1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 159 unsigned long start, unsigned long end) 160 { 161 } 162 163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 164 { 165 /* 166 * The metadata used by is_zone_device_page() to determine whether or 167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 168 * the device has been pinned, e.g. by get_user_pages(). WARN if the 169 * page_count() is zero to help detect bad usage of this helper. 170 */ 171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 172 return false; 173 174 return is_zone_device_page(pfn_to_page(pfn)); 175 } 176 177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 178 { 179 /* 180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 181 * perspective they are "normal" pages, albeit with slightly different 182 * usage rules. 183 */ 184 if (pfn_valid(pfn)) 185 return PageReserved(pfn_to_page(pfn)) && 186 !is_zero_pfn(pfn) && 187 !kvm_is_zone_device_pfn(pfn); 188 189 return true; 190 } 191 192 /* 193 * Switches to specified vcpu, until a matching vcpu_put() 194 */ 195 void vcpu_load(struct kvm_vcpu *vcpu) 196 { 197 int cpu = get_cpu(); 198 199 __this_cpu_write(kvm_running_vcpu, vcpu); 200 preempt_notifier_register(&vcpu->preempt_notifier); 201 kvm_arch_vcpu_load(vcpu, cpu); 202 put_cpu(); 203 } 204 EXPORT_SYMBOL_GPL(vcpu_load); 205 206 void vcpu_put(struct kvm_vcpu *vcpu) 207 { 208 preempt_disable(); 209 kvm_arch_vcpu_put(vcpu); 210 preempt_notifier_unregister(&vcpu->preempt_notifier); 211 __this_cpu_write(kvm_running_vcpu, NULL); 212 preempt_enable(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_put); 215 216 /* TODO: merge with kvm_arch_vcpu_should_kick */ 217 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 218 { 219 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 220 221 /* 222 * We need to wait for the VCPU to reenable interrupts and get out of 223 * READING_SHADOW_PAGE_TABLES mode. 224 */ 225 if (req & KVM_REQUEST_WAIT) 226 return mode != OUTSIDE_GUEST_MODE; 227 228 /* 229 * Need to kick a running VCPU, but otherwise there is nothing to do. 230 */ 231 return mode == IN_GUEST_MODE; 232 } 233 234 static void ack_flush(void *_completed) 235 { 236 } 237 238 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 239 { 240 if (unlikely(!cpus)) 241 cpus = cpu_online_mask; 242 243 if (cpumask_empty(cpus)) 244 return false; 245 246 smp_call_function_many(cpus, ack_flush, NULL, wait); 247 return true; 248 } 249 250 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 251 struct kvm_vcpu *except, 252 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 253 { 254 int i, cpu, me; 255 struct kvm_vcpu *vcpu; 256 bool called; 257 258 me = get_cpu(); 259 260 kvm_for_each_vcpu(i, vcpu, kvm) { 261 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 262 vcpu == except) 263 continue; 264 265 kvm_make_request(req, vcpu); 266 cpu = vcpu->cpu; 267 268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 269 continue; 270 271 if (tmp != NULL && cpu != -1 && cpu != me && 272 kvm_request_needs_ipi(vcpu, req)) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 276 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 277 put_cpu(); 278 279 return called; 280 } 281 282 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 283 struct kvm_vcpu *except) 284 { 285 cpumask_var_t cpus; 286 bool called; 287 288 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 289 290 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 291 292 free_cpumask_var(cpus); 293 return called; 294 } 295 296 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 297 { 298 return kvm_make_all_cpus_request_except(kvm, req, NULL); 299 } 300 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 301 302 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 303 void kvm_flush_remote_tlbs(struct kvm *kvm) 304 { 305 /* 306 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 307 * kvm_make_all_cpus_request. 308 */ 309 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 310 311 ++kvm->stat.generic.remote_tlb_flush_requests; 312 /* 313 * We want to publish modifications to the page tables before reading 314 * mode. Pairs with a memory barrier in arch-specific code. 315 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 316 * and smp_mb in walk_shadow_page_lockless_begin/end. 317 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 318 * 319 * There is already an smp_mb__after_atomic() before 320 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 321 * barrier here. 322 */ 323 if (!kvm_arch_flush_remote_tlb(kvm) 324 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 325 ++kvm->stat.generic.remote_tlb_flush; 326 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 327 } 328 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 329 #endif 330 331 void kvm_reload_remote_mmus(struct kvm *kvm) 332 { 333 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 334 } 335 336 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 337 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 338 gfp_t gfp_flags) 339 { 340 gfp_flags |= mc->gfp_zero; 341 342 if (mc->kmem_cache) 343 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 344 else 345 return (void *)__get_free_page(gfp_flags); 346 } 347 348 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 349 { 350 void *obj; 351 352 if (mc->nobjs >= min) 353 return 0; 354 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 355 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 356 if (!obj) 357 return mc->nobjs >= min ? 0 : -ENOMEM; 358 mc->objects[mc->nobjs++] = obj; 359 } 360 return 0; 361 } 362 363 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 364 { 365 return mc->nobjs; 366 } 367 368 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 369 { 370 while (mc->nobjs) { 371 if (mc->kmem_cache) 372 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 373 else 374 free_page((unsigned long)mc->objects[--mc->nobjs]); 375 } 376 } 377 378 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 379 { 380 void *p; 381 382 if (WARN_ON(!mc->nobjs)) 383 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 384 else 385 p = mc->objects[--mc->nobjs]; 386 BUG_ON(!p); 387 return p; 388 } 389 #endif 390 391 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 392 { 393 mutex_init(&vcpu->mutex); 394 vcpu->cpu = -1; 395 vcpu->kvm = kvm; 396 vcpu->vcpu_id = id; 397 vcpu->pid = NULL; 398 rcuwait_init(&vcpu->wait); 399 kvm_async_pf_vcpu_init(vcpu); 400 401 vcpu->pre_pcpu = -1; 402 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 403 404 kvm_vcpu_set_in_spin_loop(vcpu, false); 405 kvm_vcpu_set_dy_eligible(vcpu, false); 406 vcpu->preempted = false; 407 vcpu->ready = false; 408 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 409 vcpu->last_used_slot = 0; 410 } 411 412 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 413 { 414 kvm_dirty_ring_free(&vcpu->dirty_ring); 415 kvm_arch_vcpu_destroy(vcpu); 416 417 /* 418 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 419 * the vcpu->pid pointer, and at destruction time all file descriptors 420 * are already gone. 421 */ 422 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 423 424 free_page((unsigned long)vcpu->run); 425 kmem_cache_free(kvm_vcpu_cache, vcpu); 426 } 427 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 428 429 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 430 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 431 { 432 return container_of(mn, struct kvm, mmu_notifier); 433 } 434 435 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 436 struct mm_struct *mm, 437 unsigned long start, unsigned long end) 438 { 439 struct kvm *kvm = mmu_notifier_to_kvm(mn); 440 int idx; 441 442 idx = srcu_read_lock(&kvm->srcu); 443 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 444 srcu_read_unlock(&kvm->srcu, idx); 445 } 446 447 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 448 449 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 450 unsigned long end); 451 452 struct kvm_hva_range { 453 unsigned long start; 454 unsigned long end; 455 pte_t pte; 456 hva_handler_t handler; 457 on_lock_fn_t on_lock; 458 bool flush_on_ret; 459 bool may_block; 460 }; 461 462 /* 463 * Use a dedicated stub instead of NULL to indicate that there is no callback 464 * function/handler. The compiler technically can't guarantee that a real 465 * function will have a non-zero address, and so it will generate code to 466 * check for !NULL, whereas comparing against a stub will be elided at compile 467 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 468 */ 469 static void kvm_null_fn(void) 470 { 471 472 } 473 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 474 475 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 476 const struct kvm_hva_range *range) 477 { 478 bool ret = false, locked = false; 479 struct kvm_gfn_range gfn_range; 480 struct kvm_memory_slot *slot; 481 struct kvm_memslots *slots; 482 int i, idx; 483 484 /* A null handler is allowed if and only if on_lock() is provided. */ 485 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 486 IS_KVM_NULL_FN(range->handler))) 487 return 0; 488 489 idx = srcu_read_lock(&kvm->srcu); 490 491 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 492 slots = __kvm_memslots(kvm, i); 493 kvm_for_each_memslot(slot, slots) { 494 unsigned long hva_start, hva_end; 495 496 hva_start = max(range->start, slot->userspace_addr); 497 hva_end = min(range->end, slot->userspace_addr + 498 (slot->npages << PAGE_SHIFT)); 499 if (hva_start >= hva_end) 500 continue; 501 502 /* 503 * To optimize for the likely case where the address 504 * range is covered by zero or one memslots, don't 505 * bother making these conditional (to avoid writes on 506 * the second or later invocation of the handler). 507 */ 508 gfn_range.pte = range->pte; 509 gfn_range.may_block = range->may_block; 510 511 /* 512 * {gfn(page) | page intersects with [hva_start, hva_end)} = 513 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 514 */ 515 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 516 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 517 gfn_range.slot = slot; 518 519 if (!locked) { 520 locked = true; 521 KVM_MMU_LOCK(kvm); 522 if (!IS_KVM_NULL_FN(range->on_lock)) 523 range->on_lock(kvm, range->start, range->end); 524 if (IS_KVM_NULL_FN(range->handler)) 525 break; 526 } 527 ret |= range->handler(kvm, &gfn_range); 528 } 529 } 530 531 if (range->flush_on_ret && (ret || kvm->tlbs_dirty)) 532 kvm_flush_remote_tlbs(kvm); 533 534 if (locked) 535 KVM_MMU_UNLOCK(kvm); 536 537 srcu_read_unlock(&kvm->srcu, idx); 538 539 /* The notifiers are averse to booleans. :-( */ 540 return (int)ret; 541 } 542 543 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 544 unsigned long start, 545 unsigned long end, 546 pte_t pte, 547 hva_handler_t handler) 548 { 549 struct kvm *kvm = mmu_notifier_to_kvm(mn); 550 const struct kvm_hva_range range = { 551 .start = start, 552 .end = end, 553 .pte = pte, 554 .handler = handler, 555 .on_lock = (void *)kvm_null_fn, 556 .flush_on_ret = true, 557 .may_block = false, 558 }; 559 560 return __kvm_handle_hva_range(kvm, &range); 561 } 562 563 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 564 unsigned long start, 565 unsigned long end, 566 hva_handler_t handler) 567 { 568 struct kvm *kvm = mmu_notifier_to_kvm(mn); 569 const struct kvm_hva_range range = { 570 .start = start, 571 .end = end, 572 .pte = __pte(0), 573 .handler = handler, 574 .on_lock = (void *)kvm_null_fn, 575 .flush_on_ret = false, 576 .may_block = false, 577 }; 578 579 return __kvm_handle_hva_range(kvm, &range); 580 } 581 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 582 struct mm_struct *mm, 583 unsigned long address, 584 pte_t pte) 585 { 586 struct kvm *kvm = mmu_notifier_to_kvm(mn); 587 588 trace_kvm_set_spte_hva(address); 589 590 /* 591 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 592 * If mmu_notifier_count is zero, then no in-progress invalidations, 593 * including this one, found a relevant memslot at start(); rechecking 594 * memslots here is unnecessary. Note, a false positive (count elevated 595 * by a different invalidation) is sub-optimal but functionally ok. 596 */ 597 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 598 if (!READ_ONCE(kvm->mmu_notifier_count)) 599 return; 600 601 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 602 } 603 604 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 605 unsigned long end) 606 { 607 /* 608 * The count increase must become visible at unlock time as no 609 * spte can be established without taking the mmu_lock and 610 * count is also read inside the mmu_lock critical section. 611 */ 612 kvm->mmu_notifier_count++; 613 if (likely(kvm->mmu_notifier_count == 1)) { 614 kvm->mmu_notifier_range_start = start; 615 kvm->mmu_notifier_range_end = end; 616 } else { 617 /* 618 * Fully tracking multiple concurrent ranges has dimishing 619 * returns. Keep things simple and just find the minimal range 620 * which includes the current and new ranges. As there won't be 621 * enough information to subtract a range after its invalidate 622 * completes, any ranges invalidated concurrently will 623 * accumulate and persist until all outstanding invalidates 624 * complete. 625 */ 626 kvm->mmu_notifier_range_start = 627 min(kvm->mmu_notifier_range_start, start); 628 kvm->mmu_notifier_range_end = 629 max(kvm->mmu_notifier_range_end, end); 630 } 631 } 632 633 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 634 const struct mmu_notifier_range *range) 635 { 636 struct kvm *kvm = mmu_notifier_to_kvm(mn); 637 const struct kvm_hva_range hva_range = { 638 .start = range->start, 639 .end = range->end, 640 .pte = __pte(0), 641 .handler = kvm_unmap_gfn_range, 642 .on_lock = kvm_inc_notifier_count, 643 .flush_on_ret = true, 644 .may_block = mmu_notifier_range_blockable(range), 645 }; 646 647 trace_kvm_unmap_hva_range(range->start, range->end); 648 649 /* 650 * Prevent memslot modification between range_start() and range_end() 651 * so that conditionally locking provides the same result in both 652 * functions. Without that guarantee, the mmu_notifier_count 653 * adjustments will be imbalanced. 654 * 655 * Pairs with the decrement in range_end(). 656 */ 657 spin_lock(&kvm->mn_invalidate_lock); 658 kvm->mn_active_invalidate_count++; 659 spin_unlock(&kvm->mn_invalidate_lock); 660 661 __kvm_handle_hva_range(kvm, &hva_range); 662 663 return 0; 664 } 665 666 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 667 unsigned long end) 668 { 669 /* 670 * This sequence increase will notify the kvm page fault that 671 * the page that is going to be mapped in the spte could have 672 * been freed. 673 */ 674 kvm->mmu_notifier_seq++; 675 smp_wmb(); 676 /* 677 * The above sequence increase must be visible before the 678 * below count decrease, which is ensured by the smp_wmb above 679 * in conjunction with the smp_rmb in mmu_notifier_retry(). 680 */ 681 kvm->mmu_notifier_count--; 682 } 683 684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 685 const struct mmu_notifier_range *range) 686 { 687 struct kvm *kvm = mmu_notifier_to_kvm(mn); 688 const struct kvm_hva_range hva_range = { 689 .start = range->start, 690 .end = range->end, 691 .pte = __pte(0), 692 .handler = (void *)kvm_null_fn, 693 .on_lock = kvm_dec_notifier_count, 694 .flush_on_ret = false, 695 .may_block = mmu_notifier_range_blockable(range), 696 }; 697 bool wake; 698 699 __kvm_handle_hva_range(kvm, &hva_range); 700 701 /* Pairs with the increment in range_start(). */ 702 spin_lock(&kvm->mn_invalidate_lock); 703 wake = (--kvm->mn_active_invalidate_count == 0); 704 spin_unlock(&kvm->mn_invalidate_lock); 705 706 /* 707 * There can only be one waiter, since the wait happens under 708 * slots_lock. 709 */ 710 if (wake) 711 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 712 713 BUG_ON(kvm->mmu_notifier_count < 0); 714 } 715 716 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 717 struct mm_struct *mm, 718 unsigned long start, 719 unsigned long end) 720 { 721 trace_kvm_age_hva(start, end); 722 723 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 724 } 725 726 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 727 struct mm_struct *mm, 728 unsigned long start, 729 unsigned long end) 730 { 731 trace_kvm_age_hva(start, end); 732 733 /* 734 * Even though we do not flush TLB, this will still adversely 735 * affect performance on pre-Haswell Intel EPT, where there is 736 * no EPT Access Bit to clear so that we have to tear down EPT 737 * tables instead. If we find this unacceptable, we can always 738 * add a parameter to kvm_age_hva so that it effectively doesn't 739 * do anything on clear_young. 740 * 741 * Also note that currently we never issue secondary TLB flushes 742 * from clear_young, leaving this job up to the regular system 743 * cadence. If we find this inaccurate, we might come up with a 744 * more sophisticated heuristic later. 