xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 4800cd83)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/kvm.h>
62 
63 MODULE_AUTHOR("Qumranet");
64 MODULE_LICENSE("GPL");
65 
66 /*
67  * Ordering of locks:
68  *
69  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
70  */
71 
72 DEFINE_SPINLOCK(kvm_lock);
73 LIST_HEAD(vm_list);
74 
75 static cpumask_var_t cpus_hardware_enabled;
76 static int kvm_usage_count = 0;
77 static atomic_t hardware_enable_failed;
78 
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 
84 struct dentry *kvm_debugfs_dir;
85 
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 			   unsigned long arg);
88 static int hardware_enable_all(void);
89 static void hardware_disable_all(void);
90 
91 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92 
93 bool kvm_rebooting;
94 EXPORT_SYMBOL_GPL(kvm_rebooting);
95 
96 static bool largepages_enabled = true;
97 
98 static struct page *hwpoison_page;
99 static pfn_t hwpoison_pfn;
100 
101 static struct page *fault_page;
102 static pfn_t fault_pfn;
103 
104 inline int kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 	if (pfn_valid(pfn)) {
107 		int reserved;
108 		struct page *tail = pfn_to_page(pfn);
109 		struct page *head = compound_trans_head(tail);
110 		reserved = PageReserved(head);
111 		if (head != tail) {
112 			/*
113 			 * "head" is not a dangling pointer
114 			 * (compound_trans_head takes care of that)
115 			 * but the hugepage may have been splitted
116 			 * from under us (and we may not hold a
117 			 * reference count on the head page so it can
118 			 * be reused before we run PageReferenced), so
119 			 * we've to check PageTail before returning
120 			 * what we just read.
121 			 */
122 			smp_rmb();
123 			if (PageTail(tail))
124 				return reserved;
125 		}
126 		return PageReserved(tail);
127 	}
128 
129 	return true;
130 }
131 
132 /*
133  * Switches to specified vcpu, until a matching vcpu_put()
134  */
135 void vcpu_load(struct kvm_vcpu *vcpu)
136 {
137 	int cpu;
138 
139 	mutex_lock(&vcpu->mutex);
140 	cpu = get_cpu();
141 	preempt_notifier_register(&vcpu->preempt_notifier);
142 	kvm_arch_vcpu_load(vcpu, cpu);
143 	put_cpu();
144 }
145 
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	preempt_disable();
149 	kvm_arch_vcpu_put(vcpu);
150 	preempt_notifier_unregister(&vcpu->preempt_notifier);
151 	preempt_enable();
152 	mutex_unlock(&vcpu->mutex);
153 }
154 
155 static void ack_flush(void *_completed)
156 {
157 }
158 
159 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 	int i, cpu, me;
162 	cpumask_var_t cpus;
163 	bool called = true;
164 	struct kvm_vcpu *vcpu;
165 
166 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167 
168 	raw_spin_lock(&kvm->requests_lock);
169 	me = smp_processor_id();
170 	kvm_for_each_vcpu(i, vcpu, kvm) {
171 		if (kvm_make_check_request(req, vcpu))
172 			continue;
173 		cpu = vcpu->cpu;
174 		if (cpus != NULL && cpu != -1 && cpu != me)
175 			cpumask_set_cpu(cpu, cpus);
176 	}
177 	if (unlikely(cpus == NULL))
178 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 	else if (!cpumask_empty(cpus))
180 		smp_call_function_many(cpus, ack_flush, NULL, 1);
181 	else
182 		called = false;
183 	raw_spin_unlock(&kvm->requests_lock);
184 	free_cpumask_var(cpus);
185 	return called;
186 }
187 
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190 	int dirty_count = kvm->tlbs_dirty;
191 
192 	smp_mb();
193 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 		++kvm->stat.remote_tlb_flush;
195 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202 
203 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
204 {
205 	struct page *page;
206 	int r;
207 
208 	mutex_init(&vcpu->mutex);
209 	vcpu->cpu = -1;
210 	vcpu->kvm = kvm;
211 	vcpu->vcpu_id = id;
212 	init_waitqueue_head(&vcpu->wq);
213 	kvm_async_pf_vcpu_init(vcpu);
214 
215 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
216 	if (!page) {
217 		r = -ENOMEM;
218 		goto fail;
219 	}
220 	vcpu->run = page_address(page);
221 
222 	r = kvm_arch_vcpu_init(vcpu);
223 	if (r < 0)
224 		goto fail_free_run;
225 	return 0;
226 
227 fail_free_run:
228 	free_page((unsigned long)vcpu->run);
229 fail:
230 	return r;
231 }
232 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
233 
234 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
235 {
236 	kvm_arch_vcpu_uninit(vcpu);
237 	free_page((unsigned long)vcpu->run);
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
240 
241 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
242 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
243 {
244 	return container_of(mn, struct kvm, mmu_notifier);
245 }
246 
247 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
248 					     struct mm_struct *mm,
249 					     unsigned long address)
250 {
251 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
252 	int need_tlb_flush, idx;
253 
254 	/*
255 	 * When ->invalidate_page runs, the linux pte has been zapped
256 	 * already but the page is still allocated until
257 	 * ->invalidate_page returns. So if we increase the sequence
258 	 * here the kvm page fault will notice if the spte can't be
259 	 * established because the page is going to be freed. If
260 	 * instead the kvm page fault establishes the spte before
261 	 * ->invalidate_page runs, kvm_unmap_hva will release it
262 	 * before returning.
263 	 *
264 	 * The sequence increase only need to be seen at spin_unlock
265 	 * time, and not at spin_lock time.
266 	 *
267 	 * Increasing the sequence after the spin_unlock would be
268 	 * unsafe because the kvm page fault could then establish the
269 	 * pte after kvm_unmap_hva returned, without noticing the page
270 	 * is going to be freed.
271 	 */
272 	idx = srcu_read_lock(&kvm->srcu);
273 	spin_lock(&kvm->mmu_lock);
274 	kvm->mmu_notifier_seq++;
275 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
276 	spin_unlock(&kvm->mmu_lock);
277 	srcu_read_unlock(&kvm->srcu, idx);
278 
279 	/* we've to flush the tlb before the pages can be freed */
280 	if (need_tlb_flush)
281 		kvm_flush_remote_tlbs(kvm);
282 
283 }
284 
285 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
286 					struct mm_struct *mm,
287 					unsigned long address,
288 					pte_t pte)
289 {
290 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
291 	int idx;
292 
293 	idx = srcu_read_lock(&kvm->srcu);
294 	spin_lock(&kvm->mmu_lock);
295 	kvm->mmu_notifier_seq++;
296 	kvm_set_spte_hva(kvm, address, pte);
297 	spin_unlock(&kvm->mmu_lock);
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
302 						    struct mm_struct *mm,
303 						    unsigned long start,
304 						    unsigned long end)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int need_tlb_flush = 0, idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	/*
312 	 * The count increase must become visible at unlock time as no
313 	 * spte can be established without taking the mmu_lock and
314 	 * count is also read inside the mmu_lock critical section.
315 	 */
316 	kvm->mmu_notifier_count++;
317 	for (; start < end; start += PAGE_SIZE)
318 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
319 	need_tlb_flush |= kvm->tlbs_dirty;
320 	spin_unlock(&kvm->mmu_lock);
321 	srcu_read_unlock(&kvm->srcu, idx);
322 
323 	/* we've to flush the tlb before the pages can be freed */
324 	if (need_tlb_flush)
325 		kvm_flush_remote_tlbs(kvm);
326 }
327 
328 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
329 						  struct mm_struct *mm,
330 						  unsigned long start,
331 						  unsigned long end)
332 {
333 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 
335 	spin_lock(&kvm->mmu_lock);
336 	/*
337 	 * This sequence increase will notify the kvm page fault that
338 	 * the page that is going to be mapped in the spte could have
339 	 * been freed.
340 	 */
341 	kvm->mmu_notifier_seq++;
342 	/*
343 	 * The above sequence increase must be visible before the
344 	 * below count decrease but both values are read by the kvm
345 	 * page fault under mmu_lock spinlock so we don't need to add
346 	 * a smb_wmb() here in between the two.
