xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 425595a7)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72 
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76 
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80 
81 /*
82  * Ordering of locks:
83  *
84  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86 
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90 
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94 
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97 
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99 
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102 
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 			   unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 				  unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111 
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113 
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116 
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119 
120 static bool largepages_enabled = true;
121 
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 	if (pfn_valid(pfn))
125 		return PageReserved(pfn_to_page(pfn));
126 
127 	return true;
128 }
129 
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 	int cpu;
136 
137 	if (mutex_lock_killable(&vcpu->mutex))
138 		return -EINTR;
139 	cpu = get_cpu();
140 	preempt_notifier_register(&vcpu->preempt_notifier);
141 	kvm_arch_vcpu_load(vcpu, cpu);
142 	put_cpu();
143 	return 0;
144 }
145 
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	preempt_disable();
149 	kvm_arch_vcpu_put(vcpu);
150 	preempt_notifier_unregister(&vcpu->preempt_notifier);
151 	preempt_enable();
152 	mutex_unlock(&vcpu->mutex);
153 }
154 
155 static void ack_flush(void *_completed)
156 {
157 }
158 
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 	int i, cpu, me;
162 	cpumask_var_t cpus;
163 	bool called = true;
164 	struct kvm_vcpu *vcpu;
165 
166 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167 
168 	me = get_cpu();
169 	kvm_for_each_vcpu(i, vcpu, kvm) {
170 		kvm_make_request(req, vcpu);
171 		cpu = vcpu->cpu;
172 
173 		/* Set ->requests bit before we read ->mode */
174 		smp_mb();
175 
176 		if (cpus != NULL && cpu != -1 && cpu != me &&
177 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 			cpumask_set_cpu(cpu, cpus);
179 	}
180 	if (unlikely(cpus == NULL))
181 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 	else if (!cpumask_empty(cpus))
183 		smp_call_function_many(cpus, ack_flush, NULL, 1);
184 	else
185 		called = false;
186 	put_cpu();
187 	free_cpumask_var(cpus);
188 	return called;
189 }
190 
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 	long dirty_count = kvm->tlbs_dirty;
195 
196 	smp_mb();
197 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 		++kvm->stat.remote_tlb_flush;
199 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203 
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208 
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 	struct page *page;
212 	int r;
213 
214 	mutex_init(&vcpu->mutex);
215 	vcpu->cpu = -1;
216 	vcpu->kvm = kvm;
217 	vcpu->vcpu_id = id;
218 	vcpu->pid = NULL;
219 	init_swait_queue_head(&vcpu->wq);
220 	kvm_async_pf_vcpu_init(vcpu);
221 
222 	vcpu->pre_pcpu = -1;
223 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224 
225 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226 	if (!page) {
227 		r = -ENOMEM;
228 		goto fail;
229 	}
230 	vcpu->run = page_address(page);
231 
232 	kvm_vcpu_set_in_spin_loop(vcpu, false);
233 	kvm_vcpu_set_dy_eligible(vcpu, false);
234 	vcpu->preempted = false;
235 
236 	r = kvm_arch_vcpu_init(vcpu);
237 	if (r < 0)
238 		goto fail_free_run;
239 	return 0;
240 
241 fail_free_run:
242 	free_page((unsigned long)vcpu->run);
243 fail:
244 	return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247 
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 	put_pid(vcpu->pid);
251 	kvm_arch_vcpu_uninit(vcpu);
252 	free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255 
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 	return container_of(mn, struct kvm, mmu_notifier);
260 }
261 
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 					     struct mm_struct *mm,
264 					     unsigned long address)
265 {
266 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 	int need_tlb_flush, idx;
268 
269 	/*
270 	 * When ->invalidate_page runs, the linux pte has been zapped
271 	 * already but the page is still allocated until
272 	 * ->invalidate_page returns. So if we increase the sequence
273 	 * here the kvm page fault will notice if the spte can't be
274 	 * established because the page is going to be freed. If
275 	 * instead the kvm page fault establishes the spte before
276 	 * ->invalidate_page runs, kvm_unmap_hva will release it
277 	 * before returning.
278 	 *
279 	 * The sequence increase only need to be seen at spin_unlock
280 	 * time, and not at spin_lock time.
281 	 *
282 	 * Increasing the sequence after the spin_unlock would be
283 	 * unsafe because the kvm page fault could then establish the
284 	 * pte after kvm_unmap_hva returned, without noticing the page
285 	 * is going to be freed.
286 	 */
287 	idx = srcu_read_lock(&kvm->srcu);
288 	spin_lock(&kvm->mmu_lock);
289 
290 	kvm->mmu_notifier_seq++;
291 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 	/* we've to flush the tlb before the pages can be freed */
293 	if (need_tlb_flush)
294 		kvm_flush_remote_tlbs(kvm);
295 
296 	spin_unlock(&kvm->mmu_lock);
297 
298 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299 
300 	srcu_read_unlock(&kvm->srcu, idx);
301 }
302 
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 					struct mm_struct *mm,
305 					unsigned long address,
306 					pte_t pte)
307 {
308 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 	int idx;
310 
311 	idx = srcu_read_lock(&kvm->srcu);
312 	spin_lock(&kvm->mmu_lock);
313 	kvm->mmu_notifier_seq++;
314 	kvm_set_spte_hva(kvm, address, pte);
315 	spin_unlock(&kvm->mmu_lock);
316 	srcu_read_unlock(&kvm->srcu, idx);
317 }
318 
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 						    struct mm_struct *mm,
321 						    unsigned long start,
322 						    unsigned long end)
323 {
324 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 	int need_tlb_flush = 0, idx;
326 
327 	idx = srcu_read_lock(&kvm->srcu);
328 	spin_lock(&kvm->mmu_lock);
329 	/*
330 	 * The count increase must become visible at unlock time as no
331 	 * spte can be established without taking the mmu_lock and
332 	 * count is also read inside the mmu_lock critical section.
333 	 */
334 	kvm->mmu_notifier_count++;
335 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336 	need_tlb_flush |= kvm->tlbs_dirty;
337 	/* we've to flush the tlb before the pages can be freed */
338 	if (need_tlb_flush)
339 		kvm_flush_remote_tlbs(kvm);
340 
341 	spin_unlock(&kvm->mmu_lock);
342 	srcu_read_unlock(&kvm->srcu, idx);
343 }
344 
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346 						  struct mm_struct *mm,
347 						  unsigned long start,
348 						  unsigned long end)
349 {
350 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 
352 	spin_lock(&kvm->mmu_lock);
353 	/*
354 	 * This sequence increase will notify the kvm page fault that
355 	 * the page that is going to be mapped in the spte could have
356 	 * been freed.
357 	 */
358 	kvm->mmu_notifier_seq++;
359 	smp_wmb();
360 	/*
361 	 * The above sequence increase must be visible before the
362 	 * below count decrease, which is ensured by the smp_wmb above
363 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 	 */
365 	kvm->mmu_notifier_count--;
366 	spin_unlock(&kvm->mmu_lock);
367 
368 	BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370 
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372 					      struct mm_struct *mm,
373 					      unsigned long start,
374 					      unsigned long end)
375 {
376 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 	int young, idx;
378 
379 	idx = srcu_read_lock(&kvm->srcu);
380 	spin_lock(&kvm->mmu_lock);
381 
382 	young = kvm_age_hva(kvm, start, end);
383 	if (young)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 	srcu_read_unlock(&kvm->srcu, idx);
388 
389 	return young;
390 }
391 
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393 					struct mm_struct *mm,
394 					unsigned long start,
395 					unsigned long end)
396 {
397 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 	int young, idx;
399 
400 	idx = srcu_read_lock(&kvm->srcu);
401 	spin_lock(&kvm->mmu_lock);
402 	/*
403 	 * Even though we do not flush TLB, this will still adversely
404 	 * affect performance on pre-Haswell Intel EPT, where there is
405 	 * no EPT Access Bit to clear so that we have to tear down EPT
406 	 * tables instead. If we find this unacceptable, we can always
407 	 * add a parameter to kvm_age_hva so that it effectively doesn't
408 	 * do anything on clear_young.
409 	 *
410 	 * Also note that currently we never issue secondary TLB flushes
411 	 * from clear_young, leaving this job up to the regular system
412 	 * cadence. If we find this inaccurate, we might come up with a
413 	 * more sophisticated heuristic later.
414 	 */
415 	young = kvm_age_hva(kvm, start, end);
416 	spin_unlock(&kvm->mmu_lock);
417 	srcu_read_unlock(&kvm->srcu, idx);
418 
419 	return young;
420 }
421 
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423 				       struct mm_struct *mm,
424 				       unsigned long address)
425 {
426 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 	int young, idx;
428 
429 	idx = srcu_read_lock(&kvm->srcu);
430 	spin_lock(&kvm->mmu_lock);
431 	young = kvm_test_age_hva(kvm, address);
432 	spin_unlock(&kvm->mmu_lock);
433 	srcu_read_unlock(&kvm->srcu, idx);
434 
435 	return young;
436 }
437 
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439 				     struct mm_struct *mm)
440 {
441 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 	int idx;
443 
444 	idx = srcu_read_lock(&kvm->srcu);
445 	kvm_arch_flush_shadow_all(kvm);
446 	srcu_read_unlock(&kvm->srcu, idx);
447 }
448 
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
451 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
452 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
453 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
454 	.clear_young		= kvm_mmu_notifier_clear_young,
455 	.test_young		= kvm_mmu_notifier_test_young,
456 	.change_pte		= kvm_mmu_notifier_change_pte,
457 	.release		= kvm_mmu_notifier_release,
458 };
459 
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465 
466 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467 
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470 	return 0;
471 }
472 
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474 
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477 	int i;
478 	struct kvm_memslots *slots;
479 
480 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481 	if (!slots)
482 		return NULL;
483 
484 	/*
485 	 * Init kvm generation close to the maximum to easily test the
486 	 * code of handling generation number wrap-around.
487 	 */
488 	slots->generation = -150;
489 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490 		slots->id_to_index[i] = slots->memslots[i].id = i;
491 
492 	return slots;
493 }
494 
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497 	if (!memslot->dirty_bitmap)
498 		return;
499 
500 	kvfree(memslot->dirty_bitmap);
501 	memslot->dirty_bitmap = NULL;
502 }
503 
504 /*
505  * Free any memory in @free but not in @dont.
506  */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508 			      struct kvm_memory_slot *dont)
509 {
510 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511 		kvm_destroy_dirty_bitmap(free);
512 
513 	kvm_arch_free_memslot(kvm, free, dont);
514 
515 	free->npages = 0;
516 }
517 
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520 	struct kvm_memory_slot *memslot;
521 
522 	if (!slots)
523 		return;
524 
525 	kvm_for_each_memslot(memslot, slots)
526 		kvm_free_memslot(kvm, memslot, NULL);
527 
528 	kvfree(slots);
529 }
530 
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533 	int r, i;
534 	struct kvm *kvm = kvm_arch_alloc_vm();
535 
536 	if (!kvm)
537 		return ERR_PTR(-ENOMEM);
538 
539 	r = kvm_arch_init_vm(kvm, type);
540 	if (r)
541 		goto out_err_no_disable;
542 
543 	r = hardware_enable_all();
544 	if (r)
545 		goto out_err_no_disable;
546 
547 #ifdef CONFIG_HAVE_KVM_IRQFD
548 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
549 #endif
550 
551 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
552 
553 	r = -ENOMEM;
554 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
555 		kvm->memslots[i] = kvm_alloc_memslots();
556 		if (!kvm->memslots[i])
557 			goto out_err_no_srcu;
558 	}
559 
560 	if (init_srcu_struct(&kvm->srcu))
561 		goto out_err_no_srcu;
562 	if (init_srcu_struct(&kvm->irq_srcu))
563 		goto out_err_no_irq_srcu;
564 	for (i = 0; i < KVM_NR_BUSES; i++) {
565 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
566 					GFP_KERNEL);
567 		if (!kvm->buses[i])
568 			goto out_err;
569 	}
570 
571 	spin_lock_init(&kvm->mmu_lock);
572 	kvm->mm = current->mm;
573 	atomic_inc(&kvm->mm->mm_count);
574 	kvm_eventfd_init(kvm);
575 	mutex_init(&kvm->lock);
576 	mutex_init(&kvm->irq_lock);
577 	mutex_init(&kvm->slots_lock);
578 	atomic_set(&kvm->users_count, 1);
579 	INIT_LIST_HEAD(&kvm->devices);
580 
581 	r = kvm_init_mmu_notifier(kvm);
582 	if (r)
583 		goto out_err;
584 
585 	spin_lock(&kvm_lock);
586 	list_add(&kvm->vm_list, &vm_list);
587 	spin_unlock(&kvm_lock);
588 
589 	preempt_notifier_inc();
590 
591 	return kvm;
592 
593 out_err:
594 	cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596 	cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598 	hardware_disable_all();
599 out_err_no_disable:
600 	for (i = 0; i < KVM_NR_BUSES; i++)
601 		kfree(kvm->buses[i]);
602 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603 		kvm_free_memslots(kvm, kvm->memslots[i]);
604 	kvm_arch_free_vm(kvm);
605 	return ERR_PTR(r);
606 }
607 
608 /*
609  * Avoid using vmalloc for a small buffer.
