xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 45471cd98decae5fced8b38e46c223f54a924814)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71 
72 /*
73  * Ordering of locks:
74  *
75  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77 
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81 
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85 
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88 
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90 
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93 
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 			   unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 				  unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102 
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104 
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107 
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110 
111 static bool largepages_enabled = true;
112 
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 	if (pfn_valid(pfn))
116 		return PageReserved(pfn_to_page(pfn));
117 
118 	return true;
119 }
120 
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 	int cpu;
127 
128 	if (mutex_lock_killable(&vcpu->mutex))
129 		return -EINTR;
130 	cpu = get_cpu();
131 	preempt_notifier_register(&vcpu->preempt_notifier);
132 	kvm_arch_vcpu_load(vcpu, cpu);
133 	put_cpu();
134 	return 0;
135 }
136 
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 	preempt_disable();
140 	kvm_arch_vcpu_put(vcpu);
141 	preempt_notifier_unregister(&vcpu->preempt_notifier);
142 	preempt_enable();
143 	mutex_unlock(&vcpu->mutex);
144 }
145 
146 static void ack_flush(void *_completed)
147 {
148 }
149 
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 	int i, cpu, me;
153 	cpumask_var_t cpus;
154 	bool called = true;
155 	struct kvm_vcpu *vcpu;
156 
157 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 
159 	me = get_cpu();
160 	kvm_for_each_vcpu(i, vcpu, kvm) {
161 		kvm_make_request(req, vcpu);
162 		cpu = vcpu->cpu;
163 
164 		/* Set ->requests bit before we read ->mode */
165 		smp_mb();
166 
167 		if (cpus != NULL && cpu != -1 && cpu != me &&
168 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 			cpumask_set_cpu(cpu, cpus);
170 	}
171 	if (unlikely(cpus == NULL))
172 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 	else if (!cpumask_empty(cpus))
174 		smp_call_function_many(cpus, ack_flush, NULL, 1);
175 	else
176 		called = false;
177 	put_cpu();
178 	free_cpumask_var(cpus);
179 	return called;
180 }
181 
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 	long dirty_count = kvm->tlbs_dirty;
186 
187 	smp_mb();
188 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 		++kvm->stat.remote_tlb_flush;
190 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194 
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199 
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204 
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209 
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 	struct page *page;
213 	int r;
214 
215 	mutex_init(&vcpu->mutex);
216 	vcpu->cpu = -1;
217 	vcpu->kvm = kvm;
218 	vcpu->vcpu_id = id;
219 	vcpu->pid = NULL;
220 	init_waitqueue_head(&vcpu->wq);
221 	kvm_async_pf_vcpu_init(vcpu);
222 
223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 	if (!page) {
225 		r = -ENOMEM;
226 		goto fail;
227 	}
228 	vcpu->run = page_address(page);
229 
230 	kvm_vcpu_set_in_spin_loop(vcpu, false);
231 	kvm_vcpu_set_dy_eligible(vcpu, false);
232 	vcpu->preempted = false;
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 
288 	kvm->mmu_notifier_seq++;
289 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 
294 	spin_unlock(&kvm->mmu_lock);
295 
296 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297 
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long start,
372 					      unsigned long end)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 
380 	young = kvm_age_hva(kvm, start, end);
381 	if (young)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 	srcu_read_unlock(&kvm->srcu, idx);
386 
387 	return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 				       struct mm_struct *mm,
392 				       unsigned long address)
393 {
394 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 	int young, idx;
396 
397 	idx = srcu_read_lock(&kvm->srcu);
398 	spin_lock(&kvm->mmu_lock);
399 	young = kvm_test_age_hva(kvm, address);
400 	spin_unlock(&kvm->mmu_lock);
401 	srcu_read_unlock(&kvm->srcu, idx);
402 
403 	return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 				     struct mm_struct *mm)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	kvm_arch_flush_shadow_all(kvm);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
419 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
420 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
421 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
422 	.test_young		= kvm_mmu_notifier_test_young,
423 	.change_pte		= kvm_mmu_notifier_change_pte,
424 	.release		= kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 	return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static struct kvm_memslots *kvm_alloc_memslots(void)
443 {
444 	int i;
445 	struct kvm_memslots *slots;
446 
447 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
448 	if (!slots)
449 		return NULL;
450 
451 	/*
452 	 * Init kvm generation close to the maximum to easily test the
453 	 * code of handling generation number wrap-around.
454 	 */
455 	slots->generation = -150;
456 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457 		slots->id_to_index[i] = slots->memslots[i].id = i;
458 
459 	return slots;
460 }
461 
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
463 {
464 	if (!memslot->dirty_bitmap)
465 		return;
466 
467 	kvfree(memslot->dirty_bitmap);
468 	memslot->dirty_bitmap = NULL;
469 }
470 
471 /*
472  * Free any memory in @free but not in @dont.
473  */
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475 			      struct kvm_memory_slot *dont)
476 {
477 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478 		kvm_destroy_dirty_bitmap(free);
479 
480 	kvm_arch_free_memslot(kvm, free, dont);
481 
482 	free->npages = 0;
483 }
484 
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
486 {
487 	struct kvm_memory_slot *memslot;
488 
489 	if (!slots)
490 		return;
491 
492 	kvm_for_each_memslot(memslot, slots)
493 		kvm_free_memslot(kvm, memslot, NULL);
494 
495 	kvfree(slots);
496 }
497 
498 static struct kvm *kvm_create_vm(unsigned long type)
499 {
500 	int r, i;
501 	struct kvm *kvm = kvm_arch_alloc_vm();
502 
503 	if (!kvm)
504 		return ERR_PTR(-ENOMEM);
505 
506 	r = kvm_arch_init_vm(kvm, type);
507 	if (r)
508 		goto out_err_no_disable;
509 
510 	r = hardware_enable_all();
511 	if (r)
512 		goto out_err_no_disable;
513 
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
516 #endif
517 
518 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
519 
520 	r = -ENOMEM;
521 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522 		kvm->memslots[i] = kvm_alloc_memslots();
523 		if (!kvm->memslots[i])
524 			goto out_err_no_srcu;
525 	}
526 
527 	if (init_srcu_struct(&kvm->srcu))
528 		goto out_err_no_srcu;
529 	if (init_srcu_struct(&kvm->irq_srcu))
530 		goto out_err_no_irq_srcu;
531 	for (i = 0; i < KVM_NR_BUSES; i++) {
532 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
533 					GFP_KERNEL);
534 		if (!kvm->buses[i])
535 			goto out_err;
536 	}
537 
538 	spin_lock_init(&kvm->mmu_lock);
539 	kvm->mm = current->mm;
540 	atomic_inc(&kvm->mm->mm_count);
541 	kvm_eventfd_init(kvm);
542 	mutex_init(&kvm->lock);
543 	mutex_init(&kvm->irq_lock);
544 	mutex_init(&kvm->slots_lock);
545 	atomic_set(&kvm->users_count, 1);
546 	INIT_LIST_HEAD(&kvm->devices);
547 
548 	r = kvm_init_mmu_notifier(kvm);
549 	if (r)
550 		goto out_err;
551 
552 	spin_lock(&kvm_lock);
553 	list_add(&kvm->vm_list, &vm_list);
554 	spin_unlock(&kvm_lock);
555 
556 	return kvm;
557 
558 out_err:
559 	cleanup_srcu_struct(&kvm->irq_srcu);
560 out_err_no_irq_srcu:
561 	cleanup_srcu_struct(&kvm->srcu);
562 out_err_no_srcu:
563 	hardware_disable_all();
564 out_err_no_disable:
565 	for (i = 0; i < KVM_NR_BUSES; i++)
566 		kfree(kvm->buses[i]);
567 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
568 		kvm_free_memslots(kvm, kvm->memslots[i]);
569 	kvm_arch_free_vm(kvm);
570 	return ERR_PTR(r);
571 }
572 
573 /*
574  * Avoid using vmalloc for a small buffer.
575  * Should not be used when the size is statically known.
576  */
577 void *kvm_kvzalloc(unsigned long size)
578 {
579 	if (size > PAGE_SIZE)
580 		return vzalloc(size);
581 	else
582 		return kzalloc(size, GFP_KERNEL);
583 }
584 
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587 	struct list_head *node, *tmp;
588 
589 	list_for_each_safe(node, tmp, &kvm->devices) {
590 		struct kvm_device *dev =
591 			list_entry(node, struct kvm_device, vm_node);
592 
593 		list_del(node);
594 		dev->ops->destroy(dev);
595 	}
596 }
597 
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600 	int i;
601 	struct mm_struct *mm = kvm->mm;
602 
603 	kvm_arch_sync_events(kvm);
604 	spin_lock(&kvm_lock);
605 	list_del(&kvm->vm_list);
606 	spin_unlock(&kvm_lock);
607 	kvm_free_irq_routing(kvm);
608 	for (i = 0; i < KVM_NR_BUSES; i++)
609 		kvm_io_bus_destroy(kvm->buses[i]);
610 	kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614 	kvm_arch_flush_shadow_all(kvm);
615 #endif
616 	kvm_arch_destroy_vm(kvm);
617 	kvm_destroy_devices(kvm);
618 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
619 		kvm_free_memslots(kvm, kvm->memslots[i]);
620 	cleanup_srcu_struct(&kvm->irq_srcu);
621 	cleanup_srcu_struct(&kvm->srcu);
622 	kvm_arch_free_vm(kvm);
623 	hardware_disable_all();
624 	mmdrop(mm);
625 }
626 
627 void kvm_get_kvm(struct kvm *kvm)
628 {
629 	atomic_inc(&kvm->users_count);
630 }
631 EXPORT_SYMBOL_GPL(kvm_get_kvm);
632 
633 void kvm_put_kvm(struct kvm *kvm)
634 {
635 	if (atomic_dec_and_test(&kvm->users_count))
636 		kvm_destroy_vm(kvm);
637 }
638 EXPORT_SYMBOL_GPL(kvm_put_kvm);
639 
640 
641 static int kvm_vm_release(struct inode *inode, struct file *filp)
642 {
643 	struct kvm *kvm = filp->private_data;
644 
645 	kvm_irqfd_release(kvm);
646 
647 	kvm_put_kvm(kvm);
648 	return 0;
649 }
650 
651 /*
652  * Allocation size is twice as large as the actual dirty bitmap size.
653  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
654  */
655 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
656 {
657 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
658 
659 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
660 	if (!memslot->dirty_bitmap)
661 		return -ENOMEM;
662 
663 	return 0;
664 }
665 
666 /*
667  * Insert memslot and re-sort memslots based on their GFN,
668  * so binary search could be used to lookup GFN.
669  * Sorting algorithm takes advantage of having initially
670  * sorted array and known changed memslot position.
671  */
672 static void update_memslots(struct kvm_memslots *slots,
673 			    struct kvm_memory_slot *new)
674 {
675 	int id = new->id;
676 	int i = slots->id_to_index[id];
677 	struct kvm_memory_slot *mslots = slots->memslots;
678 
679 	WARN_ON(mslots[i].id != id);
680 	if (!new->npages) {
681 		WARN_ON(!mslots[i].npages);
682 		if (mslots[i].npages)
683 			slots->used_slots--;
684 	} else {
685 		if (!mslots[i].npages)
686 			slots->used_slots++;
687 	}
688 
689 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
690 	       new->base_gfn <= mslots[i + 1].base_gfn) {
691 		if (!mslots[i + 1].npages)
692 			break;
693 		mslots[i] = mslots[i + 1];
694 		slots->id_to_index[mslots[i].id] = i;
695 		i++;
696 	}
697 
698 	/*
699 	 * The ">=" is needed when creating a slot with base_gfn == 0,
700 	 * so that it moves before all those with base_gfn == npages == 0.
