KVM_GET_MP_STATE: { 2652 struct kvm_mp_state mp_state; 2653 2654 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2655 if (r) 2656 goto out; 2657 r = -EFAULT; 2658 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2659 goto out; 2660 r = 0; 2661 break; 2662 } 2663 case KVM_SET_MP_STATE: { 2664 struct kvm_mp_state mp_state; 2665 2666 r = -EFAULT; 2667 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2668 goto out; 2669 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2670 break; 2671 } 2672 case KVM_TRANSLATE: { 2673 struct kvm_translation tr; 2674 2675 r = -EFAULT; 2676 if (copy_from_user(&tr, argp, sizeof(tr))) 2677 goto out; 2678 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2679 if (r) 2680 goto out; 2681 r = -EFAULT; 2682 if (copy_to_user(argp, &tr, sizeof(tr))) 2683 goto out; 2684 r = 0; 2685 break; 2686 } 2687 case KVM_SET_GUEST_DEBUG: { 2688 struct kvm_guest_debug dbg; 2689 2690 r = -EFAULT; 2691 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2692 goto out; 2693 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2694 break; 2695 } 2696 case KVM_SET_SIGNAL_MASK: { 2697 struct kvm_signal_mask __user *sigmask_arg = argp; 2698 struct kvm_signal_mask kvm_sigmask; 2699 sigset_t sigset, *p; 2700 2701 p = NULL; 2702 if (argp) { 2703 r = -EFAULT; 2704 if (copy_from_user(&kvm_sigmask, argp, 2705 sizeof(kvm_sigmask))) 2706 goto out; 2707 r = -EINVAL; 2708 if (kvm_sigmask.len != sizeof(sigset)) 2709 goto out; 2710 r = -EFAULT; 2711 if (copy_from_user(&sigset, sigmask_arg->sigset, 2712 sizeof(sigset))) 2713 goto out; 2714 p = &sigset; 2715 } 2716 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2717 break; 2718 } 2719 case KVM_GET_FPU: { 2720 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2721 r = -ENOMEM; 2722 if (!fpu) 2723 goto out; 2724 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2725 if (r) 2726 goto out; 2727 r = -EFAULT; 2728 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2729 goto out; 2730 r = 0; 2731 break; 2732 } 2733 case KVM_SET_FPU: { 2734 fpu = memdup_user(argp, sizeof(*fpu)); 2735 if (IS_ERR(fpu)) { 2736 r = PTR_ERR(fpu); 2737 fpu = NULL; 2738 goto out; 2739 } 2740 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2741 break; 2742 } 2743 default: 2744 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2745 } 2746 out: 2747 vcpu_put(vcpu); 2748 kfree(fpu); 2749 kfree(kvm_sregs); 2750 return r; 2751 } 2752 2753 #ifdef CONFIG_KVM_COMPAT 2754 static long kvm_vcpu_compat_ioctl(struct file *filp, 2755 unsigned int ioctl, unsigned long arg) 2756 { 2757 struct kvm_vcpu *vcpu = filp->private_data; 2758 void __user *argp = compat_ptr(arg); 2759 int r; 2760 2761 if (vcpu->kvm->mm != current->mm) 2762 return -EIO; 2763 2764 switch (ioctl) { 2765 case KVM_SET_SIGNAL_MASK: { 2766 struct kvm_signal_mask __user *sigmask_arg = argp; 2767 struct kvm_signal_mask kvm_sigmask; 2768 compat_sigset_t csigset; 2769 sigset_t sigset; 2770 2771 if (argp) { 2772 r = -EFAULT; 2773 if (copy_from_user(&kvm_sigmask, argp, 2774 sizeof(kvm_sigmask))) 2775 goto out; 2776 r = -EINVAL; 2777 if (kvm_sigmask.len != sizeof(csigset)) 2778 goto out; 2779 r = -EFAULT; 2780 if (copy_from_user(&csigset, sigmask_arg->sigset, 2781 sizeof(csigset))) 2782 goto out; 2783 sigset_from_compat(&sigset, &csigset); 2784 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2785 } else 2786 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2787 break; 2788 } 2789 default: 2790 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2791 } 2792 2793 out: 2794 return r; 2795 } 2796 #endif 2797 2798 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2799 int (*accessor)(struct kvm_device *dev, 2800 struct kvm_device_attr *attr), 2801 unsigned long arg) 2802 { 2803 struct kvm_device_attr attr; 2804 2805 if (!accessor) 2806 return -EPERM; 2807 2808 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2809 return -EFAULT; 2810 2811 return accessor(dev, &attr); 2812 } 2813 2814 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2815 unsigned long arg) 2816 { 2817 struct kvm_device *dev = filp->private_data; 2818 2819 switch (ioctl) { 2820 case KVM_SET_DEVICE_ATTR: 2821 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2822 case KVM_GET_DEVICE_ATTR: 2823 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2824 case KVM_HAS_DEVICE_ATTR: 2825 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2826 default: 2827 if (dev->ops->ioctl) 2828 return dev->ops->ioctl(dev, ioctl, arg); 2829 2830 return -ENOTTY; 2831 } 2832 } 2833 2834 static int kvm_device_release(struct inode *inode, struct file *filp) 2835 { 2836 struct kvm_device *dev = filp->private_data; 2837 struct kvm *kvm = dev->kvm; 2838 2839 kvm_put_kvm(kvm); 2840 return 0; 2841 } 2842 2843 