347 	 */
348 	kvm->mmu_notifier_count--;
349 	spin_unlock(&kvm->mmu_lock);
350 
351 	BUG_ON(kvm->mmu_notifier_count < 0);
352 }
353 
354 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
355 					      struct mm_struct *mm,
356 					      unsigned long address)
357 {
358 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
359 	int young, idx;
360 
361 	idx = srcu_read_lock(&kvm->srcu);
362 	spin_lock(&kvm->mmu_lock);
363 	young = kvm_age_hva(kvm, address);
364 	spin_unlock(&kvm->mmu_lock);
365 	srcu_read_unlock(&kvm->srcu, idx);
366 
367 	if (young)
368 		kvm_flush_remote_tlbs(kvm);
369 
370 	return young;
371 }
372 
373 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
374 				       struct mm_struct *mm,
375 				       unsigned long address)
376 {
377 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 	int young, idx;
379 
380 	idx = srcu_read_lock(&kvm->srcu);
381 	spin_lock(&kvm->mmu_lock);
382 	young = kvm_test_age_hva(kvm, address);
383 	spin_unlock(&kvm->mmu_lock);
384 	srcu_read_unlock(&kvm->srcu, idx);
385 
386 	return young;
387 }
388 
389 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
390 				     struct mm_struct *mm)
391 {
392 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 	int idx;
394 
395 	idx = srcu_read_lock(&kvm->srcu);
396 	kvm_arch_flush_shadow(kvm);
397 	srcu_read_unlock(&kvm->srcu, idx);
398 }
399 
400 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
401 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
402 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
403 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
404 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
405 	.test_young		= kvm_mmu_notifier_test_young,
406 	.change_pte		= kvm_mmu_notifier_change_pte,
407 	.release		= kvm_mmu_notifier_release,
408 };
409 
410 static int kvm_init_mmu_notifier(struct kvm *kvm)
411 {
412 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
413 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
414 }
415 
416 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
417 
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420 	return 0;
421 }
422 
423 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
424 
425 static struct kvm *kvm_create_vm(void)
426 {
427 	int r, i;
428 	struct kvm *kvm = kvm_arch_alloc_vm();
429 
430 	if (!kvm)
431 		return ERR_PTR(-ENOMEM);
432 
433 	r = kvm_arch_init_vm(kvm);
434 	if (r)
435 		goto out_err_nodisable;
436 
437 	r = hardware_enable_all();
438 	if (r)
439 		goto out_err_nodisable;
440 
441 #ifdef CONFIG_HAVE_KVM_IRQCHIP
442 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
443 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
444 #endif
445 
446 	r = -ENOMEM;
447 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
448 	if (!kvm->memslots)
449 		goto out_err_nosrcu;
450 	if (init_srcu_struct(&kvm->srcu))
451 		goto out_err_nosrcu;
452 	for (i = 0; i < KVM_NR_BUSES; i++) {
453 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
454 					GFP_KERNEL);
455 		if (!kvm->buses[i])
456 			goto out_err;
457 	}
458 
459 	r = kvm_init_mmu_notifier(kvm);
460 	if (r)
461 		goto out_err;
462 
463 	kvm->mm = current->mm;
464 	atomic_inc(&kvm->mm->mm_count);
465 	spin_lock_init(&kvm->mmu_lock);
466 	raw_spin_lock_init(&kvm->requests_lock);
467 	kvm_eventfd_init(kvm);
468 	mutex_init(&kvm->lock);
469 	mutex_init(&kvm->irq_lock);
470 	mutex_init(&kvm->slots_lock);
471 	atomic_set(&kvm->users_count, 1);
472 	spin_lock(&kvm_lock);
473 	list_add(&kvm->vm_list, &vm_list);
474 	spin_unlock(&kvm_lock);
475 
476 	return kvm;
477 
478 out_err:
479 	cleanup_srcu_struct(&kvm->srcu);
480 out_err_nosrcu:
481 	hardware_disable_all();
482 out_err_nodisable:
483 	for (i = 0; i < KVM_NR_BUSES; i++)
484 		kfree(kvm->buses[i]);
485 	kfree(kvm->memslots);
486 	kvm_arch_free_vm(kvm);
487 	return ERR_PTR(r);
488 }
489 
490 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
491 {
492 	if (!memslot->dirty_bitmap)
493 		return;
494 
495 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
496 		vfree(memslot->dirty_bitmap_head);
497 	else
498 		kfree(memslot->dirty_bitmap_head);
499 
500 	memslot->dirty_bitmap = NULL;
501 	memslot->dirty_bitmap_head = NULL;
502 }
503 
504 /*
505  * Free any memory in @free but not in @dont.
506  */
507 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
508 				  struct kvm_memory_slot *dont)
509 {
510 	int i;
511 
512 	if (!dont || free->rmap != dont->rmap)
513 		vfree(free->rmap);
514 
515 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
516 		kvm_destroy_dirty_bitmap(free);
517 
518 
519 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
520 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
521 			vfree(free->lpage_info[i]);
522 			free->lpage_info[i] = NULL;
523 		}
524 	}
525 
526 	free->npages = 0;
527 	free->rmap = NULL;
528 }
529 
530 void kvm_free_physmem(struct kvm *kvm)
531 {
532 	int i;
533 	struct kvm_memslots *slots = kvm->memslots;
534 
535 	for (i = 0; i < slots->nmemslots; ++i)
536 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
537 
538 	kfree(kvm->memslots);
539 }
540 
541 static void kvm_destroy_vm(struct kvm *kvm)
542 {
543 	int i;
544 	struct mm_struct *mm = kvm->mm;
545 
546 	kvm_arch_sync_events(kvm);
547 	spin_lock(&kvm_lock);
548 	list_del(&kvm->vm_list);
549 	spin_unlock(&kvm_lock);
550 	kvm_free_irq_routing(kvm);
551 	for (i = 0; i < KVM_NR_BUSES; i++)
552 		kvm_io_bus_destroy(kvm->buses[i]);
553 	kvm_coalesced_mmio_free(kvm);
554 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
555 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
556 #else
557 	kvm_arch_flush_shadow(kvm);
558 #endif
559 	kvm_arch_destroy_vm(kvm);
560 	kvm_free_physmem(kvm);
561 	cleanup_srcu_struct(&kvm->srcu);
562 	kvm_arch_free_vm(kvm);
563 	hardware_disable_all();
564 	mmdrop(mm);
565 }
566 
567 void kvm_get_kvm(struct kvm *kvm)
568 {
569 	atomic_inc(&kvm->users_count);
570 }
571 EXPORT_SYMBOL_GPL(kvm_get_kvm);
572 
573 void kvm_put_kvm(struct kvm *kvm)
574 {
575 	if (atomic_dec_and_test(&kvm->users_count))
576 		kvm_destroy_vm(kvm);
577 }
578 EXPORT_SYMBOL_GPL(kvm_put_kvm);
579 
580 
581 static int kvm_vm_release(struct inode *inode, struct file *filp)
582 {
583 	struct kvm *kvm = filp->private_data;
584 
585 	kvm_irqfd_release(kvm);
586 
587 	kvm_put_kvm(kvm);
588 	return 0;
589 }
590 
591 /*
592  * Allocation size is twice as large as the actual dirty bitmap size.
593  * This makes it possible to do double buffering: see x86's
594  * kvm_vm_ioctl_get_dirty_log().
595  */
596 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
597 {
598 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
599 
600 	if (dirty_bytes > PAGE_SIZE)
601 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
602 	else
603 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
604 
605 	if (!memslot->dirty_bitmap)
606 		return -ENOMEM;
607 
608 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
609 	return 0;
610 }
611 
612 /*
613  * Allocate some memory and give it an address in the guest physical address
614  * space.
615  *
616  * Discontiguous memory is allowed, mostly for framebuffers.
617  *
618  * Must be called holding mmap_sem for write.
