1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu, 250 unsigned int req, struct cpumask *tmp, 251 int current_cpu) 252 { 253 int cpu; 254 255 kvm_make_request(req, vcpu); 256 257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 258 return; 259 260 /* 261 * Note, the vCPU could get migrated to a different pCPU at any point 262 * after kvm_request_needs_ipi(), which could result in sending an IPI 263 * to the previous pCPU. But, that's OK because the purpose of the IPI 264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 266 * after this point is also OK, as the requirement is only that KVM wait 267 * for vCPUs that were reading SPTEs _before_ any changes were 268 * finalized. See kvm_vcpu_kick() for more details on handling requests. 269 */ 270 if (kvm_request_needs_ipi(vcpu, req)) { 271 cpu = READ_ONCE(vcpu->cpu); 272 if (cpu != -1 && cpu != current_cpu) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 } 276 277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 278 unsigned long *vcpu_bitmap) 279 { 280 struct kvm_vcpu *vcpu; 281 struct cpumask *cpus; 282 int i, me; 283 bool called; 284 285 me = get_cpu(); 286 287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 288 cpumask_clear(cpus); 289 290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 291 vcpu = kvm_get_vcpu(kvm, i); 292 if (!vcpu) 293 continue; 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 295 } 296 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 298 put_cpu(); 299 300 return called; 301 } 302 303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 304 struct kvm_vcpu *except) 305 { 306 struct kvm_vcpu *vcpu; 307 struct cpumask *cpus; 308 unsigned long i; 309 bool called; 310 int me; 311 312 me = get_cpu(); 313 314 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 315 cpumask_clear(cpus); 316 317 kvm_for_each_vcpu(i, vcpu, kvm) { 318 if (vcpu == except) 319 continue; 320 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 321 } 322 323 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 324 put_cpu(); 325 326 return called; 327 } 328 329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 330 { 331 return kvm_make_all_cpus_request_except(kvm, req, NULL); 332 } 333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 334 335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 336 void kvm_flush_remote_tlbs(struct kvm *kvm) 337 { 338 ++kvm->stat.generic.remote_tlb_flush_requests; 339 340 /* 341 * We want to publish modifications to the page tables before reading 342 * mode. Pairs with a memory barrier in arch-specific code. 343 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 344 * and smp_mb in walk_shadow_page_lockless_begin/end. 345 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 346 * 347 * There is already an smp_mb__after_atomic() before 348 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 349 * barrier here. 350 */ 351 if (!kvm_arch_flush_remote_tlb(kvm) 352 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 353 ++kvm->stat.generic.remote_tlb_flush; 354 } 355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 356 #endif 357 358 void kvm_reload_remote_mmus(struct kvm *kvm) 359 { 360 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 361 } 362 363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 365 gfp_t gfp_flags) 366 { 367 gfp_flags |= mc->gfp_zero; 368 369 if (mc->kmem_cache) 370 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 371 else 372 return (void *)__get_free_page(gfp_flags); 373 } 374 375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 376 { 377 void *obj; 378 379 if (mc->nobjs >= min) 380 return 0; 381 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 382 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 383 if (!obj) 384 return mc->nobjs >= min ? 0 : -ENOMEM; 385 mc->objects[mc->nobjs++] = obj; 386 } 387 return 0; 388 } 389 390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 391 { 392 return mc->nobjs; 393 } 394 395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 396 { 397 while (mc->nobjs) { 398 if (mc->kmem_cache) 399 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 400 else 401 free_page((unsigned long)mc->objects[--mc->nobjs]); 402 } 403 } 404 405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 406 { 407 void *p; 408 409 if (WARN_ON(!mc->nobjs)) 410 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 411 else 412 p = mc->objects[--mc->nobjs]; 413 BUG_ON(!p); 414 return p; 415 } 416 #endif 417 418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 419 { 420 mutex_init(&vcpu->mutex); 421 vcpu->cpu = -1; 422 vcpu->kvm = kvm; 423 vcpu->vcpu_id = id; 424 vcpu->pid = NULL; 425 #ifndef __KVM_HAVE_ARCH_WQP 426 rcuwait_init(&vcpu->wait); 427 #endif 428 kvm_async_pf_vcpu_init(vcpu); 429 430 vcpu->pre_pcpu = -1; 431 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 432 433 kvm_vcpu_set_in_spin_loop(vcpu, false); 434 kvm_vcpu_set_dy_eligible(vcpu, false); 435 vcpu->preempted = false; 436 vcpu->ready = false; 437 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 438 vcpu->last_used_slot = NULL; 439 } 440 441 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 442 { 443 kvm_dirty_ring_free(&vcpu->dirty_ring); 444 kvm_arch_vcpu_destroy(vcpu); 445 446 /* 447 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 448 * the vcpu->pid pointer, and at destruction time all file descriptors 449 * are already gone. 450 */ 451 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 452 453 free_page((unsigned long)vcpu->run); 454 kmem_cache_free(kvm_vcpu_cache, vcpu); 455 } 456 457 void kvm_destroy_vcpus(struct kvm *kvm) 458 { 459 unsigned long i; 460 struct kvm_vcpu *vcpu; 461 462 kvm_for_each_vcpu(i, vcpu, kvm) { 463 kvm_vcpu_destroy(vcpu); 464 xa_erase(&kvm->vcpu_array, i); 465 } 466 467 atomic_set(&kvm->online_vcpus, 0); 468 } 469 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 470 471 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 472 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 473 { 474 return container_of(mn, struct kvm, mmu_notifier); 475 } 476 477 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 478 struct mm_struct *mm, 479 unsigned long start, unsigned long end) 480 { 481 struct kvm *kvm = mmu_notifier_to_kvm(mn); 482 int idx; 483 484 idx = srcu_read_lock(&kvm->srcu); 485 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 486 srcu_read_unlock(&kvm->srcu, idx); 487 } 488 489 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 490 491 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 492 unsigned long end); 493 494 struct kvm_hva_range { 495 unsigned long start; 496 unsigned long end; 497 pte_t pte; 498 hva_handler_t handler; 499 on_lock_fn_t on_lock; 500 bool flush_on_ret; 501 bool may_block; 502 }; 503 504 /* 505 * Use a dedicated stub instead of NULL to indicate that there is no callback 506 * function/handler. The compiler technically can't guarantee that a real 507 * function will have a non-zero address, and so it will generate code to 508 * check for !NULL, whereas comparing against a stub will be elided at compile 509 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 510 */ 511 static void kvm_null_fn(void) 512 { 513 514 } 515 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 516 517 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 518 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 519 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 520 node; \ 521 node = interval_tree_iter_next(node, start, last)) \ 522 523 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 524 const struct kvm_hva_range *range) 525 { 526 bool ret = false, locked = false; 527 struct kvm_gfn_range gfn_range; 528 struct kvm_memory_slot *slot; 529 struct kvm_memslots *slots; 530 int i, idx; 531 532 if (WARN_ON_ONCE(range->end <= range->start)) 533 return 0; 534 535 /* A null handler is allowed if and only if on_lock() is provided. */ 536 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 537 IS_KVM_NULL_FN(range->handler))) 538 return 0; 539 540 idx = srcu_read_lock(&kvm->srcu); 541 542 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 543 struct interval_tree_node *node; 544 545 slots = __kvm_memslots(kvm, i); 546 kvm_for_each_memslot_in_hva_range(node, slots, 547 range->start, range->end - 1) { 548 unsigned long hva_start, hva_end; 549 550 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 551 hva_start = max(range->start, slot->userspace_addr); 552 hva_end = min(range->end, slot->userspace_addr + 553 (slot->npages << PAGE_SHIFT)); 554 555 /* 556 * To optimize for the likely case where the address 557 * range is covered by zero or one memslots, don't 558 * bother making these conditional (to avoid writes on 559 * the second or later invocation of the handler). 560 */ 561 gfn_range.pte = range->pte; 562 gfn_range.may_block = range->may_block; 563 564 /* 565 * {gfn(page) | page intersects with [hva_start, hva_end)} = 566 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 567 */ 568 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 569 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 570 gfn_range.slot = slot; 571 572 if (!locked) { 573 locked = true; 574 KVM_MMU_LOCK(kvm); 575 if (!IS_KVM_NULL_FN(range->on_lock)) 576 range->on_lock(kvm, range->start, range->end); 577 if (IS_KVM_NULL_FN(range->handler)) 578 break; 579 } 580 ret |= range->handler(kvm, &gfn_range); 581 } 582 } 583 584 if (range->flush_on_ret && ret) 585 kvm_flush_remote_tlbs(kvm); 586 587 if (locked) 588 KVM_MMU_UNLOCK(kvm); 589 590 srcu_read_unlock(&kvm->srcu, idx); 591 592 /* The notifiers are averse to booleans. :-( */ 593 return (int)ret; 594 } 595 596 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 597 unsigned long start, 598 unsigned long end, 599 pte_t pte, 600 hva_handler_t handler) 601 { 602 struct kvm *kvm = mmu_notifier_to_kvm(mn); 603 const struct kvm_hva_range range = { 604 .start = start, 605 .end = end, 606 .pte = pte, 607 .handler = handler, 608 .on_lock = (void *)kvm_null_fn, 609 .flush_on_ret = true, 610 .may_block = false, 611 }; 612 613 return __kvm_handle_hva_range(kvm, &range); 614 } 615 616 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 617 unsigned long start, 618 unsigned long end, 619 hva_handler_t handler) 620 { 621 struct kvm *kvm = mmu_notifier_to_kvm(mn); 622 const struct kvm_hva_range range = { 623 .start = start, 624 .end = end, 625 .pte = __pte(0), 626 .handler = handler, 627 .on_lock = (void *)kvm_null_fn, 628 .flush_on_ret = false, 629 .may_block = false, 630 }; 631 632 return __kvm_handle_hva_range(kvm, &range); 633 } 634 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 635 struct mm_struct *mm, 636 unsigned long address, 637 pte_t pte) 638 { 639 struct kvm *kvm = mmu_notifier_to_kvm(mn); 640 641 trace_kvm_set_spte_hva(address); 642 643 /* 644 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 645 * If mmu_notifier_count is zero, then no in-progress invalidations, 646 * including this one, found a relevant memslot at start(); rechecking 647 * memslots here is unnecessary. Note, a false positive (count elevated 648 * by a different invalidation) is sub-optimal but functionally ok. 649 */ 650 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 651 if (!READ_ONCE(kvm->mmu_notifier_count)) 652 return; 653 654 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 655 } 656 657 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 658 unsigned long end) 659 { 660 /* 661 * The count increase must become visible at unlock time as no 662 * spte can be established without taking the mmu_lock and 663 * count is also read inside the mmu_lock critical section. 664 */ 665 kvm->mmu_notifier_count++; 666 if (likely(kvm->mmu_notifier_count == 1)) { 667 kvm->mmu_notifier_range_start = start; 668 kvm->mmu_notifier_range_end = end; 669 } else { 670 /* 671 * Fully tracking multiple concurrent ranges has dimishing 672 * returns. Keep things simple and just find the minimal range 673 * which includes the current and new ranges. As there won't be 674 * enough information to subtract a range after its invalidate 675 * completes, any ranges invalidated concurrently will 676 * accumulate and persist until all outstanding invalidates 677 * complete. 678 */ 679 kvm->mmu_notifier_range_start = 680 min(kvm->mmu_notifier_range_start, start); 681 kvm->mmu_notifier_range_end = 682 max(kvm->mmu_notifier_range_end, end); 683 } 684 } 685 686 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 687 const struct mmu_notifier_range *range) 688 { 689 struct kvm *kvm = mmu_notifier_to_kvm(mn); 690 const struct kvm_hva_range hva_range = { 691 .start = range->start, 692 .end = range->end, 693 .pte = __pte(0), 694 .handler = kvm_unmap_gfn_range, 695 .on_lock = kvm_inc_notifier_count, 696 .flush_on_ret = true, 697 .may_block = mmu_notifier_range_blockable(range), 698 }; 699 700 trace_kvm_unmap_hva_range(range->start, range->end); 701 702 /* 703 * Prevent memslot modification between range_start() and range_end() 704 * so that conditionally locking provides the same result in both 705 * functions. Without that guarantee, the mmu_notifier_count 706 * adjustments will be imbalanced. 707 * 708 * Pairs with the decrement in range_end(). 709 */ 710 spin_lock(&kvm->mn_invalidate_lock); 711 kvm->mn_active_invalidate_count++; 712 spin_unlock(&kvm->mn_invalidate_lock); 713 714 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 715 hva_range.may_block); 716 717 __kvm_handle_hva_range(kvm, &hva_range); 718 719 return 0; 720 } 721 722 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 723 unsigned long end) 724 { 725 /* 726 * This sequence increase will notify the kvm page fault that 727 * the page that is going to be mapped in the spte could have 728 * been freed. 729 */ 730 kvm->mmu_notifier_seq++; 731 smp_wmb(); 732 /* 733 * The above sequence increase must be visible before the 734 * below count decrease, which is ensured by the smp_wmb above 735 * in conjunction with the smp_rmb in mmu_notifier_retry(). 736 */ 737 kvm->mmu_notifier_count--; 738 } 739 740 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 741 const struct mmu_notifier_range *range) 742 { 743 struct kvm *kvm = mmu_notifier_to_kvm(mn); 744 const struct kvm_hva_range hva_range = { 745 .start = range->start, 746 .end = range->end, 747 .pte = __pte(0), 748 .handler = (void *)kvm_null_fn, 749 .on_lock = kvm_dec_notifier_count, 750 .flush_on_ret = false, 751 .may_block = mmu_notifier_range_blockable(range), 752 }; 753 bool wake; 754 755 __kvm_handle_hva_range(kvm, &hva_range); 756 757 /* Pairs with the increment in range_start(). */ 758 spin_lock(&kvm->mn_invalidate_lock); 759 wake = (--kvm->mn_active_invalidate_count == 0); 760 spin_unlock(&kvm->mn_invalidate_lock); 761 762 /* 763 * There can only be one waiter, since the wait happens under 764 * slots_lock. 765 */ 766 if (wake) 767 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 768 769 BUG_ON(kvm->mmu_notifier_count < 0); 770 } 771 772 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 773 struct mm_struct *mm, 774 unsigned long start, 775 unsigned long end) 776 { 777 trace_kvm_age_hva(start, end); 778 779 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 780 } 781 782 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 783 struct mm_struct *mm, 784 unsigned long start, 785 unsigned long end) 786 { 787 trace_kvm_age_hva(start, end); 788 789 /* 790 * Even though we do not flush TLB, this will still adversely 791 * affect performance on pre-Haswell Intel EPT, where there is 792 * no EPT Access Bit to clear so that we have to tear down EPT 793 * tables instead. If we find this unacceptable, we can always 794 * add a parameter to kvm_age_hva so that it effectively doesn't 795 * do anything on clear_young. 