static const struct file_operations kvm_device_fops = { 2844 .unlocked_ioctl = kvm_device_ioctl, 2845 #ifdef CONFIG_KVM_COMPAT 2846 .compat_ioctl = kvm_device_ioctl, 2847 #endif 2848 .release = kvm_device_release, 2849 }; 2850 2851 struct kvm_device *kvm_device_from_filp(struct file *filp) 2852 { 2853 if (filp->f_op != &kvm_device_fops) 2854 return NULL; 2855 2856 return filp->private_data; 2857 } 2858 2859 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2860 #ifdef CONFIG_KVM_MPIC 2861 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2862 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2863 #endif 2864 }; 2865 2866 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2867 { 2868 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2869 return -ENOSPC; 2870 2871 if (kvm_device_ops_table[type] != NULL) 2872 return -EEXIST; 2873 2874 kvm_device_ops_table[type] = ops; 2875 return 0; 2876 } 2877 2878 void kvm_unregister_device_ops(u32 type) 2879 { 2880 if (kvm_device_ops_table[type] != NULL) 2881 kvm_device_ops_table[type] = NULL; 2882 } 2883 2884 static int kvm_ioctl_create_device(struct kvm *kvm, 2885 struct kvm_create_device *cd) 2886 { 2887 struct kvm_device_ops *ops = NULL; 2888 struct kvm_device *dev; 2889 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2890 int ret; 2891 2892 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2893 return -ENODEV; 2894 2895 ops = kvm_device_ops_table[cd->type]; 2896 if (ops == NULL) 2897 return -ENODEV; 2898 2899 if (test) 2900 return 0; 2901 2902 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2903 if (!dev) 2904 return -ENOMEM; 2905 2906 dev->ops = ops; 2907 dev->kvm = kvm; 2908 2909 mutex_lock(&kvm->lock); 2910 ret = ops->create(dev, cd->type); 2911 if (ret < 0) { 2912 mutex_unlock(&kvm->lock); 2913 kfree(dev); 2914 return ret; 2915 } 2916 list_add(&dev->vm_node, &kvm->devices); 2917 mutex_unlock(&kvm->lock); 2918 2919 if (ops->init) 2920 ops->init(dev); 2921 2922 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2923 if (ret < 0) { 2924 mutex_lock(&kvm->lock); 2925 list_del(&dev->vm_node); 2926 mutex_unlock(&kvm->lock); 2927 ops->destroy(dev); 2928 return ret; 2929 } 2930 2931 kvm_get_kvm(kvm); 2932 cd->fd = ret; 2933 return 0; 2934 } 2935 2936 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2937 { 2938 switch (arg) { 2939 case KVM_CAP_USER_MEMORY: 2940 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2941 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2942 case KVM_CAP_INTERNAL_ERROR_DATA: 2943 #ifdef CONFIG_HAVE_KVM_MSI 2944 case KVM_CAP_SIGNAL_MSI: 2945 #endif 2946 #ifdef CONFIG_HAVE_KVM_IRQFD 2947 case KVM_CAP_IRQFD: 2948 case KVM_CAP_IRQFD_RESAMPLE: 2949 #endif 2950 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2951 case KVM_CAP_CHECK_EXTENSION_VM: 2952 return 1; 2953 #ifdef CONFIG_KVM_MMIO 2954 case KVM_CAP_COALESCED_MMIO: 2955 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2956 #endif 2957 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2958 case KVM_CAP_IRQ_ROUTING: 2959 return KVM_MAX_IRQ_ROUTES; 2960 #endif 2961 #if KVM_ADDRESS_SPACE_NUM > 1 2962 case KVM_CAP_MULTI_ADDRESS_SPACE: 2963 return KVM_ADDRESS_SPACE_NUM; 2964 #endif 2965 case KVM_CAP_MAX_VCPU_ID: 2966 return KVM_MAX_VCPU_ID; 2967 default: 2968 break; 2969 } 2970 return kvm_vm_ioctl_check_extension(kvm, arg); 2971 } 2972 2973 static long kvm_vm_ioctl(struct file *filp, 2974 unsigned int ioctl, unsigned long arg) 2975 { 2976 struct kvm *kvm = filp->private_data; 2977 void __user *argp = (void __user *)arg; 2978 int r; 2979 2980 if (kvm->mm != current->mm) 2981 return -EIO; 2982 switch (ioctl) { 2983 case KVM_CREATE_VCPU: 2984 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2985 break; 2986 case KVM_SET_USER_MEMORY_REGION: { 2987 struct kvm_userspace_memory_region kvm_userspace_mem; 2988 2989 r = -EFAULT; 2990 if (copy_from_user(&kvm_userspace_mem, argp, 2991 sizeof(kvm_userspace_mem))) 2992 goto out; 2993 2994 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2995 break; 2996 } 2997 case KVM_GET_DIRTY_LOG: { 2998 struct kvm_dirty_log log; 2999 3000 r = -EFAULT; 3001 if (copy_from_user(&log, argp, sizeof(log))) 3002 goto out; 3003 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3004 break; 3005 } 3006 #ifdef CONFIG_KVM_MMIO 3007 case KVM_REGISTER_COALESCED_MMIO: { 3008 struct kvm_coalesced_mmio_zone zone; 3009 3010 r = -EFAULT; 3011 if (copy_from_user(&zone, argp, sizeof(zone))) 3012 goto out; 3013 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3014 break; 3015 } 3016 case KVM_UNREGISTER_COALESCED_MMIO: { 3017 struct kvm_coalesced_mmio_zone zone; 3018 3019 r = -EFAULT; 3020 if (copy_from_user(&zone, argp, sizeof(zone))) 3021 goto out; 3022 