610  * Should not be used when the size is statically known.
611  */
612 void *kvm_kvzalloc(unsigned long size)
613 {
614 	if (size > PAGE_SIZE)
615 		return vzalloc(size);
616 	else
617 		return kzalloc(size, GFP_KERNEL);
618 }
619 
620 static void kvm_destroy_devices(struct kvm *kvm)
621 {
622 	struct kvm_device *dev, *tmp;
623 
624 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
625 		list_del(&dev->vm_node);
626 		dev->ops->destroy(dev);
627 	}
628 }
629 
630 static void kvm_destroy_vm(struct kvm *kvm)
631 {
632 	int i;
633 	struct mm_struct *mm = kvm->mm;
634 
635 	kvm_arch_sync_events(kvm);
636 	spin_lock(&kvm_lock);
637 	list_del(&kvm->vm_list);
638 	spin_unlock(&kvm_lock);
639 	kvm_free_irq_routing(kvm);
640 	for (i = 0; i < KVM_NR_BUSES; i++)
641 		kvm_io_bus_destroy(kvm->buses[i]);
642 	kvm_coalesced_mmio_free(kvm);
643 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
644 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
645 #else
646 	kvm_arch_flush_shadow_all(kvm);
647 #endif
648 	kvm_arch_destroy_vm(kvm);
649 	kvm_destroy_devices(kvm);
650 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
651 		kvm_free_memslots(kvm, kvm->memslots[i]);
652 	cleanup_srcu_struct(&kvm->irq_srcu);
653 	cleanup_srcu_struct(&kvm->srcu);
654 	kvm_arch_free_vm(kvm);
655 	preempt_notifier_dec();
656 	hardware_disable_all();
657 	mmdrop(mm);
658 }
659 
660 void kvm_get_kvm(struct kvm *kvm)
661 {
662 	atomic_inc(&kvm->users_count);
663 }
664 EXPORT_SYMBOL_GPL(kvm_get_kvm);
665 
666 void kvm_put_kvm(struct kvm *kvm)
667 {
668 	if (atomic_dec_and_test(&kvm->users_count))
669 		kvm_destroy_vm(kvm);
670 }
671 EXPORT_SYMBOL_GPL(kvm_put_kvm);
672 
673 
674 static int kvm_vm_release(struct inode *inode, struct file *filp)
675 {
676 	struct kvm *kvm = filp->private_data;
677 
678 	kvm_irqfd_release(kvm);
679 
680 	kvm_put_kvm(kvm);
681 	return 0;
682 }
683 
684 /*
685  * Allocation size is twice as large as the actual dirty bitmap size.
686  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
687  */
688 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
689 {
690 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
691 
692 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
693 	if (!memslot->dirty_bitmap)
694 		return -ENOMEM;
695 
696 	return 0;
697 }
698 
699 /*
700  * Insert memslot and re-sort memslots based on their GFN,
701  * so binary search could be used to lookup GFN.
702  * Sorting algorithm takes advantage of having initially
703  * sorted array and known changed memslot position.
704  */
705 static void update_memslots(struct kvm_memslots *slots,
706 			    struct kvm_memory_slot *new)
707 {
708 	int id = new->id;
709 	int i = slots->id_to_index[id];
710 	struct kvm_memory_slot *mslots = slots->memslots;
711 
712 	WARN_ON(mslots[i].id != id);
713 	if (!new->npages) {
714 		WARN_ON(!mslots[i].npages);
715 		if (mslots[i].npages)
716 			slots->used_slots--;
717 	} else {
718 		if (!mslots[i].npages)
719 			slots->used_slots++;
720 	}
721 
722 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
723 	       new->base_gfn <= mslots[i + 1].base_gfn) {
724 		if (!mslots[i + 1].npages)
725 			break;
726 		mslots[i] = mslots[i + 1];
727 		slots->id_to_index[mslots[i].id] = i;
728 		i++;
729 	}
730 
731 	/*
732 	 * The ">=" is needed when creating a slot with base_gfn == 0,
733 	 * so that it moves before all those with base_gfn == npages == 0.
734 	 *
735 	 * On the other hand, if new->npages is zero, the above loop has
736 	 * already left i pointing to the beginning of the empty part of
737 	 * mslots, and the ">=" would move the hole backwards in this
738 	 * case---which is wrong.  So skip the loop when deleting a slot.
739 	 */
740 	if (new->npages) {
741 		while (i > 0 &&
742 		       new->base_gfn >= mslots[i - 1].base_gfn) {
743 			mslots[i] = mslots[i - 1];
744 			slots->id_to_index[mslots[i].id] = i;
745 			i--;
746 		}
747 	} else
748 		WARN_ON_ONCE(i != slots->used_slots);
749 
750 	mslots[i] = *new;
751 	slots->id_to_index[mslots[i].id] = i;
752 }
753 
754 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
755 {
756 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
757 
758 #ifdef __KVM_HAVE_READONLY_MEM
759 	valid_flags |= KVM_MEM_READONLY;
760 #endif
761 
762 	if (mem->flags & ~valid_flags)
763 		return -EINVAL;
764 
765 	return 0;
766 }
767 
768 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
769 		int as_id, struct kvm_memslots *slots)
770 {
771 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
772 
773 	/*
774 	 * Set the low bit in the generation, which disables SPTE caching
775 	 * until the end of synchronize_srcu_expedited.
776 	 */
777 	WARN_ON(old_memslots->generation & 1);
778 	slots->generation = old_memslots->generation + 1;
779 
780 	rcu_assign_pointer(kvm->memslots[as_id], slots);
781 	synchronize_srcu_expedited(&kvm->srcu);
782 
783 	/*
784 	 * Increment the new memslot generation a second time. This prevents
785 	 * vm exits that race with memslot updates from caching a memslot
786 	 * generation that will (potentially) be valid forever.
787 	 */
788 	slots->generation++;
789 
790 	kvm_arch_memslots_updated(kvm, slots);
791 
792 	return old_memslots;
793 }
794 
795 /*
796  * Allocate some memory and give it an address in the guest physical address
797  * space.
798  *
799  * Discontiguous memory is allowed, mostly for framebuffers.
800  *
801  * Must be called holding kvm->slots_lock for write.
802  */
803 int __kvm_set_memory_region(struct kvm *kvm,
804 			    const struct kvm_userspace_memory_region *mem)
805 {
806 	int r;
807 	gfn_t base_gfn;
808 	unsigned long npages;
809 	struct kvm_memory_slot *slot;
810 	struct kvm_memory_slot old, new;
811 	struct kvm_memslots *slots = NULL, *old_memslots;
812 	int as_id, id;
813 	enum kvm_mr_change change;
814 
815 	r = check_memory_region_flags(mem);
816 	if (r)
817 		goto out;
818 
819 	r = -EINVAL;
820 	as_id = mem->slot >> 16;
821 	id = (u16)mem->slot;
822 
823 	/* General sanity checks */
824 	if (mem->memory_size & (PAGE_SIZE - 1))
825 		goto out;
826 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
827 		goto out;
828 	/* We can read the guest memory with __xxx_user() later on. */
829 	if ((id < KVM_USER_MEM_SLOTS) &&
830 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
831 	     !access_ok(VERIFY_WRITE,
832 			(void __user *)(unsigned long)mem->userspace_addr,
833 			mem->memory_size)))
834 		goto out;
835 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
836 		goto out;
837 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
838 		goto out;
839 
840 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
841 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
842 	npages = mem->memory_size >> PAGE_SHIFT;
843 
844 	if (npages > KVM_MEM_MAX_NR_PAGES)
845 		goto out;
846 
847 	new = old = *slot;
848 
849 	new.id = id;
850 	new.base_gfn = base_gfn;
851 	new.npages = npages;
852 	new.flags = mem->flags;
853 
854 	if (npages) {
855 		if (!old.npages)
856 			change = KVM_MR_CREATE;
857 		else { /* Modify an existing slot. */
858 			if ((mem->userspace_addr != old.userspace_addr) ||
859 			    (npages != old.npages) ||
860 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
861 				goto out;
862 
863 			if (base_gfn != old.base_gfn)
864 				change = KVM_MR_MOVE;
865 			else if (new.flags != old.flags)
866 				change = KVM_MR_FLAGS_ONLY;
867 			else { /* Nothing to change. */
868 				r = 0;
869 				goto out;
870 			}
871 		}
872 	} else {
873 		if (!old.npages)
874 			goto out;
875 
876 		change = KVM_MR_DELETE;
877 		new.base_gfn = 0;
878 		new.flags = 0;
879 	}
880 
881 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
882 		/* Check for overlaps */
883 		r = -EEXIST;
884 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
885 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
886 			    (slot->id == id))
887 				continue;
888 			if (!((base_gfn + npages <= slot->base_gfn) ||
889 			      (base_gfn >= slot->base_gfn + slot->npages)))
890 				goto out;
891 		}
892 	}
893 
894 	/* Free page dirty bitmap if unneeded */
895 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
896 		new.dirty_bitmap = NULL;
897 
898 	r = -ENOMEM;
899 	if (change == KVM_MR_CREATE) {
900 		new.userspace_addr = mem->userspace_addr;
901 
902 		if (kvm_arch_create_memslot(kvm, &new, npages))
903 			goto out_free;
904 	}
905 
906 	/* Allocate page dirty bitmap if needed */
907 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
908 		if (kvm_create_dirty_bitmap(&new) < 0)
909 			goto out_free;
910 	}
911 
912 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
913 	if (!slots)
914 		goto out_free;
915 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
916 
917 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
918 		slot = id_to_memslot(slots, id);
919 		slot->flags |= KVM_MEMSLOT_INVALID;
920 
921 		old_memslots = install_new_memslots(kvm, as_id, slots);
922 
923 		/* slot was deleted or moved, clear iommu mapping */
924 		kvm_iommu_unmap_pages(kvm, &old);
925 		/* From this point no new shadow pages pointing to a deleted,
926 		 * or moved, memslot will be created.
927 		 *
928 		 * validation of sp->gfn happens in:
929 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
930 		 *	- kvm_is_visible_gfn (mmu_check_roots)
931 		 */
932 		kvm_arch_flush_shadow_memslot(kvm, slot);
933 
934 		/*
935 		 * We can re-use the old_memslots from above, the only difference
936 		 * from the currently installed memslots is the invalid flag.  This
937 		 * will get overwritten by update_memslots anyway.
938 		 */
939 		slots = old_memslots;
940 	}
941 
942 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
943 	if (r)
944 		goto out_slots;
945 
946 	/* actual memory is freed via old in kvm_free_memslot below */
947 	if (change == KVM_MR_DELETE) {
948 		new.dirty_bitmap = NULL;
949 		memset(&new.arch, 0, sizeof(new.arch));
950 	}
951 
952 	update_memslots(slots, &new);
953 	old_memslots = install_new_memslots(kvm, as_id, slots);
954 
955 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
956 
957 	kvm_free_memslot(kvm, &old, &new);
958 	kvfree(old_memslots);
959 
960 	/*
961 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
962 	 * un-mapped and re-mapped if their base changes.  Since base change
963 	 * unmapping is handled above with slot deletion, mapping alone is
964 	 * needed here.  Anything else the iommu might care about for existing
965 	 * slots (size changes, userspace addr changes and read-only flag
966 	 * changes) is disallowed above, so any other attribute changes getting
967 	 * here can be skipped.