796 * 797 * Also note that currently we never issue secondary TLB flushes 798 * from clear_young, leaving this job up to the regular system 799 * cadence. If we find this inaccurate, we might come up with a 800 * more sophisticated heuristic later. 801 */ 802 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 803 } 804 805 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 806 struct mm_struct *mm, 807 unsigned long address) 808 { 809 trace_kvm_test_age_hva(address); 810 811 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 812 kvm_test_age_gfn); 813 } 814 815 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 816 struct mm_struct *mm) 817 { 818 struct kvm *kvm = mmu_notifier_to_kvm(mn); 819 int idx; 820 821 idx = srcu_read_lock(&kvm->srcu); 822 kvm_arch_flush_shadow_all(kvm); 823 srcu_read_unlock(&kvm->srcu, idx); 824 } 825 826 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 827 .invalidate_range = kvm_mmu_notifier_invalidate_range, 828 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 829 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 830 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 831 .clear_young = kvm_mmu_notifier_clear_young, 832 .test_young = kvm_mmu_notifier_test_young, 833 .change_pte = kvm_mmu_notifier_change_pte, 834 .release = kvm_mmu_notifier_release, 835 }; 836 837 static int kvm_init_mmu_notifier(struct kvm *kvm) 838 { 839 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 840 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 841 } 842 843 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 844 845 static int kvm_init_mmu_notifier(struct kvm *kvm) 846 { 847 return 0; 848 } 849 850 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 851 852 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 853 static int kvm_pm_notifier_call(struct notifier_block *bl, 854 unsigned long state, 855 void *unused) 856 { 857 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 858 859 return kvm_arch_pm_notifier(kvm, state); 860 } 861 862 static void kvm_init_pm_notifier(struct kvm *kvm) 863 { 864 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 865 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 866 kvm->pm_notifier.priority = INT_MAX; 867 register_pm_notifier(&kvm->pm_notifier); 868 } 869 870 static void kvm_destroy_pm_notifier(struct kvm *kvm) 871 { 872 unregister_pm_notifier(&kvm->pm_notifier); 873 } 874 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 875 static void kvm_init_pm_notifier(struct kvm *kvm) 876 { 877 } 878 879 static void kvm_destroy_pm_notifier(struct kvm *kvm) 880 { 881 } 882 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 883 884 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 885 { 886 if (!memslot->dirty_bitmap) 887 return; 888 889 kvfree(memslot->dirty_bitmap); 890 memslot->dirty_bitmap = NULL; 891 } 892 893 /* This does not remove the slot from struct kvm_memslots data structures */ 894 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 895 { 896 kvm_destroy_dirty_bitmap(slot); 897 898 kvm_arch_free_memslot(kvm, slot); 899 900 kfree(slot); 901 } 902 903 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 904 { 905 struct hlist_node *idnode; 906 struct kvm_memory_slot *memslot; 907 int bkt; 908 909 /* 910 * The same memslot objects live in both active and inactive sets, 911 * arbitrarily free using index '1' so the second invocation of this 912 * function isn't operating over a structure with dangling pointers 913 * (even though this function isn't actually touching them). 914 */ 915 if (!slots->node_idx) 916 return; 917 918 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 919 kvm_free_memslot(kvm, memslot); 920 } 921 922 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 923 { 924 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 925 case KVM_STATS_TYPE_INSTANT: 926 return 0444; 927 case KVM_STATS_TYPE_CUMULATIVE: 928 case KVM_STATS_TYPE_PEAK: 929 default: 930 return 0644; 931 } 932 } 933 934 935 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 936 { 937 int i; 938 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 939 kvm_vcpu_stats_header.num_desc; 940 941 if (!kvm->debugfs_dentry) 942 return; 943 944 debugfs_remove_recursive(kvm->debugfs_dentry); 945 946 if (kvm->debugfs_stat_data) { 947 for (i = 0; i < kvm_debugfs_num_entries; i++) 948 kfree(kvm->debugfs_stat_data[i]); 949 kfree(kvm->debugfs_stat_data); 950 } 951 } 952 953 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 954 { 955 static DEFINE_MUTEX(kvm_debugfs_lock); 956 struct dentry *dent; 957 char dir_name[ITOA_MAX_LEN * 2]; 958 struct kvm_stat_data *stat_data; 959 const struct _kvm_stats_desc *pdesc; 960 int i, ret; 961 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 962 kvm_vcpu_stats_header.num_desc; 963 964 if (!debugfs_initialized()) 965 return 0; 966 967 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 968 mutex_lock(&kvm_debugfs_lock); 969 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 970 if (dent) { 971 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 972 dput(dent); 973 mutex_unlock(&kvm_debugfs_lock); 974 return 0; 975 } 976 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 977 mutex_unlock(&kvm_debugfs_lock); 978 if (IS_ERR(dent)) 979 return 0; 980 981 kvm->debugfs_dentry = dent; 982 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 983 sizeof(*kvm->debugfs_stat_data), 984 GFP_KERNEL_ACCOUNT); 985 if (!kvm->debugfs_stat_data) 986 return -ENOMEM; 987 988 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 989 pdesc = &kvm_vm_stats_desc[i]; 990 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 991 if (!stat_data) 992 return -ENOMEM; 993 994 stat_data->kvm = kvm; 995 stat_data->desc = pdesc; 996 stat_data->kind = KVM_STAT_VM; 997 kvm->debugfs_stat_data[i] = stat_data; 998 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 999 kvm->debugfs_dentry, stat_data, 1000 &stat_fops_per_vm); 1001 } 1002 1003 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1004 pdesc = &kvm_vcpu_stats_desc[i]; 1005 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1006 if (!stat_data) 1007 return -ENOMEM; 1008 1009 stat_data->kvm = kvm; 1010 stat_data->desc = pdesc; 1011 stat_data->kind = KVM_STAT_VCPU; 1012 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1013 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1014 kvm->debugfs_dentry, stat_data, 1015 &stat_fops_per_vm); 1016 } 1017 1018 ret = kvm_arch_create_vm_debugfs(kvm); 1019 if (ret) { 1020 kvm_destroy_vm_debugfs(kvm); 1021 return i; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * Called after the VM is otherwise initialized, but just before adding it to 1029 * the vm_list. 1030 */ 1031 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1032 { 1033 return 0; 1034 } 1035 1036 /* 1037 * Called just after removing the VM from the vm_list, but before doing any 1038 * other destruction. 1039 */ 1040 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1041 { 1042 } 1043 1044 /* 1045 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1046 * be setup already, so we can create arch-specific debugfs entries under it. 1047 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1048 * a per-arch destroy interface is not needed. 1049 */ 1050 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1051 { 1052 return 0; 1053 } 1054 1055 static struct kvm *kvm_create_vm(unsigned long type) 1056 { 1057 struct kvm *kvm = kvm_arch_alloc_vm(); 1058 struct kvm_memslots *slots; 1059 int r = -ENOMEM; 1060 int i, j; 1061 1062 if (!kvm) 1063 return ERR_PTR(-ENOMEM); 1064 1065 KVM_MMU_LOCK_INIT(kvm); 1066 mmgrab(current->mm); 1067 kvm->mm = current->mm; 1068 kvm_eventfd_init(kvm); 1069 mutex_init(&kvm->lock); 1070 mutex_init(&kvm->irq_lock); 1071 mutex_init(&kvm->slots_lock); 1072 mutex_init(&kvm->slots_arch_lock); 1073 spin_lock_init(&kvm->mn_invalidate_lock); 1074 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1075 xa_init(&kvm->vcpu_array); 1076 1077 INIT_LIST_HEAD(&kvm->gpc_list); 1078 spin_lock_init(&kvm->gpc_lock); 1079 1080 INIT_LIST_HEAD(&kvm->devices); 1081 1082 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1083 1084 if (init_srcu_struct(&kvm->srcu)) 1085 goto out_err_no_srcu; 1086 if (init_srcu_struct(&kvm->irq_srcu)) 1087 goto out_err_no_irq_srcu; 1088 1089 refcount_set(&kvm->users_count, 1); 1090 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1091 for (j = 0; j < 2; j++) { 1092 slots = &kvm->__memslots[i][j]; 1093 1094 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1095 slots->hva_tree = RB_ROOT_CACHED; 1096 slots->gfn_tree = RB_ROOT; 1097 hash_init(slots->id_hash); 1098 slots->node_idx = j; 1099 1100 /* Generations must be different for each address space. */ 1101 slots->generation = i; 1102 } 1103 1104 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1105 } 1106 1107 for (i = 0; i < KVM_NR_BUSES; i++) { 1108 rcu_assign_pointer(kvm->buses[i], 1109 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1110 if (!kvm->buses[i]) 1111 goto out_err_no_arch_destroy_vm; 1112 } 1113 1114 kvm->max_halt_poll_ns = halt_poll_ns; 1115 1116 r = kvm_arch_init_vm(kvm, type); 1117 if (r) 1118 goto out_err_no_arch_destroy_vm; 1119 1120 r = hardware_enable_all(); 1121 if (r) 1122 goto out_err_no_disable; 1123 1124 #ifdef CONFIG_HAVE_KVM_IRQFD 1125 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1126 #endif 1127 1128 r = kvm_init_mmu_notifier(kvm); 1129 if (r) 1130 goto out_err_no_mmu_notifier; 1131 1132 r = kvm_arch_post_init_vm(kvm); 1133 if (r) 1134 goto out_err; 1135 1136 mutex_lock(&kvm_lock); 1137 list_add(&kvm->vm_list, &vm_list); 1138 mutex_unlock(&kvm_lock); 1139 1140 preempt_notifier_inc(); 1141 kvm_init_pm_notifier(kvm); 1142 1143 return kvm; 1144 1145 out_err: 1146 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1147 if (kvm->mmu_notifier.ops) 1148 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1149 #endif 1150 out_err_no_mmu_notifier: 1151 hardware_disable_all(); 1152 out_err_no_disable: 1153 kvm_arch_destroy_vm(kvm); 1154 out_err_no_arch_destroy_vm: 1155 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1156 for (i = 0; i < KVM_NR_BUSES; i++) 1157 kfree(kvm_get_bus(kvm, i)); 1158 cleanup_srcu_struct(&kvm->irq_srcu); 1159 out_err_no_irq_srcu: 1160 cleanup_srcu_struct(&kvm->srcu); 1161 out_err_no_srcu: 1162 kvm_arch_free_vm(kvm); 1163 mmdrop(current->mm); 1164 return ERR_PTR(r); 1165 } 1166 1167 static void kvm_destroy_devices(struct kvm *kvm) 1168 { 1169 struct kvm_device *dev, *tmp; 1170 1171 /* 1172 * We do not need to take the kvm->lock here, because nobody else 1173 * has a reference to the struct kvm at this point and therefore 1174 * cannot access the devices list anyhow. 1175 */ 1176 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1177 list_del(&dev->vm_node); 1178 dev->ops->destroy(dev); 1179 } 1180 } 1181 1182 static void kvm_destroy_vm(struct kvm *kvm) 1183 { 1184 int i; 1185 struct mm_struct *mm = kvm->mm; 1186 1187 kvm_destroy_pm_notifier(kvm); 1188 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1189 kvm_destroy_vm_debugfs(kvm); 1190 kvm_arch_sync_events(kvm); 1191 mutex_lock(&kvm_lock); 1192 list_del(&kvm->vm_list); 1193 mutex_unlock(&kvm_lock); 1194 kvm_arch_pre_destroy_vm(kvm); 1195 1196 kvm_free_irq_routing(kvm); 1197 for (i = 0; i < KVM_NR_BUSES; i++) { 1198 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1199 1200 if (bus) 1201 kvm_io_bus_destroy(bus); 1202 kvm->buses[i] = NULL; 1203 } 1204 kvm_coalesced_mmio_free(kvm); 1205 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1206 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1207 /* 1208 * At this point, pending calls to invalidate_range_start() 1209 * have completed but no more MMU notifiers will run, so 1210 * mn_active_invalidate_count may remain unbalanced. 1211 * No threads can be waiting in install_new_memslots as the 1212 * last reference on KVM has been dropped, but freeing 1213 * memslots would deadlock without this manual intervention. 1214 */ 1215 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1216 kvm->mn_active_invalidate_count = 0; 1217 #else 1218 kvm_arch_flush_shadow_all(kvm); 1219 #endif 1220 kvm_arch_destroy_vm(kvm); 1221 kvm_destroy_devices(kvm); 1222 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1223 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1224 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1225 } 1226 cleanup_srcu_struct(&kvm->irq_srcu); 1227 cleanup_srcu_struct(&kvm->srcu); 1228 kvm_arch_free_vm(kvm); 1229 preempt_notifier_dec(); 1230 hardware_disable_all(); 1231 mmdrop(mm); 1232 } 1233 1234 void kvm_get_kvm(struct kvm *kvm) 1235 { 1236 refcount_inc(&kvm->users_count); 1237 } 1238 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1239 1240 /* 1241 * Make sure the vm is not during destruction, which is a safe version of 1242 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1243 */ 1244 bool kvm_get_kvm_safe(struct kvm *kvm) 1245 { 1246 return refcount_inc_not_zero(&kvm->users_count); 1247 } 1248 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1249 1250 void kvm_put_kvm(struct kvm *kvm) 1251 { 1252 if (refcount_dec_and_test(&kvm->users_count)) 1253 kvm_destroy_vm(kvm); 1254 } 1255 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1256 1257 /* 1258 * Used to put a reference that was taken on behalf of an object associated 1259 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1260 * of the new file descriptor fails and the reference cannot be transferred to 1261 * its final owner. In such cases, the caller is still actively using @kvm and 1262 * will fail miserably if the refcount unexpectedly hits zero. 1263 */ 1264 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1265 { 1266 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1267 } 1268 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1269 1270 static int kvm_vm_release(struct inode *inode, struct file *filp) 1271 { 1272 struct kvm *kvm = filp->private_data; 1273 1274 kvm_irqfd_release(kvm); 1275 1276 kvm_put_kvm(kvm); 1277 return 0; 1278 } 1279 1280 /* 1281 * Allocation size is twice as large as the actual dirty bitmap size. 1282 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1283 */ 1284 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1285 { 1286 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1287 1288 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1289 if (!memslot->dirty_bitmap) 1290 return -ENOMEM; 1291 1292 return 0; 1293 } 1294 1295 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1296 { 1297 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1298 int node_idx_inactive = active->node_idx ^ 1; 1299 1300 return &kvm->__memslots[as_id][node_idx_inactive]; 1301 } 1302 1303 /* 1304 * Helper to get the address space ID when one of memslot pointers may be NULL. 1305 * This also serves as a sanity that at least one of the pointers is non-NULL, 1306 * and that their address space IDs don't diverge. 