xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 3932b9ca)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 			    struct kvm_memory_slot *new, u64 last_generation);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 		/* The thread running this VCPU changed. */
129 		struct pid *oldpid = vcpu->pid;
130 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 		rcu_assign_pointer(vcpu->pid, newpid);
132 		synchronize_rcu();
133 		put_pid(oldpid);
134 	}
135 	cpu = get_cpu();
136 	preempt_notifier_register(&vcpu->preempt_notifier);
137 	kvm_arch_vcpu_load(vcpu, cpu);
138 	put_cpu();
139 	return 0;
140 }
141 
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 	preempt_disable();
145 	kvm_arch_vcpu_put(vcpu);
146 	preempt_notifier_unregister(&vcpu->preempt_notifier);
147 	preempt_enable();
148 	mutex_unlock(&vcpu->mutex);
149 }
150 
151 static void ack_flush(void *_completed)
152 {
153 }
154 
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 	int i, cpu, me;
158 	cpumask_var_t cpus;
159 	bool called = true;
160 	struct kvm_vcpu *vcpu;
161 
162 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163 
164 	me = get_cpu();
165 	kvm_for_each_vcpu(i, vcpu, kvm) {
166 		kvm_make_request(req, vcpu);
167 		cpu = vcpu->cpu;
168 
169 		/* Set ->requests bit before we read ->mode */
170 		smp_mb();
171 
172 		if (cpus != NULL && cpu != -1 && cpu != me &&
173 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 			cpumask_set_cpu(cpu, cpus);
175 	}
176 	if (unlikely(cpus == NULL))
177 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 	else if (!cpumask_empty(cpus))
179 		smp_call_function_many(cpus, ack_flush, NULL, 1);
180 	else
181 		called = false;
182 	put_cpu();
183 	free_cpumask_var(cpus);
184 	return called;
185 }
186 
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 	long dirty_count = kvm->tlbs_dirty;
190 
191 	smp_mb();
192 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 		++kvm->stat.remote_tlb_flush;
194 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197 
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202 
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207 
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212 
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	kvm_vcpu_set_in_spin_loop(vcpu, false);
234 	kvm_vcpu_set_dy_eligible(vcpu, false);
235 	vcpu->preempted = false;
236 
237 	r = kvm_arch_vcpu_init(vcpu);
238 	if (r < 0)
239 		goto fail_free_run;
240 	return 0;
241 
242 fail_free_run:
243 	free_page((unsigned long)vcpu->run);
244 fail:
245 	return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248 
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 	put_pid(vcpu->pid);
252 	kvm_arch_vcpu_uninit(vcpu);
253 	free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256 
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 	return container_of(mn, struct kvm, mmu_notifier);
261 }
262 
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 					     struct mm_struct *mm,
265 					     unsigned long address)
266 {
267 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 	int need_tlb_flush, idx;
269 
270 	/*
271 	 * When ->invalidate_page runs, the linux pte has been zapped
272 	 * already but the page is still allocated until
273 	 * ->invalidate_page returns. So if we increase the sequence
274 	 * here the kvm page fault will notice if the spte can't be
275 	 * established because the page is going to be freed. If
276 	 * instead the kvm page fault establishes the spte before
277 	 * ->invalidate_page runs, kvm_unmap_hva will release it
278 	 * before returning.
279 	 *
280 	 * The sequence increase only need to be seen at spin_unlock
281 	 * time, and not at spin_lock time.
282 	 *
283 	 * Increasing the sequence after the spin_unlock would be
284 	 * unsafe because the kvm page fault could then establish the
285 	 * pte after kvm_unmap_hva returned, without noticing the page
286 	 * is going to be freed.
287 	 */
288 	idx = srcu_read_lock(&kvm->srcu);
289 	spin_lock(&kvm->mmu_lock);
290 
291 	kvm->mmu_notifier_seq++;
292 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 	/* we've to flush the tlb before the pages can be freed */
294 	if (need_tlb_flush)
295 		kvm_flush_remote_tlbs(kvm);
296 
297 	spin_unlock(&kvm->mmu_lock);
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long address)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int young, idx;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 
379 	young = kvm_age_hva(kvm, address);
380 	if (young)
381 		kvm_flush_remote_tlbs(kvm);
382 
383 	spin_unlock(&kvm->mmu_lock);
384 	srcu_read_unlock(&kvm->srcu, idx);
385 
386 	return young;
387 }
388 
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 				       struct mm_struct *mm,
391 				       unsigned long address)
392 {
393 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 	int young, idx;
395 
396 	idx = srcu_read_lock(&kvm->srcu);
397 	spin_lock(&kvm->mmu_lock);
398 	young = kvm_test_age_hva(kvm, address);
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 
402 	return young;
403 }
404 
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 				     struct mm_struct *mm)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	kvm_arch_flush_shadow_all(kvm);
413 	srcu_read_unlock(&kvm->srcu, idx);
414 }
415 
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
418 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
419 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
420 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
421 	.test_young		= kvm_mmu_notifier_test_young,
422 	.change_pte		= kvm_mmu_notifier_change_pte,
423 	.release		= kvm_mmu_notifier_release,
424 };
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431 
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433 
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 	return 0;
437 }
438 
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440 
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443 	int i;
444 	struct kvm_memslots *slots = kvm->memslots;
445 
446 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 		slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449 
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452 	int r, i;
453 	struct kvm *kvm = kvm_arch_alloc_vm();
454 
455 	if (!kvm)
456 		return ERR_PTR(-ENOMEM);
457 
458 	r = kvm_arch_init_vm(kvm, type);
459 	if (r)
460 		goto out_err_no_disable;
461 
462 	r = hardware_enable_all();
463 	if (r)
464 		goto out_err_no_disable;
465 
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 #endif
469 #ifdef CONFIG_HAVE_KVM_IRQFD
470 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472 
473 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
474 
475 	r = -ENOMEM;
476 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
477 	if (!kvm->memslots)
478 		goto out_err_no_srcu;
479 	kvm_init_memslots_id(kvm);
480 	if (init_srcu_struct(&kvm->srcu))
481 		goto out_err_no_srcu;
482 	if (init_srcu_struct(&kvm->irq_srcu))
483 		goto out_err_no_irq_srcu;
484 	for (i = 0; i < KVM_NR_BUSES; i++) {
485 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 					GFP_KERNEL);
487 		if (!kvm->buses[i])
488 			goto out_err;
489 	}
490 
491 	spin_lock_init(&kvm->mmu_lock);
492 	kvm->mm = current->mm;
493 	atomic_inc(&kvm->mm->mm_count);
494 	kvm_eventfd_init(kvm);
495 	mutex_init(&kvm->lock);
496 	mutex_init(&kvm->irq_lock);
497 	mutex_init(&kvm->slots_lock);
498 	atomic_set(&kvm->users_count, 1);
499 	INIT_LIST_HEAD(&kvm->devices);
500 
501 	r = kvm_init_mmu_notifier(kvm);
502 	if (r)
503 		goto out_err;
504 
505 	spin_lock(&kvm_lock);
506 	list_add(&kvm->vm_list, &vm_list);
507 	spin_unlock(&kvm_lock);
508 
509 	return kvm;
510 
511 out_err:
512 	cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 	cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 	hardware_disable_all();
517 out_err_no_disable:
518 	for (i = 0; i < KVM_NR_BUSES; i++)
519 		kfree(kvm->buses[i]);
520 	kfree(kvm->memslots);
521 	kvm_arch_free_vm(kvm);
522 	return ERR_PTR(r);
523 }
524 
525 /*
526  * Avoid using vmalloc for a small buffer.
527  * Should not be used when the size is statically known.
528  */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 	if (size > PAGE_SIZE)
532 		return vzalloc(size);
533 	else
534 		return kzalloc(size, GFP_KERNEL);
535 }
536 
537 void kvm_kvfree(const void *addr)
538 {
539 	if (is_vmalloc_addr(addr))
540 		vfree(addr);
541 	else
542 		kfree(addr);
543 }
544 
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 	if (!memslot->dirty_bitmap)
548 		return;
549 
550 	kvm_kvfree(memslot->dirty_bitmap);
551 	memslot->dirty_bitmap = NULL;
552 }
553 
554 /*
555  * Free any memory in @free but not in @dont.
556  */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 				  struct kvm_memory_slot *dont)
559 {
560 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 		kvm_destroy_dirty_bitmap(free);
562 
563 	kvm_arch_free_memslot(kvm, free, dont);
564 
565 	free->npages = 0;
566 }
567 
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 	struct kvm_memslots *slots = kvm->memslots;
571 	struct kvm_memory_slot *memslot;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_physmem_slot(kvm, memslot, NULL);
575 
576 	kfree(kvm->memslots);
577 }
578 
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 	struct list_head *node, *tmp;
582 
583 	list_for_each_safe(node, tmp, &kvm->devices) {
584 		struct kvm_device *dev =
585 			list_entry(node, struct kvm_device, vm_node);
586 
587 		list_del(node);
588 		dev->ops->destroy(dev);
589 	}
590 }
591 
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 	int i;
595 	struct mm_struct *mm = kvm->mm;
596 
597 	kvm_arch_sync_events(kvm);
598 	spin_lock(&kvm_lock);
599 	list_del(&kvm->vm_list);
600 	spin_unlock(&kvm_lock);
601 	kvm_free_irq_routing(kvm);
602 	for (i = 0; i < KVM_NR_BUSES; i++)
603 		kvm_io_bus_destroy(kvm->buses[i]);
604 	kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 	kvm_arch_flush_shadow_all(kvm);
609 #endif
610 	kvm_arch_destroy_vm(kvm);
611 	kvm_destroy_devices(kvm);
612 	kvm_free_physmem(kvm);
613 	cleanup_srcu_struct(&kvm->irq_srcu);
614 	cleanup_srcu_struct(&kvm->srcu);
615 	kvm_arch_free_vm(kvm);
616 	hardware_disable_all();
617 	mmdrop(mm);
618 }
619 
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 	atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625 
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 	if (atomic_dec_and_test(&kvm->users_count))
629 		kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632 
633 
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 	struct kvm *kvm = filp->private_data;
637 
638 	kvm_irqfd_release(kvm);
639 
640 	kvm_put_kvm(kvm);
641 	return 0;
642 }
643 
644 /*
645  * Allocation size is twice as large as the actual dirty bitmap size.