745 */ 746 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 747 } 748 749 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 750 struct mm_struct *mm, 751 unsigned long address) 752 { 753 trace_kvm_test_age_hva(address); 754 755 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 756 kvm_test_age_gfn); 757 } 758 759 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 760 struct mm_struct *mm) 761 { 762 struct kvm *kvm = mmu_notifier_to_kvm(mn); 763 int idx; 764 765 idx = srcu_read_lock(&kvm->srcu); 766 kvm_arch_flush_shadow_all(kvm); 767 srcu_read_unlock(&kvm->srcu, idx); 768 } 769 770 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 771 .invalidate_range = kvm_mmu_notifier_invalidate_range, 772 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 773 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 774 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 775 .clear_young = kvm_mmu_notifier_clear_young, 776 .test_young = kvm_mmu_notifier_test_young, 777 .change_pte = kvm_mmu_notifier_change_pte, 778 .release = kvm_mmu_notifier_release, 779 }; 780 781 static int kvm_init_mmu_notifier(struct kvm *kvm) 782 { 783 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 784 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 785 } 786 787 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 788 789 static int kvm_init_mmu_notifier(struct kvm *kvm) 790 { 791 return 0; 792 } 793 794 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 795 796 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 797 static int kvm_pm_notifier_call(struct notifier_block *bl, 798 unsigned long state, 799 void *unused) 800 { 801 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 802 803 return kvm_arch_pm_notifier(kvm, state); 804 } 805 806 static void kvm_init_pm_notifier(struct kvm *kvm) 807 { 808 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 809 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 810 kvm->pm_notifier.priority = INT_MAX; 811 register_pm_notifier(&kvm->pm_notifier); 812 } 813 814 static void kvm_destroy_pm_notifier(struct kvm *kvm) 815 { 816 unregister_pm_notifier(&kvm->pm_notifier); 817 } 818 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 819 static void kvm_init_pm_notifier(struct kvm *kvm) 820 { 821 } 822 823 static void kvm_destroy_pm_notifier(struct kvm *kvm) 824 { 825 } 826 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 827 828 static struct kvm_memslots *kvm_alloc_memslots(void) 829 { 830 int i; 831 struct kvm_memslots *slots; 832 833 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 834 if (!slots) 835 return NULL; 836 837 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 838 slots->id_to_index[i] = -1; 839 840 return slots; 841 } 842 843 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 844 { 845 if (!memslot->dirty_bitmap) 846 return; 847 848 kvfree(memslot->dirty_bitmap); 849 memslot->dirty_bitmap = NULL; 850 } 851 852 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 853 { 854 kvm_destroy_dirty_bitmap(slot); 855 856 kvm_arch_free_memslot(kvm, slot); 857 858 slot->flags = 0; 859 slot->npages = 0; 860 } 861 862 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 863 { 864 struct kvm_memory_slot *memslot; 865 866 if (!slots) 867 return; 868 869 kvm_for_each_memslot(memslot, slots) 870 kvm_free_memslot(kvm, memslot); 871 872 kvfree(slots); 873 } 874 875 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 876 { 877 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 878 case KVM_STATS_TYPE_INSTANT: 879 return 0444; 880 case KVM_STATS_TYPE_CUMULATIVE: 881 case KVM_STATS_TYPE_PEAK: 882 default: 883 return 0644; 884 } 885 } 886 887 888 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 889 { 890 int i; 891 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 892 kvm_vcpu_stats_header.num_desc; 893 894 if (!kvm->debugfs_dentry) 895 return; 896 897 debugfs_remove_recursive(kvm->debugfs_dentry); 898 899 if (kvm->debugfs_stat_data) { 900 for (i = 0; i < kvm_debugfs_num_entries; i++) 901 kfree(kvm->debugfs_stat_data[i]); 902 kfree(kvm->debugfs_stat_data); 903 } 904 } 905 906 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 907 { 908 static DEFINE_MUTEX(kvm_debugfs_lock); 909 struct dentry *dent; 910 char dir_name[ITOA_MAX_LEN * 2]; 911 struct kvm_stat_data *stat_data; 912 const struct _kvm_stats_desc *pdesc; 913 int i, ret; 914 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 915 kvm_vcpu_stats_header.num_desc; 916 917 if (!debugfs_initialized()) 918 return 0; 919 920 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 921 mutex_lock(&kvm_debugfs_lock); 922 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 923 if (dent) { 924 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 925 dput(dent); 926 mutex_unlock(&kvm_debugfs_lock); 927 return 0; 928 } 929 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 930 mutex_unlock(&kvm_debugfs_lock); 931 if (IS_ERR(dent)) 932 return 0; 933 934 kvm->debugfs_dentry = dent; 935 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 936 sizeof(*kvm->debugfs_stat_data), 937 GFP_KERNEL_ACCOUNT); 938 if (!kvm->debugfs_stat_data) 939 return -ENOMEM; 940 941 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 942 pdesc = &kvm_vm_stats_desc[i]; 943 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 944 if (!stat_data) 945 return -ENOMEM; 946 947 stat_data->kvm = kvm; 948 stat_data->desc = pdesc; 949 stat_data->kind = KVM_STAT_VM; 950 kvm->debugfs_stat_data[i] = stat_data; 951 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 952 kvm->debugfs_dentry, stat_data, 953 &stat_fops_per_vm); 954 } 955 956 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 957 pdesc = &kvm_vcpu_stats_desc[i]; 958 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 959 if (!stat_data) 960 return -ENOMEM; 961 962 stat_data->kvm = kvm; 963 stat_data->desc = pdesc; 964 stat_data->kind = KVM_STAT_VCPU; 965 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 966 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 967 kvm->debugfs_dentry, stat_data, 968 &stat_fops_per_vm); 969 } 970 971 ret = kvm_arch_create_vm_debugfs(kvm); 972 if (ret) { 973 kvm_destroy_vm_debugfs(kvm); 974 return i; 975 } 976 977 return 0; 978 } 979 980 /* 981 * Called after the VM is otherwise initialized, but just before adding it to 982 * the vm_list. 983 */ 984 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 985 { 986 return 0; 987 } 988 989 /* 990 * Called just after removing the VM from the vm_list, but before doing any 991 * other destruction. 992 */ 993 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 994 { 995 } 996 997 /* 998 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 999 * be setup already, so we can create arch-specific debugfs entries under it. 1000 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1001 * a per-arch destroy interface is not needed. 1002 */ 1003 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1004 { 1005 return 0; 1006 } 1007 1008 static struct kvm *kvm_create_vm(unsigned long type) 1009 { 1010 struct kvm *kvm = kvm_arch_alloc_vm(); 1011 int r = -ENOMEM; 1012 int i; 1013 1014 if (!kvm) 1015 return ERR_PTR(-ENOMEM); 1016 1017 KVM_MMU_LOCK_INIT(kvm); 1018 mmgrab(current->mm); 1019 kvm->mm = current->mm; 1020 kvm_eventfd_init(kvm); 1021 mutex_init(&kvm->lock); 1022 mutex_init(&kvm->irq_lock); 1023 mutex_init(&kvm->slots_lock); 1024 mutex_init(&kvm->slots_arch_lock); 1025 spin_lock_init(&kvm->mn_invalidate_lock); 1026 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1027 1028 INIT_LIST_HEAD(&kvm->devices); 1029 1030 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1031 1032 if (init_srcu_struct(&kvm->srcu)) 1033 goto out_err_no_srcu; 1034 if (init_srcu_struct(&kvm->irq_srcu)) 1035 goto out_err_no_irq_srcu; 1036 1037 refcount_set(&kvm->users_count, 1); 1038 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1039 struct kvm_memslots *slots = kvm_alloc_memslots(); 1040 1041 if (!slots) 1042 goto out_err_no_arch_destroy_vm; 1043 /* Generations must be different for each address space. */ 1044 slots->generation = i; 1045 rcu_assign_pointer(kvm->memslots[i], slots); 1046 } 1047 1048 for (i = 0; i < KVM_NR_BUSES; i++) { 1049 rcu_assign_pointer(kvm->buses[i], 1050 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1051 if (!kvm->buses[i]) 1052 goto out_err_no_arch_destroy_vm; 1053 } 1054 1055 kvm->max_halt_poll_ns = halt_poll_ns; 1056 1057 r = kvm_arch_init_vm(kvm, type); 1058 if (r) 1059 goto out_err_no_arch_destroy_vm; 1060 1061 r = hardware_enable_all(); 1062 if (r) 1063 goto out_err_no_disable; 1064 1065 #ifdef CONFIG_HAVE_KVM_IRQFD 1066 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1067 #endif 1068 1069 r = kvm_init_mmu_notifier(kvm); 1070 if (r) 1071 goto out_err_no_mmu_notifier; 1072 1073 r = kvm_arch_post_init_vm(kvm); 1074 if (r) 1075 goto out_err; 1076 1077 mutex_lock(&kvm_lock); 1078 list_add(&kvm->vm_list, &vm_list); 1079 mutex_unlock(&kvm_lock); 1080 1081 preempt_notifier_inc(); 1082 kvm_init_pm_notifier(kvm); 1083 1084 return kvm; 1085 1086 out_err: 1087 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1088 if (kvm->mmu_notifier.ops) 1089 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1090 #endif 1091 out_err_no_mmu_notifier: 1092 hardware_disable_all(); 1093 out_err_no_disable: 1094 kvm_arch_destroy_vm(kvm); 1095 out_err_no_arch_destroy_vm: 1096 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1097 for (i = 0; i < KVM_NR_BUSES; i++) 1098 kfree(kvm_get_bus(kvm, i)); 1099 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1100 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1101 cleanup_srcu_struct(&kvm->irq_srcu); 1102 out_err_no_irq_srcu: 1103 cleanup_srcu_struct(&kvm->srcu); 1104 out_err_no_srcu: 1105 kvm_arch_free_vm(kvm); 1106 mmdrop(current->mm); 1107 return ERR_PTR(r); 1108 } 1109 1110 static void kvm_destroy_devices(struct kvm *kvm) 1111 { 1112 struct kvm_device *dev, *tmp; 1113 1114 /* 1115 * We do not need to take the kvm->lock here, because nobody else 1116 * has a reference to the struct kvm at this point and therefore 1117 * cannot access the devices list anyhow. 1118 */ 1119 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1120 list_del(&dev->vm_node); 1121 dev->ops->destroy(dev); 1122 } 1123 } 1124 1125 static void kvm_destroy_vm(struct kvm *kvm) 1126 { 1127 int i; 1128 struct mm_struct *mm = kvm->mm; 1129 1130 kvm_destroy_pm_notifier(kvm); 1131 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1132 kvm_destroy_vm_debugfs(kvm); 1133 kvm_arch_sync_events(kvm); 1134 mutex_lock(&kvm_lock); 1135 list_del(&kvm->vm_list); 1136 mutex_unlock(&kvm_lock); 1137 kvm_arch_pre_destroy_vm(kvm); 1138 1139 kvm_free_irq_routing(kvm); 1140 for (i = 0; i < KVM_NR_BUSES; i++) { 1141 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1142 1143 if (bus) 1144 kvm_io_bus_destroy(bus); 1145 kvm->buses[i] = NULL; 1146 } 1147 kvm_coalesced_mmio_free(kvm); 1148 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1149 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1150 /* 1151 * At this point, pending calls to invalidate_range_start() 1152 * have completed but no more MMU notifiers will run, so 1153 * mn_active_invalidate_count may remain unbalanced. 1154 * No threads can be waiting in install_new_memslots as the 1155 * last reference on KVM has been dropped, but freeing 1156 * memslots would deadlock without this manual intervention. 1157 */ 1158 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1159 kvm->mn_active_invalidate_count = 0; 1160 #else 1161 kvm_arch_flush_shadow_all(kvm); 1162 #endif 1163 kvm_arch_destroy_vm(kvm); 1164 kvm_destroy_devices(kvm); 1165 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1166 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1167 cleanup_srcu_struct(&kvm->irq_srcu); 1168 cleanup_srcu_struct(&kvm->srcu); 1169 kvm_arch_free_vm(kvm); 1170 preempt_notifier_dec(); 1171 hardware_disable_all(); 1172 mmdrop(mm); 1173 } 1174 1175 void kvm_get_kvm(struct kvm *kvm) 1176 { 1177 refcount_inc(&kvm->users_count); 1178 } 1179 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1180 1181 /* 1182 * Make sure the vm is not during destruction, which is a safe version of 1183 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1184 */ 1185 bool kvm_get_kvm_safe(struct kvm *kvm) 1186 { 1187 return refcount_inc_not_zero(&kvm->users_count); 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1190 1191 void kvm_put_kvm(struct kvm *kvm) 1192 { 1193 if (refcount_dec_and_test(&kvm->users_count)) 1194 kvm_destroy_vm(kvm); 1195 } 1196 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1197 1198 /* 1199 * Used to put a reference that was taken on behalf of an object associated 1200 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1201 * of the new file descriptor fails and the reference cannot be transferred to 1202 * its final owner. In such cases, the caller is still actively using @kvm and 1203 * will fail miserably if the refcount unexpectedly hits zero. 1204 */ 1205 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1206 { 1207 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1208 } 1209 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1210 1211 static int kvm_vm_release(struct inode *inode, struct file *filp) 1212 { 1213 struct kvm *kvm = filp->private_data; 1214 1215 kvm_irqfd_release(kvm); 1216 1217 kvm_put_kvm(kvm); 1218 return 0; 1219 } 1220 1221 /* 1222 * Allocation size is twice as large as the actual dirty bitmap size. 1223 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1224 */ 1225 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1226 { 1227 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1228 1229 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1230 if (!memslot->dirty_bitmap) 1231 return -ENOMEM; 1232 1233 return 0; 1234 } 1235 1236 /* 1237 * Delete a memslot by decrementing the number of used slots and shifting all 1238 * other entries in the array forward one spot. 1239 */ 1240 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1241 struct kvm_memory_slot *memslot) 1242 { 1243 struct kvm_memory_slot *mslots = slots->memslots; 1244 int i; 1245 1246 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 1247 return; 1248 1249 slots->used_slots--; 1250 1251 if (atomic_read(&slots->last_used_slot) >= slots->used_slots) 1252 atomic_set(&slots->last_used_slot, 0); 1253 1254 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 1255 mslots[i] = mslots[i + 1]; 1256 slots->id_to_index[mslots[i].id] = i; 1257 } 1258 mslots[i] = *memslot; 1259 slots->id_to_index[memslot->id] = -1; 1260 } 1261 1262 /* 1263 * "Insert" a new memslot by incrementing the number of used slots. Returns 1264 * the new slot's initial index into the memslots array. 1265 */ 1266 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1267 { 1268 return slots->used_slots++; 1269 } 1270 1271 /* 1272 * Move a changed memslot backwards in the array by shifting existing slots 1273 * with a higher GFN toward the front of the array. Note, the changed memslot 1274 * itself is not preserved in the array, i.e. not swapped at this time, only 1275 * its new index into the array is tracked. Returns the changed memslot's 1276 * current index into the memslots array. 1277 */ 1278 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1279 struct kvm_memory_slot *memslot) 1280 { 1281 struct kvm_memory_slot *mslots = slots->memslots; 1282 int i; 1283 1284 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 1285 WARN_ON_ONCE(!slots->used_slots)) 1286 return -1; 1287 1288 /* 1289 * Move the target memslot backward in the array by shifting existing 1290 * memslots with a higher GFN (than the target memslot) towards the 1291 * front of the array. 1292 */ 1293 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 1294 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1295 break; 1296 1297 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1298 1299 /* Shift the next memslot forward one and update its index. */ 1300 mslots[i] = mslots[i + 1]; 1301 slots->id_to_index[mslots[i].id] = i; 1302 } 1303 return i; 1304 } 1305 1306 /* 1307 * Move a changed memslot forwards in the array by shifting existing slots with 1308 * a lower GFN toward the back of the array. Note, the changed memslot itself 1309 * is not preserved in the array, i.e. not swapped at this time, only its new 1310 * index into the array is tracked. Returns the changed memslot's final index 1311 * into the memslots array. 1312 */ 1313 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1314 struct kvm_memory_slot *memslot, 1315 int start) 1316 { 1317 struct kvm_memory_slot *mslots = slots->memslots; 1318 int i; 1319 1320 for (i = start; i > 0; i--) { 1321 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1322 break; 1323 1324 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1325 1326 /* Shift the next memslot back one and update its index. */ 1327 mslots[i] = mslots[i - 1]; 1328 slots->id_to_index[mslots[i].id] = i; 1329 } 1330 return i; 1331 } 1332 1333 /* 1334 * Re-sort memslots based on their GFN to account for an added, deleted, or 1335 * moved memslot. Sorting memslots by GFN allows using a binary search during 1336 * memslot lookup. 1337 * 1338 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1339 * at memslots[0] has the highest GFN. 1340 * 1341 * The sorting algorithm takes advantage of having initially sorted memslots 1342 * and knowing the position of the changed memslot. Sorting is also optimized 1343 * by not swapping the updated memslot and instead only shifting other memslots 1344 * and tracking the new index for the update memslot. Only once its final 1345 * index is known is the updated memslot copied into its position in the array. 1346 * 1347 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1348 * the end of the array. 1349 * 1350 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1351 * end of the array and then it forward to its correct location. 1352 * 1353 * - When moving a memslot, the algorithm first moves the updated memslot 1354 * backward to handle the scenario where the memslot's GFN was changed to a 1355 * lower value. update_memslots() then falls through and runs the same flow 1356 * as creating a memslot to move the memslot forward to handle the scenario 1357 * where its GFN was changed to a higher value. 1358 * 1359 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1360 * historical reasons. Originally, invalid memslots where denoted by having 1361 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1362 * to the end of the array. The current algorithm uses dedicated logic to 1363 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1364 * 1365 * The other historical motiviation for highest->lowest was to improve the 1366 * performance of memslot lookup. KVM originally used a linear search starting 1367 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1368 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1369 * single memslot above the 4gb boundary. As the largest memslot is also the 1370 * most likely to be referenced, sorting it to the front of the array was 1371 * advantageous. The current binary search starts from the middle of the array 1372 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1373 */ 1374 static void update_memslots(struct kvm_memslots *slots, 1375 struct kvm_memory_slot *memslot, 1376 enum kvm_mr_change change) 1377 { 1378 int i; 1379 1380 if (change == KVM_MR_DELETE) { 1381 kvm_memslot_delete(slots, memslot); 1382 } else { 1383 if (change == KVM_MR_CREATE) 1384 i = kvm_memslot_insert_back(slots); 1385 else 1386 i = kvm_memslot_move_backward(slots, memslot); 1387 i = kvm_memslot_move_forward(slots, memslot, i); 1388 1389 /* 1390 * Copy the memslot to its new position in memslots and update 1391 * its index accordingly. 1392 */ 1393 slots->memslots[i] = *memslot; 1394 slots->id_to_index[memslot->id] = i; 1395 } 1396 } 1397 1398 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1399 { 1400 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1401 1402 #ifdef __KVM_HAVE_READONLY_MEM 1403 valid_flags |= KVM_MEM_READONLY; 1404 #endif 1405 1406 if (mem->flags & ~valid_flags) 1407 return -EINVAL; 1408 1409 return 0; 1410 } 1411 1412 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1413 int as_id, struct kvm_memslots *slots) 1414 { 1415 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1416 u64 gen = old_memslots->generation; 1417 1418 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1419 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1420 1421 /* 1422 * Do not store the new memslots while there are invalidations in 1423 * progress, otherwise the locking in invalidate_range_start and 1424 * invalidate_range_end will be unbalanced. 1425 */ 1426 spin_lock(&kvm->mn_invalidate_lock); 1427 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1428 while (kvm->mn_active_invalidate_count) { 1429 set_current_state(TASK_UNINTERRUPTIBLE); 1430 spin_unlock(&kvm->mn_invalidate_lock); 1431 schedule(); 1432 spin_lock(&kvm->mn_invalidate_lock); 1433 } 1434 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1435 rcu_assign_pointer(kvm->memslots[as_id], slots); 1436 spin_unlock(&kvm->mn_invalidate_lock); 1437 1438 /* 1439 * Acquired in kvm_set_memslot. Must be released before synchronize 1440 * SRCU below in order to avoid deadlock with another thread 1441 * acquiring the slots_arch_lock in an srcu critical section. 