1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static struct file_operations kvm_chardev_ops; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 158 { 159 } 160 161 bool kvm_is_zone_device_page(struct page *page) 162 { 163 /* 164 * The metadata used by is_zone_device_page() to determine whether or 165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 166 * the device has been pinned, e.g. by get_user_pages(). WARN if the 167 * page_count() is zero to help detect bad usage of this helper. 168 */ 169 if (WARN_ON_ONCE(!page_count(page))) 170 return false; 171 172 return is_zone_device_page(page); 173 } 174 175 /* 176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 178 * is likely incomplete, it has been compiled purely through people wanting to 179 * back guest with a certain type of memory and encountering issues. 180 */ 181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 182 { 183 struct page *page; 184 185 if (!pfn_valid(pfn)) 186 return NULL; 187 188 page = pfn_to_page(pfn); 189 if (!PageReserved(page)) 190 return page; 191 192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 193 if (is_zero_pfn(pfn)) 194 return page; 195 196 /* 197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 198 * perspective they are "normal" pages, albeit with slightly different 199 * usage rules. 200 */ 201 if (kvm_is_zone_device_page(page)) 202 return page; 203 204 return NULL; 205 } 206 207 /* 208 * Switches to specified vcpu, until a matching vcpu_put() 209 */ 210 void vcpu_load(struct kvm_vcpu *vcpu) 211 { 212 int cpu = get_cpu(); 213 214 __this_cpu_write(kvm_running_vcpu, vcpu); 215 preempt_notifier_register(&vcpu->preempt_notifier); 216 kvm_arch_vcpu_load(vcpu, cpu); 217 put_cpu(); 218 } 219 EXPORT_SYMBOL_GPL(vcpu_load); 220 221 void vcpu_put(struct kvm_vcpu *vcpu) 222 { 223 preempt_disable(); 224 kvm_arch_vcpu_put(vcpu); 225 preempt_notifier_unregister(&vcpu->preempt_notifier); 226 __this_cpu_write(kvm_running_vcpu, NULL); 227 preempt_enable(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_put); 230 231 /* TODO: merge with kvm_arch_vcpu_should_kick */ 232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 233 { 234 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 235 236 /* 237 * We need to wait for the VCPU to reenable interrupts and get out of 238 * READING_SHADOW_PAGE_TABLES mode. 239 */ 240 if (req & KVM_REQUEST_WAIT) 241 return mode != OUTSIDE_GUEST_MODE; 242 243 /* 244 * Need to kick a running VCPU, but otherwise there is nothing to do. 245 */ 246 return mode == IN_GUEST_MODE; 247 } 248 249 static void ack_kick(void *_completed) 250 { 251 } 252 253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 254 { 255 if (cpumask_empty(cpus)) 256 return false; 257 258 smp_call_function_many(cpus, ack_kick, NULL, wait); 259 return true; 260 } 261 262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 263 struct cpumask *tmp, int current_cpu) 264 { 265 int cpu; 266 267 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 268 __kvm_make_request(req, vcpu); 269 270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 271 return; 272 273 /* 274 * Note, the vCPU could get migrated to a different pCPU at any point 275 * after kvm_request_needs_ipi(), which could result in sending an IPI 276 * to the previous pCPU. But, that's OK because the purpose of the IPI 277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 279 * after this point is also OK, as the requirement is only that KVM wait 280 * for vCPUs that were reading SPTEs _before_ any changes were 281 * finalized. See kvm_vcpu_kick() for more details on handling requests. 282 */ 283 if (kvm_request_needs_ipi(vcpu, req)) { 284 cpu = READ_ONCE(vcpu->cpu); 285 if (cpu != -1 && cpu != current_cpu) 286 __cpumask_set_cpu(cpu, tmp); 287 } 288 } 289 290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 291 unsigned long *vcpu_bitmap) 292 { 293 struct kvm_vcpu *vcpu; 294 struct cpumask *cpus; 295 int i, me; 296 bool called; 297 298 me = get_cpu(); 299 300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 301 cpumask_clear(cpus); 302 303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 304 vcpu = kvm_get_vcpu(kvm, i); 305 if (!vcpu) 306 continue; 307 kvm_make_vcpu_request(vcpu, req, cpus, me); 308 } 309 310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 311 put_cpu(); 312 313 return called; 314 } 315 316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 317 struct kvm_vcpu *except) 318 { 319 struct kvm_vcpu *vcpu; 320 struct cpumask *cpus; 321 unsigned long i; 322 bool called; 323 int me; 324 325 me = get_cpu(); 326 327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 328 cpumask_clear(cpus); 329 330 kvm_for_each_vcpu(i, vcpu, kvm) { 331 if (vcpu == except) 332 continue; 333 kvm_make_vcpu_request(vcpu, req, cpus, me); 334 } 335 336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 337 put_cpu(); 338 339 return called; 340 } 341 342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 343 { 344 return kvm_make_all_cpus_request_except(kvm, req, NULL); 345 } 346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 347 348 void kvm_flush_remote_tlbs(struct kvm *kvm) 349 { 350 ++kvm->stat.generic.remote_tlb_flush_requests; 351 352 /* 353 * We want to publish modifications to the page tables before reading 354 * mode. Pairs with a memory barrier in arch-specific code. 355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 356 * and smp_mb in walk_shadow_page_lockless_begin/end. 357 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 358 * 359 * There is already an smp_mb__after_atomic() before 360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 361 * barrier here. 362 */ 363 if (!kvm_arch_flush_remote_tlbs(kvm) 364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 365 ++kvm->stat.generic.remote_tlb_flush; 366 } 367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 368 369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 370 { 371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 372 return; 373 374 /* 375 * Fall back to a flushing entire TLBs if the architecture range-based 376 * TLB invalidation is unsupported or can't be performed for whatever 377 * reason. 378 */ 379 kvm_flush_remote_tlbs(kvm); 380 } 381 382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 383 const struct kvm_memory_slot *memslot) 384 { 385 /* 386 * All current use cases for flushing the TLBs for a specific memslot 387 * are related to dirty logging, and many do the TLB flush out of 388 * mmu_lock. The interaction between the various operations on memslot 389 * must be serialized by slots_locks to ensure the TLB flush from one 390 * operation is observed by any other operation on the same memslot. 391 */ 392 lockdep_assert_held(&kvm->slots_lock); 393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 394 } 395 396 static void kvm_flush_shadow_all(struct kvm *kvm) 397 { 398 kvm_arch_flush_shadow_all(kvm); 399 kvm_arch_guest_memory_reclaimed(kvm); 400 } 401 402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 404 gfp_t gfp_flags) 405 { 406 gfp_flags |= mc->gfp_zero; 407 408 if (mc->kmem_cache) 409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 410 else 411 return (void *)__get_free_page(gfp_flags); 412 } 413 414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 415 { 416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 417 void *obj; 418 419 if (mc->nobjs >= min) 420 return 0; 421 422 if (unlikely(!mc->objects)) { 423 if (WARN_ON_ONCE(!capacity)) 424 return -EIO; 425 426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 427 if (!mc->objects) 428 return -ENOMEM; 429 430 mc->capacity = capacity; 431 } 432 433 /* It is illegal to request a different capacity across topups. */ 434 if (WARN_ON_ONCE(mc->capacity != capacity)) 435 return -EIO; 436 437 while (mc->nobjs < mc->capacity) { 438 obj = mmu_memory_cache_alloc_obj(mc, gfp); 439 if (!obj) 440 return mc->nobjs >= min ? 0 : -ENOMEM; 441 mc->objects[mc->nobjs++] = obj; 442 } 443 return 0; 444 } 445 446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 447 { 448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 449 } 450 451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 452 { 453 return mc->nobjs; 454 } 455 456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 457 { 458 while (mc->nobjs) { 459 if (mc->kmem_cache) 460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 461 else 462 free_page((unsigned long)mc->objects[--mc->nobjs]); 463 } 464 465 kvfree(mc->objects); 466 467 mc->objects = NULL; 468 mc->capacity = 0; 469 } 470 471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 472 { 473 void *p; 474 475 if (WARN_ON(!mc->nobjs)) 476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 477 else 478 p = mc->objects[--mc->nobjs]; 479 BUG_ON(!p); 480 return p; 481 } 482 #endif 483 484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 485 { 486 mutex_init(&vcpu->mutex); 487 vcpu->cpu = -1; 488 vcpu->kvm = kvm; 489 vcpu->vcpu_id = id; 490 vcpu->pid = NULL; 491 #ifndef __KVM_HAVE_ARCH_WQP 492 rcuwait_init(&vcpu->wait); 493 #endif 494 kvm_async_pf_vcpu_init(vcpu); 495 496 kvm_vcpu_set_in_spin_loop(vcpu, false); 497 kvm_vcpu_set_dy_eligible(vcpu, false); 498 vcpu->preempted = false; 499 vcpu->ready = false; 500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 501 vcpu->last_used_slot = NULL; 502 503 /* Fill the stats id string for the vcpu */ 504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 505 task_pid_nr(current), id); 506 } 507 508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 509 { 510 kvm_arch_vcpu_destroy(vcpu); 511 kvm_dirty_ring_free(&vcpu->dirty_ring); 512 513 /* 514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 515 * the vcpu->pid pointer, and at destruction time all file descriptors 516 * are already gone. 517 */ 518 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 519 520 free_page((unsigned long)vcpu->run); 521 kmem_cache_free(kvm_vcpu_cache, vcpu); 522 } 523 524 void kvm_destroy_vcpus(struct kvm *kvm) 525 { 526 unsigned long i; 527 struct kvm_vcpu *vcpu; 528 529 kvm_for_each_vcpu(i, vcpu, kvm) { 530 kvm_vcpu_destroy(vcpu); 531 xa_erase(&kvm->vcpu_array, i); 532 } 533 534 atomic_set(&kvm->online_vcpus, 0); 535 } 536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 537 538 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 540 { 541 return container_of(mn, struct kvm, mmu_notifier); 542 } 543 544 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 545 546 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 547 unsigned long end); 548 549 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 550 551 struct kvm_hva_range { 552 unsigned long start; 553 unsigned long end; 554 union kvm_mmu_notifier_arg arg; 555 hva_handler_t handler; 556 on_lock_fn_t on_lock; 557 on_unlock_fn_t on_unlock; 558 bool flush_on_ret; 559 bool may_block; 560 }; 561 562 /* 563 * Use a dedicated stub instead of NULL to indicate that there is no callback 564 * function/handler. The compiler technically can't guarantee that a real 565 * function will have a non-zero address, and so it will generate code to 566 * check for !NULL, whereas comparing against a stub will be elided at compile 567 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 568 */ 569 static void kvm_null_fn(void) 570 { 571 572 } 573 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 574 575 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG; 576 577 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 578 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 579 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 580 node; \ 581 node = interval_tree_iter_next(node, start, last)) \ 582 583 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 584 const struct kvm_hva_range *range) 585 { 586 bool ret = false, locked = false; 587 struct kvm_gfn_range gfn_range; 588 struct kvm_memory_slot *slot; 589 struct kvm_memslots *slots; 590 int i, idx; 591 592 if (WARN_ON_ONCE(range->end <= range->start)) 593 return 0; 594 595 /* A null handler is allowed if and only if on_lock() is provided. */ 596 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 597 IS_KVM_NULL_FN(range->handler))) 598 return 0; 599 600 idx = srcu_read_lock(&kvm->srcu); 601 602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 603 struct interval_tree_node *node; 604 605 slots = __kvm_memslots(kvm, i); 606 kvm_for_each_memslot_in_hva_range(node, slots, 607 range->start, range->end - 1) { 608 unsigned long hva_start, hva_end; 609 610 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 611 hva_start = max(range->start, slot->userspace_addr); 612 hva_end = min(range->end, slot->userspace_addr + 613 (slot->npages << PAGE_SHIFT)); 614 615 /* 616 * To optimize for the likely case where the address 617 * range is covered by zero or one memslots, don't 618 * bother making these conditional (to avoid writes on 619 * the second or later invocation of the handler). 620 */ 621 gfn_range.arg = range->arg; 622 gfn_range.may_block = range->may_block; 623 624 /* 625 * {gfn(page) | page intersects with [hva_start, hva_end)} = 626 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 627 */ 628 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 629 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 630 gfn_range.slot = slot; 631 632 if (!locked) { 633 locked = true; 634 KVM_MMU_LOCK(kvm); 635 if (!IS_KVM_NULL_FN(range->on_lock)) 636 range->on_lock(kvm, range->start, range->end); 637 if (IS_KVM_NULL_FN(range->handler)) 638 break; 639 } 640 ret |= range->handler(kvm, &gfn_range); 641 } 642 } 643 644 if (range->flush_on_ret && ret) 645 kvm_flush_remote_tlbs(kvm); 646 647 if (locked) { 648 KVM_MMU_UNLOCK(kvm); 649 if (!IS_KVM_NULL_FN(range->on_unlock)) 650 range->on_unlock(kvm); 651 } 652 653 srcu_read_unlock(&kvm->srcu, idx); 654 655 /* The notifiers are averse to booleans. :-( */ 656 return (int)ret; 657 } 658 659 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 660 unsigned long start, 661 unsigned long end, 662 union kvm_mmu_notifier_arg arg, 663 hva_handler_t handler) 664 { 665 struct kvm *kvm = mmu_notifier_to_kvm(mn); 666 const struct kvm_hva_range range = { 667 .start = start, 668 .end = end, 669 .arg = arg, 670 .handler = handler, 671 .on_lock = (void *)kvm_null_fn, 672 .on_unlock = (void *)kvm_null_fn, 673 .flush_on_ret = true, 674 .may_block = false, 675 }; 676 677 return __kvm_handle_hva_range(kvm, &range); 678 } 679 680 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 681 unsigned long start, 682 unsigned long end, 683 hva_handler_t handler) 684 { 685 struct kvm *kvm = mmu_notifier_to_kvm(mn); 686 const struct kvm_hva_range range = { 687 .start = start, 688 .end = end, 689 .handler = handler, 690 .on_lock = (void *)kvm_null_fn, 691 .on_unlock = (void *)kvm_null_fn, 692 .flush_on_ret = false, 693 .may_block = false, 694 }; 695 696 return __kvm_handle_hva_range(kvm, &range); 697 } 698 699 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 700 { 701 /* 702 * Skipping invalid memslots is correct if and only change_pte() is 703 * surrounded by invalidate_range_{start,end}(), which is currently 704 * guaranteed by the primary MMU. If that ever changes, KVM needs to 705 * unmap the memslot instead of skipping the memslot to ensure that KVM 706 * doesn't hold references to the old PFN. 707 */ 708 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 709 710 if (range->slot->flags & KVM_MEMSLOT_INVALID) 711 return false; 712 713 return kvm_set_spte_gfn(kvm, range); 714 } 715 716 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 717 struct mm_struct *mm, 718 unsigned long address, 719 pte_t pte) 720 { 721 struct kvm *kvm = mmu_notifier_to_kvm(mn); 722 const union kvm_mmu_notifier_arg arg = { .pte = pte }; 723 724 trace_kvm_set_spte_hva(address); 725 726 /* 727 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 728 * If mmu_invalidate_in_progress is zero, then no in-progress 729 * invalidations, including this one, found a relevant memslot at 730 * start(); rechecking memslots here is unnecessary. Note, a false 731 * positive (count elevated by a different invalidation) is sub-optimal 732 * but functionally ok. 733 */ 734 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 735 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 736 return; 737 738 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn); 739 } 740 741 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 742 unsigned long end) 743 { 744 /* 745 * The count increase must become visible at unlock time as no 746 * spte can be established without taking the mmu_lock and 747 * count is also read inside the mmu_lock critical section. 748 */ 749 kvm->mmu_invalidate_in_progress++; 750 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 751 kvm->mmu_invalidate_range_start = start; 752 kvm->mmu_invalidate_range_end = end; 753 } else { 754 /* 755 * Fully tracking multiple concurrent ranges has diminishing 756 * returns. Keep things simple and just find the minimal range 757 * which includes the current and new ranges. As there won't be 758 * enough information to subtract a range after its invalidate 759 * completes, any ranges invalidated concurrently will 760 * accumulate and persist until all outstanding invalidates 761 * complete. 762 */ 763 kvm->mmu_invalidate_range_start = 764 min(kvm->mmu_invalidate_range_start, start); 765 kvm->mmu_invalidate_range_end = 766 max(kvm->mmu_invalidate_range_end, end); 767 } 768 } 769 770 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 771 const struct mmu_notifier_range *range) 772 { 773 struct kvm *kvm = mmu_notifier_to_kvm(mn); 774 const struct kvm_hva_range hva_range = { 775 .start = range->start, 776 .end = range->end, 777 .handler = kvm_unmap_gfn_range, 778 .on_lock = kvm_mmu_invalidate_begin, 779 .on_unlock = kvm_arch_guest_memory_reclaimed, 780 .flush_on_ret = true, 781 .may_block = mmu_notifier_range_blockable(range), 782 }; 783 784 trace_kvm_unmap_hva_range(range->start, range->end); 785 786 /* 787 * Prevent memslot modification between range_start() and range_end() 788 * so that conditionally locking provides the same result in both 789 * functions. Without that guarantee, the mmu_invalidate_in_progress 790 * adjustments will be imbalanced. 791 * 792 * Pairs with the decrement in range_end(). 793 */ 794 spin_lock(&kvm->mn_invalidate_lock); 795 kvm->mn_active_invalidate_count++; 796 spin_unlock(&kvm->mn_invalidate_lock); 797 798 /* 799 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 800 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 801 * each cache's lock. There are relatively few caches in existence at 802 * any given time, and the caches themselves can check for hva overlap, 803 * i.e. don't need to rely on memslot overlap checks for performance. 804 * Because this runs without holding mmu_lock, the pfn caches must use 805 * mn_active_invalidate_count (see above) instead of 806 * mmu_invalidate_in_progress. 807 */ 808 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 809 hva_range.may_block); 810 811 __kvm_handle_hva_range(kvm, &hva_range); 812 813 return 0; 814 } 815 816 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 817 unsigned long end) 818 { 819 /* 820 * This sequence increase will notify the kvm page fault that 821 * the page that is going to be mapped in the spte could have 822 * been freed. 823 */ 824 kvm->mmu_invalidate_seq++; 825 smp_wmb(); 826 /* 827 * The above sequence increase must be visible before the 828 * below count decrease, which is ensured by the smp_wmb above 829 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 830 */ 831 kvm->mmu_invalidate_in_progress--; 832 } 833 834 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 835 const struct mmu_notifier_range *range) 836 { 837 struct kvm *kvm = mmu_notifier_to_kvm(mn); 838 const struct kvm_hva_range hva_range = { 839 .start = range->start, 840 .end = range->end, 841 .handler = (void *)kvm_null_fn, 842 .on_lock = kvm_mmu_invalidate_end, 843 .on_unlock = (void *)kvm_null_fn, 844 .flush_on_ret = false, 845 .may_block = mmu_notifier_range_blockable(range), 846 }; 847 bool wake; 848 849 __kvm_handle_hva_range(kvm, &hva_range); 850 851 /* Pairs with the increment in range_start(). */ 852 spin_lock(&kvm->mn_invalidate_lock); 853 wake = (--kvm->mn_active_invalidate_count == 0); 854 spin_unlock(&kvm->mn_invalidate_lock); 855 856 /* 857 * There can only be one waiter, since the wait happens under 858 * slots_lock. 859 */ 860 if (wake) 861 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 862 863 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 864 } 865 866 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 867 struct mm_struct *mm, 868 unsigned long start, 869 unsigned long end) 870 { 871 trace_kvm_age_hva(start, end); 872 873 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG, 874 kvm_age_gfn); 875 } 876 877 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 878 struct mm_struct *mm, 879 unsigned long start, 880 unsigned long end) 881 { 882 trace_kvm_age_hva(start, end); 883 884 /* 885 * Even though we do not flush TLB, this will still adversely 886 * affect performance on pre-Haswell Intel EPT, where there is 887 * no EPT Access Bit to clear so that we have to tear down EPT 888 * tables instead. If we find this unacceptable, we can always 889 * add a parameter to kvm_age_hva so that it effectively doesn't 890 * do anything on clear_young. 