1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 MODULE_AUTHOR("Qumranet"); 67 MODULE_LICENSE("GPL"); 68 69 static unsigned int halt_poll_ns; 70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 71 72 /* 73 * Ordering of locks: 74 * 75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 76 */ 77 78 DEFINE_SPINLOCK(kvm_lock); 79 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 80 LIST_HEAD(vm_list); 81 82 static cpumask_var_t cpus_hardware_enabled; 83 static int kvm_usage_count; 84 static atomic_t hardware_enable_failed; 85 86 struct kmem_cache *kvm_vcpu_cache; 87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 88 89 static __read_mostly struct preempt_ops kvm_preempt_ops; 90 91 struct dentry *kvm_debugfs_dir; 92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 93 94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 95 unsigned long arg); 96 #ifdef CONFIG_KVM_COMPAT 97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 98 unsigned long arg); 99 #endif 100 static int hardware_enable_all(void); 101 static void hardware_disable_all(void); 102 103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 104 105 static void kvm_release_pfn_dirty(pfn_t pfn); 106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 107 108 __visible bool kvm_rebooting; 109 EXPORT_SYMBOL_GPL(kvm_rebooting); 110 111 static bool largepages_enabled = true; 112 113 bool kvm_is_reserved_pfn(pfn_t pfn) 114 { 115 if (pfn_valid(pfn)) 116 return PageReserved(pfn_to_page(pfn)); 117 118 return true; 119 } 120 121 /* 122 * Switches to specified vcpu, until a matching vcpu_put() 123 */ 124 int vcpu_load(struct kvm_vcpu *vcpu) 125 { 126 int cpu; 127 128 if (mutex_lock_killable(&vcpu->mutex)) 129 return -EINTR; 130 cpu = get_cpu(); 131 preempt_notifier_register(&vcpu->preempt_notifier); 132 kvm_arch_vcpu_load(vcpu, cpu); 133 put_cpu(); 134 return 0; 135 } 136 137 void vcpu_put(struct kvm_vcpu *vcpu) 138 { 139 preempt_disable(); 140 kvm_arch_vcpu_put(vcpu); 141 preempt_notifier_unregister(&vcpu->preempt_notifier); 142 preempt_enable(); 143 mutex_unlock(&vcpu->mutex); 144 } 145 146 static void ack_flush(void *_completed) 147 { 148 } 149 150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 151 { 152 int i, cpu, me; 153 cpumask_var_t cpus; 154 bool called = true; 155 struct kvm_vcpu *vcpu; 156 157 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 158 159 me = get_cpu(); 160 kvm_for_each_vcpu(i, vcpu, kvm) { 161 kvm_make_request(req, vcpu); 162 cpu = vcpu->cpu; 163 164 /* Set ->requests bit before we read ->mode */ 165 smp_mb(); 166 167 if (cpus != NULL && cpu != -1 && cpu != me && 168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 169 cpumask_set_cpu(cpu, cpus); 170 } 171 if (unlikely(cpus == NULL)) 172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 173 else if (!cpumask_empty(cpus)) 174 smp_call_function_many(cpus, ack_flush, NULL, 1); 175 else 176 called = false; 177 put_cpu(); 178 free_cpumask_var(cpus); 179 return called; 180 } 181 182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 183 void kvm_flush_remote_tlbs(struct kvm *kvm) 184 { 185 long dirty_count = kvm->tlbs_dirty; 186 187 smp_mb(); 188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 189 ++kvm->stat.remote_tlb_flush; 190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 191 } 192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 193 #endif 194 195 void kvm_reload_remote_mmus(struct kvm *kvm) 196 { 197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 198 } 199 200 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 201 { 202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 203 } 204 205 void kvm_make_scan_ioapic_request(struct kvm *kvm) 206 { 207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 208 } 209 210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 211 { 212 struct page *page; 213 int r; 214 215 mutex_init(&vcpu->mutex); 216 vcpu->cpu = -1; 217 vcpu->kvm = kvm; 218 vcpu->vcpu_id = id; 219 vcpu->pid = NULL; 220 init_waitqueue_head(&vcpu->wq); 221 kvm_async_pf_vcpu_init(vcpu); 222 223 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 224 if (!page) { 225 r = -ENOMEM; 226 goto fail; 227 } 228 vcpu->run = page_address(page); 229 230 kvm_vcpu_set_in_spin_loop(vcpu, false); 231 kvm_vcpu_set_dy_eligible(vcpu, false); 232 vcpu->preempted = false; 233 234 r = kvm_arch_vcpu_init(vcpu); 235 if (r < 0) 236 goto fail_free_run; 237 return 0; 238 239 fail_free_run: 240 free_page((unsigned long)vcpu->run); 241 fail: 242 return r; 243 } 244 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 245 246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 247 { 248 put_pid(vcpu->pid); 249 kvm_arch_vcpu_uninit(vcpu); 250 free_page((unsigned long)vcpu->run); 251 } 252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 253 254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 256 { 257 return container_of(mn, struct kvm, mmu_notifier); 258 } 259 260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 261 struct mm_struct *mm, 262 unsigned long address) 263 { 264 struct kvm *kvm = mmu_notifier_to_kvm(mn); 265 int need_tlb_flush, idx; 266 267 /* 268 * When ->invalidate_page runs, the linux pte has been zapped 269 * already but the page is still allocated until 270 * ->invalidate_page returns. So if we increase the sequence 271 * here the kvm page fault will notice if the spte can't be 272 * established because the page is going to be freed. If 273 * instead the kvm page fault establishes the spte before 274 * ->invalidate_page runs, kvm_unmap_hva will release it 275 * before returning. 276 * 277 * The sequence increase only need to be seen at spin_unlock 278 * time, and not at spin_lock time. 279 * 280 * Increasing the sequence after the spin_unlock would be 281 * unsafe because the kvm page fault could then establish the 282 * pte after kvm_unmap_hva returned, without noticing the page 283 * is going to be freed. 284 */ 285 idx = srcu_read_lock(&kvm->srcu); 286 spin_lock(&kvm->mmu_lock); 287 288 kvm->mmu_notifier_seq++; 289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 290 /* we've to flush the tlb before the pages can be freed */ 291 if (need_tlb_flush) 292 kvm_flush_remote_tlbs(kvm); 293 294 spin_unlock(&kvm->mmu_lock); 295 296 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 297 298 srcu_read_unlock(&kvm->srcu, idx); 299 } 300 301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 302 struct mm_struct *mm, 303 unsigned long address, 304 pte_t pte) 305 { 306 struct kvm *kvm = mmu_notifier_to_kvm(mn); 307 int idx; 308 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 kvm->mmu_notifier_seq++; 312 kvm_set_spte_hva(kvm, address, pte); 313 spin_unlock(&kvm->mmu_lock); 314 srcu_read_unlock(&kvm->srcu, idx); 315 } 316 317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 318 struct mm_struct *mm, 319 unsigned long start, 320 unsigned long end) 321 { 322 struct kvm *kvm = mmu_notifier_to_kvm(mn); 323 int need_tlb_flush = 0, idx; 324 325 idx = srcu_read_lock(&kvm->srcu); 326 spin_lock(&kvm->mmu_lock); 327 /* 328 * The count increase must become visible at unlock time as no 329 * spte can be established without taking the mmu_lock and 330 * count is also read inside the mmu_lock critical section. 331 */ 332 kvm->mmu_notifier_count++; 333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 334 need_tlb_flush |= kvm->tlbs_dirty; 335 /* we've to flush the tlb before the pages can be freed */ 336 if (need_tlb_flush) 337 kvm_flush_remote_tlbs(kvm); 338 339 spin_unlock(&kvm->mmu_lock); 340 srcu_read_unlock(&kvm->srcu, idx); 341 } 342 343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 344 struct mm_struct *mm, 345 unsigned long start, 346 unsigned long end) 347 { 348 struct kvm *kvm = mmu_notifier_to_kvm(mn); 349 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * This sequence increase will notify the kvm page fault that 353 * the page that is going to be mapped in the spte could have 354 * been freed. 355 */ 356 kvm->mmu_notifier_seq++; 357 smp_wmb(); 358 /* 359 * The above sequence increase must be visible before the 360 * below count decrease, which is ensured by the smp_wmb above 361 * in conjunction with the smp_rmb in mmu_notifier_retry(). 362 */ 363 kvm->mmu_notifier_count--; 364 spin_unlock(&kvm->mmu_lock); 365 366 BUG_ON(kvm->mmu_notifier_count < 0); 367 } 368 369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 370 struct mm_struct *mm, 371 unsigned long start, 372 unsigned long end) 373 { 374 struct kvm *kvm = mmu_notifier_to_kvm(mn); 375 int young, idx; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 380 young = kvm_age_hva(kvm, start, end); 381 if (young) 382 kvm_flush_remote_tlbs(kvm); 383 384 spin_unlock(&kvm->mmu_lock); 385 srcu_read_unlock(&kvm->srcu, idx); 386 387 return young; 388 } 389 390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 391 struct mm_struct *mm, 392 unsigned long address) 393 { 394 struct kvm *kvm = mmu_notifier_to_kvm(mn); 395 int young, idx; 396 397 idx = srcu_read_lock(&kvm->srcu); 398 spin_lock(&kvm->mmu_lock); 399 young = kvm_test_age_hva(kvm, address); 400 spin_unlock(&kvm->mmu_lock); 401 srcu_read_unlock(&kvm->srcu, idx); 402 403 return young; 404 } 405 406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 407 struct mm_struct *mm) 408 { 409 struct kvm *kvm = mmu_notifier_to_kvm(mn); 410 int idx; 411 412 idx = srcu_read_lock(&kvm->srcu); 413 kvm_arch_flush_shadow_all(kvm); 414 srcu_read_unlock(&kvm->srcu, idx); 415 } 416 417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 418 .invalidate_page = kvm_mmu_notifier_invalidate_page, 419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 422 .test_young = kvm_mmu_notifier_test_young, 423 .change_pte = kvm_mmu_notifier_change_pte, 424 .release = kvm_mmu_notifier_release, 425 }; 426 427 static int kvm_init_mmu_notifier(struct kvm *kvm) 428 { 429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 431 } 432 433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 434 435 static int kvm_init_mmu_notifier(struct kvm *kvm) 436 { 437 return 0; 438 } 439 440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 441 442 static struct kvm_memslots *kvm_alloc_memslots(void) 443 { 444 int i; 445 struct kvm_memslots *slots; 446 447 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 448 if (!slots) 449 return NULL; 450 451 /* 452 * Init kvm generation close to the maximum to easily test the 453 * code of handling generation number wrap-around. 