968 	 */
969 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
970 		r = kvm_iommu_map_pages(kvm, &new);
971 		return r;
972 	}
973 
974 	return 0;
975 
976 out_slots:
977 	kvfree(slots);
978 out_free:
979 	kvm_free_memslot(kvm, &new, &old);
980 out:
981 	return r;
982 }
983 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
984 
985 int kvm_set_memory_region(struct kvm *kvm,
986 			  const struct kvm_userspace_memory_region *mem)
987 {
988 	int r;
989 
990 	mutex_lock(&kvm->slots_lock);
991 	r = __kvm_set_memory_region(kvm, mem);
992 	mutex_unlock(&kvm->slots_lock);
993 	return r;
994 }
995 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
996 
997 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
998 					  struct kvm_userspace_memory_region *mem)
999 {
1000 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1001 		return -EINVAL;
1002 
1003 	return kvm_set_memory_region(kvm, mem);
1004 }
1005 
1006 int kvm_get_dirty_log(struct kvm *kvm,
1007 			struct kvm_dirty_log *log, int *is_dirty)
1008 {
1009 	struct kvm_memslots *slots;
1010 	struct kvm_memory_slot *memslot;
1011 	int r, i, as_id, id;
1012 	unsigned long n;
1013 	unsigned long any = 0;
1014 
1015 	r = -EINVAL;
1016 	as_id = log->slot >> 16;
1017 	id = (u16)log->slot;
1018 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1019 		goto out;
1020 
1021 	slots = __kvm_memslots(kvm, as_id);
1022 	memslot = id_to_memslot(slots, id);
1023 	r = -ENOENT;
1024 	if (!memslot->dirty_bitmap)
1025 		goto out;
1026 
1027 	n = kvm_dirty_bitmap_bytes(memslot);
1028 
1029 	for (i = 0; !any && i < n/sizeof(long); ++i)
1030 		any = memslot->dirty_bitmap[i];
1031 
1032 	r = -EFAULT;
1033 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1034 		goto out;
1035 
1036 	if (any)
1037 		*is_dirty = 1;
1038 
1039 	r = 0;
1040 out:
1041 	return r;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1044 
1045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1046 /**
1047  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1048  *	are dirty write protect them for next write.
1049  * @kvm:	pointer to kvm instance
1050  * @log:	slot id and address to which we copy the log
1051  * @is_dirty:	flag set if any page is dirty
1052  *
1053  * We need to keep it in mind that VCPU threads can write to the bitmap
1054  * concurrently. So, to avoid losing track of dirty pages we keep the
1055  * following order:
1056  *
1057  *    1. Take a snapshot of the bit and clear it if needed.
1058  *    2. Write protect the corresponding page.
1059  *    3. Copy the snapshot to the userspace.
1060  *    4. Upon return caller flushes TLB's if needed.
1061  *
1062  * Between 2 and 4, the guest may write to the page using the remaining TLB
1063  * entry.  This is not a problem because the page is reported dirty using
1064  * the snapshot taken before and step 4 ensures that writes done after
1065  * exiting to userspace will be logged for the next call.
1066  *
1067  */
1068 int kvm_get_dirty_log_protect(struct kvm *kvm,
1069 			struct kvm_dirty_log *log, bool *is_dirty)
1070 {
1071 	struct kvm_memslots *slots;
1072 	struct kvm_memory_slot *memslot;
1073 	int r, i, as_id, id;
1074 	unsigned long n;
1075 	unsigned long *dirty_bitmap;
1076 	unsigned long *dirty_bitmap_buffer;
1077 
1078 	r = -EINVAL;
1079 	as_id = log->slot >> 16;
1080 	id = (u16)log->slot;
1081 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1082 		goto out;
1083 
1084 	slots = __kvm_memslots(kvm, as_id);
1085 	memslot = id_to_memslot(slots, id);
1086 
1087 	dirty_bitmap = memslot->dirty_bitmap;
1088 	r = -ENOENT;
1089 	if (!dirty_bitmap)
1090 		goto out;
1091 
1092 	n = kvm_dirty_bitmap_bytes(memslot);
1093 
1094 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1095 	memset(dirty_bitmap_buffer, 0, n);
1096 
1097 	spin_lock(&kvm->mmu_lock);
1098 	*is_dirty = false;
1099 	for (i = 0; i < n / sizeof(long); i++) {
1100 		unsigned long mask;
1101 		gfn_t offset;
1102 
1103 		if (!dirty_bitmap[i])
1104 			continue;
1105 
1106 		*is_dirty = true;
1107 
1108 		mask = xchg(&dirty_bitmap[i], 0);
1109 		dirty_bitmap_buffer[i] = mask;
1110 
1111 		if (mask) {
1112 			offset = i * BITS_PER_LONG;
1113 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1114 								offset, mask);
1115 		}
1116 	}
1117 
1118 	spin_unlock(&kvm->mmu_lock);
1119 
1120 	r = -EFAULT;
1121 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1122 		goto out;
1123 
1124 	r = 0;
1125 out:
1126 	return r;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1129 #endif
1130 
1131 bool kvm_largepages_enabled(void)
1132 {
1133 	return largepages_enabled;
1134 }
1135 
1136 void kvm_disable_largepages(void)
1137 {
1138 	largepages_enabled = false;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1141 
1142 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1143 {
1144 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1145 }
1146 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1147 
1148 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1149 {
1150 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1151 }
1152 
1153 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1154 {
1155 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1156 
1157 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1158 	      memslot->flags & KVM_MEMSLOT_INVALID)
1159 		return false;
1160 
1161 	return true;
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1164 
1165 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1166 {
1167 	struct vm_area_struct *vma;
1168 	unsigned long addr, size;
1169 
1170 	size = PAGE_SIZE;
1171 
1172 	addr = gfn_to_hva(kvm, gfn);
1173 	if (kvm_is_error_hva(addr))
1174 		return PAGE_SIZE;
1175 
1176 	down_read(&current->mm->mmap_sem);
1177 	vma = find_vma(current->mm, addr);
1178 	if (!vma)
1179 		goto out;
1180 
1181 	size = vma_kernel_pagesize(vma);
1182 
1183 out:
1184 	up_read(&current->mm->mmap_sem);
1185 
1186 	return size;
1187 }
1188 
1189 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1190 {
1191 	return slot->flags & KVM_MEM_READONLY;
1192 }
1193 
1194 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1195 				       gfn_t *nr_pages, bool write)
1196 {
1197 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1198 		return KVM_HVA_ERR_BAD;
1199 
1200 	if (memslot_is_readonly(slot) && write)
1201 		return KVM_HVA_ERR_RO_BAD;
1202 
1203 	if (nr_pages)
1204 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1205 
1206 	return __gfn_to_hva_memslot(slot, gfn);
1207 }
1208 
1209 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 				     gfn_t *nr_pages)
1211 {
1212 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1213 }
1214 
1215 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1216 					gfn_t gfn)
1217 {
1218 	return gfn_to_hva_many(slot, gfn, NULL);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1221 
1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1223 {
1224 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1225 }
1226 EXPORT_SYMBOL_GPL(gfn_to_hva);
1227 
1228 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1229 {
1230 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1233 
1234 /*
1235  * If writable is set to false, the hva returned by this function is only
1236  * allowed to be read.
1237  */
1238 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1239 				      gfn_t gfn, bool *writable)
1240 {
1241 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1242 
1243 	if (!kvm_is_error_hva(hva) && writable)
1244 		*writable = !memslot_is_readonly(slot);
1245 
1246 	return hva;
1247 }
1248 
1249 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1250 {
1251 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1252 
1253 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1254 }
1255 
1256 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1257 {
1258 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1259 
1260 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1261 }
1262 
1263 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1264 	unsigned long start, int write, struct page **page)
1265 {
1266 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1267 
1268 	if (write)
1269 		flags |= FOLL_WRITE;
1270 
1271 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1272 }
1273 
1274 static inline int check_user_page_hwpoison(unsigned long addr)
1275 {
1276 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1277 
1278 	rc = __get_user_pages(current, current->mm, addr, 1,
1279 			      flags, NULL, NULL, NULL);
1280 	return rc == -EHWPOISON;
1281 }
1282 
1283 /*
1284  * The atomic path to get the writable pfn which will be stored in @pfn,
1285  * true indicates success, otherwise false is returned.
1286  */
1287 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1288 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1289 {
1290 	struct page *page[1];
1291 	int npages;
1292 
1293 	if (!(async || atomic))
1294 		return false;
1295 
1296 	/*
1297 	 * Fast pin a writable pfn only if it is a write fault request
1298 	 * or the caller allows to map a writable pfn for a read fault
1299 	 * request.
1300 	 */
1301 	if (!(write_fault || writable))
1302 		return false;
1303 
1304 	npages = __get_user_pages_fast(addr, 1, 1, page);
1305 	if (npages == 1) {
1306 		*pfn = page_to_pfn(page[0]);
1307 
1308 		if (writable)
1309 			*writable = true;
1310 		return true;
1311 	}
1312 
1313 	return false;
1314 }
1315 
1316 /*
1317  * The slow path to get the pfn of the specified host virtual address,
1318  * 1 indicates success, -errno is returned if error is detected.
1319  */
1320 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1321 			   bool *writable, kvm_pfn_t *pfn)
1322 {
1323 	struct page *page[1];
1324 	int npages = 0;
1325 
1326 	might_sleep();
1327 
1328 	if (writable)
1329 		*writable = write_fault;
1330 
1331 	if (async) {
1332 		down_read(&current->mm->mmap_sem);
1333 		npages = get_user_page_nowait(current, current->mm,
1334 					      addr, write_fault, page);
1335 		up_read(&current->mm->mmap_sem);
1336 	} else
1337 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1338 						   write_fault, 0, page,
1339 						   FOLL_TOUCH|FOLL_HWPOISON);
1340 	if (npages != 1)
1341 		return npages;
1342 
1343 	/* map read fault as writable if possible */
1344 	if (unlikely(!write_fault) && writable) {
1345 		struct page *wpage[1];
1346 
1347 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1348 		if (npages == 1) {
1349 			*writable = true;
1350 			put_page(page[0]);
1351 			page[0] = wpage[0];
1352 		}
1353 
1354 		npages = 1;
1355 	}
1356 	*pfn = page_to_pfn(page[0]);
1357 	return npages;
1358 }
1359 
1360 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1361 {
1362 	if (unlikely(!(vma->vm_flags & VM_READ)))
1363 		return false;
1364 
1365 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1366 		return false;
1367 
1368 	return true;
1369 }
1370 
1371 /*
1372  * Pin guest page in memory and return its pfn.
1373  * @addr: host virtual address which maps memory to the guest
1374  * @atomic: whether this function can sleep
1375  * @async: whether this function need to wait IO complete if the
1376  *         host page is not in the memory
1377  * @write_fault: whether we should get a writable host page
1378  * @writable: whether it allows to map a writable host page for !@write_fault
1379  *
1380  * The function will map a writable host page for these two cases:
1381  * 1): @write_fault = true
1382  * 2): @write_fault = false && @writable, @writable will tell the caller
1383  *     whether the mapping is writable.