1442 */ 1443 mutex_unlock(&kvm->slots_arch_lock); 1444 1445 synchronize_srcu_expedited(&kvm->srcu); 1446 1447 /* 1448 * Increment the new memslot generation a second time, dropping the 1449 * update in-progress flag and incrementing the generation based on 1450 * the number of address spaces. This provides a unique and easily 1451 * identifiable generation number while the memslots are in flux. 1452 */ 1453 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1454 1455 /* 1456 * Generations must be unique even across address spaces. We do not need 1457 * a global counter for that, instead the generation space is evenly split 1458 * across address spaces. For example, with two address spaces, address 1459 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1460 * use generations 1, 3, 5, ... 1461 */ 1462 gen += KVM_ADDRESS_SPACE_NUM; 1463 1464 kvm_arch_memslots_updated(kvm, gen); 1465 1466 slots->generation = gen; 1467 1468 return old_memslots; 1469 } 1470 1471 static size_t kvm_memslots_size(int slots) 1472 { 1473 return sizeof(struct kvm_memslots) + 1474 (sizeof(struct kvm_memory_slot) * slots); 1475 } 1476 1477 static void kvm_copy_memslots(struct kvm_memslots *to, 1478 struct kvm_memslots *from) 1479 { 1480 memcpy(to, from, kvm_memslots_size(from->used_slots)); 1481 } 1482 1483 /* 1484 * Note, at a minimum, the current number of used slots must be allocated, even 1485 * when deleting a memslot, as we need a complete duplicate of the memslots for 1486 * use when invalidating a memslot prior to deleting/moving the memslot. 1487 */ 1488 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1489 enum kvm_mr_change change) 1490 { 1491 struct kvm_memslots *slots; 1492 size_t new_size; 1493 1494 if (change == KVM_MR_CREATE) 1495 new_size = kvm_memslots_size(old->used_slots + 1); 1496 else 1497 new_size = kvm_memslots_size(old->used_slots); 1498 1499 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1500 if (likely(slots)) 1501 kvm_copy_memslots(slots, old); 1502 1503 return slots; 1504 } 1505 1506 static int kvm_set_memslot(struct kvm *kvm, 1507 const struct kvm_userspace_memory_region *mem, 1508 struct kvm_memory_slot *old, 1509 struct kvm_memory_slot *new, int as_id, 1510 enum kvm_mr_change change) 1511 { 1512 struct kvm_memory_slot *slot; 1513 struct kvm_memslots *slots; 1514 int r; 1515 1516 /* 1517 * Released in install_new_memslots. 1518 * 1519 * Must be held from before the current memslots are copied until 1520 * after the new memslots are installed with rcu_assign_pointer, 1521 * then released before the synchronize srcu in install_new_memslots. 1522 * 1523 * When modifying memslots outside of the slots_lock, must be held 1524 * before reading the pointer to the current memslots until after all 1525 * changes to those memslots are complete. 1526 * 1527 * These rules ensure that installing new memslots does not lose 1528 * changes made to the previous memslots. 1529 */ 1530 mutex_lock(&kvm->slots_arch_lock); 1531 1532 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1533 if (!slots) { 1534 mutex_unlock(&kvm->slots_arch_lock); 1535 return -ENOMEM; 1536 } 1537 1538 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1539 /* 1540 * Note, the INVALID flag needs to be in the appropriate entry 1541 * in the freshly allocated memslots, not in @old or @new. 1542 */ 1543 slot = id_to_memslot(slots, old->id); 1544 slot->flags |= KVM_MEMSLOT_INVALID; 1545 1546 /* 1547 * We can re-use the memory from the old memslots. 1548 * It will be overwritten with a copy of the new memslots 1549 * after reacquiring the slots_arch_lock below. 1550 */ 1551 slots = install_new_memslots(kvm, as_id, slots); 1552 1553 /* From this point no new shadow pages pointing to a deleted, 1554 * or moved, memslot will be created. 1555 * 1556 * validation of sp->gfn happens in: 1557 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1558 * - kvm_is_visible_gfn (mmu_check_root) 1559 */ 1560 kvm_arch_flush_shadow_memslot(kvm, slot); 1561 1562 /* Released in install_new_memslots. */ 1563 mutex_lock(&kvm->slots_arch_lock); 1564 1565 /* 1566 * The arch-specific fields of the memslots could have changed 1567 * between releasing the slots_arch_lock in 1568 * install_new_memslots and here, so get a fresh copy of the 1569 * slots. 1570 */ 1571 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id)); 1572 } 1573 1574 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1575 if (r) 1576 goto out_slots; 1577 1578 update_memslots(slots, new, change); 1579 slots = install_new_memslots(kvm, as_id, slots); 1580 1581 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1582 1583 kvfree(slots); 1584 return 0; 1585 1586 out_slots: 1587 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1588 slot = id_to_memslot(slots, old->id); 1589 slot->flags &= ~KVM_MEMSLOT_INVALID; 1590 slots = install_new_memslots(kvm, as_id, slots); 1591 } else { 1592 mutex_unlock(&kvm->slots_arch_lock); 1593 } 1594 kvfree(slots); 1595 return r; 1596 } 1597 1598 static int kvm_delete_memslot(struct kvm *kvm, 1599 const struct kvm_userspace_memory_region *mem, 1600 struct kvm_memory_slot *old, int as_id) 1601 { 1602 struct kvm_memory_slot new; 1603 int r; 1604 1605 if (!old->npages) 1606 return -EINVAL; 1607 1608 memset(&new, 0, sizeof(new)); 1609 new.id = old->id; 1610 /* 1611 * This is only for debugging purpose; it should never be referenced 1612 * for a removed memslot. 1613 */ 1614 new.as_id = as_id; 1615 1616 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1617 if (r) 1618 return r; 1619 1620 kvm_free_memslot(kvm, old); 1621 return 0; 1622 } 1623 1624 /* 1625 * Allocate some memory and give it an address in the guest physical address 1626 * space. 1627 * 1628 * Discontiguous memory is allowed, mostly for framebuffers. 1629 * 1630 * Must be called holding kvm->slots_lock for write. 1631 */ 1632 int __kvm_set_memory_region(struct kvm *kvm, 1633 const struct kvm_userspace_memory_region *mem) 1634 { 1635 struct kvm_memory_slot old, new; 1636 struct kvm_memory_slot *tmp; 1637 enum kvm_mr_change change; 1638 int as_id, id; 1639 int r; 1640 1641 r = check_memory_region_flags(mem); 1642 if (r) 1643 return r; 1644 1645 as_id = mem->slot >> 16; 1646 id = (u16)mem->slot; 1647 1648 /* General sanity checks */ 1649 if (mem->memory_size & (PAGE_SIZE - 1)) 1650 return -EINVAL; 1651 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1652 return -EINVAL; 1653 /* We can read the guest memory with __xxx_user() later on. */ 1654 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1655 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1656 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1657 mem->memory_size)) 1658 return -EINVAL; 1659 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1660 return -EINVAL; 1661 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1662 return -EINVAL; 1663 1664 /* 1665 * Make a full copy of the old memslot, the pointer will become stale 1666 * when the memslots are re-sorted by update_memslots(), and the old 1667 * memslot needs to be referenced after calling update_memslots(), e.g. 1668 * to free its resources and for arch specific behavior. 1669 */ 1670 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1671 if (tmp) { 1672 old = *tmp; 1673 tmp = NULL; 1674 } else { 1675 memset(&old, 0, sizeof(old)); 1676 old.id = id; 1677 } 1678 1679 if (!mem->memory_size) 1680 return kvm_delete_memslot(kvm, mem, &old, as_id); 1681 1682 new.as_id = as_id; 1683 new.id = id; 1684 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1685 new.npages = mem->memory_size >> PAGE_SHIFT; 1686 new.flags = mem->flags; 1687 new.userspace_addr = mem->userspace_addr; 1688 1689 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1690 return -EINVAL; 1691 1692 if (!old.npages) { 1693 change = KVM_MR_CREATE; 1694 new.dirty_bitmap = NULL; 1695 memset(&new.arch, 0, sizeof(new.arch)); 1696 } else { /* Modify an existing slot. */ 1697 if ((new.userspace_addr != old.userspace_addr) || 1698 (new.npages != old.npages) || 1699 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1700 return -EINVAL; 1701 1702 if (new.base_gfn != old.base_gfn) 1703 change = KVM_MR_MOVE; 1704 else if (new.flags != old.flags) 1705 change = KVM_MR_FLAGS_ONLY; 1706 else /* Nothing to change. */ 1707 return 0; 1708 1709 /* Copy dirty_bitmap and arch from the current memslot. */ 1710 new.dirty_bitmap = old.dirty_bitmap; 1711 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1712 } 1713 1714 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1715 /* Check for overlaps */ 1716 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1717 if (tmp->id == id) 1718 continue; 1719 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1720 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1721 return -EEXIST; 1722 } 1723 } 1724 1725 /* Allocate/free page dirty bitmap as needed */ 1726 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1727 new.dirty_bitmap = NULL; 1728 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) { 1729 r = kvm_alloc_dirty_bitmap(&new); 1730 if (r) 1731 return r; 1732 1733 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1734 bitmap_set(new.dirty_bitmap, 0, new.npages); 1735 } 1736 1737 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1738 if (r) 1739 goto out_bitmap; 1740 1741 if (old.dirty_bitmap && !new.dirty_bitmap) 1742 kvm_destroy_dirty_bitmap(&old); 1743 return 0; 1744 1745 out_bitmap: 1746 if (new.dirty_bitmap && !old.dirty_bitmap) 1747 kvm_destroy_dirty_bitmap(&new); 1748 return r; 1749 } 1750 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1751 1752 int kvm_set_memory_region(struct kvm *kvm, 1753 const struct kvm_userspace_memory_region *mem) 1754 { 1755 int r; 1756 1757 mutex_lock(&kvm->slots_lock); 1758 r = __kvm_set_memory_region(kvm, mem); 1759 mutex_unlock(&kvm->slots_lock); 1760 return r; 1761 } 1762 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1763 1764 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1765 struct kvm_userspace_memory_region *mem) 1766 { 1767 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1768 return -EINVAL; 1769 1770 return kvm_set_memory_region(kvm, mem); 1771 } 1772 1773 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1774 /** 1775 * kvm_get_dirty_log - get a snapshot of dirty pages 1776 * @kvm: pointer to kvm instance 1777 * @log: slot id and address to which we copy the log 1778 * @is_dirty: set to '1' if any dirty pages were found 1779 * @memslot: set to the associated memslot, always valid on success 1780 */ 1781 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1782 int *is_dirty, struct kvm_memory_slot **memslot) 1783 { 1784 struct kvm_memslots *slots; 1785 int i, as_id, id; 1786 unsigned long n; 1787 unsigned long any = 0; 1788 1789 /* Dirty ring tracking is exclusive to dirty log tracking */ 1790 if (kvm->dirty_ring_size) 1791 return -ENXIO; 1792 1793 *memslot = NULL; 1794 *is_dirty = 0; 1795 1796 as_id = log->slot >> 16; 1797 id = (u16)log->slot; 1798 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1799 return -EINVAL; 1800 1801 slots = __kvm_memslots(kvm, as_id); 1802 *memslot = id_to_memslot(slots, id); 1803 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1804 return -ENOENT; 1805 1806 kvm_arch_sync_dirty_log(kvm, *memslot); 1807 1808 n = kvm_dirty_bitmap_bytes(*memslot); 1809 1810 for (i = 0; !any && i < n/sizeof(long); ++i) 1811 any = (*memslot)->dirty_bitmap[i]; 1812 1813 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1814 return -EFAULT; 1815 1816 if (any) 1817 *is_dirty = 1; 1818 return 0; 1819 } 1820 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1821 1822 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1823 /** 1824 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1825 * and reenable dirty page tracking for the corresponding pages. 1826 * @kvm: pointer to kvm instance 1827 * @log: slot id and address to which we copy the log 1828 * 1829 * We need to keep it in mind that VCPU threads can write to the bitmap 1830 * concurrently. So, to avoid losing track of dirty pages we keep the 1831 * following order: 1832 * 1833 * 1. Take a snapshot of the bit and clear it if needed. 1834 * 2. Write protect the corresponding page. 1835 * 3. Copy the snapshot to the userspace. 1836 * 4. Upon return caller flushes TLB's if needed. 1837 * 1838 * Between 2 and 4, the guest may write to the page using the remaining TLB 1839 * entry. This is not a problem because the page is reported dirty using 1840 * the snapshot taken before and step 4 ensures that writes done after 1841 * exiting to userspace will be logged for the next call. 1842 * 1843 */ 1844 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1845 { 1846 struct kvm_memslots *slots; 1847 struct kvm_memory_slot *memslot; 1848 int i, as_id, id; 1849 unsigned long n; 1850 unsigned long *dirty_bitmap; 1851 unsigned long *dirty_bitmap_buffer; 1852 bool flush; 1853 1854 /* Dirty ring tracking is exclusive to dirty log tracking */ 1855 if (kvm->dirty_ring_size) 1856 return -ENXIO; 1857 1858 as_id = log->slot >> 16; 1859 id = (u16)log->slot; 1860 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1861 return -EINVAL; 1862 1863 slots = __kvm_memslots(kvm, as_id); 1864 memslot = id_to_memslot(slots, id); 1865 if (!memslot || !memslot->dirty_bitmap) 1866 return -ENOENT; 1867 1868 dirty_bitmap = memslot->dirty_bitmap; 1869 1870 kvm_arch_sync_dirty_log(kvm, memslot); 1871 1872 n = kvm_dirty_bitmap_bytes(memslot); 1873 flush = false; 1874 if (kvm->manual_dirty_log_protect) { 1875 /* 1876 * Unlike kvm_get_dirty_log, we always return false in *flush, 1877 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1878 * is some code duplication between this function and 1879 * kvm_get_dirty_log, but hopefully all architecture 1880 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1881 * can be eliminated. 1882 */ 1883 dirty_bitmap_buffer = dirty_bitmap; 1884 } else { 1885 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1886 memset(dirty_bitmap_buffer, 0, n); 1887 1888 KVM_MMU_LOCK(kvm); 1889 for (i = 0; i < n / sizeof(long); i++) { 1890 unsigned long mask; 1891 gfn_t offset; 1892 1893 if (!dirty_bitmap[i]) 1894 continue; 1895 1896 flush = true; 1897 mask = xchg(&dirty_bitmap[i], 0); 1898 dirty_bitmap_buffer[i] = mask; 1899 1900 offset = i * BITS_PER_LONG; 1901 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1902 offset, mask); 1903 } 1904 KVM_MMU_UNLOCK(kvm); 1905 } 1906 1907 if (flush) 1908 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1909 1910 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1911 return -EFAULT; 1912 return 0; 1913 } 1914 1915 1916 /** 1917 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1918 * @kvm: kvm instance 1919 * @log: slot id and address to which we copy the log 1920 * 1921 * Steps 1-4 below provide general overview of dirty page logging. See 1922 * kvm_get_dirty_log_protect() function description for additional details. 1923 * 1924 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1925 * always flush the TLB (step 4) even if previous step failed and the dirty 1926 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1927 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1928 * writes will be marked dirty for next log read. 1929 * 1930 * 1. Take a snapshot of the bit and clear it if needed. 1931 * 2. Write protect the corresponding page. 1932 * 3. Copy the snapshot to the userspace. 1933 * 4. Flush TLB's if needed. 1934 */ 1935 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1936 struct kvm_dirty_log *log) 1937 { 1938 int r; 1939 1940 mutex_lock(&kvm->slots_lock); 1941 1942 r = kvm_get_dirty_log_protect(kvm, log); 1943 1944 mutex_unlock(&kvm->slots_lock); 1945 return r; 1946 } 1947 1948 /** 1949 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1950 * and reenable dirty page tracking for the corresponding pages. 1951 * @kvm: pointer to kvm instance 1952 * @log: slot id and address from which to fetch the bitmap of dirty pages 1953 */ 1954 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1955 struct kvm_clear_dirty_log *log) 1956 { 1957 struct kvm_memslots *slots; 1958 struct kvm_memory_slot *memslot; 1959 int as_id, id; 1960 gfn_t offset; 1961 unsigned long i, n; 1962 unsigned long *dirty_bitmap; 1963 unsigned long *dirty_bitmap_buffer; 1964 bool flush; 1965 1966 /* Dirty ring tracking is exclusive to dirty log tracking */ 1967 if (kvm->dirty_ring_size) 1968 return -ENXIO; 1969 1970 as_id = log->slot >> 16; 1971 id = (u16)log->slot; 1972 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1973 return -EINVAL; 1974 1975 if (log->first_page & 63) 1976 return -EINVAL; 1977 1978 slots = __kvm_memslots(kvm, as_id); 1979 memslot = id_to_memslot(slots, id); 1980 if (!memslot || !memslot->dirty_bitmap) 1981 return -ENOENT; 1982 1983 dirty_bitmap = memslot->dirty_bitmap; 1984 1985 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1986 1987 if (log->first_page > memslot->npages || 1988 log->num_pages > memslot->npages - log->first_page || 1989 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1990 return -EINVAL; 1991 1992 kvm_arch_sync_dirty_log(kvm, memslot); 1993 1994 flush = false; 1995 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1996 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1997 return -EFAULT; 1998 1999 KVM_MMU_LOCK(kvm); 2000 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2001 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2002 i++, offset += BITS_PER_LONG) { 2003 unsigned long mask = *dirty_bitmap_buffer++; 2004 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2005 if (!mask) 2006 continue; 2007 2008 mask &= atomic_long_fetch_andnot(mask, p); 2009 2010 /* 2011 * mask contains the bits that really have been cleared. This 2012 * never includes any bits beyond the length of the memslot (if 2013 * the length is not aligned to 64 pages), therefore it is not 2014 * a problem if userspace sets them in log->dirty_bitmap. 2015 */ 2016 if (mask) { 2017 flush = true; 2018 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2019 offset, mask); 2020 } 2021 } 2022 KVM_MMU_UNLOCK(kvm); 2023 2024 if (flush) 2025 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2026 2027 return 0; 2028 } 2029 2030 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2031 struct kvm_clear_dirty_log *log) 2032 { 2033 int r; 2034 2035 mutex_lock(&kvm->slots_lock); 2036 2037 r = kvm_clear_dirty_log_protect(kvm, log); 2038 2039 mutex_unlock(&kvm->slots_lock); 2040 return r; 2041 } 2042 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2043 2044 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2045 { 2046 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2047 } 2048 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2049 2050 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2051 { 2052 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2053 struct kvm_memory_slot *slot; 2054 int slot_index; 2055 2056 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn); 2057 if (slot) 2058 return slot; 2059 2060 /* 2061 * Fall back to searching all memslots. We purposely use 2062 * search_memslots() instead of __gfn_to_memslot() to avoid 2063 * thrashing the VM-wide last_used_index in kvm_memslots. 