891 * 892 * Also note that currently we never issue secondary TLB flushes 893 * from clear_young, leaving this job up to the regular system 894 * cadence. If we find this inaccurate, we might come up with a 895 * more sophisticated heuristic later. 896 */ 897 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 898 } 899 900 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 901 struct mm_struct *mm, 902 unsigned long address) 903 { 904 trace_kvm_test_age_hva(address); 905 906 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 907 kvm_test_age_gfn); 908 } 909 910 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 911 struct mm_struct *mm) 912 { 913 struct kvm *kvm = mmu_notifier_to_kvm(mn); 914 int idx; 915 916 idx = srcu_read_lock(&kvm->srcu); 917 kvm_flush_shadow_all(kvm); 918 srcu_read_unlock(&kvm->srcu, idx); 919 } 920 921 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 922 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 923 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 924 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 925 .clear_young = kvm_mmu_notifier_clear_young, 926 .test_young = kvm_mmu_notifier_test_young, 927 .change_pte = kvm_mmu_notifier_change_pte, 928 .release = kvm_mmu_notifier_release, 929 }; 930 931 static int kvm_init_mmu_notifier(struct kvm *kvm) 932 { 933 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 934 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 935 } 936 937 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 938 939 static int kvm_init_mmu_notifier(struct kvm *kvm) 940 { 941 return 0; 942 } 943 944 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 945 946 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 947 static int kvm_pm_notifier_call(struct notifier_block *bl, 948 unsigned long state, 949 void *unused) 950 { 951 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 952 953 return kvm_arch_pm_notifier(kvm, state); 954 } 955 956 static void kvm_init_pm_notifier(struct kvm *kvm) 957 { 958 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 959 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 960 kvm->pm_notifier.priority = INT_MAX; 961 register_pm_notifier(&kvm->pm_notifier); 962 } 963 964 static void kvm_destroy_pm_notifier(struct kvm *kvm) 965 { 966 unregister_pm_notifier(&kvm->pm_notifier); 967 } 968 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 969 static void kvm_init_pm_notifier(struct kvm *kvm) 970 { 971 } 972 973 static void kvm_destroy_pm_notifier(struct kvm *kvm) 974 { 975 } 976 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 977 978 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 979 { 980 if (!memslot->dirty_bitmap) 981 return; 982 983 kvfree(memslot->dirty_bitmap); 984 memslot->dirty_bitmap = NULL; 985 } 986 987 /* This does not remove the slot from struct kvm_memslots data structures */ 988 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 989 { 990 kvm_destroy_dirty_bitmap(slot); 991 992 kvm_arch_free_memslot(kvm, slot); 993 994 kfree(slot); 995 } 996 997 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 998 { 999 struct hlist_node *idnode; 1000 struct kvm_memory_slot *memslot; 1001 int bkt; 1002 1003 /* 1004 * The same memslot objects live in both active and inactive sets, 1005 * arbitrarily free using index '1' so the second invocation of this 1006 * function isn't operating over a structure with dangling pointers 1007 * (even though this function isn't actually touching them). 1008 */ 1009 if (!slots->node_idx) 1010 return; 1011 1012 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 1013 kvm_free_memslot(kvm, memslot); 1014 } 1015 1016 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 1017 { 1018 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 1019 case KVM_STATS_TYPE_INSTANT: 1020 return 0444; 1021 case KVM_STATS_TYPE_CUMULATIVE: 1022 case KVM_STATS_TYPE_PEAK: 1023 default: 1024 return 0644; 1025 } 1026 } 1027 1028 1029 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1030 { 1031 int i; 1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1033 kvm_vcpu_stats_header.num_desc; 1034 1035 if (IS_ERR(kvm->debugfs_dentry)) 1036 return; 1037 1038 debugfs_remove_recursive(kvm->debugfs_dentry); 1039 1040 if (kvm->debugfs_stat_data) { 1041 for (i = 0; i < kvm_debugfs_num_entries; i++) 1042 kfree(kvm->debugfs_stat_data[i]); 1043 kfree(kvm->debugfs_stat_data); 1044 } 1045 } 1046 1047 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1048 { 1049 static DEFINE_MUTEX(kvm_debugfs_lock); 1050 struct dentry *dent; 1051 char dir_name[ITOA_MAX_LEN * 2]; 1052 struct kvm_stat_data *stat_data; 1053 const struct _kvm_stats_desc *pdesc; 1054 int i, ret = -ENOMEM; 1055 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1056 kvm_vcpu_stats_header.num_desc; 1057 1058 if (!debugfs_initialized()) 1059 return 0; 1060 1061 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1062 mutex_lock(&kvm_debugfs_lock); 1063 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1064 if (dent) { 1065 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1066 dput(dent); 1067 mutex_unlock(&kvm_debugfs_lock); 1068 return 0; 1069 } 1070 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1071 mutex_unlock(&kvm_debugfs_lock); 1072 if (IS_ERR(dent)) 1073 return 0; 1074 1075 kvm->debugfs_dentry = dent; 1076 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1077 sizeof(*kvm->debugfs_stat_data), 1078 GFP_KERNEL_ACCOUNT); 1079 if (!kvm->debugfs_stat_data) 1080 goto out_err; 1081 1082 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1083 pdesc = &kvm_vm_stats_desc[i]; 1084 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1085 if (!stat_data) 1086 goto out_err; 1087 1088 stat_data->kvm = kvm; 1089 stat_data->desc = pdesc; 1090 stat_data->kind = KVM_STAT_VM; 1091 kvm->debugfs_stat_data[i] = stat_data; 1092 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1093 kvm->debugfs_dentry, stat_data, 1094 &stat_fops_per_vm); 1095 } 1096 1097 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1098 pdesc = &kvm_vcpu_stats_desc[i]; 1099 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1100 if (!stat_data) 1101 goto out_err; 1102 1103 stat_data->kvm = kvm; 1104 stat_data->desc = pdesc; 1105 stat_data->kind = KVM_STAT_VCPU; 1106 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1107 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1108 kvm->debugfs_dentry, stat_data, 1109 &stat_fops_per_vm); 1110 } 1111 1112 ret = kvm_arch_create_vm_debugfs(kvm); 1113 if (ret) 1114 goto out_err; 1115 1116 return 0; 1117 out_err: 1118 kvm_destroy_vm_debugfs(kvm); 1119 return ret; 1120 } 1121 1122 /* 1123 * Called after the VM is otherwise initialized, but just before adding it to 1124 * the vm_list. 1125 */ 1126 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1127 { 1128 return 0; 1129 } 1130 1131 /* 1132 * Called just after removing the VM from the vm_list, but before doing any 1133 * other destruction. 1134 */ 1135 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1136 { 1137 } 1138 1139 /* 1140 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1141 * be setup already, so we can create arch-specific debugfs entries under it. 1142 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1143 * a per-arch destroy interface is not needed. 1144 */ 1145 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1146 { 1147 return 0; 1148 } 1149 1150 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1151 { 1152 struct kvm *kvm = kvm_arch_alloc_vm(); 1153 struct kvm_memslots *slots; 1154 int r = -ENOMEM; 1155 int i, j; 1156 1157 if (!kvm) 1158 return ERR_PTR(-ENOMEM); 1159 1160 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1161 __module_get(kvm_chardev_ops.owner); 1162 1163 KVM_MMU_LOCK_INIT(kvm); 1164 mmgrab(current->mm); 1165 kvm->mm = current->mm; 1166 kvm_eventfd_init(kvm); 1167 mutex_init(&kvm->lock); 1168 mutex_init(&kvm->irq_lock); 1169 mutex_init(&kvm->slots_lock); 1170 mutex_init(&kvm->slots_arch_lock); 1171 spin_lock_init(&kvm->mn_invalidate_lock); 1172 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1173 xa_init(&kvm->vcpu_array); 1174 1175 INIT_LIST_HEAD(&kvm->gpc_list); 1176 spin_lock_init(&kvm->gpc_lock); 1177 1178 INIT_LIST_HEAD(&kvm->devices); 1179 kvm->max_vcpus = KVM_MAX_VCPUS; 1180 1181 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1182 1183 /* 1184 * Force subsequent debugfs file creations to fail if the VM directory 1185 * is not created (by kvm_create_vm_debugfs()). 1186 */ 1187 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1188 1189 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1190 task_pid_nr(current)); 1191 1192 if (init_srcu_struct(&kvm->srcu)) 1193 goto out_err_no_srcu; 1194 if (init_srcu_struct(&kvm->irq_srcu)) 1195 goto out_err_no_irq_srcu; 1196 1197 refcount_set(&kvm->users_count, 1); 1198 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1199 for (j = 0; j < 2; j++) { 1200 slots = &kvm->__memslots[i][j]; 1201 1202 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1203 slots->hva_tree = RB_ROOT_CACHED; 1204 slots->gfn_tree = RB_ROOT; 1205 hash_init(slots->id_hash); 1206 slots->node_idx = j; 1207 1208 /* Generations must be different for each address space. */ 1209 slots->generation = i; 1210 } 1211 1212 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1213 } 1214 1215 for (i = 0; i < KVM_NR_BUSES; i++) { 1216 rcu_assign_pointer(kvm->buses[i], 1217 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1218 if (!kvm->buses[i]) 1219 goto out_err_no_arch_destroy_vm; 1220 } 1221 1222 r = kvm_arch_init_vm(kvm, type); 1223 if (r) 1224 goto out_err_no_arch_destroy_vm; 1225 1226 r = hardware_enable_all(); 1227 if (r) 1228 goto out_err_no_disable; 1229 1230 #ifdef CONFIG_HAVE_KVM_IRQFD 1231 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1232 #endif 1233 1234 r = kvm_init_mmu_notifier(kvm); 1235 if (r) 1236 goto out_err_no_mmu_notifier; 1237 1238 r = kvm_coalesced_mmio_init(kvm); 1239 if (r < 0) 1240 goto out_no_coalesced_mmio; 1241 1242 r = kvm_create_vm_debugfs(kvm, fdname); 1243 if (r) 1244 goto out_err_no_debugfs; 1245 1246 r = kvm_arch_post_init_vm(kvm); 1247 if (r) 1248 goto out_err; 1249 1250 mutex_lock(&kvm_lock); 1251 list_add(&kvm->vm_list, &vm_list); 1252 mutex_unlock(&kvm_lock); 1253 1254 preempt_notifier_inc(); 1255 kvm_init_pm_notifier(kvm); 1256 1257 return kvm; 1258 1259 out_err: 1260 kvm_destroy_vm_debugfs(kvm); 1261 out_err_no_debugfs: 1262 kvm_coalesced_mmio_free(kvm); 1263 out_no_coalesced_mmio: 1264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1265 if (kvm->mmu_notifier.ops) 1266 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1267 #endif 1268 out_err_no_mmu_notifier: 1269 hardware_disable_all(); 1270 out_err_no_disable: 1271 kvm_arch_destroy_vm(kvm); 1272 out_err_no_arch_destroy_vm: 1273 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1274 for (i = 0; i < KVM_NR_BUSES; i++) 1275 kfree(kvm_get_bus(kvm, i)); 1276 cleanup_srcu_struct(&kvm->irq_srcu); 1277 out_err_no_irq_srcu: 1278 cleanup_srcu_struct(&kvm->srcu); 1279 out_err_no_srcu: 1280 kvm_arch_free_vm(kvm); 1281 mmdrop(current->mm); 1282 module_put(kvm_chardev_ops.owner); 1283 return ERR_PTR(r); 1284 } 1285 1286 static void kvm_destroy_devices(struct kvm *kvm) 1287 { 1288 struct kvm_device *dev, *tmp; 1289 1290 /* 1291 * We do not need to take the kvm->lock here, because nobody else 1292 * has a reference to the struct kvm at this point and therefore 1293 * cannot access the devices list anyhow. 1294 */ 1295 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1296 list_del(&dev->vm_node); 1297 dev->ops->destroy(dev); 1298 } 1299 } 1300 1301 static void kvm_destroy_vm(struct kvm *kvm) 1302 { 1303 int i; 1304 struct mm_struct *mm = kvm->mm; 1305 1306 kvm_destroy_pm_notifier(kvm); 1307 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1308 kvm_destroy_vm_debugfs(kvm); 1309 kvm_arch_sync_events(kvm); 1310 mutex_lock(&kvm_lock); 1311 list_del(&kvm->vm_list); 1312 mutex_unlock(&kvm_lock); 1313 kvm_arch_pre_destroy_vm(kvm); 1314 1315 kvm_free_irq_routing(kvm); 1316 for (i = 0; i < KVM_NR_BUSES; i++) { 1317 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1318 1319 if (bus) 1320 kvm_io_bus_destroy(bus); 1321 kvm->buses[i] = NULL; 1322 } 1323 kvm_coalesced_mmio_free(kvm); 1324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1325 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1326 /* 1327 * At this point, pending calls to invalidate_range_start() 1328 * have completed but no more MMU notifiers will run, so 1329 * mn_active_invalidate_count may remain unbalanced. 1330 * No threads can be waiting in kvm_swap_active_memslots() as the 1331 * last reference on KVM has been dropped, but freeing 1332 * memslots would deadlock without this manual intervention. 1333 */ 1334 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1335 kvm->mn_active_invalidate_count = 0; 1336 #else 1337 kvm_flush_shadow_all(kvm); 1338 #endif 1339 kvm_arch_destroy_vm(kvm); 1340 kvm_destroy_devices(kvm); 1341 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1342 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1343 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1344 } 1345 cleanup_srcu_struct(&kvm->irq_srcu); 1346 cleanup_srcu_struct(&kvm->srcu); 1347 kvm_arch_free_vm(kvm); 1348 preempt_notifier_dec(); 1349 hardware_disable_all(); 1350 mmdrop(mm); 1351 module_put(kvm_chardev_ops.owner); 1352 } 1353 1354 void kvm_get_kvm(struct kvm *kvm) 1355 { 1356 refcount_inc(&kvm->users_count); 1357 } 1358 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1359 1360 /* 1361 * Make sure the vm is not during destruction, which is a safe version of 1362 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1363 */ 1364 bool kvm_get_kvm_safe(struct kvm *kvm) 1365 { 1366 return refcount_inc_not_zero(&kvm->users_count); 1367 } 1368 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1369 1370 void kvm_put_kvm(struct kvm *kvm) 1371 { 1372 if (refcount_dec_and_test(&kvm->users_count)) 1373 kvm_destroy_vm(kvm); 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1376 1377 /* 1378 * Used to put a reference that was taken on behalf of an object associated 1379 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1380 * of the new file descriptor fails and the reference cannot be transferred to 1381 * its final owner. In such cases, the caller is still actively using @kvm and 1382 * will fail miserably if the refcount unexpectedly hits zero. 1383 */ 1384 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1385 { 1386 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1389 1390 static int kvm_vm_release(struct inode *inode, struct file *filp) 1391 { 1392 struct kvm *kvm = filp->private_data; 1393 1394 kvm_irqfd_release(kvm); 1395 1396 kvm_put_kvm(kvm); 1397 return 0; 1398 } 1399 1400 /* 1401 * Allocation size is twice as large as the actual dirty bitmap size. 1402 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1403 */ 1404 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1405 { 1406 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1407 1408 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1409 if (!memslot->dirty_bitmap) 1410 return -ENOMEM; 1411 1412 return 0; 1413 } 1414 1415 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1416 { 1417 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1418 int node_idx_inactive = active->node_idx ^ 1; 1419 1420 return &kvm->__memslots[as_id][node_idx_inactive]; 1421 } 1422 1423 /* 1424 * Helper to get the address space ID when one of memslot pointers may be NULL. 1425 * This also serves as a sanity that at least one of the pointers is non-NULL, 1426 * and that their address space IDs don't diverge. 1427 */ 1428 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1429 struct kvm_memory_slot *b) 1430 { 1431 if (WARN_ON_ONCE(!a && !b)) 1432 return 0; 1433 1434 if (!a) 1435 return b->as_id; 1436 if (!b) 1437 return a->as_id; 1438 1439 WARN_ON_ONCE(a->as_id != b->as_id); 1440 return a->as_id; 1441 } 1442 1443 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1444 struct kvm_memory_slot *slot) 1445 { 1446 struct rb_root *gfn_tree = &slots->gfn_tree; 1447 struct rb_node **node, *parent; 1448 int idx = slots->node_idx; 1449 1450 parent = NULL; 1451 for (node = &gfn_tree->rb_node; *node; ) { 1452 struct kvm_memory_slot *tmp; 1453 1454 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1455 parent = *node; 1456 if (slot->base_gfn < tmp->base_gfn) 1457 node = &(*node)->rb_left; 1458 else if (slot->base_gfn > tmp->base_gfn) 1459 node = &(*node)->rb_right; 1460 else 1461 BUG(); 1462 } 1463 1464 rb_link_node(&slot->gfn_node[idx], parent, node); 1465 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1466 } 1467 1468 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1469 struct kvm_memory_slot *slot) 1470 { 1471 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1472 } 1473 1474 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1475 struct kvm_memory_slot *old, 1476 struct kvm_memory_slot *new) 1477 { 1478 int idx = slots->node_idx; 1479 1480 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1481 1482 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1483 &slots->gfn_tree); 1484 } 1485 1486 /* 1487 * Replace @old with @new in the inactive memslots. 1488 * 1489 * With NULL @old this simply adds @new. 1490 * With NULL @new this simply removes @old. 1491 * 1492 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1493 * appropriately. 1494 */ 1495 static void kvm_replace_memslot(struct kvm *kvm, 1496 struct kvm_memory_slot *old, 1497 struct kvm_memory_slot *new) 1498 { 1499 int as_id = kvm_memslots_get_as_id(old, new); 1500 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1501 int idx = slots->node_idx; 1502 1503 if (old) { 1504 hash_del(&old->id_node[idx]); 1505 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1506 1507 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1508 atomic_long_set(&slots->last_used_slot, (long)new); 1509 1510 if (!new) { 1511 kvm_erase_gfn_node(slots, old); 1512 return; 1513 } 1514 } 1515 1516 /* 1517 * Initialize @new's hva range. Do this even when replacing an @old 1518 * slot, kvm_copy_memslot() deliberately does not touch node data. 1519 */ 1520 new->hva_node[idx].start = new->userspace_addr; 1521 new->hva_node[idx].last = new->userspace_addr + 1522 (new->npages << PAGE_SHIFT) - 1; 1523 1524 /* 1525 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1526 * hva_node needs to be swapped with remove+insert even though hva can't 1527 * change when replacing an existing slot. 1528 */ 1529 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1530 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1531 1532 /* 1533 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1534 * switch the node in the gfn tree instead of removing the old and 1535 * inserting the new as two separate operations. Replacement is a 1536 * single O(1) operation versus two O(log(n)) operations for 1537 * remove+insert. 1538 */ 1539 if (old && old->base_gfn == new->base_gfn) { 1540 kvm_replace_gfn_node(slots, old, new); 1541 } else { 1542 if (old) 1543 kvm_erase_gfn_node(slots, old); 1544 kvm_insert_gfn_node(slots, new); 1545 } 1546 } 1547 1548 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1549 { 1550 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1551 1552 #ifdef __KVM_HAVE_READONLY_MEM 1553 valid_flags |= KVM_MEM_READONLY; 1554 #endif 1555 1556 if (mem->flags & ~valid_flags) 1557 return -EINVAL; 1558 1559 return 0; 1560 } 1561 1562 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1563 { 1564 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1565 1566 /* Grab the generation from the activate memslots. */ 1567 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1568 1569 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1570 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1571 1572 /* 1573 * Do not store the new memslots while there are invalidations in 1574 * progress, otherwise the locking in invalidate_range_start and 1575 * invalidate_range_end will be unbalanced. 1576 */ 1577 spin_lock(&kvm->mn_invalidate_lock); 1578 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1579 while (kvm->mn_active_invalidate_count) { 1580 set_current_state(TASK_UNINTERRUPTIBLE); 1581 spin_unlock(&kvm->mn_invalidate_lock); 1582 schedule(); 1583 spin_lock(&kvm->mn_invalidate_lock); 1584 } 1585 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1586 rcu_assign_pointer(kvm->memslots[as_id], slots); 1587 spin_unlock(&kvm->mn_invalidate_lock); 1588 1589 /* 1590 * Acquired in kvm_set_memslot. Must be released before synchronize 1591 * SRCU below in order to avoid deadlock with another thread 1592 * acquiring the slots_arch_lock in an srcu critical section. 1593 */ 1594 mutex_unlock(&kvm->slots_arch_lock); 1595 1596 synchronize_srcu_expedited(&kvm->srcu); 1597 1598 /* 1599 * Increment the new memslot generation a second time, dropping the 1600 * update in-progress flag and incrementing the generation based on 1601 * the number of address spaces. This provides a unique and easily 1602 * identifiable generation number while the memslots are in flux. 1603 */ 1604 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1605 1606 /* 1607 * Generations must be unique even across address spaces. We do not need 1608 * a global counter for that, instead the generation space is evenly split 1609 * across address spaces. For example, with two address spaces, address 1610 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1611 * use generations 1, 3, 5, ... 