1307 */ 1308 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1309 struct kvm_memory_slot *b) 1310 { 1311 if (WARN_ON_ONCE(!a && !b)) 1312 return 0; 1313 1314 if (!a) 1315 return b->as_id; 1316 if (!b) 1317 return a->as_id; 1318 1319 WARN_ON_ONCE(a->as_id != b->as_id); 1320 return a->as_id; 1321 } 1322 1323 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1324 struct kvm_memory_slot *slot) 1325 { 1326 struct rb_root *gfn_tree = &slots->gfn_tree; 1327 struct rb_node **node, *parent; 1328 int idx = slots->node_idx; 1329 1330 parent = NULL; 1331 for (node = &gfn_tree->rb_node; *node; ) { 1332 struct kvm_memory_slot *tmp; 1333 1334 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1335 parent = *node; 1336 if (slot->base_gfn < tmp->base_gfn) 1337 node = &(*node)->rb_left; 1338 else if (slot->base_gfn > tmp->base_gfn) 1339 node = &(*node)->rb_right; 1340 else 1341 BUG(); 1342 } 1343 1344 rb_link_node(&slot->gfn_node[idx], parent, node); 1345 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1346 } 1347 1348 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1349 struct kvm_memory_slot *slot) 1350 { 1351 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1352 } 1353 1354 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1355 struct kvm_memory_slot *old, 1356 struct kvm_memory_slot *new) 1357 { 1358 int idx = slots->node_idx; 1359 1360 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1361 1362 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1363 &slots->gfn_tree); 1364 } 1365 1366 /* 1367 * Replace @old with @new in the inactive memslots. 1368 * 1369 * With NULL @old this simply adds @new. 1370 * With NULL @new this simply removes @old. 1371 * 1372 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1373 * appropriately. 1374 */ 1375 static void kvm_replace_memslot(struct kvm *kvm, 1376 struct kvm_memory_slot *old, 1377 struct kvm_memory_slot *new) 1378 { 1379 int as_id = kvm_memslots_get_as_id(old, new); 1380 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1381 int idx = slots->node_idx; 1382 1383 if (old) { 1384 hash_del(&old->id_node[idx]); 1385 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1386 1387 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1388 atomic_long_set(&slots->last_used_slot, (long)new); 1389 1390 if (!new) { 1391 kvm_erase_gfn_node(slots, old); 1392 return; 1393 } 1394 } 1395 1396 /* 1397 * Initialize @new's hva range. Do this even when replacing an @old 1398 * slot, kvm_copy_memslot() deliberately does not touch node data. 1399 */ 1400 new->hva_node[idx].start = new->userspace_addr; 1401 new->hva_node[idx].last = new->userspace_addr + 1402 (new->npages << PAGE_SHIFT) - 1; 1403 1404 /* 1405 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1406 * hva_node needs to be swapped with remove+insert even though hva can't 1407 * change when replacing an existing slot. 1408 */ 1409 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1410 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1411 1412 /* 1413 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1414 * switch the node in the gfn tree instead of removing the old and 1415 * inserting the new as two separate operations. Replacement is a 1416 * single O(1) operation versus two O(log(n)) operations for 1417 * remove+insert. 1418 */ 1419 if (old && old->base_gfn == new->base_gfn) { 1420 kvm_replace_gfn_node(slots, old, new); 1421 } else { 1422 if (old) 1423 kvm_erase_gfn_node(slots, old); 1424 kvm_insert_gfn_node(slots, new); 1425 } 1426 } 1427 1428 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1429 { 1430 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1431 1432 #ifdef __KVM_HAVE_READONLY_MEM 1433 valid_flags |= KVM_MEM_READONLY; 1434 #endif 1435 1436 if (mem->flags & ~valid_flags) 1437 return -EINVAL; 1438 1439 return 0; 1440 } 1441 1442 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1443 { 1444 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1445 1446 /* Grab the generation from the activate memslots. */ 1447 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1448 1449 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1450 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1451 1452 /* 1453 * Do not store the new memslots while there are invalidations in 1454 * progress, otherwise the locking in invalidate_range_start and 1455 * invalidate_range_end will be unbalanced. 1456 */ 1457 spin_lock(&kvm->mn_invalidate_lock); 1458 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1459 while (kvm->mn_active_invalidate_count) { 1460 set_current_state(TASK_UNINTERRUPTIBLE); 1461 spin_unlock(&kvm->mn_invalidate_lock); 1462 schedule(); 1463 spin_lock(&kvm->mn_invalidate_lock); 1464 } 1465 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1466 rcu_assign_pointer(kvm->memslots[as_id], slots); 1467 spin_unlock(&kvm->mn_invalidate_lock); 1468 1469 /* 1470 * Acquired in kvm_set_memslot. Must be released before synchronize 1471 * SRCU below in order to avoid deadlock with another thread 1472 * acquiring the slots_arch_lock in an srcu critical section. 1473 */ 1474 mutex_unlock(&kvm->slots_arch_lock); 1475 1476 synchronize_srcu_expedited(&kvm->srcu); 1477 1478 /* 1479 * Increment the new memslot generation a second time, dropping the 1480 * update in-progress flag and incrementing the generation based on 1481 * the number of address spaces. This provides a unique and easily 1482 * identifiable generation number while the memslots are in flux. 1483 */ 1484 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1485 1486 /* 1487 * Generations must be unique even across address spaces. We do not need 1488 * a global counter for that, instead the generation space is evenly split 1489 * across address spaces. For example, with two address spaces, address 1490 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1491 * use generations 1, 3, 5, ... 1492 */ 1493 gen += KVM_ADDRESS_SPACE_NUM; 1494 1495 kvm_arch_memslots_updated(kvm, gen); 1496 1497 slots->generation = gen; 1498 } 1499 1500 static int kvm_prepare_memory_region(struct kvm *kvm, 1501 const struct kvm_memory_slot *old, 1502 struct kvm_memory_slot *new, 1503 enum kvm_mr_change change) 1504 { 1505 int r; 1506 1507 /* 1508 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1509 * will be freed on "commit". If logging is enabled in both old and 1510 * new, reuse the existing bitmap. If logging is enabled only in the 1511 * new and KVM isn't using a ring buffer, allocate and initialize a 1512 * new bitmap. 1513 */ 1514 if (change != KVM_MR_DELETE) { 1515 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1516 new->dirty_bitmap = NULL; 1517 else if (old && old->dirty_bitmap) 1518 new->dirty_bitmap = old->dirty_bitmap; 1519 else if (!kvm->dirty_ring_size) { 1520 r = kvm_alloc_dirty_bitmap(new); 1521 if (r) 1522 return r; 1523 1524 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1525 bitmap_set(new->dirty_bitmap, 0, new->npages); 1526 } 1527 } 1528 1529 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1530 1531 /* Free the bitmap on failure if it was allocated above. */ 1532 if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap) 1533 kvm_destroy_dirty_bitmap(new); 1534 1535 return r; 1536 } 1537 1538 static void kvm_commit_memory_region(struct kvm *kvm, 1539 struct kvm_memory_slot *old, 1540 const struct kvm_memory_slot *new, 1541 enum kvm_mr_change change) 1542 { 1543 /* 1544 * Update the total number of memslot pages before calling the arch 1545 * hook so that architectures can consume the result directly. 1546 */ 1547 if (change == KVM_MR_DELETE) 1548 kvm->nr_memslot_pages -= old->npages; 1549 else if (change == KVM_MR_CREATE) 1550 kvm->nr_memslot_pages += new->npages; 1551 1552 kvm_arch_commit_memory_region(kvm, old, new, change); 1553 1554 switch (change) { 1555 case KVM_MR_CREATE: 1556 /* Nothing more to do. */ 1557 break; 1558 case KVM_MR_DELETE: 1559 /* Free the old memslot and all its metadata. */ 1560 kvm_free_memslot(kvm, old); 1561 break; 1562 case KVM_MR_MOVE: 1563 case KVM_MR_FLAGS_ONLY: 1564 /* 1565 * Free the dirty bitmap as needed; the below check encompasses 1566 * both the flags and whether a ring buffer is being used) 1567 */ 1568 if (old->dirty_bitmap && !new->dirty_bitmap) 1569 kvm_destroy_dirty_bitmap(old); 1570 1571 /* 1572 * The final quirk. Free the detached, old slot, but only its 1573 * memory, not any metadata. Metadata, including arch specific 1574 * data, may be reused by @new. 1575 */ 1576 kfree(old); 1577 break; 1578 default: 1579 BUG(); 1580 } 1581 } 1582 1583 /* 1584 * Activate @new, which must be installed in the inactive slots by the caller, 1585 * by swapping the active slots and then propagating @new to @old once @old is 1586 * unreachable and can be safely modified. 1587 * 1588 * With NULL @old this simply adds @new to @active (while swapping the sets). 1589 * With NULL @new this simply removes @old from @active and frees it 1590 * (while also swapping the sets). 1591 */ 1592 static void kvm_activate_memslot(struct kvm *kvm, 1593 struct kvm_memory_slot *old, 1594 struct kvm_memory_slot *new) 1595 { 1596 int as_id = kvm_memslots_get_as_id(old, new); 1597 1598 kvm_swap_active_memslots(kvm, as_id); 1599 1600 /* Propagate the new memslot to the now inactive memslots. */ 1601 kvm_replace_memslot(kvm, old, new); 1602 } 1603 1604 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1605 const struct kvm_memory_slot *src) 1606 { 1607 dest->base_gfn = src->base_gfn; 1608 dest->npages = src->npages; 1609 dest->dirty_bitmap = src->dirty_bitmap; 1610 dest->arch = src->arch; 1611 dest->userspace_addr = src->userspace_addr; 1612 dest->flags = src->flags; 1613 dest->id = src->id; 1614 dest->as_id = src->as_id; 1615 } 1616 1617 static void kvm_invalidate_memslot(struct kvm *kvm, 1618 struct kvm_memory_slot *old, 1619 struct kvm_memory_slot *invalid_slot) 1620 { 1621 /* 1622 * Mark the current slot INVALID. As with all memslot modifications, 1623 * this must be done on an unreachable slot to avoid modifying the 1624 * current slot in the active tree. 1625 */ 1626 kvm_copy_memslot(invalid_slot, old); 1627 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1628 kvm_replace_memslot(kvm, old, invalid_slot); 1629 1630 /* 1631 * Activate the slot that is now marked INVALID, but don't propagate 1632 * the slot to the now inactive slots. The slot is either going to be 1633 * deleted or recreated as a new slot. 1634 */ 1635 kvm_swap_active_memslots(kvm, old->as_id); 1636 1637 /* 1638 * From this point no new shadow pages pointing to a deleted, or moved, 1639 * memslot will be created. Validation of sp->gfn happens in: 1640 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1641 * - kvm_is_visible_gfn (mmu_check_root) 1642 */ 1643 kvm_arch_flush_shadow_memslot(kvm, old); 1644 1645 /* Was released by kvm_swap_active_memslots, reacquire. */ 1646 mutex_lock(&kvm->slots_arch_lock); 1647 1648 /* 1649 * Copy the arch-specific field of the newly-installed slot back to the 1650 * old slot as the arch data could have changed between releasing 1651 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1652 * above. Writers are required to retrieve memslots *after* acquiring 1653 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1654 */ 1655 old->arch = invalid_slot->arch; 1656 } 1657 1658 static void kvm_create_memslot(struct kvm *kvm, 1659 struct kvm_memory_slot *new) 1660 { 1661 /* Add the new memslot to the inactive set and activate. */ 1662 kvm_replace_memslot(kvm, NULL, new); 1663 kvm_activate_memslot(kvm, NULL, new); 1664 } 1665 1666 static void kvm_delete_memslot(struct kvm *kvm, 1667 struct kvm_memory_slot *old, 1668 struct kvm_memory_slot *invalid_slot) 1669 { 1670 /* 1671 * Remove the old memslot (in the inactive memslots) by passing NULL as 1672 * the "new" slot, and for the invalid version in the active slots. 1673 */ 1674 kvm_replace_memslot(kvm, old, NULL); 1675 kvm_activate_memslot(kvm, invalid_slot, NULL); 1676 } 1677 1678 static void kvm_move_memslot(struct kvm *kvm, 1679 struct kvm_memory_slot *old, 1680 struct kvm_memory_slot *new, 1681 struct kvm_memory_slot *invalid_slot) 1682 { 1683 /* 1684 * Replace the old memslot in the inactive slots, and then swap slots 1685 * and replace the current INVALID with the new as well. 1686 */ 1687 kvm_replace_memslot(kvm, old, new); 1688 kvm_activate_memslot(kvm, invalid_slot, new); 1689 } 1690 1691 static void kvm_update_flags_memslot(struct kvm *kvm, 1692 struct kvm_memory_slot *old, 1693 struct kvm_memory_slot *new) 1694 { 1695 /* 1696 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1697 * an intermediate step. Instead, the old memslot is simply replaced 1698 * with a new, updated copy in both memslot sets. 1699 */ 1700 kvm_replace_memslot(kvm, old, new); 1701 kvm_activate_memslot(kvm, old, new); 1702 } 1703 1704 static int kvm_set_memslot(struct kvm *kvm, 1705 struct kvm_memory_slot *old, 1706 struct kvm_memory_slot *new, 1707 enum kvm_mr_change change) 1708 { 1709 struct kvm_memory_slot *invalid_slot; 1710 int r; 1711 1712 /* 1713 * Released in kvm_swap_active_memslots. 1714 * 1715 * Must be held from before the current memslots are copied until 1716 * after the new memslots are installed with rcu_assign_pointer, 1717 * then released before the synchronize srcu in kvm_swap_active_memslots. 1718 * 1719 * When modifying memslots outside of the slots_lock, must be held 1720 * before reading the pointer to the current memslots until after all 1721 * changes to those memslots are complete. 1722 * 1723 * These rules ensure that installing new memslots does not lose 1724 * changes made to the previous memslots. 1725 */ 1726 mutex_lock(&kvm->slots_arch_lock); 1727 1728 /* 1729 * Invalidate the old slot if it's being deleted or moved. This is 1730 * done prior to actually deleting/moving the memslot to allow vCPUs to 1731 * continue running by ensuring there are no mappings or shadow pages 1732 * for the memslot when it is deleted/moved. Without pre-invalidation 1733 * (and without a lock), a window would exist between effecting the 1734 * delete/move and committing the changes in arch code where KVM or a 1735 * guest could access a non-existent memslot. 1736 * 1737 * Modifications are done on a temporary, unreachable slot. The old 1738 * slot needs to be preserved in case a later step fails and the 1739 * invalidation needs to be reverted. 1740 */ 1741 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1742 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1743 if (!invalid_slot) { 1744 mutex_unlock(&kvm->slots_arch_lock); 1745 return -ENOMEM; 1746 } 1747 kvm_invalidate_memslot(kvm, old, invalid_slot); 1748 } 1749 1750 r = kvm_prepare_memory_region(kvm, old, new, change); 1751 if (r) { 1752 /* 1753 * For DELETE/MOVE, revert the above INVALID change. No 1754 * modifications required since the original slot was preserved 1755 * in the inactive slots. Changing the active memslots also 1756 * release slots_arch_lock. 1757 */ 1758 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1759 kvm_activate_memslot(kvm, invalid_slot, old); 1760 kfree(invalid_slot); 1761 } else { 1762 mutex_unlock(&kvm->slots_arch_lock); 1763 } 1764 return r; 1765 } 1766 1767 /* 1768 * For DELETE and MOVE, the working slot is now active as the INVALID 1769 * version of the old slot. MOVE is particularly special as it reuses 1770 * the old slot and returns a copy of the old slot (in working_slot). 1771 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1772 * old slot is detached but otherwise preserved. 1773 */ 1774 if (change == KVM_MR_CREATE) 1775 kvm_create_memslot(kvm, new); 1776 else if (change == KVM_MR_DELETE) 1777 kvm_delete_memslot(kvm, old, invalid_slot); 1778 else if (change == KVM_MR_MOVE) 1779 kvm_move_memslot(kvm, old, new, invalid_slot); 1780 else if (change == KVM_MR_FLAGS_ONLY) 1781 kvm_update_flags_memslot(kvm, old, new); 1782 else 1783 BUG(); 1784 1785 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1786 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1787 kfree(invalid_slot); 1788 1789 /* 1790 * No need to refresh new->arch, changes after dropping slots_arch_lock 1791 * will directly hit the final, active memsot. Architectures are 1792 * responsible for knowing that new->arch may be stale. 