1384  */
1385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1386 			bool write_fault, bool *writable)
1387 {
1388 	struct vm_area_struct *vma;
1389 	kvm_pfn_t pfn = 0;
1390 	int npages;
1391 
1392 	/* we can do it either atomically or asynchronously, not both */
1393 	BUG_ON(atomic && async);
1394 
1395 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1396 		return pfn;
1397 
1398 	if (atomic)
1399 		return KVM_PFN_ERR_FAULT;
1400 
1401 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1402 	if (npages == 1)
1403 		return pfn;
1404 
1405 	down_read(&current->mm->mmap_sem);
1406 	if (npages == -EHWPOISON ||
1407 	      (!async && check_user_page_hwpoison(addr))) {
1408 		pfn = KVM_PFN_ERR_HWPOISON;
1409 		goto exit;
1410 	}
1411 
1412 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1413 
1414 	if (vma == NULL)
1415 		pfn = KVM_PFN_ERR_FAULT;
1416 	else if ((vma->vm_flags & VM_PFNMAP)) {
1417 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1418 			vma->vm_pgoff;
1419 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1420 	} else {
1421 		if (async && vma_is_valid(vma, write_fault))
1422 			*async = true;
1423 		pfn = KVM_PFN_ERR_FAULT;
1424 	}
1425 exit:
1426 	up_read(&current->mm->mmap_sem);
1427 	return pfn;
1428 }
1429 
1430 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1431 			       bool atomic, bool *async, bool write_fault,
1432 			       bool *writable)
1433 {
1434 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1435 
1436 	if (addr == KVM_HVA_ERR_RO_BAD) {
1437 		if (writable)
1438 			*writable = false;
1439 		return KVM_PFN_ERR_RO_FAULT;
1440 	}
1441 
1442 	if (kvm_is_error_hva(addr)) {
1443 		if (writable)
1444 			*writable = false;
1445 		return KVM_PFN_NOSLOT;
1446 	}
1447 
1448 	/* Do not map writable pfn in the readonly memslot. */
1449 	if (writable && memslot_is_readonly(slot)) {
1450 		*writable = false;
1451 		writable = NULL;
1452 	}
1453 
1454 	return hva_to_pfn(addr, atomic, async, write_fault,
1455 			  writable);
1456 }
1457 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1458 
1459 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1460 		      bool *writable)
1461 {
1462 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1463 				    write_fault, writable);
1464 }
1465 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1466 
1467 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1468 {
1469 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1472 
1473 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1474 {
1475 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1476 }
1477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1478 
1479 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1480 {
1481 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1482 }
1483 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1484 
1485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1486 {
1487 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1488 }
1489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1490 
1491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1492 {
1493 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1494 }
1495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1496 
1497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1498 {
1499 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1502 
1503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1504 			    struct page **pages, int nr_pages)
1505 {
1506 	unsigned long addr;
1507 	gfn_t entry;
1508 
1509 	addr = gfn_to_hva_many(slot, gfn, &entry);
1510 	if (kvm_is_error_hva(addr))
1511 		return -1;
1512 
1513 	if (entry < nr_pages)
1514 		return 0;
1515 
1516 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1517 }
1518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1519 
1520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1521 {
1522 	if (is_error_noslot_pfn(pfn))
1523 		return KVM_ERR_PTR_BAD_PAGE;
1524 
1525 	if (kvm_is_reserved_pfn(pfn)) {
1526 		WARN_ON(1);
1527 		return KVM_ERR_PTR_BAD_PAGE;
1528 	}
1529 
1530 	return pfn_to_page(pfn);
1531 }
1532 
1533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1534 {
1535 	kvm_pfn_t pfn;
1536 
1537 	pfn = gfn_to_pfn(kvm, gfn);
1538 
1539 	return kvm_pfn_to_page(pfn);
1540 }
1541 EXPORT_SYMBOL_GPL(gfn_to_page);
1542 
1543 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1544 {
1545 	kvm_pfn_t pfn;
1546 
1547 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1548 
1549 	return kvm_pfn_to_page(pfn);
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1552 
1553 void kvm_release_page_clean(struct page *page)
1554 {
1555 	WARN_ON(is_error_page(page));
1556 
1557 	kvm_release_pfn_clean(page_to_pfn(page));
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1560 
1561 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1562 {
1563 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1564 		put_page(pfn_to_page(pfn));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1567 
1568 void kvm_release_page_dirty(struct page *page)
1569 {
1570 	WARN_ON(is_error_page(page));
1571 
1572 	kvm_release_pfn_dirty(page_to_pfn(page));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1575 
1576 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1577 {
1578 	kvm_set_pfn_dirty(pfn);
1579 	kvm_release_pfn_clean(pfn);
1580 }
1581 
1582 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1583 {
1584 	if (!kvm_is_reserved_pfn(pfn)) {
1585 		struct page *page = pfn_to_page(pfn);
1586 
1587 		if (!PageReserved(page))
1588 			SetPageDirty(page);
1589 	}
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1592 
1593 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1594 {
1595 	if (!kvm_is_reserved_pfn(pfn))
1596 		mark_page_accessed(pfn_to_page(pfn));
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1599 
1600 void kvm_get_pfn(kvm_pfn_t pfn)
1601 {
1602 	if (!kvm_is_reserved_pfn(pfn))
1603 		get_page(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1606 
1607 static int next_segment(unsigned long len, int offset)
1608 {
1609 	if (len > PAGE_SIZE - offset)
1610 		return PAGE_SIZE - offset;
1611 	else
1612 		return len;
1613 }
1614 
1615 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1616 				 void *data, int offset, int len)
1617 {
1618 	int r;
1619 	unsigned long addr;
1620 
1621 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1622 	if (kvm_is_error_hva(addr))
1623 		return -EFAULT;
1624 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1625 	if (r)
1626 		return -EFAULT;
1627 	return 0;
1628 }
1629 
1630 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1631 			int len)
1632 {
1633 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1634 
1635 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1638 
1639 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1640 			     int offset, int len)
1641 {
1642 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1643 
1644 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1647 
1648 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1649 {
1650 	gfn_t gfn = gpa >> PAGE_SHIFT;
1651 	int seg;
1652 	int offset = offset_in_page(gpa);
1653 	int ret;
1654 
1655 	while ((seg = next_segment(len, offset)) != 0) {
1656 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1657 		if (ret < 0)
1658 			return ret;
1659 		offset = 0;
1660 		len -= seg;
1661 		data += seg;
1662 		++gfn;
1663 	}
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_read_guest);
1667 
1668 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1669 {
1670 	gfn_t gfn = gpa >> PAGE_SHIFT;
1671 	int seg;
1672 	int offset = offset_in_page(gpa);
1673 	int ret;
1674 
1675 	while ((seg = next_segment(len, offset)) != 0) {
1676 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1677 		if (ret < 0)
1678 			return ret;
1679 		offset = 0;
1680 		len -= seg;
1681 		data += seg;
1682 		++gfn;
1683 	}
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1687 
1688 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1689 			           void *data, int offset, unsigned long len)
1690 {
1691 	int r;
1692 	unsigned long addr;
1693 
1694 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1695 	if (kvm_is_error_hva(addr))
1696 		return -EFAULT;
1697 	pagefault_disable();
1698 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1699 	pagefault_enable();
1700 	if (r)
1701 		return -EFAULT;
1702 	return 0;
1703 }
1704 
1705 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1706 			  unsigned long len)
1707 {
1708 	gfn_t gfn = gpa >> PAGE_SHIFT;
1709 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710 	int offset = offset_in_page(gpa);
1711 
1712 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1715 
1716 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1717 			       void *data, unsigned long len)
1718 {
1719 	gfn_t gfn = gpa >> PAGE_SHIFT;
1720 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721 	int offset = offset_in_page(gpa);
1722 
1723 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1726 
1727 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1728 			          const void *data, int offset, int len)
1729 {
1730 	int r;
1731 	unsigned long addr;
1732 
1733 	addr = gfn_to_hva_memslot(memslot, gfn);
1734 	if (kvm_is_error_hva(addr))
1735 		return -EFAULT;
1736 	r = __copy_to_user((void __user *)addr + offset, data, len);
1737 	if (r)
1738 		return -EFAULT;
1739 	mark_page_dirty_in_slot(memslot, gfn);
1740 	return 0;
1741 }
1742 
1743 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1744 			 const void *data, int offset, int len)
1745 {
1746 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747 
1748 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1751 
1752 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1753 			      const void *data, int offset, int len)
1754 {
1755 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756 
1757 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1760 
1761 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1762 		    unsigned long len)
1763 {
1764 	gfn_t gfn = gpa >> PAGE_SHIFT;
1765 	int seg;
1766 	int offset = offset_in_page(gpa);
1767 	int ret;
1768 
1769 	while ((seg = next_segment(len, offset)) != 0) {
1770 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1771 		if (ret < 0)
1772 			return ret;
1773 		offset = 0;
1774 		len -= seg;
1775 		data += seg;
1776 		++gfn;
1777 	}
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_write_guest);
1781 
1782 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1783 		         unsigned long len)
1784 {
1785 	gfn_t gfn = gpa >> PAGE_SHIFT;
1786 	int seg;
1787 	int offset = offset_in_page(gpa);
1788 	int ret;
1789 
1790 	while ((seg = next_segment(len, offset)) != 0) {
1791 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1792 		if (ret < 0)
1793 			return ret;
1794 		offset = 0;
1795 		len -= seg;
1796 		data += seg;
1797 		++gfn;
1798 	}
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1802 
1803 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 			      gpa_t gpa, unsigned long len)
1805 {
1806 	struct kvm_memslots *slots = kvm_memslots(kvm);
1807 	int offset = offset_in_page(gpa);
1808 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1809 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1810 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1811 	gfn_t nr_pages_avail;
1812 
1813 	ghc->gpa = gpa;
1814 	ghc->generation = slots->generation;
1815 	ghc->len = len;
1816 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1817 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1818 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1819 		ghc->hva += offset;
1820 	} else {
1821 		/*
1822 		 * If the requested region crosses two memslots, we still
1823 		 * verify that the entire region is valid here.
1824 		 */
1825 		while (start_gfn <= end_gfn) {
1826 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1827 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1828 						   &nr_pages_avail);
1829 			if (kvm_is_error_hva(ghc->hva))
1830 				return -EFAULT;
1831 			start_gfn += nr_pages_avail;
1832 		}
1833 		/* Use the slow path for cross page reads and writes. */
1834 		ghc->memslot = NULL;
1835 	}
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1839 
1840 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1841 			   void *data, unsigned long len)
1842 {
1843 	struct kvm_memslots *slots = kvm_memslots(kvm);
1844 	int r;
1845 
1846 	BUG_ON(len > ghc->len);
1847 
1848 	if (slots->generation != ghc->generation)
1849 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1850 
1851 	if (unlikely(!ghc->memslot))
1852 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1853 
1854 	if (kvm_is_error_hva(ghc->hva))
1855 		return -EFAULT;
1856 
1857 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1858 	if (r)
1859 		return -EFAULT;
1860 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1861 
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1865 
1866 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1867 			   void *data, unsigned long len)
1868 {
1869 	struct kvm_memslots *slots = kvm_memslots(kvm);
1870 	int r;
1871 
1872 	BUG_ON(len > ghc->len);
1873 
1874 	if (slots->generation != ghc->generation)
1875 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1876 
1877 	if (unlikely(!ghc->memslot))
1878 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1879 
1880 	if (kvm_is_error_hva(ghc->hva))
1881 		return -EFAULT;
1882 
1883 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1884 	if (r)
1885 		return -EFAULT;
1886 
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1890 
1891 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1892 {
1893 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1894 
1895 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1898 
1899 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1900 {
1901 	gfn_t gfn = gpa >> PAGE_SHIFT;
1902 	int seg;
1903 	int offset = offset_in_page(gpa);
1904 	int ret;
1905 
1906 	while ((seg = next_segment(len, offset)) != 0) {
1907 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1908 		if (ret < 0)
1909 			return ret;
1910 		offset = 0;
1911 		len -= seg;
1912 		++gfn;
1913 	}
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1917 
1918 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1919 				    gfn_t gfn)
1920 {
1921 	if (memslot && memslot->dirty_bitmap) {
1922 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1923 
1924 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1925 	}
1926 }
1927 
1928 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1929 {
1930 	struct kvm_memory_slot *memslot;
1931 
1932 	memslot = gfn_to_memslot(kvm, gfn);
1933 	mark_page_dirty_in_slot(memslot, gfn);
1934 }
1935 EXPORT_SYMBOL_GPL(mark_page_dirty);
1936 
1937 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1938 {
1939 	struct kvm_memory_slot *memslot;
1940 
1941 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1942 	mark_page_dirty_in_slot(memslot, gfn);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1945 
1946 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1947 {
1948 	unsigned int old, val, grow;
1949 
1950 	old = val = vcpu->halt_poll_ns;
1951 	grow = READ_ONCE(halt_poll_ns_grow);
1952 	/* 10us base */
1953 	if (val == 0 && grow)
1954 		val = 10000;
1955 	else
1956 		val *= grow;
1957 
1958 	if (val > halt_poll_ns)
1959 		val = halt_poll_ns;
1960 
1961 	vcpu->halt_poll_ns = val;
1962 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1963 }
1964 
1965 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1966 {
1967 	unsigned int old, val, shrink;
1968 
1969 	old = val = vcpu->halt_poll_ns;
1970 	shrink = READ_ONCE(halt_poll_ns_shrink);
1971 	if (shrink == 0)
1972 		val = 0;
1973 	else
1974 		val /= shrink;
1975 
1976 	vcpu->halt_poll_ns = val;
1977 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1978 }
1979 
1980 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1981 {
1982 	if (kvm_arch_vcpu_runnable(vcpu)) {
1983 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1984 		return -EINTR;
1985 	}
1986 	if (kvm_cpu_has_pending_timer(vcpu))
1987 		return -EINTR;
1988 	if (signal_pending(current))
1989 		return -EINTR;
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1996  */
1997 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1998 {
1999 	ktime_t start, cur;
2000 	DECLARE_SWAITQUEUE(wait);
2001 	bool waited = false;
2002 	u64 block_ns;
2003 
2004 	start = cur = ktime_get();
2005 	if (vcpu->halt_poll_ns) {
2006 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2007 
2008 		++vcpu->stat.halt_attempted_poll;
2009 		do {
2010 			/*
2011 			 * This sets KVM_REQ_UNHALT if an interrupt
2012 			 * arrives.