646  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647  */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651 
652 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 	if (!memslot->dirty_bitmap)
654 		return -ENOMEM;
655 
656 	return 0;
657 }
658 
659 static int cmp_memslot(const void *slot1, const void *slot2)
660 {
661 	struct kvm_memory_slot *s1, *s2;
662 
663 	s1 = (struct kvm_memory_slot *)slot1;
664 	s2 = (struct kvm_memory_slot *)slot2;
665 
666 	if (s1->npages < s2->npages)
667 		return 1;
668 	if (s1->npages > s2->npages)
669 		return -1;
670 
671 	return 0;
672 }
673 
674 /*
675  * Sort the memslots base on its size, so the larger slots
676  * will get better fit.
677  */
678 static void sort_memslots(struct kvm_memslots *slots)
679 {
680 	int i;
681 
682 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
683 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
684 
685 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
686 		slots->id_to_index[slots->memslots[i].id] = i;
687 }
688 
689 static void update_memslots(struct kvm_memslots *slots,
690 			    struct kvm_memory_slot *new,
691 			    u64 last_generation)
692 {
693 	if (new) {
694 		int id = new->id;
695 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
696 		unsigned long npages = old->npages;
697 
698 		*old = *new;
699 		if (new->npages != npages)
700 			sort_memslots(slots);
701 	}
702 
703 	slots->generation = last_generation + 1;
704 }
705 
706 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
707 {
708 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
709 
710 #ifdef KVM_CAP_READONLY_MEM
711 	valid_flags |= KVM_MEM_READONLY;
712 #endif
713 
714 	if (mem->flags & ~valid_flags)
715 		return -EINVAL;
716 
717 	return 0;
718 }
719 
720 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
721 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
722 {
723 	struct kvm_memslots *old_memslots = kvm->memslots;
724 
725 	update_memslots(slots, new, kvm->memslots->generation);
726 	rcu_assign_pointer(kvm->memslots, slots);
727 	synchronize_srcu_expedited(&kvm->srcu);
728 
729 	kvm_arch_memslots_updated(kvm);
730 
731 	return old_memslots;
732 }
733 
734 /*
735  * Allocate some memory and give it an address in the guest physical address
736  * space.
737  *
738  * Discontiguous memory is allowed, mostly for framebuffers.
739  *
740  * Must be called holding mmap_sem for write.
741  */
742 int __kvm_set_memory_region(struct kvm *kvm,
743 			    struct kvm_userspace_memory_region *mem)
744 {
745 	int r;
746 	gfn_t base_gfn;
747 	unsigned long npages;
748 	struct kvm_memory_slot *slot;
749 	struct kvm_memory_slot old, new;
750 	struct kvm_memslots *slots = NULL, *old_memslots;
751 	enum kvm_mr_change change;
752 
753 	r = check_memory_region_flags(mem);
754 	if (r)
755 		goto out;
756 
757 	r = -EINVAL;
758 	/* General sanity checks */
759 	if (mem->memory_size & (PAGE_SIZE - 1))
760 		goto out;
761 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
762 		goto out;
763 	/* We can read the guest memory with __xxx_user() later on. */
764 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
765 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
766 	     !access_ok(VERIFY_WRITE,
767 			(void __user *)(unsigned long)mem->userspace_addr,
768 			mem->memory_size)))
769 		goto out;
770 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
771 		goto out;
772 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
773 		goto out;
774 
775 	slot = id_to_memslot(kvm->memslots, mem->slot);
776 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
777 	npages = mem->memory_size >> PAGE_SHIFT;
778 
779 	r = -EINVAL;
780 	if (npages > KVM_MEM_MAX_NR_PAGES)
781 		goto out;
782 
783 	if (!npages)
784 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
785 
786 	new = old = *slot;
787 
788 	new.id = mem->slot;
789 	new.base_gfn = base_gfn;
790 	new.npages = npages;
791 	new.flags = mem->flags;
792 
793 	r = -EINVAL;
794 	if (npages) {
795 		if (!old.npages)
796 			change = KVM_MR_CREATE;
797 		else { /* Modify an existing slot. */
798 			if ((mem->userspace_addr != old.userspace_addr) ||
799 			    (npages != old.npages) ||
800 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
801 				goto out;
802 
803 			if (base_gfn != old.base_gfn)
804 				change = KVM_MR_MOVE;
805 			else if (new.flags != old.flags)
806 				change = KVM_MR_FLAGS_ONLY;
807 			else { /* Nothing to change. */
808 				r = 0;
809 				goto out;
810 			}
811 		}
812 	} else if (old.npages) {
813 		change = KVM_MR_DELETE;
814 	} else /* Modify a non-existent slot: disallowed. */
815 		goto out;
816 
817 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
818 		/* Check for overlaps */
819 		r = -EEXIST;
820 		kvm_for_each_memslot(slot, kvm->memslots) {
821 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
822 			    (slot->id == mem->slot))
823 				continue;
824 			if (!((base_gfn + npages <= slot->base_gfn) ||
825 			      (base_gfn >= slot->base_gfn + slot->npages)))
826 				goto out;
827 		}
828 	}
829 
830 	/* Free page dirty bitmap if unneeded */
831 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
832 		new.dirty_bitmap = NULL;
833 
834 	r = -ENOMEM;
835 	if (change == KVM_MR_CREATE) {
836 		new.userspace_addr = mem->userspace_addr;
837 
838 		if (kvm_arch_create_memslot(kvm, &new, npages))
839 			goto out_free;
840 	}
841 
842 	/* Allocate page dirty bitmap if needed */
843 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
844 		if (kvm_create_dirty_bitmap(&new) < 0)
845 			goto out_free;
846 	}
847 
848 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
849 		r = -ENOMEM;
850 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
851 				GFP_KERNEL);
852 		if (!slots)
853 			goto out_free;
854 		slot = id_to_memslot(slots, mem->slot);
855 		slot->flags |= KVM_MEMSLOT_INVALID;
856 
857 		old_memslots = install_new_memslots(kvm, slots, NULL);
858 
859 		/* slot was deleted or moved, clear iommu mapping */
860 		kvm_iommu_unmap_pages(kvm, &old);
861 		/* From this point no new shadow pages pointing to a deleted,
862 		 * or moved, memslot will be created.
863 		 *
864 		 * validation of sp->gfn happens in:
865 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
866 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
867 		 */
868 		kvm_arch_flush_shadow_memslot(kvm, slot);
869 		slots = old_memslots;
870 	}
871 
872 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
873 	if (r)
874 		goto out_slots;
875 
876 	r = -ENOMEM;
877 	/*
878 	 * We can re-use the old_memslots from above, the only difference
879 	 * from the currently installed memslots is the invalid flag.  This
880 	 * will get overwritten by update_memslots anyway.
881 	 */
882 	if (!slots) {
883 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
884 				GFP_KERNEL);
885 		if (!slots)
886 			goto out_free;
887 	}
888 
889 	/* actual memory is freed via old in kvm_free_physmem_slot below */
890 	if (change == KVM_MR_DELETE) {
891 		new.dirty_bitmap = NULL;
892 		memset(&new.arch, 0, sizeof(new.arch));
893 	}
894 
895 	old_memslots = install_new_memslots(kvm, slots, &new);
896 
897 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
898 
899 	kvm_free_physmem_slot(kvm, &old, &new);
900 	kfree(old_memslots);
901 
902 	/*
903 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
904 	 * un-mapped and re-mapped if their base changes.  Since base change
905 	 * unmapping is handled above with slot deletion, mapping alone is
906 	 * needed here.  Anything else the iommu might care about for existing
907 	 * slots (size changes, userspace addr changes and read-only flag
908 	 * changes) is disallowed above, so any other attribute changes getting
909 	 * here can be skipped.
910 	 */
911 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
912 		r = kvm_iommu_map_pages(kvm, &new);
913 		return r;
914 	}
915 
916 	return 0;
917 
918 out_slots:
919 	kfree(slots);
920 out_free:
921 	kvm_free_physmem_slot(kvm, &new, &old);
922 out:
923 	return r;
924 }
925 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
926 
927 int kvm_set_memory_region(struct kvm *kvm,
928 			  struct kvm_userspace_memory_region *mem)
929 {
930 	int r;
931 
932 	mutex_lock(&kvm->slots_lock);
933 	r = __kvm_set_memory_region(kvm, mem);
934 	mutex_unlock(&kvm->slots_lock);
935 	return r;
936 }
937 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
938 
939 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
940 					  struct kvm_userspace_memory_region *mem)
941 {
942 	if (mem->slot >= KVM_USER_MEM_SLOTS)
943 		return -EINVAL;
944 	return kvm_set_memory_region(kvm, mem);
945 }
946 
947 int kvm_get_dirty_log(struct kvm *kvm,
948 			struct kvm_dirty_log *log, int *is_dirty)
949 {
950 	struct kvm_memory_slot *memslot;
951 	int r, i;
952 	unsigned long n;
953 	unsigned long any = 0;
954 
955 	r = -EINVAL;
956 	if (log->slot >= KVM_USER_MEM_SLOTS)
957 		goto out;
958 
959 	memslot = id_to_memslot(kvm->memslots, log->slot);
960 	r = -ENOENT;
961 	if (!memslot->dirty_bitmap)
962 		goto out;
963 
964 	n = kvm_dirty_bitmap_bytes(memslot);
965 
966 	for (i = 0; !any && i < n/sizeof(long); ++i)
967 		any = memslot->dirty_bitmap[i];
968 
969 	r = -EFAULT;
970 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 		goto out;
972 
973 	if (any)
974 		*is_dirty = 1;
975 
976 	r = 0;
977 out:
978 	return r;
979 }
980 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
981 
982 bool kvm_largepages_enabled(void)
983 {
984 	return largepages_enabled;
985 }
986 
987 void kvm_disable_largepages(void)
988 {
989 	largepages_enabled = false;
990 }
991 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
992 
993 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
994 {
995 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
996 }
997 EXPORT_SYMBOL_GPL(gfn_to_memslot);
998 
999 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1000 {
1001 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1002 
1003 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1004 	      memslot->flags & KVM_MEMSLOT_INVALID)
1005 		return 0;
1006 
1007 	return 1;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1010 
1011 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1012 {
1013 	struct vm_area_struct *vma;
1014 	unsigned long addr, size;
1015 
1016 	size = PAGE_SIZE;
1017 
1018 	addr = gfn_to_hva(kvm, gfn);
1019 	if (kvm_is_error_hva(addr))
1020 		return PAGE_SIZE;
1021 
1022 	down_read(&current->mm->mmap_sem);
1023 	vma = find_vma(current->mm, addr);
1024 	if (!vma)
1025 		goto out;
1026 
1027 	size = vma_kernel_pagesize(vma);
1028 
1029 out:
1030 	up_read(&current->mm->mmap_sem);
1031 
1032 	return size;
1033 }
1034 
1035 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1036 {
1037 	return slot->flags & KVM_MEM_READONLY;
1038 }
1039 
1040 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1041 				       gfn_t *nr_pages, bool write)
1042 {
1043 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1044 		return KVM_HVA_ERR_BAD;
1045 
1046 	if (memslot_is_readonly(slot) && write)
1047 		return KVM_HVA_ERR_RO_BAD;
1048 
1049 	if (nr_pages)
1050 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1051 
1052 	return __gfn_to_hva_memslot(slot, gfn);
1053 }
1054 
1055 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1056 				     gfn_t *nr_pages)
1057 {
1058 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1059 }
1060 
1061 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1062 					gfn_t gfn)
1063 {
1064 	return gfn_to_hva_many(slot, gfn, NULL);
1065 }
1066 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1067 
1068 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1069 {
1070 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1071 }
1072 EXPORT_SYMBOL_GPL(gfn_to_hva);
1073 
1074 /*
1075  * If writable is set to false, the hva returned by this function is only
1076  * allowed to be read.