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3023 break; 3024 } 3025 #endif 3026 case KVM_IRQFD: { 3027 struct kvm_irqfd data; 3028 3029 r = -EFAULT; 3030 if (copy_from_user(&data, argp, sizeof(data))) 3031 goto out; 3032 r = kvm_irqfd(kvm, &data); 3033 break; 3034 } 3035 case KVM_IOEVENTFD: { 3036 struct kvm_ioeventfd data; 3037 3038 r = -EFAULT; 3039 if (copy_from_user(&data, argp, sizeof(data))) 3040 goto out; 3041 r = kvm_ioeventfd(kvm, &data); 3042 break; 3043 } 3044 #ifdef CONFIG_HAVE_KVM_MSI 3045 case KVM_SIGNAL_MSI: { 3046 struct kvm_msi msi; 3047 3048 r = -EFAULT; 3049 if (copy_from_user(&msi, argp, sizeof(msi))) 3050 goto out; 3051 r = kvm_send_userspace_msi(kvm, &msi); 3052 break; 3053 } 3054 #endif 3055 #ifdef __KVM_HAVE_IRQ_LINE 3056 case KVM_IRQ_LINE_STATUS: 3057 case KVM_IRQ_LINE: { 3058 struct kvm_irq_level irq_event; 3059 3060 r = -EFAULT; 3061 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3062 goto out; 3063 3064 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3065 ioctl == KVM_IRQ_LINE_STATUS); 3066 if (r) 3067 goto out; 3068 3069 r = -EFAULT; 3070 if (ioctl == KVM_IRQ_LINE_STATUS) { 3071 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3072 goto out; 3073 } 3074 3075 r = 0; 3076 break; 3077 } 3078 #endif 3079 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3080 case KVM_SET_GSI_ROUTING: { 3081 struct kvm_irq_routing routing; 3082 struct kvm_irq_routing __user *urouting; 3083 struct kvm_irq_routing_entry *entries = NULL; 3084 3085 r = -EFAULT; 3086 if (copy_from_user(&routing, argp, sizeof(routing))) 3087 goto out; 3088 r = -EINVAL; 3089 if (!kvm_arch_can_set_irq_routing(kvm)) 3090 goto out; 3091 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3092 goto out; 3093 if (routing.flags) 3094 goto out; 3095 if (routing.nr) { 3096 r = -ENOMEM; 3097 entries = vmalloc(routing.nr * sizeof(*entries)); 3098 if (!entries) 3099 goto out; 3100 r = -EFAULT; 3101 urouting = argp; 3102 if (copy_from_user(entries, urouting->entries, 3103 routing.nr * sizeof(*entries))) 3104 goto out_free_irq_routing; 3105 } 3106 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3107 routing.flags); 3108 out_free_irq_routing: 3109 vfree(entries); 3110 break; 3111 } 3112 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3113 case KVM_CREATE_DEVICE: { 3114 struct kvm_create_device cd; 3115 3116 r = -EFAULT; 3117 if (copy_from_user(&cd, argp, sizeof(cd))) 3118 goto out; 3119 3120 r = kvm_ioctl_create_device(kvm, &cd); 3121 if (r) 3122 goto out; 3123 3124 r = -EFAULT; 3125 if (copy_to_user(argp, &cd, sizeof(cd))) 3126 goto out; 3127 3128 r = 0; 3129 break; 3130 } 3131 case KVM_CHECK_EXTENSION: 3132 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3133 break; 3134 default: 3135 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3136 } 3137 out: 3138 return r; 3139 } 3140 3141 #ifdef CONFIG_KVM_COMPAT 3142 struct compat_kvm_dirty_log { 3143 __u32 slot; 3144 __u32 padding1; 3145 union { 3146 compat_uptr_t dirty_bitmap; /* one bit per page */ 3147 __u64 padding2; 3148 }; 3149 }; 3150 3151 static long kvm_vm_compat_ioctl(struct file *filp, 3152 unsigned int ioctl, unsigned long arg) 3153 { 3154 struct kvm *kvm = filp->private_data; 3155 int r; 3156 3157 if (kvm->mm != current->mm) 3158 return -EIO; 3159 switch (ioctl) { 3160 case KVM_GET_DIRTY_LOG: { 3161 struct compat_kvm_dirty_log compat_log; 3162 struct kvm_dirty_log log; 3163 3164 if (copy_from_user(&compat_log, (void __user *)arg, 3165 sizeof(compat_log))) 3166 return -EFAULT; 3167 log.slot = compat_log.slot; 3168 log.padding1 = compat_log.padding1; 3169 log.padding2 = compat_log.padding2; 3170 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3171 3172 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3173 break; 3174 } 3175 default: 3176 r = kvm_vm_ioctl(filp, ioctl, arg); 3177 } 3178 return r; 3179 } 3180 #endif 3181 3182 static struct file_operations kvm_vm_fops = { 3183 .release = kvm_vm_release, 3184 .unlocked_ioctl = kvm_vm_ioctl, 3185 #ifdef CONFIG_KVM_COMPAT 3186 .compat_ioctl = kvm_vm_compat_ioctl, 3187 #endif 3188 .llseek = noop_llseek, 3189 }; 3190 3191 static int kvm_dev_ioctl_create_vm(unsigned long type) 3192 { 3193 int r; 3194 struct kvm *kvm; 3195 struct file *file; 3196 3197 kvm = kvm_create_vm(type); 3198 if (IS_ERR(kvm)) 3199 return PTR_ERR(kvm); 3200 #ifdef CONFIG_KVM_MMIO 3201 r = kvm_coalesced_mmio_init(kvm); 3202 if (r < 0) { 3203 kvm_put_kvm(kvm); 3204 return r; 3205 } 3206 #endif 3207 r = get_unused_fd_flags(O_CLOEXEC); 3208 if (r < 0) { 3209 kvm_put_kvm(kvm); 3210 return r; 3211 } 3212 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3213 if (IS_ERR(file)) { 3214 put_unused_fd(r); 3215 kvm_put_kvm(kvm); 3216 return PTR_ERR(file); 3217 } 3218 3219 /* 3220 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3221 * already set, with ->release() being kvm_vm_release(). In error 3222 * cases it will be called by the final fput(file) and will take 3223 * care of doing kvm_put_kvm(kvm). 