701 	 *
702 	 * On the other hand, if new->npages is zero, the above loop has
703 	 * already left i pointing to the beginning of the empty part of
704 	 * mslots, and the ">=" would move the hole backwards in this
705 	 * case---which is wrong.  So skip the loop when deleting a slot.
706 	 */
707 	if (new->npages) {
708 		while (i > 0 &&
709 		       new->base_gfn >= mslots[i - 1].base_gfn) {
710 			mslots[i] = mslots[i - 1];
711 			slots->id_to_index[mslots[i].id] = i;
712 			i--;
713 		}
714 	} else
715 		WARN_ON_ONCE(i != slots->used_slots);
716 
717 	mslots[i] = *new;
718 	slots->id_to_index[mslots[i].id] = i;
719 }
720 
721 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
722 {
723 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
724 
725 #ifdef __KVM_HAVE_READONLY_MEM
726 	valid_flags |= KVM_MEM_READONLY;
727 #endif
728 
729 	if (mem->flags & ~valid_flags)
730 		return -EINVAL;
731 
732 	return 0;
733 }
734 
735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
736 		int as_id, struct kvm_memslots *slots)
737 {
738 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
739 
740 	/*
741 	 * Set the low bit in the generation, which disables SPTE caching
742 	 * until the end of synchronize_srcu_expedited.
743 	 */
744 	WARN_ON(old_memslots->generation & 1);
745 	slots->generation = old_memslots->generation + 1;
746 
747 	rcu_assign_pointer(kvm->memslots[as_id], slots);
748 	synchronize_srcu_expedited(&kvm->srcu);
749 
750 	/*
751 	 * Increment the new memslot generation a second time. This prevents
752 	 * vm exits that race with memslot updates from caching a memslot
753 	 * generation that will (potentially) be valid forever.
754 	 */
755 	slots->generation++;
756 
757 	kvm_arch_memslots_updated(kvm, slots);
758 
759 	return old_memslots;
760 }
761 
762 /*
763  * Allocate some memory and give it an address in the guest physical address
764  * space.
765  *
766  * Discontiguous memory is allowed, mostly for framebuffers.
767  *
768  * Must be called holding kvm->slots_lock for write.
769  */
770 int __kvm_set_memory_region(struct kvm *kvm,
771 			    const struct kvm_userspace_memory_region *mem)
772 {
773 	int r;
774 	gfn_t base_gfn;
775 	unsigned long npages;
776 	struct kvm_memory_slot *slot;
777 	struct kvm_memory_slot old, new;
778 	struct kvm_memslots *slots = NULL, *old_memslots;
779 	int as_id, id;
780 	enum kvm_mr_change change;
781 
782 	r = check_memory_region_flags(mem);
783 	if (r)
784 		goto out;
785 
786 	r = -EINVAL;
787 	as_id = mem->slot >> 16;
788 	id = (u16)mem->slot;
789 
790 	/* General sanity checks */
791 	if (mem->memory_size & (PAGE_SIZE - 1))
792 		goto out;
793 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
794 		goto out;
795 	/* We can read the guest memory with __xxx_user() later on. */
796 	if ((id < KVM_USER_MEM_SLOTS) &&
797 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
798 	     !access_ok(VERIFY_WRITE,
799 			(void __user *)(unsigned long)mem->userspace_addr,
800 			mem->memory_size)))
801 		goto out;
802 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
803 		goto out;
804 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
805 		goto out;
806 
807 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
808 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
809 	npages = mem->memory_size >> PAGE_SHIFT;
810 
811 	if (npages > KVM_MEM_MAX_NR_PAGES)
812 		goto out;
813 
814 	new = old = *slot;
815 
816 	new.id = id;
817 	new.base_gfn = base_gfn;
818 	new.npages = npages;
819 	new.flags = mem->flags;
820 
821 	if (npages) {
822 		if (!old.npages)
823 			change = KVM_MR_CREATE;
824 		else { /* Modify an existing slot. */
825 			if ((mem->userspace_addr != old.userspace_addr) ||
826 			    (npages != old.npages) ||
827 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
828 				goto out;
829 
830 			if (base_gfn != old.base_gfn)
831 				change = KVM_MR_MOVE;
832 			else if (new.flags != old.flags)
833 				change = KVM_MR_FLAGS_ONLY;
834 			else { /* Nothing to change. */
835 				r = 0;
836 				goto out;
837 			}
838 		}
839 	} else {
840 		if (!old.npages)
841 			goto out;
842 
843 		change = KVM_MR_DELETE;
844 		new.base_gfn = 0;
845 		new.flags = 0;
846 	}
847 
848 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
849 		/* Check for overlaps */
850 		r = -EEXIST;
851 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
852 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
853 			    (slot->id == id))
854 				continue;
855 			if (!((base_gfn + npages <= slot->base_gfn) ||
856 			      (base_gfn >= slot->base_gfn + slot->npages)))
857 				goto out;
858 		}
859 	}
860 
861 	/* Free page dirty bitmap if unneeded */
862 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
863 		new.dirty_bitmap = NULL;
864 
865 	r = -ENOMEM;
866 	if (change == KVM_MR_CREATE) {
867 		new.userspace_addr = mem->userspace_addr;
868 
869 		if (kvm_arch_create_memslot(kvm, &new, npages))
870 			goto out_free;
871 	}
872 
873 	/* Allocate page dirty bitmap if needed */
874 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
875 		if (kvm_create_dirty_bitmap(&new) < 0)
876 			goto out_free;
877 	}
878 
879 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
880 	if (!slots)
881 		goto out_free;
882 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
883 
884 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
885 		slot = id_to_memslot(slots, id);
886 		slot->flags |= KVM_MEMSLOT_INVALID;
887 
888 		old_memslots = install_new_memslots(kvm, as_id, slots);
889 
890 		/* slot was deleted or moved, clear iommu mapping */
891 		kvm_iommu_unmap_pages(kvm, &old);
892 		/* From this point no new shadow pages pointing to a deleted,
893 		 * or moved, memslot will be created.
894 		 *
895 		 * validation of sp->gfn happens in:
896 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
897 		 *	- kvm_is_visible_gfn (mmu_check_roots)
898 		 */
899 		kvm_arch_flush_shadow_memslot(kvm, slot);
900 
901 		/*
902 		 * We can re-use the old_memslots from above, the only difference
903 		 * from the currently installed memslots is the invalid flag.  This
904 		 * will get overwritten by update_memslots anyway.
905 		 */
906 		slots = old_memslots;
907 	}
908 
909 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
910 	if (r)
911 		goto out_slots;
912 
913 	/* actual memory is freed via old in kvm_free_memslot below */
914 	if (change == KVM_MR_DELETE) {
915 		new.dirty_bitmap = NULL;
916 		memset(&new.arch, 0, sizeof(new.arch));
917 	}
918 
919 	update_memslots(slots, &new);
920 	old_memslots = install_new_memslots(kvm, as_id, slots);
921 
922 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
923 
924 	kvm_free_memslot(kvm, &old, &new);
925 	kvfree(old_memslots);
926 
927 	/*
928 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
929 	 * un-mapped and re-mapped if their base changes.  Since base change
930 	 * unmapping is handled above with slot deletion, mapping alone is
931 	 * needed here.  Anything else the iommu might care about for existing
932 	 * slots (size changes, userspace addr changes and read-only flag
933 	 * changes) is disallowed above, so any other attribute changes getting
934 	 * here can be skipped.
935 	 */
936 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
937 		r = kvm_iommu_map_pages(kvm, &new);
938 		return r;
939 	}
940 
941 	return 0;
942 
943 out_slots:
944 	kvfree(slots);
945 out_free:
946 	kvm_free_memslot(kvm, &new, &old);
947 out:
948 	return r;
949 }
950 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
951 
952 int kvm_set_memory_region(struct kvm *kvm,
953 			  const struct kvm_userspace_memory_region *mem)
954 {
955 	int r;
956 
957 	mutex_lock(&kvm->slots_lock);
958 	r = __kvm_set_memory_region(kvm, mem);
959 	mutex_unlock(&kvm->slots_lock);
960 	return r;
961 }
962 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
963 
964 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
965 					  struct kvm_userspace_memory_region *mem)
966 {
967 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
968 		return -EINVAL;
969 
970 	return kvm_set_memory_region(kvm, mem);
971 }
972 
973 int kvm_get_dirty_log(struct kvm *kvm,
974 			struct kvm_dirty_log *log, int *is_dirty)
975 {
976 	struct kvm_memslots *slots;
977 	struct kvm_memory_slot *memslot;
978 	int r, i, as_id, id;
979 	unsigned long n;
980 	unsigned long any = 0;
981 
982 	r = -EINVAL;
983 	as_id = log->slot >> 16;
984 	id = (u16)log->slot;
985 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
986 		goto out;
987 
988 	slots = __kvm_memslots(kvm, as_id);
989 	memslot = id_to_memslot(slots, id);
990 	r = -ENOENT;
991 	if (!memslot->dirty_bitmap)
992 		goto out;
993 
994 	n = kvm_dirty_bitmap_bytes(memslot);
995 
996 	for (i = 0; !any && i < n/sizeof(long); ++i)
997 		any = memslot->dirty_bitmap[i];
998 
999 	r = -EFAULT;
1000 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1001 		goto out;
1002 
1003 	if (any)
1004 		*is_dirty = 1;
1005 
1006 	r = 0;
1007 out:
1008 	return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1011 
1012 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1013 /**
1014  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1015  *	are dirty write protect them for next write.
1016  * @kvm:	pointer to kvm instance
1017  * @log:	slot id and address to which we copy the log
1018  * @is_dirty:	flag set if any page is dirty
1019  *
1020  * We need to keep it in mind that VCPU threads can write to the bitmap
1021  * concurrently. So, to avoid losing track of dirty pages we keep the
1022  * following order:
1023  *
1024  *    1. Take a snapshot of the bit and clear it if needed.
1025  *    2. Write protect the corresponding page.
1026  *    3. Copy the snapshot to the userspace.
1027  *    4. Upon return caller flushes TLB's if needed.
1028  *
1029  * Between 2 and 4, the guest may write to the page using the remaining TLB
1030  * entry.  This is not a problem because the page is reported dirty using
1031  * the snapshot taken before and step 4 ensures that writes done after
1032  * exiting to userspace will be logged for the next call.