454 */ 455 slots->generation = -150; 456 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 457 slots->id_to_index[i] = slots->memslots[i].id = i; 458 459 return slots; 460 } 461 462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 463 { 464 if (!memslot->dirty_bitmap) 465 return; 466 467 kvfree(memslot->dirty_bitmap); 468 memslot->dirty_bitmap = NULL; 469 } 470 471 /* 472 * Free any memory in @free but not in @dont. 473 */ 474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 475 struct kvm_memory_slot *dont) 476 { 477 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 478 kvm_destroy_dirty_bitmap(free); 479 480 kvm_arch_free_memslot(kvm, free, dont); 481 482 free->npages = 0; 483 } 484 485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 486 { 487 struct kvm_memory_slot *memslot; 488 489 if (!slots) 490 return; 491 492 kvm_for_each_memslot(memslot, slots) 493 kvm_free_memslot(kvm, memslot, NULL); 494 495 kvfree(slots); 496 } 497 498 static struct kvm *kvm_create_vm(unsigned long type) 499 { 500 int r, i; 501 struct kvm *kvm = kvm_arch_alloc_vm(); 502 503 if (!kvm) 504 return ERR_PTR(-ENOMEM); 505 506 r = kvm_arch_init_vm(kvm, type); 507 if (r) 508 goto out_err_no_disable; 509 510 r = hardware_enable_all(); 511 if (r) 512 goto out_err_no_disable; 513 514 #ifdef CONFIG_HAVE_KVM_IRQFD 515 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 516 #endif 517 518 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 519 520 r = -ENOMEM; 521 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 522 kvm->memslots[i] = kvm_alloc_memslots(); 523 if (!kvm->memslots[i]) 524 goto out_err_no_srcu; 525 } 526 527 if (init_srcu_struct(&kvm->srcu)) 528 goto out_err_no_srcu; 529 if (init_srcu_struct(&kvm->irq_srcu)) 530 goto out_err_no_irq_srcu; 531 for (i = 0; i < KVM_NR_BUSES; i++) { 532 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 533 GFP_KERNEL); 534 if (!kvm->buses[i]) 535 goto out_err; 536 } 537 538 spin_lock_init(&kvm->mmu_lock); 539 kvm->mm = current->mm; 540 atomic_inc(&kvm->mm->mm_count); 541 kvm_eventfd_init(kvm); 542 mutex_init(&kvm->lock); 543 mutex_init(&kvm->irq_lock); 544 mutex_init(&kvm->slots_lock); 545 atomic_set(&kvm->users_count, 1); 546 INIT_LIST_HEAD(&kvm->devices); 547 548 r = kvm_init_mmu_notifier(kvm); 549 if (r) 550 goto out_err; 551 552 spin_lock(&kvm_lock); 553 list_add(&kvm->vm_list, &vm_list); 554 spin_unlock(&kvm_lock); 555 556 return kvm; 557 558 out_err: 559 cleanup_srcu_struct(&kvm->irq_srcu); 560 out_err_no_irq_srcu: 561 cleanup_srcu_struct(&kvm->srcu); 562 out_err_no_srcu: 563 hardware_disable_all(); 564 out_err_no_disable: 565 for (i = 0; i < KVM_NR_BUSES; i++) 566 kfree(kvm->buses[i]); 567 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 568 kvm_free_memslots(kvm, kvm->memslots[i]); 569 kvm_arch_free_vm(kvm); 570 return ERR_PTR(r); 571 } 572 573 /* 574 * Avoid using vmalloc for a small buffer. 575 * Should not be used when the size is statically known. 576 */ 577 void *kvm_kvzalloc(unsigned long size) 578 { 579 if (size > PAGE_SIZE) 580 return vzalloc(size); 581 else 582 return kzalloc(size, GFP_KERNEL); 583 } 584 585 static void kvm_destroy_devices(struct kvm *kvm) 586 { 587 struct list_head *node, *tmp; 588 589 list_for_each_safe(node, tmp, &kvm->devices) { 590 struct kvm_device *dev = 591 list_entry(node, struct kvm_device, vm_node); 592 593 list_del(node); 594 dev->ops->destroy(dev); 595 } 596 } 597 598 static void kvm_destroy_vm(struct kvm *kvm) 599 { 600 int i; 601 struct mm_struct *mm = kvm->mm; 602 603 kvm_arch_sync_events(kvm); 604 spin_lock(&kvm_lock); 605 list_del(&kvm->vm_list); 606 spin_unlock(&kvm_lock); 607 kvm_free_irq_routing(kvm); 608 for (i = 0; i < KVM_NR_BUSES; i++) 609 kvm_io_bus_destroy(kvm->buses[i]); 610 kvm_coalesced_mmio_free(kvm); 611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 612 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 613 #else 614 kvm_arch_flush_shadow_all(kvm); 615 #endif 616 kvm_arch_destroy_vm(kvm); 617 kvm_destroy_devices(kvm); 618 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 619 kvm_free_memslots(kvm, kvm->memslots[i]); 620 cleanup_srcu_struct(&kvm->irq_srcu); 621 cleanup_srcu_struct(&kvm->srcu); 622 kvm_arch_free_vm(kvm); 623 hardware_disable_all(); 624 mmdrop(mm); 625 } 626 627 void kvm_get_kvm(struct kvm *kvm) 628 { 629 atomic_inc(&kvm->users_count); 630 } 631 EXPORT_SYMBOL_GPL(kvm_get_kvm); 632 633 void kvm_put_kvm(struct kvm *kvm) 634 { 635 if (atomic_dec_and_test(&kvm->users_count)) 636 kvm_destroy_vm(kvm); 637 } 638 EXPORT_SYMBOL_GPL(kvm_put_kvm); 639 640 641 static int kvm_vm_release(struct inode *inode, struct file *filp) 642 { 643 struct kvm *kvm = filp->private_data; 644 645 kvm_irqfd_release(kvm); 646 647 kvm_put_kvm(kvm); 648 return 0; 649 } 650 651 /* 652 * Allocation size is twice as large as the actual dirty bitmap size. 653 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 654 */ 655 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 656 { 657 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 658 659 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 660 if (!memslot->dirty_bitmap) 661 return -ENOMEM; 662 663 return 0; 664 } 665 666 /* 667 * Insert memslot and re-sort memslots based on their GFN, 668 * so binary search could be used to lookup GFN. 669 * Sorting algorithm takes advantage of having initially 670 * sorted array and known changed memslot position. 671 */ 672 static void update_memslots(struct kvm_memslots *slots, 673 struct kvm_memory_slot *new) 674 { 675 int id = new->id; 676 int i = slots->id_to_index[id]; 677 struct kvm_memory_slot *mslots = slots->memslots; 678 679 WARN_ON(mslots[i].id != id); 680 if (!new->npages) { 681 WARN_ON(!mslots[i].npages); 682 if (mslots[i].npages) 683 slots->used_slots--; 684 } else { 685 if (!mslots[i].npages) 686 slots->used_slots++; 687 } 688 689 while (i < KVM_MEM_SLOTS_NUM - 1 && 690 new->base_gfn <= mslots[i + 1].base_gfn) { 691 if (!mslots[i + 1].npages) 692 break; 693 mslots[i] = mslots[i + 1]; 694 slots->id_to_index[mslots[i].id] = i; 695 i++; 696 } 697 698 /* 699 * The ">=" is needed when creating a slot with base_gfn == 0, 700 * so that it moves before all those with base_gfn == npages == 0. 701 * 702 * On the other hand, if new->npages is zero, the above loop has 703 * already left i pointing to the beginning of the empty part of 704 * mslots, and the ">=" would move the hole backwards in this 705 * case---which is wrong. So skip the loop when deleting a slot. 706 */ 707 if (new->npages) { 708 while (i > 0 && 709 new->base_gfn >= mslots[i - 1].base_gfn) { 710 mslots[i] = mslots[i - 1]; 711 slots->id_to_index[mslots[i].id] = i; 712 i--; 713 } 714 } else 715 WARN_ON_ONCE(i != slots->used_slots); 716 717 mslots[i] = *new; 718 slots->id_to_index[mslots[i].id] = i; 719 } 720 721 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 722 { 723 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 724 725 #ifdef __KVM_HAVE_READONLY_MEM 726 valid_flags |= KVM_MEM_READONLY; 727 #endif 728 729 if (mem->flags & ~valid_flags) 730 return -EINVAL; 731 732 return 0; 733 } 734 735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 736 int as_id, struct kvm_memslots *slots) 737 { 738 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 739 740 /* 741 * Set the low bit in the generation, which disables SPTE caching 742 * until the end of synchronize_srcu_expedited. 743 */ 744 WARN_ON(old_memslots->generation & 1); 745 slots->generation = old_memslots->generation + 1; 746 747 rcu_assign_pointer(kvm->memslots[as_id], slots); 748 synchronize_srcu_expedited(&kvm->srcu); 749 750 /* 751 * Increment the new memslot generation a second time. This prevents 752 * vm exits that race with memslot updates from caching a memslot 753 * generation that will (potentially) be valid forever. 754 */ 755 slots->generation++; 756 757 kvm_arch_memslots_updated(kvm, slots); 758 759 return old_memslots; 760 } 761 762 /* 763 * Allocate some memory and give it an address in the guest physical address 764 * space. 765 * 766 * Discontiguous memory is allowed, mostly for framebuffers. 767 * 768 * Must be called holding kvm->slots_lock for write. 769 */ 770 int __kvm_set_memory_region(struct kvm *kvm, 771 const struct kvm_userspace_memory_region *mem) 772 { 773 int r; 774 gfn_t base_gfn; 775 unsigned long npages; 776 struct kvm_memory_slot *slot; 777 struct kvm_memory_slot old, new; 778 struct kvm_memslots *slots = NULL, *old_memslots; 779 int as_id, id; 780 enum kvm_mr_change change; 781 782 r = check_memory_region_flags(mem); 783 if (r) 784 goto out; 785 786 r = -EINVAL; 787 as_id = mem->slot >> 16; 788 id = (u16)mem->slot; 789 790 /* General sanity checks */ 791 if (mem->memory_size & (PAGE_SIZE - 1)) 792 goto out; 793 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 794 goto out; 795 /* We can read the guest memory with __xxx_user() later on. */ 796 if ((id < KVM_USER_MEM_SLOTS) && 797 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 798 !access_ok(VERIFY_WRITE, 799 (void __user *)(unsigned long)mem->userspace_addr, 800 mem->memory_size))) 801 goto out; 802 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 803 goto out; 804 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 805 goto out; 806 807 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 808 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 809 npages = mem->memory_size >> PAGE_SHIFT; 810 811 if (npages > KVM_MEM_MAX_NR_PAGES) 812 goto out; 813 814 new = old = *slot; 815 816 new.id = id; 817 new.base_gfn = base_gfn; 818 new.npages = npages; 819 new.flags = mem->flags; 820 821 if (npages) { 822 if (!old.npages) 823 change = KVM_MR_CREATE; 824 else { /* Modify an existing slot. */ 825 if ((mem->userspace_addr != old.userspace_addr) || 826 (npages != old.npages) || 827 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 828 goto out; 829 830 if (base_gfn != old.base_gfn) 831 change = KVM_MR_MOVE; 832 else if (new.flags != old.flags) 833 change = KVM_MR_FLAGS_ONLY; 834 else { /* Nothing to change. */ 835 r = 0; 836 goto out; 837 } 838 } 839 } else { 840 if (!old.npages) 841 goto out; 842 843 change = KVM_MR_DELETE; 844 new.base_gfn = 0; 845 new.flags = 0; 846 } 847 848 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 849 /* Check for overlaps */ 850 r = -EEXIST; 851 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 852 if ((slot->id >= KVM_USER_MEM_SLOTS) || 853 (slot->id == id)) 854 continue; 855 if (!((base_gfn + npages <= slot->base_gfn) || 856 (base_gfn >= slot->base_gfn + slot->npages))) 857 goto out; 858 } 859 } 860 861 /* Free page dirty bitmap if unneeded */ 862 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 863 new.dirty_bitmap = NULL; 864 865 r = -ENOMEM; 866 if (change == KVM_MR_CREATE) { 867 new.userspace_addr = mem->userspace_addr; 868 869 if (kvm_arch_create_memslot(kvm, &new, npages)) 870 goto out_free; 871 } 872 873 /* Allocate page dirty bitmap if needed */ 874 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 875 if (kvm_create_dirty_bitmap(&new) < 0) 876 goto out_free; 877 } 878 879 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 880 if (!slots) 881 goto out_free; 882 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 883 884 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 885 slot = id_to_memslot(slots, id); 886 slot->flags |= KVM_MEMSLOT_INVALID; 887 888 old_memslots = install_new_memslots(kvm, as_id, slots); 889 890 /* slot was deleted or moved, clear iommu mapping */ 891 kvm_iommu_unmap_pages(kvm, &old); 892 /* From this point no new shadow pages pointing to a deleted, 893 * or moved, memslot will be created. 894 * 895 * validation of sp->gfn happens in: 896 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 897 * - kvm_is_visible_gfn (mmu_check_roots) 898 */ 899 kvm_arch_flush_shadow_memslot(kvm, slot); 900 901 /* 902 * We can re-use the old_memslots from above, the only difference 903 * from the currently installed memslots is the invalid flag. This 904 * will get overwritten by update_memslots anyway. 