3224 */ 3225 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3226 put_unused_fd(r); 3227 fput(file); 3228 return -ENOMEM; 3229 } 3230 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3231 3232 fd_install(r, file); 3233 return r; 3234 } 3235 3236 static long kvm_dev_ioctl(struct file *filp, 3237 unsigned int ioctl, unsigned long arg) 3238 { 3239 long r = -EINVAL; 3240 3241 switch (ioctl) { 3242 case KVM_GET_API_VERSION: 3243 if (arg) 3244 goto out; 3245 r = KVM_API_VERSION; 3246 break; 3247 case KVM_CREATE_VM: 3248 r = kvm_dev_ioctl_create_vm(arg); 3249 break; 3250 case KVM_CHECK_EXTENSION: 3251 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3252 break; 3253 case KVM_GET_VCPU_MMAP_SIZE: 3254 if (arg) 3255 goto out; 3256 r = PAGE_SIZE; /* struct kvm_run */ 3257 #ifdef CONFIG_X86 3258 r += PAGE_SIZE; /* pio data page */ 3259 #endif 3260 #ifdef CONFIG_KVM_MMIO 3261 r += PAGE_SIZE; /* coalesced mmio ring page */ 3262 #endif 3263 break; 3264 case KVM_TRACE_ENABLE: 3265 case KVM_TRACE_PAUSE: 3266 case KVM_TRACE_DISABLE: 3267 r = -EOPNOTSUPP; 3268 break; 3269 default: 3270 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3271 } 3272 out: 3273 return r; 3274 } 3275 3276 static struct file_operations kvm_chardev_ops = { 3277 .unlocked_ioctl = kvm_dev_ioctl, 3278 .compat_ioctl = kvm_dev_ioctl, 3279 .llseek = noop_llseek, 3280 }; 3281 3282 static struct miscdevice kvm_dev = { 3283 KVM_MINOR, 3284 "kvm", 3285 &kvm_chardev_ops, 3286 }; 3287 3288 static void hardware_enable_nolock(void *junk) 3289 { 3290 int cpu = raw_smp_processor_id(); 3291 int r; 3292 3293 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3294 return; 3295 3296 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3297 3298 r = kvm_arch_hardware_enable(); 3299 3300 if (r) { 3301 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3302 atomic_inc(&hardware_enable_failed); 3303 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3304 } 3305 } 3306 3307 static int kvm_starting_cpu(unsigned int cpu) 3308 { 3309 raw_spin_lock(&kvm_count_lock); 3310 if (kvm_usage_count) 3311 hardware_enable_nolock(NULL); 3312 raw_spin_unlock(&kvm_count_lock); 3313 return 0; 3314 } 3315 3316 static void hardware_disable_nolock(void *junk) 3317 { 3318 int cpu = raw_smp_processor_id(); 3319 3320 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3321 return; 3322 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3323 kvm_arch_hardware_disable(); 3324 } 3325 3326 static int kvm_dying_cpu(unsigned int cpu) 3327 { 3328 raw_spin_lock(&kvm_count_lock); 3329 if (kvm_usage_count) 3330 hardware_disable_nolock(NULL); 3331 raw_spin_unlock(&kvm_count_lock); 3332 return 0; 3333 } 3334 3335 static void hardware_disable_all_nolock(void) 3336 { 3337 BUG_ON(!kvm_usage_count); 3338 3339 kvm_usage_count--; 3340 if (!kvm_usage_count) 3341 on_each_cpu(hardware_disable_nolock, NULL, 1); 3342 } 3343 3344 static void hardware_disable_all(void) 3345 { 3346 raw_spin_lock(&kvm_count_lock); 3347 hardware_disable_all_nolock(); 3348 raw_spin_unlock(&kvm_count_lock); 3349 } 3350 3351 static int hardware_enable_all(void) 3352 { 3353 int r = 0; 3354 3355 raw_spin_lock(&kvm_count_lock); 3356 3357 kvm_usage_count++; 3358 if (kvm_usage_count == 1) { 3359 atomic_set(&hardware_enable_failed, 0); 3360 on_each_cpu(hardware_enable_nolock, NULL, 1); 3361 3362 if (atomic_read(&hardware_enable_failed)) { 3363 hardware_disable_all_nolock(); 3364 r = -EBUSY; 3365 } 3366 } 3367 3368 raw_spin_unlock(&kvm_count_lock); 3369 3370 return r; 3371 } 3372 3373 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3374 void *v) 3375 { 3376 /* 3377 * Some (well, at least mine) BIOSes hang on reboot if 3378 * in vmx root mode. 3379 * 3380 * And Intel TXT required VMX off for all cpu when system shutdown. 3381 */ 3382 pr_info("kvm: exiting hardware virtualization\n"); 3383 kvm_rebooting = true; 3384 on_each_cpu(hardware_disable_nolock, NULL, 1); 3385 return NOTIFY_OK; 3386 } 3387 3388 static struct notifier_block kvm_reboot_notifier = { 3389 .notifier_call = kvm_reboot, 3390 .priority = 0, 3391 }; 3392 3393 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3394 { 3395 int i; 3396 3397 for (i = 0; i < bus->dev_count; i++) { 3398 struct kvm_io_device *pos = bus->range[i].dev; 3399 3400 kvm_iodevice_destructor(pos); 3401 } 3402 kfree(bus); 3403 } 3404 3405 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3406 const struct kvm_io_range *r2) 3407 { 3408 gpa_t addr1 = r1->addr; 3409 gpa_t addr2 = r2->addr; 3410 3411 if (addr1 < addr2) 3412 