1033  *
1034  */
1035 int kvm_get_dirty_log_protect(struct kvm *kvm,
1036 			struct kvm_dirty_log *log, bool *is_dirty)
1037 {
1038 	struct kvm_memslots *slots;
1039 	struct kvm_memory_slot *memslot;
1040 	int r, i, as_id, id;
1041 	unsigned long n;
1042 	unsigned long *dirty_bitmap;
1043 	unsigned long *dirty_bitmap_buffer;
1044 
1045 	r = -EINVAL;
1046 	as_id = log->slot >> 16;
1047 	id = (u16)log->slot;
1048 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1049 		goto out;
1050 
1051 	slots = __kvm_memslots(kvm, as_id);
1052 	memslot = id_to_memslot(slots, id);
1053 
1054 	dirty_bitmap = memslot->dirty_bitmap;
1055 	r = -ENOENT;
1056 	if (!dirty_bitmap)
1057 		goto out;
1058 
1059 	n = kvm_dirty_bitmap_bytes(memslot);
1060 
1061 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1062 	memset(dirty_bitmap_buffer, 0, n);
1063 
1064 	spin_lock(&kvm->mmu_lock);
1065 	*is_dirty = false;
1066 	for (i = 0; i < n / sizeof(long); i++) {
1067 		unsigned long mask;
1068 		gfn_t offset;
1069 
1070 		if (!dirty_bitmap[i])
1071 			continue;
1072 
1073 		*is_dirty = true;
1074 
1075 		mask = xchg(&dirty_bitmap[i], 0);
1076 		dirty_bitmap_buffer[i] = mask;
1077 
1078 		if (mask) {
1079 			offset = i * BITS_PER_LONG;
1080 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1081 								offset, mask);
1082 		}
1083 	}
1084 
1085 	spin_unlock(&kvm->mmu_lock);
1086 
1087 	r = -EFAULT;
1088 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1089 		goto out;
1090 
1091 	r = 0;
1092 out:
1093 	return r;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1096 #endif
1097 
1098 bool kvm_largepages_enabled(void)
1099 {
1100 	return largepages_enabled;
1101 }
1102 
1103 void kvm_disable_largepages(void)
1104 {
1105 	largepages_enabled = false;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1108 
1109 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1110 {
1111 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1112 }
1113 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1114 
1115 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1116 {
1117 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1118 }
1119 
1120 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1121 {
1122 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1123 
1124 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1125 	      memslot->flags & KVM_MEMSLOT_INVALID)
1126 		return 0;
1127 
1128 	return 1;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1131 
1132 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1133 {
1134 	struct vm_area_struct *vma;
1135 	unsigned long addr, size;
1136 
1137 	size = PAGE_SIZE;
1138 
1139 	addr = gfn_to_hva(kvm, gfn);
1140 	if (kvm_is_error_hva(addr))
1141 		return PAGE_SIZE;
1142 
1143 	down_read(&current->mm->mmap_sem);
1144 	vma = find_vma(current->mm, addr);
1145 	if (!vma)
1146 		goto out;
1147 
1148 	size = vma_kernel_pagesize(vma);
1149 
1150 out:
1151 	up_read(&current->mm->mmap_sem);
1152 
1153 	return size;
1154 }
1155 
1156 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1157 {
1158 	return slot->flags & KVM_MEM_READONLY;
1159 }
1160 
1161 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1162 				       gfn_t *nr_pages, bool write)
1163 {
1164 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1165 		return KVM_HVA_ERR_BAD;
1166 
1167 	if (memslot_is_readonly(slot) && write)
1168 		return KVM_HVA_ERR_RO_BAD;
1169 
1170 	if (nr_pages)
1171 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1172 
1173 	return __gfn_to_hva_memslot(slot, gfn);
1174 }
1175 
1176 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1177 				     gfn_t *nr_pages)
1178 {
1179 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1180 }
1181 
1182 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1183 					gfn_t gfn)
1184 {
1185 	return gfn_to_hva_many(slot, gfn, NULL);
1186 }
1187 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1188 
1189 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1190 {
1191 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1192 }
1193 EXPORT_SYMBOL_GPL(gfn_to_hva);
1194 
1195 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1196 {
1197 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1200 
1201 /*
1202  * If writable is set to false, the hva returned by this function is only
1203  * allowed to be read.
1204  */
1205 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1206 				      gfn_t gfn, bool *writable)
1207 {
1208 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1209 
1210 	if (!kvm_is_error_hva(hva) && writable)
1211 		*writable = !memslot_is_readonly(slot);
1212 
1213 	return hva;
1214 }
1215 
1216 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1217 {
1218 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1219 
1220 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1221 }
1222 
1223 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1224 {
1225 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1226 
1227 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1228 }
1229 
1230 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1231 	unsigned long start, int write, struct page **page)
1232 {
1233 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1234 
1235 	if (write)
1236 		flags |= FOLL_WRITE;
1237 
1238 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1239 }
1240 
1241 static inline int check_user_page_hwpoison(unsigned long addr)
1242 {
1243 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1244 
1245 	rc = __get_user_pages(current, current->mm, addr, 1,
1246 			      flags, NULL, NULL, NULL);
1247 	return rc == -EHWPOISON;
1248 }
1249 
1250 /*
1251  * The atomic path to get the writable pfn which will be stored in @pfn,
1252  * true indicates success, otherwise false is returned.
1253  */
1254 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1255 			    bool write_fault, bool *writable, pfn_t *pfn)
1256 {
1257 	struct page *page[1];
1258 	int npages;
1259 
1260 	if (!(async || atomic))
1261 		return false;
1262 
1263 	/*
1264 	 * Fast pin a writable pfn only if it is a write fault request
1265 	 * or the caller allows to map a writable pfn for a read fault
1266 	 * request.
1267 	 */
1268 	if (!(write_fault || writable))
1269 		return false;
1270 
1271 	npages = __get_user_pages_fast(addr, 1, 1, page);
1272 	if (npages == 1) {
1273 		*pfn = page_to_pfn(page[0]);
1274 
1275 		if (writable)
1276 			*writable = true;
1277 		return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 /*
1284  * The slow path to get the pfn of the specified host virtual address,
1285  * 1 indicates success, -errno is returned if error is detected.
1286  */
1287 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1288 			   bool *writable, pfn_t *pfn)
1289 {
1290 	struct page *page[1];
1291 	int npages = 0;
1292 
1293 	might_sleep();
1294 
1295 	if (writable)
1296 		*writable = write_fault;
1297 
1298 	if (async) {
1299 		down_read(&current->mm->mmap_sem);
1300 		npages = get_user_page_nowait(current, current->mm,
1301 					      addr, write_fault, page);
1302 		up_read(&current->mm->mmap_sem);
1303 	} else
1304 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1305 						   write_fault, 0, page,
1306 						   FOLL_TOUCH|FOLL_HWPOISON);
1307 	if (npages != 1)
1308 		return npages;
1309 
1310 	/* map read fault as writable if possible */
1311 	if (unlikely(!write_fault) && writable) {
1312 		struct page *wpage[1];
1313 
1314 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1315 		if (npages == 1) {
1316 			*writable = true;
1317 			put_page(page[0]);
1318 			page[0] = wpage[0];
1319 		}
1320 
1321 		npages = 1;
1322 	}
1323 	*pfn = page_to_pfn(page[0]);
1324 	return npages;
1325 }
1326 
1327 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1328 {
1329 	if (unlikely(!(vma->vm_flags & VM_READ)))
1330 		return false;
1331 
1332 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1333 		return false;
1334 
1335 	return true;
1336 }
1337 
1338 /*
1339  * Pin guest page in memory and return its pfn.
1340  * @addr: host virtual address which maps memory to the guest
1341  * @atomic: whether this function can sleep
1342  * @async: whether this function need to wait IO complete if the
1343  *         host page is not in the memory
1344  * @write_fault: whether we should get a writable host page
1345  * @writable: whether it allows to map a writable host page for !@write_fault
1346  *
1347  * The function will map a writable host page for these two cases:
1348  * 1): @write_fault = true
1349  * 2): @write_fault = false && @writable, @writable will tell the caller
1350  *     whether the mapping is writable.
1351  */
1352 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1353 			bool write_fault, bool *writable)
1354 {
1355 	struct vm_area_struct *vma;
1356 	pfn_t pfn = 0;
1357 	int npages;
1358 
1359 	/* we can do it either atomically or asynchronously, not both */
1360 	BUG_ON(atomic && async);
1361 
1362 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1363 		return pfn;
1364 
1365 	if (atomic)
1366 		return KVM_PFN_ERR_FAULT;
1367 
1368 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1369 	if (npages == 1)
1370 		return pfn;
1371 
1372 	down_read(&current->mm->mmap_sem);
1373 	if (npages == -EHWPOISON ||
1374 	      (!async && check_user_page_hwpoison(addr))) {
1375 		pfn = KVM_PFN_ERR_HWPOISON;
1376 		goto exit;
1377 	}
1378 
1379 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1380 
1381 	if (vma == NULL)
1382 		pfn = KVM_PFN_ERR_FAULT;
1383 	else if ((vma->vm_flags & VM_PFNMAP)) {
1384 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1385 			vma->vm_pgoff;
1386 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1387 	} else {
1388 		if (async && vma_is_valid(vma, write_fault))
1389 			*async = true;
1390 		pfn = KVM_PFN_ERR_FAULT;
1391 	}
1392 exit:
1393 	up_read(&current->mm->mmap_sem);
1394 	return pfn;
1395 }
1396 
1397 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1398 			   bool *async, bool write_fault, bool *writable)
1399 {
1400 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1401 
1402 	if (addr == KVM_HVA_ERR_RO_BAD)
1403 		return KVM_PFN_ERR_RO_FAULT;
1404 
1405 	if (kvm_is_error_hva(addr))
1406 		return KVM_PFN_NOSLOT;
1407 
1408 	/* Do not map writable pfn in the readonly memslot. */
1409 	if (writable && memslot_is_readonly(slot)) {
1410 		*writable = false;
1411 		writable = NULL;
1412 	}
1413 
1414 	return hva_to_pfn(addr, atomic, async, write_fault,
1415 			  writable);
1416 }
1417 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1418 
1419 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1420 		      bool *writable)
1421 {
1422 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1423 				    write_fault, writable);
1424 }
1425 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1426 
1427 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1428 {
1429 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1430 }
1431 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1432 
1433 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1434 {
1435 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1436 }
1437 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1438 
1439 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1440 {
1441 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1442 }
1443 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1444 
1445 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1446 {
1447 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1450 
1451 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1452 {
1453 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1454 }
1455 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1456 
1457 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1458 {
1459 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1462 
1463 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1464 			    struct page **pages, int nr_pages)
1465 {
1466 	unsigned long addr;
1467 	gfn_t entry;
1468 
1469 	addr = gfn_to_hva_many(slot, gfn, &entry);
1470 	if (kvm_is_error_hva(addr))
1471 		return -1;
1472 
1473 	if (entry < nr_pages)
1474 		return 0;
1475 
1476 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1479 
1480 static struct page *kvm_pfn_to_page(pfn_t pfn)
1481 {
1482 	if (is_error_noslot_pfn(pfn))
1483 		return KVM_ERR_PTR_BAD_PAGE;
1484 
1485 	if (kvm_is_reserved_pfn(pfn)) {
1486 		WARN_ON(1);
1487 		return KVM_ERR_PTR_BAD_PAGE;
1488 	}
1489 
1490 	return pfn_to_page(pfn);
1491 }
1492 
1493 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1494 {
1495 	pfn_t pfn;
1496 
1497 	pfn = gfn_to_pfn(kvm, gfn);
1498 
1499 	return kvm_pfn_to_page(pfn);
1500 }
1501 EXPORT_SYMBOL_GPL(gfn_to_page);
1502 
1503 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1504 {
1505 	pfn_t pfn;
1506 
1507 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1508 
1509 	return kvm_pfn_to_page(pfn);
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1512 
1513 void kvm_release_page_clean(struct page *page)