1077  */
1078 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1079 {
1080 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1081 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1082 
1083 	if (!kvm_is_error_hva(hva) && writable)
1084 		*writable = !memslot_is_readonly(slot);
1085 
1086 	return hva;
1087 }
1088 
1089 static int kvm_read_hva(void *data, void __user *hva, int len)
1090 {
1091 	return __copy_from_user(data, hva, len);
1092 }
1093 
1094 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1095 {
1096 	return __copy_from_user_inatomic(data, hva, len);
1097 }
1098 
1099 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1100 	unsigned long start, int write, struct page **page)
1101 {
1102 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1103 
1104 	if (write)
1105 		flags |= FOLL_WRITE;
1106 
1107 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1108 }
1109 
1110 static inline int check_user_page_hwpoison(unsigned long addr)
1111 {
1112 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1113 
1114 	rc = __get_user_pages(current, current->mm, addr, 1,
1115 			      flags, NULL, NULL, NULL);
1116 	return rc == -EHWPOISON;
1117 }
1118 
1119 /*
1120  * The atomic path to get the writable pfn which will be stored in @pfn,
1121  * true indicates success, otherwise false is returned.
1122  */
1123 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1124 			    bool write_fault, bool *writable, pfn_t *pfn)
1125 {
1126 	struct page *page[1];
1127 	int npages;
1128 
1129 	if (!(async || atomic))
1130 		return false;
1131 
1132 	/*
1133 	 * Fast pin a writable pfn only if it is a write fault request
1134 	 * or the caller allows to map a writable pfn for a read fault
1135 	 * request.
1136 	 */
1137 	if (!(write_fault || writable))
1138 		return false;
1139 
1140 	npages = __get_user_pages_fast(addr, 1, 1, page);
1141 	if (npages == 1) {
1142 		*pfn = page_to_pfn(page[0]);
1143 
1144 		if (writable)
1145 			*writable = true;
1146 		return true;
1147 	}
1148 
1149 	return false;
1150 }
1151 
1152 /*
1153  * The slow path to get the pfn of the specified host virtual address,
1154  * 1 indicates success, -errno is returned if error is detected.
1155  */
1156 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1157 			   bool *writable, pfn_t *pfn)
1158 {
1159 	struct page *page[1];
1160 	int npages = 0;
1161 
1162 	might_sleep();
1163 
1164 	if (writable)
1165 		*writable = write_fault;
1166 
1167 	if (async) {
1168 		down_read(&current->mm->mmap_sem);
1169 		npages = get_user_page_nowait(current, current->mm,
1170 					      addr, write_fault, page);
1171 		up_read(&current->mm->mmap_sem);
1172 	} else
1173 		npages = get_user_pages_fast(addr, 1, write_fault,
1174 					     page);
1175 	if (npages != 1)
1176 		return npages;
1177 
1178 	/* map read fault as writable if possible */
1179 	if (unlikely(!write_fault) && writable) {
1180 		struct page *wpage[1];
1181 
1182 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1183 		if (npages == 1) {
1184 			*writable = true;
1185 			put_page(page[0]);
1186 			page[0] = wpage[0];
1187 		}
1188 
1189 		npages = 1;
1190 	}
1191 	*pfn = page_to_pfn(page[0]);
1192 	return npages;
1193 }
1194 
1195 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1196 {
1197 	if (unlikely(!(vma->vm_flags & VM_READ)))
1198 		return false;
1199 
1200 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1201 		return false;
1202 
1203 	return true;
1204 }
1205 
1206 /*
1207  * Pin guest page in memory and return its pfn.
1208  * @addr: host virtual address which maps memory to the guest
1209  * @atomic: whether this function can sleep
1210  * @async: whether this function need to wait IO complete if the
1211  *         host page is not in the memory
1212  * @write_fault: whether we should get a writable host page
1213  * @writable: whether it allows to map a writable host page for !@write_fault
1214  *
1215  * The function will map a writable host page for these two cases:
1216  * 1): @write_fault = true
1217  * 2): @write_fault = false && @writable, @writable will tell the caller
1218  *     whether the mapping is writable.
1219  */
1220 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1221 			bool write_fault, bool *writable)
1222 {
1223 	struct vm_area_struct *vma;
1224 	pfn_t pfn = 0;
1225 	int npages;
1226 
1227 	/* we can do it either atomically or asynchronously, not both */
1228 	BUG_ON(atomic && async);
1229 
1230 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1231 		return pfn;
1232 
1233 	if (atomic)
1234 		return KVM_PFN_ERR_FAULT;
1235 
1236 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1237 	if (npages == 1)
1238 		return pfn;
1239 
1240 	down_read(&current->mm->mmap_sem);
1241 	if (npages == -EHWPOISON ||
1242 	      (!async && check_user_page_hwpoison(addr))) {
1243 		pfn = KVM_PFN_ERR_HWPOISON;
1244 		goto exit;
1245 	}
1246 
1247 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1248 
1249 	if (vma == NULL)
1250 		pfn = KVM_PFN_ERR_FAULT;
1251 	else if ((vma->vm_flags & VM_PFNMAP)) {
1252 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1253 			vma->vm_pgoff;
1254 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1255 	} else {
1256 		if (async && vma_is_valid(vma, write_fault))
1257 			*async = true;
1258 		pfn = KVM_PFN_ERR_FAULT;
1259 	}
1260 exit:
1261 	up_read(&current->mm->mmap_sem);
1262 	return pfn;
1263 }
1264 
1265 static pfn_t
1266 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1267 		     bool *async, bool write_fault, bool *writable)
1268 {
1269 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1270 
1271 	if (addr == KVM_HVA_ERR_RO_BAD)
1272 		return KVM_PFN_ERR_RO_FAULT;
1273 
1274 	if (kvm_is_error_hva(addr))
1275 		return KVM_PFN_NOSLOT;
1276 
1277 	/* Do not map writable pfn in the readonly memslot. */
1278 	if (writable && memslot_is_readonly(slot)) {
1279 		*writable = false;
1280 		writable = NULL;
1281 	}
1282 
1283 	return hva_to_pfn(addr, atomic, async, write_fault,
1284 			  writable);
1285 }
1286 
1287 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1288 			  bool write_fault, bool *writable)
1289 {
1290 	struct kvm_memory_slot *slot;
1291 
1292 	if (async)
1293 		*async = false;
1294 
1295 	slot = gfn_to_memslot(kvm, gfn);
1296 
1297 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1298 				    writable);
1299 }
1300 
1301 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1302 {
1303 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1306 
1307 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1308 		       bool write_fault, bool *writable)
1309 {
1310 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1313 
1314 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1315 {
1316 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1319 
1320 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1321 		      bool *writable)
1322 {
1323 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1324 }
1325 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1326 
1327 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1328 {
1329 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1330 }
1331 
1332 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1333 {
1334 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1335 }
1336 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1337 
1338 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1339 								  int nr_pages)
1340 {
1341 	unsigned long addr;
1342 	gfn_t entry;
1343 
1344 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1345 	if (kvm_is_error_hva(addr))
1346 		return -1;
1347 
1348 	if (entry < nr_pages)
1349 		return 0;
1350 
1351 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1352 }
1353 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1354 
1355 static struct page *kvm_pfn_to_page(pfn_t pfn)
1356 {
1357 	if (is_error_noslot_pfn(pfn))
1358 		return KVM_ERR_PTR_BAD_PAGE;
1359 
1360 	if (kvm_is_mmio_pfn(pfn)) {
1361 		WARN_ON(1);
1362 		return KVM_ERR_PTR_BAD_PAGE;
1363 	}
1364 
1365 	return pfn_to_page(pfn);
1366 }
1367 
1368 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1369 {
1370 	pfn_t pfn;
1371 
1372 	pfn = gfn_to_pfn(kvm, gfn);
1373 
1374 	return kvm_pfn_to_page(pfn);
1375 }
1376 
1377 EXPORT_SYMBOL_GPL(gfn_to_page);
1378 
1379 void kvm_release_page_clean(struct page *page)
1380 {
1381 	WARN_ON(is_error_page(page));
1382 
1383 	kvm_release_pfn_clean(page_to_pfn(page));
1384 }
1385 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1386 
1387 void kvm_release_pfn_clean(pfn_t pfn)
1388 {
1389 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1390 		put_page(pfn_to_page(pfn));
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1393 
1394 void kvm_release_page_dirty(struct page *page)
1395 {
1396 	WARN_ON(is_error_page(page));
1397 
1398 	kvm_release_pfn_dirty(page_to_pfn(page));
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1401 
1402 static void kvm_release_pfn_dirty(pfn_t pfn)
1403 {
1404 	kvm_set_pfn_dirty(pfn);
1405 	kvm_release_pfn_clean(pfn);
1406 }
1407 
1408 void kvm_set_pfn_dirty(pfn_t pfn)
1409 {
1410 	if (!kvm_is_mmio_pfn(pfn)) {
1411 		struct page *page = pfn_to_page(pfn);
1412 		if (!PageReserved(page))
1413 			SetPageDirty(page);
1414 	}
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1417 
1418 void kvm_set_pfn_accessed(pfn_t pfn)
1419 {
1420 	if (!kvm_is_mmio_pfn(pfn))
1421 		mark_page_accessed(pfn_to_page(pfn));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1424 
1425 void kvm_get_pfn(pfn_t pfn)
1426 {
1427 	if (!kvm_is_mmio_pfn(pfn))
1428 		get_page(pfn_to_page(pfn));
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1431 
1432 static int next_segment(unsigned long len, int offset)
1433 {
1434 	if (len > PAGE_SIZE - offset)
1435 		return PAGE_SIZE - offset;
1436 	else
1437 		return len;
1438 }
1439 
1440 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1441 			int len)
1442 {
1443 	int r;
1444 	unsigned long addr;
1445 
1446 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1447 	if (kvm_is_error_hva(addr))