return -1; 3413 3414 /* If r2->len == 0, match the exact address. If r2->len != 0, 3415 * accept any overlapping write. Any order is acceptable for 3416 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3417 * we process all of them. 3418 */ 3419 if (r2->len) { 3420 addr1 += r1->len; 3421 addr2 += r2->len; 3422 } 3423 3424 if (addr1 > addr2) 3425 return 1; 3426 3427 return 0; 3428 } 3429 3430 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3431 { 3432 return kvm_io_bus_cmp(p1, p2); 3433 } 3434 3435 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3436 gpa_t addr, int len) 3437 { 3438 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3439 .addr = addr, 3440 .len = len, 3441 .dev = dev, 3442 }; 3443 3444 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3445 kvm_io_bus_sort_cmp, NULL); 3446 3447 return 0; 3448 } 3449 3450 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3451 gpa_t addr, int len) 3452 { 3453 struct kvm_io_range *range, key; 3454 int off; 3455 3456 key = (struct kvm_io_range) { 3457 .addr = addr, 3458 .len = len, 3459 }; 3460 3461 range = bsearch(&key, bus->range, bus->dev_count, 3462 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3463 if (range == NULL) 3464 return -ENOENT; 3465 3466 off = range - bus->range; 3467 3468 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3469 off--; 3470 3471 return off; 3472 } 3473 3474 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3475 struct kvm_io_range *range, const void *val) 3476 { 3477 int idx; 3478 3479 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3480 if (idx < 0) 3481 return -EOPNOTSUPP; 3482 3483 while (idx < bus->dev_count && 3484 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3485 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3486 range->len, val)) 3487 return idx; 3488 idx++; 3489 } 3490 3491 return -EOPNOTSUPP; 3492 } 3493 3494 /* kvm_io_bus_write - called under kvm->slots_lock */ 3495 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3496 int len, const void *val) 3497 { 3498 struct kvm_io_bus *bus; 3499 struct kvm_io_range range; 3500 int r; 3501 3502 range = (struct kvm_io_range) { 3503 .addr = addr, 3504 .len = len, 3505 }; 3506 3507 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3508 if (!bus) 3509 return -ENOMEM; 3510 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3511 return r < 0 ? r : 0; 3512 } 3513 3514 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3515 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3516 gpa_t addr, int len, const void *val, long cookie) 3517 { 3518 struct kvm_io_bus *bus; 3519 struct kvm_io_range range; 3520 3521 range = (struct kvm_io_range) { 3522 .addr = addr, 3523 .len = len, 3524 }; 3525 3526 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3527 if (!bus) 3528 return -ENOMEM; 3529 3530 /* First try the device referenced by cookie. */ 3531 if ((cookie >= 0) && (cookie < bus->dev_count) && 3532 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3533 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3534 val)) 3535 return cookie; 3536 3537 /* 3538 * cookie contained garbage; fall back to search and return the 3539 * correct cookie value. 3540 */ 3541 return __kvm_io_bus_write(vcpu, bus, &range, val); 3542 } 3543 3544 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3545 struct kvm_io_range *range, void *val) 3546 { 3547 int idx; 3548 3549 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3550 if (idx < 0) 3551 return -EOPNOTSUPP; 3552 3553 while (idx < bus->dev_count && 3554 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3555 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3556 range->len, val)) 3557 return idx; 3558 idx++; 3559 } 3560 3561 return -EOPNOTSUPP; 3562 } 3563 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3564 3565 /* kvm_io_bus_read - called under kvm->slots_lock */ 3566 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3567 int len, void *val) 3568 { 3569 struct kvm_io_bus *bus; 3570 struct kvm_io_range range; 3571 int r; 3572 3573 range = (struct kvm_io_range) { 3574 .addr = addr, 3575 .len = len, 3576 }; 3577 3578 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3579 if (!bus) 3580 return -ENOMEM; 3581 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3582 return r < 0 ? r : 0; 3583 } 3584 3585 3586 /* Caller must hold slots_lock. */ 3587 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3588 int len, struct kvm_io_device *dev) 3589 { 3590 struct kvm_io_bus *new_bus, *bus; 3591 3592 bus = kvm_get_bus(kvm, bus_idx); 3593 if (!bus) 3594 return -ENOMEM; 3595 3596 /* exclude ioeventfd which is limited by maximum fd */ 3597 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3598 return -ENOSPC; 3599 3600 