1514 {
1515 	WARN_ON(is_error_page(page));
1516 
1517 	kvm_release_pfn_clean(page_to_pfn(page));
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1520 
1521 void kvm_release_pfn_clean(pfn_t pfn)
1522 {
1523 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1524 		put_page(pfn_to_page(pfn));
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1527 
1528 void kvm_release_page_dirty(struct page *page)
1529 {
1530 	WARN_ON(is_error_page(page));
1531 
1532 	kvm_release_pfn_dirty(page_to_pfn(page));
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1535 
1536 static void kvm_release_pfn_dirty(pfn_t pfn)
1537 {
1538 	kvm_set_pfn_dirty(pfn);
1539 	kvm_release_pfn_clean(pfn);
1540 }
1541 
1542 void kvm_set_pfn_dirty(pfn_t pfn)
1543 {
1544 	if (!kvm_is_reserved_pfn(pfn)) {
1545 		struct page *page = pfn_to_page(pfn);
1546 
1547 		if (!PageReserved(page))
1548 			SetPageDirty(page);
1549 	}
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1552 
1553 void kvm_set_pfn_accessed(pfn_t pfn)
1554 {
1555 	if (!kvm_is_reserved_pfn(pfn))
1556 		mark_page_accessed(pfn_to_page(pfn));
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1559 
1560 void kvm_get_pfn(pfn_t pfn)
1561 {
1562 	if (!kvm_is_reserved_pfn(pfn))
1563 		get_page(pfn_to_page(pfn));
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1566 
1567 static int next_segment(unsigned long len, int offset)
1568 {
1569 	if (len > PAGE_SIZE - offset)
1570 		return PAGE_SIZE - offset;
1571 	else
1572 		return len;
1573 }
1574 
1575 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1576 				 void *data, int offset, int len)
1577 {
1578 	int r;
1579 	unsigned long addr;
1580 
1581 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1582 	if (kvm_is_error_hva(addr))
1583 		return -EFAULT;
1584 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1585 	if (r)
1586 		return -EFAULT;
1587 	return 0;
1588 }
1589 
1590 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1591 			int len)
1592 {
1593 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1594 
1595 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1598 
1599 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1600 			     int offset, int len)
1601 {
1602 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1603 
1604 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1607 
1608 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1609 {
1610 	gfn_t gfn = gpa >> PAGE_SHIFT;
1611 	int seg;
1612 	int offset = offset_in_page(gpa);
1613 	int ret;
1614 
1615 	while ((seg = next_segment(len, offset)) != 0) {
1616 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1617 		if (ret < 0)
1618 			return ret;
1619 		offset = 0;
1620 		len -= seg;
1621 		data += seg;
1622 		++gfn;
1623 	}
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_read_guest);
1627 
1628 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1629 {
1630 	gfn_t gfn = gpa >> PAGE_SHIFT;
1631 	int seg;
1632 	int offset = offset_in_page(gpa);
1633 	int ret;
1634 
1635 	while ((seg = next_segment(len, offset)) != 0) {
1636 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1637 		if (ret < 0)
1638 			return ret;
1639 		offset = 0;
1640 		len -= seg;
1641 		data += seg;
1642 		++gfn;
1643 	}
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1647 
1648 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1649 			           void *data, int offset, unsigned long len)
1650 {
1651 	int r;
1652 	unsigned long addr;
1653 
1654 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1655 	if (kvm_is_error_hva(addr))
1656 		return -EFAULT;
1657 	pagefault_disable();
1658 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1659 	pagefault_enable();
1660 	if (r)
1661 		return -EFAULT;
1662 	return 0;
1663 }
1664 
1665 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1666 			  unsigned long len)
1667 {
1668 	gfn_t gfn = gpa >> PAGE_SHIFT;
1669 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1670 	int offset = offset_in_page(gpa);
1671 
1672 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1675 
1676 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1677 			       void *data, unsigned long len)
1678 {
1679 	gfn_t gfn = gpa >> PAGE_SHIFT;
1680 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1681 	int offset = offset_in_page(gpa);
1682 
1683 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1686 
1687 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1688 			          const void *data, int offset, int len)
1689 {
1690 	int r;
1691 	unsigned long addr;
1692 
1693 	addr = gfn_to_hva_memslot(memslot, gfn);
1694 	if (kvm_is_error_hva(addr))
1695 		return -EFAULT;
1696 	r = __copy_to_user((void __user *)addr + offset, data, len);
1697 	if (r)
1698 		return -EFAULT;
1699 	mark_page_dirty_in_slot(memslot, gfn);
1700 	return 0;
1701 }
1702 
1703 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1704 			 const void *data, int offset, int len)
1705 {
1706 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1707 
1708 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1711 
1712 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1713 			      const void *data, int offset, int len)
1714 {
1715 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716 
1717 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1720 
1721 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1722 		    unsigned long len)
1723 {
1724 	gfn_t gfn = gpa >> PAGE_SHIFT;
1725 	int seg;
1726 	int offset = offset_in_page(gpa);
1727 	int ret;
1728 
1729 	while ((seg = next_segment(len, offset)) != 0) {
1730 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1731 		if (ret < 0)
1732 			return ret;
1733 		offset = 0;
1734 		len -= seg;
1735 		data += seg;
1736 		++gfn;
1737 	}
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_write_guest);
1741 
1742 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1743 		         unsigned long len)
1744 {
1745 	gfn_t gfn = gpa >> PAGE_SHIFT;
1746 	int seg;
1747 	int offset = offset_in_page(gpa);
1748 	int ret;
1749 
1750 	while ((seg = next_segment(len, offset)) != 0) {
1751 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1752 		if (ret < 0)
1753 			return ret;
1754 		offset = 0;
1755 		len -= seg;
1756 		data += seg;
1757 		++gfn;
1758 	}
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1762 
1763 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1764 			      gpa_t gpa, unsigned long len)
1765 {
1766 	struct kvm_memslots *slots = kvm_memslots(kvm);
1767 	int offset = offset_in_page(gpa);
1768 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1769 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1770 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1771 	gfn_t nr_pages_avail;
1772 
1773 	ghc->gpa = gpa;
1774 	ghc->generation = slots->generation;
1775 	ghc->len = len;
1776 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1777 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1778 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1779 		ghc->hva += offset;
1780 	} else {
1781 		/*
1782 		 * If the requested region crosses two memslots, we still
1783 		 * verify that the entire region is valid here.
1784 		 */
1785 		while (start_gfn <= end_gfn) {
1786 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1787 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1788 						   &nr_pages_avail);
1789 			if (kvm_is_error_hva(ghc->hva))
1790 				return -EFAULT;
1791 			start_gfn += nr_pages_avail;
1792 		}
1793 		/* Use the slow path for cross page reads and writes. */
1794 		ghc->memslot = NULL;
1795 	}
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1799 
1800 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1801 			   void *data, unsigned long len)
1802 {
1803 	struct kvm_memslots *slots = kvm_memslots(kvm);
1804 	int r;
1805 
1806 	BUG_ON(len > ghc->len);
1807 
1808 	if (slots->generation != ghc->generation)
1809 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1810 
1811 	if (unlikely(!ghc->memslot))
1812 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1813 
1814 	if (kvm_is_error_hva(ghc->hva))
1815 		return -EFAULT;
1816 
1817 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1818 	if (r)
1819 		return -EFAULT;
1820 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1821 
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1825 
1826 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1827 			   void *data, unsigned long len)
1828 {
1829 	struct kvm_memslots *slots = kvm_memslots(kvm);
1830 	int r;
1831 
1832 	BUG_ON(len > ghc->len);
1833 
1834 	if (slots->generation != ghc->generation)
1835 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1836 
1837 	if (unlikely(!ghc->memslot))
1838 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1839 
1840 	if (kvm_is_error_hva(ghc->hva))
1841 		return -EFAULT;
1842 
1843 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1844 	if (r)
1845 		return -EFAULT;
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1850 
1851 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1852 {
1853 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1854 
1855 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1858 
1859 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1860 {
1861 	gfn_t gfn = gpa >> PAGE_SHIFT;
1862 	int seg;
1863 	int offset = offset_in_page(gpa);
1864 	int ret;
1865 
1866 	while ((seg = next_segment(len, offset)) != 0) {
1867 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1868 		if (ret < 0)
1869 			return ret;
1870 		offset = 0;
1871 		len -= seg;
1872 		++gfn;
1873 	}
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1877 
1878 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1879 				    gfn_t gfn)
1880 {
1881 	if (memslot && memslot->dirty_bitmap) {
1882 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1883 
1884 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1885 	}
1886 }
1887 
1888 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1889 {
1890 	struct kvm_memory_slot *memslot;
1891 
1892 	memslot = gfn_to_memslot(kvm, gfn);
1893 	mark_page_dirty_in_slot(memslot, gfn);
1894 }
1895 EXPORT_SYMBOL_GPL(mark_page_dirty);
1896 
1897 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1898 {
1899 	struct kvm_memory_slot *memslot;
1900 
1901 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1902 	mark_page_dirty_in_slot(memslot, gfn);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1905 
1906 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1907 {
1908 	if (kvm_arch_vcpu_runnable(vcpu)) {
1909 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1910 		return -EINTR;
1911 	}
1912 	if (kvm_cpu_has_pending_timer(vcpu))
1913 		return -EINTR;
1914 	if (signal_pending(current))
1915 		return -EINTR;
1916 
1917 	return 0;
1918 }
1919 
1920 /*
1921  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1922  */
1923 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1924 {
1925 	ktime_t start, cur;
1926 	DEFINE_WAIT(wait);
1927 	bool waited = false;
1928 
1929 	start = cur = ktime_get();
1930 	if (halt_poll_ns) {
1931 		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1932 
1933 		do {
1934 			/*
1935 			 * This sets KVM_REQ_UNHALT if an interrupt
1936 			 * arrives.
1937 			 */
1938 			if (kvm_vcpu_check_block(vcpu) < 0) {
1939 				++vcpu->stat.halt_successful_poll;
1940 				goto out;
1941 			}
1942 			cur = ktime_get();
1943 		} while (single_task_running() && ktime_before(cur, stop));
1944 	}
1945 
1946 	for (;;) {
1947 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1948 
1949 		if (kvm_vcpu_check_block(vcpu) < 0)
1950 			break;
1951 
1952 		waited = true;
1953 		schedule();
1954 	}
1955 
1956 	finish_wait(&vcpu->wq, &wait);
1957 	cur = ktime_get();
1958 
1959 out:
1960 	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1963 
1964 #ifndef CONFIG_S390
1965 /*
1966  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1967  */
1968 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1969 {
1970 	int me;
1971 	int cpu = vcpu->cpu;
1972 	wait_queue_head_t *wqp;
1973 
1974 	wqp = kvm_arch_vcpu_wq(vcpu);
1975 	if (waitqueue_active(wqp)) {
1976 		wake_up_interruptible(wqp);
1977 		++vcpu->stat.halt_wakeup;
1978 	}
1979 
1980 	me = get_cpu();
1981 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1982 		if (kvm_arch_vcpu_should_kick(vcpu))
1983 			smp_send_reschedule(cpu);
1984 	put_cpu();
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1987 #endif /* !CONFIG_S390 */
1988 
1989 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1990 {
1991 	struct pid *pid;
1992 	struct task_struct *task = NULL;
1993 	int ret = 0;
1994 
1995 	rcu_read_lock();
1996 	pid = rcu_dereference(target->pid);
1997 	if (pid)
1998 		task = get_pid_task(pid, PIDTYPE_PID);
1999 	rcu_read_unlock();
2000 	if (!task)
2001 		return ret;
2002 	ret = yield_to(task, 1);
2003 	put_task_struct(task);
2004 
2005 	return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2008 
2009 /*
2010  * Helper that checks whether a VCPU is eligible for directed yield.