1793 */ 1794 kvm_commit_memory_region(kvm, old, new, change); 1795 1796 return 0; 1797 } 1798 1799 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1800 gfn_t start, gfn_t end) 1801 { 1802 struct kvm_memslot_iter iter; 1803 1804 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1805 if (iter.slot->id != id) 1806 return true; 1807 } 1808 1809 return false; 1810 } 1811 1812 /* 1813 * Allocate some memory and give it an address in the guest physical address 1814 * space. 1815 * 1816 * Discontiguous memory is allowed, mostly for framebuffers. 1817 * 1818 * Must be called holding kvm->slots_lock for write. 1819 */ 1820 int __kvm_set_memory_region(struct kvm *kvm, 1821 const struct kvm_userspace_memory_region *mem) 1822 { 1823 struct kvm_memory_slot *old, *new; 1824 struct kvm_memslots *slots; 1825 enum kvm_mr_change change; 1826 unsigned long npages; 1827 gfn_t base_gfn; 1828 int as_id, id; 1829 int r; 1830 1831 r = check_memory_region_flags(mem); 1832 if (r) 1833 return r; 1834 1835 as_id = mem->slot >> 16; 1836 id = (u16)mem->slot; 1837 1838 /* General sanity checks */ 1839 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1840 (mem->memory_size != (unsigned long)mem->memory_size)) 1841 return -EINVAL; 1842 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1843 return -EINVAL; 1844 /* We can read the guest memory with __xxx_user() later on. */ 1845 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1846 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1847 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1848 mem->memory_size)) 1849 return -EINVAL; 1850 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1851 return -EINVAL; 1852 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1853 return -EINVAL; 1854 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1855 return -EINVAL; 1856 1857 slots = __kvm_memslots(kvm, as_id); 1858 1859 /* 1860 * Note, the old memslot (and the pointer itself!) may be invalidated 1861 * and/or destroyed by kvm_set_memslot(). 1862 */ 1863 old = id_to_memslot(slots, id); 1864 1865 if (!mem->memory_size) { 1866 if (!old || !old->npages) 1867 return -EINVAL; 1868 1869 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1870 return -EIO; 1871 1872 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1873 } 1874 1875 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1876 npages = (mem->memory_size >> PAGE_SHIFT); 1877 1878 if (!old || !old->npages) { 1879 change = KVM_MR_CREATE; 1880 1881 /* 1882 * To simplify KVM internals, the total number of pages across 1883 * all memslots must fit in an unsigned long. 1884 */ 1885 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1886 return -EINVAL; 1887 } else { /* Modify an existing slot. */ 1888 if ((mem->userspace_addr != old->userspace_addr) || 1889 (npages != old->npages) || 1890 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1891 return -EINVAL; 1892 1893 if (base_gfn != old->base_gfn) 1894 change = KVM_MR_MOVE; 1895 else if (mem->flags != old->flags) 1896 change = KVM_MR_FLAGS_ONLY; 1897 else /* Nothing to change. */ 1898 return 0; 1899 } 1900 1901 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1902 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1903 return -EEXIST; 1904 1905 /* Allocate a slot that will persist in the memslot. */ 1906 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1907 if (!new) 1908 return -ENOMEM; 1909 1910 new->as_id = as_id; 1911 new->id = id; 1912 new->base_gfn = base_gfn; 1913 new->npages = npages; 1914 new->flags = mem->flags; 1915 new->userspace_addr = mem->userspace_addr; 1916 1917 r = kvm_set_memslot(kvm, old, new, change); 1918 if (r) 1919 kfree(new); 1920 return r; 1921 } 1922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1923 1924 int kvm_set_memory_region(struct kvm *kvm, 1925 const struct kvm_userspace_memory_region *mem) 1926 { 1927 int r; 1928 1929 mutex_lock(&kvm->slots_lock); 1930 r = __kvm_set_memory_region(kvm, mem); 1931 mutex_unlock(&kvm->slots_lock); 1932 return r; 1933 } 1934 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1935 1936 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1937 struct kvm_userspace_memory_region *mem) 1938 { 1939 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1940 return -EINVAL; 1941 1942 return kvm_set_memory_region(kvm, mem); 1943 } 1944 1945 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1946 /** 1947 * kvm_get_dirty_log - get a snapshot of dirty pages 1948 * @kvm: pointer to kvm instance 1949 * @log: slot id and address to which we copy the log 1950 * @is_dirty: set to '1' if any dirty pages were found 1951 * @memslot: set to the associated memslot, always valid on success 1952 */ 1953 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1954 int *is_dirty, struct kvm_memory_slot **memslot) 1955 { 1956 struct kvm_memslots *slots; 1957 int i, as_id, id; 1958 unsigned long n; 1959 unsigned long any = 0; 1960 1961 /* Dirty ring tracking is exclusive to dirty log tracking */ 1962 if (kvm->dirty_ring_size) 1963 return -ENXIO; 1964 1965 *memslot = NULL; 1966 *is_dirty = 0; 1967 1968 as_id = log->slot >> 16; 1969 id = (u16)log->slot; 1970 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1971 return -EINVAL; 1972 1973 slots = __kvm_memslots(kvm, as_id); 1974 *memslot = id_to_memslot(slots, id); 1975 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1976 return -ENOENT; 1977 1978 kvm_arch_sync_dirty_log(kvm, *memslot); 1979 1980 n = kvm_dirty_bitmap_bytes(*memslot); 1981 1982 for (i = 0; !any && i < n/sizeof(long); ++i) 1983 any = (*memslot)->dirty_bitmap[i]; 1984 1985 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1986 return -EFAULT; 1987 1988 if (any) 1989 *is_dirty = 1; 1990 return 0; 1991 } 1992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1993 1994 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1995 /** 1996 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1997 * and reenable dirty page tracking for the corresponding pages. 1998 * @kvm: pointer to kvm instance 1999 * @log: slot id and address to which we copy the log 2000 * 2001 * We need to keep it in mind that VCPU threads can write to the bitmap 2002 * concurrently. So, to avoid losing track of dirty pages we keep the 2003 * following order: 2004 * 2005 * 1. Take a snapshot of the bit and clear it if needed. 2006 * 2. Write protect the corresponding page. 2007 * 3. Copy the snapshot to the userspace. 2008 * 4. Upon return caller flushes TLB's if needed. 2009 * 2010 * Between 2 and 4, the guest may write to the page using the remaining TLB 2011 * entry. This is not a problem because the page is reported dirty using 2012 * the snapshot taken before and step 4 ensures that writes done after 2013 * exiting to userspace will be logged for the next call. 2014 * 2015 */ 2016 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2017 { 2018 struct kvm_memslots *slots; 2019 struct kvm_memory_slot *memslot; 2020 int i, as_id, id; 2021 unsigned long n; 2022 unsigned long *dirty_bitmap; 2023 unsigned long *dirty_bitmap_buffer; 2024 bool flush; 2025 2026 /* Dirty ring tracking is exclusive to dirty log tracking */ 2027 if (kvm->dirty_ring_size) 2028 return -ENXIO; 2029 2030 as_id = log->slot >> 16; 2031 id = (u16)log->slot; 2032 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2033 return -EINVAL; 2034 2035 slots = __kvm_memslots(kvm, as_id); 2036 memslot = id_to_memslot(slots, id); 2037 if (!memslot || !memslot->dirty_bitmap) 2038 return -ENOENT; 2039 2040 dirty_bitmap = memslot->dirty_bitmap; 2041 2042 kvm_arch_sync_dirty_log(kvm, memslot); 2043 2044 n = kvm_dirty_bitmap_bytes(memslot); 2045 flush = false; 2046 if (kvm->manual_dirty_log_protect) { 2047 /* 2048 * Unlike kvm_get_dirty_log, we always return false in *flush, 2049 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2050 * is some code duplication between this function and 2051 * kvm_get_dirty_log, but hopefully all architecture 2052 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2053 * can be eliminated. 2054 */ 2055 dirty_bitmap_buffer = dirty_bitmap; 2056 } else { 2057 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2058 memset(dirty_bitmap_buffer, 0, n); 2059 2060 KVM_MMU_LOCK(kvm); 2061 for (i = 0; i < n / sizeof(long); i++) { 2062 unsigned long mask; 2063 gfn_t offset; 2064 2065 if (!dirty_bitmap[i]) 2066 continue; 2067 2068 flush = true; 2069 mask = xchg(&dirty_bitmap[i], 0); 2070 dirty_bitmap_buffer[i] = mask; 2071 2072 offset = i * BITS_PER_LONG; 2073 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2074 offset, mask); 2075 } 2076 KVM_MMU_UNLOCK(kvm); 2077 } 2078 2079 if (flush) 2080 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2081 2082 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2083 return -EFAULT; 2084 return 0; 2085 } 2086 2087 2088 /** 2089 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2090 * @kvm: kvm instance 2091 * @log: slot id and address to which we copy the log 2092 * 2093 * Steps 1-4 below provide general overview of dirty page logging. See 2094 * kvm_get_dirty_log_protect() function description for additional details. 2095 * 2096 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2097 * always flush the TLB (step 4) even if previous step failed and the dirty 2098 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2099 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2100 * writes will be marked dirty for next log read. 2101 * 2102 * 1. Take a snapshot of the bit and clear it if needed. 2103 * 2. Write protect the corresponding page. 2104 * 3. Copy the snapshot to the userspace. 2105 * 4. Flush TLB's if needed. 2106 */ 2107 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2108 struct kvm_dirty_log *log) 2109 { 2110 int r; 2111 2112 mutex_lock(&kvm->slots_lock); 2113 2114 r = kvm_get_dirty_log_protect(kvm, log); 2115 2116 mutex_unlock(&kvm->slots_lock); 2117 return r; 2118 } 2119 2120 /** 2121 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2122 * and reenable dirty page tracking for the corresponding pages. 2123 * @kvm: pointer to kvm instance 2124 * @log: slot id and address from which to fetch the bitmap of dirty pages 2125 */ 2126 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2127 struct kvm_clear_dirty_log *log) 2128 { 2129 struct kvm_memslots *slots; 2130 struct kvm_memory_slot *memslot; 2131 int as_id, id; 2132 gfn_t offset; 2133 unsigned long i, n; 2134 unsigned long *dirty_bitmap; 2135 unsigned long *dirty_bitmap_buffer; 2136 bool flush; 2137 2138 /* Dirty ring tracking is exclusive to dirty log tracking */ 2139 if (kvm->dirty_ring_size) 2140 return -ENXIO; 2141 2142 as_id = log->slot >> 16; 2143 id = (u16)log->slot; 2144 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2145 return -EINVAL; 2146 2147 if (log->first_page & 63) 2148 return -EINVAL; 2149 2150 slots = __kvm_memslots(kvm, as_id); 2151 memslot = id_to_memslot(slots, id); 2152 if (!memslot || !memslot->dirty_bitmap) 2153 return -ENOENT; 2154 2155 dirty_bitmap = memslot->dirty_bitmap; 2156 2157 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2158 2159 if (log->first_page > memslot->npages || 2160 log->num_pages > memslot->npages - log->first_page || 2161 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2162 return -EINVAL; 2163 2164 kvm_arch_sync_dirty_log(kvm, memslot); 2165 2166 flush = false; 2167 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2168 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2169 return -EFAULT; 2170 2171 KVM_MMU_LOCK(kvm); 2172 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2173 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2174 i++, offset += BITS_PER_LONG) { 2175 unsigned long mask = *dirty_bitmap_buffer++; 2176 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2177 if (!mask) 2178 continue; 2179 2180 mask &= atomic_long_fetch_andnot(mask, p); 2181 2182 /* 2183 * mask contains the bits that really have been cleared. This 2184 * never includes any bits beyond the length of the memslot (if 2185 * the length is not aligned to 64 pages), therefore it is not 2186 * a problem if userspace sets them in log->dirty_bitmap. 2187 */ 2188 if (mask) { 2189 flush = true; 2190 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2191 offset, mask); 2192 } 2193 } 2194 KVM_MMU_UNLOCK(kvm); 2195 2196 if (flush) 2197 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2198 2199 return 0; 2200 } 2201 2202 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2203 struct kvm_clear_dirty_log *log) 2204 { 2205 int r; 2206 2207 mutex_lock(&kvm->slots_lock); 2208 2209 r = kvm_clear_dirty_log_protect(kvm, log); 2210 2211 mutex_unlock(&kvm->slots_lock); 2212 return r; 2213 } 2214 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2215 2216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2217 { 2218 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2219 } 2220 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2221 2222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2223 { 2224 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2225 u64 gen = slots->generation; 2226 struct kvm_memory_slot *slot; 2227 2228 /* 2229 * This also protects against using a memslot from a different address space, 2230 * since different address spaces have different generation numbers. 2231 */ 2232 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2233 vcpu->last_used_slot = NULL; 2234 vcpu->last_used_slot_gen = gen; 2235 } 2236 2237 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2238 if (slot) 2239 return slot; 2240 2241 /* 2242 * Fall back to searching all memslots. We purposely use 2243 * search_memslots() instead of __gfn_to_memslot() to avoid 2244 * thrashing the VM-wide last_used_slot in kvm_memslots. 2245 */ 2246 slot = search_memslots(slots, gfn, false); 2247 if (slot) { 2248 vcpu->last_used_slot = slot; 2249 return slot; 2250 } 2251 2252 return NULL; 2253 } 2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2255 2256 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2257 { 2258 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2259 2260 return kvm_is_visible_memslot(memslot); 2261 } 2262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2263 2264 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2265 { 2266 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2267 2268 return kvm_is_visible_memslot(memslot); 2269 } 2270 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2271 2272 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2273 { 2274 struct vm_area_struct *vma; 2275 unsigned long addr, size; 2276 2277 size = PAGE_SIZE; 2278 2279 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2280 if (kvm_is_error_hva(addr)) 2281 return PAGE_SIZE; 2282 2283 mmap_read_lock(current->mm); 2284 vma = find_vma(current->mm, addr); 2285 if (!vma) 2286 goto out; 2287 2288 size = vma_kernel_pagesize(vma); 2289 2290 out: 2291 mmap_read_unlock(current->mm); 2292 2293 return size; 2294 } 2295 2296 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2297 { 2298 return slot->flags & KVM_MEM_READONLY; 2299 } 2300 2301 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2302 gfn_t *nr_pages, bool write) 2303 { 2304 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2305 return KVM_HVA_ERR_BAD; 2306 2307 if (memslot_is_readonly(slot) && write) 2308 return KVM_HVA_ERR_RO_BAD; 2309 2310 if (nr_pages) 2311 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2312 2313 return __gfn_to_hva_memslot(slot, gfn); 2314 } 2315 2316 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2317 gfn_t *nr_pages) 2318 { 2319 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2320 } 2321 2322 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2323 gfn_t gfn) 2324 { 2325 return gfn_to_hva_many(slot, gfn, NULL); 2326 } 2327 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2328 2329 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2330 { 2331 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2332 } 2333 EXPORT_SYMBOL_GPL(gfn_to_hva); 2334 2335 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2336 { 2337 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2338 } 2339 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2340 2341 /* 2342 * Return the hva of a @gfn and the R/W attribute if possible. 