1448 		return -EFAULT;
1449 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1450 	if (r)
1451 		return -EFAULT;
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1455 
1456 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1457 {
1458 	gfn_t gfn = gpa >> PAGE_SHIFT;
1459 	int seg;
1460 	int offset = offset_in_page(gpa);
1461 	int ret;
1462 
1463 	while ((seg = next_segment(len, offset)) != 0) {
1464 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1465 		if (ret < 0)
1466 			return ret;
1467 		offset = 0;
1468 		len -= seg;
1469 		data += seg;
1470 		++gfn;
1471 	}
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_read_guest);
1475 
1476 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1477 			  unsigned long len)
1478 {
1479 	int r;
1480 	unsigned long addr;
1481 	gfn_t gfn = gpa >> PAGE_SHIFT;
1482 	int offset = offset_in_page(gpa);
1483 
1484 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1485 	if (kvm_is_error_hva(addr))
1486 		return -EFAULT;
1487 	pagefault_disable();
1488 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1489 	pagefault_enable();
1490 	if (r)
1491 		return -EFAULT;
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(kvm_read_guest_atomic);
1495 
1496 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1497 			 int offset, int len)
1498 {
1499 	int r;
1500 	unsigned long addr;
1501 
1502 	addr = gfn_to_hva(kvm, gfn);
1503 	if (kvm_is_error_hva(addr))
1504 		return -EFAULT;
1505 	r = __copy_to_user((void __user *)addr + offset, data, len);
1506 	if (r)
1507 		return -EFAULT;
1508 	mark_page_dirty(kvm, gfn);
1509 	return 0;
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1512 
1513 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1514 		    unsigned long len)
1515 {
1516 	gfn_t gfn = gpa >> PAGE_SHIFT;
1517 	int seg;
1518 	int offset = offset_in_page(gpa);
1519 	int ret;
1520 
1521 	while ((seg = next_segment(len, offset)) != 0) {
1522 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1523 		if (ret < 0)
1524 			return ret;
1525 		offset = 0;
1526 		len -= seg;
1527 		data += seg;
1528 		++gfn;
1529 	}
1530 	return 0;
1531 }
1532 
1533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1534 			      gpa_t gpa, unsigned long len)
1535 {
1536 	struct kvm_memslots *slots = kvm_memslots(kvm);
1537 	int offset = offset_in_page(gpa);
1538 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1539 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1540 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1541 	gfn_t nr_pages_avail;
1542 
1543 	ghc->gpa = gpa;
1544 	ghc->generation = slots->generation;
1545 	ghc->len = len;
1546 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1547 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1548 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1549 		ghc->hva += offset;
1550 	} else {
1551 		/*
1552 		 * If the requested region crosses two memslots, we still
1553 		 * verify that the entire region is valid here.
1554 		 */
1555 		while (start_gfn <= end_gfn) {
1556 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1557 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1558 						   &nr_pages_avail);
1559 			if (kvm_is_error_hva(ghc->hva))
1560 				return -EFAULT;
1561 			start_gfn += nr_pages_avail;
1562 		}
1563 		/* Use the slow path for cross page reads and writes. */
1564 		ghc->memslot = NULL;
1565 	}
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1569 
1570 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1571 			   void *data, unsigned long len)
1572 {
1573 	struct kvm_memslots *slots = kvm_memslots(kvm);
1574 	int r;
1575 
1576 	BUG_ON(len > ghc->len);
1577 
1578 	if (slots->generation != ghc->generation)
1579 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1580 
1581 	if (unlikely(!ghc->memslot))
1582 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1583 
1584 	if (kvm_is_error_hva(ghc->hva))
1585 		return -EFAULT;
1586 
1587 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1588 	if (r)
1589 		return -EFAULT;
1590 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1591 
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1595 
1596 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1597 			   void *data, unsigned long len)
1598 {
1599 	struct kvm_memslots *slots = kvm_memslots(kvm);
1600 	int r;
1601 
1602 	BUG_ON(len > ghc->len);
1603 
1604 	if (slots->generation != ghc->generation)
1605 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1606 
1607 	if (unlikely(!ghc->memslot))
1608 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1609 
1610 	if (kvm_is_error_hva(ghc->hva))
1611 		return -EFAULT;
1612 
1613 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1614 	if (r)
1615 		return -EFAULT;
1616 
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1620 
1621 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1622 {
1623 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1624 
1625 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1628 
1629 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1630 {
1631 	gfn_t gfn = gpa >> PAGE_SHIFT;
1632 	int seg;
1633 	int offset = offset_in_page(gpa);
1634 	int ret;
1635 
1636         while ((seg = next_segment(len, offset)) != 0) {
1637 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1638 		if (ret < 0)
1639 			return ret;
1640 		offset = 0;
1641 		len -= seg;
1642 		++gfn;
1643 	}
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1647 
1648 static void mark_page_dirty_in_slot(struct kvm *kvm,
1649 				    struct kvm_memory_slot *memslot,
1650 				    gfn_t gfn)
1651 {
1652 	if (memslot && memslot->dirty_bitmap) {
1653 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1654 
1655 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1656 	}
1657 }
1658 
1659 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1660 {
1661 	struct kvm_memory_slot *memslot;
1662 
1663 	memslot = gfn_to_memslot(kvm, gfn);
1664 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1665 }
1666 EXPORT_SYMBOL_GPL(mark_page_dirty);
1667 
1668 /*
1669  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1670  */
1671 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1672 {
1673 	DEFINE_WAIT(wait);
1674 
1675 	for (;;) {
1676 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1677 
1678 		if (kvm_arch_vcpu_runnable(vcpu)) {
1679 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1680 			break;
1681 		}
1682 		if (kvm_cpu_has_pending_timer(vcpu))
1683 			break;
1684 		if (signal_pending(current))
1685 			break;
1686 
1687 		schedule();
1688 	}
1689 
1690 	finish_wait(&vcpu->wq, &wait);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1693 
1694 #ifndef CONFIG_S390
1695 /*
1696  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1697  */
1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1699 {
1700 	int me;
1701 	int cpu = vcpu->cpu;
1702 	wait_queue_head_t *wqp;
1703 
1704 	wqp = kvm_arch_vcpu_wq(vcpu);
1705 	if (waitqueue_active(wqp)) {
1706 		wake_up_interruptible(wqp);
1707 		++vcpu->stat.halt_wakeup;
1708 	}
1709 
1710 	me = get_cpu();
1711 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712 		if (kvm_arch_vcpu_should_kick(vcpu))
1713 			smp_send_reschedule(cpu);
1714 	put_cpu();
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717 #endif /* !CONFIG_S390 */
1718 
1719 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1720 {
1721 	struct pid *pid;
1722 	struct task_struct *task = NULL;
1723 	int ret = 0;
1724 
1725 	rcu_read_lock();
1726 	pid = rcu_dereference(target->pid);
1727 	if (pid)
1728 		task = get_pid_task(pid, PIDTYPE_PID);
1729 	rcu_read_unlock();
1730 	if (!task)
1731 		return ret;
1732 	if (task->flags & PF_VCPU) {
1733 		put_task_struct(task);
1734 		return ret;
1735 	}
1736 	ret = yield_to(task, 1);
1737 	put_task_struct(task);
1738 
1739 	return ret;
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1742 
1743 /*
1744  * Helper that checks whether a VCPU is eligible for directed yield.
1745  * Most eligible candidate to yield is decided by following heuristics:
1746  *
1747  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1748  *  (preempted lock holder), indicated by @in_spin_loop.
1749  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1750  *
1751  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1752  *  chance last time (mostly it has become eligible now since we have probably
1753  *  yielded to lockholder in last iteration. This is done by toggling
1754  *  @dy_eligible each time a VCPU checked for eligibility.)
1755  *
1756  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1757  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1758  *  burning. Giving priority for a potential lock-holder increases lock
1759  *  progress.
1760  *
1761  *  Since algorithm is based on heuristics, accessing another VCPU data without
1762  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1763  *  and continue with next VCPU and so on.
1764  */
1765 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1766 {
1767 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1768 	bool eligible;
1769 
1770 	eligible = !vcpu->spin_loop.in_spin_loop ||
1771 			(vcpu->spin_loop.in_spin_loop &&
1772 			 vcpu->spin_loop.dy_eligible);
1773 
1774 	if (vcpu->spin_loop.in_spin_loop)
1775 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1776 
1777 	return eligible;
1778 #else
1779 	return true;
1780 #endif
1781 }
1782 
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785 	struct kvm *kvm = me->kvm;
1786 	struct kvm_vcpu *vcpu;
1787 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 	int yielded = 0;
1789 	int try = 3;
1790 	int pass;
1791 	int i;
1792 
1793 	kvm_vcpu_set_in_spin_loop(me, true);
1794 	/*
1795 	 * We boost the priority of a VCPU that is runnable but not
1796 	 * currently running, because it got preempted by something
1797 	 * else and called schedule in __vcpu_run.  Hopefully that
1798 	 * VCPU is holding the lock that we need and will release it.
1799 	 * We approximate round-robin by starting at the last boosted VCPU.