2011  * Most eligible candidate to yield is decided by following heuristics:
2012  *
2013  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2014  *  (preempted lock holder), indicated by @in_spin_loop.
2015  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2016  *
2017  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2018  *  chance last time (mostly it has become eligible now since we have probably
2019  *  yielded to lockholder in last iteration. This is done by toggling
2020  *  @dy_eligible each time a VCPU checked for eligibility.)
2021  *
2022  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2023  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2024  *  burning. Giving priority for a potential lock-holder increases lock
2025  *  progress.
2026  *
2027  *  Since algorithm is based on heuristics, accessing another VCPU data without
2028  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2029  *  and continue with next VCPU and so on.
2030  */
2031 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2032 {
2033 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2034 	bool eligible;
2035 
2036 	eligible = !vcpu->spin_loop.in_spin_loop ||
2037 		    vcpu->spin_loop.dy_eligible;
2038 
2039 	if (vcpu->spin_loop.in_spin_loop)
2040 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2041 
2042 	return eligible;
2043 #else
2044 	return true;
2045 #endif
2046 }
2047 
2048 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2049 {
2050 	struct kvm *kvm = me->kvm;
2051 	struct kvm_vcpu *vcpu;
2052 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2053 	int yielded = 0;
2054 	int try = 3;
2055 	int pass;
2056 	int i;
2057 
2058 	kvm_vcpu_set_in_spin_loop(me, true);
2059 	/*
2060 	 * We boost the priority of a VCPU that is runnable but not
2061 	 * currently running, because it got preempted by something
2062 	 * else and called schedule in __vcpu_run.  Hopefully that
2063 	 * VCPU is holding the lock that we need and will release it.
2064 	 * We approximate round-robin by starting at the last boosted VCPU.
2065 	 */
2066 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2067 		kvm_for_each_vcpu(i, vcpu, kvm) {
2068 			if (!pass && i <= last_boosted_vcpu) {
2069 				i = last_boosted_vcpu;
2070 				continue;
2071 			} else if (pass && i > last_boosted_vcpu)
2072 				break;
2073 			if (!ACCESS_ONCE(vcpu->preempted))
2074 				continue;
2075 			if (vcpu == me)
2076 				continue;
2077 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2078 				continue;
2079 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2080 				continue;
2081 
2082 			yielded = kvm_vcpu_yield_to(vcpu);
2083 			if (yielded > 0) {
2084 				kvm->last_boosted_vcpu = i;
2085 				break;
2086 			} else if (yielded < 0) {
2087 				try--;
2088 				if (!try)
2089 					break;
2090 			}
2091 		}
2092 	}
2093 	kvm_vcpu_set_in_spin_loop(me, false);
2094 
2095 	/* Ensure vcpu is not eligible during next spinloop */
2096 	kvm_vcpu_set_dy_eligible(me, false);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2099 
2100 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101 {
2102 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2103 	struct page *page;
2104 
2105 	if (vmf->pgoff == 0)
2106 		page = virt_to_page(vcpu->run);
2107 #ifdef CONFIG_X86
2108 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2109 		page = virt_to_page(vcpu->arch.pio_data);
2110 #endif
2111 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2112 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2113 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2114 #endif
2115 	else
2116 		return kvm_arch_vcpu_fault(vcpu, vmf);
2117 	get_page(page);
2118 	vmf->page = page;
2119 	return 0;
2120 }
2121 
2122 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2123 	.fault = kvm_vcpu_fault,
2124 };
2125 
2126 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2127 {
2128 	vma->vm_ops = &kvm_vcpu_vm_ops;
2129 	return 0;
2130 }
2131 
2132 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2133 {
2134 	struct kvm_vcpu *vcpu = filp->private_data;
2135 
2136 	kvm_put_kvm(vcpu->kvm);
2137 	return 0;
2138 }
2139 
2140 static struct file_operations kvm_vcpu_fops = {
2141 	.release        = kvm_vcpu_release,
2142 	.unlocked_ioctl = kvm_vcpu_ioctl,
2143 #ifdef CONFIG_KVM_COMPAT
2144 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2145 #endif
2146 	.mmap           = kvm_vcpu_mmap,
2147 	.llseek		= noop_llseek,
2148 };
2149 
2150 /*
2151  * Allocates an inode for the vcpu.
2152  */
2153 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2154 {
2155 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2156 }
2157 
2158 /*
2159  * Creates some virtual cpus.  Good luck creating more than one.
2160  */
2161 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2162 {
2163 	int r;
2164 	struct kvm_vcpu *vcpu, *v;
2165 
2166 	if (id >= KVM_MAX_VCPUS)
2167 		return -EINVAL;
2168 
2169 	vcpu = kvm_arch_vcpu_create(kvm, id);
2170 	if (IS_ERR(vcpu))
2171 		return PTR_ERR(vcpu);
2172 
2173 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2174 
2175 	r = kvm_arch_vcpu_setup(vcpu);
2176 	if (r)
2177 		goto vcpu_destroy;
2178 
2179 	mutex_lock(&kvm->lock);
2180 	if (!kvm_vcpu_compatible(vcpu)) {
2181 		r = -EINVAL;
2182 		goto unlock_vcpu_destroy;
2183 	}
2184 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2185 		r = -EINVAL;
2186 		goto unlock_vcpu_destroy;
2187 	}
2188 
2189 	kvm_for_each_vcpu(r, v, kvm)
2190 		if (v->vcpu_id == id) {
2191 			r = -EEXIST;
2192 			goto unlock_vcpu_destroy;
2193 		}
2194 
2195 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2196 
2197 	/* Now it's all set up, let userspace reach it */
2198 	kvm_get_kvm(kvm);
2199 	r = create_vcpu_fd(vcpu);
2200 	if (r < 0) {
2201 		kvm_put_kvm(kvm);
2202 		goto unlock_vcpu_destroy;
2203 	}
2204 
2205 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2206 	smp_wmb();
2207 	atomic_inc(&kvm->online_vcpus);
2208 
2209 	mutex_unlock(&kvm->lock);
2210 	kvm_arch_vcpu_postcreate(vcpu);
2211 	return r;
2212 
2213 unlock_vcpu_destroy:
2214 	mutex_unlock(&kvm->lock);
2215 vcpu_destroy:
2216 	kvm_arch_vcpu_destroy(vcpu);
2217 	return r;
2218 }
2219 
2220 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2221 {
2222 	if (sigset) {
2223 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2224 		vcpu->sigset_active = 1;
2225 		vcpu->sigset = *sigset;
2226 	} else
2227 		vcpu->sigset_active = 0;
2228 	return 0;
2229 }
2230 
2231 static long kvm_vcpu_ioctl(struct file *filp,
2232 			   unsigned int ioctl, unsigned long arg)
2233 {
2234 	struct kvm_vcpu *vcpu = filp->private_data;
2235 	void __user *argp = (void __user *)arg;
2236 	int r;
2237 	struct kvm_fpu *fpu = NULL;
2238 	struct kvm_sregs *kvm_sregs = NULL;
2239 
2240 	if (vcpu->kvm->mm != current->mm)
2241 		return -EIO;
2242 
2243 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2244 		return -EINVAL;
2245 
2246 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2247 	/*
2248 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2249 	 * so vcpu_load() would break it.
2250 	 */
2251 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2252 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2253 #endif
2254 
2255 
2256 	r = vcpu_load(vcpu);
2257 	if (r)
2258 		return r;
2259 	switch (ioctl) {
2260 	case KVM_RUN:
2261 		r = -EINVAL;
2262 		if (arg)
2263 			goto out;
2264 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2265 			/* The thread running this VCPU changed. */
2266 			struct pid *oldpid = vcpu->pid;
2267 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2268 
2269 			rcu_assign_pointer(vcpu->pid, newpid);
2270 			if (oldpid)
2271 				synchronize_rcu();
2272 			put_pid(oldpid);
2273 		}
2274 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2275 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2276 		break;
2277 	case KVM_GET_REGS: {
2278 		struct kvm_regs *kvm_regs;
2279 
2280 		r = -ENOMEM;
2281 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2282 		if (!kvm_regs)
2283 			goto out;
2284 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2285 		if (r)
2286 			goto out_free1;
2287 		r = -EFAULT;
2288 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2289 			goto out_free1;
2290 		r = 0;
2291 out_free1:
2292 		kfree(kvm_regs);
2293 		break;
2294 	}
2295 	case KVM_SET_REGS: {
2296 		struct kvm_regs *kvm_regs;
2297 
2298 		r = -ENOMEM;
2299 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2300 		if (IS_ERR(kvm_regs)) {
2301 			r = PTR_ERR(kvm_regs);
2302 			goto out;
2303 		}
2304 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2305 		kfree(kvm_regs);
2306 		break;
2307 	}
2308 	case KVM_GET_SREGS: {
2309 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2310 		r = -ENOMEM;
2311 		if (!kvm_sregs)
2312 			goto out;
2313 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2314 		if (r)
2315 			goto out;
2316 		r = -EFAULT;
2317 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2318 			goto out;
2319 		r = 0;
2320 		break;
2321 	}
2322 	case KVM_SET_SREGS: {
2323 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2324 		if (IS_ERR(kvm_sregs)) {
2325 			r = PTR_ERR(kvm_sregs);
2326 			kvm_sregs = NULL;
2327 			goto out;
2328 		}
2329 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2330 		break;
2331 	}
2332 	case KVM_GET_MP_STATE: {
2333 		struct kvm_mp_state mp_state;
2334 
2335 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2336 		if (r)
2337 			goto out;
2338 		r = -EFAULT;
2339 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2340 			goto out;
2341 		r = 0;
2342 		break;
2343 	}
2344 	case KVM_SET_MP_STATE: {
2345 		struct kvm_mp_state mp_state;
2346 
2347 		r = -EFAULT;
2348 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2349 			goto out;
2350 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2351 		break;
2352 	}
2353 	case KVM_TRANSLATE: {
2354 		struct kvm_translation tr;
2355 
2356 		r = -EFAULT;
2357 		if (copy_from_user(&tr, argp, sizeof(tr)))
2358 			goto out;
2359 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2360 		if (r)
2361 			goto out;
2362 		r = -EFAULT;
2363 		if (copy_to_user(argp, &tr, sizeof(tr)))
2364 			goto out;
2365 		r = 0;
2366 		break;
2367 	}
2368 	case KVM_SET_GUEST_DEBUG: {
2369 		struct kvm_guest_debug dbg;
2370 
2371 		r = -EFAULT;
2372 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2373 			goto out;
2374 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2375 		break;
2376 	}
2377 	case KVM_SET_SIGNAL_MASK: {
2378 		struct kvm_signal_mask __user *sigmask_arg = argp;
2379 		struct kvm_signal_mask kvm_sigmask;