619  */
620 int __kvm_set_memory_region(struct kvm *kvm,
621 			    struct kvm_userspace_memory_region *mem,
622 			    int user_alloc)
623 {
624 	int r, flush_shadow = 0;
625 	gfn_t base_gfn;
626 	unsigned long npages;
627 	unsigned long i;
628 	struct kvm_memory_slot *memslot;
629 	struct kvm_memory_slot old, new;
630 	struct kvm_memslots *slots, *old_memslots;
631 
632 	r = -EINVAL;
633 	/* General sanity checks */
634 	if (mem->memory_size & (PAGE_SIZE - 1))
635 		goto out;
636 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
637 		goto out;
638 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
639 		goto out;
640 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
641 		goto out;
642 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
643 		goto out;
644 
645 	memslot = &kvm->memslots->memslots[mem->slot];
646 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
647 	npages = mem->memory_size >> PAGE_SHIFT;
648 
649 	r = -EINVAL;
650 	if (npages > KVM_MEM_MAX_NR_PAGES)
651 		goto out;
652 
653 	if (!npages)
654 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
655 
656 	new = old = *memslot;
657 
658 	new.id = mem->slot;
659 	new.base_gfn = base_gfn;
660 	new.npages = npages;
661 	new.flags = mem->flags;
662 
663 	/* Disallow changing a memory slot's size. */
664 	r = -EINVAL;
665 	if (npages && old.npages && npages != old.npages)
666 		goto out_free;
667 
668 	/* Check for overlaps */
669 	r = -EEXIST;
670 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
671 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
672 
673 		if (s == memslot || !s->npages)
674 			continue;
675 		if (!((base_gfn + npages <= s->base_gfn) ||
676 		      (base_gfn >= s->base_gfn + s->npages)))
677 			goto out_free;
678 	}
679 
680 	/* Free page dirty bitmap if unneeded */
681 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
682 		new.dirty_bitmap = NULL;
683 
684 	r = -ENOMEM;
685 
686 	/* Allocate if a slot is being created */
687 #ifndef CONFIG_S390
688 	if (npages && !new.rmap) {
689 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
690 
691 		if (!new.rmap)
692 			goto out_free;
693 
694 		new.user_alloc = user_alloc;
695 		new.userspace_addr = mem->userspace_addr;
696 	}
697 	if (!npages)
698 		goto skip_lpage;
699 
700 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
701 		unsigned long ugfn;
702 		unsigned long j;
703 		int lpages;
704 		int level = i + 2;
705 
706 		/* Avoid unused variable warning if no large pages */
707 		(void)level;
708 
709 		if (new.lpage_info[i])
710 			continue;
711 
712 		lpages = 1 + ((base_gfn + npages - 1)
713 			     >> KVM_HPAGE_GFN_SHIFT(level));
714 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
715 
716 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
717 
718 		if (!new.lpage_info[i])
719 			goto out_free;
720 
721 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
722 			new.lpage_info[i][0].write_count = 1;
723 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
724 			new.lpage_info[i][lpages - 1].write_count = 1;
725 		ugfn = new.userspace_addr >> PAGE_SHIFT;
726 		/*
727 		 * If the gfn and userspace address are not aligned wrt each
728 		 * other, or if explicitly asked to, disable large page
729 		 * support for this slot
730 		 */
731 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
732 		    !largepages_enabled)
733 			for (j = 0; j < lpages; ++j)
734 				new.lpage_info[i][j].write_count = 1;
735 	}
736 
737 skip_lpage:
738 
739 	/* Allocate page dirty bitmap if needed */
740 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
741 		if (kvm_create_dirty_bitmap(&new) < 0)
742 			goto out_free;
743 		/* destroy any largepage mappings for dirty tracking */
744 		if (old.npages)
745 			flush_shadow = 1;
746 	}
747 #else  /* not defined CONFIG_S390 */
748 	new.user_alloc = user_alloc;
749 	if (user_alloc)
750 		new.userspace_addr = mem->userspace_addr;
751 #endif /* not defined CONFIG_S390 */
752 
753 	if (!npages) {
754 		r = -ENOMEM;
755 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
756 		if (!slots)
757 			goto out_free;
758 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
759 		if (mem->slot >= slots->nmemslots)
760 			slots->nmemslots = mem->slot + 1;
761 		slots->generation++;
762 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
763 
764 		old_memslots = kvm->memslots;
765 		rcu_assign_pointer(kvm->memslots, slots);
766 		synchronize_srcu_expedited(&kvm->srcu);
767 		/* From this point no new shadow pages pointing to a deleted
768 		 * memslot will be created.
769 		 *
770 		 * validation of sp->gfn happens in:
771 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
772 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
773 		 */
774 		kvm_arch_flush_shadow(kvm);
775 		kfree(old_memslots);
776 	}
777 
778 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
779 	if (r)
780 		goto out_free;
781 
782 	/* map the pages in iommu page table */
783 	if (npages) {
784 		r = kvm_iommu_map_pages(kvm, &new);
785 		if (r)
786 			goto out_free;
787 	}
788 
789 	r = -ENOMEM;
790 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
791 	if (!slots)
792 		goto out_free;
793 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
794 	if (mem->slot >= slots->nmemslots)
795 		slots->nmemslots = mem->slot + 1;
796 	slots->generation++;
797 
798 	/* actual memory is freed via old in kvm_free_physmem_slot below */
799 	if (!npages) {
800 		new.rmap = NULL;
801 		new.dirty_bitmap = NULL;
802 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
803 			new.lpage_info[i] = NULL;
804 	}
805 
806 	slots->memslots[mem->slot] = new;
807 	old_memslots = kvm->memslots;
808 	rcu_assign_pointer(kvm->memslots, slots);
809 	synchronize_srcu_expedited(&kvm->srcu);
810 
811 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
812 
813 	kvm_free_physmem_slot(&old, &new);
814 	kfree(old_memslots);
815 
816 	if (flush_shadow)
817 		kvm_arch_flush_shadow(kvm);
818 
819 	return 0;
820 
821 out_free:
822 	kvm_free_physmem_slot(&new, &old);
823 out:
824 	return r;
825 
826 }
827 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
828 
829 int kvm_set_memory_region(struct kvm *kvm,
830 			  struct kvm_userspace_memory_region *mem,
831 			  int user_alloc)
832 {
833 	int r;
834 
835 	mutex_lock(&kvm->slots_lock);
836 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
837 	mutex_unlock(&kvm->slots_lock);
838 	return r;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
841 
842 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
843 				   struct
844 				   kvm_userspace_memory_region *mem,
845 				   int user_alloc)
846 {
847 	if (mem->slot >= KVM_MEMORY_SLOTS)
848 		return -EINVAL;
849 	return kvm_set_memory_region(kvm, mem, user_alloc);
850 }
851 
852 int kvm_get_dirty_log(struct kvm *kvm,
853 			struct kvm_dirty_log *log, int *is_dirty)
854 {
855 	struct kvm_memory_slot *memslot;
856 	int r, i;
857 	unsigned long n;
858 	unsigned long any = 0;
859 
860 	r = -EINVAL;
861 	if (log->slot >= KVM_MEMORY_SLOTS)
862 		goto out;
863 
864 	memslot = &kvm->memslots->memslots[log->slot];
865 	r = -ENOENT;
866 	if (!memslot->dirty_bitmap)
867 		goto out;
868 
869 	n = kvm_dirty_bitmap_bytes(memslot);
870 
871 	for (i = 0; !any && i < n/sizeof(long); ++i)
872 		any = memslot->dirty_bitmap[i];
873 
874 	r = -EFAULT;
875 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
876 		goto out;
877 
878 	if (any)
879 		*is_dirty = 1;
880 
881 	r = 0;
882 out:
883 	return r;
884 }
885 
886 void kvm_disable_largepages(void)
887 {
888 	largepages_enabled = false;
889 }
890 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
891 
892 int is_error_page(struct page *page)
893 {
894 	return page == bad_page || page == hwpoison_page || page == fault_page;
895 }
896 EXPORT_SYMBOL_GPL(is_error_page);
897 
898 int is_error_pfn(pfn_t pfn)
899 {
900 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
901 }
902 EXPORT_SYMBOL_GPL(is_error_pfn);
903 
904 int is_hwpoison_pfn(pfn_t pfn)
905 {
906 	return pfn == hwpoison_pfn;
907 }
908 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
909 
910 int is_fault_pfn(pfn_t pfn)
911 {
912 	return pfn == fault_pfn;
913 }
914 EXPORT_SYMBOL_GPL(is_fault_pfn);
915 
916 static inline unsigned long bad_hva(void)
917 {
918 	return PAGE_OFFSET;
919 }
920 
921 int kvm_is_error_hva(unsigned long addr)
922 {
923 	return addr == bad_hva();
924 }
925 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
926 
927 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
928 						gfn_t gfn)
929 {
930 	int i;
931 
932 	for (i = 0; i < slots->nmemslots; ++i) {
933 		struct kvm_memory_slot *memslot = &slots->memslots[i];
934 
935 		if (gfn >= memslot->base_gfn
936 		    && gfn < memslot->base_gfn + memslot->npages)
937 			return memslot;
938 	}
939 	return NULL;
940 }
941 
942 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
943 {