1612 */ 1613 gen += KVM_ADDRESS_SPACE_NUM; 1614 1615 kvm_arch_memslots_updated(kvm, gen); 1616 1617 slots->generation = gen; 1618 } 1619 1620 static int kvm_prepare_memory_region(struct kvm *kvm, 1621 const struct kvm_memory_slot *old, 1622 struct kvm_memory_slot *new, 1623 enum kvm_mr_change change) 1624 { 1625 int r; 1626 1627 /* 1628 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1629 * will be freed on "commit". If logging is enabled in both old and 1630 * new, reuse the existing bitmap. If logging is enabled only in the 1631 * new and KVM isn't using a ring buffer, allocate and initialize a 1632 * new bitmap. 1633 */ 1634 if (change != KVM_MR_DELETE) { 1635 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1636 new->dirty_bitmap = NULL; 1637 else if (old && old->dirty_bitmap) 1638 new->dirty_bitmap = old->dirty_bitmap; 1639 else if (kvm_use_dirty_bitmap(kvm)) { 1640 r = kvm_alloc_dirty_bitmap(new); 1641 if (r) 1642 return r; 1643 1644 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1645 bitmap_set(new->dirty_bitmap, 0, new->npages); 1646 } 1647 } 1648 1649 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1650 1651 /* Free the bitmap on failure if it was allocated above. */ 1652 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1653 kvm_destroy_dirty_bitmap(new); 1654 1655 return r; 1656 } 1657 1658 static void kvm_commit_memory_region(struct kvm *kvm, 1659 struct kvm_memory_slot *old, 1660 const struct kvm_memory_slot *new, 1661 enum kvm_mr_change change) 1662 { 1663 int old_flags = old ? old->flags : 0; 1664 int new_flags = new ? new->flags : 0; 1665 /* 1666 * Update the total number of memslot pages before calling the arch 1667 * hook so that architectures can consume the result directly. 1668 */ 1669 if (change == KVM_MR_DELETE) 1670 kvm->nr_memslot_pages -= old->npages; 1671 else if (change == KVM_MR_CREATE) 1672 kvm->nr_memslot_pages += new->npages; 1673 1674 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1675 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1676 atomic_set(&kvm->nr_memslots_dirty_logging, 1677 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1678 } 1679 1680 kvm_arch_commit_memory_region(kvm, old, new, change); 1681 1682 switch (change) { 1683 case KVM_MR_CREATE: 1684 /* Nothing more to do. */ 1685 break; 1686 case KVM_MR_DELETE: 1687 /* Free the old memslot and all its metadata. */ 1688 kvm_free_memslot(kvm, old); 1689 break; 1690 case KVM_MR_MOVE: 1691 case KVM_MR_FLAGS_ONLY: 1692 /* 1693 * Free the dirty bitmap as needed; the below check encompasses 1694 * both the flags and whether a ring buffer is being used) 1695 */ 1696 if (old->dirty_bitmap && !new->dirty_bitmap) 1697 kvm_destroy_dirty_bitmap(old); 1698 1699 /* 1700 * The final quirk. Free the detached, old slot, but only its 1701 * memory, not any metadata. Metadata, including arch specific 1702 * data, may be reused by @new. 1703 */ 1704 kfree(old); 1705 break; 1706 default: 1707 BUG(); 1708 } 1709 } 1710 1711 /* 1712 * Activate @new, which must be installed in the inactive slots by the caller, 1713 * by swapping the active slots and then propagating @new to @old once @old is 1714 * unreachable and can be safely modified. 1715 * 1716 * With NULL @old this simply adds @new to @active (while swapping the sets). 1717 * With NULL @new this simply removes @old from @active and frees it 1718 * (while also swapping the sets). 1719 */ 1720 static void kvm_activate_memslot(struct kvm *kvm, 1721 struct kvm_memory_slot *old, 1722 struct kvm_memory_slot *new) 1723 { 1724 int as_id = kvm_memslots_get_as_id(old, new); 1725 1726 kvm_swap_active_memslots(kvm, as_id); 1727 1728 /* Propagate the new memslot to the now inactive memslots. */ 1729 kvm_replace_memslot(kvm, old, new); 1730 } 1731 1732 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1733 const struct kvm_memory_slot *src) 1734 { 1735 dest->base_gfn = src->base_gfn; 1736 dest->npages = src->npages; 1737 dest->dirty_bitmap = src->dirty_bitmap; 1738 dest->arch = src->arch; 1739 dest->userspace_addr = src->userspace_addr; 1740 dest->flags = src->flags; 1741 dest->id = src->id; 1742 dest->as_id = src->as_id; 1743 } 1744 1745 static void kvm_invalidate_memslot(struct kvm *kvm, 1746 struct kvm_memory_slot *old, 1747 struct kvm_memory_slot *invalid_slot) 1748 { 1749 /* 1750 * Mark the current slot INVALID. As with all memslot modifications, 1751 * this must be done on an unreachable slot to avoid modifying the 1752 * current slot in the active tree. 1753 */ 1754 kvm_copy_memslot(invalid_slot, old); 1755 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1756 kvm_replace_memslot(kvm, old, invalid_slot); 1757 1758 /* 1759 * Activate the slot that is now marked INVALID, but don't propagate 1760 * the slot to the now inactive slots. The slot is either going to be 1761 * deleted or recreated as a new slot. 1762 */ 1763 kvm_swap_active_memslots(kvm, old->as_id); 1764 1765 /* 1766 * From this point no new shadow pages pointing to a deleted, or moved, 1767 * memslot will be created. Validation of sp->gfn happens in: 1768 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1769 * - kvm_is_visible_gfn (mmu_check_root) 1770 */ 1771 kvm_arch_flush_shadow_memslot(kvm, old); 1772 kvm_arch_guest_memory_reclaimed(kvm); 1773 1774 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1775 mutex_lock(&kvm->slots_arch_lock); 1776 1777 /* 1778 * Copy the arch-specific field of the newly-installed slot back to the 1779 * old slot as the arch data could have changed between releasing 1780 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1781 * above. Writers are required to retrieve memslots *after* acquiring 1782 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1783 */ 1784 old->arch = invalid_slot->arch; 1785 } 1786 1787 static void kvm_create_memslot(struct kvm *kvm, 1788 struct kvm_memory_slot *new) 1789 { 1790 /* Add the new memslot to the inactive set and activate. */ 1791 kvm_replace_memslot(kvm, NULL, new); 1792 kvm_activate_memslot(kvm, NULL, new); 1793 } 1794 1795 static void kvm_delete_memslot(struct kvm *kvm, 1796 struct kvm_memory_slot *old, 1797 struct kvm_memory_slot *invalid_slot) 1798 { 1799 /* 1800 * Remove the old memslot (in the inactive memslots) by passing NULL as 1801 * the "new" slot, and for the invalid version in the active slots. 1802 */ 1803 kvm_replace_memslot(kvm, old, NULL); 1804 kvm_activate_memslot(kvm, invalid_slot, NULL); 1805 } 1806 1807 static void kvm_move_memslot(struct kvm *kvm, 1808 struct kvm_memory_slot *old, 1809 struct kvm_memory_slot *new, 1810 struct kvm_memory_slot *invalid_slot) 1811 { 1812 /* 1813 * Replace the old memslot in the inactive slots, and then swap slots 1814 * and replace the current INVALID with the new as well. 1815 */ 1816 kvm_replace_memslot(kvm, old, new); 1817 kvm_activate_memslot(kvm, invalid_slot, new); 1818 } 1819 1820 static void kvm_update_flags_memslot(struct kvm *kvm, 1821 struct kvm_memory_slot *old, 1822 struct kvm_memory_slot *new) 1823 { 1824 /* 1825 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1826 * an intermediate step. Instead, the old memslot is simply replaced 1827 * with a new, updated copy in both memslot sets. 1828 */ 1829 kvm_replace_memslot(kvm, old, new); 1830 kvm_activate_memslot(kvm, old, new); 1831 } 1832 1833 static int kvm_set_memslot(struct kvm *kvm, 1834 struct kvm_memory_slot *old, 1835 struct kvm_memory_slot *new, 1836 enum kvm_mr_change change) 1837 { 1838 struct kvm_memory_slot *invalid_slot; 1839 int r; 1840 1841 /* 1842 * Released in kvm_swap_active_memslots(). 1843 * 1844 * Must be held from before the current memslots are copied until after 1845 * the new memslots are installed with rcu_assign_pointer, then 1846 * released before the synchronize srcu in kvm_swap_active_memslots(). 1847 * 1848 * When modifying memslots outside of the slots_lock, must be held 1849 * before reading the pointer to the current memslots until after all 1850 * changes to those memslots are complete. 1851 * 1852 * These rules ensure that installing new memslots does not lose 1853 * changes made to the previous memslots. 1854 */ 1855 mutex_lock(&kvm->slots_arch_lock); 1856 1857 /* 1858 * Invalidate the old slot if it's being deleted or moved. This is 1859 * done prior to actually deleting/moving the memslot to allow vCPUs to 1860 * continue running by ensuring there are no mappings or shadow pages 1861 * for the memslot when it is deleted/moved. Without pre-invalidation 1862 * (and without a lock), a window would exist between effecting the 1863 * delete/move and committing the changes in arch code where KVM or a 1864 * guest could access a non-existent memslot. 1865 * 1866 * Modifications are done on a temporary, unreachable slot. The old 1867 * slot needs to be preserved in case a later step fails and the 1868 * invalidation needs to be reverted. 1869 */ 1870 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1871 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1872 if (!invalid_slot) { 1873 mutex_unlock(&kvm->slots_arch_lock); 1874 return -ENOMEM; 1875 } 1876 kvm_invalidate_memslot(kvm, old, invalid_slot); 1877 } 1878 1879 r = kvm_prepare_memory_region(kvm, old, new, change); 1880 if (r) { 1881 /* 1882 * For DELETE/MOVE, revert the above INVALID change. No 1883 * modifications required since the original slot was preserved 1884 * in the inactive slots. Changing the active memslots also 1885 * release slots_arch_lock. 1886 */ 1887 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1888 kvm_activate_memslot(kvm, invalid_slot, old); 1889 kfree(invalid_slot); 1890 } else { 1891 mutex_unlock(&kvm->slots_arch_lock); 1892 } 1893 return r; 1894 } 1895 1896 /* 1897 * For DELETE and MOVE, the working slot is now active as the INVALID 1898 * version of the old slot. MOVE is particularly special as it reuses 1899 * the old slot and returns a copy of the old slot (in working_slot). 1900 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1901 * old slot is detached but otherwise preserved. 1902 */ 1903 if (change == KVM_MR_CREATE) 1904 kvm_create_memslot(kvm, new); 1905 else if (change == KVM_MR_DELETE) 1906 kvm_delete_memslot(kvm, old, invalid_slot); 1907 else if (change == KVM_MR_MOVE) 1908 kvm_move_memslot(kvm, old, new, invalid_slot); 1909 else if (change == KVM_MR_FLAGS_ONLY) 1910 kvm_update_flags_memslot(kvm, old, new); 1911 else 1912 BUG(); 1913 1914 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1915 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1916 kfree(invalid_slot); 1917 1918 /* 1919 * No need to refresh new->arch, changes after dropping slots_arch_lock 1920 * will directly hit the final, active memslot. Architectures are 1921 * responsible for knowing that new->arch may be stale. 1922 */ 1923 kvm_commit_memory_region(kvm, old, new, change); 1924 1925 return 0; 1926 } 1927 1928 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1929 gfn_t start, gfn_t end) 1930 { 1931 struct kvm_memslot_iter iter; 1932 1933 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1934 if (iter.slot->id != id) 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 /* 1942 * Allocate some memory and give it an address in the guest physical address 1943 * space. 1944 * 1945 * Discontiguous memory is allowed, mostly for framebuffers. 1946 * 1947 * Must be called holding kvm->slots_lock for write. 1948 */ 1949 int __kvm_set_memory_region(struct kvm *kvm, 1950 const struct kvm_userspace_memory_region *mem) 1951 { 1952 struct kvm_memory_slot *old, *new; 1953 struct kvm_memslots *slots; 1954 enum kvm_mr_change change; 1955 unsigned long npages; 1956 gfn_t base_gfn; 1957 int as_id, id; 1958 int r; 1959 1960 r = check_memory_region_flags(mem); 1961 if (r) 1962 return r; 1963 1964 as_id = mem->slot >> 16; 1965 id = (u16)mem->slot; 1966 1967 /* General sanity checks */ 1968 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1969 (mem->memory_size != (unsigned long)mem->memory_size)) 1970 return -EINVAL; 1971 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1972 return -EINVAL; 1973 /* We can read the guest memory with __xxx_user() later on. */ 1974 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1975 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1976 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1977 mem->memory_size)) 1978 return -EINVAL; 1979 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1980 return -EINVAL; 1981 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1982 return -EINVAL; 1983 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1984 return -EINVAL; 1985 1986 slots = __kvm_memslots(kvm, as_id); 1987 1988 /* 1989 * Note, the old memslot (and the pointer itself!) may be invalidated 1990 * and/or destroyed by kvm_set_memslot(). 1991 */ 1992 old = id_to_memslot(slots, id); 1993 1994 if (!mem->memory_size) { 1995 if (!old || !old->npages) 1996 return -EINVAL; 1997 1998 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1999 return -EIO; 2000 2001 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2002 } 2003 2004 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2005 npages = (mem->memory_size >> PAGE_SHIFT); 2006 2007 if (!old || !old->npages) { 2008 change = KVM_MR_CREATE; 2009 2010 /* 2011 * To simplify KVM internals, the total number of pages across 2012 * all memslots must fit in an unsigned long. 2013 */ 2014 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2015 return -EINVAL; 2016 } else { /* Modify an existing slot. */ 2017 if ((mem->userspace_addr != old->userspace_addr) || 2018 (npages != old->npages) || 2019 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 2020 return -EINVAL; 2021 2022 if (base_gfn != old->base_gfn) 2023 change = KVM_MR_MOVE; 2024 else if (mem->flags != old->flags) 2025 change = KVM_MR_FLAGS_ONLY; 2026 else /* Nothing to change. */ 2027 return 0; 2028 } 2029 2030 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2031 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2032 return -EEXIST; 2033 2034 /* Allocate a slot that will persist in the memslot. */ 2035 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2036 if (!new) 2037 return -ENOMEM; 2038 2039 new->as_id = as_id; 2040 new->id = id; 2041 new->base_gfn = base_gfn; 2042 new->npages = npages; 2043 new->flags = mem->flags; 2044 new->userspace_addr = mem->userspace_addr; 2045 2046 r = kvm_set_memslot(kvm, old, new, change); 2047 if (r) 2048 kfree(new); 2049 return r; 2050 } 2051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2052 2053 int kvm_set_memory_region(struct kvm *kvm, 2054 const struct kvm_userspace_memory_region *mem) 2055 { 2056 int r; 2057 2058 mutex_lock(&kvm->slots_lock); 2059 r = __kvm_set_memory_region(kvm, mem); 2060 mutex_unlock(&kvm->slots_lock); 2061 return r; 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2064 2065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2066 struct kvm_userspace_memory_region *mem) 2067 { 2068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2069 return -EINVAL; 2070 2071 return kvm_set_memory_region(kvm, mem); 2072 } 2073 2074 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2075 /** 2076 * kvm_get_dirty_log - get a snapshot of dirty pages 2077 * @kvm: pointer to kvm instance 2078 * @log: slot id and address to which we copy the log 2079 * @is_dirty: set to '1' if any dirty pages were found 2080 * @memslot: set to the associated memslot, always valid on success 2081 */ 2082 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2083 int *is_dirty, struct kvm_memory_slot **memslot) 2084 { 2085 struct kvm_memslots *slots; 2086 int i, as_id, id; 2087 unsigned long n; 2088 unsigned long any = 0; 2089 2090 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2091 if (!kvm_use_dirty_bitmap(kvm)) 2092 return -ENXIO; 2093 2094 *memslot = NULL; 2095 *is_dirty = 0; 2096 2097 as_id = log->slot >> 16; 2098 id = (u16)log->slot; 2099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2100 return -EINVAL; 2101 2102 slots = __kvm_memslots(kvm, as_id); 2103 *memslot = id_to_memslot(slots, id); 2104 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2105 return -ENOENT; 2106 2107 kvm_arch_sync_dirty_log(kvm, *memslot); 2108 2109 n = kvm_dirty_bitmap_bytes(*memslot); 2110 2111 for (i = 0; !any && i < n/sizeof(long); ++i) 2112 any = (*memslot)->dirty_bitmap[i]; 2113 2114 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2115 return -EFAULT; 2116 2117 if (any) 2118 *is_dirty = 1; 2119 return 0; 2120 } 2121 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2122 2123 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2124 /** 2125 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2126 * and reenable dirty page tracking for the corresponding pages. 2127 * @kvm: pointer to kvm instance 2128 * @log: slot id and address to which we copy the log 2129 * 2130 * We need to keep it in mind that VCPU threads can write to the bitmap 2131 * concurrently. So, to avoid losing track of dirty pages we keep the 2132 * following order: 2133 * 2134 * 1. Take a snapshot of the bit and clear it if needed. 2135 * 2. Write protect the corresponding page. 2136 * 3. Copy the snapshot to the userspace. 2137 * 4. Upon return caller flushes TLB's if needed. 2138 * 2139 * Between 2 and 4, the guest may write to the page using the remaining TLB 2140 * entry. This is not a problem because the page is reported dirty using 2141 * the snapshot taken before and step 4 ensures that writes done after 2142 * exiting to userspace will be logged for the next call. 2143 * 2144 */ 2145 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2146 { 2147 struct kvm_memslots *slots; 2148 struct kvm_memory_slot *memslot; 2149 int i, as_id, id; 2150 unsigned long n; 2151 unsigned long *dirty_bitmap; 2152 unsigned long *dirty_bitmap_buffer; 2153 bool flush; 2154 2155 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2156 if (!kvm_use_dirty_bitmap(kvm)) 2157 return -ENXIO; 2158 2159 as_id = log->slot >> 16; 2160 id = (u16)log->slot; 2161 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2162 return -EINVAL; 2163 2164 slots = __kvm_memslots(kvm, as_id); 2165 memslot = id_to_memslot(slots, id); 2166 if (!memslot || !memslot->dirty_bitmap) 2167 return -ENOENT; 2168 2169 dirty_bitmap = memslot->dirty_bitmap; 2170 2171 kvm_arch_sync_dirty_log(kvm, memslot); 2172 2173 n = kvm_dirty_bitmap_bytes(memslot); 2174 flush = false; 2175 if (kvm->manual_dirty_log_protect) { 2176 /* 2177 * Unlike kvm_get_dirty_log, we always return false in *flush, 2178 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2179 * is some code duplication between this function and 2180 * kvm_get_dirty_log, but hopefully all architecture 2181 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2182 * can be eliminated. 2183 */ 2184 dirty_bitmap_buffer = dirty_bitmap; 2185 } else { 2186 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2187 memset(dirty_bitmap_buffer, 0, n); 2188 2189 KVM_MMU_LOCK(kvm); 2190 for (i = 0; i < n / sizeof(long); i++) { 2191 unsigned long mask; 2192 gfn_t offset; 2193 2194 if (!dirty_bitmap[i]) 2195 continue; 2196 2197 flush = true; 2198 mask = xchg(&dirty_bitmap[i], 0); 2199 dirty_bitmap_buffer[i] = mask; 2200 2201 offset = i * BITS_PER_LONG; 2202 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2203 offset, mask); 2204 } 2205 KVM_MMU_UNLOCK(kvm); 2206 } 2207 2208 if (flush) 2209 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2210 2211 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2212 return -EFAULT; 2213 return 0; 2214 } 2215 2216 2217 /** 2218 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2219 * @kvm: kvm instance 2220 * @log: slot id and address to which we copy the log 2221 * 2222 * Steps 1-4 below provide general overview of dirty page logging. See 2223 * kvm_get_dirty_log_protect() function description for additional details. 2224 * 2225 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2226 * always flush the TLB (step 4) even if previous step failed and the dirty 2227 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2228 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2229 * writes will be marked dirty for next log read. 2230 * 2231 * 1. Take a snapshot of the bit and clear it if needed. 2232 * 2. Write protect the corresponding page. 2233 * 3. Copy the snapshot to the userspace. 2234 * 4. Flush TLB's if needed. 2235 */ 2236 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2237 struct kvm_dirty_log *log) 2238 { 2239 int r; 2240 2241 mutex_lock(&kvm->slots_lock); 2242 2243 r = kvm_get_dirty_log_protect(kvm, log); 2244 2245 mutex_unlock(&kvm->slots_lock); 2246 return r; 2247 } 2248 2249 /** 2250 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2251 * and reenable dirty page tracking for the corresponding pages. 