905 */ 906 slots = old_memslots; 907 } 908 909 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 910 if (r) 911 goto out_slots; 912 913 /* actual memory is freed via old in kvm_free_memslot below */ 914 if (change == KVM_MR_DELETE) { 915 new.dirty_bitmap = NULL; 916 memset(&new.arch, 0, sizeof(new.arch)); 917 } 918 919 update_memslots(slots, &new); 920 old_memslots = install_new_memslots(kvm, as_id, slots); 921 922 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 923 924 kvm_free_memslot(kvm, &old, &new); 925 kvfree(old_memslots); 926 927 /* 928 * IOMMU mapping: New slots need to be mapped. Old slots need to be 929 * un-mapped and re-mapped if their base changes. Since base change 930 * unmapping is handled above with slot deletion, mapping alone is 931 * needed here. Anything else the iommu might care about for existing 932 * slots (size changes, userspace addr changes and read-only flag 933 * changes) is disallowed above, so any other attribute changes getting 934 * here can be skipped. 935 */ 936 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 937 r = kvm_iommu_map_pages(kvm, &new); 938 return r; 939 } 940 941 return 0; 942 943 out_slots: 944 kvfree(slots); 945 out_free: 946 kvm_free_memslot(kvm, &new, &old); 947 out: 948 return r; 949 } 950 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 951 952 int kvm_set_memory_region(struct kvm *kvm, 953 const struct kvm_userspace_memory_region *mem) 954 { 955 int r; 956 957 mutex_lock(&kvm->slots_lock); 958 r = __kvm_set_memory_region(kvm, mem); 959 mutex_unlock(&kvm->slots_lock); 960 return r; 961 } 962 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 963 964 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 965 struct kvm_userspace_memory_region *mem) 966 { 967 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 968 return -EINVAL; 969 970 return kvm_set_memory_region(kvm, mem); 971 } 972 973 int kvm_get_dirty_log(struct kvm *kvm, 974 struct kvm_dirty_log *log, int *is_dirty) 975 { 976 struct kvm_memslots *slots; 977 struct kvm_memory_slot *memslot; 978 int r, i, as_id, id; 979 unsigned long n; 980 unsigned long any = 0; 981 982 r = -EINVAL; 983 as_id = log->slot >> 16; 984 id = (u16)log->slot; 985 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 986 goto out; 987 988 slots = __kvm_memslots(kvm, as_id); 989 memslot = id_to_memslot(slots, id); 990 r = -ENOENT; 991 if (!memslot->dirty_bitmap) 992 goto out; 993 994 n = kvm_dirty_bitmap_bytes(memslot); 995 996 for (i = 0; !any && i < n/sizeof(long); ++i) 997 any = memslot->dirty_bitmap[i]; 998 999 r = -EFAULT; 1000 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1001 goto out; 1002 1003 if (any) 1004 *is_dirty = 1; 1005 1006 r = 0; 1007 out: 1008 return r; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1011 1012 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1013 /** 1014 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1015 * are dirty write protect them for next write. 1016 * @kvm: pointer to kvm instance 1017 * @log: slot id and address to which we copy the log 1018 * @is_dirty: flag set if any page is dirty 1019 * 1020 * We need to keep it in mind that VCPU threads can write to the bitmap 1021 * concurrently. So, to avoid losing track of dirty pages we keep the 1022 * following order: 1023 * 1024 * 1. Take a snapshot of the bit and clear it if needed. 1025 * 2. Write protect the corresponding page. 1026 * 3. Copy the snapshot to the userspace. 1027 * 4. Upon return caller flushes TLB's if needed. 1028 * 1029 * Between 2 and 4, the guest may write to the page using the remaining TLB 1030 * entry. This is not a problem because the page is reported dirty using 1031 * the snapshot taken before and step 4 ensures that writes done after 1032 * exiting to userspace will be logged for the next call. 1033 * 1034 */ 1035 int kvm_get_dirty_log_protect(struct kvm *kvm, 1036 struct kvm_dirty_log *log, bool *is_dirty) 1037 { 1038 struct kvm_memslots *slots; 1039 struct kvm_memory_slot *memslot; 1040 int r, i, as_id, id; 1041 unsigned long n; 1042 unsigned long *dirty_bitmap; 1043 unsigned long *dirty_bitmap_buffer; 1044 1045 r = -EINVAL; 1046 as_id = log->slot >> 16; 1047 id = (u16)log->slot; 1048 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1049 goto out; 1050 1051 slots = __kvm_memslots(kvm, as_id); 1052 memslot = id_to_memslot(slots, id); 1053 1054 dirty_bitmap = memslot->dirty_bitmap; 1055 r = -ENOENT; 1056 if (!dirty_bitmap) 1057 goto out; 1058 1059 n = kvm_dirty_bitmap_bytes(memslot); 1060 1061 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1062 memset(dirty_bitmap_buffer, 0, n); 1063 1064 spin_lock(&kvm->mmu_lock); 1065 *is_dirty = false; 1066 for (i = 0; i < n / sizeof(long); i++) { 1067 unsigned long mask; 1068 gfn_t offset; 1069 1070 if (!dirty_bitmap[i]) 1071 continue; 1072 1073 *is_dirty = true; 1074 1075 mask = xchg(&dirty_bitmap[i], 0); 1076 dirty_bitmap_buffer[i] = mask; 1077 1078 if (mask) { 1079 offset = i * BITS_PER_LONG; 1080 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1081 offset, mask); 1082 } 1083 } 1084 1085 spin_unlock(&kvm->mmu_lock); 1086 1087 r = -EFAULT; 1088 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1089 goto out; 1090 1091 r = 0; 1092 out: 1093 return r; 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1096 #endif 1097 1098 bool kvm_largepages_enabled(void) 1099 { 1100 return largepages_enabled; 1101 } 1102 1103 void kvm_disable_largepages(void) 1104 { 1105 largepages_enabled = false; 1106 } 1107 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1108 1109 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1110 { 1111 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1112 } 1113 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1114 1115 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1116 { 1117 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1118 } 1119 1120 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1121 { 1122 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1123 1124 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1125 memslot->flags & KVM_MEMSLOT_INVALID) 1126 return 0; 1127 1128 return 1; 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1131 1132 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1133 { 1134 struct vm_area_struct *vma; 1135 unsigned long addr, size; 1136 1137 size = PAGE_SIZE; 1138 1139 addr = gfn_to_hva(kvm, gfn); 1140 if (kvm_is_error_hva(addr)) 1141 return PAGE_SIZE; 1142 1143 down_read(¤t->mm->mmap_sem); 1144 vma = find_vma(current->mm, addr); 1145 if (!vma) 1146 goto out; 1147 1148 size = vma_kernel_pagesize(vma); 1149 1150 out: 1151 up_read(¤t->mm->mmap_sem); 1152 1153 return size; 1154 } 1155 1156 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1157 { 1158 return slot->flags & KVM_MEM_READONLY; 1159 } 1160 1161 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1162 gfn_t *nr_pages, bool write) 1163 { 1164 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1165 return KVM_HVA_ERR_BAD; 1166 1167 if (memslot_is_readonly(slot) && write) 1168 return KVM_HVA_ERR_RO_BAD; 1169 1170 if (nr_pages) 1171 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1172 1173 return __gfn_to_hva_memslot(slot, gfn); 1174 } 1175 1176 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1177 gfn_t *nr_pages) 1178 { 1179 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1180 } 1181 1182 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1183 gfn_t gfn) 1184 { 1185 return gfn_to_hva_many(slot, gfn, NULL); 1186 } 1187 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1188 1189 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1190 { 1191 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1192 } 1193 EXPORT_SYMBOL_GPL(gfn_to_hva); 1194 1195 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1196 { 1197 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1198 } 1199 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1200 1201 /* 1202 * If writable is set to false, the hva returned by this function is only 1203 * allowed to be read. 1204 */ 1205 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1206 gfn_t gfn, bool *writable) 1207 { 1208 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1209 1210 if (!kvm_is_error_hva(hva) && writable) 1211 *writable = !memslot_is_readonly(slot); 1212 1213 return hva; 1214 } 1215 1216 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1217 { 1218 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1219 1220 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1221 } 1222 1223 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1224 { 1225 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1226 1227 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1228 } 1229 1230 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1231 unsigned long start, int write, struct page **page) 1232 { 1233 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1234 1235 if (write) 1236 flags |= FOLL_WRITE; 1237 1238 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1239 } 1240 1241 static inline int check_user_page_hwpoison(unsigned long addr) 1242 { 1243 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1244 1245 rc = __get_user_pages(current, current->mm, addr, 1, 1246 flags, NULL, NULL, NULL); 1247 return rc == -EHWPOISON; 1248 } 1249 1250 /* 1251 * The atomic path to get the writable pfn which will be stored in @pfn, 1252 * true indicates success, otherwise false is returned. 1253 */ 1254 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1255 bool write_fault, bool *writable, pfn_t *pfn) 1256 { 1257 struct page *page[1]; 1258 int npages; 1259 1260 if (!(async || atomic)) 1261 return false; 1262 1263 /* 1264 * Fast pin a writable pfn only if it is a write fault request 1265 * or the caller allows to map a writable pfn for a read fault 1266 * request. 1267 */ 1268 if (!(write_fault || writable)) 1269 return false; 1270 1271 npages = __get_user_pages_fast(addr, 1, 1, page); 1272 if (npages == 1) { 1273 *pfn = page_to_pfn(page[0]); 1274 1275 if (writable) 1276 *writable = true; 1277 return true; 1278 } 1279 1280 return false; 1281 } 1282 1283 /* 1284 * The slow path to get the pfn of the specified host virtual address, 1285 * 1 indicates success, -errno is returned if error is detected. 1286 */ 1287 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1288 bool *writable, pfn_t *pfn) 1289 { 1290 struct page *page[1]; 1291 int npages = 0; 1292 1293 might_sleep(); 1294 1295 if (writable) 1296 *writable = write_fault; 1297 1298 if (async) { 1299 down_read(¤t->mm->mmap_sem); 1300 npages = get_user_page_nowait(current, current->mm, 1301 addr, write_fault, page); 1302 up_read(¤t->mm->mmap_sem); 1303 } else 1304 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1305 write_fault, 0, page, 1306 FOLL_TOUCH|FOLL_HWPOISON); 1307 if (npages != 1) 1308 return npages; 1309 1310 /* map read fault as writable if possible */ 1311 if (unlikely(!write_fault) && writable) { 1312 struct page *wpage[1]; 1313 1314 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1315 if (npages == 1) { 1316 *writable = true; 1317 put_page(page[0]); 1318 page[0] = wpage[0]; 1319 } 1320 1321 npages = 1; 1322 } 1323 *pfn = page_to_pfn(page[0]); 1324 return npages; 1325 } 1326 1327 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1328 { 1329 if (unlikely(!(vma->vm_flags & VM_READ))) 1330 return false; 1331 1332 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1333 return false; 1334 1335 return true; 1336 } 1337 1338 /* 1339 * Pin guest page in memory and return its pfn. 1340 * @addr: host virtual address which maps memory to the guest 1341 * @atomic: whether this function can sleep 1342 * @async: whether this function need to wait IO complete if the 1343 * host page is not in the memory 1344 * @write_fault: whether we should get a writable host page 1345 * @writable: whether it allows to map a writable host page for !