944 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
945 }
946 EXPORT_SYMBOL_GPL(gfn_to_memslot);
947 
948 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
949 {
950 	int i;
951 	struct kvm_memslots *slots = kvm_memslots(kvm);
952 
953 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
954 		struct kvm_memory_slot *memslot = &slots->memslots[i];
955 
956 		if (memslot->flags & KVM_MEMSLOT_INVALID)
957 			continue;
958 
959 		if (gfn >= memslot->base_gfn
960 		    && gfn < memslot->base_gfn + memslot->npages)
961 			return 1;
962 	}
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
966 
967 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
968 {
969 	struct vm_area_struct *vma;
970 	unsigned long addr, size;
971 
972 	size = PAGE_SIZE;
973 
974 	addr = gfn_to_hva(kvm, gfn);
975 	if (kvm_is_error_hva(addr))
976 		return PAGE_SIZE;
977 
978 	down_read(&current->mm->mmap_sem);
979 	vma = find_vma(current->mm, addr);
980 	if (!vma)
981 		goto out;
982 
983 	size = vma_kernel_pagesize(vma);
984 
985 out:
986 	up_read(&current->mm->mmap_sem);
987 
988 	return size;
989 }
990 
991 int memslot_id(struct kvm *kvm, gfn_t gfn)
992 {
993 	int i;
994 	struct kvm_memslots *slots = kvm_memslots(kvm);
995 	struct kvm_memory_slot *memslot = NULL;
996 
997 	for (i = 0; i < slots->nmemslots; ++i) {
998 		memslot = &slots->memslots[i];
999 
1000 		if (gfn >= memslot->base_gfn
1001 		    && gfn < memslot->base_gfn + memslot->npages)
1002 			break;
1003 	}
1004 
1005 	return memslot - slots->memslots;
1006 }
1007 
1008 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1009 				     gfn_t *nr_pages)
1010 {
1011 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1012 		return bad_hva();
1013 
1014 	if (nr_pages)
1015 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1016 
1017 	return gfn_to_hva_memslot(slot, gfn);
1018 }
1019 
1020 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1021 {
1022 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1023 }
1024 EXPORT_SYMBOL_GPL(gfn_to_hva);
1025 
1026 static pfn_t get_fault_pfn(void)
1027 {
1028 	get_page(fault_page);
1029 	return fault_pfn;
1030 }
1031 
1032 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1033 			bool *async, bool write_fault, bool *writable)
1034 {
1035 	struct page *page[1];
1036 	int npages = 0;
1037 	pfn_t pfn;
1038 
1039 	/* we can do it either atomically or asynchronously, not both */
1040 	BUG_ON(atomic && async);
1041 
1042 	BUG_ON(!write_fault && !writable);
1043 
1044 	if (writable)
1045 		*writable = true;
1046 
1047 	if (atomic || async)
1048 		npages = __get_user_pages_fast(addr, 1, 1, page);
1049 
1050 	if (unlikely(npages != 1) && !atomic) {
1051 		might_sleep();
1052 
1053 		if (writable)
1054 			*writable = write_fault;
1055 
1056 		npages = get_user_pages_fast(addr, 1, write_fault, page);
1057 
1058 		/* map read fault as writable if possible */
1059 		if (unlikely(!write_fault) && npages == 1) {
1060 			struct page *wpage[1];
1061 
1062 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1063 			if (npages == 1) {
1064 				*writable = true;
1065 				put_page(page[0]);
1066 				page[0] = wpage[0];
1067 			}
1068 			npages = 1;
1069 		}
1070 	}
1071 
1072 	if (unlikely(npages != 1)) {
1073 		struct vm_area_struct *vma;
1074 
1075 		if (atomic)
1076 			return get_fault_pfn();
1077 
1078 		down_read(&current->mm->mmap_sem);
1079 		if (is_hwpoison_address(addr)) {
1080 			up_read(&current->mm->mmap_sem);
1081 			get_page(hwpoison_page);
1082 			return page_to_pfn(hwpoison_page);
1083 		}
1084 
1085 		vma = find_vma_intersection(current->mm, addr, addr+1);
1086 
1087 		if (vma == NULL)
1088 			pfn = get_fault_pfn();
1089 		else if ((vma->vm_flags & VM_PFNMAP)) {
1090 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1091 				vma->vm_pgoff;
1092 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1093 		} else {
1094 			if (async && (vma->vm_flags & VM_WRITE))
1095 				*async = true;
1096 			pfn = get_fault_pfn();
1097 		}
1098 		up_read(&current->mm->mmap_sem);
1099 	} else
1100 		pfn = page_to_pfn(page[0]);
1101 
1102 	return pfn;
1103 }
1104 
1105 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1106 {
1107 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1108 }
1109 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1110 
1111 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1112 			  bool write_fault, bool *writable)
1113 {
1114 	unsigned long addr;
1115 
1116 	if (async)
1117 		*async = false;
1118 
1119 	addr = gfn_to_hva(kvm, gfn);
1120 	if (kvm_is_error_hva(addr)) {
1121 		get_page(bad_page);
1122 		return page_to_pfn(bad_page);
1123 	}
1124 
1125 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1126 }
1127 
1128 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1129 {
1130 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1131 }
1132 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1133 
1134 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1135 		       bool write_fault, bool *writable)
1136 {
1137 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1138 }
1139 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1140 
1141 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1142 {
1143 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1144 }
1145 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1146 
1147 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1148 		      bool *writable)
1149 {
1150 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1151 }
1152 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1153 
1154 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1155 			 struct kvm_memory_slot *slot, gfn_t gfn)
1156 {
1157 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1158 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1159 }
1160 
1161 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1162 								  int nr_pages)
1163 {
1164 	unsigned long addr;
1165 	gfn_t entry;
1166 
1167 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1168 	if (kvm_is_error_hva(addr))
1169 		return -1;
1170 
1171 	if (entry < nr_pages)
1172 		return 0;
1173 
1174 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1175 }
1176 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1177 
1178 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1179 {
1180 	pfn_t pfn;
1181 
1182 	pfn = gfn_to_pfn(kvm, gfn);
1183 	if (!kvm_is_mmio_pfn(pfn))
1184 		return pfn_to_page(pfn);
1185 
1186 	WARN_ON(kvm_is_mmio_pfn(pfn));
1187 
1188 	get_page(bad_page);
1189 	return bad_page;
1190 }
1191 
1192 EXPORT_SYMBOL_GPL(gfn_to_page);
1193 
1194 void kvm_release_page_clean(struct page *page)
1195 {
1196 	kvm_release_pfn_clean(page_to_pfn(page));
1197 }
1198 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1199 
1200 void kvm_release_pfn_clean(pfn_t pfn)
1201 {
1202 	if (!kvm_is_mmio_pfn(pfn))
1203 		put_page(pfn_to_page(pfn));
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1206 
1207 void kvm_release_page_dirty(struct page *page)
1208 {
1209 	kvm_release_pfn_dirty(page_to_pfn(page));
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1212 
1213 void kvm_release_pfn_dirty(pfn_t pfn)
1214 {
1215 	kvm_set_pfn_dirty(pfn);
1216 	kvm_release_pfn_clean(pfn);
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1219 
1220 void kvm_set_page_dirty(struct page *page)
1221 {
1222 	kvm_set_pfn_dirty(page_to_pfn(page));
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1225 
1226 void kvm_set_pfn_dirty(pfn_t pfn)
1227 {
1228 	if (!kvm_is_mmio_pfn(pfn)) {
1229 		struct page *page = pfn_to_page(pfn);
1230 		if (!PageReserved(page))
1231 			SetPageDirty(page);
1232 	}
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1235 
1236 void kvm_set_pfn_accessed(pfn_t pfn)
1237 {
1238 	if (!kvm_is_mmio_pfn(pfn))
1239 		mark_page_accessed(pfn_to_page(pfn));
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1242 
1243 void kvm_get_pfn(pfn_t pfn)
1244 {
1245 	if (!kvm_is_mmio_pfn(pfn))
1246 		get_page(pfn_to_page(pfn));
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1249 
1250 static int next_segment(unsigned long len, int offset)
1251 {
1252 	if (len > PAGE_SIZE - offset)
1253 		return PAGE_SIZE - offset;
1254 	else
1255 		return len;
1256 }
1257 
1258 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1259 			int len)
1260 {
1261 	int r;
1262 	unsigned long addr;
1263 
1264 	addr = gfn_to_hva(kvm, gfn);
1265 	if (kvm_is_error_hva(addr))
1266 		return -EFAULT;
1267 	r = copy_from_user(data, (void __user *)addr + offset, len);
1268 	if (r)
1269 		return -EFAULT;
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1273 
1274 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1275 {
1276 	gfn_t gfn = gpa >> PAGE_SHIFT;
1277 	int seg;
1278 	int offset = offset_in_page(gpa);
1279 	int ret;
1280 
1281 	while ((seg = next_segment(len, offset)) != 0) {
1282 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1283 		if (ret < 0)