2252 * @kvm: pointer to kvm instance 2253 * @log: slot id and address from which to fetch the bitmap of dirty pages 2254 */ 2255 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2256 struct kvm_clear_dirty_log *log) 2257 { 2258 struct kvm_memslots *slots; 2259 struct kvm_memory_slot *memslot; 2260 int as_id, id; 2261 gfn_t offset; 2262 unsigned long i, n; 2263 unsigned long *dirty_bitmap; 2264 unsigned long *dirty_bitmap_buffer; 2265 bool flush; 2266 2267 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2268 if (!kvm_use_dirty_bitmap(kvm)) 2269 return -ENXIO; 2270 2271 as_id = log->slot >> 16; 2272 id = (u16)log->slot; 2273 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2274 return -EINVAL; 2275 2276 if (log->first_page & 63) 2277 return -EINVAL; 2278 2279 slots = __kvm_memslots(kvm, as_id); 2280 memslot = id_to_memslot(slots, id); 2281 if (!memslot || !memslot->dirty_bitmap) 2282 return -ENOENT; 2283 2284 dirty_bitmap = memslot->dirty_bitmap; 2285 2286 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2287 2288 if (log->first_page > memslot->npages || 2289 log->num_pages > memslot->npages - log->first_page || 2290 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2291 return -EINVAL; 2292 2293 kvm_arch_sync_dirty_log(kvm, memslot); 2294 2295 flush = false; 2296 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2297 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2298 return -EFAULT; 2299 2300 KVM_MMU_LOCK(kvm); 2301 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2302 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2303 i++, offset += BITS_PER_LONG) { 2304 unsigned long mask = *dirty_bitmap_buffer++; 2305 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2306 if (!mask) 2307 continue; 2308 2309 mask &= atomic_long_fetch_andnot(mask, p); 2310 2311 /* 2312 * mask contains the bits that really have been cleared. This 2313 * never includes any bits beyond the length of the memslot (if 2314 * the length is not aligned to 64 pages), therefore it is not 2315 * a problem if userspace sets them in log->dirty_bitmap. 2316 */ 2317 if (mask) { 2318 flush = true; 2319 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2320 offset, mask); 2321 } 2322 } 2323 KVM_MMU_UNLOCK(kvm); 2324 2325 if (flush) 2326 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2327 2328 return 0; 2329 } 2330 2331 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2332 struct kvm_clear_dirty_log *log) 2333 { 2334 int r; 2335 2336 mutex_lock(&kvm->slots_lock); 2337 2338 r = kvm_clear_dirty_log_protect(kvm, log); 2339 2340 mutex_unlock(&kvm->slots_lock); 2341 return r; 2342 } 2343 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2344 2345 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2346 { 2347 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2348 } 2349 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2350 2351 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2352 { 2353 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2354 u64 gen = slots->generation; 2355 struct kvm_memory_slot *slot; 2356 2357 /* 2358 * This also protects against using a memslot from a different address space, 2359 * since different address spaces have different generation numbers. 2360 */ 2361 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2362 vcpu->last_used_slot = NULL; 2363 vcpu->last_used_slot_gen = gen; 2364 } 2365 2366 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2367 if (slot) 2368 return slot; 2369 2370 /* 2371 * Fall back to searching all memslots. We purposely use 2372 * search_memslots() instead of __gfn_to_memslot() to avoid 2373 * thrashing the VM-wide last_used_slot in kvm_memslots. 2374 */ 2375 slot = search_memslots(slots, gfn, false); 2376 if (slot) { 2377 vcpu->last_used_slot = slot; 2378 return slot; 2379 } 2380 2381 return NULL; 2382 } 2383 2384 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2385 { 2386 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2387 2388 return kvm_is_visible_memslot(memslot); 2389 } 2390 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2391 2392 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2393 { 2394 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2395 2396 return kvm_is_visible_memslot(memslot); 2397 } 2398 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2399 2400 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2401 { 2402 struct vm_area_struct *vma; 2403 unsigned long addr, size; 2404 2405 size = PAGE_SIZE; 2406 2407 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2408 if (kvm_is_error_hva(addr)) 2409 return PAGE_SIZE; 2410 2411 mmap_read_lock(current->mm); 2412 vma = find_vma(current->mm, addr); 2413 if (!vma) 2414 goto out; 2415 2416 size = vma_kernel_pagesize(vma); 2417 2418 out: 2419 mmap_read_unlock(current->mm); 2420 2421 return size; 2422 } 2423 2424 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2425 { 2426 return slot->flags & KVM_MEM_READONLY; 2427 } 2428 2429 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2430 gfn_t *nr_pages, bool write) 2431 { 2432 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2433 return KVM_HVA_ERR_BAD; 2434 2435 if (memslot_is_readonly(slot) && write) 2436 return KVM_HVA_ERR_RO_BAD; 2437 2438 if (nr_pages) 2439 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2440 2441 return __gfn_to_hva_memslot(slot, gfn); 2442 } 2443 2444 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2445 gfn_t *nr_pages) 2446 { 2447 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2448 } 2449 2450 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2451 gfn_t gfn) 2452 { 2453 return gfn_to_hva_many(slot, gfn, NULL); 2454 } 2455 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2456 2457 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2458 { 2459 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2460 } 2461 EXPORT_SYMBOL_GPL(gfn_to_hva); 2462 2463 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2464 { 2465 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2466 } 2467 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2468 2469 /* 2470 * Return the hva of a @gfn and the R/W attribute if possible. 2471 * 2472 * @slot: the kvm_memory_slot which contains @gfn 2473 * @gfn: the gfn to be translated 2474 * @writable: used to return the read/write attribute of the @slot if the hva 2475 * is valid and @writable is not NULL 2476 */ 2477 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2478 gfn_t gfn, bool *writable) 2479 { 2480 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2481 2482 if (!kvm_is_error_hva(hva) && writable) 2483 *writable = !memslot_is_readonly(slot); 2484 2485 return hva; 2486 } 2487 2488 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2489 { 2490 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2491 2492 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2493 } 2494 2495 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2496 { 2497 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2498 2499 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2500 } 2501 2502 static inline int check_user_page_hwpoison(unsigned long addr) 2503 { 2504 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2505 2506 rc = get_user_pages(addr, 1, flags, NULL); 2507 return rc == -EHWPOISON; 2508 } 2509 2510 /* 2511 * The fast path to get the writable pfn which will be stored in @pfn, 2512 * true indicates success, otherwise false is returned. It's also the 2513 * only part that runs if we can in atomic context. 2514 */ 2515 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2516 bool *writable, kvm_pfn_t *pfn) 2517 { 2518 struct page *page[1]; 2519 2520 /* 2521 * Fast pin a writable pfn only if it is a write fault request 2522 * or the caller allows to map a writable pfn for a read fault 2523 * request. 2524 */ 2525 if (!(write_fault || writable)) 2526 return false; 2527 2528 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2529 *pfn = page_to_pfn(page[0]); 2530 2531 if (writable) 2532 *writable = true; 2533 return true; 2534 } 2535 2536 return false; 2537 } 2538 2539 /* 2540 * The slow path to get the pfn of the specified host virtual address, 2541 * 1 indicates success, -errno is returned if error is detected. 2542 */ 2543 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2544 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2545 { 2546 /* 2547 * When a VCPU accesses a page that is not mapped into the secondary 2548 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2549 * make progress. We always want to honor NUMA hinting faults in that 2550 * case, because GUP usage corresponds to memory accesses from the VCPU. 2551 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2552 * mapped into the secondary MMU and gets accessed by a VCPU. 2553 * 2554 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2555 * implicitly honor NUMA hinting faults and don't need this flag. 2556 */ 2557 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2558 struct page *page; 2559 int npages; 2560 2561 might_sleep(); 2562 2563 if (writable) 2564 *writable = write_fault; 2565 2566 if (write_fault) 2567 flags |= FOLL_WRITE; 2568 if (async) 2569 flags |= FOLL_NOWAIT; 2570 if (interruptible) 2571 flags |= FOLL_INTERRUPTIBLE; 2572 2573 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2574 if (npages != 1) 2575 return npages; 2576 2577 /* map read fault as writable if possible */ 2578 if (unlikely(!write_fault) && writable) { 2579 struct page *wpage; 2580 2581 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2582 *writable = true; 2583 put_page(page); 2584 page = wpage; 2585 } 2586 } 2587 *pfn = page_to_pfn(page); 2588 return npages; 2589 } 2590 2591 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2592 { 2593 if (unlikely(!(vma->vm_flags & VM_READ))) 2594 return false; 2595 2596 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2597 return false; 2598 2599 return true; 2600 } 2601 2602 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2603 { 2604 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2605 2606 if (!page) 2607 return 1; 2608 2609 return get_page_unless_zero(page); 2610 } 2611 2612 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2613 unsigned long addr, bool write_fault, 2614 bool *writable, kvm_pfn_t *p_pfn) 2615 { 2616 kvm_pfn_t pfn; 2617 pte_t *ptep; 2618 pte_t pte; 2619 spinlock_t *ptl; 2620 int r; 2621 2622 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2623 if (r) { 2624 /* 2625 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2626 * not call the fault handler, so do it here. 2627 */ 2628 bool unlocked = false; 2629 r = fixup_user_fault(current->mm, addr, 2630 (write_fault ? FAULT_FLAG_WRITE : 0), 2631 &unlocked); 2632 if (unlocked) 2633 return -EAGAIN; 2634 if (r) 2635 return r; 2636 2637 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2638 if (r) 2639 return r; 2640 } 2641 2642 pte = ptep_get(ptep); 2643 2644 if (write_fault && !pte_write(pte)) { 2645 pfn = KVM_PFN_ERR_RO_FAULT; 2646 goto out; 2647 } 2648 2649 if (writable) 2650 *writable = pte_write(pte); 2651 pfn = pte_pfn(pte); 2652 2653 /* 2654 * Get a reference here because callers of *hva_to_pfn* and 2655 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2656 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2657 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2658 * simply do nothing for reserved pfns. 2659 * 2660 * Whoever called remap_pfn_range is also going to call e.g. 2661 * unmap_mapping_range before the underlying pages are freed, 2662 * causing a call to our MMU notifier. 2663 * 2664 * Certain IO or PFNMAP mappings can be backed with valid 2665 * struct pages, but be allocated without refcounting e.g., 2666 * tail pages of non-compound higher order allocations, which 2667 * would then underflow the refcount when the caller does the 2668 * required put_page. Don't allow those pages here. 2669 */ 2670 if (!kvm_try_get_pfn(pfn)) 2671 r = -EFAULT; 2672 2673 out: 2674 pte_unmap_unlock(ptep, ptl); 2675 *p_pfn = pfn; 2676 2677 return r; 2678 } 2679 2680 /* 2681 * Pin guest page in memory and return its pfn. 2682 * @addr: host virtual address which maps memory to the guest 2683 * @atomic: whether this function can sleep 2684 * @interruptible: whether the process can be interrupted by non-fatal signals 2685 * @async: whether this function need to wait IO complete if the 2686 * host page is not in the memory 2687 * @write_fault: whether we should get a writable host page 2688 * @writable: whether it allows to map a writable host page for !@write_fault 2689 * 2690 * The function will map a writable host page for these two cases: 2691 * 1): @write_fault = true 2692 * 2): @write_fault = false && @writable, @writable will tell the caller 2693 * whether the mapping is writable. 2694 */ 2695 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2696 bool *async, bool write_fault, bool *writable) 2697 { 2698 struct vm_area_struct *vma; 2699 kvm_pfn_t pfn; 2700 int npages, r; 2701 2702 /* we can do it either atomically or asynchronously, not both */ 2703 BUG_ON(atomic && async); 2704 2705 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2706 return pfn; 2707 2708 if (atomic) 2709 return KVM_PFN_ERR_FAULT; 2710 2711 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2712 writable, &pfn); 2713 if (npages == 1) 2714 return pfn; 2715 if (npages == -EINTR) 2716 return KVM_PFN_ERR_SIGPENDING; 2717 2718 mmap_read_lock(current->mm); 2719 if (npages == -EHWPOISON || 2720 (!async && check_user_page_hwpoison(addr))) { 2721 pfn = KVM_PFN_ERR_HWPOISON; 2722 goto exit; 2723 } 2724 2725 retry: 2726 vma = vma_lookup(current->mm, addr); 2727 2728 if (vma == NULL) 2729 pfn = KVM_PFN_ERR_FAULT; 2730 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2731 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2732 if (r == -EAGAIN) 2733 goto retry; 2734 if (r < 0) 2735 pfn = KVM_PFN_ERR_FAULT; 2736 } else { 2737 if (async && vma_is_valid(vma, write_fault)) 2738 *async = true; 2739 pfn = KVM_PFN_ERR_FAULT; 2740 } 2741 exit: 2742 mmap_read_unlock(current->mm); 2743 return pfn; 2744 } 2745 2746 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2747 bool atomic, bool interruptible, bool *async, 2748 bool write_fault, bool *writable, hva_t *hva) 2749 { 2750 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2751 2752 if (hva) 2753 *hva = addr; 2754 2755 if (addr == KVM_HVA_ERR_RO_BAD) { 2756 if (writable) 2757 *writable = false; 2758 return KVM_PFN_ERR_RO_FAULT; 2759 } 2760 2761 if (kvm_is_error_hva(addr)) { 2762 if (writable) 2763 *writable = false; 2764 return KVM_PFN_NOSLOT; 2765 } 2766 2767 /* Do not map writable pfn in the readonly memslot. */ 2768 if (writable && memslot_is_readonly(slot)) { 2769 *writable = false; 2770 writable = NULL; 2771 } 2772 2773 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2774 writable); 2775 } 2776 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2777 2778 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2779 bool *writable) 2780 { 2781 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2782 NULL, write_fault, writable, NULL); 2783 } 2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2785 2786 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2787 { 2788 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2789 NULL, NULL); 2790 } 2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2792 2793 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2794 { 2795 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2796 NULL, NULL); 2797 } 2798 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2799 2800 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2801 { 2802 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2803 } 2804 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2805 2806 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2807 { 2808 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2809 } 2810 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2811 2812 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2813 { 2814 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2815 } 2816 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2817 2818 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2819 struct page **pages, int nr_pages) 2820 { 2821 unsigned long addr; 2822 gfn_t entry = 0; 2823 2824 addr = gfn_to_hva_many(slot, gfn, &entry); 2825 if (kvm_is_error_hva(addr)) 2826 return -1; 2827 2828 if (entry < nr_pages) 2829 return 0; 2830 2831 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2832 } 2833 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2834 2835 /* 2836 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2837 * backed by 'struct page'. A valid example is if the backing memslot is 2838 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2839 * been elevated by gfn_to_pfn(). 2840 */ 2841 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2842 { 2843 struct page *page; 2844 kvm_pfn_t pfn; 2845 2846 pfn = gfn_to_pfn(kvm, gfn); 2847 2848 if (is_error_noslot_pfn(pfn)) 2849 return KVM_ERR_PTR_BAD_PAGE; 2850 2851 page = kvm_pfn_to_refcounted_page(pfn); 2852 if (!page) 2853 return KVM_ERR_PTR_BAD_PAGE; 2854 2855 return page; 2856 } 2857 EXPORT_SYMBOL_GPL(gfn_to_page); 2858 2859 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2860 { 2861 if (dirty) 2862 kvm_release_pfn_dirty(pfn); 2863 else 2864 kvm_release_pfn_clean(pfn); 2865 } 2866 2867 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2868 { 2869 kvm_pfn_t pfn; 2870 void *hva = NULL; 2871 struct page *page = KVM_UNMAPPED_PAGE; 2872 2873 if (!map) 2874 return -EINVAL; 2875 2876 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2877 if (is_error_noslot_pfn(pfn)) 2878 return -EINVAL; 2879 2880 if (pfn_valid(pfn)) { 2881 page = pfn_to_page(pfn); 2882 hva = kmap(page); 2883 #ifdef CONFIG_HAS_IOMEM 2884 } else { 2885 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2886 #endif 2887 } 2888 2889 if (!hva) 2890 return -EFAULT; 2891 2892 map->page = page; 2893 map->hva = hva; 2894 map->pfn = pfn; 2895 map->gfn = gfn; 2896 2897 return 0; 2898 } 2899 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2900 2901 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2902 { 2903 if (!map) 2904 return; 2905 2906 if (!map->hva) 2907 return; 2908 2909 if (map->page != KVM_UNMAPPED_PAGE) 2910 kunmap(map->page); 2911 #ifdef CONFIG_HAS_IOMEM 2912 else 2913 memunmap(map->hva); 2914 #endif 2915 2916 if (dirty) 2917 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2918 2919 kvm_release_pfn(map->pfn, dirty); 2920 2921 map->hva = NULL; 2922 map->page = NULL; 2923 } 2924 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2925 2926 static bool kvm_is_ad_tracked_page(struct page *page) 2927 { 2928 /* 2929 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2930 * touched (e.g. set dirty) except by its owner". 2931 */ 2932 return !PageReserved(page); 2933 } 2934 2935 static void kvm_set_page_dirty(struct page *page) 2936 { 2937 if (kvm_is_ad_tracked_page(page)) 2938 SetPageDirty(page); 2939 } 2940 2941 static void kvm_set_page_accessed(struct page *page) 2942 { 2943 if (kvm_is_ad_tracked_page(page)) 2944 mark_page_accessed(page); 2945 } 2946 2947 void kvm_release_page_clean(struct page *page) 2948 { 2949 WARN_ON(is_error_page(page)); 2950 2951 kvm_set_page_accessed(page); 2952 put_page(page); 2953 } 2954 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2955 2956 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2957 { 2958 struct page *page; 2959 2960 if (is_error_noslot_pfn(pfn)) 2961 return; 2962 2963 page = kvm_pfn_to_refcounted_page(pfn); 2964 if (!page) 2965 return; 2966 2967 kvm_release_page_clean(page); 2968 } 2969 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2970 2971 void kvm_release_page_dirty(struct page *page) 2972 { 2973 WARN_ON(is_error_page(page)); 2974 2975 kvm_set_page_dirty(page); 2976 kvm_release_page_clean(page); 2977 } 2978 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2979 2980 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2981 { 2982 struct page *page; 2983 2984 if (is_error_noslot_pfn(pfn)) 2985 return; 2986 2987 page = kvm_pfn_to_refcounted_page(pfn); 2988 if (!page) 2989 return; 2990 2991 kvm_release_page_dirty(page); 2992 } 2993 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2994 2995 /* 2996 * Note, checking for an error/noslot pfn is the caller's responsibility when 2997 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2998 * "set" helpers are not to be used when the pfn might point at garbage. 