2343 * 2344 * @slot: the kvm_memory_slot which contains @gfn 2345 * @gfn: the gfn to be translated 2346 * @writable: used to return the read/write attribute of the @slot if the hva 2347 * is valid and @writable is not NULL 2348 */ 2349 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2350 gfn_t gfn, bool *writable) 2351 { 2352 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2353 2354 if (!kvm_is_error_hva(hva) && writable) 2355 *writable = !memslot_is_readonly(slot); 2356 2357 return hva; 2358 } 2359 2360 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2361 { 2362 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2363 2364 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2365 } 2366 2367 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2368 { 2369 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2370 2371 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2372 } 2373 2374 static inline int check_user_page_hwpoison(unsigned long addr) 2375 { 2376 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2377 2378 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2379 return rc == -EHWPOISON; 2380 } 2381 2382 /* 2383 * The fast path to get the writable pfn which will be stored in @pfn, 2384 * true indicates success, otherwise false is returned. It's also the 2385 * only part that runs if we can in atomic context. 2386 */ 2387 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2388 bool *writable, kvm_pfn_t *pfn) 2389 { 2390 struct page *page[1]; 2391 2392 /* 2393 * Fast pin a writable pfn only if it is a write fault request 2394 * or the caller allows to map a writable pfn for a read fault 2395 * request. 2396 */ 2397 if (!(write_fault || writable)) 2398 return false; 2399 2400 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2401 *pfn = page_to_pfn(page[0]); 2402 2403 if (writable) 2404 *writable = true; 2405 return true; 2406 } 2407 2408 return false; 2409 } 2410 2411 /* 2412 * The slow path to get the pfn of the specified host virtual address, 2413 * 1 indicates success, -errno is returned if error is detected. 2414 */ 2415 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2416 bool *writable, kvm_pfn_t *pfn) 2417 { 2418 unsigned int flags = FOLL_HWPOISON; 2419 struct page *page; 2420 int npages = 0; 2421 2422 might_sleep(); 2423 2424 if (writable) 2425 *writable = write_fault; 2426 2427 if (write_fault) 2428 flags |= FOLL_WRITE; 2429 if (async) 2430 flags |= FOLL_NOWAIT; 2431 2432 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2433 if (npages != 1) 2434 return npages; 2435 2436 /* map read fault as writable if possible */ 2437 if (unlikely(!write_fault) && writable) { 2438 struct page *wpage; 2439 2440 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2441 *writable = true; 2442 put_page(page); 2443 page = wpage; 2444 } 2445 } 2446 *pfn = page_to_pfn(page); 2447 return npages; 2448 } 2449 2450 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2451 { 2452 if (unlikely(!(vma->vm_flags & VM_READ))) 2453 return false; 2454 2455 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2456 return false; 2457 2458 return true; 2459 } 2460 2461 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2462 { 2463 if (kvm_is_reserved_pfn(pfn)) 2464 return 1; 2465 return get_page_unless_zero(pfn_to_page(pfn)); 2466 } 2467 2468 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2469 unsigned long addr, bool *async, 2470 bool write_fault, bool *writable, 2471 kvm_pfn_t *p_pfn) 2472 { 2473 kvm_pfn_t pfn; 2474 pte_t *ptep; 2475 spinlock_t *ptl; 2476 int r; 2477 2478 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2479 if (r) { 2480 /* 2481 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2482 * not call the fault handler, so do it here. 2483 */ 2484 bool unlocked = false; 2485 r = fixup_user_fault(current->mm, addr, 2486 (write_fault ? FAULT_FLAG_WRITE : 0), 2487 &unlocked); 2488 if (unlocked) 2489 return -EAGAIN; 2490 if (r) 2491 return r; 2492 2493 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2494 if (r) 2495 return r; 2496 } 2497 2498 if (write_fault && !pte_write(*ptep)) { 2499 pfn = KVM_PFN_ERR_RO_FAULT; 2500 goto out; 2501 } 2502 2503 if (writable) 2504 *writable = pte_write(*ptep); 2505 pfn = pte_pfn(*ptep); 2506 2507 /* 2508 * Get a reference here because callers of *hva_to_pfn* and 2509 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2510 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2511 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2512 * simply do nothing for reserved pfns. 2513 * 2514 * Whoever called remap_pfn_range is also going to call e.g. 2515 * unmap_mapping_range before the underlying pages are freed, 2516 * causing a call to our MMU notifier. 2517 * 2518 * Certain IO or PFNMAP mappings can be backed with valid 2519 * struct pages, but be allocated without refcounting e.g., 2520 * tail pages of non-compound higher order allocations, which 2521 * would then underflow the refcount when the caller does the 2522 * required put_page. Don't allow those pages here. 2523 */ 2524 if (!kvm_try_get_pfn(pfn)) 2525 r = -EFAULT; 2526 2527 out: 2528 pte_unmap_unlock(ptep, ptl); 2529 *p_pfn = pfn; 2530 2531 return r; 2532 } 2533 2534 /* 2535 * Pin guest page in memory and return its pfn. 2536 * @addr: host virtual address which maps memory to the guest 2537 * @atomic: whether this function can sleep 2538 * @async: whether this function need to wait IO complete if the 2539 * host page is not in the memory 2540 * @write_fault: whether we should get a writable host page 2541 * @writable: whether it allows to map a writable host page for !@write_fault 2542 * 2543 * The function will map a writable host page for these two cases: 2544 * 1): @write_fault = true 2545 * 2): @write_fault = false && @writable, @writable will tell the caller 2546 * whether the mapping is writable. 2547 */ 2548 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2549 bool write_fault, bool *writable) 2550 { 2551 struct vm_area_struct *vma; 2552 kvm_pfn_t pfn = 0; 2553 int npages, r; 2554 2555 /* we can do it either atomically or asynchronously, not both */ 2556 BUG_ON(atomic && async); 2557 2558 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2559 return pfn; 2560 2561 if (atomic) 2562 return KVM_PFN_ERR_FAULT; 2563 2564 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2565 if (npages == 1) 2566 return pfn; 2567 2568 mmap_read_lock(current->mm); 2569 if (npages == -EHWPOISON || 2570 (!async && check_user_page_hwpoison(addr))) { 2571 pfn = KVM_PFN_ERR_HWPOISON; 2572 goto exit; 2573 } 2574 2575 retry: 2576 vma = vma_lookup(current->mm, addr); 2577 2578 if (vma == NULL) 2579 pfn = KVM_PFN_ERR_FAULT; 2580 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2581 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2582 if (r == -EAGAIN) 2583 goto retry; 2584 if (r < 0) 2585 pfn = KVM_PFN_ERR_FAULT; 2586 } else { 2587 if (async && vma_is_valid(vma, write_fault)) 2588 *async = true; 2589 pfn = KVM_PFN_ERR_FAULT; 2590 } 2591 exit: 2592 mmap_read_unlock(current->mm); 2593 return pfn; 2594 } 2595 2596 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2597 bool atomic, bool *async, bool write_fault, 2598 bool *writable, hva_t *hva) 2599 { 2600 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2601 2602 if (hva) 2603 *hva = addr; 2604 2605 if (addr == KVM_HVA_ERR_RO_BAD) { 2606 if (writable) 2607 *writable = false; 2608 return KVM_PFN_ERR_RO_FAULT; 2609 } 2610 2611 if (kvm_is_error_hva(addr)) { 2612 if (writable) 2613 *writable = false; 2614 return KVM_PFN_NOSLOT; 2615 } 2616 2617 /* Do not map writable pfn in the readonly memslot. */ 2618 if (writable && memslot_is_readonly(slot)) { 2619 *writable = false; 2620 writable = NULL; 2621 } 2622 2623 return hva_to_pfn(addr, atomic, async, write_fault, 2624 writable); 2625 } 2626 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2627 2628 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2629 bool *writable) 2630 { 2631 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2632 write_fault, writable, NULL); 2633 } 2634 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2635 2636 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2637 { 2638 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2639 } 2640 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2641 2642 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2643 { 2644 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2645 } 2646 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2647 2648 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2649 { 2650 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2651 } 2652 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2653 2654 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2655 { 2656 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2657 } 2658 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2659 2660 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2661 { 2662 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2663 } 2664 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2665 2666 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2667 struct page **pages, int nr_pages) 2668 { 2669 unsigned long addr; 2670 gfn_t entry = 0; 2671 2672 addr = gfn_to_hva_many(slot, gfn, &entry); 2673 if (kvm_is_error_hva(addr)) 2674 return -1; 2675 2676 if (entry < nr_pages) 2677 return 0; 2678 2679 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2680 } 2681 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2682 2683 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2684 { 2685 if (is_error_noslot_pfn(pfn)) 2686 return KVM_ERR_PTR_BAD_PAGE; 2687 2688 if (kvm_is_reserved_pfn(pfn)) { 2689 WARN_ON(1); 2690 return KVM_ERR_PTR_BAD_PAGE; 2691 } 2692 2693 return pfn_to_page(pfn); 2694 } 2695 2696 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2697 { 2698 kvm_pfn_t pfn; 2699 2700 pfn = gfn_to_pfn(kvm, gfn); 2701 2702 return kvm_pfn_to_page(pfn); 2703 } 2704 EXPORT_SYMBOL_GPL(gfn_to_page); 2705 2706 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2707 { 2708 if (pfn == 0) 2709 return; 2710 2711 if (dirty) 2712 kvm_release_pfn_dirty(pfn); 2713 else 2714 kvm_release_pfn_clean(pfn); 2715 } 2716 2717 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2718 { 2719 kvm_pfn_t pfn; 2720 void *hva = NULL; 2721 struct page *page = KVM_UNMAPPED_PAGE; 2722 2723 if (!map) 2724 return -EINVAL; 2725 2726 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2727 if (is_error_noslot_pfn(pfn)) 2728 return -EINVAL; 2729 2730 if (pfn_valid(pfn)) { 2731 page = pfn_to_page(pfn); 2732 hva = kmap(page); 2733 #ifdef CONFIG_HAS_IOMEM 2734 } else { 2735 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2736 #endif 2737 } 2738 2739 if (!hva) 2740 return -EFAULT; 2741 2742 map->page = page; 2743 map->hva = hva; 2744 map->pfn = pfn; 2745 map->gfn = gfn; 2746 2747 return 0; 2748 } 2749 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2750 2751 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2752 { 2753 if (!map) 2754 return; 2755 2756 if (!map->hva) 2757 return; 2758 2759 if (map->page != KVM_UNMAPPED_PAGE) 2760 kunmap(map->page); 2761 #ifdef CONFIG_HAS_IOMEM 2762 else 2763 memunmap(map->hva); 2764 #endif 2765 2766 if (dirty) 2767 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2768 2769 kvm_release_pfn(map->pfn, dirty); 2770 2771 map->hva = NULL; 2772 map->page = NULL; 2773 } 2774 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2775 2776 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2777 { 2778 kvm_pfn_t pfn; 2779 2780 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2781 2782 return kvm_pfn_to_page(pfn); 2783 } 2784 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2785 2786 void kvm_release_page_clean(struct page *page) 2787 { 2788 WARN_ON(is_error_page(page)); 2789 2790 kvm_release_pfn_clean(page_to_pfn(page)); 2791 } 2792 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2793 2794 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2795 { 2796 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2797 put_page(pfn_to_page(pfn)); 2798 } 2799 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2800 2801 void kvm_release_page_dirty(struct page *page) 2802 { 2803 WARN_ON(is_error_page(page)); 2804 2805 kvm_release_pfn_dirty(page_to_pfn(page)); 2806 } 2807 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2808 2809 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2810 { 2811 kvm_set_pfn_dirty(pfn); 2812 kvm_release_pfn_clean(pfn); 2813 } 2814 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2815 2816 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2817 { 2818 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2819 SetPageDirty(pfn_to_page(pfn)); 2820 } 2821 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2822 2823 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2824 { 2825 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2826 mark_page_accessed(pfn_to_page(pfn)); 2827 } 2828 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2829 2830 static int next_segment(unsigned long len, int offset) 2831 { 2832 if (len > PAGE_SIZE - offset) 2833 return PAGE_SIZE - offset; 2834 else 2835 return len; 2836 } 2837 2838 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2839 void *data, int offset, int len) 2840 { 2841 int r; 2842 unsigned long addr; 2843 2844 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2845 if (kvm_is_error_hva(addr)) 2846 return -EFAULT; 2847 r = __copy_from_user(data, (void __user *)addr + offset, len); 2848 if (r) 2849 return -EFAULT; 2850 return 0; 2851 } 2852 2853 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2854 int len) 2855 { 2856 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2857 2858 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2859 } 2860 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2861 2862 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2863 int offset, int len) 2864 { 2865 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2866 2867 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2868 } 2869 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2870 2871 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2872 { 2873 gfn_t gfn = gpa >> PAGE_SHIFT; 2874 int seg; 2875 int offset = offset_in_page(gpa); 2876 int ret; 2877 2878 while ((seg = next_segment(len, offset)) != 0) { 2879 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2880 if (ret < 0) 2881 return ret; 2882 offset = 0; 2883 len -= seg; 2884 data += seg; 2885 ++gfn; 2886 } 2887 return 0; 2888 } 2889 EXPORT_SYMBOL_GPL(kvm_read_guest); 2890 2891 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2892 { 2893 gfn_t gfn = gpa >> PAGE_SHIFT; 2894 int seg; 2895 int offset = offset_in_page(gpa); 2896 int ret; 2897 2898 while ((seg = next_segment(len, offset)) != 0) { 2899 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2900 if (ret < 0) 2901 return ret; 2902 offset = 0; 2903 len -= seg; 2904 data += seg; 2905 ++gfn; 2906 } 2907 return 0; 2908 } 2909 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2910 