2064 */ 2065 slot = search_memslots(slots, gfn, &slot_index); 2066 if (slot) { 2067 vcpu->last_used_slot = slot_index; 2068 return slot; 2069 } 2070 2071 return NULL; 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2074 2075 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2076 { 2077 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2078 2079 return kvm_is_visible_memslot(memslot); 2080 } 2081 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2082 2083 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2084 { 2085 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2086 2087 return kvm_is_visible_memslot(memslot); 2088 } 2089 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2090 2091 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2092 { 2093 struct vm_area_struct *vma; 2094 unsigned long addr, size; 2095 2096 size = PAGE_SIZE; 2097 2098 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2099 if (kvm_is_error_hva(addr)) 2100 return PAGE_SIZE; 2101 2102 mmap_read_lock(current->mm); 2103 vma = find_vma(current->mm, addr); 2104 if (!vma) 2105 goto out; 2106 2107 size = vma_kernel_pagesize(vma); 2108 2109 out: 2110 mmap_read_unlock(current->mm); 2111 2112 return size; 2113 } 2114 2115 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2116 { 2117 return slot->flags & KVM_MEM_READONLY; 2118 } 2119 2120 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2121 gfn_t *nr_pages, bool write) 2122 { 2123 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2124 return KVM_HVA_ERR_BAD; 2125 2126 if (memslot_is_readonly(slot) && write) 2127 return KVM_HVA_ERR_RO_BAD; 2128 2129 if (nr_pages) 2130 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2131 2132 return __gfn_to_hva_memslot(slot, gfn); 2133 } 2134 2135 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2136 gfn_t *nr_pages) 2137 { 2138 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2139 } 2140 2141 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2142 gfn_t gfn) 2143 { 2144 return gfn_to_hva_many(slot, gfn, NULL); 2145 } 2146 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2147 2148 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2149 { 2150 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2151 } 2152 EXPORT_SYMBOL_GPL(gfn_to_hva); 2153 2154 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2155 { 2156 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2157 } 2158 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2159 2160 /* 2161 * Return the hva of a @gfn and the R/W attribute if possible. 2162 * 2163 * @slot: the kvm_memory_slot which contains @gfn 2164 * @gfn: the gfn to be translated 2165 * @writable: used to return the read/write attribute of the @slot if the hva 2166 * is valid and @writable is not NULL 2167 */ 2168 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2169 gfn_t gfn, bool *writable) 2170 { 2171 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2172 2173 if (!kvm_is_error_hva(hva) && writable) 2174 *writable = !memslot_is_readonly(slot); 2175 2176 return hva; 2177 } 2178 2179 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2180 { 2181 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2182 2183 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2184 } 2185 2186 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2187 { 2188 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2189 2190 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2191 } 2192 2193 static inline int check_user_page_hwpoison(unsigned long addr) 2194 { 2195 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2196 2197 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2198 return rc == -EHWPOISON; 2199 } 2200 2201 /* 2202 * The fast path to get the writable pfn which will be stored in @pfn, 2203 * true indicates success, otherwise false is returned. It's also the 2204 * only part that runs if we can in atomic context. 2205 */ 2206 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2207 bool *writable, kvm_pfn_t *pfn) 2208 { 2209 struct page *page[1]; 2210 2211 /* 2212 * Fast pin a writable pfn only if it is a write fault request 2213 * or the caller allows to map a writable pfn for a read fault 2214 * request. 2215 */ 2216 if (!(write_fault || writable)) 2217 return false; 2218 2219 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2220 *pfn = page_to_pfn(page[0]); 2221 2222 if (writable) 2223 *writable = true; 2224 return true; 2225 } 2226 2227 return false; 2228 } 2229 2230 /* 2231 * The slow path to get the pfn of the specified host virtual address, 2232 * 1 indicates success, -errno is returned if error is detected. 2233 */ 2234 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2235 bool *writable, kvm_pfn_t *pfn) 2236 { 2237 unsigned int flags = FOLL_HWPOISON; 2238 struct page *page; 2239 int npages = 0; 2240 2241 might_sleep(); 2242 2243 if (writable) 2244 *writable = write_fault; 2245 2246 if (write_fault) 2247 flags |= FOLL_WRITE; 2248 if (async) 2249 flags |= FOLL_NOWAIT; 2250 2251 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2252 if (npages != 1) 2253 return npages; 2254 2255 /* map read fault as writable if possible */ 2256 if (unlikely(!write_fault) && writable) { 2257 struct page *wpage; 2258 2259 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2260 *writable = true; 2261 put_page(page); 2262 page = wpage; 2263 } 2264 } 2265 *pfn = page_to_pfn(page); 2266 return npages; 2267 } 2268 2269 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2270 { 2271 if (unlikely(!(vma->vm_flags & VM_READ))) 2272 return false; 2273 2274 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2275 return false; 2276 2277 return true; 2278 } 2279 2280 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2281 { 2282 if (kvm_is_reserved_pfn(pfn)) 2283 return 1; 2284 return get_page_unless_zero(pfn_to_page(pfn)); 2285 } 2286 2287 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2288 unsigned long addr, bool *async, 2289 bool write_fault, bool *writable, 2290 kvm_pfn_t *p_pfn) 2291 { 2292 kvm_pfn_t pfn; 2293 pte_t *ptep; 2294 spinlock_t *ptl; 2295 int r; 2296 2297 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2298 if (r) { 2299 /* 2300 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2301 * not call the fault handler, so do it here. 2302 */ 2303 bool unlocked = false; 2304 r = fixup_user_fault(current->mm, addr, 2305 (write_fault ? FAULT_FLAG_WRITE : 0), 2306 &unlocked); 2307 if (unlocked) 2308 return -EAGAIN; 2309 if (r) 2310 return r; 2311 2312 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2313 if (r) 2314 return r; 2315 } 2316 2317 if (write_fault && !pte_write(*ptep)) { 2318 pfn = KVM_PFN_ERR_RO_FAULT; 2319 goto out; 2320 } 2321 2322 if (writable) 2323 *writable = pte_write(*ptep); 2324 pfn = pte_pfn(*ptep); 2325 2326 /* 2327 * Get a reference here because callers of *hva_to_pfn* and 2328 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2329 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2330 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2331 * simply do nothing for reserved pfns. 2332 * 2333 * Whoever called remap_pfn_range is also going to call e.g. 2334 * unmap_mapping_range before the underlying pages are freed, 2335 * causing a call to our MMU notifier. 2336 * 2337 * Certain IO or PFNMAP mappings can be backed with valid 2338 * struct pages, but be allocated without refcounting e.g., 2339 * tail pages of non-compound higher order allocations, which 2340 * would then underflow the refcount when the caller does the 2341 * required put_page. Don't allow those pages here. 2342 */ 2343 if (!kvm_try_get_pfn(pfn)) 2344 r = -EFAULT; 2345 2346 out: 2347 pte_unmap_unlock(ptep, ptl); 2348 *p_pfn = pfn; 2349 2350 return r; 2351 } 2352 2353 /* 2354 * Pin guest page in memory and return its pfn. 2355 * @addr: host virtual address which maps memory to the guest 2356 * @atomic: whether this function can sleep 2357 * @async: whether this function need to wait IO complete if the 2358 * host page is not in the memory 2359 * @write_fault: whether we should get a writable host page 2360 * @writable: whether it allows to map a writable host page for !@write_fault 2361 * 2362 * The function will map a writable host page for these two cases: 2363 * 1): @write_fault = true 2364 * 2): @write_fault = false && @writable, @writable will tell the caller 2365 * whether the mapping is writable. 2366 */ 2367 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2368 bool write_fault, bool *writable) 2369 { 2370 struct vm_area_struct *vma; 2371 kvm_pfn_t pfn = 0; 2372 int npages, r; 2373 2374 /* we can do it either atomically or asynchronously, not both */ 2375 BUG_ON(atomic && async); 2376 2377 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2378 return pfn; 2379 2380 if (atomic) 2381 return KVM_PFN_ERR_FAULT; 2382 2383 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2384 if (npages == 1) 2385 return pfn; 2386 2387 mmap_read_lock(current->mm); 2388 if (npages == -EHWPOISON || 2389 (!async && check_user_page_hwpoison(addr))) { 2390 pfn = KVM_PFN_ERR_HWPOISON; 2391 goto exit; 2392 } 2393 2394 retry: 2395 vma = vma_lookup(current->mm, addr); 2396 2397 if (vma == NULL) 2398 pfn = KVM_PFN_ERR_FAULT; 2399 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2400 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2401 if (r == -EAGAIN) 2402 goto retry; 2403 if (r < 0) 2404 pfn = KVM_PFN_ERR_FAULT; 2405 } else { 2406 if (async && vma_is_valid(vma, write_fault)) 2407 *async = true; 2408 pfn = KVM_PFN_ERR_FAULT; 2409 } 2410 exit: 2411 mmap_read_unlock(current->mm); 2412 return pfn; 2413 } 2414 2415 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2416 bool atomic, bool *async, bool write_fault, 2417 bool *writable, hva_t *hva) 2418 { 2419 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2420 2421 if (hva) 2422 *hva = addr; 2423 2424 if (addr == KVM_HVA_ERR_RO_BAD) { 2425 if (writable) 2426 *writable = false; 2427 return KVM_PFN_ERR_RO_FAULT; 2428 } 2429 2430 if (kvm_is_error_hva(addr)) { 2431 if (writable) 2432 *writable = false; 2433 return KVM_PFN_NOSLOT; 2434 } 2435 2436 /* Do not map writable pfn in the readonly memslot. */ 2437 if (writable && memslot_is_readonly(slot)) { 2438 *writable = false; 2439 writable = NULL; 2440 } 2441 2442 return hva_to_pfn(addr, atomic, async, write_fault, 2443 writable); 2444 } 2445 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2446 2447 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2448 bool *writable) 2449 { 2450 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2451 write_fault, writable, NULL); 2452 } 2453 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2454 2455 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2456 { 2457 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2458 } 2459 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2460 2461 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2462 { 2463 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2464 } 2465 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2466 2467 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2468 { 2469 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2470 } 2471 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2472 2473 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2474 { 2475 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2476 } 2477 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2478 2479 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2480 { 2481 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2482 } 2483 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2484 2485 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2486 struct page **pages, int nr_pages) 2487 { 2488 unsigned long addr; 2489 gfn_t entry = 0; 2490 2491 addr = gfn_to_hva_many(slot, gfn, &entry); 2492 if (kvm_is_error_hva(addr)) 2493 return -1; 2494 2495 if (entry < nr_pages) 2496 return 0; 2497 2498 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2499 } 2500 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2501 2502 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2503 { 2504 if (is_error_noslot_pfn(pfn)) 2505 return KVM_ERR_PTR_BAD_PAGE; 2506 2507 if (kvm_is_reserved_pfn(pfn)) { 2508 WARN_ON(1); 2509 return KVM_ERR_PTR_BAD_PAGE; 2510 } 2511 2512 return pfn_to_page(pfn); 2513 } 2514 2515 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2516 { 2517 kvm_pfn_t pfn; 2518 2519 pfn = gfn_to_pfn(kvm, gfn); 2520 2521 return kvm_pfn_to_page(pfn); 2522 } 2523 EXPORT_SYMBOL_GPL(gfn_to_page); 2524 2525 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2526 { 2527 if (pfn == 0) 2528 return; 2529 2530 if (cache) 2531 cache->pfn = cache->gfn = 0; 2532 2533 if (dirty) 2534 kvm_release_pfn_dirty(pfn); 2535 else 2536 kvm_release_pfn_clean(pfn); 2537 } 2538 2539 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2540 struct gfn_to_pfn_cache *cache, u64 gen) 2541 { 2542 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2543 2544 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2545 cache->gfn = gfn; 2546 cache->dirty = false; 2547 cache->generation = gen; 2548 } 2549 2550 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2551 struct kvm_host_map *map, 2552 struct gfn_to_pfn_cache *cache, 2553 bool atomic) 2554 { 2555 kvm_pfn_t pfn; 2556 void *hva = NULL; 2557 struct page *page = KVM_UNMAPPED_PAGE; 2558 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2559 u64 gen = slots->generation; 2560 2561 if (!map) 2562 return -EINVAL; 2563 2564 if (cache) { 2565 if (!cache->pfn || cache->gfn != gfn || 2566 cache->generation != gen) { 2567 if (atomic) 2568 return -EAGAIN; 2569 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2570 } 2571 pfn = cache->pfn; 2572 } else { 2573 if (atomic) 2574 return -EAGAIN; 2575 pfn = gfn_to_pfn_memslot(slot, gfn); 2576 } 2577 if (is_error_noslot_pfn(pfn)) 2578 return -EINVAL; 2579 2580 if (pfn_valid(pfn)) { 2581 page = pfn_to_page(pfn); 2582 if (atomic) 2583 hva = kmap_atomic(page); 2584 else 2585 hva = kmap(page); 2586 #ifdef CONFIG_HAS_IOMEM 2587 } else if (!atomic) { 2588 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2589 } else { 2590 return -EINVAL; 2591 #endif 2592 } 2593 2594 if (!hva) 2595 return -EFAULT; 2596 2597 map->page = page; 2598 map->hva = hva; 2599 map->pfn = pfn; 2600 map->gfn = gfn; 2601 2602 return 0; 2603 } 2604 2605 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2606 struct gfn_to_pfn_cache *cache, bool atomic) 2607 { 2608 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2609 cache, atomic); 2610 } 2611 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2612 2613 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2614 { 2615 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2616 NULL, false); 2617 } 2618 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2619 2620 static void __kvm_unmap_gfn(struct kvm *kvm, 2621 struct kvm_memory_slot *memslot, 2622 struct kvm_host_map *map, 2623 struct gfn_to_pfn_cache *cache, 2624 bool dirty, bool atomic) 2625 { 2626 if (!map) 2627 return; 2628 2629 if (!map->hva) 2630 return; 2631 2632 if (map->page != KVM_UNMAPPED_PAGE) { 2633 if (atomic) 2634 kunmap_atomic(map->hva); 2635 else 2636 kunmap(map->page); 2637 } 2638 #ifdef CONFIG_HAS_IOMEM 2639 else if (!atomic) 2640 memunmap(map->hva); 2641 else 2642 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2643 #endif 2644 2645 if (dirty) 2646 mark_page_dirty_in_slot(kvm, memslot, map->gfn); 2647 2648 if (cache) 2649 cache->dirty |= dirty; 2650 else 2651 kvm_release_pfn(map->pfn, dirty, NULL); 2652 2653 map->hva = NULL; 2654 map->page = NULL; 2655 } 2656 2657 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2658 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2659 { 2660 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map, 2661 cache, dirty, atomic); 2662 return 0; 2663 } 2664 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2665 2666 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2667 { 2668 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), 2669 map, NULL, dirty, false); 2670 } 2671 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2672 2673 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2674 { 2675 kvm_pfn_t pfn; 2676 2677 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2678 2679 return kvm_pfn_to_page(pfn); 2680 } 2681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2682 2683 void kvm_release_page_clean(struct page *page) 2684 { 2685 WARN_ON(is_error_page(page)); 2686 2687 kvm_release_pfn_clean(page_to_pfn(page)); 2688 } 2689 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2690 2691 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2692 { 2693 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2694 put_page(pfn_to_page(pfn)); 2695 } 2696 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2697 2698 void kvm_release_page_dirty(struct page *page) 2699 { 2700 WARN_ON(is_error_page(page)); 2701 2702 kvm_release_pfn_dirty(page_to_pfn(page)); 2703 } 2704 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2705 2706 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2707 { 2708 kvm_set_pfn_dirty(pfn); 2709 kvm_release_pfn_clean(pfn); 2710 } 2711 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2712 2713 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2714 { 2715 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2716 SetPageDirty(pfn_to_page(pfn)); 2717 } 2718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2719 2720 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2721 { 2722 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2723 mark_page_accessed(pfn_to_page(pfn)); 2724 } 2725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2726 2727 static int next_segment(unsigned long len, int offset) 2728 { 2729 if (len > PAGE_SIZE - offset) 2730 return PAGE_SIZE - offset; 2731 else 2732 return len; 2733 } 2734 2735 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2736 void *data, int offset, int len) 2737 { 2738 int r; 2739 unsigned long addr; 2740 2741 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2742 if (kvm_is_error_hva(addr)) 2743 return -EFAULT; 2744 r = __copy_from_user(data, (void __user *)addr + offset, len); 2745 if (r) 2746 return -EFAULT; 2747 return 0; 2748 } 2749 2750 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2751 int len) 2752 { 2753 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2754 2755 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2756 } 2757 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2758 2759 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2760 int offset, int len) 2761 { 2762 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2763 2764 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2765 } 2766 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2767 