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3601 sizeof(struct kvm_io_range)), GFP_KERNEL); 3602 if (!new_bus) 3603 return -ENOMEM; 3604 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3605 sizeof(struct kvm_io_range))); 3606 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3607 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3608 synchronize_srcu_expedited(&kvm->srcu); 3609 kfree(bus); 3610 3611 return 0; 3612 } 3613 3614 /* Caller must hold slots_lock. */ 3615 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3616 struct kvm_io_device *dev) 3617 { 3618 int i; 3619 struct kvm_io_bus *new_bus, *bus; 3620 3621 bus = kvm_get_bus(kvm, bus_idx); 3622 if (!bus) 3623 return; 3624 3625 for (i = 0; i < bus->dev_count; i++) 3626 if (bus->range[i].dev == dev) { 3627 break; 3628 } 3629 3630 if (i == bus->dev_count) 3631 return; 3632 3633 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3634 sizeof(struct kvm_io_range)), GFP_KERNEL); 3635 if (!new_bus) { 3636 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3637 goto broken; 3638 } 3639 3640 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3641 new_bus->dev_count--; 3642 memcpy(new_bus->range + i, bus->range + i + 1, 3643 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3644 3645 broken: 3646 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3647 synchronize_srcu_expedited(&kvm->srcu); 3648 kfree(bus); 3649 return; 3650 } 3651 3652 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3653 gpa_t addr) 3654 { 3655 struct kvm_io_bus *bus; 3656 int dev_idx, srcu_idx; 3657 struct kvm_io_device *iodev = NULL; 3658 3659 srcu_idx = srcu_read_lock(&kvm->srcu); 3660 3661 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3662 if (!bus) 3663 goto out_unlock; 3664 3665 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3666 if (dev_idx < 0) 3667 goto out_unlock; 3668 3669 iodev = bus->range[dev_idx].dev; 3670 3671 out_unlock: 3672 srcu_read_unlock(&kvm->srcu, srcu_idx); 3673 3674 return iodev; 3675 } 3676 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3677 3678 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3679 int (*get)(void *, u64 *), int (*set)(void *, u64), 3680 const char *fmt) 3681 { 3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3683 inode->i_private; 3684 3685 /* The debugfs files are a reference to the kvm struct which 3686 * is still valid when kvm_destroy_vm is called. 3687 * To avoid the race between open and the removal of the debugfs 3688 * directory we test against the users count. 3689 */ 3690 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3691 return -ENOENT; 3692 3693 if (simple_attr_open(inode, file, get, set, fmt)) { 3694 kvm_put_kvm(stat_data->kvm); 3695 return -ENOMEM; 3696 } 3697 3698 return 0; 3699 } 3700 3701 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3702 { 3703 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3704 inode->i_private; 3705 3706 simple_attr_release(inode, file); 3707 kvm_put_kvm(stat_data->kvm); 3708 3709 return 0; 3710 } 3711 3712 static int vm_stat_get_per_vm(void *data, u64 *val) 3713 { 3714 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3715 3716 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3717 3718 return 0; 3719 } 3720 3721 static int vm_stat_clear_per_vm(void *data, u64 val) 3722 { 3723 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3724 3725 if (val) 3726 return -EINVAL; 3727 3728 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3729 3730 return 0; 3731 } 3732 3733 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3734 { 3735 __simple_attr_check_format("%llu\n", 0ull); 3736 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3737 vm_stat_clear_per_vm, "%llu\n"); 3738 } 3739 3740 static const struct file_operations vm_stat_get_per_vm_fops = { 3741 .owner = THIS_MODULE, 3742 .open = vm_stat_get_per_vm_open, 3743 .release = kvm_debugfs_release, 3744 .read = simple_attr_read, 3745 .write = simple_attr_write, 3746 .llseek = no_llseek, 3747 }; 3748 3749 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3750 { 3751 int i; 3752 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3753 struct kvm_vcpu *vcpu; 3754 3755 *val = 0; 3756 3757 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3758 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3759 3760 return 0; 3761 } 3762 3763 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3764 { 3765 int i; 3766 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3767 struct kvm_vcpu *vcpu; 3768 3769 if (val) 3770 return -EINVAL; 3771 3772 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3773 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3774 3775 return 0; 3776 } 3777 3778 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3779 { 3780 __simple_attr_check_format("%llu\n", 0ull); 3781 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3782 vcpu_stat_clear_per_vm, "%llu\n"); 3783 } 3784 3785 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3786 .owner = THIS_MODULE, 3787 .open = vcpu_stat_get_per_vm_open, 3788 .release = kvm_debugfs_release, 3789 .read = simple_attr_read, 3790 .write = simple_attr_write, 3791 .llseek = no_llseek, 3792 }; 3793 3794 static const struct file_operations *stat_fops_per_vm[] = { 3795 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3796 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3797 }; 3798 3799 static int vm_stat_get(void *_offset, u64 *val) 3800 { 3801 unsigned offset = (long)_offset; 3802 struct kvm *kvm; 3803 struct kvm_stat_data stat_tmp = {.offset = offset}; 3804 u64 tmp_val; 3805 3806 *val = 0; 3807 spin_lock(&kvm_lock); 3808 list_for_each_entry(kvm, &vm_list, vm_list) { 3809 stat_tmp.kvm = kvm; 3810 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3811 *val += tmp_val; 3812 } 3813 spin_unlock(&kvm_lock); 3814 return 0; 3815 } 3816 3817 static int vm_stat_clear(void *_offset, u64 val) 3818 { 3819 unsigned offset = (long)_offset; 3820 struct kvm *kvm; 3821 struct kvm_stat_data stat_tmp = {.offset = offset}; 3822 3823 if (val) 3824 return -EINVAL; 3825 3826 spin_lock(&kvm_lock); 3827 list_for_each_entry(kvm, &vm_list, vm_list) { 3828 stat_tmp.kvm = kvm; 3829 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3830 } 3831 spin_unlock(&kvm_lock); 3832 3833 return 0; 3834 } 3835 3836 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3837 3838 static int vcpu_stat_get(void *_offset, u64 *val) 3839 { 3840 unsigned offset = (long)_offset; 3841 struct kvm *kvm; 3842 struct kvm_stat_data stat_tmp = {.offset = offset}; 3843 u64 tmp_val; 3844 3845 *val = 0; 3846 spin_lock(&kvm_lock); 3847 list_for_each_entry(kvm, &vm_list, vm_list) { 3848 stat_tmp.kvm = kvm; 3849 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3850 *val += tmp_val; 3851 } 3852 spin_unlock(&kvm_lock); 3853 return 0; 3854 } 3855 3856 static int vcpu_stat_clear(void *_offset, u64 val) 3857 { 3858 unsigned offset = (long)_offset; 3859 struct kvm *kvm; 3860 struct kvm_stat_data stat_tmp = {.offset = offset}; 3861 3862 if (val) 3863 return -EINVAL; 3864 3865 spin_lock(&kvm_lock); 3866 list_for_each_entry(kvm, &vm_list, vm_list) { 3867 stat_tmp.kvm = kvm; 3868 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3869 } 3870 spin_unlock(&kvm_lock); 3871 3872 return 0; 3873 } 3874 3875 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3876 "%llu\n"); 3877 3878 static const struct file_operations *stat_fops[] = { 3879 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3880 [KVM_STAT_VM] = &vm_stat_fops, 3881 }; 3882 3883 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3884 { 3885 struct kobj_uevent_env *env; 3886 char *tmp, *pathbuf = NULL; 3887 unsigned long long created, active; 3888 3889 if (!kvm_dev.this_device || !kvm) 3890 return; 3891 3892 spin_lock(&kvm_lock); 3893 if (type == KVM_EVENT_CREATE_VM) { 3894 kvm_createvm_count++; 3895 kvm_active_vms++; 3896 } else if (type == KVM_EVENT_DESTROY_VM) { 3897 kvm_active_vms--; 3898 } 3899 created = kvm_createvm_count; 3900 active = kvm_active_vms; 3901 spin_unlock(&kvm_lock); 3902 3903 env = kzalloc(sizeof(*env), GFP_KERNEL); 3904 if (!env) 3905 return; 3906 3907 add_uevent_var(env, "CREATED=%llu", created); 3908 add_uevent_var(env, "COUNT=%llu", active); 3909 3910 if (type == KVM_EVENT_CREATE_VM) 3911 add_uevent_var(env, "EVENT=create"); 3912 else if (type == KVM_EVENT_DESTROY_VM) 3913 add_uevent_var(env, "EVENT=destroy"); 3914 3915 if (kvm->debugfs_dentry) { 3916 char p[ITOA_MAX_LEN]; 3917 3918 snprintf(p, sizeof(p), "%s", kvm->debugfs_dentry->d_name.name); 3919 tmp = strchrnul(p + 1, '-'); 3920 *tmp = '\0'; 3921 add_uevent_var(env, "PID=%s", p); 3922 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 3923 if (pathbuf) { 3924 /* sizeof counts the final '\0' */ 3925 int len = sizeof("STATS_PATH=") - 1; 3926 const char *pvar = "STATS_PATH="; 3927 3928 tmp = dentry_path_raw(kvm->debugfs_dentry, 3929 pathbuf + len, 3930 PATH_MAX - len); 3931 if (!IS_ERR(tmp)) { 3932 memcpy(tmp - len, pvar, len); 3933 env->envp[env->envp_idx++] = tmp - len; 3934 } 3935 } 3936 } 3937 /* no need for checks, since we are adding at most only 5 keys */ 3938 env->envp[env->envp_idx++] = NULL; 3939 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3940 kfree(env); 3941 kfree(pathbuf); 3942 } 3943 3944 static int kvm_init_debug(void) 3945 { 3946 int r = -EEXIST; 3947 struct kvm_stats_debugfs_item *p; 3948 3949 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3950 if (kvm_debugfs_dir == NULL) 3951 goto out; 3952 3953 