2911 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2912 void *data, int offset, unsigned long len) 2913 { 2914 int r; 2915 unsigned long addr; 2916 2917 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2918 if (kvm_is_error_hva(addr)) 2919 return -EFAULT; 2920 pagefault_disable(); 2921 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2922 pagefault_enable(); 2923 if (r) 2924 return -EFAULT; 2925 return 0; 2926 } 2927 2928 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2929 void *data, unsigned long len) 2930 { 2931 gfn_t gfn = gpa >> PAGE_SHIFT; 2932 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2933 int offset = offset_in_page(gpa); 2934 2935 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2936 } 2937 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2938 2939 static int __kvm_write_guest_page(struct kvm *kvm, 2940 struct kvm_memory_slot *memslot, gfn_t gfn, 2941 const void *data, int offset, int len) 2942 { 2943 int r; 2944 unsigned long addr; 2945 2946 addr = gfn_to_hva_memslot(memslot, gfn); 2947 if (kvm_is_error_hva(addr)) 2948 return -EFAULT; 2949 r = __copy_to_user((void __user *)addr + offset, data, len); 2950 if (r) 2951 return -EFAULT; 2952 mark_page_dirty_in_slot(kvm, memslot, gfn); 2953 return 0; 2954 } 2955 2956 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2957 const void *data, int offset, int len) 2958 { 2959 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2960 2961 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2962 } 2963 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2964 2965 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2966 const void *data, int offset, int len) 2967 { 2968 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2969 2970 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2971 } 2972 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2973 2974 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2975 unsigned long len) 2976 { 2977 gfn_t gfn = gpa >> PAGE_SHIFT; 2978 int seg; 2979 int offset = offset_in_page(gpa); 2980 int ret; 2981 2982 while ((seg = next_segment(len, offset)) != 0) { 2983 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2984 if (ret < 0) 2985 return ret; 2986 offset = 0; 2987 len -= seg; 2988 data += seg; 2989 ++gfn; 2990 } 2991 return 0; 2992 } 2993 EXPORT_SYMBOL_GPL(kvm_write_guest); 2994 2995 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2996 unsigned long len) 2997 { 2998 gfn_t gfn = gpa >> PAGE_SHIFT; 2999 int seg; 3000 int offset = offset_in_page(gpa); 3001 int ret; 3002 3003 while ((seg = next_segment(len, offset)) != 0) { 3004 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3005 if (ret < 0) 3006 return ret; 3007 offset = 0; 3008 len -= seg; 3009 data += seg; 3010 ++gfn; 3011 } 3012 return 0; 3013 } 3014 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3015 3016 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3017 struct gfn_to_hva_cache *ghc, 3018 gpa_t gpa, unsigned long len) 3019 { 3020 int offset = offset_in_page(gpa); 3021 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3022 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3023 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3024 gfn_t nr_pages_avail; 3025 3026 /* Update ghc->generation before performing any error checks. */ 3027 ghc->generation = slots->generation; 3028 3029 if (start_gfn > end_gfn) { 3030 ghc->hva = KVM_HVA_ERR_BAD; 3031 return -EINVAL; 3032 } 3033 3034 /* 3035 * If the requested region crosses two memslots, we still 3036 * verify that the entire region is valid here. 3037 */ 3038 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3039 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3040 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3041 &nr_pages_avail); 3042 if (kvm_is_error_hva(ghc->hva)) 3043 return -EFAULT; 3044 } 3045 3046 /* Use the slow path for cross page reads and writes. */ 3047 if (nr_pages_needed == 1) 3048 ghc->hva += offset; 3049 else 3050 ghc->memslot = NULL; 3051 3052 ghc->gpa = gpa; 3053 ghc->len = len; 3054 return 0; 3055 } 3056 3057 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3058 gpa_t gpa, unsigned long len) 3059 { 3060 struct kvm_memslots *slots = kvm_memslots(kvm); 3061 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3062 } 3063 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3064 3065 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3066 void *data, unsigned int offset, 3067 unsigned long len) 3068 { 3069 struct kvm_memslots *slots = kvm_memslots(kvm); 3070 int r; 3071 gpa_t gpa = ghc->gpa + offset; 3072 3073 if (WARN_ON_ONCE(len + offset > ghc->len)) 3074 return -EINVAL; 3075 3076 if (slots->generation != ghc->generation) { 3077 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3078 return -EFAULT; 3079 } 3080 3081 if (kvm_is_error_hva(ghc->hva)) 3082 return -EFAULT; 3083 3084 if (unlikely(!ghc->memslot)) 3085 return kvm_write_guest(kvm, gpa, data, len); 3086 3087 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3088 if (r) 3089 return -EFAULT; 3090 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3091 3092 return 0; 3093 } 3094 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3095 3096 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3097 void *data, unsigned long len) 3098 { 3099 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3100 } 3101 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3102 3103 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3104 void *data, unsigned int offset, 3105 unsigned long len) 3106 { 3107 struct kvm_memslots *slots = kvm_memslots(kvm); 3108 int r; 3109 gpa_t gpa = ghc->gpa + offset; 3110 3111 if (WARN_ON_ONCE(len + offset > ghc->len)) 3112 return -EINVAL; 3113 3114 if (slots->generation != ghc->generation) { 3115 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3116 return -EFAULT; 3117 } 3118 3119 if (kvm_is_error_hva(ghc->hva)) 3120 return -EFAULT; 3121 3122 if (unlikely(!ghc->memslot)) 3123 return kvm_read_guest(kvm, gpa, data, len); 3124 3125 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3126 if (r) 3127 return -EFAULT; 3128 3129 return 0; 3130 } 3131 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3132 3133 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3134 void *data, unsigned long len) 3135 { 3136 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3137 } 3138 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3139 3140 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3141 { 3142 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3143 gfn_t gfn = gpa >> PAGE_SHIFT; 3144 int seg; 3145 int offset = offset_in_page(gpa); 3146 int ret; 3147 3148 while ((seg = next_segment(len, offset)) != 0) { 3149 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3150 if (ret < 0) 3151 return ret; 3152 offset = 0; 3153 len -= seg; 3154 ++gfn; 3155 } 3156 return 0; 3157 } 3158 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3159 3160 void mark_page_dirty_in_slot(struct kvm *kvm, 3161 const struct kvm_memory_slot *memslot, 3162 gfn_t gfn) 3163 { 3164 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3165 3166 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3167 return; 3168 3169 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3170 unsigned long rel_gfn = gfn - memslot->base_gfn; 3171 u32 slot = (memslot->as_id << 16) | memslot->id; 3172 3173 if (kvm->dirty_ring_size) 3174 kvm_dirty_ring_push(&vcpu->dirty_ring, 3175 slot, rel_gfn); 3176 else 3177 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3178 } 3179 } 3180 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3181 3182 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3183 { 3184 struct kvm_memory_slot *memslot; 3185 3186 memslot = gfn_to_memslot(kvm, gfn); 3187 mark_page_dirty_in_slot(kvm, memslot, gfn); 3188 } 3189 EXPORT_SYMBOL_GPL(mark_page_dirty); 3190 3191 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3192 { 3193 struct kvm_memory_slot *memslot; 3194 3195 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3196 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3197 } 3198 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3199 3200 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3201 { 3202 if (!vcpu->sigset_active) 3203 return; 3204 3205 /* 3206 * This does a lockless modification of ->real_blocked, which is fine 3207 * because, only current can change ->real_blocked and all readers of 3208 * ->real_blocked don't care as long ->real_blocked is always a subset 3209 * of ->blocked. 3210 */ 3211 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3212 } 3213 3214 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3215 { 3216 if (!vcpu->sigset_active) 3217 return; 3218 3219 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3220 sigemptyset(¤t->real_blocked); 3221 } 3222 3223 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3224 { 3225 unsigned int old, val, grow, grow_start; 3226 3227 old = val = vcpu->halt_poll_ns; 3228 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3229 grow = READ_ONCE(halt_poll_ns_grow); 3230 if (!grow) 3231 goto out; 3232 3233 val *= grow; 3234 if (val < grow_start) 3235 val = grow_start; 3236 3237 if (val > vcpu->kvm->max_halt_poll_ns) 3238 val = vcpu->kvm->max_halt_poll_ns; 3239 3240 vcpu->halt_poll_ns = val; 3241 out: 3242 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3243 } 3244 3245 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3246 { 3247 unsigned int old, val, shrink, grow_start; 3248 3249 old = val = vcpu->halt_poll_ns; 3250 shrink = READ_ONCE(halt_poll_ns_shrink); 3251 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3252 if (shrink == 0) 3253 val = 0; 3254 else 3255 val /= shrink; 3256 3257 if (val < grow_start) 3258 val = 0; 3259 3260 vcpu->halt_poll_ns = val; 3261 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3262 } 3263 3264 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3265 { 3266 int ret = -EINTR; 3267 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3268 3269 if (kvm_arch_vcpu_runnable(vcpu)) { 3270 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3271 goto out; 3272 } 3273 if (kvm_cpu_has_pending_timer(vcpu)) 3274 goto out; 3275 if (signal_pending(current)) 3276 goto out; 3277 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3278 goto out; 3279 3280 ret = 0; 3281 out: 3282 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3283 return ret; 3284 } 3285 3286 /* 3287 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3288 * pending. This is mostly used when halting a vCPU, but may also be used 3289 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3290 */ 3291 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3292 { 3293 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3294 bool waited = false; 3295 3296 vcpu->stat.generic.blocking = 1; 3297 3298 kvm_arch_vcpu_blocking(vcpu); 3299 3300 prepare_to_rcuwait(wait); 3301 for (;;) { 3302 set_current_state(TASK_INTERRUPTIBLE); 3303 3304 if (kvm_vcpu_check_block(vcpu) < 0) 3305 break; 3306 3307 waited = true; 3308 schedule(); 3309 } 3310 finish_rcuwait(wait); 3311 3312 kvm_arch_vcpu_unblocking(vcpu); 3313 3314 vcpu->stat.generic.blocking = 0; 3315 3316 return waited; 3317 } 3318 3319 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3320 ktime_t end, bool success) 3321 { 3322 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3323 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3324 3325 ++vcpu->stat.generic.halt_attempted_poll; 3326 3327 if (success) { 3328 ++vcpu->stat.generic.halt_successful_poll; 3329 3330 if (!vcpu_valid_wakeup(vcpu)) 3331 ++vcpu->stat.generic.halt_poll_invalid; 3332 3333 stats->halt_poll_success_ns += poll_ns; 3334 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3335 } else { 3336 stats->halt_poll_fail_ns += poll_ns; 3337 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3338 } 3339 } 3340 3341 /* 3342 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3343 * polling is enabled, busy wait for a short time before blocking to avoid the 3344 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3345 * is halted. 3346 */ 3347 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3348 { 3349 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3350 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3351 ktime_t start, cur, poll_end; 3352 bool waited = false; 3353 u64 halt_ns; 3354 3355 start = cur = poll_end = ktime_get(); 3356 if (do_halt_poll) { 3357 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3358 3359 do { 3360 /* 3361 * This sets KVM_REQ_UNHALT if an interrupt 3362 * arrives. 3363 */ 3364 if (kvm_vcpu_check_block(vcpu) < 0) 3365 goto out; 3366 cpu_relax(); 3367 poll_end = cur = ktime_get(); 3368 } while (kvm_vcpu_can_poll(cur, stop)); 3369 } 3370 3371 waited = kvm_vcpu_block(vcpu); 3372 3373 cur = ktime_get(); 3374 if (waited) { 3375 vcpu->stat.generic.halt_wait_ns += 3376 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3377 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3378 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3379 } 3380 out: 3381 /* The total time the vCPU was "halted", including polling time. */ 3382 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3383 3384 /* 3385 * Note, halt-polling is considered successful so long as the vCPU was 3386 * never actually scheduled out, i.e. even if the wake event arrived 3387 * after of the halt-polling loop itself, but before the full wait. 3388 */ 3389 if (do_halt_poll) 3390 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3391 3392 if (halt_poll_allowed) { 3393 if (!vcpu_valid_wakeup(vcpu)) { 3394 shrink_halt_poll_ns(vcpu); 3395 } else if (vcpu->kvm->max_halt_poll_ns) { 3396 if (halt_ns <= vcpu->halt_poll_ns) 3397 ; 3398 /* we had a long block, shrink polling */ 3399 else if (vcpu->halt_poll_ns && 3400 halt_ns > vcpu->kvm->max_halt_poll_ns) 3401 shrink_halt_poll_ns(vcpu); 3402 /* we had a short halt and our poll time is too small */ 3403 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3404 halt_ns < vcpu->kvm->max_halt_poll_ns) 3405 grow_halt_poll_ns(vcpu); 3406 } else { 3407 vcpu->halt_poll_ns = 0; 3408 } 3409 } 3410 3411 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3412 } 3413 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3414 3415 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3416 { 3417 if (__kvm_vcpu_wake_up(vcpu)) { 3418 WRITE_ONCE(vcpu->ready, true); 3419 ++vcpu->stat.generic.halt_wakeup; 3420 return true; 3421 } 3422 3423 return false; 3424 } 3425 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3426 3427 #ifndef CONFIG_S390 3428 /* 3429 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3430 */ 3431 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3432 { 3433 int me, cpu; 3434 3435 if (kvm_vcpu_wake_up(vcpu)) 3436 return; 3437 3438 me = get_cpu(); 3439 /* 3440 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3441 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3442 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3443 * within the vCPU thread itself. 