2768 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2769 { 2770 gfn_t gfn = gpa >> PAGE_SHIFT; 2771 int seg; 2772 int offset = offset_in_page(gpa); 2773 int ret; 2774 2775 while ((seg = next_segment(len, offset)) != 0) { 2776 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2777 if (ret < 0) 2778 return ret; 2779 offset = 0; 2780 len -= seg; 2781 data += seg; 2782 ++gfn; 2783 } 2784 return 0; 2785 } 2786 EXPORT_SYMBOL_GPL(kvm_read_guest); 2787 2788 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2789 { 2790 gfn_t gfn = gpa >> PAGE_SHIFT; 2791 int seg; 2792 int offset = offset_in_page(gpa); 2793 int ret; 2794 2795 while ((seg = next_segment(len, offset)) != 0) { 2796 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2797 if (ret < 0) 2798 return ret; 2799 offset = 0; 2800 len -= seg; 2801 data += seg; 2802 ++gfn; 2803 } 2804 return 0; 2805 } 2806 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2807 2808 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2809 void *data, int offset, unsigned long len) 2810 { 2811 int r; 2812 unsigned long addr; 2813 2814 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2815 if (kvm_is_error_hva(addr)) 2816 return -EFAULT; 2817 pagefault_disable(); 2818 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2819 pagefault_enable(); 2820 if (r) 2821 return -EFAULT; 2822 return 0; 2823 } 2824 2825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2826 void *data, unsigned long len) 2827 { 2828 gfn_t gfn = gpa >> PAGE_SHIFT; 2829 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2830 int offset = offset_in_page(gpa); 2831 2832 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2833 } 2834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2835 2836 static int __kvm_write_guest_page(struct kvm *kvm, 2837 struct kvm_memory_slot *memslot, gfn_t gfn, 2838 const void *data, int offset, int len) 2839 { 2840 int r; 2841 unsigned long addr; 2842 2843 addr = gfn_to_hva_memslot(memslot, gfn); 2844 if (kvm_is_error_hva(addr)) 2845 return -EFAULT; 2846 r = __copy_to_user((void __user *)addr + offset, data, len); 2847 if (r) 2848 return -EFAULT; 2849 mark_page_dirty_in_slot(kvm, memslot, gfn); 2850 return 0; 2851 } 2852 2853 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2854 const void *data, int offset, int len) 2855 { 2856 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2857 2858 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2859 } 2860 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2861 2862 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2863 const void *data, int offset, int len) 2864 { 2865 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2866 2867 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2868 } 2869 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2870 2871 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2872 unsigned long len) 2873 { 2874 gfn_t gfn = gpa >> PAGE_SHIFT; 2875 int seg; 2876 int offset = offset_in_page(gpa); 2877 int ret; 2878 2879 while ((seg = next_segment(len, offset)) != 0) { 2880 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2881 if (ret < 0) 2882 return ret; 2883 offset = 0; 2884 len -= seg; 2885 data += seg; 2886 ++gfn; 2887 } 2888 return 0; 2889 } 2890 EXPORT_SYMBOL_GPL(kvm_write_guest); 2891 2892 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2893 unsigned long len) 2894 { 2895 gfn_t gfn = gpa >> PAGE_SHIFT; 2896 int seg; 2897 int offset = offset_in_page(gpa); 2898 int ret; 2899 2900 while ((seg = next_segment(len, offset)) != 0) { 2901 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2902 if (ret < 0) 2903 return ret; 2904 offset = 0; 2905 len -= seg; 2906 data += seg; 2907 ++gfn; 2908 } 2909 return 0; 2910 } 2911 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2912 2913 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2914 struct gfn_to_hva_cache *ghc, 2915 gpa_t gpa, unsigned long len) 2916 { 2917 int offset = offset_in_page(gpa); 2918 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2919 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2920 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2921 gfn_t nr_pages_avail; 2922 2923 /* Update ghc->generation before performing any error checks. */ 2924 ghc->generation = slots->generation; 2925 2926 if (start_gfn > end_gfn) { 2927 ghc->hva = KVM_HVA_ERR_BAD; 2928 return -EINVAL; 2929 } 2930 2931 /* 2932 * If the requested region crosses two memslots, we still 2933 * verify that the entire region is valid here. 2934 */ 2935 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2936 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2937 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2938 &nr_pages_avail); 2939 if (kvm_is_error_hva(ghc->hva)) 2940 return -EFAULT; 2941 } 2942 2943 /* Use the slow path for cross page reads and writes. */ 2944 if (nr_pages_needed == 1) 2945 ghc->hva += offset; 2946 else 2947 ghc->memslot = NULL; 2948 2949 ghc->gpa = gpa; 2950 ghc->len = len; 2951 return 0; 2952 } 2953 2954 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2955 gpa_t gpa, unsigned long len) 2956 { 2957 struct kvm_memslots *slots = kvm_memslots(kvm); 2958 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2959 } 2960 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2961 2962 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2963 void *data, unsigned int offset, 2964 unsigned long len) 2965 { 2966 struct kvm_memslots *slots = kvm_memslots(kvm); 2967 int r; 2968 gpa_t gpa = ghc->gpa + offset; 2969 2970 BUG_ON(len + offset > ghc->len); 2971 2972 if (slots->generation != ghc->generation) { 2973 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2974 return -EFAULT; 2975 } 2976 2977 if (kvm_is_error_hva(ghc->hva)) 2978 return -EFAULT; 2979 2980 if (unlikely(!ghc->memslot)) 2981 return kvm_write_guest(kvm, gpa, data, len); 2982 2983 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2984 if (r) 2985 return -EFAULT; 2986 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 2987 2988 return 0; 2989 } 2990 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2991 2992 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2993 void *data, unsigned long len) 2994 { 2995 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2996 } 2997 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2998 2999 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3000 void *data, unsigned int offset, 3001 unsigned long len) 3002 { 3003 struct kvm_memslots *slots = kvm_memslots(kvm); 3004 int r; 3005 gpa_t gpa = ghc->gpa + offset; 3006 3007 BUG_ON(len + offset > ghc->len); 3008 3009 if (slots->generation != ghc->generation) { 3010 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3011 return -EFAULT; 3012 } 3013 3014 if (kvm_is_error_hva(ghc->hva)) 3015 return -EFAULT; 3016 3017 if (unlikely(!ghc->memslot)) 3018 return kvm_read_guest(kvm, gpa, data, len); 3019 3020 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3021 if (r) 3022 return -EFAULT; 3023 3024 return 0; 3025 } 3026 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3027 3028 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3029 void *data, unsigned long len) 3030 { 3031 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3032 } 3033 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3034 3035 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3036 { 3037 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3038 gfn_t gfn = gpa >> PAGE_SHIFT; 3039 int seg; 3040 int offset = offset_in_page(gpa); 3041 int ret; 3042 3043 while ((seg = next_segment(len, offset)) != 0) { 3044 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3045 if (ret < 0) 3046 return ret; 3047 offset = 0; 3048 len -= seg; 3049 ++gfn; 3050 } 3051 return 0; 3052 } 3053 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3054 3055 void mark_page_dirty_in_slot(struct kvm *kvm, 3056 struct kvm_memory_slot *memslot, 3057 gfn_t gfn) 3058 { 3059 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3060 unsigned long rel_gfn = gfn - memslot->base_gfn; 3061 u32 slot = (memslot->as_id << 16) | memslot->id; 3062 3063 if (kvm->dirty_ring_size) 3064 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 3065 slot, rel_gfn); 3066 else 3067 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3068 } 3069 } 3070 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3071 3072 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3073 { 3074 struct kvm_memory_slot *memslot; 3075 3076 memslot = gfn_to_memslot(kvm, gfn); 3077 mark_page_dirty_in_slot(kvm, memslot, gfn); 3078 } 3079 EXPORT_SYMBOL_GPL(mark_page_dirty); 3080 3081 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3082 { 3083 struct kvm_memory_slot *memslot; 3084 3085 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3086 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3087 } 3088 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3089 3090 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3091 { 3092 if (!vcpu->sigset_active) 3093 return; 3094 3095 /* 3096 * This does a lockless modification of ->real_blocked, which is fine 3097 * because, only current can change ->real_blocked and all readers of 3098 * ->real_blocked don't care as long ->real_blocked is always a subset 3099 * of ->blocked. 3100 */ 3101 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3102 } 3103 3104 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3105 { 3106 if (!vcpu->sigset_active) 3107 return; 3108 3109 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3110 sigemptyset(¤t->real_blocked); 3111 } 3112 3113 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3114 { 3115 unsigned int old, val, grow, grow_start; 3116 3117 old = val = vcpu->halt_poll_ns; 3118 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3119 grow = READ_ONCE(halt_poll_ns_grow); 3120 if (!grow) 3121 goto out; 3122 3123 val *= grow; 3124 if (val < grow_start) 3125 val = grow_start; 3126 3127 if (val > vcpu->kvm->max_halt_poll_ns) 3128 val = vcpu->kvm->max_halt_poll_ns; 3129 3130 vcpu->halt_poll_ns = val; 3131 out: 3132 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3133 } 3134 3135 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3136 { 3137 unsigned int old, val, shrink; 3138 3139 old = val = vcpu->halt_poll_ns; 3140 shrink = READ_ONCE(halt_poll_ns_shrink); 3141 if (shrink == 0) 3142 val = 0; 3143 else 3144 val /= shrink; 3145 3146 vcpu->halt_poll_ns = val; 3147 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3148 } 3149 3150 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3151 { 3152 int ret = -EINTR; 3153 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3154 3155 if (kvm_arch_vcpu_runnable(vcpu)) { 3156 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3157 goto out; 3158 } 3159 if (kvm_cpu_has_pending_timer(vcpu)) 3160 goto out; 3161 if (signal_pending(current)) 3162 goto out; 3163 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3164 goto out; 3165 3166 ret = 0; 3167 out: 3168 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3169 return ret; 3170 } 3171 3172 static inline void 3173 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3174 { 3175 if (waited) 3176 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3177 else 3178 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3179 } 3180 3181 /* 3182 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3183 */ 3184 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3185 { 3186 ktime_t start, cur, poll_end; 3187 bool waited = false; 3188 u64 block_ns; 3189 3190 kvm_arch_vcpu_blocking(vcpu); 3191 3192 start = cur = poll_end = ktime_get(); 3193 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3194 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3195 3196 ++vcpu->stat.generic.halt_attempted_poll; 3197 do { 3198 /* 3199 * This sets KVM_REQ_UNHALT if an interrupt 3200 * arrives. 3201 */ 3202 if (kvm_vcpu_check_block(vcpu) < 0) { 3203 ++vcpu->stat.generic.halt_successful_poll; 3204 if (!vcpu_valid_wakeup(vcpu)) 3205 ++vcpu->stat.generic.halt_poll_invalid; 3206 3207 KVM_STATS_LOG_HIST_UPDATE( 3208 vcpu->stat.generic.halt_poll_success_hist, 3209 ktime_to_ns(ktime_get()) - 3210 ktime_to_ns(start)); 3211 goto out; 3212 } 3213 cpu_relax(); 3214 poll_end = cur = ktime_get(); 3215 } while (kvm_vcpu_can_poll(cur, stop)); 3216 3217 KVM_STATS_LOG_HIST_UPDATE( 3218 vcpu->stat.generic.halt_poll_fail_hist, 3219 ktime_to_ns(ktime_get()) - ktime_to_ns(start)); 3220 } 3221 3222 3223 prepare_to_rcuwait(&vcpu->wait); 3224 for (;;) { 3225 set_current_state(TASK_INTERRUPTIBLE); 3226 3227 if (kvm_vcpu_check_block(vcpu) < 0) 3228 break; 3229 3230 waited = true; 3231 schedule(); 3232 } 3233 finish_rcuwait(&vcpu->wait); 3234 cur = ktime_get(); 3235 if (waited) { 3236 vcpu->stat.generic.halt_wait_ns += 3237 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3238 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3239 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3240 } 3241 out: 3242 kvm_arch_vcpu_unblocking(vcpu); 3243 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3244 3245 update_halt_poll_stats( 3246 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3247 3248 if (!kvm_arch_no_poll(vcpu)) { 3249 if (!vcpu_valid_wakeup(vcpu)) { 3250 shrink_halt_poll_ns(vcpu); 3251 } else if (vcpu->kvm->max_halt_poll_ns) { 3252 if (block_ns <= vcpu->halt_poll_ns) 3253 ; 3254 /* we had a long block, shrink polling */ 3255 else if (vcpu->halt_poll_ns && 3256 block_ns > vcpu->kvm->max_halt_poll_ns) 3257 shrink_halt_poll_ns(vcpu); 3258 /* we had a short halt and our poll time is too small */ 3259 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3260 block_ns < vcpu->kvm->max_halt_poll_ns) 3261 grow_halt_poll_ns(vcpu); 3262 } else { 3263 vcpu->halt_poll_ns = 0; 3264 } 3265 } 3266 3267 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3268 kvm_arch_vcpu_block_finish(vcpu); 3269 } 3270 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3271 3272 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3273 { 3274 struct rcuwait *waitp; 3275 3276 waitp = kvm_arch_vcpu_get_wait(vcpu); 3277 if (rcuwait_wake_up(waitp)) { 3278 WRITE_ONCE(vcpu->ready, true); 3279 ++vcpu->stat.generic.halt_wakeup; 3280 return true; 3281 } 3282 3283 return false; 3284 } 3285 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3286 3287 #ifndef CONFIG_S390 3288 /* 3289 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3290 */ 3291 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3292 { 3293 int me; 3294 int cpu = vcpu->cpu; 3295 3296 if (kvm_vcpu_wake_up(vcpu)) 3297 return; 3298 3299 me = get_cpu(); 3300 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3301 if (kvm_arch_vcpu_should_kick(vcpu)) 3302 smp_send_reschedule(cpu); 3303 put_cpu(); 3304 } 3305 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3306 #endif /* !CONFIG_S390 */ 3307 3308 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3309 { 3310 struct pid *pid; 3311 struct task_struct *task = NULL; 3312 int ret = 0; 3313 3314 rcu_read_lock(); 3315 pid = rcu_dereference(target->pid); 3316 if (pid) 3317 task = get_pid_task(pid, PIDTYPE_PID); 3318 rcu_read_unlock(); 3319 if (!task) 3320 return ret; 3321 ret = yield_to(task, 1); 3322 put_task_struct(task); 3323 3324 return ret; 3325 } 3326 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3327 3328 /* 3329 * Helper that checks whether a VCPU is eligible for directed yield. 3330 * Most eligible candidate to yield is decided by following heuristics: 3331 * 3332 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3333 * (preempted lock holder), indicated by @in_spin_loop. 3334 * Set at the beginning and cleared at the end of interception/PLE handler. 3335 * 3336 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3337 * chance last time (mostly it has become eligible now since we have probably 3338 * yielded to lockholder in last iteration. This is done by toggling 3339 * @dy_eligible each time a VCPU checked for eligibility.) 3340 * 3341 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3342 * to preempted lock-holder could result in wrong VCPU selection and CPU 3343 * burning. Giving priority for a potential lock-holder increases lock 3344 * progress. 3345 * 3346 * Since algorithm is based on heuristics, accessing another VCPU data without 3347 * locking does not harm. It may result in trying to yield to same VCPU, fail 3348 * and continue with next VCPU and so on. 3349 */ 3350 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3351 { 3352 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3353 bool eligible; 3354 3355 eligible = !vcpu->spin_loop.in_spin_loop || 3356 vcpu->spin_loop.dy_eligible; 3357 3358 if (vcpu->spin_loop.in_spin_loop) 3359 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3360 3361 return eligible; 3362 #else 3363 return true; 3364 #endif 3365 } 3366 3367 /* 3368 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3369 * a vcpu_load/vcpu_put pair. However, for most architectures 3370 * kvm_arch_vcpu_runnable does not require vcpu_load. 3371 */ 3372 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3373 { 3374 return kvm_arch_vcpu_runnable(vcpu); 3375 } 3376 3377 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3378 { 3379 if (kvm_arch_dy_runnable(vcpu)) 3380 return true; 3381 3382 #ifdef CONFIG_KVM_ASYNC_PF 3383 if (!list_empty_careful(&vcpu->async_pf.done)) 3384 return true; 3385 #endif 3386 3387 return false; 3388 } 3389 3390 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3391 { 3392 return false; 3393 } 3394 3395 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3396 { 3397 struct kvm *kvm = me->kvm; 3398 struct kvm_vcpu *vcpu; 3399 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3400 int yielded = 0; 3401 int try = 3; 3402 int pass; 3403 int i; 3404 3405 kvm_vcpu_set_in_spin_loop(me, true); 3406 /* 3407 * We boost the priority of a VCPU that is runnable but not 3408 * currently running, because it got preempted by something 3409 * else and called schedule in __vcpu_run. Hopefully that 3410 * VCPU is holding the lock that we need and will release it. 3411 * We approximate round-robin by starting at the last boosted VCPU. 3412 */ 3413 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3414 kvm_for_each_vcpu(i, vcpu, kvm) { 3415 if (!pass && i <= last_boosted_vcpu) { 3416 i = last_boosted_vcpu; 3417 continue; 3418 } else if (pass && i > last_boosted_vcpu) 3419 break; 3420 if (!READ_ONCE(vcpu->ready)) 3421 continue; 3422 if (vcpu == me) 3423 continue; 3424 if (rcuwait_active(&vcpu->wait) && 3425 !vcpu_dy_runnable(vcpu)) 3426 continue; 3427 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3428 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3429 !kvm_arch_vcpu_in_kernel(vcpu)) 3430 continue; 3431 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3432 continue; 3433 3434 yielded = kvm_vcpu_yield_to(vcpu); 3435 if (yielded > 0) { 3436 kvm->last_boosted_vcpu = i; 3437 break; 3438 } else if (yielded < 0) { 3439 try--; 3440 if (!try) 3441 break; 3442 } 3443 } 3444 } 3445 kvm_vcpu_set_in_spin_loop(me, false); 3446 3447 /* Ensure vcpu is not eligible