2013 			 */
2014 			if (kvm_vcpu_check_block(vcpu) < 0) {
2015 				++vcpu->stat.halt_successful_poll;
2016 				goto out;
2017 			}
2018 			cur = ktime_get();
2019 		} while (single_task_running() && ktime_before(cur, stop));
2020 	}
2021 
2022 	kvm_arch_vcpu_blocking(vcpu);
2023 
2024 	for (;;) {
2025 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2026 
2027 		if (kvm_vcpu_check_block(vcpu) < 0)
2028 			break;
2029 
2030 		waited = true;
2031 		schedule();
2032 	}
2033 
2034 	finish_swait(&vcpu->wq, &wait);
2035 	cur = ktime_get();
2036 
2037 	kvm_arch_vcpu_unblocking(vcpu);
2038 out:
2039 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2040 
2041 	if (halt_poll_ns) {
2042 		if (block_ns <= vcpu->halt_poll_ns)
2043 			;
2044 		/* we had a long block, shrink polling */
2045 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2046 			shrink_halt_poll_ns(vcpu);
2047 		/* we had a short halt and our poll time is too small */
2048 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2049 			block_ns < halt_poll_ns)
2050 			grow_halt_poll_ns(vcpu);
2051 	} else
2052 		vcpu->halt_poll_ns = 0;
2053 
2054 	trace_kvm_vcpu_wakeup(block_ns, waited);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2057 
2058 #ifndef CONFIG_S390
2059 /*
2060  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2061  */
2062 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2063 {
2064 	int me;
2065 	int cpu = vcpu->cpu;
2066 	struct swait_queue_head *wqp;
2067 
2068 	wqp = kvm_arch_vcpu_wq(vcpu);
2069 	if (swait_active(wqp)) {
2070 		swake_up(wqp);
2071 		++vcpu->stat.halt_wakeup;
2072 	}
2073 
2074 	me = get_cpu();
2075 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2076 		if (kvm_arch_vcpu_should_kick(vcpu))
2077 			smp_send_reschedule(cpu);
2078 	put_cpu();
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2081 #endif /* !CONFIG_S390 */
2082 
2083 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2084 {
2085 	struct pid *pid;
2086 	struct task_struct *task = NULL;
2087 	int ret = 0;
2088 
2089 	rcu_read_lock();
2090 	pid = rcu_dereference(target->pid);
2091 	if (pid)
2092 		task = get_pid_task(pid, PIDTYPE_PID);
2093 	rcu_read_unlock();
2094 	if (!task)
2095 		return ret;
2096 	ret = yield_to(task, 1);
2097 	put_task_struct(task);
2098 
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2102 
2103 /*
2104  * Helper that checks whether a VCPU is eligible for directed yield.
2105  * Most eligible candidate to yield is decided by following heuristics:
2106  *
2107  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2108  *  (preempted lock holder), indicated by @in_spin_loop.
2109  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2110  *
2111  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2112  *  chance last time (mostly it has become eligible now since we have probably
2113  *  yielded to lockholder in last iteration. This is done by toggling
2114  *  @dy_eligible each time a VCPU checked for eligibility.)
2115  *
2116  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2117  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2118  *  burning. Giving priority for a potential lock-holder increases lock
2119  *  progress.
2120  *
2121  *  Since algorithm is based on heuristics, accessing another VCPU data without
2122  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2123  *  and continue with next VCPU and so on.
2124  */
2125 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2126 {
2127 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2128 	bool eligible;
2129 
2130 	eligible = !vcpu->spin_loop.in_spin_loop ||
2131 		    vcpu->spin_loop.dy_eligible;
2132 
2133 	if (vcpu->spin_loop.in_spin_loop)
2134 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2135 
2136 	return eligible;
2137 #else
2138 	return true;
2139 #endif
2140 }
2141 
2142 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2143 {
2144 	struct kvm *kvm = me->kvm;
2145 	struct kvm_vcpu *vcpu;
2146 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2147 	int yielded = 0;
2148 	int try = 3;
2149 	int pass;
2150 	int i;
2151 
2152 	kvm_vcpu_set_in_spin_loop(me, true);
2153 	/*
2154 	 * We boost the priority of a VCPU that is runnable but not
2155 	 * currently running, because it got preempted by something
2156 	 * else and called schedule in __vcpu_run.  Hopefully that
2157 	 * VCPU is holding the lock that we need and will release it.
2158 	 * We approximate round-robin by starting at the last boosted VCPU.
2159 	 */
2160 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2161 		kvm_for_each_vcpu(i, vcpu, kvm) {
2162 			if (!pass && i <= last_boosted_vcpu) {
2163 				i = last_boosted_vcpu;
2164 				continue;
2165 			} else if (pass && i > last_boosted_vcpu)
2166 				break;
2167 			if (!ACCESS_ONCE(vcpu->preempted))
2168 				continue;
2169 			if (vcpu == me)
2170 				continue;
2171 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2172 				continue;
2173 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2174 				continue;
2175 
2176 			yielded = kvm_vcpu_yield_to(vcpu);
2177 			if (yielded > 0) {
2178 				kvm->last_boosted_vcpu = i;
2179 				break;
2180 			} else if (yielded < 0) {
2181 				try--;
2182 				if (!try)
2183 					break;
2184 			}
2185 		}
2186 	}
2187 	kvm_vcpu_set_in_spin_loop(me, false);
2188 
2189 	/* Ensure vcpu is not eligible during next spinloop */
2190 	kvm_vcpu_set_dy_eligible(me, false);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2193 
2194 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2195 {
2196 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2197 	struct page *page;
2198 
2199 	if (vmf->pgoff == 0)
2200 		page = virt_to_page(vcpu->run);
2201 #ifdef CONFIG_X86
2202 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2203 		page = virt_to_page(vcpu->arch.pio_data);
2204 #endif
2205 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2206 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2207 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2208 #endif
2209 	else
2210 		return kvm_arch_vcpu_fault(vcpu, vmf);
2211 	get_page(page);
2212 	vmf->page = page;
2213 	return 0;
2214 }
2215 
2216 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2217 	.fault = kvm_vcpu_fault,
2218 };
2219 
2220 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2221 {
2222 	vma->vm_ops = &kvm_vcpu_vm_ops;
2223 	return 0;
2224 }
2225 
2226 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2227 {
2228 	struct kvm_vcpu *vcpu = filp->private_data;
2229 
2230 	kvm_put_kvm(vcpu->kvm);
2231 	return 0;
2232 }
2233 
2234 static struct file_operations kvm_vcpu_fops = {
2235 	.release        = kvm_vcpu_release,
2236 	.unlocked_ioctl = kvm_vcpu_ioctl,
2237 #ifdef CONFIG_KVM_COMPAT
2238 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2239 #endif
2240 	.mmap           = kvm_vcpu_mmap,
2241 	.llseek		= noop_llseek,
2242 };
2243 
2244 /*
2245  * Allocates an inode for the vcpu.
2246  */
2247 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2248 {
2249 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2250 }
2251 
2252 /*
2253  * Creates some virtual cpus.  Good luck creating more than one.
2254  */
2255 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2256 {
2257 	int r;
2258 	struct kvm_vcpu *vcpu;
2259 
2260 	if (id >= KVM_MAX_VCPUS)
2261 		return -EINVAL;
2262 
2263 	vcpu = kvm_arch_vcpu_create(kvm, id);
2264 	if (IS_ERR(vcpu))
2265 		return PTR_ERR(vcpu);
2266 
2267 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2268 
2269 	r = kvm_arch_vcpu_setup(vcpu);
2270 	if (r)
2271 		goto vcpu_destroy;
2272 
2273 	mutex_lock(&kvm->lock);
2274 	if (!kvm_vcpu_compatible(vcpu)) {
2275 		r = -EINVAL;
2276 		goto unlock_vcpu_destroy;
2277 	}
2278 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2279 		r = -EINVAL;
2280 		goto unlock_vcpu_destroy;
2281 	}
2282 	if (kvm_get_vcpu_by_id(kvm, id)) {
2283 		r = -EEXIST;
2284 		goto unlock_vcpu_destroy;
2285 	}
2286 
2287 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2288 
2289 	/* Now it's all set up, let userspace reach it */
2290 	kvm_get_kvm(kvm);
2291 	r = create_vcpu_fd(vcpu);
2292 	if (r < 0) {
2293 		kvm_put_kvm(kvm);
2294 		goto unlock_vcpu_destroy;
2295 	}
2296 
2297 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2298 
2299 	/*
2300 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2301 	 * before kvm->online_vcpu's incremented value.
2302 	 */
2303 	smp_wmb();
2304 	atomic_inc(&kvm->online_vcpus);
2305 
2306 	mutex_unlock(&kvm->lock);
2307 	kvm_arch_vcpu_postcreate(vcpu);
2308 	return r;
2309 
2310 unlock_vcpu_destroy:
2311 	mutex_unlock(&kvm->lock);
2312 vcpu_destroy:
2313 	kvm_arch_vcpu_destroy(vcpu);
2314 	return r;
2315 }
2316 
2317 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2318 {
2319 	if (sigset) {
2320 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2321 		vcpu->sigset_active = 1;
2322 		vcpu->sigset = *sigset;
2323 	} else
2324 		vcpu->sigset_active = 0;
2325 	return 0;
2326 }
2327 
2328 static long kvm_vcpu_ioctl(struct file *filp,
2329 			   unsigned int ioctl, unsigned long arg)
2330 {
2331 	struct kvm_vcpu *vcpu = filp->private_data;
2332 	void __user *argp = (void __user *)arg;
2333 	int r;
2334 	struct kvm_fpu *fpu = NULL;
2335 	struct kvm_sregs *kvm_sregs = NULL;
2336 
2337 	if (vcpu->kvm->mm != current->mm)
2338 		return -EIO;
2339 
2340 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2341 		return -EINVAL;
2342 
2343 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2344 	/*
2345 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2346 	 * so vcpu_load() would break it.