2999 */ 3000 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 3001 { 3002 if (WARN_ON(is_error_noslot_pfn(pfn))) 3003 return; 3004 3005 if (pfn_valid(pfn)) 3006 kvm_set_page_dirty(pfn_to_page(pfn)); 3007 } 3008 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 3009 3010 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 3011 { 3012 if (WARN_ON(is_error_noslot_pfn(pfn))) 3013 return; 3014 3015 if (pfn_valid(pfn)) 3016 kvm_set_page_accessed(pfn_to_page(pfn)); 3017 } 3018 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 3019 3020 static int next_segment(unsigned long len, int offset) 3021 { 3022 if (len > PAGE_SIZE - offset) 3023 return PAGE_SIZE - offset; 3024 else 3025 return len; 3026 } 3027 3028 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3029 void *data, int offset, int len) 3030 { 3031 int r; 3032 unsigned long addr; 3033 3034 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3035 if (kvm_is_error_hva(addr)) 3036 return -EFAULT; 3037 r = __copy_from_user(data, (void __user *)addr + offset, len); 3038 if (r) 3039 return -EFAULT; 3040 return 0; 3041 } 3042 3043 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3044 int len) 3045 { 3046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3047 3048 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3049 } 3050 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3051 3052 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3053 int offset, int len) 3054 { 3055 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3056 3057 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3058 } 3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3060 3061 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3062 { 3063 gfn_t gfn = gpa >> PAGE_SHIFT; 3064 int seg; 3065 int offset = offset_in_page(gpa); 3066 int ret; 3067 3068 while ((seg = next_segment(len, offset)) != 0) { 3069 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3070 if (ret < 0) 3071 return ret; 3072 offset = 0; 3073 len -= seg; 3074 data += seg; 3075 ++gfn; 3076 } 3077 return 0; 3078 } 3079 EXPORT_SYMBOL_GPL(kvm_read_guest); 3080 3081 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3082 { 3083 gfn_t gfn = gpa >> PAGE_SHIFT; 3084 int seg; 3085 int offset = offset_in_page(gpa); 3086 int ret; 3087 3088 while ((seg = next_segment(len, offset)) != 0) { 3089 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3090 if (ret < 0) 3091 return ret; 3092 offset = 0; 3093 len -= seg; 3094 data += seg; 3095 ++gfn; 3096 } 3097 return 0; 3098 } 3099 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3100 3101 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3102 void *data, int offset, unsigned long len) 3103 { 3104 int r; 3105 unsigned long addr; 3106 3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3108 if (kvm_is_error_hva(addr)) 3109 return -EFAULT; 3110 pagefault_disable(); 3111 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3112 pagefault_enable(); 3113 if (r) 3114 return -EFAULT; 3115 return 0; 3116 } 3117 3118 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3119 void *data, unsigned long len) 3120 { 3121 gfn_t gfn = gpa >> PAGE_SHIFT; 3122 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3123 int offset = offset_in_page(gpa); 3124 3125 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3126 } 3127 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3128 3129 static int __kvm_write_guest_page(struct kvm *kvm, 3130 struct kvm_memory_slot *memslot, gfn_t gfn, 3131 const void *data, int offset, int len) 3132 { 3133 int r; 3134 unsigned long addr; 3135 3136 addr = gfn_to_hva_memslot(memslot, gfn); 3137 if (kvm_is_error_hva(addr)) 3138 return -EFAULT; 3139 r = __copy_to_user((void __user *)addr + offset, data, len); 3140 if (r) 3141 return -EFAULT; 3142 mark_page_dirty_in_slot(kvm, memslot, gfn); 3143 return 0; 3144 } 3145 3146 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3147 const void *data, int offset, int len) 3148 { 3149 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3150 3151 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3152 } 3153 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3154 3155 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3156 const void *data, int offset, int len) 3157 { 3158 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3159 3160 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3161 } 3162 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3163 3164 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3165 unsigned long len) 3166 { 3167 gfn_t gfn = gpa >> PAGE_SHIFT; 3168 int seg; 3169 int offset = offset_in_page(gpa); 3170 int ret; 3171 3172 while ((seg = next_segment(len, offset)) != 0) { 3173 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3174 if (ret < 0) 3175 return ret; 3176 offset = 0; 3177 len -= seg; 3178 data += seg; 3179 ++gfn; 3180 } 3181 return 0; 3182 } 3183 EXPORT_SYMBOL_GPL(kvm_write_guest); 3184 3185 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3186 unsigned long len) 3187 { 3188 gfn_t gfn = gpa >> PAGE_SHIFT; 3189 int seg; 3190 int offset = offset_in_page(gpa); 3191 int ret; 3192 3193 while ((seg = next_segment(len, offset)) != 0) { 3194 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3195 if (ret < 0) 3196 return ret; 3197 offset = 0; 3198 len -= seg; 3199 data += seg; 3200 ++gfn; 3201 } 3202 return 0; 3203 } 3204 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3205 3206 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3207 struct gfn_to_hva_cache *ghc, 3208 gpa_t gpa, unsigned long len) 3209 { 3210 int offset = offset_in_page(gpa); 3211 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3212 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3213 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3214 gfn_t nr_pages_avail; 3215 3216 /* Update ghc->generation before performing any error checks. */ 3217 ghc->generation = slots->generation; 3218 3219 if (start_gfn > end_gfn) { 3220 ghc->hva = KVM_HVA_ERR_BAD; 3221 return -EINVAL; 3222 } 3223 3224 /* 3225 * If the requested region crosses two memslots, we still 3226 * verify that the entire region is valid here. 3227 */ 3228 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3229 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3230 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3231 &nr_pages_avail); 3232 if (kvm_is_error_hva(ghc->hva)) 3233 return -EFAULT; 3234 } 3235 3236 /* Use the slow path for cross page reads and writes. */ 3237 if (nr_pages_needed == 1) 3238 ghc->hva += offset; 3239 else 3240 ghc->memslot = NULL; 3241 3242 ghc->gpa = gpa; 3243 ghc->len = len; 3244 return 0; 3245 } 3246 3247 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3248 gpa_t gpa, unsigned long len) 3249 { 3250 struct kvm_memslots *slots = kvm_memslots(kvm); 3251 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3252 } 3253 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3254 3255 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3256 void *data, unsigned int offset, 3257 unsigned long len) 3258 { 3259 struct kvm_memslots *slots = kvm_memslots(kvm); 3260 int r; 3261 gpa_t gpa = ghc->gpa + offset; 3262 3263 if (WARN_ON_ONCE(len + offset > ghc->len)) 3264 return -EINVAL; 3265 3266 if (slots->generation != ghc->generation) { 3267 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3268 return -EFAULT; 3269 } 3270 3271 if (kvm_is_error_hva(ghc->hva)) 3272 return -EFAULT; 3273 3274 if (unlikely(!ghc->memslot)) 3275 return kvm_write_guest(kvm, gpa, data, len); 3276 3277 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3278 if (r) 3279 return -EFAULT; 3280 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3281 3282 return 0; 3283 } 3284 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3285 3286 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3287 void *data, unsigned long len) 3288 { 3289 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3290 } 3291 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3292 3293 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3294 void *data, unsigned int offset, 3295 unsigned long len) 3296 { 3297 struct kvm_memslots *slots = kvm_memslots(kvm); 3298 int r; 3299 gpa_t gpa = ghc->gpa + offset; 3300 3301 if (WARN_ON_ONCE(len + offset > ghc->len)) 3302 return -EINVAL; 3303 3304 if (slots->generation != ghc->generation) { 3305 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3306 return -EFAULT; 3307 } 3308 3309 if (kvm_is_error_hva(ghc->hva)) 3310 return -EFAULT; 3311 3312 if (unlikely(!ghc->memslot)) 3313 return kvm_read_guest(kvm, gpa, data, len); 3314 3315 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3316 if (r) 3317 return -EFAULT; 3318 3319 return 0; 3320 } 3321 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3322 3323 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3324 void *data, unsigned long len) 3325 { 3326 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3327 } 3328 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3329 3330 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3331 { 3332 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3333 gfn_t gfn = gpa >> PAGE_SHIFT; 3334 int seg; 3335 int offset = offset_in_page(gpa); 3336 int ret; 3337 3338 while ((seg = next_segment(len, offset)) != 0) { 3339 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3340 if (ret < 0) 3341 return ret; 3342 offset = 0; 3343 len -= seg; 3344 ++gfn; 3345 } 3346 return 0; 3347 } 3348 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3349 3350 void mark_page_dirty_in_slot(struct kvm *kvm, 3351 const struct kvm_memory_slot *memslot, 3352 gfn_t gfn) 3353 { 3354 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3355 3356 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3357 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3358 return; 3359 3360 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3361 #endif 3362 3363 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3364 unsigned long rel_gfn = gfn - memslot->base_gfn; 3365 u32 slot = (memslot->as_id << 16) | memslot->id; 3366 3367 if (kvm->dirty_ring_size && vcpu) 3368 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3369 else if (memslot->dirty_bitmap) 3370 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3371 } 3372 } 3373 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3374 3375 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3376 { 3377 struct kvm_memory_slot *memslot; 3378 3379 memslot = gfn_to_memslot(kvm, gfn); 3380 mark_page_dirty_in_slot(kvm, memslot, gfn); 3381 } 3382 EXPORT_SYMBOL_GPL(mark_page_dirty); 3383 3384 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3385 { 3386 struct kvm_memory_slot *memslot; 3387 3388 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3389 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3390 } 3391 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3392 3393 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3394 { 3395 if (!vcpu->sigset_active) 3396 return; 3397 3398 /* 3399 * This does a lockless modification of ->real_blocked, which is fine 3400 * because, only current can change ->real_blocked and all readers of 3401 * ->real_blocked don't care as long ->real_blocked is always a subset 3402 * of ->blocked. 3403 */ 3404 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3405 } 3406 3407 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3408 { 3409 if (!vcpu->sigset_active) 3410 return; 3411 3412 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3413 sigemptyset(¤t->real_blocked); 3414 } 3415 3416 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3417 { 3418 unsigned int old, val, grow, grow_start; 3419 3420 old = val = vcpu->halt_poll_ns; 3421 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3422 grow = READ_ONCE(halt_poll_ns_grow); 3423 if (!grow) 3424 goto out; 3425 3426 val *= grow; 3427 if (val < grow_start) 3428 val = grow_start; 3429 3430 vcpu->halt_poll_ns = val; 3431 out: 3432 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3433 } 3434 3435 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3436 { 3437 unsigned int old, val, shrink, grow_start; 3438 3439 old = val = vcpu->halt_poll_ns; 3440 shrink = READ_ONCE(halt_poll_ns_shrink); 3441 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3442 if (shrink == 0) 3443 val = 0; 3444 else 3445 val /= shrink; 3446 3447 if (val < grow_start) 3448 val = 0; 3449 3450 vcpu->halt_poll_ns = val; 3451 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3452 } 3453 3454 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3455 { 3456 int ret = -EINTR; 3457 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3458 3459 if (kvm_arch_vcpu_runnable(vcpu)) 3460 goto out; 3461 if (kvm_cpu_has_pending_timer(vcpu)) 3462 goto out; 3463 if (signal_pending(current)) 3464 goto out; 3465 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3466 goto out; 3467 3468 ret = 0; 3469 out: 3470 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3471 return ret; 3472 } 3473 3474 /* 3475 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3476 * pending. This is mostly used when halting a vCPU, but may also be used 3477 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3478 */ 3479 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3480 { 3481 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3482 bool waited = false; 3483 3484 vcpu->stat.generic.blocking = 1; 3485 3486 preempt_disable(); 3487 kvm_arch_vcpu_blocking(vcpu); 3488 prepare_to_rcuwait(wait); 3489 preempt_enable(); 3490 3491 for (;;) { 3492 set_current_state(TASK_INTERRUPTIBLE); 3493 3494 if (kvm_vcpu_check_block(vcpu) < 0) 3495 break; 3496 3497 waited = true; 3498 schedule(); 3499 } 3500 3501 preempt_disable(); 3502 finish_rcuwait(wait); 3503 kvm_arch_vcpu_unblocking(vcpu); 3504 preempt_enable(); 3505 3506 vcpu->stat.generic.blocking = 0; 3507 3508 return waited; 3509 } 3510 3511 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3512 ktime_t end, bool success) 3513 { 3514 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3515 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3516 3517 ++vcpu->stat.generic.halt_attempted_poll; 3518 3519 if (success) { 3520 ++vcpu->stat.generic.halt_successful_poll; 3521 3522 if (!vcpu_valid_wakeup(vcpu)) 3523 ++vcpu->stat.generic.halt_poll_invalid; 3524 3525 stats->halt_poll_success_ns += poll_ns; 3526 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3527 } else { 3528 stats->halt_poll_fail_ns += poll_ns; 3529 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3530 } 3531 } 3532 3533 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3534 { 3535 struct kvm *kvm = vcpu->kvm; 3536 3537 if (kvm->override_halt_poll_ns) { 3538 /* 3539 * Ensure kvm->max_halt_poll_ns is not read before 3540 * kvm->override_halt_poll_ns. 3541 * 3542 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3543 */ 3544 smp_rmb(); 3545 return READ_ONCE(kvm->max_halt_poll_ns); 3546 } 3547 3548 return READ_ONCE(halt_poll_ns); 3549 } 3550 3551 /* 3552 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3553 * polling is enabled, busy wait for a short time before blocking to avoid the 3554 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3555 * is halted. 3556 */ 3557 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3558 { 3559 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3560 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3561 ktime_t start, cur, poll_end; 3562 bool waited = false; 3563 bool do_halt_poll; 3564 u64 halt_ns; 3565 3566 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3567 vcpu->halt_poll_ns = max_halt_poll_ns; 3568 3569 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3570 3571 start = cur = poll_end = ktime_get(); 3572 if (do_halt_poll) { 3573 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3574 3575 do { 3576 if (kvm_vcpu_check_block(vcpu) < 0) 3577 goto out; 3578 cpu_relax(); 3579 poll_end = cur = ktime_get(); 3580 } while (kvm_vcpu_can_poll(cur, stop)); 3581 } 3582 3583 waited = kvm_vcpu_block(vcpu); 3584 3585 cur = ktime_get(); 3586 if (waited) { 3587 vcpu->stat.generic.halt_wait_ns += 3588 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3589 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3590 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3591 } 3592 out: 3593 /* The total time the vCPU was "halted", including polling time. */ 3594 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3595 3596 /* 3597 * Note, halt-polling is considered successful so long as the vCPU was 3598 * never actually scheduled out, i.e. even if the wake event arrived 3599 * after of the halt-polling loop itself, but before the full wait. 3600 */ 3601 if (do_halt_poll) 3602 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3603 3604 if (halt_poll_allowed) { 3605 /* Recompute the max halt poll time in case it changed. */ 3606 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3607 3608 if (!vcpu_valid_wakeup(vcpu)) { 3609 shrink_halt_poll_ns(vcpu); 3610 } else if (max_halt_poll_ns) { 3611 if (halt_ns <= vcpu->halt_poll_ns) 3612 ; 3613 /* we had a long block, shrink polling */ 3614 else if (vcpu->halt_poll_ns && 3615 halt_ns > max_halt_poll_ns) 3616 shrink_halt_poll_ns(vcpu); 3617 /* we had a short halt and our poll time is too small */ 3618 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3619 halt_ns < max_halt_poll_ns) 3620 grow_halt_poll_ns(vcpu); 3621 } else { 3622 vcpu->halt_poll_ns = 0; 3623 } 3624 } 3625 3626 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3627 } 3628 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3629 3630 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3631 { 3632 if (__kvm_vcpu_wake_up(vcpu)) { 3633 WRITE_ONCE(vcpu->ready, true); 3634 ++vcpu->stat.generic.halt_wakeup; 3635 return true; 3636 } 3637 3638 return false; 3639 } 3640 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3641 3642 #ifndef CONFIG_S390 3643 /* 3644 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3645 */ 3646 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3647 { 3648 int me, cpu; 3649 3650 if (kvm_vcpu_wake_up(vcpu)) 3651 return; 3652 3653 me = get_cpu(); 3654 /* 3655 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3656 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3657 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3658 * within the vCPU thread itself. 3659 */ 3660 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3661 if (vcpu->mode == IN_GUEST_MODE) 3662 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3663 goto out; 3664 } 3665 3666 /* 3667 * Note, the vCPU could get migrated to a different pCPU at any point 3668 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3669 * IPI to the previous pCPU. But, that's ok because the purpose of the 3670 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3671 * vCPU also requires it to leave IN_GUEST_MODE. 3672 */ 3673 if (kvm_arch_vcpu_should_kick(vcpu)) { 3674 cpu = READ_ONCE(vcpu->cpu); 3675 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3676 smp_send_reschedule(cpu); 3677 } 3678 out: 3679 put_cpu(); 3680 } 3681 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3682 #endif /* !CONFIG_S390 */ 3683 3684 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3685 { 3686 struct pid *pid; 3687 struct task_struct *task = NULL; 3688 int ret = 0; 3689 3690 rcu_read_lock(); 3691 pid = rcu_dereference(target->pid); 3692 if (pid) 3693 task = get_pid_task(pid, PIDTYPE_PID); 3694 rcu_read_unlock(); 3695 if (!task) 3696 return ret; 3697 ret = yield_to(task, 1); 3698 put_task_struct(task); 3699 3700 return ret; 3701 } 3702 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3703 3704 /* 3705 * Helper that checks whether a VCPU is eligible for directed yield. 3706 * Most eligible candidate to yield is decided by following heuristics: 3707 * 3708 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3709 * (preempted lock holder), indicated by @in_spin_loop. 3710 * Set at the beginning and cleared at the end of interception/PLE handler. 3711 * 3712 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3713 * chance last time (mostly it has become eligible now since we have probably 3714 * yielded to lockholder in last iteration. This is done by toggling 3715 * @dy_eligible each time a VCPU checked for eligibility.) 3716 * 3717 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3718 * to preempted lock-holder could result in wrong VCPU selection and CPU 3719 * burning. Giving priority for a potential lock-holder increases lock 3720 * progress. 