during next spinloop */ 3448 kvm_vcpu_set_dy_eligible(me, false); 3449 } 3450 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3451 3452 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3453 { 3454 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3455 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3456 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3457 kvm->dirty_ring_size / PAGE_SIZE); 3458 #else 3459 return false; 3460 #endif 3461 } 3462 3463 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3464 { 3465 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3466 struct page *page; 3467 3468 if (vmf->pgoff == 0) 3469 page = virt_to_page(vcpu->run); 3470 #ifdef CONFIG_X86 3471 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3472 page = virt_to_page(vcpu->arch.pio_data); 3473 #endif 3474 #ifdef CONFIG_KVM_MMIO 3475 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3476 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3477 #endif 3478 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3479 page = kvm_dirty_ring_get_page( 3480 &vcpu->dirty_ring, 3481 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3482 else 3483 return kvm_arch_vcpu_fault(vcpu, vmf); 3484 get_page(page); 3485 vmf->page = page; 3486 return 0; 3487 } 3488 3489 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3490 .fault = kvm_vcpu_fault, 3491 }; 3492 3493 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3494 { 3495 struct kvm_vcpu *vcpu = file->private_data; 3496 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3497 3498 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3499 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3500 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3501 return -EINVAL; 3502 3503 vma->vm_ops = &kvm_vcpu_vm_ops; 3504 return 0; 3505 } 3506 3507 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3508 { 3509 struct kvm_vcpu *vcpu = filp->private_data; 3510 3511 kvm_put_kvm(vcpu->kvm); 3512 return 0; 3513 } 3514 3515 static struct file_operations kvm_vcpu_fops = { 3516 .release = kvm_vcpu_release, 3517 .unlocked_ioctl = kvm_vcpu_ioctl, 3518 .mmap = kvm_vcpu_mmap, 3519 .llseek = noop_llseek, 3520 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3521 }; 3522 3523 /* 3524 * Allocates an inode for the vcpu. 3525 */ 3526 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3527 { 3528 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3529 3530 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3531 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3532 } 3533 3534 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3535 { 3536 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3537 struct dentry *debugfs_dentry; 3538 char dir_name[ITOA_MAX_LEN * 2]; 3539 3540 if (!debugfs_initialized()) 3541 return; 3542 3543 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3544 debugfs_dentry = debugfs_create_dir(dir_name, 3545 vcpu->kvm->debugfs_dentry); 3546 3547 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3548 #endif 3549 } 3550 3551 /* 3552 * Creates some virtual cpus. Good luck creating more than one. 3553 */ 3554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3555 { 3556 int r; 3557 struct kvm_vcpu *vcpu; 3558 struct page *page; 3559 3560 if (id >= KVM_MAX_VCPU_ID) 3561 return -EINVAL; 3562 3563 mutex_lock(&kvm->lock); 3564 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3565 mutex_unlock(&kvm->lock); 3566 return -EINVAL; 3567 } 3568 3569 kvm->created_vcpus++; 3570 mutex_unlock(&kvm->lock); 3571 3572 r = kvm_arch_vcpu_precreate(kvm, id); 3573 if (r) 3574 goto vcpu_decrement; 3575 3576 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3577 if (!vcpu) { 3578 r = -ENOMEM; 3579 goto vcpu_decrement; 3580 } 3581 3582 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3583 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3584 if (!page) { 3585 r = -ENOMEM; 3586 goto vcpu_free; 3587 } 3588 vcpu->run = page_address(page); 3589 3590 kvm_vcpu_init(vcpu, kvm, id); 3591 3592 r = kvm_arch_vcpu_create(vcpu); 3593 if (r) 3594 goto vcpu_free_run_page; 3595 3596 if (kvm->dirty_ring_size) { 3597 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3598 id, kvm->dirty_ring_size); 3599 if (r) 3600 goto arch_vcpu_destroy; 3601 } 3602 3603 mutex_lock(&kvm->lock); 3604 if (kvm_get_vcpu_by_id(kvm, id)) { 3605 r = -EEXIST; 3606 goto unlock_vcpu_destroy; 3607 } 3608 3609 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3610 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3611 3612 /* Fill the stats id string for the vcpu */ 3613 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3614 task_pid_nr(current), id); 3615 3616 /* Now it's all set up, let userspace reach it */ 3617 kvm_get_kvm(kvm); 3618 r = create_vcpu_fd(vcpu); 3619 if (r < 0) { 3620 kvm_put_kvm_no_destroy(kvm); 3621 goto unlock_vcpu_destroy; 3622 } 3623 3624 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3625 3626 /* 3627 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3628 * before kvm->online_vcpu's incremented value. 3629 */ 3630 smp_wmb(); 3631 atomic_inc(&kvm->online_vcpus); 3632 3633 mutex_unlock(&kvm->lock); 3634 kvm_arch_vcpu_postcreate(vcpu); 3635 kvm_create_vcpu_debugfs(vcpu); 3636 return r; 3637 3638 unlock_vcpu_destroy: 3639 mutex_unlock(&kvm->lock); 3640 kvm_dirty_ring_free(&vcpu->dirty_ring); 3641 arch_vcpu_destroy: 3642 kvm_arch_vcpu_destroy(vcpu); 3643 vcpu_free_run_page: 3644 free_page((unsigned long)vcpu->run); 3645 vcpu_free: 3646 kmem_cache_free(kvm_vcpu_cache, vcpu); 3647 vcpu_decrement: 3648 mutex_lock(&kvm->lock); 3649 kvm->created_vcpus--; 3650 mutex_unlock(&kvm->lock); 3651 return r; 3652 } 3653 3654 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3655 { 3656 if (sigset) { 3657 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3658 vcpu->sigset_active = 1; 3659 vcpu->sigset = *sigset; 3660 } else 3661 vcpu->sigset_active = 0; 3662 return 0; 3663 } 3664 3665 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3666 size_t size, loff_t *offset) 3667 { 3668 struct kvm_vcpu *vcpu = file->private_data; 3669 3670 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3671 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3672 sizeof(vcpu->stat), user_buffer, size, offset); 3673 } 3674 3675 static const struct file_operations kvm_vcpu_stats_fops = { 3676 .read = kvm_vcpu_stats_read, 3677 .llseek = noop_llseek, 3678 }; 3679 3680 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3681 { 3682 int fd; 3683 struct file *file; 3684 char name[15 + ITOA_MAX_LEN + 1]; 3685 3686 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3687 3688 fd = get_unused_fd_flags(O_CLOEXEC); 3689 if (fd < 0) 3690 return fd; 3691 3692 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3693 if (IS_ERR(file)) { 3694 put_unused_fd(fd); 3695 return PTR_ERR(file); 3696 } 3697 file->f_mode |= FMODE_PREAD; 3698 fd_install(fd, file); 3699 3700 return fd; 3701 } 3702 3703 static long kvm_vcpu_ioctl(struct file *filp, 3704 unsigned int ioctl, unsigned long arg) 3705 { 3706 struct kvm_vcpu *vcpu = filp->private_data; 3707 void __user *argp = (void __user *)arg; 3708 int r; 3709 struct kvm_fpu *fpu = NULL; 3710 struct kvm_sregs *kvm_sregs = NULL; 3711 3712 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged) 3713 return -EIO; 3714 3715 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3716 return -EINVAL; 3717 3718 /* 3719 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3720 * execution; mutex_lock() would break them. 3721 */ 3722 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3723 if (r != -ENOIOCTLCMD) 3724 return r; 3725 3726 if (mutex_lock_killable(&vcpu->mutex)) 3727 return -EINTR; 3728 switch (ioctl) { 3729 case KVM_RUN: { 3730 struct pid *oldpid; 3731 r = -EINVAL; 3732 if (arg) 3733 goto out; 3734 oldpid = rcu_access_pointer(vcpu->pid); 3735 if (unlikely(oldpid != task_pid(current))) { 3736 /* The thread running this VCPU changed. */ 3737 struct pid *newpid; 3738 3739 r = kvm_arch_vcpu_run_pid_change(vcpu); 3740 if (r) 3741 break; 3742 3743 newpid = get_task_pid(current, PIDTYPE_PID); 3744 rcu_assign_pointer(vcpu->pid, newpid); 3745 if (oldpid) 3746 synchronize_rcu(); 3747 put_pid(oldpid); 3748 } 3749 r = kvm_arch_vcpu_ioctl_run(vcpu); 3750 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3751 break; 3752 } 3753 case KVM_GET_REGS: { 3754 struct kvm_regs *kvm_regs; 3755 3756 r = -ENOMEM; 3757 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3758 if (!kvm_regs) 3759 goto out; 3760 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3761 if (r) 3762 goto out_free1; 3763 r = -EFAULT; 3764 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3765 goto out_free1; 3766 r = 0; 3767 out_free1: 3768 kfree(kvm_regs); 3769 break; 3770 } 3771 case KVM_SET_REGS: { 3772 struct kvm_regs *kvm_regs; 3773 3774 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3775 if (IS_ERR(kvm_regs)) { 3776 r = PTR_ERR(kvm_regs); 3777 goto out; 3778 } 3779 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3780 kfree(kvm_regs); 3781 break; 3782 } 3783 case KVM_GET_SREGS: { 3784 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3785 GFP_KERNEL_ACCOUNT); 3786 r = -ENOMEM; 3787 if (!kvm_sregs) 3788 goto out; 3789 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3790 if (r) 3791 goto out; 3792 r = -EFAULT; 3793 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3794 goto out; 3795 r = 0; 3796 break; 3797 } 3798 case KVM_SET_SREGS: { 3799 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3800 if (IS_ERR(kvm_sregs)) { 3801 r = PTR_ERR(kvm_sregs); 3802 kvm_sregs = NULL; 3803 goto out; 3804 } 3805 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3806 break; 3807 } 3808 case KVM_GET_MP_STATE: { 3809 struct kvm_mp_state mp_state; 3810 3811 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3812 if (r) 3813 goto out; 3814 r = -EFAULT; 3815 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3816 goto out; 3817 r = 0; 3818 break; 3819 } 3820 case KVM_SET_MP_STATE: { 3821 struct kvm_mp_state mp_state; 3822 3823 r = -EFAULT; 3824 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3825 goto out; 3826 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3827 break; 3828 } 3829 case KVM_TRANSLATE: { 3830 struct kvm_translation tr; 3831 3832 r = -EFAULT; 3833 if (copy_from_user(&tr, argp, sizeof(tr))) 3834 goto out; 3835 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3836 if (r) 3837 goto out; 3838 r = -EFAULT; 3839 if (copy_to_user(argp, &tr, sizeof(tr))) 3840 goto out; 3841 r = 0; 3842 break; 3843 } 3844 case KVM_SET_GUEST_DEBUG: { 3845 struct kvm_guest_debug dbg; 3846 3847 r = -EFAULT; 3848 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3849 goto out; 3850 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3851 break; 3852 } 3853 case KVM_SET_SIGNAL_MASK: { 3854 struct kvm_signal_mask __user *sigmask_arg = argp; 3855 struct kvm_signal_mask kvm_sigmask; 3856 sigset_t sigset, *p; 3857 3858 p = NULL; 3859 if (argp) { 3860 r = -EFAULT; 3861 if (copy_from_user(&kvm_sigmask, argp, 3862 sizeof(kvm_sigmask))) 3863 goto out; 3864 r = -EINVAL; 3865 if (kvm_sigmask.len != sizeof(sigset)) 3866 goto out; 3867 r = -EFAULT; 3868 if (copy_from_user(&sigset, sigmask_arg->sigset, 3869 sizeof(sigset))) 3870 goto out; 3871 p = &sigset; 3872 } 3873 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3874 break; 3875 } 3876 case KVM_GET_FPU: { 3877 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3878 r = -ENOMEM; 3879 if (!fpu) 3880 goto out; 3881 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3882 if (r) 3883 goto out; 3884 r = -EFAULT; 3885 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3886 goto out; 3887 r = 0; 3888 break; 3889 } 3890 case KVM_SET_FPU: { 3891 fpu = memdup_user(argp, sizeof(*fpu)); 3892 if (IS_ERR(fpu)) { 3893 r = PTR_ERR(fpu); 3894 fpu = NULL; 3895 goto out; 3896 } 3897 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3898 break; 3899 } 3900 case KVM_GET_STATS_FD: { 3901 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3902 break; 3903 } 3904 default: 3905 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3906 } 3907 out: 3908 mutex_unlock(&vcpu->mutex); 3909 kfree(fpu); 3910 kfree(kvm_sregs); 3911 return r; 3912 } 3913 3914 #ifdef CONFIG_KVM_COMPAT 3915 static long kvm_vcpu_compat_ioctl(struct file *filp, 3916 unsigned int ioctl, unsigned long arg) 3917 { 3918 struct kvm_vcpu *vcpu = filp->private_data; 3919 void __user *argp = compat_ptr(arg); 3920 int r; 3921 3922 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged) 3923 return -EIO; 3924 3925 switch (ioctl) { 3926 case KVM_SET_SIGNAL_MASK: { 3927 struct kvm_signal_mask __user *sigmask_arg = argp; 3928 struct kvm_signal_mask kvm_sigmask; 3929 sigset_t sigset; 3930 3931 if (argp) { 3932 r = -EFAULT; 3933 if (copy_from_user(&kvm_sigmask, argp, 3934 sizeof(kvm_sigmask))) 3935 goto out; 3936 r = -EINVAL; 3937 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3938 goto out; 3939 r = -EFAULT; 3940 if (get_compat_sigset(&sigset, 3941 (compat_sigset_t __user *)sigmask_arg->sigset)) 3942 goto out; 3943 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3944 } else 3945 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3946 break; 3947 } 3948 default: 3949 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3950 } 3951 3952 out: 3953 return r; 3954 } 3955 #endif 3956 3957 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3958 { 3959 struct kvm_device *dev = filp->private_data; 3960 3961 if (dev->ops->mmap) 3962 return dev->ops->mmap(dev, vma); 3963 3964 return -ENODEV; 3965 } 3966 3967 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3968 int (*accessor)(struct kvm_device *dev, 3969 struct kvm_device_attr *attr), 3970 unsigned long arg) 3971 { 3972 struct kvm_device_attr attr; 3973 3974 if (!accessor) 3975 return -EPERM; 3976 3977 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3978 return -EFAULT; 3979 3980 return accessor(dev, &attr); 3981 } 3982 3983 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3984 unsigned long arg) 3985 { 3986 struct kvm_device *dev = filp->private_data; 3987 3988 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged) 3989 return -EIO; 3990 3991 switch (ioctl) { 3992 case KVM_SET_DEVICE_ATTR: 3993 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3994 case KVM_GET_DEVICE_ATTR: 3995 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3996 case KVM_HAS_DEVICE_ATTR: 3997 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3998 default: 3999 if (dev->ops->ioctl) 4000 return dev->ops->ioctl(dev, ioctl, arg); 4001 4002 return -ENOTTY; 4003 } 4004 } 4005 4006 static int kvm_device_release(struct inode *inode, struct file *filp) 4007 { 4008 struct kvm_device *dev = filp->private_data; 4009 struct kvm *kvm = dev->kvm; 4010 4011 if (dev->ops->release) { 4012 mutex_lock(&kvm->lock); 4013 list_del(&dev->vm_node); 4014 dev->ops->release(dev); 4015 mutex_unlock(&kvm->lock); 4016 } 4017 4018 kvm_put_kvm(kvm); 4019 return 0; 4020 } 4021 4022 static const struct file_operations kvm_device_fops = { 4023 .unlocked_ioctl = kvm_device_ioctl, 4024 .release = kvm_device_release, 4025 KVM_COMPAT(kvm_device_ioctl), 4026 .mmap = kvm_device_mmap, 4027 }; 4028 4029 struct kvm_device *kvm_device_from_filp(struct file *filp) 4030 { 4031 if (filp->f_op != &kvm_device_fops) 4032 return NULL; 4033 4034 return filp->private_data; 4035 } 4036 4037 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4038 #ifdef CONFIG_KVM_MPIC 4039 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4040 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4041 #endif 4042 }; 4043 4044 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4045 { 4046 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4047 return -ENOSPC; 4048 4049 if (kvm_device_ops_table[type] != NULL) 4050 return -EEXIST; 4051 4052 kvm_device_ops_table[type] = ops; 4053 return 0; 4054 } 4055 4056 void kvm_unregister_device_ops(u32 type) 4057 { 4058 if (kvm_device_ops_table[type] != NULL) 4059 kvm_device_ops_table[type] = NULL; 4060 } 4061 4062 static int kvm_ioctl_create_device(struct kvm *kvm, 4063 struct kvm_create_device *cd) 4064 { 4065 const struct kvm_device_ops *ops = NULL; 4066 struct kvm_device *dev; 4067 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4068 int type; 4069 int ret; 4070 4071 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4072 return -ENODEV; 4073 4074 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4075 ops = kvm_device_ops_table[type]; 4076 if (ops == NULL) 4077 return -ENODEV; 4078 4079 if (test) 4080 return 0; 4081 4082 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4083 if (!dev) 4084 return -ENOMEM; 4085 4086 dev->ops = ops; 4087 dev->kvm = kvm; 4088 4089 mutex_lock(&kvm->lock); 4090 ret = ops->create(dev, type); 4091 if (ret < 0) { 4092 mutex_unlock(&kvm->lock); 4093 kfree(dev); 4094 return ret; 4095 } 4096 list_add(&dev->vm_node, &kvm->devices); 4097 mutex_unlock(&kvm->lock); 4098 4099 if (ops->init) 4100 ops->init(dev); 4101 4102 kvm_get_kvm(kvm); 4103 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4104 if (ret < 0) { 4105 kvm_put_kvm_no_destroy(kvm); 4106 mutex_lock(&kvm->lock); 4107 list_del(&dev->vm_node); 4108 mutex_unlock(&kvm->lock); 4109 ops->destroy(dev); 4110 return ret; 4111 } 4112 4113 cd->fd = ret; 4114 return 0; 4115 } 4116 4117 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4118 { 4119 switch (arg) { 4120 case KVM_CAP_USER_MEMORY: 4121 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4122 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4123 case KVM_CAP_INTERNAL_ERROR_DATA: 4124 #ifdef CONFIG_HAVE_KVM_MSI 4125 case KVM_CAP_SIGNAL_MSI: 4126 #endif 4127 #ifdef CONFIG_HAVE_KVM_IRQFD 4128 case KVM_CAP_IRQFD: 4129 case KVM_CAP_IRQFD_RESAMPLE: 4130 #endif 4131 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4132 case KVM_CAP_CHECK_EXTENSION_VM: 4133 case KVM_CAP_ENABLE_CAP_VM: 4134 case KVM_CAP_HALT_POLL: 4135 return 1; 4136 #ifdef CONFIG_KVM_MMIO 4137 case KVM_CAP_COALESCED_MMIO: 4138 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4139 case KVM_CAP_COALESCED_PIO: 4140 return 1; 4141 #endif 4142 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4143 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4144 return KVM_DIRTY_LOG_MANUAL_CAPS; 4145 #endif 4146 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4147 case KVM_CAP_IRQ_ROUTING: 4148 return KVM_MAX_IRQ_ROUTES; 4149 #endif 4150 #if KVM_ADDRESS_SPACE_NUM > 1 4151 case KVM_CAP_MULTI_ADDRESS_SPACE: 4152 return KVM_ADDRESS_SPACE_NUM; 4153 #endif 4154 case KVM_CAP_NR_MEMSLOTS: 4155 return KVM_USER_MEM_SLOTS; 4156 case KVM_CAP_DIRTY_LOG_RING: 4157 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4158 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4159 #else 4160 return 0; 4161 #endif 4162 case KVM_CAP_BINARY_STATS_FD: 4163 return 1; 4164 default: 4165 break; 4166 } 4167 return kvm_vm_ioctl_check_extension(kvm, arg); 4168 } 4169 4170 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4171 { 4172 int r; 4173 4174 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4175 return -EINVAL; 4176 4177 /* the size should be power of 2 */ 4178 if (!size || (size & (size - 1))) 4179 return -EINVAL; 4180 4181 /* Should be bigger to keep the reserved entries, or a page */ 4182 if (size < kvm_dirty_ring_get_rsvd_entries() * 4183 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4184 return -EINVAL; 4185 4186 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4187 sizeof(struct kvm_dirty_gfn)) 4188 return -E2BIG; 4189 4190 /* We only allow it to set once */ 4191 if (kvm->dirty_ring_size) 4192 return -EINVAL; 4193 4194 mutex_lock(&kvm->lock); 4195 4196 if (kvm->created_vcpus) { 4197 /* We don't allow to change this value after vcpu created */ 4198 r = -EINVAL; 4199 } else { 4200 kvm->dirty_ring_size = size; 4201 r = 0; 4202 } 4203 4204 mutex_unlock(&kvm->lock); 4205 return r; 4206 } 4207 4208 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4209 { 4210 int i; 4211 struct kvm_vcpu *vcpu; 4212 int cleared = 0; 4213 4214 if (!kvm->dirty_ring_size) 4215 return -EINVAL; 4216 4217 mutex_lock(&kvm->slots_lock); 4218 4219 kvm_for_each_vcpu(i, vcpu, kvm) 4220 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4221 4222 mutex_unlock(&kvm->slots_lock); 4223 4224 if (cleared) 4225 kvm_flush_remote_tlbs(kvm); 4226 4227 return cleared; 4228 } 4229 4230 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4231 struct kvm_enable_cap *cap) 4232 { 4233 return -EINVAL; 4234 } 4235 4236 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4237 struct kvm_enable_cap *cap) 4238 { 4239 switch (cap->cap) { 4240 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4241 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4242 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4243 4244 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4245 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4246 4247 if (cap->flags || (cap->args[0] & ~allowed_options)) 4248 return -EINVAL; 4249 kvm->manual_dirty_log_protect = cap->args[0]; 4250 return 0; 4251 } 4252 #endif 4253 case KVM_CAP_HALT_POLL: { 4254 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4255 return -EINVAL; 4256 4257 kvm->max_halt_poll_ns = cap->args[0]; 4258 return 0; 4259 } 4260 case KVM_CAP_DIRTY_LOG_RING: 4261 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4262 default: 4263 return kvm_vm_ioctl_enable_cap(kvm, cap); 4264 } 4265 } 4266 4267 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4268 size_t size, loff_t *offset) 4269 { 4270 struct kvm *kvm = file->private_data; 4271 4272 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4273 &kvm_vm_stats_desc[0], &kvm->stat, 4274 sizeof(kvm->stat), user_buffer, size, offset); 4275 } 4276 4277 static const struct file_operations kvm_vm_stats_fops = { 4278 .read = kvm_vm_stats_read, 4279 .llseek = noop_llseek, 4280 }; 4281 4282 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4283 { 4284 int fd; 4285 struct file *file; 4286 4287 fd = get_unused_fd_flags(O_CLOEXEC); 4288 if (fd < 0) 4289 return fd; 4290 4291 file = anon_inode_getfile("kvm-vm-stats", 4292 &kvm_vm_stats_fops, kvm, O_RDONLY); 4293 if (IS_ERR(file)) { 4294 put_unused_fd(fd); 4295 return PTR_ERR(file); 4296 } 4297 file->f_mode |= FMODE_PREAD; 4298 fd_install(fd, file); 4299 4300 return fd; 4301 } 4302 4303 static long kvm_vm_ioctl(struct file *filp, 4304 unsigned int ioctl, unsigned long arg) 4305 { 4306 struct kvm *kvm = filp->private_data; 4307 void __user *argp = (void __user *)arg; 4308 int r; 4309 4310 if (kvm->mm != current->mm || kvm->vm_bugged) 4311 return -EIO; 4312 switch (ioctl) { 4313 case KVM_CREATE_VCPU: 4314 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4315 break; 4316 case KVM_ENABLE_CAP: { 4317 struct kvm_enable_cap cap; 4318 4319 r = -EFAULT; 4320 if (copy_from_user(&cap, argp, sizeof(cap))) 4321 goto out; 4322 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4323 break; 4324 } 4325 case KVM_SET_USER_MEMORY_REGION: { 4326 struct kvm_userspace_memory_region kvm_userspace_mem; 4327 4328 r = -EFAULT; 4329 if (copy_from_user(&kvm_userspace_mem, argp, 4330 sizeof(kvm_userspace_mem))) 4331 goto out; 4332 4333 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4334 break; 4335 } 4336 case KVM_GET_DIRTY_LOG: { 4337 struct kvm_dirty_log log; 4338 4339 r = -EFAULT; 4340 if (copy_from_user(&log, argp, sizeof(log))) 4341 goto out; 4342 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4343 break; 4344 } 4345 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4346 case KVM_CLEAR_DIRTY_LOG: { 4347 struct kvm_clear_dirty_log log; 4348 4349 r = -EFAULT; 4350 if (copy_from_user(&log, argp, sizeof(log))) 4351 goto out; 4352 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4353 break; 4354 } 4355 #endif 4356 #ifdef CONFIG_KVM_MMIO 4357 case KVM_REGISTER_COALESCED_MMIO: { 4358 struct kvm_coalesced_mmio_zone zone; 4359 4360 r = -EFAULT; 4361 if (copy_from_user(&zone, argp, sizeof(zone))) 4362 goto out; 4363 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4364 break; 4365 } 4366 case KVM_UNREGISTER_COALESCED_MMIO: { 4367 struct kvm_coalesced_mmio_zone zone; 4368 4369 r = -EFAULT; 4370 if (copy_from_user(&zone, argp, sizeof(zone))) 4371 goto out; 4372 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4373 break; 4374 } 4375 #endif 4376 case KVM_IRQFD: { 4377 struct kvm_irqfd data; 4378 4379 r = -EFAULT; 4380 if (copy_from_user(&data, argp, sizeof(data))) 4381 goto out; 4382 r = kvm_irqfd(kvm, &data); 4383 break; 4384 } 4385 case KVM_IOEVENTFD: { 4386 struct kvm_ioeventfd data; 4387 4388 r = -EFAULT; 4389 if (copy_from_user(&data, argp, sizeof(data))) 4390 goto out; 4391 r = kvm_ioeventfd(kvm, &data); 4392 break; 4393 } 4394 #ifdef CONFIG_HAVE_KVM_MSI 4395 case KVM_SIGNAL_MSI: { 4396 struct kvm_msi msi; 4397 4398 r = -EFAULT; 4399 if (copy_from_user(&msi, argp, sizeof(msi))) 4400 goto out; 4401 r = kvm_send_userspace_msi(kvm, &msi); 4402 break; 4403 } 4404 #endif 4405 #ifdef __KVM_HAVE_IRQ_LINE 4406 case KVM_IRQ_LINE_STATUS: 4407 case KVM_IRQ_LINE: { 4408 struct kvm_irq_level irq_event; 4409 4410 r = -EFAULT; 4411 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4412 goto out; 4413 4414 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4415 ioctl == KVM_IRQ_LINE_STATUS); 4416 if (r) 4417 goto out; 4418 4419 r = -EFAULT; 4420 if (ioctl == KVM_IRQ_LINE_STATUS) { 4421 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4422 goto out; 4423 } 4424 4425 r = 0; 4426 break; 4427 } 4428 #endif 4429 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4430 case KVM_SET_GSI_ROUTING: { 4431 struct kvm_irq_routing routing; 4432 struct kvm_irq_routing __user *urouting; 4433 struct kvm_irq_routing_entry *entries = NULL; 4434 4435 r = -EFAULT; 4436 if (copy_from_user(&routing, argp, sizeof(routing))) 4437 goto out; 4438 r = -EINVAL; 4439 if (!kvm_arch_can_set_irq_routing(kvm)) 4440 goto out; 4441 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4442 goto out; 4443 if (routing.flags) 4444 goto out; 4445 if (routing.nr) { 4446 urouting = argp; 4447 entries = vmemdup_user(urouting->entries, 4448 array_size(sizeof(*entries), 4449 routing.nr)); 4450 if (IS_ERR(entries)) { 4451 r = PTR_ERR(entries); 4452 goto out; 4453 } 4454 } 4455 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4456 routing.flags); 4457 kvfree(entries); 4458 break; 4459 } 4460 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4461 case KVM_CREATE_DEVICE: { 4462 struct kvm_create_device cd; 4463 4464 r = -EFAULT; 4465 if (copy_from_user(&cd, argp, sizeof(cd))) 4466 goto out; 4467 4468 r = kvm_ioctl_create_device(kvm, &cd); 4469 if (r) 4470 goto out; 4471 4472 r = -EFAULT; 4473 if (copy_to_user(argp, &cd, sizeof(cd))) 4474 goto out; 4475 4476 r = 0; 4477 break; 4478 } 4479 case KVM_CHECK_EXTENSION: 4480 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4481 break; 4482 case KVM_RESET_DIRTY_RINGS: 4483 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4484 break; 4485 case KVM_GET_STATS_FD: 4486 r = kvm_vm_ioctl_get_stats_fd(kvm); 4487 break; 4488 default: 4489 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4490 } 4491 out: 4492 return r; 4493 } 4494 4495 #ifdef CONFIG_KVM_COMPAT 4496 struct compat_kvm_dirty_log { 4497 __u32 slot; 4498 __u32 padding1; 4499 union { 4500 compat_uptr_t dirty_bitmap; /* one bit per page */ 4501 __u64 padding2; 4502 }; 4503 }; 4504 4505 struct compat_kvm_clear_dirty_log { 4506 __u32 slot; 4507 __u32 num_pages; 4508 __u64 first_page; 4509 union { 4510 compat_uptr_t dirty_bitmap; /* one bit per page */ 4511 __u64 padding2; 4512 }; 4513 }; 4514 4515 static long kvm_vm_compat_ioctl(struct file *filp, 4516 unsigned int ioctl, unsigned long arg) 4517 { 4518 struct kvm *kvm = filp->private_data; 4519 int r; 4520 4521 if (kvm->mm != current->mm || kvm->vm_bugged) 4522 return -EIO; 4523 switch (ioctl) { 4524 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4525 case KVM_CLEAR_DIRTY_LOG: { 4526 struct compat_kvm_clear_dirty_log compat_log; 4527 struct kvm_clear_dirty_log log; 4528 4529 if (copy_from_user(&compat_log, (void __user *)arg, 4530 sizeof(compat_log))) 4531 return -EFAULT; 4532 log.slot = compat_log.slot; 4533 log.num_pages = compat_log.num_pages; 4534 log.first_page = compat_log.first_page; 4535 log.padding2 = compat_log.padding2; 4536 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4537 4538 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4539 break; 4540 } 4541 #endif 4542 case KVM_GET_DIRTY_LOG: { 4543 struct compat_kvm_dirty_log compat_log; 4544 struct kvm_dirty_log log; 4545 4546 if (copy_from_user(&compat_log, (void __user *)arg, 4547 sizeof(compat_log))) 4548 return -EFAULT; 4549 log.slot = compat_log.slot; 4550 log.padding1 = compat_log.padding1; 4551 log.padding2 = compat_log.padding2; 4552 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4553 4554 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4555 break; 4556 } 4557 default: 4558 r = kvm_vm_ioctl(filp, ioctl, arg); 4559 } 4560 return r; 4561 } 4562 #endif 4563 4564 static struct file_operations kvm_vm_fops = { 4565 .release = kvm_vm_release, 4566 .unlocked_ioctl = kvm_vm_ioctl, 4567 .llseek = noop_llseek, 4568 KVM_COMPAT(kvm_vm_compat_ioctl), 4569 }; 4570 4571 bool file_is_kvm(struct file *file) 4572 { 4573 return file && file->f_op == &kvm_vm_fops; 4574 } 4575 EXPORT_SYMBOL_GPL(file_is_kvm); 4576 4577 static int kvm_dev_ioctl_create_vm(unsigned long type) 4578 { 4579 int r; 4580 struct kvm *kvm; 4581 struct file *file; 4582 4583 kvm = kvm_create_vm(type); 4584 if (IS_ERR(kvm)) 4585 return PTR_ERR(kvm); 4586 #ifdef CONFIG_KVM_MMIO 4587 r = kvm_coalesced_mmio_init(kvm); 4588 if (r < 0) 4589 goto put_kvm; 4590 #endif 4591 r = get_unused_fd_flags(O_CLOEXEC); 4592 if (r < 0) 4593 goto put_kvm; 4594 4595 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4596 "kvm-%d", task_pid_nr(current)); 4597 4598 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4599 if (IS_ERR(file)) { 4600 put_unused_fd(r); 4601 r = PTR_ERR(file); 4602 goto put_kvm; 4603 } 4604 4605 /* 4606 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4607 * already set, with ->release() being kvm_vm_release(). In error 4608 * cases it will be called by the final fput(file) and will take 4609 * care of doing kvm_put_kvm(kvm). 4610 */ 4611 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4612 put_unused_fd(r); 4613 fput(file); 4614 return -ENOMEM; 4615 } 4616 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4617 4618 fd_install(r, file); 4619 return r; 4620 4621 put_kvm: 4622 kvm_put_kvm(kvm); 4623 return r; 4624 } 4625 4626 static long kvm_dev_ioctl(struct file *filp, 4627 unsigned int ioctl, unsigned long arg) 4628 { 4629 long r = -EINVAL; 4630 4631 switch (ioctl) { 4632 case KVM_GET_API_VERSION: 4633 if (arg) 4634 goto out; 4635 r = KVM_API_VERSION; 4636 break; 4637 case KVM_CREATE_VM: 4638 r = kvm_dev_ioctl_create_vm(arg); 4639 break; 4640 case KVM_CHECK_EXTENSION: 4641 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4642 break; 4643 case KVM_GET_VCPU_MMAP_SIZE: 4644 if (arg) 4645 goto out; 4646 r = PAGE_SIZE; /* struct kvm_run */ 4647 #ifdef CONFIG_X86 4648 r += PAGE_SIZE; /* pio data page */ 4649 #endif 4650 #ifdef CONFIG_KVM_MMIO 4651 r += PAGE_SIZE; /* coalesced mmio ring page */ 4652 #endif 4653 break; 4654 case KVM_TRACE_ENABLE: 4655 case KVM_TRACE_PAUSE: 4656 case KVM_TRACE_DISABLE: 4657 r = -EOPNOTSUPP; 4658 break; 4659 default: 4660 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4661 } 4662 out: 4663 return r; 4664 } 4665 4666 static struct file_operations kvm_chardev_ops = { 4667 .unlocked_ioctl = kvm_dev_ioctl, 4668 .llseek = noop_llseek, 4669 KVM_COMPAT(kvm_dev_ioctl), 4670 }; 4671 4672 static struct miscdevice kvm_dev = { 4673 KVM_MINOR, 4674 "kvm", 4675 &kvm_chardev_ops, 4676 }; 4677 4678 static void hardware_enable_nolock(void *junk) 4679 { 4680 int cpu = raw_smp_processor_id(); 4681 int r; 4682 4683 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4684 return; 4685 4686 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4687 4688 r = kvm_arch_hardware_enable(); 4689 4690 if (r) { 4691 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4692 atomic_inc(&hardware_enable_failed); 4693 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4694 } 4695 } 4696 4697 static int kvm_starting_cpu(unsigned int cpu) 4698 { 4699 raw_spin_lock(&kvm_count_lock); 4700 if (kvm_usage_count) 4701 hardware_enable_nolock(NULL); 4702 raw_spin_unlock(&kvm_count_lock); 4703 return 0; 4704 } 4705 4706 static void hardware_disable_nolock(void *junk) 4707 { 4708 int cpu = raw_smp_processor_id(); 4709 4710 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4711 return; 4712 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4713 kvm_arch_hardware_disable(); 4714 } 4715 4716 static int kvm_dying_cpu(unsigned int cpu) 4717 { 4718 raw_spin_lock(&kvm_count_lock); 4719 if (kvm_usage_count) 4720 hardware_disable_nolock(NULL); 4721 raw_spin_unlock(&kvm_count_lock); 4722 return 0; 4723 } 4724 4725 static void hardware_disable_all_nolock(void) 4726 { 4727 BUG_ON(!kvm_usage_count); 4728 4729 kvm_usage_count--; 4730 if (!kvm_usage_count) 4731 on_each_cpu(hardware_disable_nolock, NULL, 1); 4732 } 4733 4734 static void hardware_disable_all(void) 4735 { 4736 raw_spin_lock(&kvm_count_lock); 4737 hardware_disable_all_nolock(); 4738 raw_spin_unlock(&kvm_count_lock); 4739 } 4740 4741 static int hardware_enable_all(void) 4742 { 4743 int r = 0; 4744 4745 raw_spin_lock(&kvm_count_lock); 4746 4747 kvm_usage_count++; 4748 if (kvm_usage_count == 1) { 4749 atomic_set(&hardware_enable_failed, 0); 4750 on_each_cpu(hardware_enable_nolock, NULL, 1); 4751 4752 if (atomic_read(&hardware_enable_failed)) { 4753 hardware_disable_all_nolock(); 4754 r = -EBUSY; 4755 } 4756 } 4757 4758 raw_spin_unlock(&kvm_count_lock); 4759 4760 return r; 4761 } 4762 4763 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4764 void *v) 4765 { 4766 /* 4767 * Some (well, at least mine) BIOSes hang on reboot if 4768 * in vmx root mode. 4769 * 4770 * And Intel TXT required VMX off for all cpu when system shutdown. 4771 */ 4772 pr_info("kvm: exiting hardware virtualization\n"); 4773 kvm_rebooting = true; 4774 on_each_cpu(hardware_disable_nolock, NULL, 1); 4775 return NOTIFY_OK; 4776 } 4777 4778 static struct notifier_block kvm_reboot_notifier = { 4779 .notifier_call = kvm_reboot, 4780 .priority = 0, 4781 }; 4782 4783 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4784 { 4785 int i; 4786 4787 for (i = 0; i < bus->dev_count; i++) { 4788 struct kvm_io_device *pos = bus->range[i].dev; 4789 4790 kvm_iodevice_destructor(pos); 4791 } 4792 kfree(bus); 4793 } 4794 4795 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4796 const struct kvm_io_range *r2) 4797 { 4798 gpa_t addr1 = r1->addr; 4799 gpa_t addr2 = r2->addr; 4800 4801 if (addr1 < addr2) 4802 return -1; 4803 4804 /* If r2->len == 0, match the exact address. If r2->len != 0, 4805 * accept any overlapping write. Any order is acceptable for 4806 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4807 * we process all of them. 4808 */ 4809 if (r2->len) { 4810 addr1 += r1->len; 4811 addr2 += r2->len; 4812 } 4813 4814 if (addr1 > addr2) 4815 return 1; 4816 4817 return 0; 4818 } 4819 4820 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4821 { 4822 return kvm_io_bus_cmp(p1, p2); 4823 } 4824 4825 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4826 gpa_t addr, int len) 4827 { 4828 struct kvm_io_range *range, key; 4829 int off; 4830 4831 key = (struct kvm_io_range) { 4832 .addr = addr, 4833 .len = len, 4834 }; 4835 4836 range = bsearch(&key, bus->range, bus->dev_count, 4837 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4838 if (range == NULL) 4839 return -ENOENT; 4840 4841 off = range - bus->range; 4842 4843 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4844 off--; 4845 4846 return off; 4847 } 4848 4849 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4850 struct kvm_io_range *range, const void *val) 4851 { 4852 int idx; 4853 4854 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4855 if (idx < 0) 4856 return -EOPNOTSUPP; 4857 4858 while (idx < bus->dev_count && 4859 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4860 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4861 range->len, val)) 4862 return idx; 4863 idx++; 4864 } 4865 4866 return -EOPNOTSUPP; 4867 } 4868 4869 /* kvm_io_bus_write - called under kvm->slots_lock */ 4870 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4871 int len, const void *val) 4872 { 4873 struct kvm_io_bus *bus; 4874 struct kvm_io_range range; 4875 int r; 4876 4877 range = (struct kvm_io_range) { 4878 .addr = addr, 4879 .len = len, 4880 }; 4881 4882 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4883 if (!bus) 4884 return -ENOMEM; 4885 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4886 return r < 0 ? r : 0; 4887 } 4888 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4889 4890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4891 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4892 gpa_t addr, int len, const void *val, long cookie) 4893 { 4894 struct kvm_io_bus *bus; 4895 struct kvm_io_range range; 4896 4897 range = (struct kvm_io_range) { 4898 .addr = addr, 4899 .len = len, 4900 }; 4901 4902 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4903 if (!bus) 4904 return -ENOMEM; 4905 4906 /* First try the device referenced by cookie. */ 4907 if ((cookie >= 0) && (cookie < bus->dev_count) && 4908 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4909 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4910 val)) 4911 return cookie; 4912 4913 /* 4914 * cookie contained garbage; fall back to search and return the 4915 * correct cookie value. 