@write_fault 1346 * 1347 * The function will map a writable host page for these two cases: 1348 * 1): @write_fault = true 1349 * 2): @write_fault = false && @writable, @writable will tell the caller 1350 * whether the mapping is writable. 1351 */ 1352 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1353 bool write_fault, bool *writable) 1354 { 1355 struct vm_area_struct *vma; 1356 pfn_t pfn = 0; 1357 int npages; 1358 1359 /* we can do it either atomically or asynchronously, not both */ 1360 BUG_ON(atomic && async); 1361 1362 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1363 return pfn; 1364 1365 if (atomic) 1366 return KVM_PFN_ERR_FAULT; 1367 1368 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1369 if (npages == 1) 1370 return pfn; 1371 1372 down_read(¤t->mm->mmap_sem); 1373 if (npages == -EHWPOISON || 1374 (!async && check_user_page_hwpoison(addr))) { 1375 pfn = KVM_PFN_ERR_HWPOISON; 1376 goto exit; 1377 } 1378 1379 vma = find_vma_intersection(current->mm, addr, addr + 1); 1380 1381 if (vma == NULL) 1382 pfn = KVM_PFN_ERR_FAULT; 1383 else if ((vma->vm_flags & VM_PFNMAP)) { 1384 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1385 vma->vm_pgoff; 1386 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1387 } else { 1388 if (async && vma_is_valid(vma, write_fault)) 1389 *async = true; 1390 pfn = KVM_PFN_ERR_FAULT; 1391 } 1392 exit: 1393 up_read(¤t->mm->mmap_sem); 1394 return pfn; 1395 } 1396 1397 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1398 bool *async, bool write_fault, bool *writable) 1399 { 1400 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1401 1402 if (addr == KVM_HVA_ERR_RO_BAD) 1403 return KVM_PFN_ERR_RO_FAULT; 1404 1405 if (kvm_is_error_hva(addr)) 1406 return KVM_PFN_NOSLOT; 1407 1408 /* Do not map writable pfn in the readonly memslot. */ 1409 if (writable && memslot_is_readonly(slot)) { 1410 *writable = false; 1411 writable = NULL; 1412 } 1413 1414 return hva_to_pfn(addr, atomic, async, write_fault, 1415 writable); 1416 } 1417 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1418 1419 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1420 bool *writable) 1421 { 1422 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1423 write_fault, writable); 1424 } 1425 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1426 1427 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1428 { 1429 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1430 } 1431 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1432 1433 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1434 { 1435 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1436 } 1437 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1438 1439 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1440 { 1441 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1442 } 1443 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1444 1445 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1446 { 1447 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1448 } 1449 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1450 1451 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1452 { 1453 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1454 } 1455 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1456 1457 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1458 { 1459 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1462 1463 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1464 struct page **pages, int nr_pages) 1465 { 1466 unsigned long addr; 1467 gfn_t entry; 1468 1469 addr = gfn_to_hva_many(slot, gfn, &entry); 1470 if (kvm_is_error_hva(addr)) 1471 return -1; 1472 1473 if (entry < nr_pages) 1474 return 0; 1475 1476 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1477 } 1478 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1479 1480 static struct page *kvm_pfn_to_page(pfn_t pfn) 1481 { 1482 if (is_error_noslot_pfn(pfn)) 1483 return KVM_ERR_PTR_BAD_PAGE; 1484 1485 if (kvm_is_reserved_pfn(pfn)) { 1486 WARN_ON(1); 1487 return KVM_ERR_PTR_BAD_PAGE; 1488 } 1489 1490 return pfn_to_page(pfn); 1491 } 1492 1493 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1494 { 1495 pfn_t pfn; 1496 1497 pfn = gfn_to_pfn(kvm, gfn); 1498 1499 return kvm_pfn_to_page(pfn); 1500 } 1501 EXPORT_SYMBOL_GPL(gfn_to_page); 1502 1503 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1504 { 1505 pfn_t pfn; 1506 1507 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1508 1509 return kvm_pfn_to_page(pfn); 1510 } 1511 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1512 1513 void kvm_release_page_clean(struct page *page) 1514 { 1515 WARN_ON(is_error_page(page)); 1516 1517 kvm_release_pfn_clean(page_to_pfn(page)); 1518 } 1519 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1520 1521 void kvm_release_pfn_clean(pfn_t pfn) 1522 { 1523 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1524 put_page(pfn_to_page(pfn)); 1525 } 1526 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1527 1528 void kvm_release_page_dirty(struct page *page) 1529 { 1530 WARN_ON(is_error_page(page)); 1531 1532 kvm_release_pfn_dirty(page_to_pfn(page)); 1533 } 1534 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1535 1536 static void kvm_release_pfn_dirty(pfn_t pfn) 1537 { 1538 kvm_set_pfn_dirty(pfn); 1539 kvm_release_pfn_clean(pfn); 1540 } 1541 1542 void kvm_set_pfn_dirty(pfn_t pfn) 1543 { 1544 if (!kvm_is_reserved_pfn(pfn)) { 1545 struct page *page = pfn_to_page(pfn); 1546 1547 if (!PageReserved(page)) 1548 SetPageDirty(page); 1549 } 1550 } 1551 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1552 1553 void kvm_set_pfn_accessed(pfn_t pfn) 1554 { 1555 if (!kvm_is_reserved_pfn(pfn)) 1556 mark_page_accessed(pfn_to_page(pfn)); 1557 } 1558 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1559 1560 void kvm_get_pfn(pfn_t pfn) 1561 { 1562 if (!kvm_is_reserved_pfn(pfn)) 1563 get_page(pfn_to_page(pfn)); 1564 } 1565 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1566 1567 static int next_segment(unsigned long len, int offset) 1568 { 1569 if (len > PAGE_SIZE - offset) 1570 return PAGE_SIZE - offset; 1571 else 1572 return len; 1573 } 1574 1575 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1576 void *data, int offset, int len) 1577 { 1578 int r; 1579 unsigned long addr; 1580 1581 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1582 if (kvm_is_error_hva(addr)) 1583 return -EFAULT; 1584 r = __copy_from_user(data, (void __user *)addr + offset, len); 1585 if (r) 1586 return -EFAULT; 1587 return 0; 1588 } 1589 1590 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1591 int len) 1592 { 1593 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1594 1595 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1596 } 1597 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1598 1599 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1600 int offset, int len) 1601 { 1602 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1603 1604 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1605 } 1606 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1607 1608 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1609 { 1610 gfn_t gfn = gpa >> PAGE_SHIFT; 1611 int seg; 1612 int offset = offset_in_page(gpa); 1613 int ret; 1614 1615 while ((seg = next_segment(len, offset)) != 0) { 1616 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1617 if (ret < 0) 1618 return ret; 1619 offset = 0; 1620 len -= seg; 1621 data += seg; 1622 ++gfn; 1623 } 1624 return 0; 1625 } 1626 EXPORT_SYMBOL_GPL(kvm_read_guest); 1627 1628 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1629 { 1630 gfn_t gfn = gpa >> PAGE_SHIFT; 1631 int seg; 1632 int offset = offset_in_page(gpa); 1633 int ret; 1634 1635 while ((seg = next_segment(len, offset)) != 0) { 1636 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1637 if (ret < 0) 1638 return ret; 1639 offset = 0; 1640 len -= seg; 1641 data += seg; 1642 ++gfn; 1643 } 1644 return 0; 1645 } 1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1647 1648 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1649 void *data, int offset, unsigned long len) 1650 { 1651 int r; 1652 unsigned long addr; 1653 1654 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1655 if (kvm_is_error_hva(addr)) 1656 return -EFAULT; 1657 pagefault_disable(); 1658 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1659 pagefault_enable(); 1660 if (r) 1661 return -EFAULT; 1662 return 0; 1663 } 1664 1665 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1666 unsigned long len) 1667 { 1668 gfn_t gfn = gpa >> PAGE_SHIFT; 1669 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1670 int offset = offset_in_page(gpa); 1671 1672 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1673 } 1674 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1675 1676 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1677 void *data, unsigned long len) 1678 { 1679 gfn_t gfn = gpa >> PAGE_SHIFT; 1680 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1681 int offset = offset_in_page(gpa); 1682 1683 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1684 } 1685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1686 1687 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1688 const void *data, int offset, int len) 1689 { 1690 int r; 1691 unsigned long addr; 1692 1693 addr = gfn_to_hva_memslot(memslot, gfn); 1694 if (kvm_is_error_hva(addr)) 1695 return -EFAULT; 1696 r = __copy_to_user((void __user *)addr + offset, data, len); 1697 if (r) 1698 return -EFAULT; 1699 mark_page_dirty_in_slot(memslot, gfn); 1700 return 0; 1701 } 1702 1703 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1704 const void *data, int offset, int len) 1705 { 1706 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1707 1708 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1709 } 1710 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1711 1712 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1713 const void *data, int offset, int len) 1714 { 1715 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1716 1717 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1718 } 1719 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1720 1721 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1722 unsigned long len) 1723 { 1724 gfn_t gfn = gpa >> PAGE_SHIFT; 1725 int seg; 1726 int offset = offset_in_page(gpa); 1727 int ret; 1728 1729 while ((seg = next_segment(len, offset)) != 0) { 1730 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1731 if (ret < 0) 1732 return ret; 1733 offset = 0; 1734 len -= seg; 1735 data += seg; 1736 ++gfn; 1737 } 1738 return 0; 1739 } 1740 EXPORT_SYMBOL_GPL(kvm_write_guest); 1741 1742 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1743 unsigned long len) 1744 { 1745 gfn_t gfn = gpa >> PAGE_SHIFT; 1746 int seg; 1747 int offset = offset_in_page(gpa); 1748 int ret; 1749 1750 while ((seg = next_segment(len, offset)) != 0) { 1751 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1752 if (ret < 0) 1753 return ret; 1754 offset = 0; 1755 len -= seg; 1756 data += seg; 1757 ++gfn; 1758 } 1759 return 0; 1760 } 1761 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1762 1763 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1764 gpa_t gpa, unsigned long len) 1765 { 1766 struct kvm_memslots *slots = kvm_memslots(kvm); 1767 int offset = offset_in_page(gpa); 1768 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1769 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1770 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1771 gfn_t nr_pages_avail; 1772 1773 ghc->gpa = gpa; 1774 ghc->generation = slots->generation; 1775 ghc->len = len; 1776 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1777 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1778 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1779 ghc->hva += offset; 1780 } else { 1781 /* 1782 * If the requested region crosses two memslots, we still 1783 * verify that the entire region is valid here. 1784 */ 1785 while (start_gfn <= end_gfn) { 1786 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1787 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1788 &nr_pages_avail); 1789 if (kvm_is_error_hva(ghc->hva)) 1790 return -EFAULT; 1791 start_gfn += nr_pages_avail; 1792 } 1793 /* Use the slow path for cross page reads and writes. */ 1794 ghc->memslot = NULL; 1795 } 1796 return 0; 1797 } 1798 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1799 1800 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1801 void *data, unsigned long len) 1802 { 1803 struct kvm_memslots *slots = kvm_memslots(kvm); 1804 int r; 1805 1806 BUG_ON(len > ghc->len); 1807 1808 if (slots->generation != ghc->generation) 1809 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1810 1811 if (unlikely(!ghc->memslot)) 1812 return kvm_write_guest(kvm, ghc->gpa, data, len); 1813 1814 if (kvm_is_error_hva(ghc->hva)) 1815 return -EFAULT; 1816 1817 r = __copy_to_user((void __user *)ghc->hva, data, len); 1818 if (r) 1819 return -EFAULT; 1820 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1821 1822 return 0; 1823 } 1824 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1825 1826 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1827 void *data, unsigned long len) 1828 { 1829 struct kvm_memslots *slots = kvm_memslots(kvm); 1830 int r; 1831 1832 BUG_ON(len > ghc->len); 1833 1834 if (slots->generation != ghc->generation) 1835 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1836 1837 if (unlikely(!ghc->memslot)) 1838 return kvm_read_guest(kvm, ghc->gpa, data, len); 1839 1840 if (kvm_is_error_hva(ghc->hva)) 1841 return -EFAULT; 1842 1843 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1844 if (r) 1845 return -EFAULT; 1846 1847 return 0; 1848 } 1849 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1850 1851 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1852 { 1853 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1854 1855 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1856 } 1857 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1858 1859 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1860 { 1861 gfn_t gfn = gpa >> PAGE_SHIFT; 1862 int seg; 1863 int offset = offset_in_page(gpa); 1864 int ret; 1865 1866 while ((seg = next_segment(len, offset)) != 0) { 1867 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1868 if (ret < 0) 1869 return ret; 1870 offset = 0; 1871 len -= seg; 1872 ++gfn; 1873 } 1874 return 0; 1875 } 1876 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1877 1878 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 1879 gfn_t gfn) 1880 { 1881 if (memslot && memslot->dirty_bitmap) { 1882 unsigned long rel_gfn = gfn - memslot->base_gfn; 1883 1884 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1885 } 1886 } 1887 1888 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1889 { 1890 struct kvm_memory_slot *memslot; 1891 1892 memslot = gfn_to_memslot(kvm, gfn); 1893 mark_page_dirty_in_slot(memslot, gfn); 1894 } 1895 EXPORT_SYMBOL_GPL(mark_page_dirty); 1896 1897 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 1898 { 1899 struct kvm_memory_slot *memslot; 1900 1901 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1902 mark_page_dirty_in_slot(memslot, gfn); 1903 } 1904 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 1905 1906 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 1907 { 1908 if (kvm_arch_vcpu_runnable(vcpu)) { 1909 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1910 return -EINTR; 1911 } 1912 if (kvm_cpu_has_pending_timer(vcpu)) 1913 return -EINTR; 1914 if (signal_pending(current)) 1915 return -EINTR; 1916 1917 return 0; 1918 } 1919 1920 /* 1921 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1922 */ 1923 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1924 { 1925 ktime_t start, cur; 1926 DEFINE_WAIT(wait); 1927 bool waited = false; 1928 1929 start = cur = ktime_get(); 1930 if (halt_poll_ns) { 1931 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); 1932 1933 do { 1934 /* 1935 * This sets KVM_REQ_UNHALT if an interrupt 1936 * arrives. 1937 */ 1938 if (kvm_vcpu_check_block(vcpu) < 0) { 1939 ++vcpu->stat.halt_successful_poll; 1940 goto out; 1941 } 1942 cur = ktime_get(); 1943 } while (single_task_running() && ktime_before(cur, stop)); 1944 } 1945 1946 for (;;) { 1947 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1948 1949 if (kvm_vcpu_check_block(vcpu) < 0) 1950 break; 1951 1952 waited = true; 1953 schedule(); 1954 } 1955 1956 finish_wait(&vcpu->wq, &wait); 1957 cur = ktime_get(); 1958 1959 out: 1960 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); 1961 } 1962 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1963 1964 #ifndef CONFIG_S390 1965 /* 1966 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1967 */ 1968 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1969 { 1970 int me; 1971 int cpu = vcpu->cpu; 1972 wait_queue_head_t *wqp; 1973 1974 wqp = kvm_arch_vcpu_wq(vcpu); 1975 if (waitqueue_active(wqp)) { 1976 wake_up_interruptible(wqp); 1977 ++vcpu->stat.halt_wakeup; 1978 } 1979 1980 me = get_cpu(); 1981 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1982 if (kvm_arch_vcpu_should_kick(vcpu)) 1983 smp_send_reschedule(cpu); 1984 put_cpu(); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1987 #endif /* !CONFIG_S390 */ 1988 1989 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 1990 { 1991 struct pid *pid; 1992 struct task_struct *task = NULL; 1993 int ret = 0; 1994 1995 rcu_read_lock(); 1996 pid = rcu_dereference(target->pid); 1997 if (pid) 1998 task = get_pid_task(pid, PIDTYPE_PID); 1999 rcu_read_unlock(); 2000 if (!task) 2001 return ret; 2002 ret = yield_to(task, 1); 2003 put_task_struct(task); 2004 2005 return ret; 2006 } 2007 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2008 2009 /* 2010 * Helper that checks whether a VCPU is eligible for directed yield. 2011 * Most eligible candidate to yield is decided by following heuristics: 2012 * 2013 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2014 * (preempted lock holder), indicated by @in_spin_loop. 2015 * Set at the beiginning and cleared at the end of interception/PLE handler. 2016 * 2017 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2018 * chance last time (mostly it has become eligible now since we have probably 2019 * yielded to lockholder in last iteration. This is done by toggling 2020 * @dy_eligible each time a VCPU checked for eligibility.) 2021 * 2022 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2023 * to preempted lock-holder could result in wrong VCPU selection and CPU 2024 * burning. Giving priority for a potential lock-holder increases lock 2025 * progress. 2026 * 2027 * Since algorithm is based on heuristics, accessing another VCPU data without 2028 * locking does not harm. It may result in trying to yield to same VCPU, fail 2029 * and continue with next VCPU and so on. 2030 */ 2031 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2032 { 2033 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2034 bool eligible; 2035 2036 eligible = !vcpu->spin_loop.in_spin_loop || 2037 vcpu->spin_loop.dy_eligible; 2038 2039 if (vcpu->spin_loop.in_spin_loop) 2040 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2041 2042 return eligible; 2043 #else 2044 return true; 2045 #endif 2046 } 2047 2048 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2049 { 2050 struct kvm *kvm = me->kvm; 2051 struct kvm_vcpu *vcpu; 2052 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2053 int yielded = 0; 2054 int try = 3; 2055 int pass; 2056 int i; 2057 2058 kvm_vcpu_set_in_spin_loop(me, true); 2059 /* 2060 * We boost the priority of a VCPU that is runnable but not 2061 * currently running, because it got preempted by something 2062 * else and called schedule in __vcpu_run. Hopefully that 2063 * VCPU is holding the lock that we need and will release it. 2064 * We approximate round-robin by starting at the last boosted VCPU. 2065 */ 2066 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2067 kvm_for_each_vcpu(i, vcpu, kvm) { 2068 if (!pass && i <= last_boosted_vcpu) { 2069 i = last_boosted_vcpu; 2070 continue; 2071 } else if (pass && i > last_boosted_vcpu) 2072 break; 2073 if (!ACCESS_ONCE(vcpu->preempted)) 2074 continue; 2075 if (vcpu == me) 2076 continue; 2077 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2078 continue; 2079 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2080 continue; 2081 2082 yielded = kvm_vcpu_yield_to(vcpu); 2083 if (yielded > 0) { 2084 kvm->last_boosted_vcpu = i; 2085 break; 2086 } else if (yielded < 0) { 2087 try--; 2088 if (!try) 2089 break; 2090 } 2091 } 2092 } 2093 kvm_vcpu_set_in_spin_loop(me, false); 2094 2095 /* Ensure vcpu is not eligible during next spinloop */ 2096 kvm_vcpu_set_dy_eligible(me, false); 2097 } 2098 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2099 2100 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2101 { 2102 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2103 struct page *page; 2104 2105 if (vmf->pgoff == 0) 2106 page = virt_to_page(vcpu->run); 2107 #ifdef CONFIG_X86 2108 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2109 page = virt_to_page(vcpu->arch.pio_data); 2110 #endif 2111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2112 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2113 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2114 #endif 2115 else 2116 return kvm_arch_vcpu_fault(vcpu, vmf); 2117 get_page(page); 2118 vmf->page = page; 2119 return 0; 2120 } 2121 2122 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2123 .fault = kvm_vcpu_fault, 2124 }; 2125 2126 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2127 { 2128 vma->vm_ops = &kvm_vcpu_vm_ops; 2129 return 0; 2130 } 2131 2132 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2133 { 2134 struct kvm_vcpu *vcpu = filp->private_data; 2135 2136 kvm_put_kvm(vcpu->kvm); 2137 return 0; 2138 } 2139 2140 static struct file_operations kvm_vcpu_fops = { 2141 .release = kvm_vcpu_release, 2142 .unlocked_ioctl = kvm_vcpu_ioctl, 2143 #ifdef CONFIG_KVM_COMPAT 2144 .compat_ioctl = kvm_vcpu_compat_ioctl, 2145 #endif 2146 .mmap = kvm_vcpu_mmap, 2147 .llseek = noop_llseek, 2148 }; 2149 2150 /* 2151 * Allocates an inode for the vcpu. 2152 */ 2153 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2154 { 2155 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2156 } 2157 2158 /* 2159 * Creates some virtual cpus. Good luck creating more than one. 2160 */ 2161 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2162 { 2163 int r; 2164 struct kvm_vcpu *vcpu, *v; 2165 2166 if (id >= KVM_MAX_VCPUS) 2167 return -EINVAL; 2168 2169 vcpu = kvm_arch_vcpu_create(kvm, id); 2170 if (IS_ERR(vcpu)) 2171 return PTR_ERR(vcpu); 2172 2173 