3721 * 3722 * Since algorithm is based on heuristics, accessing another VCPU data without 3723 * locking does not harm. It may result in trying to yield to same VCPU, fail 3724 * and continue with next VCPU and so on. 3725 */ 3726 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3727 { 3728 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3729 bool eligible; 3730 3731 eligible = !vcpu->spin_loop.in_spin_loop || 3732 vcpu->spin_loop.dy_eligible; 3733 3734 if (vcpu->spin_loop.in_spin_loop) 3735 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3736 3737 return eligible; 3738 #else 3739 return true; 3740 #endif 3741 } 3742 3743 /* 3744 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3745 * a vcpu_load/vcpu_put pair. However, for most architectures 3746 * kvm_arch_vcpu_runnable does not require vcpu_load. 3747 */ 3748 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3749 { 3750 return kvm_arch_vcpu_runnable(vcpu); 3751 } 3752 3753 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3754 { 3755 if (kvm_arch_dy_runnable(vcpu)) 3756 return true; 3757 3758 #ifdef CONFIG_KVM_ASYNC_PF 3759 if (!list_empty_careful(&vcpu->async_pf.done)) 3760 return true; 3761 #endif 3762 3763 return false; 3764 } 3765 3766 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3767 { 3768 return false; 3769 } 3770 3771 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3772 { 3773 struct kvm *kvm = me->kvm; 3774 struct kvm_vcpu *vcpu; 3775 int last_boosted_vcpu; 3776 unsigned long i; 3777 int yielded = 0; 3778 int try = 3; 3779 int pass; 3780 3781 last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu); 3782 kvm_vcpu_set_in_spin_loop(me, true); 3783 /* 3784 * We boost the priority of a VCPU that is runnable but not 3785 * currently running, because it got preempted by something 3786 * else and called schedule in __vcpu_run. Hopefully that 3787 * VCPU is holding the lock that we need and will release it. 3788 * We approximate round-robin by starting at the last boosted VCPU. 3789 */ 3790 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3791 kvm_for_each_vcpu(i, vcpu, kvm) { 3792 if (!pass && i <= last_boosted_vcpu) { 3793 i = last_boosted_vcpu; 3794 continue; 3795 } else if (pass && i > last_boosted_vcpu) 3796 break; 3797 if (!READ_ONCE(vcpu->ready)) 3798 continue; 3799 if (vcpu == me) 3800 continue; 3801 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3802 continue; 3803 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3804 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3805 !kvm_arch_vcpu_in_kernel(vcpu)) 3806 continue; 3807 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3808 continue; 3809 3810 yielded = kvm_vcpu_yield_to(vcpu); 3811 if (yielded > 0) { 3812 WRITE_ONCE(kvm->last_boosted_vcpu, i); 3813 break; 3814 } else if (yielded < 0) { 3815 try--; 3816 if (!try) 3817 break; 3818 } 3819 } 3820 } 3821 kvm_vcpu_set_in_spin_loop(me, false); 3822 3823 /* Ensure vcpu is not eligible during next spinloop */ 3824 kvm_vcpu_set_dy_eligible(me, false); 3825 } 3826 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3827 3828 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3829 { 3830 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3831 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3832 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3833 kvm->dirty_ring_size / PAGE_SIZE); 3834 #else 3835 return false; 3836 #endif 3837 } 3838 3839 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3840 { 3841 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3842 struct page *page; 3843 3844 if (vmf->pgoff == 0) 3845 page = virt_to_page(vcpu->run); 3846 #ifdef CONFIG_X86 3847 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3848 page = virt_to_page(vcpu->arch.pio_data); 3849 #endif 3850 #ifdef CONFIG_KVM_MMIO 3851 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3852 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3853 #endif 3854 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3855 page = kvm_dirty_ring_get_page( 3856 &vcpu->dirty_ring, 3857 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3858 else 3859 return kvm_arch_vcpu_fault(vcpu, vmf); 3860 get_page(page); 3861 vmf->page = page; 3862 return 0; 3863 } 3864 3865 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3866 .fault = kvm_vcpu_fault, 3867 }; 3868 3869 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3870 { 3871 struct kvm_vcpu *vcpu = file->private_data; 3872 unsigned long pages = vma_pages(vma); 3873 3874 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3875 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3876 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3877 return -EINVAL; 3878 3879 vma->vm_ops = &kvm_vcpu_vm_ops; 3880 return 0; 3881 } 3882 3883 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3884 { 3885 struct kvm_vcpu *vcpu = filp->private_data; 3886 3887 kvm_put_kvm(vcpu->kvm); 3888 return 0; 3889 } 3890 3891 static const struct file_operations kvm_vcpu_fops = { 3892 .release = kvm_vcpu_release, 3893 .unlocked_ioctl = kvm_vcpu_ioctl, 3894 .mmap = kvm_vcpu_mmap, 3895 .llseek = noop_llseek, 3896 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3897 }; 3898 3899 /* 3900 * Allocates an inode for the vcpu. 3901 */ 3902 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3903 { 3904 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3905 3906 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3907 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3908 } 3909 3910 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3911 static int vcpu_get_pid(void *data, u64 *val) 3912 { 3913 struct kvm_vcpu *vcpu = data; 3914 3915 rcu_read_lock(); 3916 *val = pid_nr(rcu_dereference(vcpu->pid)); 3917 rcu_read_unlock(); 3918 return 0; 3919 } 3920 3921 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3922 3923 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3924 { 3925 struct dentry *debugfs_dentry; 3926 char dir_name[ITOA_MAX_LEN * 2]; 3927 3928 if (!debugfs_initialized()) 3929 return; 3930 3931 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3932 debugfs_dentry = debugfs_create_dir(dir_name, 3933 vcpu->kvm->debugfs_dentry); 3934 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3935 &vcpu_get_pid_fops); 3936 3937 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3938 } 3939 #endif 3940 3941 /* 3942 * Creates some virtual cpus. Good luck creating more than one. 3943 */ 3944 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3945 { 3946 int r; 3947 struct kvm_vcpu *vcpu; 3948 struct page *page; 3949 3950 if (id >= KVM_MAX_VCPU_IDS) 3951 return -EINVAL; 3952 3953 mutex_lock(&kvm->lock); 3954 if (kvm->created_vcpus >= kvm->max_vcpus) { 3955 mutex_unlock(&kvm->lock); 3956 return -EINVAL; 3957 } 3958 3959 r = kvm_arch_vcpu_precreate(kvm, id); 3960 if (r) { 3961 mutex_unlock(&kvm->lock); 3962 return r; 3963 } 3964 3965 kvm->created_vcpus++; 3966 mutex_unlock(&kvm->lock); 3967 3968 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3969 if (!vcpu) { 3970 r = -ENOMEM; 3971 goto vcpu_decrement; 3972 } 3973 3974 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3975 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3976 if (!page) { 3977 r = -ENOMEM; 3978 goto vcpu_free; 3979 } 3980 vcpu->run = page_address(page); 3981 3982 kvm_vcpu_init(vcpu, kvm, id); 3983 3984 r = kvm_arch_vcpu_create(vcpu); 3985 if (r) 3986 goto vcpu_free_run_page; 3987 3988 if (kvm->dirty_ring_size) { 3989 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3990 id, kvm->dirty_ring_size); 3991 if (r) 3992 goto arch_vcpu_destroy; 3993 } 3994 3995 mutex_lock(&kvm->lock); 3996 3997 #ifdef CONFIG_LOCKDEP 3998 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3999 mutex_lock(&vcpu->mutex); 4000 mutex_unlock(&vcpu->mutex); 4001 #endif 4002 4003 if (kvm_get_vcpu_by_id(kvm, id)) { 4004 r = -EEXIST; 4005 goto unlock_vcpu_destroy; 4006 } 4007 4008 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4009 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 4010 if (r) 4011 goto unlock_vcpu_destroy; 4012 4013 /* Now it's all set up, let userspace reach it */ 4014 kvm_get_kvm(kvm); 4015 r = create_vcpu_fd(vcpu); 4016 if (r < 0) 4017 goto kvm_put_xa_release; 4018 4019 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 4020 r = -EINVAL; 4021 goto kvm_put_xa_release; 4022 } 4023 4024 /* 4025 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4026 * pointer before kvm->online_vcpu's incremented value. 4027 */ 4028 smp_wmb(); 4029 atomic_inc(&kvm->online_vcpus); 4030 4031 mutex_unlock(&kvm->lock); 4032 kvm_arch_vcpu_postcreate(vcpu); 4033 kvm_create_vcpu_debugfs(vcpu); 4034 return r; 4035 4036 kvm_put_xa_release: 4037 kvm_put_kvm_no_destroy(kvm); 4038 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4039 unlock_vcpu_destroy: 4040 mutex_unlock(&kvm->lock); 4041 kvm_dirty_ring_free(&vcpu->dirty_ring); 4042 arch_vcpu_destroy: 4043 kvm_arch_vcpu_destroy(vcpu); 4044 vcpu_free_run_page: 4045 free_page((unsigned long)vcpu->run); 4046 vcpu_free: 4047 kmem_cache_free(kvm_vcpu_cache, vcpu); 4048 vcpu_decrement: 4049 mutex_lock(&kvm->lock); 4050 kvm->created_vcpus--; 4051 mutex_unlock(&kvm->lock); 4052 return r; 4053 } 4054 4055 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4056 { 4057 if (sigset) { 4058 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4059 vcpu->sigset_active = 1; 4060 vcpu->sigset = *sigset; 4061 } else 4062 vcpu->sigset_active = 0; 4063 return 0; 4064 } 4065 4066 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4067 size_t size, loff_t *offset) 4068 { 4069 struct kvm_vcpu *vcpu = file->private_data; 4070 4071 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4072 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4073 sizeof(vcpu->stat), user_buffer, size, offset); 4074 } 4075 4076 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4077 { 4078 struct kvm_vcpu *vcpu = file->private_data; 4079 4080 kvm_put_kvm(vcpu->kvm); 4081 return 0; 4082 } 4083 4084 static const struct file_operations kvm_vcpu_stats_fops = { 4085 .read = kvm_vcpu_stats_read, 4086 .release = kvm_vcpu_stats_release, 4087 .llseek = noop_llseek, 4088 }; 4089 4090 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4091 { 4092 int fd; 4093 struct file *file; 4094 char name[15 + ITOA_MAX_LEN + 1]; 4095 4096 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4097 4098 fd = get_unused_fd_flags(O_CLOEXEC); 4099 if (fd < 0) 4100 return fd; 4101 4102 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4103 if (IS_ERR(file)) { 4104 put_unused_fd(fd); 4105 return PTR_ERR(file); 4106 } 4107 4108 kvm_get_kvm(vcpu->kvm); 4109 4110 file->f_mode |= FMODE_PREAD; 4111 fd_install(fd, file); 4112 4113 return fd; 4114 } 4115 4116 static long kvm_vcpu_ioctl(struct file *filp, 4117 unsigned int ioctl, unsigned long arg) 4118 { 4119 struct kvm_vcpu *vcpu = filp->private_data; 4120 void __user *argp = (void __user *)arg; 4121 int r; 4122 struct kvm_fpu *fpu = NULL; 4123 struct kvm_sregs *kvm_sregs = NULL; 4124 4125 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4126 return -EIO; 4127 4128 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4129 return -EINVAL; 4130 4131 /* 4132 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4133 * execution; mutex_lock() would break them. 4134 */ 4135 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4136 if (r != -ENOIOCTLCMD) 4137 return r; 4138 4139 if (mutex_lock_killable(&vcpu->mutex)) 4140 return -EINTR; 4141 switch (ioctl) { 4142 case KVM_RUN: { 4143 struct pid *oldpid; 4144 r = -EINVAL; 4145 if (arg) 4146 goto out; 4147 oldpid = rcu_access_pointer(vcpu->pid); 4148 if (unlikely(oldpid != task_pid(current))) { 4149 /* The thread running this VCPU changed. */ 4150 struct pid *newpid; 4151 4152 r = kvm_arch_vcpu_run_pid_change(vcpu); 4153 if (r) 4154 break; 4155 4156 newpid = get_task_pid(current, PIDTYPE_PID); 4157 rcu_assign_pointer(vcpu->pid, newpid); 4158 if (oldpid) 4159 synchronize_rcu(); 4160 put_pid(oldpid); 4161 } 4162 r = kvm_arch_vcpu_ioctl_run(vcpu); 4163 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4164 break; 4165 } 4166 case KVM_GET_REGS: { 4167 struct kvm_regs *kvm_regs; 4168 4169 r = -ENOMEM; 4170 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4171 if (!kvm_regs) 4172 goto out; 4173 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4174 if (r) 4175 goto out_free1; 4176 r = -EFAULT; 4177 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4178 goto out_free1; 4179 r = 0; 4180 out_free1: 4181 kfree(kvm_regs); 4182 break; 4183 } 4184 case KVM_SET_REGS: { 4185 struct kvm_regs *kvm_regs; 4186 4187 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4188 if (IS_ERR(kvm_regs)) { 4189 r = PTR_ERR(kvm_regs); 4190 goto out; 4191 } 4192 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4193 kfree(kvm_regs); 4194 break; 4195 } 4196 case KVM_GET_SREGS: { 4197 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4198 GFP_KERNEL_ACCOUNT); 4199 r = -ENOMEM; 4200 if (!kvm_sregs) 4201 goto out; 4202 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4203 if (r) 4204 goto out; 4205 r = -EFAULT; 4206 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4207 goto out; 4208 r = 0; 4209 break; 4210 } 4211 case KVM_SET_SREGS: { 4212 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4213 if (IS_ERR(kvm_sregs)) { 4214 r = PTR_ERR(kvm_sregs); 4215 kvm_sregs = NULL; 4216 goto out; 4217 } 4218 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4219 break; 4220 } 4221 case KVM_GET_MP_STATE: { 4222 struct kvm_mp_state mp_state; 4223 4224 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4225 if (r) 4226 goto out; 4227 r = -EFAULT; 4228 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4229 goto out; 4230 r = 0; 4231 break; 4232 } 4233 case KVM_SET_MP_STATE: { 4234 struct kvm_mp_state mp_state; 4235 4236 r = -EFAULT; 4237 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4238 goto out; 4239 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4240 break; 4241 } 4242 case KVM_TRANSLATE: { 4243 struct kvm_translation tr; 4244 4245 r = -EFAULT; 4246 if (copy_from_user(&tr, argp, sizeof(tr))) 4247 goto out; 4248 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4249 if (r) 4250 goto out; 4251 r = -EFAULT; 4252 if (copy_to_user(argp, &tr, sizeof(tr))) 4253 goto out; 4254 r = 0; 4255 break; 4256 } 4257 case KVM_SET_GUEST_DEBUG: { 4258 struct kvm_guest_debug dbg; 4259 4260 r = -EFAULT; 4261 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4262 goto out; 4263 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4264 break; 4265 } 4266 case KVM_SET_SIGNAL_MASK: { 4267 struct kvm_signal_mask __user *sigmask_arg = argp; 4268 struct kvm_signal_mask kvm_sigmask; 4269 sigset_t sigset, *p; 4270 4271 p = NULL; 4272 if (argp) { 4273 r = -EFAULT; 4274 if (copy_from_user(&kvm_sigmask, argp, 4275 sizeof(kvm_sigmask))) 4276 goto out; 4277 r = -EINVAL; 4278 if (kvm_sigmask.len != sizeof(sigset)) 4279 goto out; 4280 r = -EFAULT; 4281 if (copy_from_user(&sigset, sigmask_arg->sigset, 4282 sizeof(sigset))) 4283 goto out; 4284 p = &sigset; 4285 } 4286 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4287 break; 4288 } 4289 case KVM_GET_FPU: { 4290 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4291 r = -ENOMEM; 4292 if (!fpu) 4293 goto out; 4294 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4295 if (r) 4296 goto out; 4297 r = -EFAULT; 4298 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4299 goto out; 4300 r = 0; 4301 break; 4302 } 4303 case KVM_SET_FPU: { 4304 fpu = memdup_user(argp, sizeof(*fpu)); 4305 if (IS_ERR(fpu)) { 4306 r = PTR_ERR(fpu); 4307 fpu = NULL; 4308 goto out; 4309 } 4310 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4311 break; 4312 } 4313 case KVM_GET_STATS_FD: { 4314 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4315 break; 4316 } 4317 default: 4318 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4319 } 4320 out: 4321 mutex_unlock(&vcpu->mutex); 4322 kfree(fpu); 4323 kfree(kvm_sregs); 4324 return r; 4325 } 4326 4327 #ifdef CONFIG_KVM_COMPAT 4328 static long kvm_vcpu_compat_ioctl(struct file *filp, 4329 unsigned int ioctl, unsigned long arg) 4330 { 4331 struct kvm_vcpu *vcpu = filp->private_data; 4332 void __user *argp = compat_ptr(arg); 4333 int r; 4334 4335 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4336 return -EIO; 4337 4338 switch (ioctl) { 4339 case KVM_SET_SIGNAL_MASK: { 4340 struct kvm_signal_mask __user *sigmask_arg = argp; 4341 struct kvm_signal_mask kvm_sigmask; 4342 sigset_t sigset; 4343 4344 if (argp) { 4345 r = -EFAULT; 4346 if (copy_from_user(&kvm_sigmask, argp, 4347 sizeof(kvm_sigmask))) 4348 goto out; 4349 r = -EINVAL; 4350 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4351 goto out; 4352 r = -EFAULT; 4353 if (get_compat_sigset(&sigset, 4354 (compat_sigset_t __user *)sigmask_arg->sigset)) 4355 goto out; 4356 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4357 } else 4358 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4359 break; 4360 } 4361 default: 4362 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4363 } 4364 4365 out: 4366 return r; 4367 } 4368 #endif 4369 4370 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4371 { 4372 struct kvm_device *dev = filp->private_data; 4373 4374 if (dev->ops->mmap) 4375 return dev->ops->mmap(dev, vma); 4376 4377 return -ENODEV; 4378 } 4379 4380 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4381 int (*accessor)(struct kvm_device *dev, 4382 struct kvm_device_attr *attr), 4383 unsigned long arg) 4384 { 4385 struct kvm_device_attr attr; 4386 4387 if (!accessor) 4388 return -EPERM; 4389 4390 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4391 return -EFAULT; 4392 4393 return accessor(dev, &attr); 4394 } 4395 4396 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4397 unsigned long arg) 4398 { 4399 struct kvm_device *dev = filp->private_data; 4400 4401 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4402 return -EIO; 4403 4404 switch (ioctl) { 4405 case KVM_SET_DEVICE_ATTR: 4406 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4407 case KVM_GET_DEVICE_ATTR: 4408 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4409 case KVM_HAS_DEVICE_ATTR: 4410 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4411 default: 4412 if (dev->ops->ioctl) 4413 return dev->ops->ioctl(dev, ioctl, arg); 4414 4415 return -ENOTTY; 4416 } 4417 } 4418 4419 static int kvm_device_release(struct inode *inode, struct file *filp) 4420 { 4421 struct kvm_device *dev = filp->private_data; 4422 struct kvm *kvm = dev->kvm; 4423 4424 if (dev->ops->release) { 4425 mutex_lock(&kvm->lock); 4426 list_del(&dev->vm_node); 4427 dev->ops->release(dev); 4428 mutex_unlock(&kvm->lock); 4429 } 4430 4431 kvm_put_kvm(kvm); 4432 return 0; 4433 } 4434 4435 static const struct file_operations kvm_device_fops = { 4436 .unlocked_ioctl = kvm_device_ioctl, 4437 .release = kvm_device_release, 4438 KVM_COMPAT(kvm_device_ioctl), 4439 .mmap = kvm_device_mmap, 4440 }; 4441 4442 struct kvm_device *kvm_device_from_filp(struct file *filp) 4443 { 4444 if (filp->f_op != &kvm_device_fops) 4445 return NULL; 4446 4447 return filp->private_data; 4448 } 4449 4450 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4451 #ifdef CONFIG_KVM_MPIC 4452 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4453 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4454 #endif 4455 }; 4456 4457 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4458 { 4459 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4460 return -ENOSPC; 4461 4462 if (kvm_device_ops_table[type] != NULL) 4463 return -EEXIST; 4464 4465 kvm_device_ops_table[type] = ops; 4466 return 0; 4467 } 4468 4469 void kvm_unregister_device_ops(u32 type) 4470 { 4471 if (kvm_device_ops_table[type] != NULL) 4472 kvm_device_ops_table[type] = NULL; 4473 } 4474 4475 static int kvm_ioctl_create_device(struct kvm *kvm, 4476 struct kvm_create_device *cd) 4477 { 4478 const struct kvm_device_ops *ops; 4479 struct kvm_device *dev; 4480 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4481 int type; 4482 int ret; 4483 4484 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4485 return -ENODEV; 4486 4487 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4488 ops = kvm_device_ops_table[type]; 4489 if (ops == NULL) 4490 return -ENODEV; 4491 4492 if (test) 4493 return 0; 4494 4495 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4496 if (!dev) 4497 return -ENOMEM; 4498 4499 dev->ops = ops; 4500 dev->kvm = kvm; 4501 4502 mutex_lock(&kvm->lock); 4503 ret = ops->create(dev, type); 4504 if (ret < 0) { 4505 mutex_unlock(&kvm->lock); 4506 kfree(dev); 4507 return ret; 4508 } 4509 list_add(&dev->vm_node, &kvm->devices); 4510 mutex_unlock(&kvm->lock); 4511 4512 if (ops->init) 4513 ops->init(dev); 4514 4515 kvm_get_kvm(kvm); 4516 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4517 if (ret < 0) { 4518 kvm_put_kvm_no_destroy(kvm); 4519 mutex_lock(&kvm->lock); 4520 list_del(&dev->vm_node); 4521 if (ops->release) 4522 ops->release(dev); 4523 mutex_unlock(&kvm->lock); 4524 if (ops->destroy) 4525 ops->destroy(dev); 4526 return ret; 4527 } 4528 4529 cd->fd = ret; 4530 return 0; 4531 } 4532 4533 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4534 { 4535 switch (arg) { 4536 case KVM_CAP_USER_MEMORY: 4537 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4538 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4539 case KVM_CAP_INTERNAL_ERROR_DATA: 4540 #ifdef CONFIG_HAVE_KVM_MSI 4541 case KVM_CAP_SIGNAL_MSI: 4542 #endif 4543 #ifdef CONFIG_HAVE_KVM_IRQFD 4544 case KVM_CAP_IRQFD: 4545 #endif 4546 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4547 case KVM_CAP_CHECK_EXTENSION_VM: 4548 case KVM_CAP_ENABLE_CAP_VM: 4549 case KVM_CAP_HALT_POLL: 4550 return 1; 4551 #ifdef CONFIG_KVM_MMIO 4552 case KVM_CAP_COALESCED_MMIO: 4553 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4554 case KVM_CAP_COALESCED_PIO: 4555 return 1; 4556 #endif 4557 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4558 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4559 return KVM_DIRTY_LOG_MANUAL_CAPS; 4560 #endif 4561 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4562 case KVM_CAP_IRQ_ROUTING: 4563 return KVM_MAX_IRQ_ROUTES; 4564 #endif 4565 #if KVM_ADDRESS_SPACE_NUM > 1 4566 case KVM_CAP_MULTI_ADDRESS_SPACE: 4567 return KVM_ADDRESS_SPACE_NUM; 4568 #endif 4569 case KVM_CAP_NR_MEMSLOTS: 4570 return KVM_USER_MEM_SLOTS; 4571 case KVM_CAP_DIRTY_LOG_RING: 4572 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4573 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4574 #else 4575 return 0; 4576 #endif 4577 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4578 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4579 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4580 #else 4581 return 0; 4582 #endif 4583 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4584 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4585 #endif 4586 case KVM_CAP_BINARY_STATS_FD: 4587 case KVM_CAP_SYSTEM_EVENT_DATA: 4588 return 1; 4589 default: 4590 break; 4591 } 4592 return kvm_vm_ioctl_check_extension(kvm, arg); 4593 } 4594 4595 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4596 { 4597 int r; 4598 4599 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4600 return -EINVAL; 4601 4602 /* the size should be power of 2 */ 4603 if (!size || (size & (size - 1))) 4604 return -EINVAL; 4605 4606 /* Should be bigger to keep the reserved entries, or a page */ 4607 if (size < kvm_dirty_ring_get_rsvd_entries() * 4608 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4609 return -EINVAL; 4610 4611 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4612 sizeof(struct kvm_dirty_gfn)) 4613 return -E2BIG; 4614 4615 /* We only allow it to set once */ 4616 if (kvm->dirty_ring_size) 4617 return -EINVAL; 4618 4619 mutex_lock(&kvm->lock); 4620 4621 if (kvm->created_vcpus) { 4622 /* We don't allow to change this value after vcpu created */ 4623 r = -EINVAL; 4624 } else { 4625 kvm->dirty_ring_size = size; 4626 r = 0; 4627 } 4628 4629 mutex_unlock(&kvm->lock); 4630 return r; 4631 } 4632 4633 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4634 { 4635 unsigned long i; 4636 struct kvm_vcpu *vcpu; 4637 int cleared = 0; 4638 4639 if (!kvm->dirty_ring_size) 4640 return -EINVAL; 4641 4642 mutex_lock(&kvm->slots_lock); 4643 4644 kvm_for_each_vcpu(i, vcpu, kvm) 4645 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4646 4647 mutex_unlock(&kvm->slots_lock); 4648 4649 if (cleared) 4650 kvm_flush_remote_tlbs(kvm); 4651 4652 return cleared; 4653 } 4654 4655 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4656 struct kvm_enable_cap *cap) 4657 { 4658 return -EINVAL; 4659 } 4660 4661 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4662 { 4663 int i; 4664 4665 lockdep_assert_held(&kvm->slots_lock); 4666 4667 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4668 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4669 return false; 4670 } 4671 4672 return true; 4673 } 4674 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4675 4676 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4677 struct kvm_enable_cap *cap) 4678 { 4679 switch (cap->cap) { 4680 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4681 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4682 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4683 4684 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4685 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4686 4687 if (cap->flags || (cap->args[0] & ~allowed_options)) 4688 return -EINVAL; 4689 kvm->manual_dirty_log_protect = cap->args[0]; 4690 return 0; 4691 } 4692 #endif 4693 case KVM_CAP_HALT_POLL: { 4694 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4695 return -EINVAL; 4696 4697 kvm->max_halt_poll_ns = cap->args[0]; 4698 4699 /* 4700 * Ensure kvm->override_halt_poll_ns does not become visible 4701 * before kvm->max_halt_poll_ns. 4702 * 4703 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4704 */ 4705 smp_wmb(); 4706 kvm->override_halt_poll_ns = true; 4707 4708 return 0; 4709 } 4710 case KVM_CAP_DIRTY_LOG_RING: 4711 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4712 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4713 return -EINVAL; 4714 4715 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4716 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4717 int r = -EINVAL; 4718 4719 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4720 !kvm->dirty_ring_size || cap->flags) 4721 return r; 4722 4723 mutex_lock(&kvm->slots_lock); 4724 4725 /* 4726 * For simplicity, allow enabling ring+bitmap if and only if 4727 * there are no memslots, e.g. to ensure all memslots allocate 4728 * a bitmap after the capability is enabled. 