1284 			return ret;
1285 		offset = 0;
1286 		len -= seg;
1287 		data += seg;
1288 		++gfn;
1289 	}
1290 	return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_read_guest);
1293 
1294 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1295 			  unsigned long len)
1296 {
1297 	int r;
1298 	unsigned long addr;
1299 	gfn_t gfn = gpa >> PAGE_SHIFT;
1300 	int offset = offset_in_page(gpa);
1301 
1302 	addr = gfn_to_hva(kvm, gfn);
1303 	if (kvm_is_error_hva(addr))
1304 		return -EFAULT;
1305 	pagefault_disable();
1306 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1307 	pagefault_enable();
1308 	if (r)
1309 		return -EFAULT;
1310 	return 0;
1311 }
1312 EXPORT_SYMBOL(kvm_read_guest_atomic);
1313 
1314 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1315 			 int offset, int len)
1316 {
1317 	int r;
1318 	unsigned long addr;
1319 
1320 	addr = gfn_to_hva(kvm, gfn);
1321 	if (kvm_is_error_hva(addr))
1322 		return -EFAULT;
1323 	r = copy_to_user((void __user *)addr + offset, data, len);
1324 	if (r)
1325 		return -EFAULT;
1326 	mark_page_dirty(kvm, gfn);
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1330 
1331 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1332 		    unsigned long len)
1333 {
1334 	gfn_t gfn = gpa >> PAGE_SHIFT;
1335 	int seg;
1336 	int offset = offset_in_page(gpa);
1337 	int ret;
1338 
1339 	while ((seg = next_segment(len, offset)) != 0) {
1340 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1341 		if (ret < 0)
1342 			return ret;
1343 		offset = 0;
1344 		len -= seg;
1345 		data += seg;
1346 		++gfn;
1347 	}
1348 	return 0;
1349 }
1350 
1351 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1352 			      gpa_t gpa)
1353 {
1354 	struct kvm_memslots *slots = kvm_memslots(kvm);
1355 	int offset = offset_in_page(gpa);
1356 	gfn_t gfn = gpa >> PAGE_SHIFT;
1357 
1358 	ghc->gpa = gpa;
1359 	ghc->generation = slots->generation;
1360 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1361 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1362 	if (!kvm_is_error_hva(ghc->hva))
1363 		ghc->hva += offset;
1364 	else
1365 		return -EFAULT;
1366 
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1370 
1371 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1372 			   void *data, unsigned long len)
1373 {
1374 	struct kvm_memslots *slots = kvm_memslots(kvm);
1375 	int r;
1376 
1377 	if (slots->generation != ghc->generation)
1378 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1379 
1380 	if (kvm_is_error_hva(ghc->hva))
1381 		return -EFAULT;
1382 
1383 	r = copy_to_user((void __user *)ghc->hva, data, len);
1384 	if (r)
1385 		return -EFAULT;
1386 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1387 
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1391 
1392 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1393 {
1394 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1395 				    offset, len);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1398 
1399 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1400 {
1401 	gfn_t gfn = gpa >> PAGE_SHIFT;
1402 	int seg;
1403 	int offset = offset_in_page(gpa);
1404 	int ret;
1405 
1406         while ((seg = next_segment(len, offset)) != 0) {
1407 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1408 		if (ret < 0)
1409 			return ret;
1410 		offset = 0;
1411 		len -= seg;
1412 		++gfn;
1413 	}
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1417 
1418 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1419 			     gfn_t gfn)
1420 {
1421 	if (memslot && memslot->dirty_bitmap) {
1422 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1423 
1424 		generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1425 	}
1426 }
1427 
1428 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1429 {
1430 	struct kvm_memory_slot *memslot;
1431 
1432 	memslot = gfn_to_memslot(kvm, gfn);
1433 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1434 }
1435 
1436 /*
1437  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1438  */
1439 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1440 {
1441 	DEFINE_WAIT(wait);
1442 
1443 	for (;;) {
1444 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1445 
1446 		if (kvm_arch_vcpu_runnable(vcpu)) {
1447 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1448 			break;
1449 		}
1450 		if (kvm_cpu_has_pending_timer(vcpu))
1451 			break;
1452 		if (signal_pending(current))
1453 			break;
1454 
1455 		schedule();
1456 	}
1457 
1458 	finish_wait(&vcpu->wq, &wait);
1459 }
1460 
1461 void kvm_resched(struct kvm_vcpu *vcpu)
1462 {
1463 	if (!need_resched())
1464 		return;
1465 	cond_resched();
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_resched);
1468 
1469 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1470 {
1471 	ktime_t expires;
1472 	DEFINE_WAIT(wait);
1473 
1474 	prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1475 
1476 	/* Sleep for 100 us, and hope lock-holder got scheduled */
1477 	expires = ktime_add_ns(ktime_get(), 100000UL);
1478 	schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1479 
1480 	finish_wait(&vcpu->wq, &wait);
1481 }
1482 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1483 
1484 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1485 {
1486 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1487 	struct page *page;
1488 
1489 	if (vmf->pgoff == 0)
1490 		page = virt_to_page(vcpu->run);
1491 #ifdef CONFIG_X86
1492 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1493 		page = virt_to_page(vcpu->arch.pio_data);
1494 #endif
1495 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1496 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1497 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1498 #endif
1499 	else
1500 		return VM_FAULT_SIGBUS;
1501 	get_page(page);
1502 	vmf->page = page;
1503 	return 0;
1504 }
1505 
1506 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1507 	.fault = kvm_vcpu_fault,
1508 };
1509 
1510 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1511 {
1512 	vma->vm_ops = &kvm_vcpu_vm_ops;
1513 	return 0;
1514 }
1515 
1516 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1517 {
1518 	struct kvm_vcpu *vcpu = filp->private_data;
1519 
1520 	kvm_put_kvm(vcpu->kvm);
1521 	return 0;
1522 }
1523 
1524 static struct file_operations kvm_vcpu_fops = {
1525 	.release        = kvm_vcpu_release,
1526 	.unlocked_ioctl = kvm_vcpu_ioctl,
1527 	.compat_ioctl   = kvm_vcpu_ioctl,
1528 	.mmap           = kvm_vcpu_mmap,
1529 	.llseek		= noop_llseek,
1530 };
1531 
1532 /*
1533  * Allocates an inode for the vcpu.
1534  */
1535 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1536 {
1537 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1538 }
1539 
1540 /*
1541  * Creates some virtual cpus.  Good luck creating more than one.
1542  */
1543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1544 {
1545 	int r;
1546 	struct kvm_vcpu *vcpu, *v;
1547 
1548 	vcpu = kvm_arch_vcpu_create(kvm, id);
1549 	if (IS_ERR(vcpu))
1550 		return PTR_ERR(vcpu);
1551 
1552 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1553 
1554 	r = kvm_arch_vcpu_setup(vcpu);
1555 	if (r)
1556 		return r;
1557 
1558 	mutex_lock(&kvm->lock);
1559 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1560 		r = -EINVAL;
1561 		goto vcpu_destroy;
1562 	}
1563 
1564 	kvm_for_each_vcpu(r, v, kvm)
1565 		if (v->vcpu_id == id) {
1566 			r = -EEXIST;
1567 			goto vcpu_destroy;
1568 		}
1569 
1570 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1571 
1572 	/* Now it's all set up, let userspace reach it */
1573 	kvm_get_kvm(kvm);
1574 	r = create_vcpu_fd(vcpu);
1575 	if (r < 0) {
1576 		kvm_put_kvm(kvm);
1577 		goto vcpu_destroy;
1578 	}
1579 
1580 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1581 	smp_wmb();
1582 	atomic_inc(&kvm->online_vcpus);
1583 
1584 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1585 	if (kvm->bsp_vcpu_id == id)
1586 		kvm->bsp_vcpu = vcpu;
1587 #endif
1588 	mutex_unlock(&kvm->lock);
1589 	return r;
1590 
1591 vcpu_destroy:
1592 	mutex_unlock(&kvm->lock);
1593 	kvm_arch_vcpu_destroy(vcpu);
1594 	return r;
1595 }
1596 
1597 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1598 {
1599 	if (sigset) {
1600 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1601 		vcpu->sigset_active = 1;
1602 		vcpu->sigset = *sigset;
1603 	} else
1604 		vcpu->sigset_active = 0;
1605 	return 0;
1606 }
1607 
1608 static long kvm_vcpu_ioctl(struct file *filp,
1609 			   unsigned int ioctl, unsigned long arg)
1610 {
1611 	struct kvm_vcpu *vcpu = filp->private_data;
1612 	void __user *argp = (void __user *)arg;
1613 	int r;
1614 	struct kvm_fpu *fpu = NULL;
1615 	struct kvm_sregs *kvm_sregs = NULL;
1616 
1617 	if (vcpu->kvm->mm != current->mm)
1618 		return -EIO;
1619 
1620 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1621 	/*
1622 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1623 	 * so vcpu_load() would break it.