2380 		sigset_t sigset, *p;
2381 
2382 		p = NULL;
2383 		if (argp) {
2384 			r = -EFAULT;
2385 			if (copy_from_user(&kvm_sigmask, argp,
2386 					   sizeof(kvm_sigmask)))
2387 				goto out;
2388 			r = -EINVAL;
2389 			if (kvm_sigmask.len != sizeof(sigset))
2390 				goto out;
2391 			r = -EFAULT;
2392 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2393 					   sizeof(sigset)))
2394 				goto out;
2395 			p = &sigset;
2396 		}
2397 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2398 		break;
2399 	}
2400 	case KVM_GET_FPU: {
2401 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2402 		r = -ENOMEM;
2403 		if (!fpu)
2404 			goto out;
2405 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2406 		if (r)
2407 			goto out;
2408 		r = -EFAULT;
2409 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2410 			goto out;
2411 		r = 0;
2412 		break;
2413 	}
2414 	case KVM_SET_FPU: {
2415 		fpu = memdup_user(argp, sizeof(*fpu));
2416 		if (IS_ERR(fpu)) {
2417 			r = PTR_ERR(fpu);
2418 			fpu = NULL;
2419 			goto out;
2420 		}
2421 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2422 		break;
2423 	}
2424 	default:
2425 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2426 	}
2427 out:
2428 	vcpu_put(vcpu);
2429 	kfree(fpu);
2430 	kfree(kvm_sregs);
2431 	return r;
2432 }
2433 
2434 #ifdef CONFIG_KVM_COMPAT
2435 static long kvm_vcpu_compat_ioctl(struct file *filp,
2436 				  unsigned int ioctl, unsigned long arg)
2437 {
2438 	struct kvm_vcpu *vcpu = filp->private_data;
2439 	void __user *argp = compat_ptr(arg);
2440 	int r;
2441 
2442 	if (vcpu->kvm->mm != current->mm)
2443 		return -EIO;
2444 
2445 	switch (ioctl) {
2446 	case KVM_SET_SIGNAL_MASK: {
2447 		struct kvm_signal_mask __user *sigmask_arg = argp;
2448 		struct kvm_signal_mask kvm_sigmask;
2449 		compat_sigset_t csigset;
2450 		sigset_t sigset;
2451 
2452 		if (argp) {
2453 			r = -EFAULT;
2454 			if (copy_from_user(&kvm_sigmask, argp,
2455 					   sizeof(kvm_sigmask)))
2456 				goto out;
2457 			r = -EINVAL;
2458 			if (kvm_sigmask.len != sizeof(csigset))
2459 				goto out;
2460 			r = -EFAULT;
2461 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2462 					   sizeof(csigset)))
2463 				goto out;
2464 			sigset_from_compat(&sigset, &csigset);
2465 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2466 		} else
2467 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2468 		break;
2469 	}
2470 	default:
2471 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2472 	}
2473 
2474 out:
2475 	return r;
2476 }
2477 #endif
2478 
2479 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2480 				 int (*accessor)(struct kvm_device *dev,
2481 						 struct kvm_device_attr *attr),
2482 				 unsigned long arg)
2483 {
2484 	struct kvm_device_attr attr;
2485 
2486 	if (!accessor)
2487 		return -EPERM;
2488 
2489 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2490 		return -EFAULT;
2491 
2492 	return accessor(dev, &attr);
2493 }
2494 
2495 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2496 			     unsigned long arg)
2497 {
2498 	struct kvm_device *dev = filp->private_data;
2499 
2500 	switch (ioctl) {
2501 	case KVM_SET_DEVICE_ATTR:
2502 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2503 	case KVM_GET_DEVICE_ATTR:
2504 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2505 	case KVM_HAS_DEVICE_ATTR:
2506 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2507 	default:
2508 		if (dev->ops->ioctl)
2509 			return dev->ops->ioctl(dev, ioctl, arg);
2510 
2511 		return -ENOTTY;
2512 	}
2513 }
2514 
2515 static int kvm_device_release(struct inode *inode, struct file *filp)
2516 {
2517 	struct kvm_device *dev = filp->private_data;
2518 	struct kvm *kvm = dev->kvm;
2519 
2520 	kvm_put_kvm(kvm);
2521 	return 0;
2522 }
2523 
2524 static const struct file_operations kvm_device_fops = {
2525 	.unlocked_ioctl = kvm_device_ioctl,
2526 #ifdef CONFIG_KVM_COMPAT
2527 	.compat_ioctl = kvm_device_ioctl,
2528 #endif
2529 	.release = kvm_device_release,
2530 };
2531 
2532 struct kvm_device *kvm_device_from_filp(struct file *filp)
2533 {
2534 	if (filp->f_op != &kvm_device_fops)
2535 		return NULL;
2536 
2537 	return filp->private_data;
2538 }
2539 
2540 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2541 #ifdef CONFIG_KVM_MPIC
2542 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2543 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2544 #endif
2545 
2546 #ifdef CONFIG_KVM_XICS
2547 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2548 #endif
2549 };
2550 
2551 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2552 {
2553 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2554 		return -ENOSPC;
2555 
2556 	if (kvm_device_ops_table[type] != NULL)
2557 		return -EEXIST;
2558 
2559 	kvm_device_ops_table[type] = ops;
2560 	return 0;
2561 }
2562 
2563 void kvm_unregister_device_ops(u32 type)
2564 {
2565 	if (kvm_device_ops_table[type] != NULL)
2566 		kvm_device_ops_table[type] = NULL;
2567 }
2568 
2569 static int kvm_ioctl_create_device(struct kvm *kvm,
2570 				   struct kvm_create_device *cd)
2571 {
2572 	struct kvm_device_ops *ops = NULL;
2573 	struct kvm_device *dev;
2574 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2575 	int ret;
2576 
2577 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2578 		return -ENODEV;
2579 
2580 	ops = kvm_device_ops_table[cd->type];
2581 	if (ops == NULL)
2582 		return -ENODEV;
2583 
2584 	if (test)
2585 		return 0;
2586 
2587 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2588 	if (!dev)
2589 		return -ENOMEM;
2590 
2591 	dev->ops = ops;
2592 	dev->kvm = kvm;
2593 
2594 	ret = ops->create(dev, cd->type);
2595 	if (ret < 0) {
2596 		kfree(dev);
2597 		return ret;
2598 	}
2599 
2600 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2601 	if (ret < 0) {
2602 		ops->destroy(dev);
2603 		return ret;
2604 	}
2605 
2606 	list_add(&dev->vm_node, &kvm->devices);
2607 	kvm_get_kvm(kvm);
2608 	cd->fd = ret;
2609 	return 0;
2610 }
2611 
2612 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2613 {
2614 	switch (arg) {
2615 	case KVM_CAP_USER_MEMORY:
2616 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2617 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2618 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2619 	case KVM_CAP_SET_BOOT_CPU_ID:
2620 #endif
2621 	case KVM_CAP_INTERNAL_ERROR_DATA:
2622 #ifdef CONFIG_HAVE_KVM_MSI
2623 	case KVM_CAP_SIGNAL_MSI:
2624 #endif
2625 #ifdef CONFIG_HAVE_KVM_IRQFD
2626 	case KVM_CAP_IRQFD:
2627 	case KVM_CAP_IRQFD_RESAMPLE:
2628 #endif
2629 	case KVM_CAP_CHECK_EXTENSION_VM:
2630 		return 1;
2631 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2632 	case KVM_CAP_IRQ_ROUTING:
2633 		return KVM_MAX_IRQ_ROUTES;
2634 #endif
2635 #if KVM_ADDRESS_SPACE_NUM > 1
2636 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2637 		return KVM_ADDRESS_SPACE_NUM;
2638 #endif
2639 	default:
2640 		break;
2641 	}
2642 	return kvm_vm_ioctl_check_extension(kvm, arg);
2643 }
2644 
2645 static long kvm_vm_ioctl(struct file *filp,
2646 			   unsigned int ioctl, unsigned long arg)
2647 {
2648 	struct kvm *kvm = filp->private_data;
2649 	void __user *argp = (void __user *)arg;
2650 	int r;
2651 
2652 	if (kvm->mm != current->mm)
2653 		return -EIO;
2654 	switch (ioctl) {
2655 	case KVM_CREATE_VCPU:
2656 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2657 		break;
2658 	case KVM_SET_USER_MEMORY_REGION: {
2659 		struct kvm_userspace_memory_region kvm_userspace_mem;
2660 
2661 		r = -EFAULT;
2662 		if (copy_from_user(&kvm_userspace_mem, argp,
2663 						sizeof(kvm_userspace_mem)))
2664 			goto out;
2665 
2666 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2667 		break;
2668 	}
2669 	case KVM_GET_DIRTY_LOG: {
2670 		struct kvm_dirty_log log;
2671 
2672 		r = -EFAULT;
2673 		if (copy_from_user(&log, argp, sizeof(log)))
2674 			goto out;
2675 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2676 		break;
2677 	}
2678 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2679 	case KVM_REGISTER_COALESCED_MMIO: {
2680 		struct kvm_coalesced_mmio_zone zone;
2681 
2682 		r = -EFAULT;
2683 		if (copy_from_user(&zone, argp, sizeof(zone)))
2684 			goto out;
2685 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2686 		break;
2687 	}
2688 	case KVM_UNREGISTER_COALESCED_MMIO: {
2689 		struct kvm_coalesced_mmio_zone zone;
2690 
2691 		r = -EFAULT;
2692 		if (copy_from_user(&zone, argp, sizeof(zone)))
2693 			goto out;
2694 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2695 		break;
2696 	}
2697 #endif
2698 	case KVM_IRQFD: {
2699 		struct kvm_irqfd data;
2700 
2701 		r = -EFAULT;
2702 		if (copy_from_user(&data, argp, sizeof(data)))
2703 			goto out;
2704 		r = kvm_irqfd(kvm, &data);
2705 		break;
2706 	}
2707 	case KVM_IOEVENTFD: {
2708 		struct kvm_ioeventfd data;
2709 
2710 		r = -EFAULT;
2711 		if (copy_from_user(&data, argp, sizeof(data)))
2712 			goto out;
2713 		r = kvm_ioeventfd(kvm, &data);
2714 		break;
2715 	}
2716 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2717 	case KVM_SET_BOOT_CPU_ID:
2718 		r = 0;
2719 		mutex_lock(&kvm->lock);
2720 		if (atomic_read(&kvm->online_vcpus) != 0)
2721 			r = -EBUSY;
2722 		else
2723 			kvm->bsp_vcpu_id = arg;
2724 		mutex_unlock(&kvm->lock);
2725 		break;
2726 #endif
2727 #ifdef CONFIG_HAVE_KVM_MSI
2728 	case KVM_SIGNAL_MSI: {
2729 		struct kvm_msi msi;
2730 
2731 		r = -EFAULT;
2732 		if (copy_from_user(&msi, argp, sizeof(msi)))
2733 			goto out;
2734 		r = kvm_send_userspace_msi(kvm, &msi);
2735 		break;
2736 	}
2737 #endif
2738 #ifdef __KVM_HAVE_IRQ_LINE
2739 	case KVM_IRQ_LINE_STATUS:
2740 	case KVM_IRQ_LINE: {
2741 		struct kvm_irq_level irq_event;
2742 
2743 		r = -EFAULT;
2744 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2745 			goto out;
2746 
2747 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2748 					ioctl == KVM_IRQ_LINE_STATUS);
2749 		if (r)
2750 			goto out;
2751 
2752 		r = -EFAULT;
2753 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2754 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2755 				goto out;
2756 		}
2757 
2758 		r = 0;
2759 		break;
2760 	}
2761 #endif
2762 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2763 	case KVM_SET_GSI_ROUTING: {
2764 		struct kvm_irq_routing routing;
2765 		struct kvm_irq_routing __user *urouting;
2766 		struct kvm_irq_routing_entry *entries;
2767 
2768 		r = -EFAULT;
2769 		if (copy_from_user(&routing, argp, sizeof(routing)))
2770 			goto out;
2771 		r = -EINVAL;
2772 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2773 			goto out;
2774 		if (routing.flags)