4729 */ 4730 if (kvm_are_all_memslots_empty(kvm)) { 4731 kvm->dirty_ring_with_bitmap = true; 4732 r = 0; 4733 } 4734 4735 mutex_unlock(&kvm->slots_lock); 4736 4737 return r; 4738 } 4739 default: 4740 return kvm_vm_ioctl_enable_cap(kvm, cap); 4741 } 4742 } 4743 4744 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4745 size_t size, loff_t *offset) 4746 { 4747 struct kvm *kvm = file->private_data; 4748 4749 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4750 &kvm_vm_stats_desc[0], &kvm->stat, 4751 sizeof(kvm->stat), user_buffer, size, offset); 4752 } 4753 4754 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 4755 { 4756 struct kvm *kvm = file->private_data; 4757 4758 kvm_put_kvm(kvm); 4759 return 0; 4760 } 4761 4762 static const struct file_operations kvm_vm_stats_fops = { 4763 .read = kvm_vm_stats_read, 4764 .release = kvm_vm_stats_release, 4765 .llseek = noop_llseek, 4766 }; 4767 4768 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4769 { 4770 int fd; 4771 struct file *file; 4772 4773 fd = get_unused_fd_flags(O_CLOEXEC); 4774 if (fd < 0) 4775 return fd; 4776 4777 file = anon_inode_getfile("kvm-vm-stats", 4778 &kvm_vm_stats_fops, kvm, O_RDONLY); 4779 if (IS_ERR(file)) { 4780 put_unused_fd(fd); 4781 return PTR_ERR(file); 4782 } 4783 4784 kvm_get_kvm(kvm); 4785 4786 file->f_mode |= FMODE_PREAD; 4787 fd_install(fd, file); 4788 4789 return fd; 4790 } 4791 4792 static long kvm_vm_ioctl(struct file *filp, 4793 unsigned int ioctl, unsigned long arg) 4794 { 4795 struct kvm *kvm = filp->private_data; 4796 void __user *argp = (void __user *)arg; 4797 int r; 4798 4799 if (kvm->mm != current->mm || kvm->vm_dead) 4800 return -EIO; 4801 switch (ioctl) { 4802 case KVM_CREATE_VCPU: 4803 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4804 break; 4805 case KVM_ENABLE_CAP: { 4806 struct kvm_enable_cap cap; 4807 4808 r = -EFAULT; 4809 if (copy_from_user(&cap, argp, sizeof(cap))) 4810 goto out; 4811 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4812 break; 4813 } 4814 case KVM_SET_USER_MEMORY_REGION: { 4815 struct kvm_userspace_memory_region kvm_userspace_mem; 4816 4817 r = -EFAULT; 4818 if (copy_from_user(&kvm_userspace_mem, argp, 4819 sizeof(kvm_userspace_mem))) 4820 goto out; 4821 4822 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4823 break; 4824 } 4825 case KVM_GET_DIRTY_LOG: { 4826 struct kvm_dirty_log log; 4827 4828 r = -EFAULT; 4829 if (copy_from_user(&log, argp, sizeof(log))) 4830 goto out; 4831 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4832 break; 4833 } 4834 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4835 case KVM_CLEAR_DIRTY_LOG: { 4836 struct kvm_clear_dirty_log log; 4837 4838 r = -EFAULT; 4839 if (copy_from_user(&log, argp, sizeof(log))) 4840 goto out; 4841 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4842 break; 4843 } 4844 #endif 4845 #ifdef CONFIG_KVM_MMIO 4846 case KVM_REGISTER_COALESCED_MMIO: { 4847 struct kvm_coalesced_mmio_zone zone; 4848 4849 r = -EFAULT; 4850 if (copy_from_user(&zone, argp, sizeof(zone))) 4851 goto out; 4852 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4853 break; 4854 } 4855 case KVM_UNREGISTER_COALESCED_MMIO: { 4856 struct kvm_coalesced_mmio_zone zone; 4857 4858 r = -EFAULT; 4859 if (copy_from_user(&zone, argp, sizeof(zone))) 4860 goto out; 4861 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4862 break; 4863 } 4864 #endif 4865 case KVM_IRQFD: { 4866 struct kvm_irqfd data; 4867 4868 r = -EFAULT; 4869 if (copy_from_user(&data, argp, sizeof(data))) 4870 goto out; 4871 r = kvm_irqfd(kvm, &data); 4872 break; 4873 } 4874 case KVM_IOEVENTFD: { 4875 struct kvm_ioeventfd data; 4876 4877 r = -EFAULT; 4878 if (copy_from_user(&data, argp, sizeof(data))) 4879 goto out; 4880 r = kvm_ioeventfd(kvm, &data); 4881 break; 4882 } 4883 #ifdef CONFIG_HAVE_KVM_MSI 4884 case KVM_SIGNAL_MSI: { 4885 struct kvm_msi msi; 4886 4887 r = -EFAULT; 4888 if (copy_from_user(&msi, argp, sizeof(msi))) 4889 goto out; 4890 r = kvm_send_userspace_msi(kvm, &msi); 4891 break; 4892 } 4893 #endif 4894 #ifdef __KVM_HAVE_IRQ_LINE 4895 case KVM_IRQ_LINE_STATUS: 4896 case KVM_IRQ_LINE: { 4897 struct kvm_irq_level irq_event; 4898 4899 r = -EFAULT; 4900 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4901 goto out; 4902 4903 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4904 ioctl == KVM_IRQ_LINE_STATUS); 4905 if (r) 4906 goto out; 4907 4908 r = -EFAULT; 4909 if (ioctl == KVM_IRQ_LINE_STATUS) { 4910 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4911 goto out; 4912 } 4913 4914 r = 0; 4915 break; 4916 } 4917 #endif 4918 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4919 case KVM_SET_GSI_ROUTING: { 4920 struct kvm_irq_routing routing; 4921 struct kvm_irq_routing __user *urouting; 4922 struct kvm_irq_routing_entry *entries = NULL; 4923 4924 r = -EFAULT; 4925 if (copy_from_user(&routing, argp, sizeof(routing))) 4926 goto out; 4927 r = -EINVAL; 4928 if (!kvm_arch_can_set_irq_routing(kvm)) 4929 goto out; 4930 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4931 goto out; 4932 if (routing.flags) 4933 goto out; 4934 if (routing.nr) { 4935 urouting = argp; 4936 entries = vmemdup_user(urouting->entries, 4937 array_size(sizeof(*entries), 4938 routing.nr)); 4939 if (IS_ERR(entries)) { 4940 r = PTR_ERR(entries); 4941 goto out; 4942 } 4943 } 4944 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4945 routing.flags); 4946 kvfree(entries); 4947 break; 4948 } 4949 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4950 case KVM_CREATE_DEVICE: { 4951 struct kvm_create_device cd; 4952 4953 r = -EFAULT; 4954 if (copy_from_user(&cd, argp, sizeof(cd))) 4955 goto out; 4956 4957 r = kvm_ioctl_create_device(kvm, &cd); 4958 if (r) 4959 goto out; 4960 4961 r = -EFAULT; 4962 if (copy_to_user(argp, &cd, sizeof(cd))) 4963 goto out; 4964 4965 r = 0; 4966 break; 4967 } 4968 case KVM_CHECK_EXTENSION: 4969 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4970 break; 4971 case KVM_RESET_DIRTY_RINGS: 4972 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4973 break; 4974 case KVM_GET_STATS_FD: 4975 r = kvm_vm_ioctl_get_stats_fd(kvm); 4976 break; 4977 default: 4978 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4979 } 4980 out: 4981 return r; 4982 } 4983 4984 #ifdef CONFIG_KVM_COMPAT 4985 struct compat_kvm_dirty_log { 4986 __u32 slot; 4987 __u32 padding1; 4988 union { 4989 compat_uptr_t dirty_bitmap; /* one bit per page */ 4990 __u64 padding2; 4991 }; 4992 }; 4993 4994 struct compat_kvm_clear_dirty_log { 4995 __u32 slot; 4996 __u32 num_pages; 4997 __u64 first_page; 4998 union { 4999 compat_uptr_t dirty_bitmap; /* one bit per page */ 5000 __u64 padding2; 5001 }; 5002 }; 5003 5004 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5005 unsigned long arg) 5006 { 5007 return -ENOTTY; 5008 } 5009 5010 static long kvm_vm_compat_ioctl(struct file *filp, 5011 unsigned int ioctl, unsigned long arg) 5012 { 5013 struct kvm *kvm = filp->private_data; 5014 int r; 5015 5016 if (kvm->mm != current->mm || kvm->vm_dead) 5017 return -EIO; 5018 5019 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5020 if (r != -ENOTTY) 5021 return r; 5022 5023 switch (ioctl) { 5024 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5025 case KVM_CLEAR_DIRTY_LOG: { 5026 struct compat_kvm_clear_dirty_log compat_log; 5027 struct kvm_clear_dirty_log log; 5028 5029 if (copy_from_user(&compat_log, (void __user *)arg, 5030 sizeof(compat_log))) 5031 return -EFAULT; 5032 log.slot = compat_log.slot; 5033 log.num_pages = compat_log.num_pages; 5034 log.first_page = compat_log.first_page; 5035 log.padding2 = compat_log.padding2; 5036 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5037 5038 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5039 break; 5040 } 5041 #endif 5042 case KVM_GET_DIRTY_LOG: { 5043 struct compat_kvm_dirty_log compat_log; 5044 struct kvm_dirty_log log; 5045 5046 if (copy_from_user(&compat_log, (void __user *)arg, 5047 sizeof(compat_log))) 5048 return -EFAULT; 5049 log.slot = compat_log.slot; 5050 log.padding1 = compat_log.padding1; 5051 log.padding2 = compat_log.padding2; 5052 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5053 5054 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5055 break; 5056 } 5057 default: 5058 r = kvm_vm_ioctl(filp, ioctl, arg); 5059 } 5060 return r; 5061 } 5062 #endif 5063 5064 static const struct file_operations kvm_vm_fops = { 5065 .release = kvm_vm_release, 5066 .unlocked_ioctl = kvm_vm_ioctl, 5067 .llseek = noop_llseek, 5068 KVM_COMPAT(kvm_vm_compat_ioctl), 5069 }; 5070 5071 bool file_is_kvm(struct file *file) 5072 { 5073 return file && file->f_op == &kvm_vm_fops; 5074 } 5075 EXPORT_SYMBOL_GPL(file_is_kvm); 5076 5077 static int kvm_dev_ioctl_create_vm(unsigned long type) 5078 { 5079 char fdname[ITOA_MAX_LEN + 1]; 5080 int r, fd; 5081 struct kvm *kvm; 5082 struct file *file; 5083 5084 fd = get_unused_fd_flags(O_CLOEXEC); 5085 if (fd < 0) 5086 return fd; 5087 5088 snprintf(fdname, sizeof(fdname), "%d", fd); 5089 5090 kvm = kvm_create_vm(type, fdname); 5091 if (IS_ERR(kvm)) { 5092 r = PTR_ERR(kvm); 5093 goto put_fd; 5094 } 5095 5096 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5097 if (IS_ERR(file)) { 5098 r = PTR_ERR(file); 5099 goto put_kvm; 5100 } 5101 5102 /* 5103 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5104 * already set, with ->release() being kvm_vm_release(). In error 5105 * cases it will be called by the final fput(file) and will take 5106 * care of doing kvm_put_kvm(kvm). 5107 */ 5108 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5109 5110 fd_install(fd, file); 5111 return fd; 5112 5113 put_kvm: 5114 kvm_put_kvm(kvm); 5115 put_fd: 5116 put_unused_fd(fd); 5117 return r; 5118 } 5119 5120 static long kvm_dev_ioctl(struct file *filp, 5121 unsigned int ioctl, unsigned long arg) 5122 { 5123 int r = -EINVAL; 5124 5125 switch (ioctl) { 5126 case KVM_GET_API_VERSION: 5127 if (arg) 5128 goto out; 5129 r = KVM_API_VERSION; 5130 break; 5131 case KVM_CREATE_VM: 5132 r = kvm_dev_ioctl_create_vm(arg); 5133 break; 5134 case KVM_CHECK_EXTENSION: 5135 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5136 break; 5137 case KVM_GET_VCPU_MMAP_SIZE: 5138 if (arg) 5139 goto out; 5140 r = PAGE_SIZE; /* struct kvm_run */ 5141 #ifdef CONFIG_X86 5142 r += PAGE_SIZE; /* pio data page */ 5143 #endif 5144 #ifdef CONFIG_KVM_MMIO 5145 r += PAGE_SIZE; /* coalesced mmio ring page */ 5146 #endif 5147 break; 5148 case KVM_TRACE_ENABLE: 5149 case KVM_TRACE_PAUSE: 5150 case KVM_TRACE_DISABLE: 5151 r = -EOPNOTSUPP; 5152 break; 5153 default: 5154 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5155 } 5156 out: 5157 return r; 5158 } 5159 5160 static struct file_operations kvm_chardev_ops = { 5161 .unlocked_ioctl = kvm_dev_ioctl, 5162 .llseek = noop_llseek, 5163 KVM_COMPAT(kvm_dev_ioctl), 5164 }; 5165 5166 static struct miscdevice kvm_dev = { 5167 KVM_MINOR, 5168 "kvm", 5169 &kvm_chardev_ops, 5170 }; 5171 5172 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5173 __visible bool kvm_rebooting; 5174 EXPORT_SYMBOL_GPL(kvm_rebooting); 5175 5176 static DEFINE_PER_CPU(bool, hardware_enabled); 5177 static DEFINE_MUTEX(kvm_usage_lock); 5178 static int kvm_usage_count; 5179 5180 static int __hardware_enable_nolock(void) 5181 { 5182 if (__this_cpu_read(hardware_enabled)) 5183 return 0; 5184 5185 if (kvm_arch_hardware_enable()) { 5186 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5187 raw_smp_processor_id()); 5188 return -EIO; 5189 } 5190 5191 __this_cpu_write(hardware_enabled, true); 5192 return 0; 5193 } 5194 5195 static void hardware_enable_nolock(void *failed) 5196 { 5197 if (__hardware_enable_nolock()) 5198 atomic_inc(failed); 5199 } 5200 5201 static int kvm_online_cpu(unsigned int cpu) 5202 { 5203 int ret = 0; 5204 5205 /* 5206 * Abort the CPU online process if hardware virtualization cannot 5207 * be enabled. Otherwise running VMs would encounter unrecoverable 5208 * errors when scheduled to this CPU. 5209 */ 5210 mutex_lock(&kvm_usage_lock); 5211 if (kvm_usage_count) 5212 ret = __hardware_enable_nolock(); 5213 mutex_unlock(&kvm_usage_lock); 5214 return ret; 5215 } 5216 5217 static void hardware_disable_nolock(void *junk) 5218 { 5219 /* 5220 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5221 * hardware, not just CPUs that successfully enabled hardware! 5222 */ 5223 if (!__this_cpu_read(hardware_enabled)) 5224 return; 5225 5226 kvm_arch_hardware_disable(); 5227 5228 __this_cpu_write(hardware_enabled, false); 5229 } 5230 5231 static int kvm_offline_cpu(unsigned int cpu) 5232 { 5233 mutex_lock(&kvm_usage_lock); 5234 if (kvm_usage_count) 5235 hardware_disable_nolock(NULL); 5236 mutex_unlock(&kvm_usage_lock); 5237 return 0; 5238 } 5239 5240 static void hardware_disable_all_nolock(void) 5241 { 5242 BUG_ON(!kvm_usage_count); 5243 5244 kvm_usage_count--; 5245 if (!kvm_usage_count) 5246 on_each_cpu(hardware_disable_nolock, NULL, 1); 5247 } 5248 5249 static void hardware_disable_all(void) 5250 { 5251 cpus_read_lock(); 5252 mutex_lock(&kvm_usage_lock); 5253 hardware_disable_all_nolock(); 5254 mutex_unlock(&kvm_usage_lock); 5255 cpus_read_unlock(); 5256 } 5257 5258 static int hardware_enable_all(void) 5259 { 5260 atomic_t failed = ATOMIC_INIT(0); 5261 int r; 5262 5263 /* 5264 * Do not enable hardware virtualization if the system is going down. 5265 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5266 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5267 * after kvm_reboot() is called. Note, this relies on system_state 5268 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5269 * hook instead of registering a dedicated reboot notifier (the latter 5270 * runs before system_state is updated). 5271 */ 5272 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5273 system_state == SYSTEM_RESTART) 5274 return -EBUSY; 5275 5276 /* 5277 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5278 * is called, and so on_each_cpu() between them includes the CPU that 5279 * is being onlined. As a result, hardware_enable_nolock() may get 5280 * invoked before kvm_online_cpu(), which also enables hardware if the 5281 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5282 * enable hardware multiple times. 5283 */ 5284 cpus_read_lock(); 5285 mutex_lock(&kvm_usage_lock); 5286 5287 r = 0; 5288 5289 kvm_usage_count++; 5290 if (kvm_usage_count == 1) { 5291 on_each_cpu(hardware_enable_nolock, &failed, 1); 5292 5293 if (atomic_read(&failed)) { 5294 hardware_disable_all_nolock(); 5295 r = -EBUSY; 5296 } 5297 } 5298 5299 mutex_unlock(&kvm_usage_lock); 5300 cpus_read_unlock(); 5301 5302 return r; 5303 } 5304 5305 static void kvm_shutdown(void) 5306 { 5307 /* 5308 * Disable hardware virtualization and set kvm_rebooting to indicate 5309 * that KVM has asynchronously disabled hardware virtualization, i.e. 5310 * that relevant errors and exceptions aren't entirely unexpected. 5311 * Some flavors of hardware virtualization need to be disabled before 5312 * transferring control to firmware (to perform shutdown/reboot), e.g. 5313 * on x86, virtualization can block INIT interrupts, which are used by 5314 * firmware to pull APs back under firmware control. Note, this path 5315 * is used for both shutdown and reboot scenarios, i.e. neither name is 5316 * 100% comprehensive. 5317 */ 5318 pr_info("kvm: exiting hardware virtualization\n"); 5319 kvm_rebooting = true; 5320 on_each_cpu(hardware_disable_nolock, NULL, 1); 5321 } 5322 5323 static int kvm_suspend(void) 5324 { 5325 /* 5326 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5327 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5328 * count is stable. Assert that kvm_usage_lock is not held to ensure 5329 * the system isn't suspended while KVM is enabling hardware. Hardware 5330 * enabling can be preempted, but the task cannot be frozen until it has 5331 * dropped all locks (userspace tasks are frozen via a fake signal). 5332 */ 5333 lockdep_assert_not_held(&kvm_usage_lock); 5334 lockdep_assert_irqs_disabled(); 5335 5336 if (kvm_usage_count) 5337 hardware_disable_nolock(NULL); 5338 return 0; 5339 } 5340 5341 static void kvm_resume(void) 5342 { 5343 lockdep_assert_not_held(&kvm_usage_lock); 5344 lockdep_assert_irqs_disabled(); 5345 5346 if (kvm_usage_count) 5347 WARN_ON_ONCE(__hardware_enable_nolock()); 5348 } 5349 5350 static struct syscore_ops kvm_syscore_ops = { 5351 .suspend = kvm_suspend, 5352 .resume = kvm_resume, 5353 .shutdown = kvm_shutdown, 5354 }; 5355 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5356 static int hardware_enable_all(void) 5357 { 5358 return 0; 5359 } 5360 5361 static void hardware_disable_all(void) 5362 { 5363 5364 } 5365 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5366 5367 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5368 { 5369 if (dev->ops->destructor) 5370 dev->ops->destructor(dev); 5371 } 5372 5373 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5374 { 5375 int i; 5376 5377 for (i = 0; i < bus->dev_count; i++) { 5378 struct kvm_io_device *pos = bus->range[i].dev; 5379 5380 kvm_iodevice_destructor(pos); 5381 } 5382 kfree(bus); 5383 } 5384 5385 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5386 const struct kvm_io_range *r2) 5387 { 5388 gpa_t addr1 = r1->addr; 5389 gpa_t addr2 = r2->addr; 5390 5391 if (addr1 < addr2) 5392 return -1; 5393 5394 /* If r2->len == 0, match the exact address. If r2->len != 0, 5395 * accept any overlapping write. Any order is acceptable for 5396 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5397 * we process all of them. 5398 */ 5399 if (r2->len) { 5400 addr1 += r1->len; 5401 addr2 += r2->len; 5402 } 5403 5404 if (addr1 > addr2) 5405 return 1; 5406 5407 return 0; 5408 } 5409 5410 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5411 { 5412 return kvm_io_bus_cmp(p1, p2); 5413 } 5414 5415 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5416 gpa_t addr, int len) 5417 { 5418 struct kvm_io_range *range, key; 5419 int off; 5420 5421 key = (struct kvm_io_range) { 5422 .addr = addr, 5423 .len = len, 5424 }; 5425 5426 range = bsearch(&key, bus->range, bus->dev_count, 5427 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5428 if (range == NULL) 5429 return -ENOENT; 5430 5431 off = range - bus->range; 5432 5433 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5434 off--; 5435 5436 return off; 5437 } 5438 5439 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5440 struct kvm_io_range *range, const void *val) 5441 { 5442 int idx; 5443 5444 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5445 if (idx < 0) 5446 return -EOPNOTSUPP; 5447 5448 while (idx < bus->dev_count && 5449 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5450 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5451 range->len, val)) 5452 return idx; 5453 idx++; 5454 } 5455 5456 return -EOPNOTSUPP; 5457 } 5458 5459 /* kvm_io_bus_write - called under kvm->slots_lock */ 5460 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5461 int len, const void *val) 5462 { 5463 struct kvm_io_bus *bus; 5464 struct kvm_io_range range; 5465 int r; 5466 5467 range = (struct kvm_io_range) { 5468 .addr = addr, 5469 .len = len, 5470 }; 5471 5472 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5473 if (!bus) 5474 return -ENOMEM; 5475 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5476 return r < 0 ? r : 0; 5477 } 5478 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5479 5480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5482 gpa_t addr, int len, const void *val, long cookie) 5483 { 5484 struct kvm_io_bus *bus; 5485 struct kvm_io_range range; 5486 5487 range = (struct kvm_io_range) { 5488 .addr = addr, 5489 .len = len, 5490 }; 5491 5492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5493 if (!bus) 5494 return -ENOMEM; 5495 5496 /* First try the device referenced by cookie. */ 5497 if ((cookie >= 0) && (cookie < bus->dev_count) && 5498 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5499 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5500 val)) 5501 return cookie; 5502 5503 /* 5504 * cookie contained garbage; fall back to search and return the 5505 * correct cookie value. 