1624 	 */
1625 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1626 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1627 #endif
1628 
1629 
1630 	vcpu_load(vcpu);
1631 	switch (ioctl) {
1632 	case KVM_RUN:
1633 		r = -EINVAL;
1634 		if (arg)
1635 			goto out;
1636 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1637 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1638 		break;
1639 	case KVM_GET_REGS: {
1640 		struct kvm_regs *kvm_regs;
1641 
1642 		r = -ENOMEM;
1643 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1644 		if (!kvm_regs)
1645 			goto out;
1646 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1647 		if (r)
1648 			goto out_free1;
1649 		r = -EFAULT;
1650 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1651 			goto out_free1;
1652 		r = 0;
1653 out_free1:
1654 		kfree(kvm_regs);
1655 		break;
1656 	}
1657 	case KVM_SET_REGS: {
1658 		struct kvm_regs *kvm_regs;
1659 
1660 		r = -ENOMEM;
1661 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1662 		if (!kvm_regs)
1663 			goto out;
1664 		r = -EFAULT;
1665 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1666 			goto out_free2;
1667 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1668 		if (r)
1669 			goto out_free2;
1670 		r = 0;
1671 out_free2:
1672 		kfree(kvm_regs);
1673 		break;
1674 	}
1675 	case KVM_GET_SREGS: {
1676 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1677 		r = -ENOMEM;
1678 		if (!kvm_sregs)
1679 			goto out;
1680 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1681 		if (r)
1682 			goto out;
1683 		r = -EFAULT;
1684 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1685 			goto out;
1686 		r = 0;
1687 		break;
1688 	}
1689 	case KVM_SET_SREGS: {
1690 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1691 		r = -ENOMEM;
1692 		if (!kvm_sregs)
1693 			goto out;
1694 		r = -EFAULT;
1695 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1696 			goto out;
1697 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1698 		if (r)
1699 			goto out;
1700 		r = 0;
1701 		break;
1702 	}
1703 	case KVM_GET_MP_STATE: {
1704 		struct kvm_mp_state mp_state;
1705 
1706 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1707 		if (r)
1708 			goto out;
1709 		r = -EFAULT;
1710 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1711 			goto out;
1712 		r = 0;
1713 		break;
1714 	}
1715 	case KVM_SET_MP_STATE: {
1716 		struct kvm_mp_state mp_state;
1717 
1718 		r = -EFAULT;
1719 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1720 			goto out;
1721 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1722 		if (r)
1723 			goto out;
1724 		r = 0;
1725 		break;
1726 	}
1727 	case KVM_TRANSLATE: {
1728 		struct kvm_translation tr;
1729 
1730 		r = -EFAULT;
1731 		if (copy_from_user(&tr, argp, sizeof tr))
1732 			goto out;
1733 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1734 		if (r)
1735 			goto out;
1736 		r = -EFAULT;
1737 		if (copy_to_user(argp, &tr, sizeof tr))
1738 			goto out;
1739 		r = 0;
1740 		break;
1741 	}
1742 	case KVM_SET_GUEST_DEBUG: {
1743 		struct kvm_guest_debug dbg;
1744 
1745 		r = -EFAULT;
1746 		if (copy_from_user(&dbg, argp, sizeof dbg))
1747 			goto out;
1748 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1749 		if (r)
1750 			goto out;
1751 		r = 0;
1752 		break;
1753 	}
1754 	case KVM_SET_SIGNAL_MASK: {
1755 		struct kvm_signal_mask __user *sigmask_arg = argp;
1756 		struct kvm_signal_mask kvm_sigmask;
1757 		sigset_t sigset, *p;
1758 
1759 		p = NULL;
1760 		if (argp) {
1761 			r = -EFAULT;
1762 			if (copy_from_user(&kvm_sigmask, argp,
1763 					   sizeof kvm_sigmask))
1764 				goto out;
1765 			r = -EINVAL;
1766 			if (kvm_sigmask.len != sizeof sigset)
1767 				goto out;
1768 			r = -EFAULT;
1769 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1770 					   sizeof sigset))
1771 				goto out;
1772 			p = &sigset;
1773 		}
1774 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1775 		break;
1776 	}
1777 	case KVM_GET_FPU: {
1778 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1779 		r = -ENOMEM;
1780 		if (!fpu)
1781 			goto out;
1782 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1783 		if (r)
1784 			goto out;
1785 		r = -EFAULT;
1786 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1787 			goto out;
1788 		r = 0;
1789 		break;
1790 	}
1791 	case KVM_SET_FPU: {
1792 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1793 		r = -ENOMEM;
1794 		if (!fpu)
1795 			goto out;
1796 		r = -EFAULT;
1797 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1798 			goto out;
1799 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1800 		if (r)
1801 			goto out;
1802 		r = 0;
1803 		break;
1804 	}
1805 	default:
1806 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1807 	}
1808 out:
1809 	vcpu_put(vcpu);
1810 	kfree(fpu);
1811 	kfree(kvm_sregs);
1812 	return r;
1813 }
1814 
1815 static long kvm_vm_ioctl(struct file *filp,
1816 			   unsigned int ioctl, unsigned long arg)
1817 {
1818 	struct kvm *kvm = filp->private_data;
1819 	void __user *argp = (void __user *)arg;
1820 	int r;
1821 
1822 	if (kvm->mm != current->mm)
1823 		return -EIO;
1824 	switch (ioctl) {
1825 	case KVM_CREATE_VCPU:
1826 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1827 		if (r < 0)
1828 			goto out;
1829 		break;
1830 	case KVM_SET_USER_MEMORY_REGION: {
1831 		struct kvm_userspace_memory_region kvm_userspace_mem;
1832 
1833 		r = -EFAULT;
1834 		if (copy_from_user(&kvm_userspace_mem, argp,
1835 						sizeof kvm_userspace_mem))
1836 			goto out;
1837 
1838 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1839 		if (r)
1840 			goto out;
1841 		break;
1842 	}
1843 	case KVM_GET_DIRTY_LOG: {
1844 		struct kvm_dirty_log log;
1845 
1846 		r = -EFAULT;
1847 		if (copy_from_user(&log, argp, sizeof log))
1848 			goto out;
1849 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1850 		if (r)
1851 			goto out;
1852 		break;
1853 	}
1854 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1855 	case KVM_REGISTER_COALESCED_MMIO: {
1856 		struct kvm_coalesced_mmio_zone zone;
1857 		r = -EFAULT;
1858 		if (copy_from_user(&zone, argp, sizeof zone))
1859 			goto out;
1860 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1861 		if (r)
1862 			goto out;
1863 		r = 0;
1864 		break;
1865 	}
1866 	case KVM_UNREGISTER_COALESCED_MMIO: {
1867 		struct kvm_coalesced_mmio_zone zone;
1868 		r = -EFAULT;
1869 		if (copy_from_user(&zone, argp, sizeof zone))
1870 			goto out;
1871 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1872 		if (r)
1873 			goto out;
1874 		r = 0;
1875 		break;
1876 	}
1877 #endif
1878 	case KVM_IRQFD: {
1879 		struct kvm_irqfd data;
1880 
1881 		r = -EFAULT;
1882 		if (copy_from_user(&data, argp, sizeof data))
1883 			goto out;
1884 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1885 		break;
1886 	}
1887 	case KVM_IOEVENTFD: {
1888 		struct kvm_ioeventfd data;
1889 
1890 		r = -EFAULT;
1891 		if (copy_from_user(&data, argp, sizeof data))
1892 			goto out;
1893 		r = kvm_ioeventfd(kvm, &data);
1894 		break;
1895 	}
1896 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1897 	case KVM_SET_BOOT_CPU_ID:
1898 		r = 0;
1899 		mutex_lock(&kvm->lock);
1900 		if (atomic_read(&kvm->online_vcpus) != 0)
1901 			r = -EBUSY;
1902 		else
1903 			kvm->bsp_vcpu_id = arg;
1904 		mutex_unlock(&kvm->lock);
1905 		break;
1906 #endif
1907 	default:
1908 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1909 		if (r == -ENOTTY)
1910 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1911 	}
1912 out:
1913 	return r;
1914 }
1915 
1916 #ifdef CONFIG_COMPAT
1917 struct compat_kvm_dirty_log {