1800 	 */
1801 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802 		kvm_for_each_vcpu(i, vcpu, kvm) {
1803 			if (!pass && i <= last_boosted_vcpu) {
1804 				i = last_boosted_vcpu;
1805 				continue;
1806 			} else if (pass && i > last_boosted_vcpu)
1807 				break;
1808 			if (!ACCESS_ONCE(vcpu->preempted))
1809 				continue;
1810 			if (vcpu == me)
1811 				continue;
1812 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1813 				continue;
1814 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815 				continue;
1816 
1817 			yielded = kvm_vcpu_yield_to(vcpu);
1818 			if (yielded > 0) {
1819 				kvm->last_boosted_vcpu = i;
1820 				break;
1821 			} else if (yielded < 0) {
1822 				try--;
1823 				if (!try)
1824 					break;
1825 			}
1826 		}
1827 	}
1828 	kvm_vcpu_set_in_spin_loop(me, false);
1829 
1830 	/* Ensure vcpu is not eligible during next spinloop */
1831 	kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834 
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838 	struct page *page;
1839 
1840 	if (vmf->pgoff == 0)
1841 		page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844 		page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850 	else
1851 		return kvm_arch_vcpu_fault(vcpu, vmf);
1852 	get_page(page);
1853 	vmf->page = page;
1854 	return 0;
1855 }
1856 
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858 	.fault = kvm_vcpu_fault,
1859 };
1860 
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863 	vma->vm_ops = &kvm_vcpu_vm_ops;
1864 	return 0;
1865 }
1866 
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869 	struct kvm_vcpu *vcpu = filp->private_data;
1870 
1871 	kvm_put_kvm(vcpu->kvm);
1872 	return 0;
1873 }
1874 
1875 static struct file_operations kvm_vcpu_fops = {
1876 	.release        = kvm_vcpu_release,
1877 	.unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1880 #endif
1881 	.mmap           = kvm_vcpu_mmap,
1882 	.llseek		= noop_llseek,
1883 };
1884 
1885 /*
1886  * Allocates an inode for the vcpu.
1887  */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892 
1893 /*
1894  * Creates some virtual cpus.  Good luck creating more than one.
1895  */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898 	int r;
1899 	struct kvm_vcpu *vcpu, *v;
1900 
1901 	if (id >= KVM_MAX_VCPUS)
1902 		return -EINVAL;
1903 
1904 	vcpu = kvm_arch_vcpu_create(kvm, id);
1905 	if (IS_ERR(vcpu))
1906 		return PTR_ERR(vcpu);
1907 
1908 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1909 
1910 	r = kvm_arch_vcpu_setup(vcpu);
1911 	if (r)
1912 		goto vcpu_destroy;
1913 
1914 	mutex_lock(&kvm->lock);
1915 	if (!kvm_vcpu_compatible(vcpu)) {
1916 		r = -EINVAL;
1917 		goto unlock_vcpu_destroy;
1918 	}
1919 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1920 		r = -EINVAL;
1921 		goto unlock_vcpu_destroy;
1922 	}
1923 
1924 	kvm_for_each_vcpu(r, v, kvm)
1925 		if (v->vcpu_id == id) {
1926 			r = -EEXIST;
1927 			goto unlock_vcpu_destroy;
1928 		}
1929 
1930 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1931 
1932 	/* Now it's all set up, let userspace reach it */
1933 	kvm_get_kvm(kvm);
1934 	r = create_vcpu_fd(vcpu);
1935 	if (r < 0) {
1936 		kvm_put_kvm(kvm);
1937 		goto unlock_vcpu_destroy;
1938 	}
1939 
1940 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1941 	smp_wmb();
1942 	atomic_inc(&kvm->online_vcpus);
1943 
1944 	mutex_unlock(&kvm->lock);
1945 	kvm_arch_vcpu_postcreate(vcpu);
1946 	return r;
1947 
1948 unlock_vcpu_destroy:
1949 	mutex_unlock(&kvm->lock);
1950 vcpu_destroy:
1951 	kvm_arch_vcpu_destroy(vcpu);
1952 	return r;
1953 }
1954 
1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1956 {
1957 	if (sigset) {
1958 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959 		vcpu->sigset_active = 1;
1960 		vcpu->sigset = *sigset;
1961 	} else
1962 		vcpu->sigset_active = 0;
1963 	return 0;
1964 }
1965 
1966 static long kvm_vcpu_ioctl(struct file *filp,
1967 			   unsigned int ioctl, unsigned long arg)
1968 {
1969 	struct kvm_vcpu *vcpu = filp->private_data;
1970 	void __user *argp = (void __user *)arg;
1971 	int r;
1972 	struct kvm_fpu *fpu = NULL;
1973 	struct kvm_sregs *kvm_sregs = NULL;
1974 
1975 	if (vcpu->kvm->mm != current->mm)
1976 		return -EIO;
1977 
1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1979 	/*
1980 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1981 	 * so vcpu_load() would break it.
1982 	 */
1983 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1984 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1985 #endif
1986 
1987 
1988 	r = vcpu_load(vcpu);
1989 	if (r)
1990 		return r;
1991 	switch (ioctl) {
1992 	case KVM_RUN:
1993 		r = -EINVAL;
1994 		if (arg)
1995 			goto out;
1996 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1997 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1998 		break;
1999 	case KVM_GET_REGS: {
2000 		struct kvm_regs *kvm_regs;
2001 
2002 		r = -ENOMEM;
2003 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2004 		if (!kvm_regs)
2005 			goto out;
2006 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2007 		if (r)
2008 			goto out_free1;
2009 		r = -EFAULT;
2010 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2011 			goto out_free1;
2012 		r = 0;
2013 out_free1:
2014 		kfree(kvm_regs);
2015 		break;
2016 	}
2017 	case KVM_SET_REGS: {
2018 		struct kvm_regs *kvm_regs;
2019 
2020 		r = -ENOMEM;
2021 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2022 		if (IS_ERR(kvm_regs)) {
2023 			r = PTR_ERR(kvm_regs);
2024 			goto out;
2025 		}
2026 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2027 		kfree(kvm_regs);
2028 		break;
2029 	}
2030 	case KVM_GET_SREGS: {
2031 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2032 		r = -ENOMEM;
2033 		if (!kvm_sregs)
2034 			goto out;
2035 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2036 		if (r)
2037 			goto out;
2038 		r = -EFAULT;
2039 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2040 			goto out;
2041 		r = 0;
2042 		break;
2043 	}
2044 	case KVM_SET_SREGS: {
2045 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2046 		if (IS_ERR(kvm_sregs)) {
2047 			r = PTR_ERR(kvm_sregs);
2048 			kvm_sregs = NULL;
2049 			goto out;
2050 		}
2051 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2052 		break;
2053 	}
2054 	case KVM_GET_MP_STATE: {
2055 		struct kvm_mp_state mp_state;
2056 
2057 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2058 		if (r)
2059 			goto out;
2060 		r = -EFAULT;
2061 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2062 			goto out;
2063 		r = 0;
2064 		break;
2065 	}
2066 	case KVM_SET_MP_STATE: {
2067 		struct kvm_mp_state mp_state;
2068 
2069 		r = -EFAULT;
2070 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2071 			goto out;
2072 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2073 		break;
2074 	}
2075 	case KVM_TRANSLATE: {
2076 		struct kvm_translation tr;
2077 
2078 		r = -EFAULT;
2079 		if (copy_from_user(&tr, argp, sizeof tr))
2080 			goto out;
2081 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2082 		if (r)
2083 			goto out;
2084 		r = -EFAULT;
2085 		if (copy_to_user(argp, &tr, sizeof tr))
2086 			goto out;
2087 		r = 0;
2088 		break;
2089 	}
2090 	case KVM_SET_GUEST_DEBUG: {
2091 		struct kvm_guest_debug dbg;
2092 
2093 		r = -EFAULT;
2094 		if (copy_from_user(&dbg, argp, sizeof dbg))
2095 			goto out;
2096 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2097 		break;
2098 	}
2099 	case KVM_SET_SIGNAL_MASK: {
2100 		struct kvm_signal_mask __user *sigmask_arg = argp;
2101 		struct kvm_signal_mask kvm_sigmask;
2102 		sigset_t sigset, *p;
2103 
2104 		p = NULL;
2105 		if (argp) {
2106 			r = -EFAULT;
2107 			if (copy_from_user(&kvm_sigmask, argp,
2108 					   sizeof kvm_sigmask))
2109 				goto out;
2110 			r = -EINVAL;
2111 			if (kvm_sigmask.len != sizeof sigset)
2112 				goto out;
2113 			r = -EFAULT;
2114 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2115 					   sizeof sigset))
2116 				goto out;
2117 			p = &sigset;
2118 		}
2119 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2120 		break;
2121 	}
2122 	case KVM_GET_FPU: {
2123 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2124 		r = -ENOMEM;
2125 		if (!fpu)
2126 			goto out;
2127 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2128 		if (r)
2129 			goto out;
2130 		r = -EFAULT;
2131 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2132 			goto out;
2133 		r = 0;
2134 		break;
2135 	}
2136 	case KVM_SET_FPU: {
2137 		fpu = memdup_user(argp, sizeof(*fpu));
2138 		if (IS_ERR(fpu)) {
2139 			r = PTR_ERR(fpu);
2140 			fpu = NULL;
2141 			goto out;
2142 		}
2143 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2144 		break;
2145 	}
2146 	default:
2147 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2148 	}
2149 out:
2150 	vcpu_put(vcpu);
2151 	kfree(fpu);
2152 	kfree(kvm_sregs);
2153 	return r;
2154 }
2155 
2156 #ifdef CONFIG_COMPAT
2157 static long kvm_vcpu_compat_ioctl(struct file *filp,
2158 				  unsigned int ioctl, unsigned long arg)
2159 {
2160 	struct kvm_vcpu *vcpu = filp->private_data;
2161 	void __user *argp = compat_ptr(arg);
2162 	int r;
2163 
2164 	if (vcpu->kvm->mm != current->mm)
2165 		return -EIO;
2166 
2167 	switch (ioctl) {
2168 	case KVM_SET_SIGNAL_MASK: {
2169 		struct kvm_signal_mask __user *sigmask_arg = argp;
2170 		struct kvm_signal_mask kvm_sigmask;
2171 		compat_sigset_t csigset;
2172 		sigset_t sigset;
2173 
2174 		if (argp) {
2175 			r = -EFAULT;
2176 			if (copy_from_user(&kvm_sigmask, argp,
2177 					   sizeof kvm_sigmask))