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2174 2175 r = kvm_arch_vcpu_setup(vcpu); 2176 if (r) 2177 goto vcpu_destroy; 2178 2179 mutex_lock(&kvm->lock); 2180 if (!kvm_vcpu_compatible(vcpu)) { 2181 r = -EINVAL; 2182 goto unlock_vcpu_destroy; 2183 } 2184 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2185 r = -EINVAL; 2186 goto unlock_vcpu_destroy; 2187 } 2188 2189 kvm_for_each_vcpu(r, v, kvm) 2190 if (v->vcpu_id == id) { 2191 r = -EEXIST; 2192 goto unlock_vcpu_destroy; 2193 } 2194 2195 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2196 2197 /* Now it's all set up, let userspace reach it */ 2198 kvm_get_kvm(kvm); 2199 r = create_vcpu_fd(vcpu); 2200 if (r < 0) { 2201 kvm_put_kvm(kvm); 2202 goto unlock_vcpu_destroy; 2203 } 2204 2205 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2206 smp_wmb(); 2207 atomic_inc(&kvm->online_vcpus); 2208 2209 mutex_unlock(&kvm->lock); 2210 kvm_arch_vcpu_postcreate(vcpu); 2211 return r; 2212 2213 unlock_vcpu_destroy: 2214 mutex_unlock(&kvm->lock); 2215 vcpu_destroy: 2216 kvm_arch_vcpu_destroy(vcpu); 2217 return r; 2218 } 2219 2220 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2221 { 2222 if (sigset) { 2223 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2224 vcpu->sigset_active = 1; 2225 vcpu->sigset = *sigset; 2226 } else 2227 vcpu->sigset_active = 0; 2228 return 0; 2229 } 2230 2231 static long kvm_vcpu_ioctl(struct file *filp, 2232 unsigned int ioctl, unsigned long arg) 2233 { 2234 struct kvm_vcpu *vcpu = filp->private_data; 2235 void __user *argp = (void __user *)arg; 2236 int r; 2237 struct kvm_fpu *fpu = NULL; 2238 struct kvm_sregs *kvm_sregs = NULL; 2239 2240 if (vcpu->kvm->mm != current->mm) 2241 return -EIO; 2242 2243 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2244 return -EINVAL; 2245 2246 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2247 /* 2248 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2249 * so vcpu_load() would break it. 2250 */ 2251 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2252 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2253 #endif 2254 2255 2256 r = vcpu_load(vcpu); 2257 if (r) 2258 return r; 2259 switch (ioctl) { 2260 case KVM_RUN: 2261 r = -EINVAL; 2262 if (arg) 2263 goto out; 2264 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2265 /* The thread running this VCPU changed. */ 2266 struct pid *oldpid = vcpu->pid; 2267 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2268 2269 rcu_assign_pointer(vcpu->pid, newpid); 2270 if (oldpid) 2271 synchronize_rcu(); 2272 put_pid(oldpid); 2273 } 2274 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2275 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2276 break; 2277 case KVM_GET_REGS: { 2278 struct kvm_regs *kvm_regs; 2279 2280 r = -ENOMEM; 2281 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2282 if (!kvm_regs) 2283 goto out; 2284 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2285 if (r) 2286 goto out_free1; 2287 r = -EFAULT; 2288 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2289 goto out_free1; 2290 r = 0; 2291 out_free1: 2292 kfree(kvm_regs); 2293 break; 2294 } 2295 case KVM_SET_REGS: { 2296 struct kvm_regs *kvm_regs; 2297 2298 r = -ENOMEM; 2299 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2300 if (IS_ERR(kvm_regs)) { 2301 r = PTR_ERR(kvm_regs); 2302 goto out; 2303 } 2304 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2305 kfree(kvm_regs); 2306 break; 2307 } 2308 case KVM_GET_SREGS: { 2309 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2310 r = -ENOMEM; 2311 if (!kvm_sregs) 2312 goto out; 2313 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2314 if (r) 2315 goto out; 2316 r = -EFAULT; 2317 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2318 goto out; 2319 r = 0; 2320 break; 2321 } 2322 case KVM_SET_SREGS: { 2323 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2324 if (IS_ERR(kvm_sregs)) { 2325 r = PTR_ERR(kvm_sregs); 2326 kvm_sregs = NULL; 2327 goto out; 2328 } 2329 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2330 break; 2331 } 2332 case KVM_GET_MP_STATE: { 2333 struct kvm_mp_state mp_state; 2334 2335 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2336 if (r) 2337 goto out; 2338 r = -EFAULT; 2339 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2340 goto out; 2341 r = 0; 2342 break; 2343 } 2344 case KVM_SET_MP_STATE: { 2345 struct kvm_mp_state mp_state; 2346 2347 r = -EFAULT; 2348 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2349 goto out; 2350 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2351 break; 2352 } 2353 case KVM_TRANSLATE: { 2354 struct kvm_translation tr; 2355 2356 r = -EFAULT; 2357 if (copy_from_user(&tr, argp, sizeof(tr))) 2358 goto out; 2359 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2360 if (r) 2361 goto out; 2362 r = -EFAULT; 2363 if (copy_to_user(argp, &tr, sizeof(tr))) 2364 goto out; 2365 r = 0; 2366 break; 2367 } 2368 case KVM_SET_GUEST_DEBUG: { 2369 struct kvm_guest_debug dbg; 2370 2371 r = -EFAULT; 2372 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2373 goto out; 2374 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2375 break; 2376 } 2377 case KVM_SET_SIGNAL_MASK: { 2378 struct kvm_signal_mask __user *sigmask_arg = argp; 2379 struct kvm_signal_mask kvm_sigmask; 2380 sigset_t sigset, *p; 2381 2382 p = NULL; 2383 if (argp) { 2384 r = -EFAULT; 2385 if (copy_from_user(&kvm_sigmask, argp, 2386 sizeof(kvm_sigmask))) 2387 goto out; 2388 r = -EINVAL; 2389 if (kvm_sigmask.len != sizeof(sigset)) 2390 goto out; 2391 r = -EFAULT; 2392 if (copy_from_user(&sigset, sigmask_arg->sigset, 2393 sizeof(sigset))) 2394 goto out; 2395 p = &sigset; 2396 } 2397 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2398 break; 2399 } 2400 case KVM_GET_FPU: { 2401 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2402 r = -ENOMEM; 2403 if (!fpu) 2404 goto out; 2405 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2406 if (r) 2407 goto out; 2408 r = -EFAULT; 2409 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2410 goto out; 2411 r = 0; 2412 break; 2413 } 2414 case KVM_SET_FPU: { 2415 fpu = memdup_user(argp, sizeof(*fpu)); 2416 if (IS_ERR(fpu)) { 2417 r = PTR_ERR(fpu); 2418 fpu = NULL; 2419 goto out; 2420 } 2421 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2422 break; 2423 } 2424 default: 2425 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2426 } 2427 out: 2428 vcpu_put(vcpu); 2429 kfree(fpu); 2430 kfree(kvm_sregs); 2431 return r; 2432 } 2433 2434 #ifdef CONFIG_KVM_COMPAT 2435 static long kvm_vcpu_compat_ioctl(struct file *filp, 2436 unsigned int ioctl, unsigned long arg) 2437 { 2438 struct kvm_vcpu *vcpu = filp->private_data; 2439 void __user *argp = compat_ptr(arg); 2440 int r; 2441 2442 if (vcpu->kvm->mm != current->mm) 2443 return -EIO; 2444 2445 switch (ioctl) { 2446 case KVM_SET_SIGNAL_MASK: { 2447 struct kvm_signal_mask __user *sigmask_arg = argp; 2448 struct kvm_signal_mask kvm_sigmask; 2449 compat_sigset_t csigset; 2450 sigset_t sigset; 2451 2452 if (argp) { 2453 r = -EFAULT; 2454 if (copy_from_user(&kvm_sigmask, argp, 2455 sizeof(kvm_sigmask))) 2456 goto out; 2457 r = -EINVAL; 2458 if (kvm_sigmask.len != sizeof(csigset)) 2459 goto out; 2460 r = -EFAULT; 2461 if (copy_from_user(&csigset, sigmask_arg->sigset, 2462 sizeof(csigset))) 2463 goto out; 2464 sigset_from_compat(&sigset, &csigset); 2465 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2466 } else 2467 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2468 break; 2469 } 2470 default: 2471 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2472 } 2473 2474 out: 2475 return r; 2476 } 2477 #endif 2478 2479 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2480 int (*accessor)(struct kvm_device *dev, 2481 struct kvm_device_attr *attr), 2482 unsigned long arg) 2483 { 2484 struct kvm_device_attr attr; 2485 2486 if (!accessor) 2487 return -EPERM; 2488 2489 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2490 return -EFAULT; 2491 2492 return accessor(dev, &attr); 2493 } 2494 2495 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2496 unsigned long arg) 2497 { 2498 struct kvm_device *dev = filp->private_data; 2499 2500 switch (ioctl) { 2501 case KVM_SET_DEVICE_ATTR: 2502 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2503 case KVM_GET_DEVICE_ATTR: 2504 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2505 case KVM_HAS_DEVICE_ATTR: 2506 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2507 default: 2508 if (dev->ops->ioctl) 2509 return dev->ops->ioctl(dev, ioctl, arg); 2510 2511 return -ENOTTY; 2512 } 2513 } 2514 2515 static int kvm_device_release(struct inode *inode, struct file *filp) 2516 { 2517 struct kvm_device *dev = filp->private_data; 2518 struct kvm *kvm = dev->kvm; 2519 2520 kvm_put_kvm(kvm); 2521 return 0; 2522 } 2523 2524 static const struct file_operations kvm_device_fops = { 2525 .unlocked_ioctl = kvm_device_ioctl, 2526 #ifdef CONFIG_KVM_COMPAT 2527 .compat_ioctl = kvm_device_ioctl, 2528 #endif 2529 .release = kvm_device_release, 2530 }; 2531 2532 struct kvm_device *kvm_device_from_filp(struct file *filp) 2533 { 2534 if (filp->f_op != &kvm_device_fops) 2535 return NULL; 2536 2537 return filp->private_data; 2538 } 2539 2540 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2541 #ifdef CONFIG_KVM_MPIC 2542 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2543 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2544 #endif 2545 2546 #ifdef CONFIG_KVM_XICS 2547 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2548 #endif 2549 }; 2550 2551 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2552 { 2553 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2554 return -ENOSPC; 2555 2556 if (kvm_device_ops_table[type] != NULL) 2557 return -EEXIST; 2558 2559 kvm_device_ops_table[type] = ops; 2560 return 0; 2561 } 2562 2563 void kvm_unregister_device_ops(u32 type) 2564 { 2565 if (kvm_device_ops_table[type] != NULL) 2566 kvm_device_ops_table[type] = NULL; 2567 } 2568 2569 static int kvm_ioctl_create_device(struct kvm *kvm, 2570 struct kvm_create_device *cd) 2571 { 2572 struct kvm_device_ops *ops = NULL; 2573 struct kvm_device *dev; 2574 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2575 int ret; 2576 2577 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2578 return -ENODEV; 2579 2580 ops = kvm_device_ops_table[cd->type]; 2581 if (ops == NULL) 2582 return -ENODEV; 2583 2584 if (test) 2585 return 0; 2586 2587 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2588 if (!dev) 2589 return -ENOMEM; 2590 2591 dev->ops = ops; 2592 dev->kvm = kvm; 2593 2594 ret = ops->create(dev, cd->type); 2595 if (ret < 0) { 2596 kfree(dev); 2597 return ret; 2598 } 2599 2600 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2601 if (ret < 0) { 2602 ops->destroy(dev); 2603 return ret; 2604 } 2605 2606 list_add(&dev->vm_node, &kvm->devices); 2607 kvm_get_kvm(kvm); 2608 cd->fd = ret; 2609 return 0; 2610 } 2611 2612 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2613 { 2614 switch (arg) { 2615 case KVM_CAP_USER_MEMORY: 2616 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2617 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2618 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2619 case KVM_CAP_SET_BOOT_CPU_ID: 2620 #endif 2621 case KVM_CAP_INTERNAL_ERROR_DATA: 2622 #ifdef CONFIG_HAVE_KVM_MSI 2623 case KVM_CAP_SIGNAL_MSI: 2624 #endif 2625 #ifdef CONFIG_HAVE_KVM_IRQFD 2626 case KVM_CAP_IRQFD: 2627 case