2775 			goto out;
2776 		r = -ENOMEM;
2777 		entries = vmalloc(routing.nr * sizeof(*entries));
2778 		if (!entries)
2779 			goto out;
2780 		r = -EFAULT;
2781 		urouting = argp;
2782 		if (copy_from_user(entries, urouting->entries,
2783 				   routing.nr * sizeof(*entries)))
2784 			goto out_free_irq_routing;
2785 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2786 					routing.flags);
2787 out_free_irq_routing:
2788 		vfree(entries);
2789 		break;
2790 	}
2791 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2792 	case KVM_CREATE_DEVICE: {
2793 		struct kvm_create_device cd;
2794 
2795 		r = -EFAULT;
2796 		if (copy_from_user(&cd, argp, sizeof(cd)))
2797 			goto out;
2798 
2799 		r = kvm_ioctl_create_device(kvm, &cd);
2800 		if (r)
2801 			goto out;
2802 
2803 		r = -EFAULT;
2804 		if (copy_to_user(argp, &cd, sizeof(cd)))
2805 			goto out;
2806 
2807 		r = 0;
2808 		break;
2809 	}
2810 	case KVM_CHECK_EXTENSION:
2811 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2812 		break;
2813 	default:
2814 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2815 	}
2816 out:
2817 	return r;
2818 }
2819 
2820 #ifdef CONFIG_KVM_COMPAT
2821 struct compat_kvm_dirty_log {
2822 	__u32 slot;
2823 	__u32 padding1;
2824 	union {
2825 		compat_uptr_t dirty_bitmap; /* one bit per page */
2826 		__u64 padding2;
2827 	};
2828 };
2829 
2830 static long kvm_vm_compat_ioctl(struct file *filp,
2831 			   unsigned int ioctl, unsigned long arg)
2832 {
2833 	struct kvm *kvm = filp->private_data;
2834 	int r;
2835 
2836 	if (kvm->mm != current->mm)
2837 		return -EIO;
2838 	switch (ioctl) {
2839 	case KVM_GET_DIRTY_LOG: {
2840 		struct compat_kvm_dirty_log compat_log;
2841 		struct kvm_dirty_log log;
2842 
2843 		r = -EFAULT;
2844 		if (copy_from_user(&compat_log, (void __user *)arg,
2845 				   sizeof(compat_log)))
2846 			goto out;
2847 		log.slot	 = compat_log.slot;
2848 		log.padding1	 = compat_log.padding1;
2849 		log.padding2	 = compat_log.padding2;
2850 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2851 
2852 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2853 		break;
2854 	}
2855 	default:
2856 		r = kvm_vm_ioctl(filp, ioctl, arg);
2857 	}
2858 
2859 out:
2860 	return r;
2861 }
2862 #endif
2863 
2864 static struct file_operations kvm_vm_fops = {
2865 	.release        = kvm_vm_release,
2866 	.unlocked_ioctl = kvm_vm_ioctl,
2867 #ifdef CONFIG_KVM_COMPAT
2868 	.compat_ioctl   = kvm_vm_compat_ioctl,
2869 #endif
2870 	.llseek		= noop_llseek,
2871 };
2872 
2873 static int kvm_dev_ioctl_create_vm(unsigned long type)
2874 {
2875 	int r;
2876 	struct kvm *kvm;
2877 
2878 	kvm = kvm_create_vm(type);
2879 	if (IS_ERR(kvm))
2880 		return PTR_ERR(kvm);
2881 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2882 	r = kvm_coalesced_mmio_init(kvm);
2883 	if (r < 0) {
2884 		kvm_put_kvm(kvm);
2885 		return r;
2886 	}
2887 #endif
2888 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2889 	if (r < 0)
2890 		kvm_put_kvm(kvm);
2891 
2892 	return r;
2893 }
2894 
2895 static long kvm_dev_ioctl(struct file *filp,
2896 			  unsigned int ioctl, unsigned long arg)
2897 {
2898 	long r = -EINVAL;
2899 
2900 	switch (ioctl) {
2901 	case KVM_GET_API_VERSION:
2902 		if (arg)
2903 			goto out;
2904 		r = KVM_API_VERSION;
2905 		break;
2906 	case KVM_CREATE_VM:
2907 		r = kvm_dev_ioctl_create_vm(arg);
2908 		break;
2909 	case KVM_CHECK_EXTENSION:
2910 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2911 		break;
2912 	case KVM_GET_VCPU_MMAP_SIZE:
2913 		if (arg)
2914 			goto out;
2915 		r = PAGE_SIZE;     /* struct kvm_run */
2916 #ifdef CONFIG_X86
2917 		r += PAGE_SIZE;    /* pio data page */
2918 #endif
2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2920 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2921 #endif
2922 		break;
2923 	case KVM_TRACE_ENABLE:
2924 	case KVM_TRACE_PAUSE:
2925 	case KVM_TRACE_DISABLE:
2926 		r = -EOPNOTSUPP;
2927 		break;
2928 	default:
2929 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2930 	}
2931 out:
2932 	return r;
2933 }
2934 
2935 static struct file_operations kvm_chardev_ops = {
2936 	.unlocked_ioctl = kvm_dev_ioctl,
2937 	.compat_ioctl   = kvm_dev_ioctl,
2938 	.llseek		= noop_llseek,
2939 };
2940 
2941 static struct miscdevice kvm_dev = {
2942 	KVM_MINOR,
2943 	"kvm",
2944 	&kvm_chardev_ops,
2945 };
2946 
2947 static void hardware_enable_nolock(void *junk)
2948 {
2949 	int cpu = raw_smp_processor_id();
2950 	int r;
2951 
2952 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2953 		return;
2954 
2955 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2956 
2957 	r = kvm_arch_hardware_enable();
2958 
2959 	if (r) {
2960 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2961 		atomic_inc(&hardware_enable_failed);
2962 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2963 	}
2964 }
2965 
2966 static void hardware_enable(void)
2967 {
2968 	raw_spin_lock(&kvm_count_lock);
2969 	if (kvm_usage_count)
2970 		hardware_enable_nolock(NULL);
2971 	raw_spin_unlock(&kvm_count_lock);
2972 }
2973 
2974 static void hardware_disable_nolock(void *junk)
2975 {
2976 	int cpu = raw_smp_processor_id();
2977 
2978 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2979 		return;
2980 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2981 	kvm_arch_hardware_disable();
2982 }
2983 
2984 static void hardware_disable(void)
2985 {
2986 	raw_spin_lock(&kvm_count_lock);
2987 	if (kvm_usage_count)
2988 		hardware_disable_nolock(NULL);
2989 	raw_spin_unlock(&kvm_count_lock);
2990 }
2991 
2992 static void hardware_disable_all_nolock(void)
2993 {
2994 	BUG_ON(!kvm_usage_count);
2995 
2996 	kvm_usage_count--;
2997 	if (!kvm_usage_count)
2998 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2999 }
3000 
3001 static void hardware_disable_all(void)
3002 {
3003 	raw_spin_lock(&kvm_count_lock);
3004 	hardware_disable_all_nolock();
3005 	raw_spin_unlock(&kvm_count_lock);
3006 }
3007 
3008 static int hardware_enable_all(void)
3009 {
3010 	int r = 0;
3011 
3012 	raw_spin_lock(&kvm_count_lock);
3013 
3014 	kvm_usage_count++;
3015 	if (kvm_usage_count == 1) {
3016 		atomic_set(&hardware_enable_failed, 0);
3017 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3018 
3019 		if (atomic_read(&hardware_enable_failed)) {
3020 			hardware_disable_all_nolock();
3021 			r = -EBUSY;
3022 		}
3023 	}
3024 
3025 	raw_spin_unlock(&kvm_count_lock);
3026 
3027 	return r;
3028 }
3029 
3030 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3031 			   void *v)
3032 {
3033 	val &= ~CPU_TASKS_FROZEN;
3034 	switch (val) {
3035 	case CPU_DYING:
3036 		hardware_disable();
3037 		break;
3038 	case CPU_STARTING:
3039 		hardware_enable();
3040 		break;
3041 	}
3042 	return NOTIFY_OK;
3043 }
3044 
3045 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3046 		      void *v)
3047 {
3048 	/*
3049 	 * Some (well, at least mine) BIOSes hang on reboot if
3050 	 * in vmx root mode.
3051 	 *
3052 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3053 	 */
3054 	pr_info("kvm: exiting hardware virtualization\n");
3055 	kvm_rebooting = true;
3056 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3057 	return NOTIFY_OK;
3058 }
3059 
3060 static struct notifier_block kvm_reboot_notifier = {
3061 	.notifier_call = kvm_reboot,
3062 	.priority = 0,
3063 };
3064 
3065 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3066 {
3067 	int i;
3068 
3069 	for (i = 0; i < bus->dev_count; i++) {
3070 		struct kvm_io_device *pos = bus->range[i].dev;
3071 
3072 		kvm_iodevice_destructor(pos);
3073 	}
3074 	kfree(bus);
3075 }
3076 
3077 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3078 				 const struct kvm_io_range *r2)
3079 {
3080 	if (r1->addr < r2->addr)
3081 		return -1;
3082 	if (r1->addr + r1->len > r2->addr + r2->len)
3083 		return 1;
3084 	return 0;
3085 }
3086 
3087 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3088 {
3089 	return kvm_io_bus_cmp(p1, p2);
3090 }
3091 
3092 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3093 			  gpa_t addr, int len)
3094 {
3095 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3096 		.addr = addr,
3097 		.len = len,
3098 		.dev = dev,
3099 	};
3100 
3101 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3102 		kvm_io_bus_sort_cmp, NULL);
3103 
3104 	return 0;
3105 }
3106 
3107 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3108 			     gpa_t addr, int len)
3109 {
3110 	struct kvm_io_range *range, key;
3111 	int off;
3112 
3113 	key = (struct kvm_io_range) {
3114 		.addr = addr,
3115 		.len = len,
3116 	};
3117 
3118 	range = bsearch(&key, bus->range, bus->dev_count,
3119 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3120 	if (range == NULL)
3121 		return -ENOENT;
3122 
3123 	off = range - bus->range;
3124 
3125 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3126 		off--;
3127 
3128 	return off;
3129 }
3130 
3131 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3132 			      struct kvm_io_range *range, const void *val)
3133 {
3134 	int idx;
3135 
3136 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3137 	if (idx < 0)
3138 		return -EOPNOTSUPP;
3139 
3140 	while (idx < bus->dev_count &&
3141 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3142 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3143 					range->len, val))
3144 			return idx;
3145 		idx++;
3146 	}
3147 
3148 	return -EOPNOTSUPP;
3149 }
3150 
3151 /* kvm_io_bus_write - called under kvm->slots_lock */
3152 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3153 		     int len, const void *val)
3154 {
3155 	struct kvm_io_bus *bus;
3156 	struct kvm_io_range range;
3157 	int r;
3158 
3159 	range = (struct kvm_io_range) {
3160 		.addr = addr,
3161 		.len = len,
3162 	};
3163 
3164 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3165 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3166 	return r < 0 ? r : 0;
3167 }
3168 
3169 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3171 			    gpa_t addr, int len, const void *val, long cookie)
3172 {
3173 	struct kvm_io_bus *bus;
3174 	struct kvm_io_range range;
3175 
3176 	range = (struct kvm_io_range) {
3177 		.addr = addr,
3178 		.len = len,
3179 	};
3180 
3181 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3182 
3183 	/* First try the device referenced by cookie. */
3184 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3185 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3186 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3187 					val))
3188 			return cookie;
3189 
3190 	/*
3191 	 * cookie contained garbage; fall back to search and return the
3192 	 * correct cookie value.