2178 				goto out;
2179 			r = -EINVAL;
2180 			if (kvm_sigmask.len != sizeof csigset)
2181 				goto out;
2182 			r = -EFAULT;
2183 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2184 					   sizeof csigset))
2185 				goto out;
2186 			sigset_from_compat(&sigset, &csigset);
2187 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2188 		} else
2189 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2190 		break;
2191 	}
2192 	default:
2193 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2194 	}
2195 
2196 out:
2197 	return r;
2198 }
2199 #endif
2200 
2201 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2202 				 int (*accessor)(struct kvm_device *dev,
2203 						 struct kvm_device_attr *attr),
2204 				 unsigned long arg)
2205 {
2206 	struct kvm_device_attr attr;
2207 
2208 	if (!accessor)
2209 		return -EPERM;
2210 
2211 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2212 		return -EFAULT;
2213 
2214 	return accessor(dev, &attr);
2215 }
2216 
2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2218 			     unsigned long arg)
2219 {
2220 	struct kvm_device *dev = filp->private_data;
2221 
2222 	switch (ioctl) {
2223 	case KVM_SET_DEVICE_ATTR:
2224 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2225 	case KVM_GET_DEVICE_ATTR:
2226 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2227 	case KVM_HAS_DEVICE_ATTR:
2228 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2229 	default:
2230 		if (dev->ops->ioctl)
2231 			return dev->ops->ioctl(dev, ioctl, arg);
2232 
2233 		return -ENOTTY;
2234 	}
2235 }
2236 
2237 static int kvm_device_release(struct inode *inode, struct file *filp)
2238 {
2239 	struct kvm_device *dev = filp->private_data;
2240 	struct kvm *kvm = dev->kvm;
2241 
2242 	kvm_put_kvm(kvm);
2243 	return 0;
2244 }
2245 
2246 static const struct file_operations kvm_device_fops = {
2247 	.unlocked_ioctl = kvm_device_ioctl,
2248 #ifdef CONFIG_COMPAT
2249 	.compat_ioctl = kvm_device_ioctl,
2250 #endif
2251 	.release = kvm_device_release,
2252 };
2253 
2254 struct kvm_device *kvm_device_from_filp(struct file *filp)
2255 {
2256 	if (filp->f_op != &kvm_device_fops)
2257 		return NULL;
2258 
2259 	return filp->private_data;
2260 }
2261 
2262 static int kvm_ioctl_create_device(struct kvm *kvm,
2263 				   struct kvm_create_device *cd)
2264 {
2265 	struct kvm_device_ops *ops = NULL;
2266 	struct kvm_device *dev;
2267 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2268 	int ret;
2269 
2270 	switch (cd->type) {
2271 #ifdef CONFIG_KVM_MPIC
2272 	case KVM_DEV_TYPE_FSL_MPIC_20:
2273 	case KVM_DEV_TYPE_FSL_MPIC_42:
2274 		ops = &kvm_mpic_ops;
2275 		break;
2276 #endif
2277 #ifdef CONFIG_KVM_XICS
2278 	case KVM_DEV_TYPE_XICS:
2279 		ops = &kvm_xics_ops;
2280 		break;
2281 #endif
2282 #ifdef CONFIG_KVM_VFIO
2283 	case KVM_DEV_TYPE_VFIO:
2284 		ops = &kvm_vfio_ops;
2285 		break;
2286 #endif
2287 #ifdef CONFIG_KVM_ARM_VGIC
2288 	case KVM_DEV_TYPE_ARM_VGIC_V2:
2289 		ops = &kvm_arm_vgic_v2_ops;
2290 		break;
2291 #endif
2292 #ifdef CONFIG_S390
2293 	case KVM_DEV_TYPE_FLIC:
2294 		ops = &kvm_flic_ops;
2295 		break;
2296 #endif
2297 	default:
2298 		return -ENODEV;
2299 	}
2300 
2301 	if (test)
2302 		return 0;
2303 
2304 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2305 	if (!dev)
2306 		return -ENOMEM;
2307 
2308 	dev->ops = ops;
2309 	dev->kvm = kvm;
2310 
2311 	ret = ops->create(dev, cd->type);
2312 	if (ret < 0) {
2313 		kfree(dev);
2314 		return ret;
2315 	}
2316 
2317 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2318 	if (ret < 0) {
2319 		ops->destroy(dev);
2320 		return ret;
2321 	}
2322 
2323 	list_add(&dev->vm_node, &kvm->devices);
2324 	kvm_get_kvm(kvm);
2325 	cd->fd = ret;
2326 	return 0;
2327 }
2328 
2329 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2330 {
2331 	switch (arg) {
2332 	case KVM_CAP_USER_MEMORY:
2333 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2334 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2335 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2336 	case KVM_CAP_SET_BOOT_CPU_ID:
2337 #endif
2338 	case KVM_CAP_INTERNAL_ERROR_DATA:
2339 #ifdef CONFIG_HAVE_KVM_MSI
2340 	case KVM_CAP_SIGNAL_MSI:
2341 #endif
2342 #ifdef CONFIG_HAVE_KVM_IRQFD
2343 	case KVM_CAP_IRQFD_RESAMPLE:
2344 #endif
2345 	case KVM_CAP_CHECK_EXTENSION_VM:
2346 		return 1;
2347 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2348 	case KVM_CAP_IRQ_ROUTING:
2349 		return KVM_MAX_IRQ_ROUTES;
2350 #endif
2351 	default:
2352 		break;
2353 	}
2354 	return kvm_vm_ioctl_check_extension(kvm, arg);
2355 }
2356 
2357 static long kvm_vm_ioctl(struct file *filp,
2358 			   unsigned int ioctl, unsigned long arg)
2359 {
2360 	struct kvm *kvm = filp->private_data;
2361 	void __user *argp = (void __user *)arg;
2362 	int r;
2363 
2364 	if (kvm->mm != current->mm)
2365 		return -EIO;
2366 	switch (ioctl) {
2367 	case KVM_CREATE_VCPU:
2368 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2369 		break;
2370 	case KVM_SET_USER_MEMORY_REGION: {
2371 		struct kvm_userspace_memory_region kvm_userspace_mem;
2372 
2373 		r = -EFAULT;
2374 		if (copy_from_user(&kvm_userspace_mem, argp,
2375 						sizeof kvm_userspace_mem))
2376 			goto out;
2377 
2378 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2379 		break;
2380 	}
2381 	case KVM_GET_DIRTY_LOG: {
2382 		struct kvm_dirty_log log;
2383 
2384 		r = -EFAULT;
2385 		if (copy_from_user(&log, argp, sizeof log))
2386 			goto out;
2387 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2388 		break;
2389 	}
2390 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2391 	case KVM_REGISTER_COALESCED_MMIO: {
2392 		struct kvm_coalesced_mmio_zone zone;
2393 		r = -EFAULT;
2394 		if (copy_from_user(&zone, argp, sizeof zone))
2395 			goto out;
2396 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2397 		break;
2398 	}
2399 	case KVM_UNREGISTER_COALESCED_MMIO: {
2400 		struct kvm_coalesced_mmio_zone zone;
2401 		r = -EFAULT;
2402 		if (copy_from_user(&zone, argp, sizeof zone))
2403 			goto out;
2404 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2405 		break;
2406 	}
2407 #endif
2408 	case KVM_IRQFD: {
2409 		struct kvm_irqfd data;
2410 
2411 		r = -EFAULT;
2412 		if (copy_from_user(&data, argp, sizeof data))
2413 			goto out;
2414 		r = kvm_irqfd(kvm, &data);
2415 		break;
2416 	}
2417 	case KVM_IOEVENTFD: {
2418 		struct kvm_ioeventfd data;
2419 
2420 		r = -EFAULT;
2421 		if (copy_from_user(&data, argp, sizeof data))
2422 			goto out;
2423 		r = kvm_ioeventfd(kvm, &data);
2424 		break;
2425 	}
2426 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2427 	case KVM_SET_BOOT_CPU_ID:
2428 		r = 0;
2429 		mutex_lock(&kvm->lock);
2430 		if (atomic_read(&kvm->online_vcpus) != 0)
2431 			r = -EBUSY;
2432 		else
2433 			kvm->bsp_vcpu_id = arg;
2434 		mutex_unlock(&kvm->lock);
2435 		break;
2436 #endif
2437 #ifdef CONFIG_HAVE_KVM_MSI
2438 	case KVM_SIGNAL_MSI: {
2439 		struct kvm_msi msi;
2440 
2441 		r = -EFAULT;
2442 		if (copy_from_user(&msi, argp, sizeof msi))
2443 			goto out;
2444 		r = kvm_send_userspace_msi(kvm, &msi);
2445 		break;
2446 	}
2447 #endif
2448 #ifdef __KVM_HAVE_IRQ_LINE
2449 	case KVM_IRQ_LINE_STATUS:
2450 	case KVM_IRQ_LINE: {
2451 		struct kvm_irq_level irq_event;
2452 
2453 		r = -EFAULT;
2454 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2455 			goto out;
2456 
2457 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2458 					ioctl == KVM_IRQ_LINE_STATUS);
2459 		if (r)
2460 			goto out;
2461 
2462 		r = -EFAULT;
2463 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2464 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2465 				goto out;
2466 		}
2467 
2468 		r = 0;
2469 		break;
2470 	}
2471 #endif
2472 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2473 	case KVM_SET_GSI_ROUTING: {
2474 		struct kvm_irq_routing routing;
2475 		struct kvm_irq_routing __user *urouting;
2476 		struct kvm_irq_routing_entry *entries;
2477 
2478 		r = -EFAULT;
2479 		if (copy_from_user(&routing, argp, sizeof(routing)))
2480 			goto out;
2481 		r = -EINVAL;
2482 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2483 			goto out;
2484 		if (routing.flags)
2485 			goto out;
2486 		r = -ENOMEM;
2487 		entries = vmalloc(routing.nr * sizeof(*entries));
2488 		if (!entries)
2489 			goto out;
2490 		r = -EFAULT;
2491 		urouting = argp;
2492 		if (copy_from_user(entries, urouting->entries,
2493 				   routing.nr * sizeof(*entries)))
2494 			goto out_free_irq_routing;
2495 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2496 					routing.flags);
2497 	out_free_irq_routing:
2498 		vfree(entries);
2499 		break;
2500 	}
2501 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2502 	case KVM_CREATE_DEVICE: {
2503 		struct kvm_create_device cd;
2504 
2505 		r = -EFAULT;
2506 		if (copy_from_user(&cd, argp, sizeof(cd)))
2507 			goto out;
2508 
2509 		r = kvm_ioctl_create_device(kvm, &cd);
2510 		if (r)
2511 			goto out;
2512 
2513 		r = -EFAULT;
2514 		if (copy_to_user(argp, &cd, sizeof(cd)))
2515 			goto out;
2516 
2517 		r = 0;
2518 		break;
2519 	}
2520 	case KVM_CHECK_EXTENSION:
2521 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2522 		break;
2523 	default:
2524 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2525 		if (r == -ENOTTY)
2526 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2527 	}
2528 out:
2529 	return r;
2530 }
2531 
2532 #ifdef CONFIG_COMPAT
2533 struct compat_kvm_dirty_log {
2534 	__u32 slot;
2535 	__u32 padding1;
2536 	union {
2537 		compat_uptr_t dirty_bitmap; /* one bit per page */