kvm_debugfs_num_entries = 0; 3954 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3955 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3956 (void *)(long)p->offset, 3957 stat_fops[p->kind])) 3958 goto out_dir; 3959 } 3960 3961 return 0; 3962 3963 out_dir: 3964 debugfs_remove_recursive(kvm_debugfs_dir); 3965 out: 3966 return r; 3967 } 3968 3969 static int kvm_suspend(void) 3970 { 3971 if (kvm_usage_count) 3972 hardware_disable_nolock(NULL); 3973 return 0; 3974 } 3975 3976 static void kvm_resume(void) 3977 { 3978 if (kvm_usage_count) { 3979 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3980 hardware_enable_nolock(NULL); 3981 } 3982 } 3983 3984 static struct syscore_ops kvm_syscore_ops = { 3985 .suspend = kvm_suspend, 3986 .resume = kvm_resume, 3987 }; 3988 3989 static inline 3990 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3991 { 3992 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3993 } 3994 3995 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3996 { 3997 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3998 3999 if (vcpu->preempted) 4000 vcpu->preempted = false; 4001 4002 kvm_arch_sched_in(vcpu, cpu); 4003 4004 kvm_arch_vcpu_load(vcpu, cpu); 4005 } 4006 4007 static void kvm_sched_out(struct preempt_notifier *pn, 4008 struct task_struct *next) 4009 { 4010 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4011 4012 if (current->state == TASK_RUNNING) 4013 vcpu->preempted = true; 4014 kvm_arch_vcpu_put(vcpu); 4015 } 4016 4017 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4018 struct module *module) 4019 { 4020 int r; 4021 int cpu; 4022 4023 r = kvm_arch_init(opaque); 4024 if (r) 4025 goto out_fail; 4026 4027 /* 4028 * kvm_arch_init makes sure there's at most one caller 4029 * for architectures that support multiple implementations, 4030 * like intel and amd on x86. 4031 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4032 * conflicts in case kvm is already setup for another implementation. 4033 */ 4034 r = kvm_irqfd_init(); 4035 if (r) 4036 goto out_irqfd; 4037 4038 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4039 r = -ENOMEM; 4040 goto out_free_0; 4041 } 4042 4043 r = kvm_arch_hardware_setup(); 4044 if (r < 0) 4045 goto out_free_0a; 4046 4047 for_each_online_cpu(cpu) { 4048 smp_call_function_single(cpu, 4049 kvm_arch_check_processor_compat, 4050 &r, 1); 4051 if (r < 0) 4052 goto out_free_1; 4053 } 4054 4055 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4056 kvm_starting_cpu, kvm_dying_cpu); 4057 if (r) 4058 goto out_free_2; 4059 register_reboot_notifier(&kvm_reboot_notifier); 4060 4061 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4062 if (!vcpu_align) 4063 vcpu_align = __alignof__(struct kvm_vcpu); 4064 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 4065 0, NULL); 4066 if (!kvm_vcpu_cache) { 4067 r = -ENOMEM; 4068 goto out_free_3; 4069 } 4070 4071 r = kvm_async_pf_init(); 4072 if (r) 4073 goto out_free; 4074 4075 kvm_chardev_ops.owner = module; 4076 kvm_vm_fops.owner = module; 4077 kvm_vcpu_fops.owner = module; 4078 4079 r = misc_register(&kvm_dev); 4080 if (r) { 4081 pr_err("kvm: misc device register failed\n"); 4082 goto out_unreg; 4083 } 4084 4085 register_syscore_ops(&kvm_syscore_ops); 4086 4087 kvm_preempt_ops.sched_in = kvm_sched_in; 4088 kvm_preempt_ops.sched_out = kvm_sched_out; 4089 4090 r = kvm_init_debug(); 4091 if (r) { 4092 pr_err("kvm: create debugfs files failed\n"); 4093 goto out_undebugfs; 4094 } 4095 4096 r = kvm_vfio_ops_init(); 4097 WARN_ON(r); 4098 4099 return 0; 4100 4101 out_undebugfs: 4102 unregister_syscore_ops(&kvm_syscore_ops); 4103 misc_deregister(&kvm_dev); 4104 out_unreg: 4105 kvm_async_pf_deinit(); 4106 out_free: 4107 kmem_cache_destroy(kvm_vcpu_cache); 4108 out_free_3: 4109 unregister_reboot_notifier(&kvm_reboot_notifier); 4110 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4111 out_free_2: 4112 out_free_1: 4113 kvm_arch_hardware_unsetup(); 4114 out_free_0a: 4115 free_cpumask_var(cpus_hardware_enabled); 4116 out_free_0: 4117 kvm_irqfd_exit(); 4118 out_irqfd: 4119 kvm_arch_exit(); 4120 out_fail: 4121 return r; 4122 } 4123 EXPORT_SYMBOL_GPL(kvm_init); 4124 4125 void kvm_exit(void) 4126 { 4127 debugfs_remove_recursive(kvm_debugfs_dir); 4128 misc_deregister(&kvm_dev); 4129 kmem_cache_destroy(kvm_vcpu_cache); 4130 kvm_async_pf_deinit(); 4131 unregister_syscore_ops(&kvm_syscore_ops); 4132 unregister_reboot_notifier(&kvm_reboot_notifier); 4133 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4134 on_each_cpu(hardware_disable_nolock, NULL, 1); 4135 kvm_arch_hardware_unsetup(); 4136 kvm_arch_exit(); 4137 kvm_irqfd_exit(); 4138 free_cpumask_var(cpus_hardware_enabled); 4139 kvm_vfio_ops_exit(); 4140 } 4141 EXPORT_SYMBOL_GPL(kvm_exit); 4142