5506 */ 5507 return __kvm_io_bus_write(vcpu, bus, &range, val); 5508 } 5509 5510 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5511 struct kvm_io_range *range, void *val) 5512 { 5513 int idx; 5514 5515 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5516 if (idx < 0) 5517 return -EOPNOTSUPP; 5518 5519 while (idx < bus->dev_count && 5520 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5521 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5522 range->len, val)) 5523 return idx; 5524 idx++; 5525 } 5526 5527 return -EOPNOTSUPP; 5528 } 5529 5530 /* kvm_io_bus_read - called under kvm->slots_lock */ 5531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5532 int len, void *val) 5533 { 5534 struct kvm_io_bus *bus; 5535 struct kvm_io_range range; 5536 int r; 5537 5538 range = (struct kvm_io_range) { 5539 .addr = addr, 5540 .len = len, 5541 }; 5542 5543 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5544 if (!bus) 5545 return -ENOMEM; 5546 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5547 return r < 0 ? r : 0; 5548 } 5549 5550 /* Caller must hold slots_lock. */ 5551 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5552 int len, struct kvm_io_device *dev) 5553 { 5554 int i; 5555 struct kvm_io_bus *new_bus, *bus; 5556 struct kvm_io_range range; 5557 5558 bus = kvm_get_bus(kvm, bus_idx); 5559 if (!bus) 5560 return -ENOMEM; 5561 5562 /* exclude ioeventfd which is limited by maximum fd */ 5563 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5564 return -ENOSPC; 5565 5566 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5567 GFP_KERNEL_ACCOUNT); 5568 if (!new_bus) 5569 return -ENOMEM; 5570 5571 range = (struct kvm_io_range) { 5572 .addr = addr, 5573 .len = len, 5574 .dev = dev, 5575 }; 5576 5577 for (i = 0; i < bus->dev_count; i++) 5578 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5579 break; 5580 5581 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5582 new_bus->dev_count++; 5583 new_bus->range[i] = range; 5584 memcpy(new_bus->range + i + 1, bus->range + i, 5585 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5586 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5587 synchronize_srcu_expedited(&kvm->srcu); 5588 kfree(bus); 5589 5590 return 0; 5591 } 5592 5593 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5594 struct kvm_io_device *dev) 5595 { 5596 int i; 5597 struct kvm_io_bus *new_bus, *bus; 5598 5599 lockdep_assert_held(&kvm->slots_lock); 5600 5601 bus = kvm_get_bus(kvm, bus_idx); 5602 if (!bus) 5603 return 0; 5604 5605 for (i = 0; i < bus->dev_count; i++) { 5606 if (bus->range[i].dev == dev) { 5607 break; 5608 } 5609 } 5610 5611 if (i == bus->dev_count) 5612 return 0; 5613 5614 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5615 GFP_KERNEL_ACCOUNT); 5616 if (new_bus) { 5617 memcpy(new_bus, bus, struct_size(bus, range, i)); 5618 new_bus->dev_count--; 5619 memcpy(new_bus->range + i, bus->range + i + 1, 5620 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5621 } 5622 5623 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5624 synchronize_srcu_expedited(&kvm->srcu); 5625 5626 /* 5627 * If NULL bus is installed, destroy the old bus, including all the 5628 * attached devices. Otherwise, destroy the caller's device only. 5629 */ 5630 if (!new_bus) { 5631 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5632 kvm_io_bus_destroy(bus); 5633 return -ENOMEM; 5634 } 5635 5636 kvm_iodevice_destructor(dev); 5637 kfree(bus); 5638 return 0; 5639 } 5640 5641 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5642 gpa_t addr) 5643 { 5644 struct kvm_io_bus *bus; 5645 int dev_idx, srcu_idx; 5646 struct kvm_io_device *iodev = NULL; 5647 5648 srcu_idx = srcu_read_lock(&kvm->srcu); 5649 5650 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5651 if (!bus) 5652 goto out_unlock; 5653 5654 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5655 if (dev_idx < 0) 5656 goto out_unlock; 5657 5658 iodev = bus->range[dev_idx].dev; 5659 5660 out_unlock: 5661 srcu_read_unlock(&kvm->srcu, srcu_idx); 5662 5663 return iodev; 5664 } 5665 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5666 5667 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5668 int (*get)(void *, u64 *), int (*set)(void *, u64), 5669 const char *fmt) 5670 { 5671 int ret; 5672 struct kvm_stat_data *stat_data = inode->i_private; 5673 5674 /* 5675 * The debugfs files are a reference to the kvm struct which 5676 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5677 * avoids the race between open and the removal of the debugfs directory. 5678 */ 5679 if (!kvm_get_kvm_safe(stat_data->kvm)) 5680 return -ENOENT; 5681 5682 ret = simple_attr_open(inode, file, get, 5683 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5684 ? set : NULL, fmt); 5685 if (ret) 5686 kvm_put_kvm(stat_data->kvm); 5687 5688 return ret; 5689 } 5690 5691 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5692 { 5693 struct kvm_stat_data *stat_data = inode->i_private; 5694 5695 simple_attr_release(inode, file); 5696 kvm_put_kvm(stat_data->kvm); 5697 5698 return 0; 5699 } 5700 5701 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5702 { 5703 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5704 5705 return 0; 5706 } 5707 5708 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5709 { 5710 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5711 5712 return 0; 5713 } 5714 5715 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5716 { 5717 unsigned long i; 5718 struct kvm_vcpu *vcpu; 5719 5720 *val = 0; 5721 5722 kvm_for_each_vcpu(i, vcpu, kvm) 5723 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5724 5725 return 0; 5726 } 5727 5728 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5729 { 5730 unsigned long i; 5731 struct kvm_vcpu *vcpu; 5732 5733 kvm_for_each_vcpu(i, vcpu, kvm) 5734 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5735 5736 return 0; 5737 } 5738 5739 static int kvm_stat_data_get(void *data, u64 *val) 5740 { 5741 int r = -EFAULT; 5742 struct kvm_stat_data *stat_data = data; 5743 5744 switch (stat_data->kind) { 5745 case KVM_STAT_VM: 5746 r = kvm_get_stat_per_vm(stat_data->kvm, 5747 stat_data->desc->desc.offset, val); 5748 break; 5749 case KVM_STAT_VCPU: 5750 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5751 stat_data->desc->desc.offset, val); 5752 break; 5753 } 5754 5755 return r; 5756 } 5757 5758 static int kvm_stat_data_clear(void *data, u64 val) 5759 { 5760 int r = -EFAULT; 5761 struct kvm_stat_data *stat_data = data; 5762 5763 if (val) 5764 return -EINVAL; 5765 5766 switch (stat_data->kind) { 5767 case KVM_STAT_VM: 5768 r = kvm_clear_stat_per_vm(stat_data->kvm, 5769 stat_data->desc->desc.offset); 5770 break; 5771 case KVM_STAT_VCPU: 5772 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5773 stat_data->desc->desc.offset); 5774 break; 5775 } 5776 5777 return r; 5778 } 5779 5780 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5781 { 5782 __simple_attr_check_format("%llu\n", 0ull); 5783 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5784 kvm_stat_data_clear, "%llu\n"); 5785 } 5786 5787 static const struct file_operations stat_fops_per_vm = { 5788 .owner = THIS_MODULE, 5789 .open = kvm_stat_data_open, 5790 .release = kvm_debugfs_release, 5791 .read = simple_attr_read, 5792 .write = simple_attr_write, 5793 .llseek = no_llseek, 5794 }; 5795 5796 static int vm_stat_get(void *_offset, u64 *val) 5797 { 5798 unsigned offset = (long)_offset; 5799 struct kvm *kvm; 5800 u64 tmp_val; 5801 5802 *val = 0; 5803 mutex_lock(&kvm_lock); 5804 list_for_each_entry(kvm, &vm_list, vm_list) { 5805 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5806 *val += tmp_val; 5807 } 5808 mutex_unlock(&kvm_lock); 5809 return 0; 5810 } 5811 5812 static int vm_stat_clear(void *_offset, u64 val) 5813 { 5814 unsigned offset = (long)_offset; 5815 struct kvm *kvm; 5816 5817 if (val) 5818 return -EINVAL; 5819 5820 mutex_lock(&kvm_lock); 5821 list_for_each_entry(kvm, &vm_list, vm_list) { 5822 kvm_clear_stat_per_vm(kvm, offset); 5823 } 5824 mutex_unlock(&kvm_lock); 5825 5826 return 0; 5827 } 5828 5829 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5830 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5831 5832 static int vcpu_stat_get(void *_offset, u64 *val) 5833 { 5834 unsigned offset = (long)_offset; 5835 struct kvm *kvm; 5836 u64 tmp_val; 5837 5838 *val = 0; 5839 mutex_lock(&kvm_lock); 5840 list_for_each_entry(kvm, &vm_list, vm_list) { 5841 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5842 *val += tmp_val; 5843 } 5844 mutex_unlock(&kvm_lock); 5845 return 0; 5846 } 5847 5848 static int vcpu_stat_clear(void *_offset, u64 val) 5849 { 5850 unsigned offset = (long)_offset; 5851 struct kvm *kvm; 5852 5853 if (val) 5854 return -EINVAL; 5855 5856 mutex_lock(&kvm_lock); 5857 list_for_each_entry(kvm, &vm_list, vm_list) { 5858 kvm_clear_stat_per_vcpu(kvm, offset); 5859 } 5860 mutex_unlock(&kvm_lock); 5861 5862 return 0; 5863 } 5864 5865 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5866 "%llu\n"); 5867 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5868 5869 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5870 { 5871 struct kobj_uevent_env *env; 5872 unsigned long long created, active; 5873 5874 if (!kvm_dev.this_device || !kvm) 5875 return; 5876 5877 mutex_lock(&kvm_lock); 5878 if (type == KVM_EVENT_CREATE_VM) { 5879 kvm_createvm_count++; 5880 kvm_active_vms++; 5881 } else if (type == KVM_EVENT_DESTROY_VM) { 5882 kvm_active_vms--; 5883 } 5884 created = kvm_createvm_count; 5885 active = kvm_active_vms; 5886 mutex_unlock(&kvm_lock); 5887 5888 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5889 if (!env) 5890 return; 5891 5892 add_uevent_var(env, "CREATED=%llu", created); 5893 add_uevent_var(env, "COUNT=%llu", active); 5894 5895 if (type == KVM_EVENT_CREATE_VM) { 5896 add_uevent_var(env, "EVENT=create"); 5897 kvm->userspace_pid = task_pid_nr(current); 5898 } else if (type == KVM_EVENT_DESTROY_VM) { 5899 add_uevent_var(env, "EVENT=destroy"); 5900 } 5901 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5902 5903 if (!IS_ERR(kvm->debugfs_dentry)) { 5904 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5905 5906 if (p) { 5907 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5908 if (!IS_ERR(tmp)) 5909 add_uevent_var(env, "STATS_PATH=%s", tmp); 5910 kfree(p); 5911 } 5912 } 5913 /* no need for checks, since we are adding at most only 5 keys */ 5914 env->envp[env->envp_idx++] = NULL; 5915 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5916 kfree(env); 5917 } 5918 5919 static void kvm_init_debug(void) 5920 { 5921 const struct file_operations *fops; 5922 const struct _kvm_stats_desc *pdesc; 5923 int i; 5924 5925 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5926 5927 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5928 pdesc = &kvm_vm_stats_desc[i]; 5929 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5930 fops = &vm_stat_fops; 5931 else 5932 fops = &vm_stat_readonly_fops; 5933 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5934 kvm_debugfs_dir, 5935 (void *)(long)pdesc->desc.offset, fops); 5936 } 5937 5938 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5939 pdesc = &kvm_vcpu_stats_desc[i]; 5940 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5941 fops = &vcpu_stat_fops; 5942 else 5943 fops = &vcpu_stat_readonly_fops; 5944 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5945 kvm_debugfs_dir, 5946 (void *)(long)pdesc->desc.offset, fops); 5947 } 5948 } 5949 5950 static inline 5951 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5952 { 5953 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5954 } 5955 5956 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5957 { 5958 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5959 5960 WRITE_ONCE(vcpu->preempted, false); 5961 WRITE_ONCE(vcpu->ready, false); 5962 5963 __this_cpu_write(kvm_running_vcpu, vcpu); 5964 kvm_arch_sched_in(vcpu, cpu); 5965 kvm_arch_vcpu_load(vcpu, cpu); 5966 } 5967 5968 static void kvm_sched_out(struct preempt_notifier *pn, 5969 struct task_struct *next) 5970 { 5971 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5972 5973 if (current->on_rq) { 5974 WRITE_ONCE(vcpu->preempted, true); 5975 WRITE_ONCE(vcpu->ready, true); 5976 } 5977 kvm_arch_vcpu_put(vcpu); 5978 __this_cpu_write(kvm_running_vcpu, NULL); 5979 } 5980 5981 /** 5982 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5983 * 5984 * We can disable preemption locally around accessing the per-CPU variable, 5985 * and use the resolved vcpu pointer after enabling preemption again, 5986 * because even if the current thread is migrated to another CPU, reading 5987 * the per-CPU value later will give us the same value as we update the 5988 * per-CPU variable in the preempt notifier handlers. 5989 */ 5990 struct kvm_vcpu *kvm_get_running_vcpu(void) 5991 { 5992 struct kvm_vcpu *vcpu; 5993 5994 preempt_disable(); 5995 vcpu = __this_cpu_read(kvm_running_vcpu); 5996 preempt_enable(); 5997 5998 return vcpu; 5999 } 6000 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 6001 6002 /** 6003 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6004 */ 6005 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6006 { 6007 return &kvm_running_vcpu; 6008 } 6009 6010 #ifdef CONFIG_GUEST_PERF_EVENTS 6011 static unsigned int kvm_guest_state(void) 6012 { 6013 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6014 unsigned int state; 6015 6016 if (!kvm_arch_pmi_in_guest(vcpu)) 6017 return 0; 6018 6019 state = PERF_GUEST_ACTIVE; 6020 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6021 state |= PERF_GUEST_USER; 6022 6023 return state; 6024 } 6025 6026 static unsigned long kvm_guest_get_ip(void) 6027 { 6028 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6029 6030 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6031 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6032 return 0; 6033 6034 return kvm_arch_vcpu_get_ip(vcpu); 6035 } 6036 6037 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6038 .state = kvm_guest_state, 6039 .get_ip = kvm_guest_get_ip, 6040 .handle_intel_pt_intr = NULL, 6041 }; 6042 6043 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6044 { 6045 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6046 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6047 } 6048 void kvm_unregister_perf_callbacks(void) 6049 { 6050 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6051 } 6052 #endif 6053 6054 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6055 { 6056 int r; 6057 int cpu; 6058 6059 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6060 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6061 kvm_online_cpu, kvm_offline_cpu); 6062 if (r) 6063 return r; 6064 6065 register_syscore_ops(&kvm_syscore_ops); 6066 #endif 6067 6068 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6069 if (!vcpu_align) 6070 vcpu_align = __alignof__(struct kvm_vcpu); 6071 kvm_vcpu_cache = 6072 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6073 SLAB_ACCOUNT, 6074 offsetof(struct kvm_vcpu, arch), 6075 offsetofend(struct kvm_vcpu, stats_id) 6076 - offsetof(struct kvm_vcpu, arch), 6077 NULL); 6078 if (!kvm_vcpu_cache) { 6079 r = -ENOMEM; 6080 goto err_vcpu_cache; 6081 } 6082 6083 for_each_possible_cpu(cpu) { 6084 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6085 GFP_KERNEL, cpu_to_node(cpu))) { 6086 r = -ENOMEM; 6087 goto err_cpu_kick_mask; 6088 } 6089 } 6090 6091 r = kvm_irqfd_init(); 6092 if (r) 6093 goto err_irqfd; 6094 6095 r = kvm_async_pf_init(); 6096 if (r) 6097 goto err_async_pf; 6098 6099 kvm_chardev_ops.owner = module; 6100 6101 kvm_preempt_ops.sched_in = kvm_sched_in; 6102 kvm_preempt_ops.sched_out = kvm_sched_out; 6103 6104 kvm_init_debug(); 6105 6106 r = kvm_vfio_ops_init(); 6107 if (WARN_ON_ONCE(r)) 6108 goto err_vfio; 6109 6110 /* 6111 * Registration _must_ be the very last thing done, as this exposes 6112 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6113 */ 6114 r = misc_register(&kvm_dev); 6115 if (r) { 6116 pr_err("kvm: misc device register failed\n"); 6117 goto err_register; 6118 } 6119 6120 return 0; 6121 6122 err_register: 6123 kvm_vfio_ops_exit(); 6124 err_vfio: 6125 kvm_async_pf_deinit(); 6126 err_async_pf: 6127 kvm_irqfd_exit(); 6128 err_irqfd: 6129 err_cpu_kick_mask: 6130 for_each_possible_cpu(cpu) 6131 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6132 kmem_cache_destroy(kvm_vcpu_cache); 6133 err_vcpu_cache: 6134 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6135 unregister_syscore_ops(&kvm_syscore_ops); 6136 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6137 #endif 6138 return r; 6139 } 6140 EXPORT_SYMBOL_GPL(kvm_init); 6141 6142 void kvm_exit(void) 6143 { 6144 int cpu; 6145 6146 /* 6147 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6148 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6149 * to KVM while the module is being stopped. 6150 */ 6151 misc_deregister(&kvm_dev); 6152 6153 debugfs_remove_recursive(kvm_debugfs_dir); 6154 for_each_possible_cpu(cpu) 6155 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6156 kmem_cache_destroy(kvm_vcpu_cache); 6157 kvm_vfio_ops_exit(); 6158 kvm_async_pf_deinit(); 6159 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6160 unregister_syscore_ops(&kvm_syscore_ops); 6161 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6162 #endif 6163 kvm_irqfd_exit(); 6164 } 6165 EXPORT_SYMBOL_GPL(kvm_exit); 6166 6167 struct kvm_vm_worker_thread_context { 6168 struct kvm *kvm; 6169 struct task_struct *parent; 6170 struct completion init_done; 6171 kvm_vm_thread_fn_t thread_fn; 6172 uintptr_t data; 6173 int err; 6174 }; 6175 6176 static int kvm_vm_worker_thread(void *context) 6177 { 6178 /* 6179 * The init_context is allocated on the stack of the parent thread, so 6180 * we have to locally copy anything that is needed beyond initialization 6181 */ 6182 struct kvm_vm_worker_thread_context *init_context = context; 6183 struct task_struct *parent; 6184 struct kvm *kvm = init_context->kvm; 6185 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6186 uintptr_t data = init_context->data; 6187 int err; 6188 6189 err = kthread_park(current); 6190 /* kthread_park(current) is never supposed to return an error */ 6191 WARN_ON(err != 0); 6192 if (err) 6193 goto init_complete; 6194 6195 err = cgroup_attach_task_all(init_context->parent, current); 6196 if (err) { 6197 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6198 __func__, err); 6199 goto init_complete; 6200 } 6201 6202 set_user_nice(current, task_nice(init_context->parent)); 6203 6204 init_complete: 6205 init_context->err = err; 6206 complete(&init_context->init_done); 6207 init_context = NULL; 6208 6209 if (err) 6210 goto out; 6211 6212 /* Wait to be woken up by the spawner before proceeding. */ 6213 kthread_parkme(); 6214 6215 if (!kthread_should_stop()) 6216 err = thread_fn(kvm, data); 6217 6218 out: 6219 /* 6220 * Move kthread back to its original cgroup to prevent it lingering in 6221 * the cgroup of the VM process, after the latter finishes its 6222 * execution. 6223 * 6224 * kthread_stop() waits on the 'exited' completion condition which is 6225 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6226 * kthread is removed from the cgroup in the cgroup_exit() which is 6227 * called after the exit_mm(). This causes the kthread_stop() to return 6228 * before the kthread actually quits the cgroup. 6229 */ 6230 rcu_read_lock(); 6231 parent = rcu_dereference(current->real_parent); 6232 get_task_struct(parent); 6233 rcu_read_unlock(); 6234 cgroup_attach_task_all(parent, current); 6235 put_task_struct(parent); 6236 6237 return err; 6238 } 6239 6240 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6241 uintptr_t data, const char *name, 6242 struct task_struct **thread_ptr) 6243 { 6244 struct kvm_vm_worker_thread_context init_context = {}; 6245 struct task_struct *thread; 6246 6247 *thread_ptr = NULL; 6248 init_context.kvm = kvm; 6249 init_context.parent = current; 6250 init_context.thread_fn = thread_fn; 6251 init_context.data = data; 6252 init_completion(&init_context.init_done); 6253 6254 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6255 "%s-%d", name, task_pid_nr(current)); 6256 if (IS_ERR(thread)) 6257 return PTR_ERR(thread); 6258 6259 /* kthread_run is never supposed to return NULL */ 6260 WARN_ON(thread == NULL); 6261 6262 wait_for_completion(&init_context.init_done); 6263 6264 if (!init_context.err) 6265 *thread_ptr = thread; 6266 6267 return init_context.err; 6268 } 6269