2347 	 */
2348 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2349 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2350 #endif
2351 
2352 
2353 	r = vcpu_load(vcpu);
2354 	if (r)
2355 		return r;
2356 	switch (ioctl) {
2357 	case KVM_RUN:
2358 		r = -EINVAL;
2359 		if (arg)
2360 			goto out;
2361 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2362 			/* The thread running this VCPU changed. */
2363 			struct pid *oldpid = vcpu->pid;
2364 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2365 
2366 			rcu_assign_pointer(vcpu->pid, newpid);
2367 			if (oldpid)
2368 				synchronize_rcu();
2369 			put_pid(oldpid);
2370 		}
2371 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2372 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2373 		break;
2374 	case KVM_GET_REGS: {
2375 		struct kvm_regs *kvm_regs;
2376 
2377 		r = -ENOMEM;
2378 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2379 		if (!kvm_regs)
2380 			goto out;
2381 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2382 		if (r)
2383 			goto out_free1;
2384 		r = -EFAULT;
2385 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2386 			goto out_free1;
2387 		r = 0;
2388 out_free1:
2389 		kfree(kvm_regs);
2390 		break;
2391 	}
2392 	case KVM_SET_REGS: {
2393 		struct kvm_regs *kvm_regs;
2394 
2395 		r = -ENOMEM;
2396 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2397 		if (IS_ERR(kvm_regs)) {
2398 			r = PTR_ERR(kvm_regs);
2399 			goto out;
2400 		}
2401 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2402 		kfree(kvm_regs);
2403 		break;
2404 	}
2405 	case KVM_GET_SREGS: {
2406 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2407 		r = -ENOMEM;
2408 		if (!kvm_sregs)
2409 			goto out;
2410 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2411 		if (r)
2412 			goto out;
2413 		r = -EFAULT;
2414 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2415 			goto out;
2416 		r = 0;
2417 		break;
2418 	}
2419 	case KVM_SET_SREGS: {
2420 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2421 		if (IS_ERR(kvm_sregs)) {
2422 			r = PTR_ERR(kvm_sregs);
2423 			kvm_sregs = NULL;
2424 			goto out;
2425 		}
2426 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2427 		break;
2428 	}
2429 	case KVM_GET_MP_STATE: {
2430 		struct kvm_mp_state mp_state;
2431 
2432 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2433 		if (r)
2434 			goto out;
2435 		r = -EFAULT;
2436 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2437 			goto out;
2438 		r = 0;
2439 		break;
2440 	}
2441 	case KVM_SET_MP_STATE: {
2442 		struct kvm_mp_state mp_state;
2443 
2444 		r = -EFAULT;
2445 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2446 			goto out;
2447 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2448 		break;
2449 	}
2450 	case KVM_TRANSLATE: {
2451 		struct kvm_translation tr;
2452 
2453 		r = -EFAULT;
2454 		if (copy_from_user(&tr, argp, sizeof(tr)))
2455 			goto out;
2456 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2457 		if (r)
2458 			goto out;
2459 		r = -EFAULT;
2460 		if (copy_to_user(argp, &tr, sizeof(tr)))
2461 			goto out;
2462 		r = 0;
2463 		break;
2464 	}
2465 	case KVM_SET_GUEST_DEBUG: {
2466 		struct kvm_guest_debug dbg;
2467 
2468 		r = -EFAULT;
2469 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2470 			goto out;
2471 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2472 		break;
2473 	}
2474 	case KVM_SET_SIGNAL_MASK: {
2475 		struct kvm_signal_mask __user *sigmask_arg = argp;
2476 		struct kvm_signal_mask kvm_sigmask;
2477 		sigset_t sigset, *p;
2478 
2479 		p = NULL;
2480 		if (argp) {
2481 			r = -EFAULT;
2482 			if (copy_from_user(&kvm_sigmask, argp,
2483 					   sizeof(kvm_sigmask)))
2484 				goto out;
2485 			r = -EINVAL;
2486 			if (kvm_sigmask.len != sizeof(sigset))
2487 				goto out;
2488 			r = -EFAULT;
2489 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2490 					   sizeof(sigset)))
2491 				goto out;
2492 			p = &sigset;
2493 		}
2494 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2495 		break;
2496 	}
2497 	case KVM_GET_FPU: {
2498 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2499 		r = -ENOMEM;
2500 		if (!fpu)
2501 			goto out;
2502 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2503 		if (r)
2504 			goto out;
2505 		r = -EFAULT;
2506 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2507 			goto out;
2508 		r = 0;
2509 		break;
2510 	}
2511 	case KVM_SET_FPU: {
2512 		fpu = memdup_user(argp, sizeof(*fpu));
2513 		if (IS_ERR(fpu)) {
2514 			r = PTR_ERR(fpu);
2515 			fpu = NULL;
2516 			goto out;
2517 		}
2518 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2519 		break;
2520 	}
2521 	default:
2522 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2523 	}
2524 out:
2525 	vcpu_put(vcpu);
2526 	kfree(fpu);
2527 	kfree(kvm_sregs);
2528 	return r;
2529 }
2530 
2531 #ifdef CONFIG_KVM_COMPAT
2532 static long kvm_vcpu_compat_ioctl(struct file *filp,
2533 				  unsigned int ioctl, unsigned long arg)
2534 {
2535 	struct kvm_vcpu *vcpu = filp->private_data;
2536 	void __user *argp = compat_ptr(arg);
2537 	int r;
2538 
2539 	if (vcpu->kvm->mm != current->mm)
2540 		return -EIO;
2541 
2542 	switch (ioctl) {
2543 	case KVM_SET_SIGNAL_MASK: {
2544 		struct kvm_signal_mask __user *sigmask_arg = argp;
2545 		struct kvm_signal_mask kvm_sigmask;
2546 		compat_sigset_t csigset;
2547 		sigset_t sigset;
2548 
2549 		if (argp) {
2550 			r = -EFAULT;
2551 			if (copy_from_user(&kvm_sigmask, argp,
2552 					   sizeof(kvm_sigmask)))
2553 				goto out;
2554 			r = -EINVAL;
2555 			if (kvm_sigmask.len != sizeof(csigset))
2556 				goto out;
2557 			r = -EFAULT;
2558 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2559 					   sizeof(csigset)))
2560 				goto out;
2561 			sigset_from_compat(&sigset, &csigset);
2562 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2563 		} else
2564 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2565 		break;
2566 	}
2567 	default:
2568 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2569 	}
2570 
2571 out:
2572 	return r;
2573 }
2574 #endif
2575 
2576 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2577 				 int (*accessor)(struct kvm_device *dev,
2578 						 struct kvm_device_attr *attr),
2579 				 unsigned long arg)
2580 {
2581 	struct kvm_device_attr attr;
2582 
2583 	if (!accessor)
2584 		return -EPERM;
2585 
2586 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2587 		return -EFAULT;
2588 
2589 	return accessor(dev, &attr);
2590 }
2591 
2592 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2593 			     unsigned long arg)
2594 {
2595 	struct kvm_device *dev = filp->private_data;
2596 
2597 	switch (ioctl) {
2598 	case KVM_SET_DEVICE_ATTR:
2599 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2600 	case KVM_GET_DEVICE_ATTR:
2601 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2602 	case KVM_HAS_DEVICE_ATTR:
2603 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2604 	default:
2605 		if (dev->ops->ioctl)
2606 			return dev->ops->ioctl(dev, ioctl, arg);
2607 
2608 		return -ENOTTY;
2609 	}
2610 }
2611 
2612 static int kvm_device_release(struct inode *inode, struct file *filp)
2613 {
2614 	struct kvm_device *dev = filp->private_data;
2615 	struct kvm *kvm = dev->kvm;
2616 
2617 	kvm_put_kvm(kvm);
2618 	return 0;
2619 }
2620 
2621 static const struct file_operations kvm_device_fops = {
2622 	.unlocked_ioctl = kvm_device_ioctl,
2623 #ifdef CONFIG_KVM_COMPAT
2624 	.compat_ioctl = kvm_device_ioctl,
2625 #endif
2626 	.release = kvm_device_release,
2627 };
2628 
2629 struct kvm_device *kvm_device_from_filp(struct file *filp)
2630 {
2631 	if (filp->f_op != &kvm_device_fops)
2632 		return NULL;
2633 
2634 	return filp->private_data;
2635 }
2636 
2637 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2638 #ifdef CONFIG_KVM_MPIC
2639 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2640 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2641 #endif
2642 
2643 #ifdef CONFIG_KVM_XICS
2644 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2645 #endif
2646 };
2647 
2648 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2649 {
2650 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2651 		return -ENOSPC;
2652 
2653 	if (kvm_device_ops_table[type] != NULL)
2654 		return -EEXIST;
2655 
2656 	kvm_device_ops_table[type] = ops;
2657 	return 0;
2658 }
2659 
2660 void kvm_unregister_device_ops(u32 type)
2661 {
2662 	if (kvm_device_ops_table[type] != NULL)
2663 		kvm_device_ops_table[type] = NULL;
2664 }
2665 
2666 static int kvm_ioctl_create_device(struct kvm *kvm,
2667 				   struct kvm_create_device *cd)
2668 {
2669 	struct kvm_device_ops *ops = NULL;
2670 	struct kvm_device *dev;
2671 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2672 	int ret;
2673 
2674 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2675 		return -ENODEV;
2676 
2677 	ops = kvm_device_ops_table[cd->type];
2678 	if (ops == NULL)
2679 		return -ENODEV;
2680 
2681 	if (test)
2682 		return 0;
2683 
2684 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2685 	if (!dev)
2686 		return -ENOMEM;
2687 
2688 	dev->ops = ops;
2689 	dev->kvm = kvm;
2690 
2691 	ret = ops->create(dev, cd->type);
2692 	if (ret < 0) {
2693 		kfree(dev);
2694 		return ret;
2695 	}
2696 
2697 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2698 	if (ret < 0) {
2699 		ops->destroy(dev);
2700 		return ret;
2701 	}
2702 
2703 	list_add(&dev->vm_node, &kvm->devices);
2704 	kvm_get_kvm(kvm);
2705 	cd->fd = ret;
2706 	return 0;
2707 }
2708 
2709 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2710 {
2711 	switch (arg) {
2712 	case KVM_CAP_USER_MEMORY:
2713 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2714 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2715 	case KVM_CAP_INTERNAL_ERROR_DATA:
2716 #ifdef CONFIG_HAVE_KVM_MSI
2717 	case KVM_CAP_SIGNAL_MSI:
2718 #endif
2719 #ifdef CONFIG_HAVE_KVM_IRQFD
2720 	case KVM_CAP_IRQFD:
2721 	case KVM_CAP_IRQFD_RESAMPLE:
2722 #endif
2723 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2724 	case KVM_CAP_CHECK_EXTENSION_VM:
2725 		return 1;
2726 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2727 	case KVM_CAP_IRQ_ROUTING:
2728 		return KVM_MAX_IRQ_ROUTES;
2729 #endif
2730 #if KVM_ADDRESS_SPACE_NUM > 1
2731 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2732 		return KVM_ADDRESS_SPACE_NUM;
2733 #endif
2734 	default:
2735 		break;
2736 	}
2737 	return kvm_vm_ioctl_check_extension(kvm, arg);
2738 }
2739 
2740 static long kvm_vm_ioctl(struct file *filp,
2741 			   unsigned int ioctl, unsigned long arg)
2742 {
2743 	struct kvm *kvm = filp->private_data;
2744 	void __user *argp = (void __user *)arg;
2745 	int r;
2746 
2747 	if (kvm->mm != current->mm)
2748 		return -EIO;
2749 	switch (ioctl) {
2750 	case KVM_CREATE_VCPU:
2751 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2752 		break;
2753 	case KVM_SET_USER_MEMORY_REGION: {