2538 		__u64 padding2;
2539 	};
2540 };
2541 
2542 static long kvm_vm_compat_ioctl(struct file *filp,
2543 			   unsigned int ioctl, unsigned long arg)
2544 {
2545 	struct kvm *kvm = filp->private_data;
2546 	int r;
2547 
2548 	if (kvm->mm != current->mm)
2549 		return -EIO;
2550 	switch (ioctl) {
2551 	case KVM_GET_DIRTY_LOG: {
2552 		struct compat_kvm_dirty_log compat_log;
2553 		struct kvm_dirty_log log;
2554 
2555 		r = -EFAULT;
2556 		if (copy_from_user(&compat_log, (void __user *)arg,
2557 				   sizeof(compat_log)))
2558 			goto out;
2559 		log.slot	 = compat_log.slot;
2560 		log.padding1	 = compat_log.padding1;
2561 		log.padding2	 = compat_log.padding2;
2562 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2563 
2564 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2565 		break;
2566 	}
2567 	default:
2568 		r = kvm_vm_ioctl(filp, ioctl, arg);
2569 	}
2570 
2571 out:
2572 	return r;
2573 }
2574 #endif
2575 
2576 static struct file_operations kvm_vm_fops = {
2577 	.release        = kvm_vm_release,
2578 	.unlocked_ioctl = kvm_vm_ioctl,
2579 #ifdef CONFIG_COMPAT
2580 	.compat_ioctl   = kvm_vm_compat_ioctl,
2581 #endif
2582 	.llseek		= noop_llseek,
2583 };
2584 
2585 static int kvm_dev_ioctl_create_vm(unsigned long type)
2586 {
2587 	int r;
2588 	struct kvm *kvm;
2589 
2590 	kvm = kvm_create_vm(type);
2591 	if (IS_ERR(kvm))
2592 		return PTR_ERR(kvm);
2593 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2594 	r = kvm_coalesced_mmio_init(kvm);
2595 	if (r < 0) {
2596 		kvm_put_kvm(kvm);
2597 		return r;
2598 	}
2599 #endif
2600 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2601 	if (r < 0)
2602 		kvm_put_kvm(kvm);
2603 
2604 	return r;
2605 }
2606 
2607 static long kvm_dev_ioctl(struct file *filp,
2608 			  unsigned int ioctl, unsigned long arg)
2609 {
2610 	long r = -EINVAL;
2611 
2612 	switch (ioctl) {
2613 	case KVM_GET_API_VERSION:
2614 		r = -EINVAL;
2615 		if (arg)
2616 			goto out;
2617 		r = KVM_API_VERSION;
2618 		break;
2619 	case KVM_CREATE_VM:
2620 		r = kvm_dev_ioctl_create_vm(arg);
2621 		break;
2622 	case KVM_CHECK_EXTENSION:
2623 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2624 		break;
2625 	case KVM_GET_VCPU_MMAP_SIZE:
2626 		r = -EINVAL;
2627 		if (arg)
2628 			goto out;
2629 		r = PAGE_SIZE;     /* struct kvm_run */
2630 #ifdef CONFIG_X86
2631 		r += PAGE_SIZE;    /* pio data page */
2632 #endif
2633 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2634 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2635 #endif
2636 		break;
2637 	case KVM_TRACE_ENABLE:
2638 	case KVM_TRACE_PAUSE:
2639 	case KVM_TRACE_DISABLE:
2640 		r = -EOPNOTSUPP;
2641 		break;
2642 	default:
2643 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2644 	}
2645 out:
2646 	return r;
2647 }
2648 
2649 static struct file_operations kvm_chardev_ops = {
2650 	.unlocked_ioctl = kvm_dev_ioctl,
2651 	.compat_ioctl   = kvm_dev_ioctl,
2652 	.llseek		= noop_llseek,
2653 };
2654 
2655 static struct miscdevice kvm_dev = {
2656 	KVM_MINOR,
2657 	"kvm",
2658 	&kvm_chardev_ops,
2659 };
2660 
2661 static void hardware_enable_nolock(void *junk)
2662 {
2663 	int cpu = raw_smp_processor_id();
2664 	int r;
2665 
2666 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2667 		return;
2668 
2669 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2670 
2671 	r = kvm_arch_hardware_enable(NULL);
2672 
2673 	if (r) {
2674 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2675 		atomic_inc(&hardware_enable_failed);
2676 		printk(KERN_INFO "kvm: enabling virtualization on "
2677 				 "CPU%d failed\n", cpu);
2678 	}
2679 }
2680 
2681 static void hardware_enable(void)
2682 {
2683 	raw_spin_lock(&kvm_count_lock);
2684 	if (kvm_usage_count)
2685 		hardware_enable_nolock(NULL);
2686 	raw_spin_unlock(&kvm_count_lock);
2687 }
2688 
2689 static void hardware_disable_nolock(void *junk)
2690 {
2691 	int cpu = raw_smp_processor_id();
2692 
2693 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2694 		return;
2695 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2696 	kvm_arch_hardware_disable(NULL);
2697 }
2698 
2699 static void hardware_disable(void)
2700 {
2701 	raw_spin_lock(&kvm_count_lock);
2702 	if (kvm_usage_count)
2703 		hardware_disable_nolock(NULL);
2704 	raw_spin_unlock(&kvm_count_lock);
2705 }
2706 
2707 static void hardware_disable_all_nolock(void)
2708 {
2709 	BUG_ON(!kvm_usage_count);
2710 
2711 	kvm_usage_count--;
2712 	if (!kvm_usage_count)
2713 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2714 }
2715 
2716 static void hardware_disable_all(void)
2717 {
2718 	raw_spin_lock(&kvm_count_lock);
2719 	hardware_disable_all_nolock();
2720 	raw_spin_unlock(&kvm_count_lock);
2721 }
2722 
2723 static int hardware_enable_all(void)
2724 {
2725 	int r = 0;
2726 
2727 	raw_spin_lock(&kvm_count_lock);
2728 
2729 	kvm_usage_count++;
2730 	if (kvm_usage_count == 1) {
2731 		atomic_set(&hardware_enable_failed, 0);
2732 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2733 
2734 		if (atomic_read(&hardware_enable_failed)) {
2735 			hardware_disable_all_nolock();
2736 			r = -EBUSY;
2737 		}
2738 	}
2739 
2740 	raw_spin_unlock(&kvm_count_lock);
2741 
2742 	return r;
2743 }
2744 
2745 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2746 			   void *v)
2747 {
2748 	int cpu = (long)v;
2749 
2750 	val &= ~CPU_TASKS_FROZEN;
2751 	switch (val) {
2752 	case CPU_DYING:
2753 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2754 		       cpu);
2755 		hardware_disable();
2756 		break;
2757 	case CPU_STARTING:
2758 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2759 		       cpu);
2760 		hardware_enable();
2761 		break;
2762 	}
2763 	return NOTIFY_OK;
2764 }
2765 
2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2767 		      void *v)
2768 {
2769 	/*
2770 	 * Some (well, at least mine) BIOSes hang on reboot if
2771 	 * in vmx root mode.
2772 	 *
2773 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2774 	 */
2775 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2776 	kvm_rebooting = true;
2777 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2778 	return NOTIFY_OK;
2779 }
2780 
2781 static struct notifier_block kvm_reboot_notifier = {
2782 	.notifier_call = kvm_reboot,
2783 	.priority = 0,
2784 };
2785 
2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2787 {
2788 	int i;
2789 
2790 	for (i = 0; i < bus->dev_count; i++) {
2791 		struct kvm_io_device *pos = bus->range[i].dev;
2792 
2793 		kvm_iodevice_destructor(pos);
2794 	}
2795 	kfree(bus);
2796 }
2797 
2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2799                                  const struct kvm_io_range *r2)
2800 {
2801 	if (r1->addr < r2->addr)
2802 		return -1;
2803 	if (r1->addr + r1->len > r2->addr + r2->len)
2804 		return 1;
2805 	return 0;
2806 }
2807 
2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2809 {
2810 	return kvm_io_bus_cmp(p1, p2);
2811 }
2812 
2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2814 			  gpa_t addr, int len)
2815 {
2816 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2817 		.addr = addr,
2818 		.len = len,
2819 		.dev = dev,
2820 	};
2821 
2822 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2823 		kvm_io_bus_sort_cmp, NULL);
2824 
2825 	return 0;
2826 }
2827 
2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2829 			     gpa_t addr, int len)
2830 {
2831 	struct kvm_io_range *range, key;
2832 	int off;
2833 
2834 	key = (struct kvm_io_range) {
2835 		.addr = addr,
2836 		.len = len,
2837 	};
2838 
2839 	range = bsearch(&key, bus->range, bus->dev_count,
2840 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2841 	if (range == NULL)
2842 		return -ENOENT;
2843 
2844 	off = range - bus->range;
2845 
2846 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2847 		off--;
2848 
2849 	return off;
2850 }
2851 
2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2853 			      struct kvm_io_range *range, const void *val)
2854 {
2855 	int idx;
2856 
2857 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2858 	if (idx < 0)
2859 		return -EOPNOTSUPP;
2860 
2861 	while (idx < bus->dev_count &&
2862 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2863 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2864 					range->len, val))
2865 			return idx;
2866 		idx++;
2867 	}
2868 
2869 	return -EOPNOTSUPP;
2870 }
2871 
2872 /* kvm_io_bus_write - called under kvm->slots_lock */
2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2874 		     int len, const void *val)
2875 {
2876 	struct kvm_io_bus *bus;
2877 	struct kvm_io_range range;
2878 	int r;
2879 
2880 	range = (struct kvm_io_range) {
2881 		.addr = addr,
2882 		.len = len,
2883 	};
2884 
2885 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886 	r = __kvm_io_bus_write(bus, &range, val);
2887 	return r < 0 ? r : 0;
2888 }
2889 
2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2892 			    int len, const void *val, long cookie)
2893 {
2894 	struct kvm_io_bus *bus;
2895 	struct kvm_io_range range;
2896 
2897 	range = (struct kvm_io_range) {
2898 		.addr = addr,
2899 		.len = len,
2900 	};
2901 
2902 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2903 
2904 	/* First try the device referenced by cookie. */
2905 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2906 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2907 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2908 					val))
2909 			return cookie;
2910 
2911 	/*
2912 	 * cookie contained garbage; fall back to search and return the
2913 	 * correct cookie value.