1918 	__u32 slot;
1919 	__u32 padding1;
1920 	union {
1921 		compat_uptr_t dirty_bitmap; /* one bit per page */
1922 		__u64 padding2;
1923 	};
1924 };
1925 
1926 static long kvm_vm_compat_ioctl(struct file *filp,
1927 			   unsigned int ioctl, unsigned long arg)
1928 {
1929 	struct kvm *kvm = filp->private_data;
1930 	int r;
1931 
1932 	if (kvm->mm != current->mm)
1933 		return -EIO;
1934 	switch (ioctl) {
1935 	case KVM_GET_DIRTY_LOG: {
1936 		struct compat_kvm_dirty_log compat_log;
1937 		struct kvm_dirty_log log;
1938 
1939 		r = -EFAULT;
1940 		if (copy_from_user(&compat_log, (void __user *)arg,
1941 				   sizeof(compat_log)))
1942 			goto out;
1943 		log.slot	 = compat_log.slot;
1944 		log.padding1	 = compat_log.padding1;
1945 		log.padding2	 = compat_log.padding2;
1946 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1947 
1948 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1949 		if (r)
1950 			goto out;
1951 		break;
1952 	}
1953 	default:
1954 		r = kvm_vm_ioctl(filp, ioctl, arg);
1955 	}
1956 
1957 out:
1958 	return r;
1959 }
1960 #endif
1961 
1962 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1963 {
1964 	struct page *page[1];
1965 	unsigned long addr;
1966 	int npages;
1967 	gfn_t gfn = vmf->pgoff;
1968 	struct kvm *kvm = vma->vm_file->private_data;
1969 
1970 	addr = gfn_to_hva(kvm, gfn);
1971 	if (kvm_is_error_hva(addr))
1972 		return VM_FAULT_SIGBUS;
1973 
1974 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1975 				NULL);
1976 	if (unlikely(npages != 1))
1977 		return VM_FAULT_SIGBUS;
1978 
1979 	vmf->page = page[0];
1980 	return 0;
1981 }
1982 
1983 static const struct vm_operations_struct kvm_vm_vm_ops = {
1984 	.fault = kvm_vm_fault,
1985 };
1986 
1987 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1988 {
1989 	vma->vm_ops = &kvm_vm_vm_ops;
1990 	return 0;
1991 }
1992 
1993 static struct file_operations kvm_vm_fops = {
1994 	.release        = kvm_vm_release,
1995 	.unlocked_ioctl = kvm_vm_ioctl,
1996 #ifdef CONFIG_COMPAT
1997 	.compat_ioctl   = kvm_vm_compat_ioctl,
1998 #endif
1999 	.mmap           = kvm_vm_mmap,
2000 	.llseek		= noop_llseek,
2001 };
2002 
2003 static int kvm_dev_ioctl_create_vm(void)
2004 {
2005 	int r;
2006 	struct kvm *kvm;
2007 
2008 	kvm = kvm_create_vm();
2009 	if (IS_ERR(kvm))
2010 		return PTR_ERR(kvm);
2011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2012 	r = kvm_coalesced_mmio_init(kvm);
2013 	if (r < 0) {
2014 		kvm_put_kvm(kvm);
2015 		return r;
2016 	}
2017 #endif
2018 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2019 	if (r < 0)
2020 		kvm_put_kvm(kvm);
2021 
2022 	return r;
2023 }
2024 
2025 static long kvm_dev_ioctl_check_extension_generic(long arg)
2026 {
2027 	switch (arg) {
2028 	case KVM_CAP_USER_MEMORY:
2029 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2030 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2031 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2032 	case KVM_CAP_SET_BOOT_CPU_ID:
2033 #endif
2034 	case KVM_CAP_INTERNAL_ERROR_DATA:
2035 		return 1;
2036 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2037 	case KVM_CAP_IRQ_ROUTING:
2038 		return KVM_MAX_IRQ_ROUTES;
2039 #endif
2040 	default:
2041 		break;
2042 	}
2043 	return kvm_dev_ioctl_check_extension(arg);
2044 }
2045 
2046 static long kvm_dev_ioctl(struct file *filp,
2047 			  unsigned int ioctl, unsigned long arg)
2048 {
2049 	long r = -EINVAL;
2050 
2051 	switch (ioctl) {
2052 	case KVM_GET_API_VERSION:
2053 		r = -EINVAL;
2054 		if (arg)
2055 			goto out;
2056 		r = KVM_API_VERSION;
2057 		break;
2058 	case KVM_CREATE_VM:
2059 		r = -EINVAL;
2060 		if (arg)
2061 			goto out;
2062 		r = kvm_dev_ioctl_create_vm();
2063 		break;
2064 	case KVM_CHECK_EXTENSION:
2065 		r = kvm_dev_ioctl_check_extension_generic(arg);
2066 		break;
2067 	case KVM_GET_VCPU_MMAP_SIZE:
2068 		r = -EINVAL;
2069 		if (arg)
2070 			goto out;
2071 		r = PAGE_SIZE;     /* struct kvm_run */
2072 #ifdef CONFIG_X86
2073 		r += PAGE_SIZE;    /* pio data page */
2074 #endif
2075 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2076 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2077 #endif
2078 		break;
2079 	case KVM_TRACE_ENABLE:
2080 	case KVM_TRACE_PAUSE:
2081 	case KVM_TRACE_DISABLE:
2082 		r = -EOPNOTSUPP;
2083 		break;
2084 	default:
2085 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2086 	}
2087 out:
2088 	return r;
2089 }
2090 
2091 static struct file_operations kvm_chardev_ops = {
2092 	.unlocked_ioctl = kvm_dev_ioctl,
2093 	.compat_ioctl   = kvm_dev_ioctl,
2094 	.llseek		= noop_llseek,
2095 };
2096 
2097 static struct miscdevice kvm_dev = {
2098 	KVM_MINOR,
2099 	"kvm",
2100 	&kvm_chardev_ops,
2101 };
2102 
2103 static void hardware_enable_nolock(void *junk)
2104 {
2105 	int cpu = raw_smp_processor_id();
2106 	int r;
2107 
2108 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2109 		return;
2110 
2111 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2112 
2113 	r = kvm_arch_hardware_enable(NULL);
2114 
2115 	if (r) {
2116 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2117 		atomic_inc(&hardware_enable_failed);
2118 		printk(KERN_INFO "kvm: enabling virtualization on "
2119 				 "CPU%d failed\n", cpu);
2120 	}
2121 }
2122 
2123 static void hardware_enable(void *junk)
2124 {
2125 	spin_lock(&kvm_lock);
2126 	hardware_enable_nolock(junk);
2127 	spin_unlock(&kvm_lock);
2128 }
2129 
2130 static void hardware_disable_nolock(void *junk)
2131 {
2132 	int cpu = raw_smp_processor_id();
2133 
2134 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2135 		return;
2136 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2137 	kvm_arch_hardware_disable(NULL);
2138 }
2139 
2140 static void hardware_disable(void *junk)
2141 {
2142 	spin_lock(&kvm_lock);
2143 	hardware_disable_nolock(junk);
2144 	spin_unlock(&kvm_lock);
2145 }
2146 
2147 static void hardware_disable_all_nolock(void)
2148 {
2149 	BUG_ON(!kvm_usage_count);
2150 
2151 	kvm_usage_count--;
2152 	if (!kvm_usage_count)
2153 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2154 }
2155 
2156 static void hardware_disable_all(void)
2157 {
2158 	spin_lock(&kvm_lock);
2159 	hardware_disable_all_nolock();
2160 	spin_unlock(&kvm_lock);
2161 }
2162 
2163 static int hardware_enable_all(void)
2164 {
2165 	int r = 0;
2166 
2167 	spin_lock(&kvm_lock);
2168 
2169 	kvm_usage_count++;
2170 	if (kvm_usage_count == 1) {
2171 		atomic_set(&hardware_enable_failed, 0);
2172 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2173 
2174 		if (atomic_read(&hardware_enable_failed)) {
2175 			hardware_disable_all_nolock();
2176 			r = -EBUSY;
2177 		}
2178 	}
2179 
2180 	spin_unlock(&kvm_lock);
2181 
2182 	return r;
2183 }
2184 
2185 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2186 			   void *v)
2187 {
2188 	int cpu = (long)v;
2189 
2190 	if (!kvm_usage_count)
2191 		return NOTIFY_OK;
2192 
2193 	val &= ~CPU_TASKS_FROZEN;
2194 	switch (val) {
2195 	case CPU_DYING:
2196 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2197 		       cpu);
2198 		hardware_disable(NULL);
2199 		break;
2200 	case CPU_STARTING:
2201 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2202 		       cpu);
2203 		hardware_enable(NULL);
2204 		break;
2205 	}
2206 	return NOTIFY_OK;
2207 }
2208 
2209 
2210 asmlinkage void kvm_spurious_fault(void)
2211 {
2212 	/* Fault while not rebooting.  We want the trace. */
2213 	BUG();
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2216 
2217 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2218 		      void *v)
2219 {
2220 	/*
2221 	 * Some (well, at least mine) BIOSes hang on reboot if
2222 	 * in vmx root mode.