2754 		struct kvm_userspace_memory_region kvm_userspace_mem;
2755 
2756 		r = -EFAULT;
2757 		if (copy_from_user(&kvm_userspace_mem, argp,
2758 						sizeof(kvm_userspace_mem)))
2759 			goto out;
2760 
2761 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2762 		break;
2763 	}
2764 	case KVM_GET_DIRTY_LOG: {
2765 		struct kvm_dirty_log log;
2766 
2767 		r = -EFAULT;
2768 		if (copy_from_user(&log, argp, sizeof(log)))
2769 			goto out;
2770 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2771 		break;
2772 	}
2773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2774 	case KVM_REGISTER_COALESCED_MMIO: {
2775 		struct kvm_coalesced_mmio_zone zone;
2776 
2777 		r = -EFAULT;
2778 		if (copy_from_user(&zone, argp, sizeof(zone)))
2779 			goto out;
2780 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2781 		break;
2782 	}
2783 	case KVM_UNREGISTER_COALESCED_MMIO: {
2784 		struct kvm_coalesced_mmio_zone zone;
2785 
2786 		r = -EFAULT;
2787 		if (copy_from_user(&zone, argp, sizeof(zone)))
2788 			goto out;
2789 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2790 		break;
2791 	}
2792 #endif
2793 	case KVM_IRQFD: {
2794 		struct kvm_irqfd data;
2795 
2796 		r = -EFAULT;
2797 		if (copy_from_user(&data, argp, sizeof(data)))
2798 			goto out;
2799 		r = kvm_irqfd(kvm, &data);
2800 		break;
2801 	}
2802 	case KVM_IOEVENTFD: {
2803 		struct kvm_ioeventfd data;
2804 
2805 		r = -EFAULT;
2806 		if (copy_from_user(&data, argp, sizeof(data)))
2807 			goto out;
2808 		r = kvm_ioeventfd(kvm, &data);
2809 		break;
2810 	}
2811 #ifdef CONFIG_HAVE_KVM_MSI
2812 	case KVM_SIGNAL_MSI: {
2813 		struct kvm_msi msi;
2814 
2815 		r = -EFAULT;
2816 		if (copy_from_user(&msi, argp, sizeof(msi)))
2817 			goto out;
2818 		r = kvm_send_userspace_msi(kvm, &msi);
2819 		break;
2820 	}
2821 #endif
2822 #ifdef __KVM_HAVE_IRQ_LINE
2823 	case KVM_IRQ_LINE_STATUS:
2824 	case KVM_IRQ_LINE: {
2825 		struct kvm_irq_level irq_event;
2826 
2827 		r = -EFAULT;
2828 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2829 			goto out;
2830 
2831 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2832 					ioctl == KVM_IRQ_LINE_STATUS);
2833 		if (r)
2834 			goto out;
2835 
2836 		r = -EFAULT;
2837 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2838 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2839 				goto out;
2840 		}
2841 
2842 		r = 0;
2843 		break;
2844 	}
2845 #endif
2846 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2847 	case KVM_SET_GSI_ROUTING: {
2848 		struct kvm_irq_routing routing;
2849 		struct kvm_irq_routing __user *urouting;
2850 		struct kvm_irq_routing_entry *entries;
2851 
2852 		r = -EFAULT;
2853 		if (copy_from_user(&routing, argp, sizeof(routing)))
2854 			goto out;
2855 		r = -EINVAL;
2856 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2857 			goto out;
2858 		if (routing.flags)
2859 			goto out;
2860 		r = -ENOMEM;
2861 		entries = vmalloc(routing.nr * sizeof(*entries));
2862 		if (!entries)
2863 			goto out;
2864 		r = -EFAULT;
2865 		urouting = argp;
2866 		if (copy_from_user(entries, urouting->entries,
2867 				   routing.nr * sizeof(*entries)))
2868 			goto out_free_irq_routing;
2869 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2870 					routing.flags);
2871 out_free_irq_routing:
2872 		vfree(entries);
2873 		break;
2874 	}
2875 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2876 	case KVM_CREATE_DEVICE: {
2877 		struct kvm_create_device cd;
2878 
2879 		r = -EFAULT;
2880 		if (copy_from_user(&cd, argp, sizeof(cd)))
2881 			goto out;
2882 
2883 		r = kvm_ioctl_create_device(kvm, &cd);
2884 		if (r)
2885 			goto out;
2886 
2887 		r = -EFAULT;
2888 		if (copy_to_user(argp, &cd, sizeof(cd)))
2889 			goto out;
2890 
2891 		r = 0;
2892 		break;
2893 	}
2894 	case KVM_CHECK_EXTENSION:
2895 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2896 		break;
2897 	default:
2898 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2899 	}
2900 out:
2901 	return r;
2902 }
2903 
2904 #ifdef CONFIG_KVM_COMPAT
2905 struct compat_kvm_dirty_log {
2906 	__u32 slot;
2907 	__u32 padding1;
2908 	union {
2909 		compat_uptr_t dirty_bitmap; /* one bit per page */
2910 		__u64 padding2;
2911 	};
2912 };
2913 
2914 static long kvm_vm_compat_ioctl(struct file *filp,
2915 			   unsigned int ioctl, unsigned long arg)
2916 {
2917 	struct kvm *kvm = filp->private_data;
2918 	int r;
2919 
2920 	if (kvm->mm != current->mm)
2921 		return -EIO;
2922 	switch (ioctl) {
2923 	case KVM_GET_DIRTY_LOG: {
2924 		struct compat_kvm_dirty_log compat_log;
2925 		struct kvm_dirty_log log;
2926 
2927 		r = -EFAULT;
2928 		if (copy_from_user(&compat_log, (void __user *)arg,
2929 				   sizeof(compat_log)))
2930 			goto out;
2931 		log.slot	 = compat_log.slot;
2932 		log.padding1	 = compat_log.padding1;
2933 		log.padding2	 = compat_log.padding2;
2934 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2935 
2936 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2937 		break;
2938 	}
2939 	default:
2940 		r = kvm_vm_ioctl(filp, ioctl, arg);
2941 	}
2942 
2943 out:
2944 	return r;
2945 }
2946 #endif
2947 
2948 static struct file_operations kvm_vm_fops = {
2949 	.release        = kvm_vm_release,
2950 	.unlocked_ioctl = kvm_vm_ioctl,
2951 #ifdef CONFIG_KVM_COMPAT
2952 	.compat_ioctl   = kvm_vm_compat_ioctl,
2953 #endif
2954 	.llseek		= noop_llseek,
2955 };
2956 
2957 static int kvm_dev_ioctl_create_vm(unsigned long type)
2958 {
2959 	int r;
2960 	struct kvm *kvm;
2961 
2962 	kvm = kvm_create_vm(type);
2963 	if (IS_ERR(kvm))
2964 		return PTR_ERR(kvm);
2965 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2966 	r = kvm_coalesced_mmio_init(kvm);
2967 	if (r < 0) {
2968 		kvm_put_kvm(kvm);
2969 		return r;
2970 	}
2971 #endif
2972 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2973 	if (r < 0)
2974 		kvm_put_kvm(kvm);
2975 
2976 	return r;
2977 }
2978 
2979 static long kvm_dev_ioctl(struct file *filp,
2980 			  unsigned int ioctl, unsigned long arg)
2981 {
2982 	long r = -EINVAL;
2983 
2984 	switch (ioctl) {
2985 	case KVM_GET_API_VERSION:
2986 		if (arg)
2987 			goto out;
2988 		r = KVM_API_VERSION;
2989 		break;
2990 	case KVM_CREATE_VM:
2991 		r = kvm_dev_ioctl_create_vm(arg);
2992 		break;
2993 	case KVM_CHECK_EXTENSION:
2994 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2995 		break;
2996 	case KVM_GET_VCPU_MMAP_SIZE:
2997 		if (arg)
2998 			goto out;
2999 		r = PAGE_SIZE;     /* struct kvm_run */
3000 #ifdef CONFIG_X86
3001 		r += PAGE_SIZE;    /* pio data page */
3002 #endif
3003 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3004 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3005 #endif
3006 		break;
3007 	case KVM_TRACE_ENABLE:
3008 	case KVM_TRACE_PAUSE:
3009 	case KVM_TRACE_DISABLE:
3010 		r = -EOPNOTSUPP;
3011 		break;
3012 	default:
3013 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3014 	}
3015 out:
3016 	return r;
3017 }
3018 
3019 static struct file_operations kvm_chardev_ops = {
3020 	.unlocked_ioctl = kvm_dev_ioctl,
3021 	.compat_ioctl   = kvm_dev_ioctl,
3022 	.llseek		= noop_llseek,
3023 };
3024 
3025 static struct miscdevice kvm_dev = {
3026 	KVM_MINOR,
3027 	"kvm",
3028 	&kvm_chardev_ops,
3029 };
3030 
3031 static void hardware_enable_nolock(void *junk)
3032 {
3033 	int cpu = raw_smp_processor_id();
3034 	int r;
3035 
3036 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3037 		return;
3038 
3039 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3040 
3041 	r = kvm_arch_hardware_enable();
3042 
3043 	if (r) {
3044 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3045 		atomic_inc(&hardware_enable_failed);
3046 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3047 	}
3048 }
3049 
3050 static void hardware_enable(void)
3051 {
3052 	raw_spin_lock(&kvm_count_lock);
3053 	if (kvm_usage_count)
3054 		hardware_enable_nolock(NULL);
3055 	raw_spin_unlock(&kvm_count_lock);
3056 }
3057 
3058 static void hardware_disable_nolock(void *junk)
3059 {
3060 	int cpu = raw_smp_processor_id();
3061 
3062 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3063 		return;
3064 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3065 	kvm_arch_hardware_disable();
3066 }
3067 
3068 static void hardware_disable(void)
3069 {
3070 	raw_spin_lock(&kvm_count_lock);
3071 	if (kvm_usage_count)
3072 		hardware_disable_nolock(NULL);
3073 	raw_spin_unlock(&kvm_count_lock);
3074 }
3075 
3076 static void hardware_disable_all_nolock(void)
3077 {
3078 	BUG_ON(!kvm_usage_count);
3079 
3080 	kvm_usage_count--;
3081 	if (!kvm_usage_count)
3082 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3083 }
3084 
3085 static void hardware_disable_all(void)
3086 {
3087 	raw_spin_lock(&kvm_count_lock);
3088 	hardware_disable_all_nolock();
3089 	raw_spin_unlock(&kvm_count_lock);
3090 }
3091 
3092 static int hardware_enable_all(void)
3093 {
3094 	int r = 0;
3095 
3096 	raw_spin_lock(&kvm_count_lock);
3097 
3098 	kvm_usage_count++;
3099 	if (kvm_usage_count == 1) {
3100 		atomic_set(&hardware_enable_failed, 0);
3101 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3102 
3103 		if (atomic_read(&hardware_enable_failed)) {
3104 			hardware_disable_all_nolock();
3105 			r = -EBUSY;
3106 		}
3107 	}
3108 
3109 	raw_spin_unlock(&kvm_count_lock);
3110 
3111 	return r;
3112 }
3113 
3114 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3115 			   void *v)
3116 {
3117 	val &= ~CPU_TASKS_FROZEN;
3118 	switch (val) {
3119 	case CPU_DYING:
3120 		hardware_disable();
3121 		break;
3122 	case CPU_STARTING:
3123 		hardware_enable();
3124 		break;
3125 	}
3126 	return NOTIFY_OK;
3127 }
3128 
3129 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3130 		      void *v)
3131 {
3132 	/*
3133 	 * Some (well, at least mine) BIOSes hang on reboot if
3134 	 * in vmx root mode.
3135 	 *
3136 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3137 	 */
3138 	pr_info("kvm: exiting hardware virtualization\n");
3139 	kvm_rebooting = true;
3140 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3141 	return NOTIFY_OK;
3142 }
3143 
3144 static struct notifier_block kvm_reboot_notifier = {
3145 	.notifier_call = kvm_reboot,
3146 	.priority = 0,
3147 };
3148 
3149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3150 {
3151 	int i;
3152 
3153 	for (i = 0; i < bus->dev_count; i++) {
3154 		struct kvm_io_device *pos = bus->range[i].dev;
3155 
3156 		kvm_iodevice_destructor(pos);
3157 	}
3158 	kfree(bus);
3159 }
3160 
3161 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3162 				 const struct kvm_io_range *r2)
3163 {
3164 	gpa_t addr1 = r1->addr;
3165 	gpa_t addr2 = r2->addr;
3166 
3167 	if (addr1 < addr2)
3168 		return -1;
3169 
3170 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3171 	 * accept any overlapping write.  Any order is acceptable for
3172 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3173 	 * we process all of them.