2914 	 */
2915 	return __kvm_io_bus_write(bus, &range, val);
2916 }
2917 
2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2919 			     void *val)
2920 {
2921 	int idx;
2922 
2923 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2924 	if (idx < 0)
2925 		return -EOPNOTSUPP;
2926 
2927 	while (idx < bus->dev_count &&
2928 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2929 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2930 				       range->len, val))
2931 			return idx;
2932 		idx++;
2933 	}
2934 
2935 	return -EOPNOTSUPP;
2936 }
2937 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2938 
2939 /* kvm_io_bus_read - called under kvm->slots_lock */
2940 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2941 		    int len, void *val)
2942 {
2943 	struct kvm_io_bus *bus;
2944 	struct kvm_io_range range;
2945 	int r;
2946 
2947 	range = (struct kvm_io_range) {
2948 		.addr = addr,
2949 		.len = len,
2950 	};
2951 
2952 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2953 	r = __kvm_io_bus_read(bus, &range, val);
2954 	return r < 0 ? r : 0;
2955 }
2956 
2957 
2958 /* Caller must hold slots_lock. */
2959 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2960 			    int len, struct kvm_io_device *dev)
2961 {
2962 	struct kvm_io_bus *new_bus, *bus;
2963 
2964 	bus = kvm->buses[bus_idx];
2965 	/* exclude ioeventfd which is limited by maximum fd */
2966 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2967 		return -ENOSPC;
2968 
2969 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2970 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2971 	if (!new_bus)
2972 		return -ENOMEM;
2973 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2974 	       sizeof(struct kvm_io_range)));
2975 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2976 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2977 	synchronize_srcu_expedited(&kvm->srcu);
2978 	kfree(bus);
2979 
2980 	return 0;
2981 }
2982 
2983 /* Caller must hold slots_lock. */
2984 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2985 			      struct kvm_io_device *dev)
2986 {
2987 	int i, r;
2988 	struct kvm_io_bus *new_bus, *bus;
2989 
2990 	bus = kvm->buses[bus_idx];
2991 	r = -ENOENT;
2992 	for (i = 0; i < bus->dev_count; i++)
2993 		if (bus->range[i].dev == dev) {
2994 			r = 0;
2995 			break;
2996 		}
2997 
2998 	if (r)
2999 		return r;
3000 
3001 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3002 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3003 	if (!new_bus)
3004 		return -ENOMEM;
3005 
3006 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3007 	new_bus->dev_count--;
3008 	memcpy(new_bus->range + i, bus->range + i + 1,
3009 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3010 
3011 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3012 	synchronize_srcu_expedited(&kvm->srcu);
3013 	kfree(bus);
3014 	return r;
3015 }
3016 
3017 static struct notifier_block kvm_cpu_notifier = {
3018 	.notifier_call = kvm_cpu_hotplug,
3019 };
3020 
3021 static int vm_stat_get(void *_offset, u64 *val)
3022 {
3023 	unsigned offset = (long)_offset;
3024 	struct kvm *kvm;
3025 
3026 	*val = 0;
3027 	spin_lock(&kvm_lock);
3028 	list_for_each_entry(kvm, &vm_list, vm_list)
3029 		*val += *(u32 *)((void *)kvm + offset);
3030 	spin_unlock(&kvm_lock);
3031 	return 0;
3032 }
3033 
3034 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3035 
3036 static int vcpu_stat_get(void *_offset, u64 *val)
3037 {
3038 	unsigned offset = (long)_offset;
3039 	struct kvm *kvm;
3040 	struct kvm_vcpu *vcpu;
3041 	int i;
3042 
3043 	*val = 0;
3044 	spin_lock(&kvm_lock);
3045 	list_for_each_entry(kvm, &vm_list, vm_list)
3046 		kvm_for_each_vcpu(i, vcpu, kvm)
3047 			*val += *(u32 *)((void *)vcpu + offset);
3048 
3049 	spin_unlock(&kvm_lock);
3050 	return 0;
3051 }
3052 
3053 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3054 
3055 static const struct file_operations *stat_fops[] = {
3056 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3057 	[KVM_STAT_VM]   = &vm_stat_fops,
3058 };
3059 
3060 static int kvm_init_debug(void)
3061 {
3062 	int r = -EEXIST;
3063 	struct kvm_stats_debugfs_item *p;
3064 
3065 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3066 	if (kvm_debugfs_dir == NULL)
3067 		goto out;
3068 
3069 	for (p = debugfs_entries; p->name; ++p) {
3070 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3071 						(void *)(long)p->offset,
3072 						stat_fops[p->kind]);
3073 		if (p->dentry == NULL)
3074 			goto out_dir;
3075 	}
3076 
3077 	return 0;
3078 
3079 out_dir:
3080 	debugfs_remove_recursive(kvm_debugfs_dir);
3081 out:
3082 	return r;
3083 }
3084 
3085 static void kvm_exit_debug(void)
3086 {
3087 	struct kvm_stats_debugfs_item *p;
3088 
3089 	for (p = debugfs_entries; p->name; ++p)
3090 		debugfs_remove(p->dentry);
3091 	debugfs_remove(kvm_debugfs_dir);
3092 }
3093 
3094 static int kvm_suspend(void)
3095 {
3096 	if (kvm_usage_count)
3097 		hardware_disable_nolock(NULL);
3098 	return 0;
3099 }
3100 
3101 static void kvm_resume(void)
3102 {
3103 	if (kvm_usage_count) {
3104 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3105 		hardware_enable_nolock(NULL);
3106 	}
3107 }
3108 
3109 static struct syscore_ops kvm_syscore_ops = {
3110 	.suspend = kvm_suspend,
3111 	.resume = kvm_resume,
3112 };
3113 
3114 static inline
3115 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3116 {
3117 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3118 }
3119 
3120 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3121 {
3122 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3123 	if (vcpu->preempted)
3124 		vcpu->preempted = false;
3125 
3126 	kvm_arch_vcpu_load(vcpu, cpu);
3127 }
3128 
3129 static void kvm_sched_out(struct preempt_notifier *pn,
3130 			  struct task_struct *next)
3131 {
3132 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3133 
3134 	if (current->state == TASK_RUNNING)
3135 		vcpu->preempted = true;
3136 	kvm_arch_vcpu_put(vcpu);
3137 }
3138 
3139 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3140 		  struct module *module)
3141 {
3142 	int r;
3143 	int cpu;
3144 
3145 	r = kvm_arch_init(opaque);
3146 	if (r)
3147 		goto out_fail;
3148 
3149 	/*
3150 	 * kvm_arch_init makes sure there's at most one caller
3151 	 * for architectures that support multiple implementations,
3152 	 * like intel and amd on x86.
3153 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3154 	 * conflicts in case kvm is already setup for another implementation.
3155 	 */
3156 	r = kvm_irqfd_init();
3157 	if (r)
3158 		goto out_irqfd;
3159 
3160 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3161 		r = -ENOMEM;
3162 		goto out_free_0;
3163 	}
3164 
3165 	r = kvm_arch_hardware_setup();
3166 	if (r < 0)
3167 		goto out_free_0a;
3168 
3169 	for_each_online_cpu(cpu) {
3170 		smp_call_function_single(cpu,
3171 				kvm_arch_check_processor_compat,
3172 				&r, 1);
3173 		if (r < 0)
3174 			goto out_free_1;
3175 	}
3176 
3177 	r = register_cpu_notifier(&kvm_cpu_notifier);
3178 	if (r)
3179 		goto out_free_2;
3180 	register_reboot_notifier(&kvm_reboot_notifier);
3181 
3182 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3183 	if (!vcpu_align)
3184 		vcpu_align = __alignof__(struct kvm_vcpu);
3185 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3186 					   0, NULL);
3187 	if (!kvm_vcpu_cache) {
3188 		r = -ENOMEM;
3189 		goto out_free_3;
3190 	}
3191 
3192 	r = kvm_async_pf_init();
3193 	if (r)
3194 		goto out_free;
3195 
3196 	kvm_chardev_ops.owner = module;
3197 	kvm_vm_fops.owner = module;
3198 	kvm_vcpu_fops.owner = module;
3199 
3200 	r = misc_register(&kvm_dev);
3201 	if (r) {
3202 		printk(KERN_ERR "kvm: misc device register failed\n");
3203 		goto out_unreg;
3204 	}
3205 
3206 	register_syscore_ops(&kvm_syscore_ops);
3207 
3208 	kvm_preempt_ops.sched_in = kvm_sched_in;
3209 	kvm_preempt_ops.sched_out = kvm_sched_out;
3210 
3211 	r = kvm_init_debug();
3212 	if (r) {
3213 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3214 		goto out_undebugfs;
3215 	}
3216 
3217 	return 0;
3218 
3219 out_undebugfs:
3220 	unregister_syscore_ops(&kvm_syscore_ops);
3221 	misc_deregister(&kvm_dev);
3222 out_unreg:
3223 	kvm_async_pf_deinit();
3224 out_free:
3225 	kmem_cache_destroy(kvm_vcpu_cache);
3226 out_free_3:
3227 	unregister_reboot_notifier(&kvm_reboot_notifier);
3228 	unregister_cpu_notifier(&kvm_cpu_notifier);
3229 out_free_2:
3230 out_free_1:
3231 	kvm_arch_hardware_unsetup();
3232 out_free_0a:
3233 	free_cpumask_var(cpus_hardware_enabled);
3234 out_free_0:
3235 	kvm_irqfd_exit();
3236 out_irqfd:
3237 	kvm_arch_exit();
3238 out_fail:
3239 	return r;
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_init);
3242 
3243 void kvm_exit(void)
3244 {
3245 	kvm_exit_debug();
3246 	misc_deregister(&kvm_dev);
3247 	kmem_cache_destroy(kvm_vcpu_cache);
3248 	kvm_async_pf_deinit();
3249 	unregister_syscore_ops(&kvm_syscore_ops);
3250 	unregister_reboot_notifier(&kvm_reboot_notifier);
3251 	unregister_cpu_notifier(&kvm_cpu_notifier);
3252 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3253 	kvm_arch_hardware_unsetup();
3254 	kvm_arch_exit();
3255 	kvm_irqfd_exit();
3256 	free_cpumask_var(cpus_hardware_enabled);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_exit);
3259