KVM_CAP_IRQFD_RESAMPLE: 2628 #endif 2629 case KVM_CAP_CHECK_EXTENSION_VM: 2630 return 1; 2631 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2632 case KVM_CAP_IRQ_ROUTING: 2633 return KVM_MAX_IRQ_ROUTES; 2634 #endif 2635 #if KVM_ADDRESS_SPACE_NUM > 1 2636 case KVM_CAP_MULTI_ADDRESS_SPACE: 2637 return KVM_ADDRESS_SPACE_NUM; 2638 #endif 2639 default: 2640 break; 2641 } 2642 return kvm_vm_ioctl_check_extension(kvm, arg); 2643 } 2644 2645 static long kvm_vm_ioctl(struct file *filp, 2646 unsigned int ioctl, unsigned long arg) 2647 { 2648 struct kvm *kvm = filp->private_data; 2649 void __user *argp = (void __user *)arg; 2650 int r; 2651 2652 if (kvm->mm != current->mm) 2653 return -EIO; 2654 switch (ioctl) { 2655 case KVM_CREATE_VCPU: 2656 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2657 break; 2658 case KVM_SET_USER_MEMORY_REGION: { 2659 struct kvm_userspace_memory_region kvm_userspace_mem; 2660 2661 r = -EFAULT; 2662 if (copy_from_user(&kvm_userspace_mem, argp, 2663 sizeof(kvm_userspace_mem))) 2664 goto out; 2665 2666 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2667 break; 2668 } 2669 case KVM_GET_DIRTY_LOG: { 2670 struct kvm_dirty_log log; 2671 2672 r = -EFAULT; 2673 if (copy_from_user(&log, argp, sizeof(log))) 2674 goto out; 2675 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2676 break; 2677 } 2678 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2679 case KVM_REGISTER_COALESCED_MMIO: { 2680 struct kvm_coalesced_mmio_zone zone; 2681 2682 r = -EFAULT; 2683 if (copy_from_user(&zone, argp, sizeof(zone))) 2684 goto out; 2685 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2686 break; 2687 } 2688 case KVM_UNREGISTER_COALESCED_MMIO: { 2689 struct kvm_coalesced_mmio_zone zone; 2690 2691 r = -EFAULT; 2692 if (copy_from_user(&zone, argp, sizeof(zone))) 2693 goto out; 2694 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2695 break; 2696 } 2697 #endif 2698 case KVM_IRQFD: { 2699 struct kvm_irqfd data; 2700 2701 r = -EFAULT; 2702 if (copy_from_user(&data, argp, sizeof(data))) 2703 goto out; 2704 r = kvm_irqfd(kvm, &data); 2705 break; 2706 } 2707 case KVM_IOEVENTFD: { 2708 struct kvm_ioeventfd data; 2709 2710 r = -EFAULT; 2711 if (copy_from_user(&data, argp, sizeof(data))) 2712 goto out; 2713 r = kvm_ioeventfd(kvm, &data); 2714 break; 2715 } 2716 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2717 case KVM_SET_BOOT_CPU_ID: 2718 r = 0; 2719 mutex_lock(&kvm->lock); 2720 if (atomic_read(&kvm->online_vcpus) != 0) 2721 r = -EBUSY; 2722 else 2723 kvm->bsp_vcpu_id = arg; 2724 mutex_unlock(&kvm->lock); 2725 break; 2726 #endif 2727 #ifdef CONFIG_HAVE_KVM_MSI 2728 case KVM_SIGNAL_MSI: { 2729 struct kvm_msi msi; 2730 2731 r = -EFAULT; 2732 if (copy_from_user(&msi, argp, sizeof(msi))) 2733 goto out; 2734 r = kvm_send_userspace_msi(kvm, &msi); 2735 break; 2736 } 2737 #endif 2738 #ifdef __KVM_HAVE_IRQ_LINE 2739 case KVM_IRQ_LINE_STATUS: 2740 case KVM_IRQ_LINE: { 2741 struct kvm_irq_level irq_event; 2742 2743 r = -EFAULT; 2744 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2745 goto out; 2746 2747 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2748 ioctl == KVM_IRQ_LINE_STATUS); 2749 if (r) 2750 goto out; 2751 2752 r = -EFAULT; 2753 if (ioctl == KVM_IRQ_LINE_STATUS) { 2754 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2755 goto out; 2756 } 2757 2758 r = 0; 2759 break; 2760 } 2761 #endif 2762 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2763 case KVM_SET_GSI_ROUTING: { 2764 struct kvm_irq_routing routing; 2765 struct kvm_irq_routing __user *urouting; 2766 struct kvm_irq_routing_entry *entries; 2767 2768 r = -EFAULT; 2769 if (copy_from_user(&routing, argp, sizeof(routing))) 2770 goto out; 2771 r = -EINVAL; 2772 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2773 goto out; 2774 if (routing.flags) 2775 goto out; 2776 r = -ENOMEM; 2777 entries = vmalloc(routing.nr * sizeof(*entries)); 2778 if (!entries) 2779 goto out; 2780 r = -EFAULT; 2781 urouting = argp; 2782 if (copy_from_user(entries, urouting->entries, 2783 routing.nr * sizeof(*entries))) 2784 goto out_free_irq_routing; 2785 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2786 routing.flags); 2787 out_free_irq_routing: 2788 vfree(entries); 2789 break; 2790 } 2791 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2792 case KVM_CREATE_DEVICE: { 2793 struct kvm_create_device cd; 2794 2795 r = -EFAULT; 2796 if (copy_from_user(&cd, argp, sizeof(cd))) 2797 goto out; 2798 2799 r = kvm_ioctl_create_device(kvm, &cd); 2800 if (r) 2801 goto out; 2802 2803 r = -EFAULT; 2804 if (copy_to_user(argp, &cd, sizeof(cd))) 2805 goto out; 2806 2807 r = 0; 2808 break; 2809 } 2810 case KVM_CHECK_EXTENSION: 2811 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2812 break; 2813 default: 2814 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2815 } 2816 out: 2817 return r; 2818 } 2819 2820 #ifdef CONFIG_KVM_COMPAT 2821 struct compat_kvm_dirty_log { 2822 __u32 slot; 2823 __u32 padding1; 2824 union { 2825 compat_uptr_t dirty_bitmap; /* one bit per page */ 2826 __u64 padding2; 2827 }; 2828 }; 2829 2830 static long kvm_vm_compat_ioctl(struct file *filp, 2831 unsigned int ioctl, unsigned long arg) 2832 { 2833 struct kvm *kvm = filp->private_data; 2834 int r; 2835 2836 if (kvm->mm != current->mm) 2837 return -EIO; 2838 switch (ioctl) { 2839 case KVM_GET_DIRTY_LOG: { 2840 struct compat_kvm_dirty_log compat_log; 2841 struct kvm_dirty_log log; 2842 2843 r = -EFAULT; 2844 if (copy_from_user(&compat_log, (void __user *)arg, 2845 sizeof(compat_log))) 2846 goto out; 2847 log.slot = compat_log.slot; 2848 log.padding1 = compat_log.padding1; 2849 log.padding2 = compat_log.padding2; 2850 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2851 2852 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2853 break; 2854 } 2855 default: 2856 r = kvm_vm_ioctl(filp, ioctl, arg); 2857 } 2858 2859 out: 2860 return r; 2861 } 2862 #endif 2863 2864 static struct file_operations kvm_vm_fops = { 2865 .release = kvm_vm_release, 2866 .unlocked_ioctl = kvm_vm_ioctl, 2867 #ifdef CONFIG_KVM_COMPAT 2868 .compat_ioctl = kvm_vm_compat_ioctl, 2869 #endif 2870 .llseek = noop_llseek, 2871 }; 2872 2873 static int kvm_dev_ioctl_create_vm(unsigned long type) 2874 { 2875 int r; 2876 struct kvm *kvm; 2877 2878 kvm = kvm_create_vm(type); 2879 if (IS_ERR(kvm)) 2880 return PTR_ERR(kvm); 2881 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2882 r = kvm_coalesced_mmio_init(kvm); 2883 if (r < 0) { 2884 kvm_put_kvm(kvm); 2885 return r; 2886 } 2887 #endif 2888 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2889 if (r < 0) 2890 kvm_put_kvm(kvm); 2891 2892 return r; 2893 } 2894 2895 static long kvm_dev_ioctl(struct file *filp, 2896 unsigned int ioctl, unsigned long arg) 2897 { 2898 long r = -EINVAL; 2899 2900 switch (ioctl) { 2901 case KVM_GET_API_VERSION: 2902 if (arg) 2903 goto out; 2904 r = KVM_API_VERSION; 2905 break; 2906 case KVM_CREATE_VM: 2907 r = kvm_dev_ioctl_create_vm(arg); 2908 break; 2909 case KVM_CHECK_EXTENSION: 2910 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2911 break; 2912 case KVM_GET_VCPU_MMAP_SIZE: 2913 if (arg) 2914 goto out; 2915 r = PAGE_SIZE; /* struct kvm_run */ 2916 #ifdef CONFIG_X86 2917 r += PAGE_SIZE; /* pio data page */ 2918 #endif 2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2920 r += PAGE_SIZE; /* coalesced mmio ring page */ 2921 #endif 2922 break; 2923 case KVM_TRACE_ENABLE: 2924 case KVM_TRACE_PAUSE: 2925 case KVM_TRACE_DISABLE: 2926 r = -EOPNOTSUPP; 2927 break; 2928 default: 2929 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2930 } 2931 out: 2932 return r; 2933 } 2934 2935 static struct file_operations kvm_chardev_ops = { 2936 .unlocked_ioctl = kvm_dev_ioctl, 2937 .compat_ioctl = kvm_dev_ioctl, 2938 .llseek = noop_llseek, 2939 }; 2940 2941 static struct miscdevice kvm_dev = { 2942 KVM_MINOR, 2943 "kvm", 2944 &kvm_chardev_ops, 2945 }; 2946 2947 static void hardware_enable_nolock(void *junk) 2948 { 2949 int cpu = raw_smp_processor_id(); 2950 int r; 2951 2952 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2953 return; 2954 2955 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2956 2957 r = kvm_arch_hardware_enable(); 2958 2959 if (r) { 2960 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2961 atomic_inc(&hardware_enable_failed); 2962 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 2963 } 2964 } 2965 2966 static void hardware_enable(void) 2967 { 2968 raw_spin_lock(&kvm_count_lock); 2969 if (kvm_usage_count) 2970 hardware_enable_nolock(NULL); 2971 raw_spin_unlock(&kvm_count_lock); 2972 } 2973 2974 static void hardware_disable_nolock(void *junk) 2975 { 2976 int cpu = raw_smp_processor_id(); 2977 2978 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2979 return; 2980 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2981 kvm_arch_hardware_disable(); 2982 } 2983 2984 static void hardware_disable(void) 2985 { 2986 raw_spin_lock(&kvm_count_lock); 2987 if (kvm_usage_count) 2988 hardware_disable_nolock(NULL); 2989 raw_spin_unlock(&kvm_count_lock); 2990 } 2991 2992 static void hardware_disable_all_nolock(void) 2993 { 2994 BUG_ON(!kvm_usage_count); 2995 2996 kvm_usage_count--; 2997 if (!kvm_usage_count) 2998 on_each_cpu(hardware_disable_nolock, NULL, 1); 2999 } 3000 3001 static void hardware_disable_all(void) 3002 { 3003 raw_spin_lock(&kvm_count_lock); 3004 hardware_disable_all_nolock(); 3005 raw_spin_unlock(&kvm_count_lock); 3006 } 3007 3008 static int hardware_enable_all(void) 3009 { 3010 int r = 0; 3011 3012 raw_spin_lock(&kvm_count_lock); 3013 3014 kvm_usage_count++; 3015 if (kvm_usage_count == 1) { 3016 atomic_set(&hardware_enable_failed, 0); 3017 on_each_cpu(hardware_enable_nolock, NULL, 1); 3018 3019 if (atomic_read(&hardware_enable_failed)) { 3020 hardware_disable_all_nolock(); 3021 r = -EBUSY; 3022 } 3023 } 3024 3025 raw_spin_unlock(&kvm_count_lock); 3026 3027 return r; 3028 } 3029 3030 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 3031 void *v) 3032 { 3033 val &= ~CPU_TASKS_FROZEN; 3034 switch (val) { 3035 case CPU_DYING: 3036 hardware_disable(); 3037 break; 3038 case CPU_STARTING: 3039 hardware_enable(); 3040 break; 3041 } 3042 return NOTIFY_OK; 3043 } 3044 3045 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3046 void *v) 3047 { 3048 /* 3049 * Some (well, at least mine) BIOSes hang on reboot if 3050 * in vmx root mode. 3051 * 3052 * And Intel TXT required VMX off for all cpu when system shutdown. 