2223 	 *
2224 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2225 	 */
2226 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2227 	kvm_rebooting = true;
2228 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2229 	return NOTIFY_OK;
2230 }
2231 
2232 static struct notifier_block kvm_reboot_notifier = {
2233 	.notifier_call = kvm_reboot,
2234 	.priority = 0,
2235 };
2236 
2237 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2238 {
2239 	int i;
2240 
2241 	for (i = 0; i < bus->dev_count; i++) {
2242 		struct kvm_io_device *pos = bus->devs[i];
2243 
2244 		kvm_iodevice_destructor(pos);
2245 	}
2246 	kfree(bus);
2247 }
2248 
2249 /* kvm_io_bus_write - called under kvm->slots_lock */
2250 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2251 		     int len, const void *val)
2252 {
2253 	int i;
2254 	struct kvm_io_bus *bus;
2255 
2256 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2257 	for (i = 0; i < bus->dev_count; i++)
2258 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2259 			return 0;
2260 	return -EOPNOTSUPP;
2261 }
2262 
2263 /* kvm_io_bus_read - called under kvm->slots_lock */
2264 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2265 		    int len, void *val)
2266 {
2267 	int i;
2268 	struct kvm_io_bus *bus;
2269 
2270 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2271 	for (i = 0; i < bus->dev_count; i++)
2272 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2273 			return 0;
2274 	return -EOPNOTSUPP;
2275 }
2276 
2277 /* Caller must hold slots_lock. */
2278 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2279 			    struct kvm_io_device *dev)
2280 {
2281 	struct kvm_io_bus *new_bus, *bus;
2282 
2283 	bus = kvm->buses[bus_idx];
2284 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2285 		return -ENOSPC;
2286 
2287 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2288 	if (!new_bus)
2289 		return -ENOMEM;
2290 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2291 	new_bus->devs[new_bus->dev_count++] = dev;
2292 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2293 	synchronize_srcu_expedited(&kvm->srcu);
2294 	kfree(bus);
2295 
2296 	return 0;
2297 }
2298 
2299 /* Caller must hold slots_lock. */
2300 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2301 			      struct kvm_io_device *dev)
2302 {
2303 	int i, r;
2304 	struct kvm_io_bus *new_bus, *bus;
2305 
2306 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2307 	if (!new_bus)
2308 		return -ENOMEM;
2309 
2310 	bus = kvm->buses[bus_idx];
2311 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2312 
2313 	r = -ENOENT;
2314 	for (i = 0; i < new_bus->dev_count; i++)
2315 		if (new_bus->devs[i] == dev) {
2316 			r = 0;
2317 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2318 			break;
2319 		}
2320 
2321 	if (r) {
2322 		kfree(new_bus);
2323 		return r;
2324 	}
2325 
2326 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2327 	synchronize_srcu_expedited(&kvm->srcu);
2328 	kfree(bus);
2329 	return r;
2330 }
2331 
2332 static struct notifier_block kvm_cpu_notifier = {
2333 	.notifier_call = kvm_cpu_hotplug,
2334 };
2335 
2336 static int vm_stat_get(void *_offset, u64 *val)
2337 {
2338 	unsigned offset = (long)_offset;
2339 	struct kvm *kvm;
2340 
2341 	*val = 0;
2342 	spin_lock(&kvm_lock);
2343 	list_for_each_entry(kvm, &vm_list, vm_list)
2344 		*val += *(u32 *)((void *)kvm + offset);
2345 	spin_unlock(&kvm_lock);
2346 	return 0;
2347 }
2348 
2349 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2350 
2351 static int vcpu_stat_get(void *_offset, u64 *val)
2352 {
2353 	unsigned offset = (long)_offset;
2354 	struct kvm *kvm;
2355 	struct kvm_vcpu *vcpu;
2356 	int i;
2357 
2358 	*val = 0;
2359 	spin_lock(&kvm_lock);
2360 	list_for_each_entry(kvm, &vm_list, vm_list)
2361 		kvm_for_each_vcpu(i, vcpu, kvm)
2362 			*val += *(u32 *)((void *)vcpu + offset);
2363 
2364 	spin_unlock(&kvm_lock);
2365 	return 0;
2366 }
2367 
2368 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2369 
2370 static const struct file_operations *stat_fops[] = {
2371 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2372 	[KVM_STAT_VM]   = &vm_stat_fops,
2373 };
2374 
2375 static void kvm_init_debug(void)
2376 {
2377 	struct kvm_stats_debugfs_item *p;
2378 
2379 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2380 	for (p = debugfs_entries; p->name; ++p)
2381 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2382 						(void *)(long)p->offset,
2383 						stat_fops[p->kind]);
2384 }
2385 
2386 static void kvm_exit_debug(void)
2387 {
2388 	struct kvm_stats_debugfs_item *p;
2389 
2390 	for (p = debugfs_entries; p->name; ++p)
2391 		debugfs_remove(p->dentry);
2392 	debugfs_remove(kvm_debugfs_dir);
2393 }
2394 
2395 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2396 {
2397 	if (kvm_usage_count)
2398 		hardware_disable_nolock(NULL);
2399 	return 0;
2400 }
2401 
2402 static int kvm_resume(struct sys_device *dev)
2403 {
2404 	if (kvm_usage_count) {
2405 		WARN_ON(spin_is_locked(&kvm_lock));
2406 		hardware_enable_nolock(NULL);
2407 	}
2408 	return 0;
2409 }
2410 
2411 static struct sysdev_class kvm_sysdev_class = {
2412 	.name = "kvm",
2413 	.suspend = kvm_suspend,
2414 	.resume = kvm_resume,
2415 };
2416 
2417 static struct sys_device kvm_sysdev = {
2418 	.id = 0,
2419 	.cls = &kvm_sysdev_class,
2420 };
2421 
2422 struct page *bad_page;
2423 pfn_t bad_pfn;
2424 
2425 static inline
2426 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2427 {
2428 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2429 }
2430 
2431 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2432 {
2433 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2434 
2435 	kvm_arch_vcpu_load(vcpu, cpu);
2436 }
2437 
2438 static void kvm_sched_out(struct preempt_notifier *pn,
2439 			  struct task_struct *next)
2440 {
2441 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2442 
2443 	kvm_arch_vcpu_put(vcpu);
2444 }
2445 
2446 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2447 		  struct module *module)
2448 {
2449 	int r;
2450 	int cpu;
2451 
2452 	r = kvm_arch_init(opaque);
2453 	if (r)
2454 		goto out_fail;
2455 
2456 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2457 
2458 	if (bad_page == NULL) {
2459 		r = -ENOMEM;
2460 		goto out;
2461 	}
2462 
2463 	bad_pfn = page_to_pfn(bad_page);
2464 
2465 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2466 
2467 	if (hwpoison_page == NULL) {
2468 		r = -ENOMEM;
2469 		goto out_free_0;
2470 	}
2471 
2472 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2473 
2474 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2475 
2476 	if (fault_page == NULL) {
2477 		r = -ENOMEM;
2478 		goto out_free_0;
2479 	}
2480 
2481 	fault_pfn = page_to_pfn(fault_page);
2482 
2483 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2484 		r = -ENOMEM;
2485 		goto out_free_0;
2486 	}
2487 
2488 	r = kvm_arch_hardware_setup();
2489 	if (r < 0)
2490 		goto out_free_0a;
2491 
2492 	for_each_online_cpu(cpu) {
2493 		smp_call_function_single(cpu,
2494 				kvm_arch_check_processor_compat,
2495 				&r, 1);
2496 		if (r < 0)
2497 			goto out_free_1;
2498 	}
2499 
2500 	r = register_cpu_notifier(&kvm_cpu_notifier);
2501 	if (r)
2502 		goto out_free_2;
2503 	register_reboot_notifier(&kvm_reboot_notifier);
2504 
2505 	r = sysdev_class_register(&kvm_sysdev_class);
2506 	if (r)
2507 		goto out_free_3;
2508 
2509 	r = sysdev_register(&kvm_sysdev);
2510 	if (r)
2511 		goto out_free_4;
2512 
2513 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2514 	if (!vcpu_align)
2515 		vcpu_align = __alignof__(struct kvm_vcpu);
2516 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2517 					   0, NULL);
2518 	if (!kvm_vcpu_cache) {
2519 		r = -ENOMEM;
2520 		goto out_free_5;
2521 	}
2522 
2523 	r = kvm_async_pf_init();
2524 	if (r)
2525 		goto out_free;
2526 
2527 	kvm_chardev_ops.owner = module;
2528 	kvm_vm_fops.owner = module;
2529 	kvm_vcpu_fops.owner = module;
2530 
2531 	r = misc_register(&kvm_dev);
2532 	if (r) {
2533 		printk(KERN_ERR "kvm: misc device register failed\n");
2534 		goto out_unreg;
2535 	}
2536 
2537 	kvm_preempt_ops.sched_in = kvm_sched_in;
2538 	kvm_preempt_ops.sched_out = kvm_sched_out;
2539 
2540 	kvm_init_debug();
2541 
2542 	return 0;
2543 
2544 out_unreg:
2545 	kvm_async_pf_deinit();
2546 out_free:
2547 	kmem_cache_destroy(kvm_vcpu_cache);
2548 out_free_5:
2549 	sysdev_unregister(&kvm_sysdev);
2550 out_free_4:
2551 	sysdev_class_unregister(&kvm_sysdev_class);
2552 out_free_3:
2553 	unregister_reboot_notifier(&kvm_reboot_notifier);
2554 	unregister_cpu_notifier(&kvm_cpu_notifier);
2555 out_free_2:
2556 out_free_1:
2557 	kvm_arch_hardware_unsetup();
2558 out_free_0a:
2559 	free_cpumask_var(cpus_hardware_enabled);
2560 out_free_0:
2561 	if (fault_page)
2562 		__free_page(fault_page);
2563 	if (hwpoison_page)
2564 		__free_page(hwpoison_page);
2565 	__free_page(bad_page);
2566 out:
2567 	kvm_arch_exit();
2568 out_fail:
2569 	return r;
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_init);
2572 
2573 void kvm_exit(void)
2574 {
2575 	kvm_exit_debug();
2576 	misc_deregister(&kvm_dev);
2577 	kmem_cache_destroy(kvm_vcpu_cache);
2578 	kvm_async_pf_deinit();
2579 	sysdev_unregister(&kvm_sysdev);
2580 	sysdev_class_unregister(&kvm_sysdev_class);
2581 	unregister_reboot_notifier(&kvm_reboot_notifier);
2582 	unregister_cpu_notifier(&kvm_cpu_notifier);
2583 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2584 	kvm_arch_hardware_unsetup();
2585 	kvm_arch_exit();
2586 	free_cpumask_var(cpus_hardware_enabled);
2587 	__free_page(hwpoison_page);
2588 	__free_page(bad_page);
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_exit);
2591