3193 	 */
3194 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3195 }
3196 
3197 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3198 			     struct kvm_io_range *range, void *val)
3199 {
3200 	int idx;
3201 
3202 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3203 	if (idx < 0)
3204 		return -EOPNOTSUPP;
3205 
3206 	while (idx < bus->dev_count &&
3207 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3208 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3209 				       range->len, val))
3210 			return idx;
3211 		idx++;
3212 	}
3213 
3214 	return -EOPNOTSUPP;
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3217 
3218 /* kvm_io_bus_read - called under kvm->slots_lock */
3219 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3220 		    int len, void *val)
3221 {
3222 	struct kvm_io_bus *bus;
3223 	struct kvm_io_range range;
3224 	int r;
3225 
3226 	range = (struct kvm_io_range) {
3227 		.addr = addr,
3228 		.len = len,
3229 	};
3230 
3231 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3232 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3233 	return r < 0 ? r : 0;
3234 }
3235 
3236 
3237 /* Caller must hold slots_lock. */
3238 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3239 			    int len, struct kvm_io_device *dev)
3240 {
3241 	struct kvm_io_bus *new_bus, *bus;
3242 
3243 	bus = kvm->buses[bus_idx];
3244 	/* exclude ioeventfd which is limited by maximum fd */
3245 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3246 		return -ENOSPC;
3247 
3248 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3249 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3250 	if (!new_bus)
3251 		return -ENOMEM;
3252 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3253 	       sizeof(struct kvm_io_range)));
3254 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3255 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3256 	synchronize_srcu_expedited(&kvm->srcu);
3257 	kfree(bus);
3258 
3259 	return 0;
3260 }
3261 
3262 /* Caller must hold slots_lock. */
3263 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3264 			      struct kvm_io_device *dev)
3265 {
3266 	int i, r;
3267 	struct kvm_io_bus *new_bus, *bus;
3268 
3269 	bus = kvm->buses[bus_idx];
3270 	r = -ENOENT;
3271 	for (i = 0; i < bus->dev_count; i++)
3272 		if (bus->range[i].dev == dev) {
3273 			r = 0;
3274 			break;
3275 		}
3276 
3277 	if (r)
3278 		return r;
3279 
3280 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3281 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3282 	if (!new_bus)
3283 		return -ENOMEM;
3284 
3285 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3286 	new_bus->dev_count--;
3287 	memcpy(new_bus->range + i, bus->range + i + 1,
3288 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3289 
3290 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3291 	synchronize_srcu_expedited(&kvm->srcu);
3292 	kfree(bus);
3293 	return r;
3294 }
3295 
3296 static struct notifier_block kvm_cpu_notifier = {
3297 	.notifier_call = kvm_cpu_hotplug,
3298 };
3299 
3300 static int vm_stat_get(void *_offset, u64 *val)
3301 {
3302 	unsigned offset = (long)_offset;
3303 	struct kvm *kvm;
3304 
3305 	*val = 0;
3306 	spin_lock(&kvm_lock);
3307 	list_for_each_entry(kvm, &vm_list, vm_list)
3308 		*val += *(u32 *)((void *)kvm + offset);
3309 	spin_unlock(&kvm_lock);
3310 	return 0;
3311 }
3312 
3313 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3314 
3315 static int vcpu_stat_get(void *_offset, u64 *val)
3316 {
3317 	unsigned offset = (long)_offset;
3318 	struct kvm *kvm;
3319 	struct kvm_vcpu *vcpu;
3320 	int i;
3321 
3322 	*val = 0;
3323 	spin_lock(&kvm_lock);
3324 	list_for_each_entry(kvm, &vm_list, vm_list)
3325 		kvm_for_each_vcpu(i, vcpu, kvm)
3326 			*val += *(u32 *)((void *)vcpu + offset);
3327 
3328 	spin_unlock(&kvm_lock);
3329 	return 0;
3330 }
3331 
3332 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3333 
3334 static const struct file_operations *stat_fops[] = {
3335 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3336 	[KVM_STAT_VM]   = &vm_stat_fops,
3337 };
3338 
3339 static int kvm_init_debug(void)
3340 {
3341 	int r = -EEXIST;
3342 	struct kvm_stats_debugfs_item *p;
3343 
3344 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3345 	if (kvm_debugfs_dir == NULL)
3346 		goto out;
3347 
3348 	for (p = debugfs_entries; p->name; ++p) {
3349 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3350 						(void *)(long)p->offset,
3351 						stat_fops[p->kind]);
3352 		if (p->dentry == NULL)
3353 			goto out_dir;
3354 	}
3355 
3356 	return 0;
3357 
3358 out_dir:
3359 	debugfs_remove_recursive(kvm_debugfs_dir);
3360 out:
3361 	return r;
3362 }
3363 
3364 static void kvm_exit_debug(void)
3365 {
3366 	struct kvm_stats_debugfs_item *p;
3367 
3368 	for (p = debugfs_entries; p->name; ++p)
3369 		debugfs_remove(p->dentry);
3370 	debugfs_remove(kvm_debugfs_dir);
3371 }
3372 
3373 static int kvm_suspend(void)
3374 {
3375 	if (kvm_usage_count)
3376 		hardware_disable_nolock(NULL);
3377 	return 0;
3378 }
3379 
3380 static void kvm_resume(void)
3381 {
3382 	if (kvm_usage_count) {
3383 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3384 		hardware_enable_nolock(NULL);
3385 	}
3386 }
3387 
3388 static struct syscore_ops kvm_syscore_ops = {
3389 	.suspend = kvm_suspend,
3390 	.resume = kvm_resume,
3391 };
3392 
3393 static inline
3394 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3395 {
3396 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3397 }
3398 
3399 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3400 {
3401 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3402 
3403 	if (vcpu->preempted)
3404 		vcpu->preempted = false;
3405 
3406 	kvm_arch_sched_in(vcpu, cpu);
3407 
3408 	kvm_arch_vcpu_load(vcpu, cpu);
3409 }
3410 
3411 static void kvm_sched_out(struct preempt_notifier *pn,
3412 			  struct task_struct *next)
3413 {
3414 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3415 
3416 	if (current->state == TASK_RUNNING)
3417 		vcpu->preempted = true;
3418 	kvm_arch_vcpu_put(vcpu);
3419 }
3420 
3421 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3422 		  struct module *module)
3423 {
3424 	int r;
3425 	int cpu;
3426 
3427 	r = kvm_arch_init(opaque);
3428 	if (r)
3429 		goto out_fail;
3430 
3431 	/*
3432 	 * kvm_arch_init makes sure there's at most one caller
3433 	 * for architectures that support multiple implementations,
3434 	 * like intel and amd on x86.
3435 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3436 	 * conflicts in case kvm is already setup for another implementation.
3437 	 */
3438 	r = kvm_irqfd_init();
3439 	if (r)
3440 		goto out_irqfd;
3441 
3442 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3443 		r = -ENOMEM;
3444 		goto out_free_0;
3445 	}
3446 
3447 	r = kvm_arch_hardware_setup();
3448 	if (r < 0)
3449 		goto out_free_0a;
3450 
3451 	for_each_online_cpu(cpu) {
3452 		smp_call_function_single(cpu,
3453 				kvm_arch_check_processor_compat,
3454 				&r, 1);
3455 		if (r < 0)
3456 			goto out_free_1;
3457 	}
3458 
3459 	r = register_cpu_notifier(&kvm_cpu_notifier);
3460 	if (r)
3461 		goto out_free_2;
3462 	register_reboot_notifier(&kvm_reboot_notifier);
3463 
3464 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3465 	if (!vcpu_align)
3466 		vcpu_align = __alignof__(struct kvm_vcpu);
3467 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3468 					   0, NULL);
3469 	if (!kvm_vcpu_cache) {
3470 		r = -ENOMEM;
3471 		goto out_free_3;
3472 	}
3473 
3474 	r = kvm_async_pf_init();
3475 	if (r)
3476 		goto out_free;
3477 
3478 	kvm_chardev_ops.owner = module;
3479 	kvm_vm_fops.owner = module;
3480 	kvm_vcpu_fops.owner = module;
3481 
3482 	r = misc_register(&kvm_dev);
3483 	if (r) {
3484 		pr_err("kvm: misc device register failed\n");
3485 		goto out_unreg;
3486 	}
3487 
3488 	register_syscore_ops(&kvm_syscore_ops);
3489 
3490 	kvm_preempt_ops.sched_in = kvm_sched_in;
3491 	kvm_preempt_ops.sched_out = kvm_sched_out;
3492 
3493 	r = kvm_init_debug();
3494 	if (r) {
3495 		pr_err("kvm: create debugfs files failed\n");
3496 		goto out_undebugfs;
3497 	}
3498 
3499 	r = kvm_vfio_ops_init();
3500 	WARN_ON(r);
3501 
3502 	return 0;
3503 
3504 out_undebugfs:
3505 	unregister_syscore_ops(&kvm_syscore_ops);
3506 	misc_deregister(&kvm_dev);
3507 out_unreg:
3508 	kvm_async_pf_deinit();
3509 out_free:
3510 	kmem_cache_destroy(kvm_vcpu_cache);
3511 out_free_3:
3512 	unregister_reboot_notifier(&kvm_reboot_notifier);
3513 	unregister_cpu_notifier(&kvm_cpu_notifier);
3514 out_free_2:
3515 out_free_1:
3516 	kvm_arch_hardware_unsetup();
3517 out_free_0a:
3518 	free_cpumask_var(cpus_hardware_enabled);
3519 out_free_0:
3520 	kvm_irqfd_exit();
3521 out_irqfd:
3522 	kvm_arch_exit();
3523 out_fail:
3524 	return r;
3525 }
3526 EXPORT_SYMBOL_GPL(kvm_init);
3527 
3528 void kvm_exit(void)
3529 {
3530 	kvm_exit_debug();
3531 	misc_deregister(&kvm_dev);
3532 	kmem_cache_destroy(kvm_vcpu_cache);
3533 	kvm_async_pf_deinit();
3534 	unregister_syscore_ops(&kvm_syscore_ops);
3535 	unregister_reboot_notifier(&kvm_reboot_notifier);
3536 	unregister_cpu_notifier(&kvm_cpu_notifier);
3537 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3538 	kvm_arch_hardware_unsetup();
3539 	kvm_arch_exit();
3540 	kvm_irqfd_exit();
3541 	free_cpumask_var(cpus_hardware_enabled);
3542 	kvm_vfio_ops_exit();
3543 }
3544 EXPORT_SYMBOL_GPL(kvm_exit);
3545