3174 	 */
3175 	if (r2->len) {
3176 		addr1 += r1->len;
3177 		addr2 += r2->len;
3178 	}
3179 
3180 	if (addr1 > addr2)
3181 		return 1;
3182 
3183 	return 0;
3184 }
3185 
3186 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3187 {
3188 	return kvm_io_bus_cmp(p1, p2);
3189 }
3190 
3191 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3192 			  gpa_t addr, int len)
3193 {
3194 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3195 		.addr = addr,
3196 		.len = len,
3197 		.dev = dev,
3198 	};
3199 
3200 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3201 		kvm_io_bus_sort_cmp, NULL);
3202 
3203 	return 0;
3204 }
3205 
3206 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3207 			     gpa_t addr, int len)
3208 {
3209 	struct kvm_io_range *range, key;
3210 	int off;
3211 
3212 	key = (struct kvm_io_range) {
3213 		.addr = addr,
3214 		.len = len,
3215 	};
3216 
3217 	range = bsearch(&key, bus->range, bus->dev_count,
3218 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3219 	if (range == NULL)
3220 		return -ENOENT;
3221 
3222 	off = range - bus->range;
3223 
3224 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3225 		off--;
3226 
3227 	return off;
3228 }
3229 
3230 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3231 			      struct kvm_io_range *range, const void *val)
3232 {
3233 	int idx;
3234 
3235 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3236 	if (idx < 0)
3237 		return -EOPNOTSUPP;
3238 
3239 	while (idx < bus->dev_count &&
3240 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3241 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3242 					range->len, val))
3243 			return idx;
3244 		idx++;
3245 	}
3246 
3247 	return -EOPNOTSUPP;
3248 }
3249 
3250 /* kvm_io_bus_write - called under kvm->slots_lock */
3251 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3252 		     int len, const void *val)
3253 {
3254 	struct kvm_io_bus *bus;
3255 	struct kvm_io_range range;
3256 	int r;
3257 
3258 	range = (struct kvm_io_range) {
3259 		.addr = addr,
3260 		.len = len,
3261 	};
3262 
3263 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3264 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3265 	return r < 0 ? r : 0;
3266 }
3267 
3268 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3269 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3270 			    gpa_t addr, int len, const void *val, long cookie)
3271 {
3272 	struct kvm_io_bus *bus;
3273 	struct kvm_io_range range;
3274 
3275 	range = (struct kvm_io_range) {
3276 		.addr = addr,
3277 		.len = len,
3278 	};
3279 
3280 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3281 
3282 	/* First try the device referenced by cookie. */
3283 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3284 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3285 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3286 					val))
3287 			return cookie;
3288 
3289 	/*
3290 	 * cookie contained garbage; fall back to search and return the
3291 	 * correct cookie value.
3292 	 */
3293 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3294 }
3295 
3296 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3297 			     struct kvm_io_range *range, void *val)
3298 {
3299 	int idx;
3300 
3301 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3302 	if (idx < 0)
3303 		return -EOPNOTSUPP;
3304 
3305 	while (idx < bus->dev_count &&
3306 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3307 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3308 				       range->len, val))
3309 			return idx;
3310 		idx++;
3311 	}
3312 
3313 	return -EOPNOTSUPP;
3314 }
3315 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3316 
3317 /* kvm_io_bus_read - called under kvm->slots_lock */
3318 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3319 		    int len, void *val)
3320 {
3321 	struct kvm_io_bus *bus;
3322 	struct kvm_io_range range;
3323 	int r;
3324 
3325 	range = (struct kvm_io_range) {
3326 		.addr = addr,
3327 		.len = len,
3328 	};
3329 
3330 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3331 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3332 	return r < 0 ? r : 0;
3333 }
3334 
3335 
3336 /* Caller must hold slots_lock. */
3337 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3338 			    int len, struct kvm_io_device *dev)
3339 {
3340 	struct kvm_io_bus *new_bus, *bus;
3341 
3342 	bus = kvm->buses[bus_idx];
3343 	/* exclude ioeventfd which is limited by maximum fd */
3344 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3345 		return -ENOSPC;
3346 
3347 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3348 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3349 	if (!new_bus)
3350 		return -ENOMEM;
3351 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3352 	       sizeof(struct kvm_io_range)));
3353 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3354 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3355 	synchronize_srcu_expedited(&kvm->srcu);
3356 	kfree(bus);
3357 
3358 	return 0;
3359 }
3360 
3361 /* Caller must hold slots_lock. */
3362 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3363 			      struct kvm_io_device *dev)
3364 {
3365 	int i, r;
3366 	struct kvm_io_bus *new_bus, *bus;
3367 
3368 	bus = kvm->buses[bus_idx];
3369 	r = -ENOENT;
3370 	for (i = 0; i < bus->dev_count; i++)
3371 		if (bus->range[i].dev == dev) {
3372 			r = 0;
3373 			break;
3374 		}
3375 
3376 	if (r)
3377 		return r;
3378 
3379 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3380 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3381 	if (!new_bus)
3382 		return -ENOMEM;
3383 
3384 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3385 	new_bus->dev_count--;
3386 	memcpy(new_bus->range + i, bus->range + i + 1,
3387 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3388 
3389 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3390 	synchronize_srcu_expedited(&kvm->srcu);
3391 	kfree(bus);
3392 	return r;
3393 }
3394 
3395 static struct notifier_block kvm_cpu_notifier = {
3396 	.notifier_call = kvm_cpu_hotplug,
3397 };
3398 
3399 static int vm_stat_get(void *_offset, u64 *val)
3400 {
3401 	unsigned offset = (long)_offset;
3402 	struct kvm *kvm;
3403 
3404 	*val = 0;
3405 	spin_lock(&kvm_lock);
3406 	list_for_each_entry(kvm, &vm_list, vm_list)
3407 		*val += *(u32 *)((void *)kvm + offset);
3408 	spin_unlock(&kvm_lock);
3409 	return 0;
3410 }
3411 
3412 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3413 
3414 static int vcpu_stat_get(void *_offset, u64 *val)
3415 {
3416 	unsigned offset = (long)_offset;
3417 	struct kvm *kvm;
3418 	struct kvm_vcpu *vcpu;
3419 	int i;
3420 
3421 	*val = 0;
3422 	spin_lock(&kvm_lock);
3423 	list_for_each_entry(kvm, &vm_list, vm_list)
3424 		kvm_for_each_vcpu(i, vcpu, kvm)
3425 			*val += *(u32 *)((void *)vcpu + offset);
3426 
3427 	spin_unlock(&kvm_lock);
3428 	return 0;
3429 }
3430 
3431 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3432 
3433 static const struct file_operations *stat_fops[] = {
3434 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3435 	[KVM_STAT_VM]   = &vm_stat_fops,
3436 };
3437 
3438 static int kvm_init_debug(void)
3439 {
3440 	int r = -EEXIST;
3441 	struct kvm_stats_debugfs_item *p;
3442 
3443 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3444 	if (kvm_debugfs_dir == NULL)
3445 		goto out;
3446 
3447 	for (p = debugfs_entries; p->name; ++p) {
3448 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3449 					 (void *)(long)p->offset,
3450 					 stat_fops[p->kind]))
3451 			goto out_dir;
3452 	}
3453 
3454 	return 0;
3455 
3456 out_dir:
3457 	debugfs_remove_recursive(kvm_debugfs_dir);
3458 out:
3459 	return r;
3460 }
3461 
3462 static int kvm_suspend(void)
3463 {
3464 	if (kvm_usage_count)
3465 		hardware_disable_nolock(NULL);
3466 	return 0;
3467 }
3468 
3469 static void kvm_resume(void)
3470 {
3471 	if (kvm_usage_count) {
3472 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3473 		hardware_enable_nolock(NULL);
3474 	}
3475 }
3476 
3477 static struct syscore_ops kvm_syscore_ops = {
3478 	.suspend = kvm_suspend,
3479 	.resume = kvm_resume,
3480 };
3481 
3482 static inline
3483 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3484 {
3485 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3486 }
3487 
3488 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3489 {
3490 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3491 
3492 	if (vcpu->preempted)
3493 		vcpu->preempted = false;
3494 
3495 	kvm_arch_sched_in(vcpu, cpu);
3496 
3497 	kvm_arch_vcpu_load(vcpu, cpu);
3498 }
3499 
3500 static void kvm_sched_out(struct preempt_notifier *pn,
3501 			  struct task_struct *next)
3502 {
3503 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3504 
3505 	if (current->state == TASK_RUNNING)
3506 		vcpu->preempted = true;
3507 	kvm_arch_vcpu_put(vcpu);
3508 }
3509 
3510 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3511 		  struct module *module)
3512 {
3513 	int r;
3514 	int cpu;
3515 
3516 	r = kvm_arch_init(opaque);
3517 	if (r)
3518 		goto out_fail;
3519 
3520 	/*
3521 	 * kvm_arch_init makes sure there's at most one caller
3522 	 * for architectures that support multiple implementations,
3523 	 * like intel and amd on x86.
3524 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3525 	 * conflicts in case kvm is already setup for another implementation.
3526 	 */
3527 	r = kvm_irqfd_init();
3528 	if (r)
3529 		goto out_irqfd;
3530 
3531 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3532 		r = -ENOMEM;
3533 		goto out_free_0;
3534 	}
3535 
3536 	r = kvm_arch_hardware_setup();
3537 	if (r < 0)
3538 		goto out_free_0a;
3539 
3540 	for_each_online_cpu(cpu) {
3541 		smp_call_function_single(cpu,
3542 				kvm_arch_check_processor_compat,
3543 				&r, 1);
3544 		if (r < 0)
3545 			goto out_free_1;
3546 	}
3547 
3548 	r = register_cpu_notifier(&kvm_cpu_notifier);
3549 	if (r)
3550 		goto out_free_2;
3551 	register_reboot_notifier(&kvm_reboot_notifier);
3552 
3553 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3554 	if (!vcpu_align)
3555 		vcpu_align = __alignof__(struct kvm_vcpu);
3556 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3557 					   0, NULL);
3558 	if (!kvm_vcpu_cache) {
3559 		r = -ENOMEM;
3560 		goto out_free_3;
3561 	}
3562 
3563 	r = kvm_async_pf_init();
3564 	if (r)
3565 		goto out_free;
3566 
3567 	kvm_chardev_ops.owner = module;
3568 	kvm_vm_fops.owner = module;
3569 	kvm_vcpu_fops.owner = module;
3570 
3571 	r = misc_register(&kvm_dev);
3572 	if (r) {
3573 		pr_err("kvm: misc device register failed\n");
3574 		goto out_unreg;
3575 	}
3576 
3577 	register_syscore_ops(&kvm_syscore_ops);
3578 
3579 	kvm_preempt_ops.sched_in = kvm_sched_in;
3580 	kvm_preempt_ops.sched_out = kvm_sched_out;
3581 
3582 	r = kvm_init_debug();
3583 	if (r) {
3584 		pr_err("kvm: create debugfs files failed\n");
3585 		goto out_undebugfs;
3586 	}
3587 
3588 	r = kvm_vfio_ops_init();
3589 	WARN_ON(r);
3590 
3591 	return 0;
3592 
3593 out_undebugfs:
3594 	unregister_syscore_ops(&kvm_syscore_ops);
3595 	misc_deregister(&kvm_dev);
3596 out_unreg:
3597 	kvm_async_pf_deinit();
3598 out_free:
3599 	kmem_cache_destroy(kvm_vcpu_cache);
3600 out_free_3:
3601 	unregister_reboot_notifier(&kvm_reboot_notifier);
3602 	unregister_cpu_notifier(&kvm_cpu_notifier);
3603 out_free_2:
3604 out_free_1:
3605 	kvm_arch_hardware_unsetup();
3606 out_free_0a:
3607 	free_cpumask_var(cpus_hardware_enabled);
3608 out_free_0:
3609 	kvm_irqfd_exit();
3610 out_irqfd:
3611 	kvm_arch_exit();
3612 out_fail:
3613 	return r;
3614 }
3615 EXPORT_SYMBOL_GPL(kvm_init);
3616 
3617 void kvm_exit(void)
3618 {
3619 	debugfs_remove_recursive(kvm_debugfs_dir);
3620 	misc_deregister(&kvm_dev);
3621 	kmem_cache_destroy(kvm_vcpu_cache);
3622 	kvm_async_pf_deinit();
3623 	unregister_syscore_ops(&kvm_syscore_ops);
3624 	unregister_reboot_notifier(&kvm_reboot_notifier);
3625 	unregister_cpu_notifier(&kvm_cpu_notifier);
3626 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3627 	kvm_arch_hardware_unsetup();
3628 	kvm_arch_exit();
3629 	kvm_irqfd_exit();
3630 	free_cpumask_var(cpus_hardware_enabled);
3631 	kvm_vfio_ops_exit();
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_exit);
3634