4916 */ 4917 return __kvm_io_bus_write(vcpu, bus, &range, val); 4918 } 4919 4920 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4921 struct kvm_io_range *range, void *val) 4922 { 4923 int idx; 4924 4925 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4926 if (idx < 0) 4927 return -EOPNOTSUPP; 4928 4929 while (idx < bus->dev_count && 4930 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4931 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4932 range->len, val)) 4933 return idx; 4934 idx++; 4935 } 4936 4937 return -EOPNOTSUPP; 4938 } 4939 4940 /* kvm_io_bus_read - called under kvm->slots_lock */ 4941 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4942 int len, void *val) 4943 { 4944 struct kvm_io_bus *bus; 4945 struct kvm_io_range range; 4946 int r; 4947 4948 range = (struct kvm_io_range) { 4949 .addr = addr, 4950 .len = len, 4951 }; 4952 4953 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4954 if (!bus) 4955 return -ENOMEM; 4956 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4957 return r < 0 ? r : 0; 4958 } 4959 4960 /* Caller must hold slots_lock. */ 4961 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4962 int len, struct kvm_io_device *dev) 4963 { 4964 int i; 4965 struct kvm_io_bus *new_bus, *bus; 4966 struct kvm_io_range range; 4967 4968 bus = kvm_get_bus(kvm, bus_idx); 4969 if (!bus) 4970 return -ENOMEM; 4971 4972 /* exclude ioeventfd which is limited by maximum fd */ 4973 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4974 return -ENOSPC; 4975 4976 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4977 GFP_KERNEL_ACCOUNT); 4978 if (!new_bus) 4979 return -ENOMEM; 4980 4981 range = (struct kvm_io_range) { 4982 .addr = addr, 4983 .len = len, 4984 .dev = dev, 4985 }; 4986 4987 for (i = 0; i < bus->dev_count; i++) 4988 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4989 break; 4990 4991 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4992 new_bus->dev_count++; 4993 new_bus->range[i] = range; 4994 memcpy(new_bus->range + i + 1, bus->range + i, 4995 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4996 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4997 synchronize_srcu_expedited(&kvm->srcu); 4998 kfree(bus); 4999 5000 return 0; 5001 } 5002 5003 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5004 struct kvm_io_device *dev) 5005 { 5006 int i, j; 5007 struct kvm_io_bus *new_bus, *bus; 5008 5009 lockdep_assert_held(&kvm->slots_lock); 5010 5011 bus = kvm_get_bus(kvm, bus_idx); 5012 if (!bus) 5013 return 0; 5014 5015 for (i = 0; i < bus->dev_count; i++) { 5016 if (bus->range[i].dev == dev) { 5017 break; 5018 } 5019 } 5020 5021 if (i == bus->dev_count) 5022 return 0; 5023 5024 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5025 GFP_KERNEL_ACCOUNT); 5026 if (new_bus) { 5027 memcpy(new_bus, bus, struct_size(bus, range, i)); 5028 new_bus->dev_count--; 5029 memcpy(new_bus->range + i, bus->range + i + 1, 5030 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5031 } 5032 5033 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5034 synchronize_srcu_expedited(&kvm->srcu); 5035 5036 /* Destroy the old bus _after_ installing the (null) bus. */ 5037 if (!new_bus) { 5038 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5039 for (j = 0; j < bus->dev_count; j++) { 5040 if (j == i) 5041 continue; 5042 kvm_iodevice_destructor(bus->range[j].dev); 5043 } 5044 } 5045 5046 kfree(bus); 5047 return new_bus ? 0 : -ENOMEM; 5048 } 5049 5050 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5051 gpa_t addr) 5052 { 5053 struct kvm_io_bus *bus; 5054 int dev_idx, srcu_idx; 5055 struct kvm_io_device *iodev = NULL; 5056 5057 srcu_idx = srcu_read_lock(&kvm->srcu); 5058 5059 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5060 if (!bus) 5061 goto out_unlock; 5062 5063 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5064 if (dev_idx < 0) 5065 goto out_unlock; 5066 5067 iodev = bus->range[dev_idx].dev; 5068 5069 out_unlock: 5070 srcu_read_unlock(&kvm->srcu, srcu_idx); 5071 5072 return iodev; 5073 } 5074 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5075 5076 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5077 int (*get)(void *, u64 *), int (*set)(void *, u64), 5078 const char *fmt) 5079 { 5080 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5081 inode->i_private; 5082 5083 /* 5084 * The debugfs files are a reference to the kvm struct which 5085 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5086 * avoids the race between open and the removal of the debugfs directory. 5087 */ 5088 if (!kvm_get_kvm_safe(stat_data->kvm)) 5089 return -ENOENT; 5090 5091 if (simple_attr_open(inode, file, get, 5092 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5093 ? set : NULL, 5094 fmt)) { 5095 kvm_put_kvm(stat_data->kvm); 5096 return -ENOMEM; 5097 } 5098 5099 return 0; 5100 } 5101 5102 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5103 { 5104 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5105 inode->i_private; 5106 5107 simple_attr_release(inode, file); 5108 kvm_put_kvm(stat_data->kvm); 5109 5110 return 0; 5111 } 5112 5113 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5114 { 5115 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5116 5117 return 0; 5118 } 5119 5120 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5121 { 5122 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5123 5124 return 0; 5125 } 5126 5127 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5128 { 5129 int i; 5130 struct kvm_vcpu *vcpu; 5131 5132 *val = 0; 5133 5134 kvm_for_each_vcpu(i, vcpu, kvm) 5135 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5136 5137 return 0; 5138 } 5139 5140 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5141 { 5142 int i; 5143 struct kvm_vcpu *vcpu; 5144 5145 kvm_for_each_vcpu(i, vcpu, kvm) 5146 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5147 5148 return 0; 5149 } 5150 5151 static int kvm_stat_data_get(void *data, u64 *val) 5152 { 5153 int r = -EFAULT; 5154 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5155 5156 switch (stat_data->kind) { 5157 case KVM_STAT_VM: 5158 r = kvm_get_stat_per_vm(stat_data->kvm, 5159 stat_data->desc->desc.offset, val); 5160 break; 5161 case KVM_STAT_VCPU: 5162 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5163 stat_data->desc->desc.offset, val); 5164 break; 5165 } 5166 5167 return r; 5168 } 5169 5170 static int kvm_stat_data_clear(void *data, u64 val) 5171 { 5172 int r = -EFAULT; 5173 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5174 5175 if (val) 5176 return -EINVAL; 5177 5178 switch (stat_data->kind) { 5179 case KVM_STAT_VM: 5180 r = kvm_clear_stat_per_vm(stat_data->kvm, 5181 stat_data->desc->desc.offset); 5182 break; 5183 case KVM_STAT_VCPU: 5184 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5185 stat_data->desc->desc.offset); 5186 break; 5187 } 5188 5189 return r; 5190 } 5191 5192 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5193 { 5194 __simple_attr_check_format("%llu\n", 0ull); 5195 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5196 kvm_stat_data_clear, "%llu\n"); 5197 } 5198 5199 static const struct file_operations stat_fops_per_vm = { 5200 .owner = THIS_MODULE, 5201 .open = kvm_stat_data_open, 5202 .release = kvm_debugfs_release, 5203 .read = simple_attr_read, 5204 .write = simple_attr_write, 5205 .llseek = no_llseek, 5206 }; 5207 5208 static int vm_stat_get(void *_offset, u64 *val) 5209 { 5210 unsigned offset = (long)_offset; 5211 struct kvm *kvm; 5212 u64 tmp_val; 5213 5214 *val = 0; 5215 mutex_lock(&kvm_lock); 5216 list_for_each_entry(kvm, &vm_list, vm_list) { 5217 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5218 *val += tmp_val; 5219 } 5220 mutex_unlock(&kvm_lock); 5221 return 0; 5222 } 5223 5224 static int vm_stat_clear(void *_offset, u64 val) 5225 { 5226 unsigned offset = (long)_offset; 5227 struct kvm *kvm; 5228 5229 if (val) 5230 return -EINVAL; 5231 5232 mutex_lock(&kvm_lock); 5233 list_for_each_entry(kvm, &vm_list, vm_list) { 5234 kvm_clear_stat_per_vm(kvm, offset); 5235 } 5236 mutex_unlock(&kvm_lock); 5237 5238 return 0; 5239 } 5240 5241 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5242 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5243 5244 static int vcpu_stat_get(void *_offset, u64 *val) 5245 { 5246 unsigned offset = (long)_offset; 5247 struct kvm *kvm; 5248 u64 tmp_val; 5249 5250 *val = 0; 5251 mutex_lock(&kvm_lock); 5252 list_for_each_entry(kvm, &vm_list, vm_list) { 5253 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5254 *val += tmp_val; 5255 } 5256 mutex_unlock(&kvm_lock); 5257 return 0; 5258 } 5259 5260 static int vcpu_stat_clear(void *_offset, u64 val) 5261 { 5262 unsigned offset = (long)_offset; 5263 struct kvm *kvm; 5264 5265 if (val) 5266 return -EINVAL; 5267 5268 mutex_lock(&kvm_lock); 5269 list_for_each_entry(kvm, &vm_list, vm_list) { 5270 kvm_clear_stat_per_vcpu(kvm, offset); 5271 } 5272 mutex_unlock(&kvm_lock); 5273 5274 return 0; 5275 } 5276 5277 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5278 "%llu\n"); 5279 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5280 5281 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5282 { 5283 struct kobj_uevent_env *env; 5284 unsigned long long created, active; 5285 5286 if (!kvm_dev.this_device || !kvm) 5287 return; 5288 5289 mutex_lock(&kvm_lock); 5290 if (type == KVM_EVENT_CREATE_VM) { 5291 kvm_createvm_count++; 5292 kvm_active_vms++; 5293 } else if (type == KVM_EVENT_DESTROY_VM) { 5294 kvm_active_vms--; 5295 } 5296 created = kvm_createvm_count; 5297 active = kvm_active_vms; 5298 mutex_unlock(&kvm_lock); 5299 5300 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5301 if (!env) 5302 return; 5303 5304 add_uevent_var(env, "CREATED=%llu", created); 5305 add_uevent_var(env, "COUNT=%llu", active); 5306 5307 if (type == KVM_EVENT_CREATE_VM) { 5308 add_uevent_var(env, "EVENT=create"); 5309 kvm->userspace_pid = task_pid_nr(current); 5310 } else if (type == KVM_EVENT_DESTROY_VM) { 5311 add_uevent_var(env, "EVENT=destroy"); 5312 } 5313 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5314 5315 if (kvm->debugfs_dentry) { 5316 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5317 5318 if (p) { 5319 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5320 if (!IS_ERR(tmp)) 5321 add_uevent_var(env, "STATS_PATH=%s", tmp); 5322 kfree(p); 5323 } 5324 } 5325 /* no need for checks, since we are adding at most only 5 keys */ 5326 env->envp[env->envp_idx++] = NULL; 5327 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5328 kfree(env); 5329 } 5330 5331 static void kvm_init_debug(void) 5332 { 5333 const struct file_operations *fops; 5334 const struct _kvm_stats_desc *pdesc; 5335 int i; 5336 5337 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5338 5339 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5340 pdesc = &kvm_vm_stats_desc[i]; 5341 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5342 fops = &vm_stat_fops; 5343 else 5344 fops = &vm_stat_readonly_fops; 5345 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5346 kvm_debugfs_dir, 5347 (void *)(long)pdesc->desc.offset, fops); 5348 } 5349 5350 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5351 pdesc = &kvm_vcpu_stats_desc[i]; 5352 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5353 fops = &vcpu_stat_fops; 5354 else 5355 fops = &vcpu_stat_readonly_fops; 5356 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5357 kvm_debugfs_dir, 5358 (void *)(long)pdesc->desc.offset, fops); 5359 } 5360 } 5361 5362 static int kvm_suspend(void) 5363 { 5364 if (kvm_usage_count) 5365 hardware_disable_nolock(NULL); 5366 return 0; 5367 } 5368 5369 static void kvm_resume(void) 5370 { 5371 if (kvm_usage_count) { 5372 #ifdef CONFIG_LOCKDEP 5373 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5374 #endif 5375 hardware_enable_nolock(NULL); 5376 } 5377 } 5378 5379 static struct syscore_ops kvm_syscore_ops = { 5380 .suspend = kvm_suspend, 5381 .resume = kvm_resume, 5382 }; 5383 5384 static inline 5385 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5386 { 5387 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5388 } 5389 5390 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5391 { 5392 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5393 5394 WRITE_ONCE(vcpu->preempted, false); 5395 WRITE_ONCE(vcpu->ready, false); 5396 5397 __this_cpu_write(kvm_running_vcpu, vcpu); 5398 kvm_arch_sched_in(vcpu, cpu); 5399 kvm_arch_vcpu_load(vcpu, cpu); 5400 } 5401 5402 static void kvm_sched_out(struct preempt_notifier *pn, 5403 struct task_struct *next) 5404 { 5405 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5406 5407 if (current->on_rq) { 5408 WRITE_ONCE(vcpu->preempted, true); 5409 WRITE_ONCE(vcpu->ready, true); 5410 } 5411 kvm_arch_vcpu_put(vcpu); 5412 __this_cpu_write(kvm_running_vcpu, NULL); 5413 } 5414 5415 /** 5416 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5417 * 5418 * We can disable preemption locally around accessing the per-CPU variable, 5419 * and use the resolved vcpu pointer after enabling preemption again, 5420 * because even if the current thread is migrated to another CPU, reading 5421 * the per-CPU value later will give us the same value as we update the 5422 * per-CPU variable in the preempt notifier handlers. 5423 */ 5424 struct kvm_vcpu *kvm_get_running_vcpu(void) 5425 { 5426 struct kvm_vcpu *vcpu; 5427 5428 preempt_disable(); 5429 vcpu = __this_cpu_read(kvm_running_vcpu); 5430 preempt_enable(); 5431 5432 return vcpu; 5433 } 5434 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5435 5436 /** 5437 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5438 */ 5439 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5440 { 5441 return &kvm_running_vcpu; 5442 } 5443 5444 struct kvm_cpu_compat_check { 5445 void *opaque; 5446 int *ret; 5447 }; 5448 5449 static void check_processor_compat(void *data) 5450 { 5451 struct kvm_cpu_compat_check *c = data; 5452 5453 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5454 } 5455 5456 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5457 struct module *module) 5458 { 5459 struct kvm_cpu_compat_check c; 5460 int r; 5461 int cpu; 5462 5463 r = kvm_arch_init(opaque); 5464 if (r) 5465 goto out_fail; 5466 5467 /* 5468 * kvm_arch_init makes sure there's at most one caller 5469 * for architectures that support multiple implementations, 5470 * like intel and amd on x86. 5471 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5472 * conflicts in case kvm is already setup for another implementation. 5473 */ 5474 r = kvm_irqfd_init(); 5475 if (r) 5476 goto out_irqfd; 5477 5478 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5479 r = -ENOMEM; 5480 goto out_free_0; 5481 } 5482 5483 r = kvm_arch_hardware_setup(opaque); 5484 if (r < 0) 5485 goto out_free_1; 5486 5487 c.ret = &r; 5488 c.opaque = opaque; 5489 for_each_online_cpu(cpu) { 5490 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5491 if (r < 0) 5492 goto out_free_2; 5493 } 5494 5495 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5496 kvm_starting_cpu, kvm_dying_cpu); 5497 if (r) 5498 goto out_free_2; 5499 register_reboot_notifier(&kvm_reboot_notifier); 5500 5501 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5502 if (!vcpu_align) 5503 vcpu_align = __alignof__(struct kvm_vcpu); 5504 kvm_vcpu_cache = 5505 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5506 SLAB_ACCOUNT, 5507 offsetof(struct kvm_vcpu, arch), 5508 offsetofend(struct kvm_vcpu, stats_id) 5509 - offsetof(struct kvm_vcpu, arch), 5510 NULL); 5511 if (!kvm_vcpu_cache) { 5512 r = -ENOMEM; 5513 goto out_free_3; 5514 } 5515 5516 r = kvm_async_pf_init(); 5517 if (r) 5518 goto out_free; 5519 5520 kvm_chardev_ops.owner = module; 5521 kvm_vm_fops.owner = module; 5522 kvm_vcpu_fops.owner = module; 5523 5524 r = misc_register(&kvm_dev); 5525 if (r) { 5526 pr_err("kvm: misc device register failed\n"); 5527 goto out_unreg; 5528 } 5529 5530 register_syscore_ops(&kvm_syscore_ops); 5531 5532 kvm_preempt_ops.sched_in = kvm_sched_in; 5533 kvm_preempt_ops.sched_out = kvm_sched_out; 5534 5535 kvm_init_debug(); 5536 5537 r = kvm_vfio_ops_init(); 5538 WARN_ON(r); 5539 5540 return 0; 5541 5542 out_unreg: 5543 kvm_async_pf_deinit(); 5544 out_free: 5545 kmem_cache_destroy(kvm_vcpu_cache); 5546 out_free_3: 5547 unregister_reboot_notifier(&kvm_reboot_notifier); 5548 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5549 out_free_2: 5550 kvm_arch_hardware_unsetup(); 5551 out_free_1: 5552 free_cpumask_var(cpus_hardware_enabled); 5553 out_free_0: 5554 kvm_irqfd_exit(); 5555 out_irqfd: 5556 kvm_arch_exit(); 5557 out_fail: 5558 return r; 5559 } 5560 EXPORT_SYMBOL_GPL(kvm_init); 5561 5562 void kvm_exit(void) 5563 { 5564 debugfs_remove_recursive(kvm_debugfs_dir); 5565 misc_deregister(&kvm_dev); 5566 kmem_cache_destroy(kvm_vcpu_cache); 5567 kvm_async_pf_deinit(); 5568 unregister_syscore_ops(&kvm_syscore_ops); 5569 unregister_reboot_notifier(&kvm_reboot_notifier); 5570 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5571 on_each_cpu(hardware_disable_nolock, NULL, 1); 5572 kvm_arch_hardware_unsetup(); 5573 kvm_arch_exit(); 5574 kvm_irqfd_exit(); 5575 free_cpumask_var(cpus_hardware_enabled); 5576 kvm_vfio_ops_exit(); 5577 } 5578 EXPORT_SYMBOL_GPL(kvm_exit); 5579 5580 struct kvm_vm_worker_thread_context { 5581 struct kvm *kvm; 5582 struct task_struct *parent; 5583 struct completion init_done; 5584 kvm_vm_thread_fn_t thread_fn; 5585 uintptr_t data; 5586 int err; 5587 }; 5588 5589 static int kvm_vm_worker_thread(void *context) 5590 { 5591 /* 5592 * The init_context is allocated on the stack of the parent thread, so 5593 * we have to locally copy anything that is needed beyond initialization 5594 */ 5595 struct kvm_vm_worker_thread_context *init_context = context; 5596 struct kvm *kvm = init_context->kvm; 5597 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5598 uintptr_t data = init_context->data; 5599 int err; 5600 5601 err = kthread_park(current); 5602 /* kthread_park(current) is never supposed to return an error */ 5603 WARN_ON(err != 0); 5604 if (err) 5605 goto init_complete; 5606 5607 err = cgroup_attach_task_all(init_context->parent, current); 5608 if (err) { 5609 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5610 __func__, err); 5611 goto init_complete; 5612 } 5613 5614 set_user_nice(current, task_nice(init_context->parent)); 5615 5616 init_complete: 5617 init_context->err = err; 5618 complete(&init_context->init_done); 5619 init_context = NULL; 5620 5621 if (err) 5622 return err; 5623 5624 /* Wait to be woken up by the spawner before proceeding. */ 5625 kthread_parkme(); 5626 5627 if (!kthread_should_stop()) 5628 err = thread_fn(kvm, data); 5629 5630 return err; 5631 } 5632 5633 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5634 uintptr_t data, const char *name, 5635 struct task_struct **thread_ptr) 5636 { 5637 struct kvm_vm_worker_thread_context init_context = {}; 5638 struct task_struct *thread; 5639 5640 *thread_ptr = NULL; 5641 init_context.kvm = kvm; 5642 init_context.parent = current; 5643 init_context.thread_fn = thread_fn; 5644 init_context.data = data; 5645 init_completion(&init_context.init_done); 5646 5647 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5648 "%s-%d", name, task_pid_nr(current)); 5649 if (IS_ERR(thread)) 5650 return PTR_ERR(thread); 5651 5652 /* kthread_run is never supposed to return NULL */ 5653 WARN_ON(thread == NULL); 5654 5655 wait_for_completion(&init_context.init_done); 5656 5657 if (!init_context.err) 5658 *thread_ptr = thread; 5659 5660 return init_context.err; 5661 } 5662