3053 */ 3054 pr_info("kvm: exiting hardware virtualization\n"); 3055 kvm_rebooting = true; 3056 on_each_cpu(hardware_disable_nolock, NULL, 1); 3057 return NOTIFY_OK; 3058 } 3059 3060 static struct notifier_block kvm_reboot_notifier = { 3061 .notifier_call = kvm_reboot, 3062 .priority = 0, 3063 }; 3064 3065 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3066 { 3067 int i; 3068 3069 for (i = 0; i < bus->dev_count; i++) { 3070 struct kvm_io_device *pos = bus->range[i].dev; 3071 3072 kvm_iodevice_destructor(pos); 3073 } 3074 kfree(bus); 3075 } 3076 3077 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3078 const struct kvm_io_range *r2) 3079 { 3080 if (r1->addr < r2->addr) 3081 return -1; 3082 if (r1->addr + r1->len > r2->addr + r2->len) 3083 return 1; 3084 return 0; 3085 } 3086 3087 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3088 { 3089 return kvm_io_bus_cmp(p1, p2); 3090 } 3091 3092 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3093 gpa_t addr, int len) 3094 { 3095 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3096 .addr = addr, 3097 .len = len, 3098 .dev = dev, 3099 }; 3100 3101 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3102 kvm_io_bus_sort_cmp, NULL); 3103 3104 return 0; 3105 } 3106 3107 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3108 gpa_t addr, int len) 3109 { 3110 struct kvm_io_range *range, key; 3111 int off; 3112 3113 key = (struct kvm_io_range) { 3114 .addr = addr, 3115 .len = len, 3116 }; 3117 3118 range = bsearch(&key, bus->range, bus->dev_count, 3119 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3120 if (range == NULL) 3121 return -ENOENT; 3122 3123 off = range - bus->range; 3124 3125 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3126 off--; 3127 3128 return off; 3129 } 3130 3131 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3132 struct kvm_io_range *range, const void *val) 3133 { 3134 int idx; 3135 3136 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3137 if (idx < 0) 3138 return -EOPNOTSUPP; 3139 3140 while (idx < bus->dev_count && 3141 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3142 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3143 range->len, val)) 3144 return idx; 3145 idx++; 3146 } 3147 3148 return -EOPNOTSUPP; 3149 } 3150 3151 /* kvm_io_bus_write - called under kvm->slots_lock */ 3152 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3153 int len, const void *val) 3154 { 3155 struct kvm_io_bus *bus; 3156 struct kvm_io_range range; 3157 int r; 3158 3159 range = (struct kvm_io_range) { 3160 .addr = addr, 3161 .len = len, 3162 }; 3163 3164 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3165 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3166 return r < 0 ? r : 0; 3167 } 3168 3169 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3171 gpa_t addr, int len, const void *val, long cookie) 3172 { 3173 struct kvm_io_bus *bus; 3174 struct kvm_io_range range; 3175 3176 range = (struct kvm_io_range) { 3177 .addr = addr, 3178 .len = len, 3179 }; 3180 3181 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3182 3183 /* First try the device referenced by cookie. */ 3184 if ((cookie >= 0) && (cookie < bus->dev_count) && 3185 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3186 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3187 val)) 3188 return cookie; 3189 3190 /* 3191 * cookie contained garbage; fall back to search and return the 3192 * correct cookie value. 3193 */ 3194 return __kvm_io_bus_write(vcpu, bus, &range, val); 3195 } 3196 3197 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3198 struct kvm_io_range *range, void *val) 3199 { 3200 int idx; 3201 3202 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3203 if (idx < 0) 3204 return -EOPNOTSUPP; 3205 3206 while (idx < bus->dev_count && 3207 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3208 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3209 range->len, val)) 3210 return idx; 3211 idx++; 3212 } 3213 3214 return -EOPNOTSUPP; 3215 } 3216 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3217 3218 /* kvm_io_bus_read - called under kvm->slots_lock */ 3219 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3220 int len, void *val) 3221 { 3222 struct kvm_io_bus *bus; 3223 struct kvm_io_range range; 3224 int r; 3225 3226 range = (struct kvm_io_range) { 3227 .addr = addr, 3228 .len = len, 3229 }; 3230 3231 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3232 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3233 return r < 0 ? r : 0; 3234 } 3235 3236 3237 /* Caller must hold slots_lock. */ 3238 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3239 int len, struct kvm_io_device *dev) 3240 { 3241 struct kvm_io_bus *new_bus, *bus; 3242 3243 bus = kvm->buses[bus_idx]; 3244 /* exclude ioeventfd which is limited by maximum fd */ 3245 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3246 return -ENOSPC; 3247 3248 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3249 sizeof(struct kvm_io_range)), GFP_KERNEL); 3250 if (!new_bus) 3251 return -ENOMEM; 3252 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3253 sizeof(struct kvm_io_range))); 3254 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3255 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3256 synchronize_srcu_expedited(&kvm->srcu); 3257 kfree(bus); 3258 3259 return 0; 3260 } 3261 3262 /* Caller must hold slots_lock. */ 3263 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3264 struct kvm_io_device *dev) 3265 { 3266 int i, r; 3267 struct kvm_io_bus *new_bus, *bus; 3268 3269 bus = kvm->buses[bus_idx]; 3270 r = -ENOENT; 3271 for (i = 0; i < bus->dev_count; i++) 3272 if (bus->range[i].dev == dev) { 3273 r = 0; 3274 break; 3275 } 3276 3277 if (r) 3278 return r; 3279 3280 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3281 sizeof(struct kvm_io_range)), GFP_KERNEL); 3282 if (!new_bus) 3283 return -ENOMEM; 3284 3285 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3286 new_bus->dev_count--; 3287 memcpy(new_bus->range + i, bus->range + i + 1, 3288 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3289 3290 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3291 synchronize_srcu_expedited(&kvm->srcu); 3292 kfree(bus); 3293 return r; 3294 } 3295 3296 static struct notifier_block kvm_cpu_notifier = { 3297 .notifier_call = kvm_cpu_hotplug, 3298 }; 3299 3300 static int vm_stat_get(void *_offset, u64 *val) 3301 { 3302 unsigned offset = (long)_offset; 3303 struct kvm *kvm; 3304 3305 *val = 0; 3306 spin_lock(&kvm_lock); 3307 list_for_each_entry(kvm, &vm_list, vm_list) 3308 *val += *(u32 *)((void *)kvm + offset); 3309 spin_unlock(&kvm_lock); 3310 return 0; 3311 } 3312 3313 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3314 3315 static int vcpu_stat_get(void *_offset, u64 *val) 3316 { 3317 unsigned offset = (long)_offset; 3318 struct kvm *kvm; 3319 struct kvm_vcpu *vcpu; 3320 int i; 3321 3322 *val = 0; 3323 spin_lock(&kvm_lock); 3324 list_for_each_entry(kvm, &vm_list, vm_list) 3325 kvm_for_each_vcpu(i, vcpu, kvm) 3326 *val += *(u32 *)((void *)vcpu + offset); 3327 3328 spin_unlock(&kvm_lock); 3329 return 0; 3330 } 3331 3332 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3333 3334 static const struct file_operations *stat_fops[] = { 3335 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3336 [KVM_STAT_VM] = &vm_stat_fops, 3337 }; 3338 3339 static int kvm_init_debug(void) 3340 { 3341 int r = -EEXIST; 3342 struct kvm_stats_debugfs_item *p; 3343 3344 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3345 if (kvm_debugfs_dir == NULL) 3346 goto out; 3347 3348 for (p = debugfs_entries; p->name; ++p) { 3349 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3350 (void *)(long)p->offset, 3351 stat_fops[p->kind]); 3352 if (p->dentry == NULL) 3353 goto out_dir; 3354 } 3355 3356 return 0; 3357 3358 out_dir: 3359 debugfs_remove_recursive(kvm_debugfs_dir); 3360 out: 3361 return r; 3362 } 3363 3364 static void kvm_exit_debug(void) 3365 { 3366 struct kvm_stats_debugfs_item *p; 3367 3368 for (p = debugfs_entries; p->name; ++p) 3369 debugfs_remove(p->dentry); 3370 debugfs_remove(kvm_debugfs_dir); 3371 } 3372 3373 static int kvm_suspend(void) 3374 { 3375 if (kvm_usage_count) 3376 hardware_disable_nolock(NULL); 3377 return 0; 3378 } 3379 3380 static void kvm_resume(void) 3381 { 3382 if (kvm_usage_count) { 3383 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3384 hardware_enable_nolock(NULL); 3385 } 3386 } 3387 3388 static struct syscore_ops kvm_syscore_ops = { 3389 .suspend = kvm_suspend, 3390 .resume = kvm_resume, 3391 }; 3392 3393 static inline 3394 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3395 { 3396 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3397 } 3398 3399 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3400 { 3401 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3402 3403 if (vcpu->preempted) 3404 vcpu->preempted = false; 3405 3406 kvm_arch_sched_in(vcpu, cpu); 3407 3408 kvm_arch_vcpu_load(vcpu, cpu); 3409 } 3410 3411 static void kvm_sched_out(struct preempt_notifier *pn, 3412 struct task_struct *next) 3413 { 3414 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3415 3416 if (current->state == TASK_RUNNING) 3417 vcpu->preempted = true; 3418 kvm_arch_vcpu_put(vcpu); 3419 } 3420 3421 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3422 struct module *module) 3423 { 3424 int r; 3425 int cpu; 3426 3427 r = kvm_arch_init(opaque); 3428 if (r) 3429 goto out_fail; 3430 3431 /* 3432 * kvm_arch_init makes sure there's at most one caller 3433 * for architectures that support multiple implementations, 3434 * like intel and amd on x86. 3435 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3436 * conflicts in case kvm is already setup for another implementation. 3437 */ 3438 r = kvm_irqfd_init(); 3439 if (r) 3440 goto out_irqfd; 3441 3442 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3443 r = -ENOMEM; 3444 goto out_free_0; 3445 } 3446 3447 r = kvm_arch_hardware_setup(); 3448 if (r < 0) 3449 goto out_free_0a; 3450 3451 for_each_online_cpu(cpu) { 3452 smp_call_function_single(cpu, 3453 kvm_arch_check_processor_compat, 3454 &r, 1); 3455 if (r < 0) 3456 goto out_free_1; 3457 } 3458 3459 r = register_cpu_notifier(&kvm_cpu_notifier); 3460 if (r) 3461 goto out_free_2; 3462 register_reboot_notifier(&kvm_reboot_notifier); 3463 3464 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3465 if (!vcpu_align) 3466 vcpu_align = __alignof__(struct kvm_vcpu); 3467 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3468 0, NULL); 3469 if (!kvm_vcpu_cache) { 3470 r = -ENOMEM; 3471 goto out_free_3; 3472 } 3473 3474 r = kvm_async_pf_init(); 3475 if (r) 3476 goto out_free; 3477 3478 kvm_chardev_ops.owner = module; 3479 kvm_vm_fops.owner = module; 3480 kvm_vcpu_fops.owner = module; 3481 3482 r = misc_register(&kvm_dev); 3483 if (r) { 3484 pr_err("kvm: misc device register failed\n"); 3485 goto out_unreg; 3486 } 3487 3488 register_syscore_ops(&kvm_syscore_ops); 3489 3490 kvm_preempt_ops.sched_in = kvm_sched_in; 3491 kvm_preempt_ops.sched_out = kvm_sched_out; 3492 3493 r = kvm_init_debug(); 3494 if (r) { 3495 pr_err("kvm: create debugfs files failed\n"); 3496 goto out_undebugfs; 3497 } 3498 3499 r = kvm_vfio_ops_init(); 3500 WARN_ON(r); 3501 3502 return 0; 3503 3504 out_undebugfs: 3505 unregister_syscore_ops(&kvm_syscore_ops); 3506 misc_deregister(&kvm_dev); 3507 out_unreg: 3508 kvm_async_pf_deinit(); 3509 out_free: 3510 kmem_cache_destroy(kvm_vcpu_cache); 3511 out_free_3: 3512 unregister_reboot_notifier(&kvm_reboot_notifier); 3513 unregister_cpu_notifier(&kvm_cpu_notifier); 3514 out_free_2: 3515 out_free_1: 3516 kvm_arch_hardware_unsetup(); 3517 out_free_0a: 3518 free_cpumask_var(cpus_hardware_enabled); 3519 out_free_0: 3520 kvm_irqfd_exit(); 3521 out_irqfd: 3522 kvm_arch_exit(); 3523 out_fail: 3524 return r; 3525 } 3526 EXPORT_SYMBOL_GPL(kvm_init); 3527 3528 void kvm_exit(void) 3529 { 3530 kvm_exit_debug(); 3531 misc_deregister(&kvm_dev); 3532 kmem_cache_destroy(kvm_vcpu_cache); 3533 kvm_async_pf_deinit(); 3534 unregister_syscore_ops(&kvm_syscore_ops); 3535 unregister_reboot_notifier(&kvm_reboot_notifier); 3536 unregister_cpu_notifier(&kvm_cpu_notifier); 3537 on_each_cpu(hardware_disable_nolock, NULL, 1); 3538 kvm_arch_hardware_unsetup(); 3539 kvm_arch_exit(); 3540 kvm_irqfd_exit(); 3541 free_cpumask_var(cpus_hardware_enabled); 3542 kvm_vfio_ops_exit(); 3543 } 3544 EXPORT_SYMBOL_GPL(kvm_exit); 3545