3444 */ 3445 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3446 if (vcpu->mode == IN_GUEST_MODE) 3447 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3448 goto out; 3449 } 3450 3451 /* 3452 * Note, the vCPU could get migrated to a different pCPU at any point 3453 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3454 * IPI to the previous pCPU. But, that's ok because the purpose of the 3455 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3456 * vCPU also requires it to leave IN_GUEST_MODE. 3457 */ 3458 if (kvm_arch_vcpu_should_kick(vcpu)) { 3459 cpu = READ_ONCE(vcpu->cpu); 3460 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3461 smp_send_reschedule(cpu); 3462 } 3463 out: 3464 put_cpu(); 3465 } 3466 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3467 #endif /* !CONFIG_S390 */ 3468 3469 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3470 { 3471 struct pid *pid; 3472 struct task_struct *task = NULL; 3473 int ret = 0; 3474 3475 rcu_read_lock(); 3476 pid = rcu_dereference(target->pid); 3477 if (pid) 3478 task = get_pid_task(pid, PIDTYPE_PID); 3479 rcu_read_unlock(); 3480 if (!task) 3481 return ret; 3482 ret = yield_to(task, 1); 3483 put_task_struct(task); 3484 3485 return ret; 3486 } 3487 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3488 3489 /* 3490 * Helper that checks whether a VCPU is eligible for directed yield. 3491 * Most eligible candidate to yield is decided by following heuristics: 3492 * 3493 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3494 * (preempted lock holder), indicated by @in_spin_loop. 3495 * Set at the beginning and cleared at the end of interception/PLE handler. 3496 * 3497 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3498 * chance last time (mostly it has become eligible now since we have probably 3499 * yielded to lockholder in last iteration. This is done by toggling 3500 * @dy_eligible each time a VCPU checked for eligibility.) 3501 * 3502 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3503 * to preempted lock-holder could result in wrong VCPU selection and CPU 3504 * burning. Giving priority for a potential lock-holder increases lock 3505 * progress. 3506 * 3507 * Since algorithm is based on heuristics, accessing another VCPU data without 3508 * locking does not harm. It may result in trying to yield to same VCPU, fail 3509 * and continue with next VCPU and so on. 3510 */ 3511 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3512 { 3513 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3514 bool eligible; 3515 3516 eligible = !vcpu->spin_loop.in_spin_loop || 3517 vcpu->spin_loop.dy_eligible; 3518 3519 if (vcpu->spin_loop.in_spin_loop) 3520 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3521 3522 return eligible; 3523 #else 3524 return true; 3525 #endif 3526 } 3527 3528 /* 3529 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3530 * a vcpu_load/vcpu_put pair. However, for most architectures 3531 * kvm_arch_vcpu_runnable does not require vcpu_load. 3532 */ 3533 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3534 { 3535 return kvm_arch_vcpu_runnable(vcpu); 3536 } 3537 3538 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3539 { 3540 if (kvm_arch_dy_runnable(vcpu)) 3541 return true; 3542 3543 #ifdef CONFIG_KVM_ASYNC_PF 3544 if (!list_empty_careful(&vcpu->async_pf.done)) 3545 return true; 3546 #endif 3547 3548 return false; 3549 } 3550 3551 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3552 { 3553 return false; 3554 } 3555 3556 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3557 { 3558 struct kvm *kvm = me->kvm; 3559 struct kvm_vcpu *vcpu; 3560 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3561 unsigned long i; 3562 int yielded = 0; 3563 int try = 3; 3564 int pass; 3565 3566 kvm_vcpu_set_in_spin_loop(me, true); 3567 /* 3568 * We boost the priority of a VCPU that is runnable but not 3569 * currently running, because it got preempted by something 3570 * else and called schedule in __vcpu_run. Hopefully that 3571 * VCPU is holding the lock that we need and will release it. 3572 * We approximate round-robin by starting at the last boosted VCPU. 3573 */ 3574 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3575 kvm_for_each_vcpu(i, vcpu, kvm) { 3576 if (!pass && i <= last_boosted_vcpu) { 3577 i = last_boosted_vcpu; 3578 continue; 3579 } else if (pass && i > last_boosted_vcpu) 3580 break; 3581 if (!READ_ONCE(vcpu->ready)) 3582 continue; 3583 if (vcpu == me) 3584 continue; 3585 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3586 continue; 3587 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3588 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3589 !kvm_arch_vcpu_in_kernel(vcpu)) 3590 continue; 3591 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3592 continue; 3593 3594 yielded = kvm_vcpu_yield_to(vcpu); 3595 if (yielded > 0) { 3596 kvm->last_boosted_vcpu = i; 3597 break; 3598 } else if (yielded < 0) { 3599 try--; 3600 if (!try) 3601 break; 3602 } 3603 } 3604 } 3605 kvm_vcpu_set_in_spin_loop(me, false); 3606 3607 /* Ensure vcpu is not eligible during next spinloop */ 3608 kvm_vcpu_set_dy_eligible(me, false); 3609 } 3610 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3611 3612 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3613 { 3614 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3615 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3616 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3617 kvm->dirty_ring_size / PAGE_SIZE); 3618 #else 3619 return false; 3620 #endif 3621 } 3622 3623 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3624 { 3625 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3626 struct page *page; 3627 3628 if (vmf->pgoff == 0) 3629 page = virt_to_page(vcpu->run); 3630 #ifdef CONFIG_X86 3631 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3632 page = virt_to_page(vcpu->arch.pio_data); 3633 #endif 3634 #ifdef CONFIG_KVM_MMIO 3635 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3636 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3637 #endif 3638 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3639 page = kvm_dirty_ring_get_page( 3640 &vcpu->dirty_ring, 3641 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3642 else 3643 return kvm_arch_vcpu_fault(vcpu, vmf); 3644 get_page(page); 3645 vmf->page = page; 3646 return 0; 3647 } 3648 3649 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3650 .fault = kvm_vcpu_fault, 3651 }; 3652 3653 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3654 { 3655 struct kvm_vcpu *vcpu = file->private_data; 3656 unsigned long pages = vma_pages(vma); 3657 3658 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3659 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3660 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3661 return -EINVAL; 3662 3663 vma->vm_ops = &kvm_vcpu_vm_ops; 3664 return 0; 3665 } 3666 3667 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3668 { 3669 struct kvm_vcpu *vcpu = filp->private_data; 3670 3671 kvm_put_kvm(vcpu->kvm); 3672 return 0; 3673 } 3674 3675 static struct file_operations kvm_vcpu_fops = { 3676 .release = kvm_vcpu_release, 3677 .unlocked_ioctl = kvm_vcpu_ioctl, 3678 .mmap = kvm_vcpu_mmap, 3679 .llseek = noop_llseek, 3680 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3681 }; 3682 3683 /* 3684 * Allocates an inode for the vcpu. 3685 */ 3686 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3687 { 3688 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3689 3690 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3691 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3692 } 3693 3694 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3695 { 3696 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3697 struct dentry *debugfs_dentry; 3698 char dir_name[ITOA_MAX_LEN * 2]; 3699 3700 if (!debugfs_initialized()) 3701 return; 3702 3703 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3704 debugfs_dentry = debugfs_create_dir(dir_name, 3705 vcpu->kvm->debugfs_dentry); 3706 3707 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3708 #endif 3709 } 3710 3711 /* 3712 * Creates some virtual cpus. Good luck creating more than one. 3713 */ 3714 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3715 { 3716 int r; 3717 struct kvm_vcpu *vcpu; 3718 struct page *page; 3719 3720 if (id >= KVM_MAX_VCPU_IDS) 3721 return -EINVAL; 3722 3723 mutex_lock(&kvm->lock); 3724 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3725 mutex_unlock(&kvm->lock); 3726 return -EINVAL; 3727 } 3728 3729 kvm->created_vcpus++; 3730 mutex_unlock(&kvm->lock); 3731 3732 r = kvm_arch_vcpu_precreate(kvm, id); 3733 if (r) 3734 goto vcpu_decrement; 3735 3736 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3737 if (!vcpu) { 3738 r = -ENOMEM; 3739 goto vcpu_decrement; 3740 } 3741 3742 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3743 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3744 if (!page) { 3745 r = -ENOMEM; 3746 goto vcpu_free; 3747 } 3748 vcpu->run = page_address(page); 3749 3750 kvm_vcpu_init(vcpu, kvm, id); 3751 3752 r = kvm_arch_vcpu_create(vcpu); 3753 if (r) 3754 goto vcpu_free_run_page; 3755 3756 if (kvm->dirty_ring_size) { 3757 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3758 id, kvm->dirty_ring_size); 3759 if (r) 3760 goto arch_vcpu_destroy; 3761 } 3762 3763 mutex_lock(&kvm->lock); 3764 if (kvm_get_vcpu_by_id(kvm, id)) { 3765 r = -EEXIST; 3766 goto unlock_vcpu_destroy; 3767 } 3768 3769 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3770 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3771 BUG_ON(r == -EBUSY); 3772 if (r) 3773 goto unlock_vcpu_destroy; 3774 3775 /* Fill the stats id string for the vcpu */ 3776 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3777 task_pid_nr(current), id); 3778 3779 /* Now it's all set up, let userspace reach it */ 3780 kvm_get_kvm(kvm); 3781 r = create_vcpu_fd(vcpu); 3782 if (r < 0) { 3783 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3784 kvm_put_kvm_no_destroy(kvm); 3785 goto unlock_vcpu_destroy; 3786 } 3787 3788 /* 3789 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3790 * pointer before kvm->online_vcpu's incremented value. 3791 */ 3792 smp_wmb(); 3793 atomic_inc(&kvm->online_vcpus); 3794 3795 mutex_unlock(&kvm->lock); 3796 kvm_arch_vcpu_postcreate(vcpu); 3797 kvm_create_vcpu_debugfs(vcpu); 3798 return r; 3799 3800 unlock_vcpu_destroy: 3801 mutex_unlock(&kvm->lock); 3802 kvm_dirty_ring_free(&vcpu->dirty_ring); 3803 arch_vcpu_destroy: 3804 kvm_arch_vcpu_destroy(vcpu); 3805 vcpu_free_run_page: 3806 free_page((unsigned long)vcpu->run); 3807 vcpu_free: 3808 kmem_cache_free(kvm_vcpu_cache, vcpu); 3809 vcpu_decrement: 3810 mutex_lock(&kvm->lock); 3811 kvm->created_vcpus--; 3812 mutex_unlock(&kvm->lock); 3813 return r; 3814 } 3815 3816 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3817 { 3818 if (sigset) { 3819 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3820 vcpu->sigset_active = 1; 3821 vcpu->sigset = *sigset; 3822 } else 3823 vcpu->sigset_active = 0; 3824 return 0; 3825 } 3826 3827 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3828 size_t size, loff_t *offset) 3829 { 3830 struct kvm_vcpu *vcpu = file->private_data; 3831 3832 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3833 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3834 sizeof(vcpu->stat), user_buffer, size, offset); 3835 } 3836 3837 static const struct file_operations kvm_vcpu_stats_fops = { 3838 .read = kvm_vcpu_stats_read, 3839 .llseek = noop_llseek, 3840 }; 3841 3842 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3843 { 3844 int fd; 3845 struct file *file; 3846 char name[15 + ITOA_MAX_LEN + 1]; 3847 3848 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3849 3850 fd = get_unused_fd_flags(O_CLOEXEC); 3851 if (fd < 0) 3852 return fd; 3853 3854 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3855 if (IS_ERR(file)) { 3856 put_unused_fd(fd); 3857 return PTR_ERR(file); 3858 } 3859 file->f_mode |= FMODE_PREAD; 3860 fd_install(fd, file); 3861 3862 return fd; 3863 } 3864 3865 static long kvm_vcpu_ioctl(struct file *filp, 3866 unsigned int ioctl, unsigned long arg) 3867 { 3868 struct kvm_vcpu *vcpu = filp->private_data; 3869 void __user *argp = (void __user *)arg; 3870 int r; 3871 struct kvm_fpu *fpu = NULL; 3872 struct kvm_sregs *kvm_sregs = NULL; 3873 3874 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3875 return -EIO; 3876 3877 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3878 return -EINVAL; 3879 3880 /* 3881 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3882 * execution; mutex_lock() would break them. 3883 */ 3884 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3885 if (r != -ENOIOCTLCMD) 3886 return r; 3887 3888 if (mutex_lock_killable(&vcpu->mutex)) 3889 return -EINTR; 3890 switch (ioctl) { 3891 case KVM_RUN: { 3892 struct pid *oldpid; 3893 r = -EINVAL; 3894 if (arg) 3895 goto out; 3896 oldpid = rcu_access_pointer(vcpu->pid); 3897 if (unlikely(oldpid != task_pid(current))) { 3898 /* The thread running this VCPU changed. */ 3899 struct pid *newpid; 3900 3901 r = kvm_arch_vcpu_run_pid_change(vcpu); 3902 if (r) 3903 break; 3904 3905 newpid = get_task_pid(current, PIDTYPE_PID); 3906 rcu_assign_pointer(vcpu->pid, newpid); 3907 if (oldpid) 3908 synchronize_rcu(); 3909 put_pid(oldpid); 3910 } 3911 r = kvm_arch_vcpu_ioctl_run(vcpu); 3912 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3913 break; 3914 } 3915 case KVM_GET_REGS: { 3916 struct kvm_regs *kvm_regs; 3917 3918 r = -ENOMEM; 3919 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3920 if (!kvm_regs) 3921 goto out; 3922 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3923 if (r) 3924 goto out_free1; 3925 r = -EFAULT; 3926 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3927 goto out_free1; 3928 r = 0; 3929 out_free1: 3930 kfree(kvm_regs); 3931 break; 3932 } 3933 case KVM_SET_REGS: { 3934 struct kvm_regs *kvm_regs; 3935 3936 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3937 if (IS_ERR(kvm_regs)) { 3938 r = PTR_ERR(kvm_regs); 3939 goto out; 3940 } 3941 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3942 kfree(kvm_regs); 3943 break; 3944 } 3945 case KVM_GET_SREGS: { 3946 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3947 GFP_KERNEL_ACCOUNT); 3948 r = -ENOMEM; 3949 if (!kvm_sregs) 3950 goto out; 3951 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3952 if (r) 3953 goto out; 3954 r = -EFAULT; 3955 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3956 goto out; 3957 r = 0; 3958 break; 3959 } 3960 case KVM_SET_SREGS: { 3961 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3962 if (IS_ERR(kvm_sregs)) { 3963 r = PTR_ERR(kvm_sregs); 3964 kvm_sregs = NULL; 3965 goto out; 3966 } 3967 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3968 break; 3969 } 3970 case KVM_GET_MP_STATE: { 3971 struct kvm_mp_state mp_state; 3972 3973 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3974 if (r) 3975 goto out; 3976 r = -EFAULT; 3977 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3978 goto out; 3979 r = 0; 3980 break; 3981 } 3982 case KVM_SET_MP_STATE: { 3983 struct kvm_mp_state mp_state; 3984 3985 r = -EFAULT; 3986 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3987 goto out; 3988 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3989 break; 3990 } 3991 case KVM_TRANSLATE: { 3992 struct kvm_translation tr; 3993 3994 r = -EFAULT; 3995 if (copy_from_user(&tr, argp, sizeof(tr))) 3996 goto out; 3997 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3998 if (r) 3999 goto out; 4000 r = -EFAULT; 4001 if (copy_to_user(argp, &tr, sizeof(tr))) 4002 goto out; 4003 r = 0; 4004 break; 4005 } 4006 case KVM_SET_GUEST_DEBUG: { 4007 struct kvm_guest_debug dbg; 4008 4009 r = -EFAULT; 4010 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4011 goto out; 4012 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4013 break; 4014 } 4015 case KVM_SET_SIGNAL_MASK: { 4016 struct kvm_signal_mask __user *sigmask_arg = argp; 4017 struct kvm_signal_mask kvm_sigmask; 4018 sigset_t sigset, *p; 4019 4020 p = NULL; 4021 if (argp) { 4022 r = -EFAULT; 4023 if (copy_from_user(&kvm_sigmask, argp, 4024 sizeof(kvm_sigmask))) 4025 goto out; 4026 r = -EINVAL; 4027 if (kvm_sigmask.len != sizeof(sigset)) 4028 goto out; 4029 r = -EFAULT; 4030 if (copy_from_user(&sigset, sigmask_arg->sigset, 4031 sizeof(sigset))) 4032 goto out; 4033 p = &sigset; 4034 } 4035 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4036 break; 4037 } 4038 case KVM_GET_FPU: { 4039 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4040 r = -ENOMEM; 4041 if (!fpu) 4042 goto out; 4043 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4044 if (r) 4045 goto out; 4046 r = -EFAULT; 4047 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4048 goto out; 4049 r = 0; 4050 break; 4051 } 4052 case KVM_SET_FPU: { 4053 fpu = memdup_user(argp, sizeof(*fpu)); 4054 if (IS_ERR(fpu)) { 4055 r = PTR_ERR(fpu); 4056 fpu = NULL; 4057 goto out; 4058 } 4059 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4060 break; 4061 } 4062 case KVM_GET_STATS_FD: { 4063 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4064 break; 4065 } 4066 default: 4067 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4068 } 4069 out: 4070 mutex_unlock(&vcpu->mutex); 4071 kfree(fpu); 4072 kfree(kvm_sregs); 4073 return r; 4074 } 4075 4076 #ifdef CONFIG_KVM_COMPAT 4077 static long kvm_vcpu_compat_ioctl(struct file *filp, 4078 unsigned int ioctl, unsigned long arg) 4079 { 4080 struct kvm_vcpu *vcpu = filp->private_data; 4081 void __user *argp = compat_ptr(arg); 4082 int r; 4083 4084 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4085 return -EIO; 4086 4087 switch (ioctl) { 4088 case KVM_SET_SIGNAL_MASK: { 4089 struct kvm_signal_mask __user *sigmask_arg = argp; 4090 struct kvm_signal_mask kvm_sigmask; 4091 sigset_t sigset; 4092 4093 if (argp) { 4094 r = -EFAULT; 4095 if (copy_from_user(&kvm_sigmask, argp, 4096 sizeof(kvm_sigmask))) 4097 goto out; 4098 r = -EINVAL; 4099 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4100 goto out; 4101 r = -EFAULT; 4102 if (get_compat_sigset(&sigset, 4103 (compat_sigset_t __user *)sigmask_arg->sigset)) 4104 goto out; 4105 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4106 } else 4107 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4108 break; 4109 } 4110 default: 4111 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4112 } 4113 4114 out: 4115 return r; 4116 } 4117 #endif 4118 4119 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4120 { 4121 struct kvm_device *dev = filp->private_data; 4122 4123 if (dev->ops->mmap) 4124 return dev->ops->mmap(dev, vma); 4125 4126 return -ENODEV; 4127 } 4128 4129 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4130 int (*accessor)(struct kvm_device *dev, 4131 struct kvm_device_attr *attr), 4132 unsigned long arg) 4133 { 4134 struct kvm_device_attr attr; 4135 4136 if (!accessor) 4137 return -EPERM; 4138 4139 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4140 return -EFAULT; 4141 4142 return accessor(dev, &attr); 4143 } 4144 4145 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4146 unsigned long arg) 4147 { 4148 struct kvm_device *dev = filp->private_data; 4149 4150 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4151 return -EIO; 4152 4153 switch (ioctl) { 4154 case KVM_SET_DEVICE_ATTR: 4155 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4156 case KVM_GET_DEVICE_ATTR: 4157 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4158 case KVM_HAS_DEVICE_ATTR: 4159 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4160 default: 4161 if (dev->ops->ioctl) 4162 return dev->ops->ioctl(dev, ioctl, arg); 4163 4164 return -ENOTTY; 4165 } 4166 } 4167 4168 static int kvm_device_release(struct inode *inode, struct file *filp) 4169 { 4170 struct kvm_device *dev = filp->private_data; 4171 struct kvm *kvm = dev->kvm; 4172 4173 if (dev->ops->release) { 4174 mutex_lock(&kvm->lock); 4175 list_del(&dev->vm_node); 4176 dev->ops->release(dev); 4177 mutex_unlock(&kvm->lock); 4178 } 4179 4180 kvm_put_kvm(kvm); 4181 return 0; 4182 } 4183 4184 static const struct file_operations kvm_device_fops = { 4185 .unlocked_ioctl = kvm_device_ioctl, 4186 .release = kvm_device_release, 4187 KVM_COMPAT(kvm_device_ioctl), 4188 .mmap = kvm_device_mmap, 4189 }; 4190 4191 struct kvm_device *kvm_device_from_filp(struct file *filp) 4192 { 4193 if (filp->f_op != &kvm_device_fops) 4194 return NULL; 4195 4196 return filp->private_data; 4197 } 4198 4199 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4200 #ifdef CONFIG_KVM_MPIC 4201 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4202 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4203 #endif 4204 }; 4205 4206 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4207 { 4208 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4209 return -ENOSPC; 4210 4211 if (kvm_device_ops_table[type] != NULL) 4212 return -EEXIST; 4213 4214 kvm_device_ops_table[type] = ops; 4215 return 0; 4216 } 4217 4218 void kvm_unregister_device_ops(u32 type) 4219 { 4220 if (kvm_device_ops_table[type] != NULL) 4221 kvm_device_ops_table[type] = NULL; 4222 } 4223 4224 static int kvm_ioctl_create_device(struct kvm *kvm, 4225 struct kvm_create_device *cd) 4226 { 4227 const struct kvm_device_ops *ops = NULL; 4228 struct kvm_device *dev; 4229 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4230 int type; 4231 int ret; 4232 4233 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4234 return -ENODEV; 4235 4236 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4237 ops = kvm_device_ops_table[type]; 4238 if (ops == NULL) 4239 return -ENODEV; 4240 4241 if (test) 4242 return 0; 4243 4244 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4245 if (!dev) 4246 return -ENOMEM; 4247 4248 dev->ops = ops; 4249 dev->kvm = kvm; 4250 4251 mutex_lock(&kvm->lock); 4252 ret = ops->create(dev, type); 4253 if (ret < 0) { 4254 mutex_unlock(&kvm->lock); 4255 kfree(dev); 4256 return ret; 4257 } 4258 list_add(&dev->vm_node, &kvm->devices); 4259 mutex_unlock(&kvm->lock); 4260 4261 if (ops->init) 4262 ops->init(dev); 4263 4264 kvm_get_kvm(kvm); 4265 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4266 if (ret < 0) { 4267 kvm_put_kvm_no_destroy(kvm); 4268 mutex_lock(&kvm->lock); 4269 list_del(&dev->vm_node); 4270 mutex_unlock(&kvm->lock); 4271 ops->destroy(dev); 4272 return ret; 4273 } 4274 4275 cd->fd = ret; 4276 return 0; 4277 } 4278 4279 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4280 { 4281 switch (arg) { 4282 case KVM_CAP_USER_MEMORY: 4283 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4284 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4285 case KVM_CAP_INTERNAL_ERROR_DATA: 4286 #ifdef CONFIG_HAVE_KVM_MSI 4287 case KVM_CAP_SIGNAL_MSI: 4288 #endif 4289 #ifdef CONFIG_HAVE_KVM_IRQFD 4290 case KVM_CAP_IRQFD: 4291 case KVM_CAP_IRQFD_RESAMPLE: 4292 #endif 4293 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4294 case KVM_CAP_CHECK_EXTENSION_VM: 4295 case KVM_CAP_ENABLE_CAP_VM: 4296 case KVM_CAP_HALT_POLL: 4297 return 1; 4298 #ifdef CONFIG_KVM_MMIO 4299 case KVM_CAP_COALESCED_MMIO: 4300 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4301 case KVM_CAP_COALESCED_PIO: 4302 return 1; 4303 #endif 4304 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4305 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4306 return KVM_DIRTY_LOG_MANUAL_CAPS; 4307 #endif 4308 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4309 case KVM_CAP_IRQ_ROUTING: 4310 return KVM_MAX_IRQ_ROUTES; 4311 #endif 4312 #if KVM_ADDRESS_SPACE_NUM > 1 4313 case KVM_CAP_MULTI_ADDRESS_SPACE: 4314 return KVM_ADDRESS_SPACE_NUM; 4315 #endif 4316 case KVM_CAP_NR_MEMSLOTS: 4317 return KVM_USER_MEM_SLOTS; 4318 case KVM_CAP_DIRTY_LOG_RING: 4319 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4320 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4321 #else 4322 return 0; 4323 #endif 4324 case KVM_CAP_BINARY_STATS_FD: 4325 return 1; 4326 default: 4327 break; 4328 } 4329 return kvm_vm_ioctl_check_extension(kvm, arg); 4330 } 4331 4332 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4333 { 4334 int r; 4335 4336 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4337 return -EINVAL; 4338 4339 /* the size should be power of 2 */ 4340 if (!size || (size & (size - 1))) 4341 return -EINVAL; 4342 4343 /* Should be bigger to keep the reserved entries, or a page */ 4344 if (size < kvm_dirty_ring_get_rsvd_entries() * 4345 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4346 return -EINVAL; 4347 4348 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4349 sizeof(struct kvm_dirty_gfn)) 4350 return -E2BIG; 4351 4352 /* We only allow it to set once */ 4353 if (kvm->dirty_ring_size) 4354 return -EINVAL; 4355 4356 mutex_lock(&kvm->lock); 4357 4358 if (kvm->created_vcpus) { 4359 /* We don't allow to change this value after vcpu created */ 4360 r = -EINVAL; 4361 } else { 4362 kvm->dirty_ring_size = size; 4363 r = 0; 4364 } 4365 4366 mutex_unlock(&kvm->lock); 4367 return r; 4368 } 4369 4370 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4371 { 4372 unsigned long i; 4373 struct kvm_vcpu *vcpu; 4374 int cleared = 0; 4375 4376 if (!kvm->dirty_ring_size) 4377 return -EINVAL; 4378 4379 mutex_lock(&kvm->slots_lock); 4380 4381 kvm_for_each_vcpu(i, vcpu, kvm) 4382 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4383 4384 mutex_unlock(&kvm->slots_lock); 4385 4386 if (cleared) 4387 kvm_flush_remote_tlbs(kvm); 4388 4389 return cleared; 4390 } 4391 4392 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4393 struct kvm_enable_cap *cap) 4394 { 4395 return -EINVAL; 4396 } 4397 4398 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4399 struct kvm_enable_cap *cap) 4400 { 4401 switch (cap->cap) { 4402 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4403 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4404 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4405 4406 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4407 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4408 4409 if (cap->flags || (cap->args[0] & ~allowed_options)) 4410 return -EINVAL; 4411 kvm->manual_dirty_log_protect = cap->args[0]; 4412 return 0; 4413 } 4414 #endif 4415 case KVM_CAP_HALT_POLL: { 4416 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4417 return -EINVAL; 4418 4419 kvm->max_halt_poll_ns = cap->args[0]; 4420 return 0; 4421 } 4422 case KVM_CAP_DIRTY_LOG_RING: 4423 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4424 default: 4425 return kvm_vm_ioctl_enable_cap(kvm, cap); 4426 } 4427 } 4428 4429 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4430 size_t size, loff_t *offset) 4431 { 4432 struct kvm *kvm = file->private_data; 4433 4434 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4435 &kvm_vm_stats_desc[0], &kvm->stat, 4436 sizeof(kvm->stat), user_buffer, size, offset); 4437 } 4438 4439 static const struct file_operations kvm_vm_stats_fops = { 4440 .read = kvm_vm_stats_read, 4441 .llseek = noop_llseek, 4442 }; 4443 4444 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4445 { 4446 int fd; 4447 struct file *file; 4448 4449 fd = get_unused_fd_flags(O_CLOEXEC); 4450 if (fd < 0) 4451 return fd; 4452 4453 file = anon_inode_getfile("kvm-vm-stats", 4454 &kvm_vm_stats_fops, kvm, O_RDONLY); 4455 if (IS_ERR(file)) { 4456 put_unused_fd(fd); 4457 return PTR_ERR(file); 4458 } 4459 file->f_mode |= FMODE_PREAD; 4460 fd_install(fd, file); 4461 4462 return fd; 4463 } 4464 4465 static long kvm_vm_ioctl(struct file *filp, 4466 unsigned int ioctl, unsigned long arg) 4467 { 4468 struct kvm *kvm = filp->private_data; 4469 void __user *argp = (void __user *)arg; 4470 int r; 4471 4472 if (kvm->mm != current->mm || kvm->vm_dead) 4473 return -EIO; 4474 switch (ioctl) { 4475 case KVM_CREATE_VCPU: 4476 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4477 break; 4478 case KVM_ENABLE_CAP: { 4479 struct kvm_enable_cap cap; 4480 4481 r = -EFAULT; 4482 if (copy_from_user(&cap, argp, sizeof(cap))) 4483 goto out; 4484 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4485 break; 4486 } 4487 case KVM_SET_USER_MEMORY_REGION: { 4488 struct kvm_userspace_memory_region kvm_userspace_mem; 4489 4490 r = -EFAULT; 4491 if (copy_from_user(&kvm_userspace_mem, argp, 4492 sizeof(kvm_userspace_mem))) 4493 goto out; 4494 4495 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4496 break; 4497 } 4498 case KVM_GET_DIRTY_LOG: { 4499 struct kvm_dirty_log log; 4500 4501 r = -EFAULT; 4502 if (copy_from_user(&log, argp, sizeof(log))) 4503 goto out; 4504 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4505 break; 4506 } 4507 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4508 case KVM_CLEAR_DIRTY_LOG: { 4509 struct kvm_clear_dirty_log log; 4510 4511 r = -EFAULT; 4512 if (copy_from_user(&log, argp, sizeof(log))) 4513 goto out; 4514 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4515 break; 4516 } 4517 #endif 4518 #ifdef CONFIG_KVM_MMIO 4519 case KVM_REGISTER_COALESCED_MMIO: { 4520 struct kvm_coalesced_mmio_zone zone; 4521 4522 r = -EFAULT; 4523 if (copy_from_user(&zone, argp, sizeof(zone))) 4524 goto out; 4525 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4526 break; 4527 } 4528 case KVM_UNREGISTER_COALESCED_MMIO: { 4529 struct kvm_coalesced_mmio_zone zone; 4530 4531 r = -EFAULT; 4532 if (copy_from_user(&zone, argp, sizeof(zone))) 4533 goto out; 4534 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4535 break; 4536 } 4537 #endif 4538 case KVM_IRQFD: { 4539 struct kvm_irqfd data; 4540 4541 r = -EFAULT; 4542 if (copy_from_user(&data, argp, sizeof(data))) 4543 goto out; 4544 r = kvm_irqfd(kvm, &data); 4545 break; 4546 } 4547 case KVM_IOEVENTFD: { 4548 struct kvm_ioeventfd data; 4549 4550 r = -EFAULT; 4551 if (copy_from_user(&data, argp, sizeof(data))) 4552 goto out; 4553 r = kvm_ioeventfd(kvm, &data); 4554 break; 4555 } 4556 #ifdef CONFIG_HAVE_KVM_MSI 4557 case KVM_SIGNAL_MSI: { 4558 struct kvm_msi msi; 4559 4560 r = -EFAULT; 4561 if (copy_from_user(&msi, argp, sizeof(msi))) 4562 goto out; 4563 r = kvm_send_userspace_msi(kvm, &msi); 4564 break; 4565 } 4566 #endif 4567 #ifdef __KVM_HAVE_IRQ_LINE 4568 case KVM_IRQ_LINE_STATUS: 4569 case KVM_IRQ_LINE: { 4570 struct kvm_irq_level irq_event; 4571 4572 r = -EFAULT; 4573 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4574 goto out; 4575 4576 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4577 ioctl == KVM_IRQ_LINE_STATUS); 4578 if (r) 4579 goto out; 4580 4581 r = -EFAULT; 4582 if (ioctl == KVM_IRQ_LINE_STATUS) { 4583 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4584 goto out; 4585 } 4586 4587 r = 0; 4588 break; 4589 } 4590 #endif 4591 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4592 case KVM_SET_GSI_ROUTING: { 4593 struct kvm_irq_routing routing; 4594 struct kvm_irq_routing __user *urouting; 4595 struct kvm_irq_routing_entry *entries = NULL; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&routing, argp, sizeof(routing))) 4599 goto out; 4600 r = -EINVAL; 4601 if (!kvm_arch_can_set_irq_routing(kvm)) 4602 goto out; 4603 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4604 goto out; 4605 if (routing.flags) 4606 goto out; 4607 if (routing.nr) { 4608 urouting = argp; 4609 entries = vmemdup_user(urouting->entries, 4610 array_size(sizeof(*entries), 4611 routing.nr)); 4612 if (IS_ERR(entries)) { 4613 r = PTR_ERR(entries); 4614 goto out; 4615 } 4616 } 4617 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4618 routing.flags); 4619 kvfree(entries); 4620 break; 4621 } 4622 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4623 case KVM_CREATE_DEVICE: { 4624 struct kvm_create_device cd; 4625 4626 r = -EFAULT; 4627 if (copy_from_user(&cd, argp, sizeof(cd))) 4628 goto out; 4629 4630 r = kvm_ioctl_create_device(kvm, &cd); 4631 if (r) 4632 goto out; 4633 4634 r = -EFAULT; 4635 if (copy_to_user(argp, &cd, sizeof(cd))) 4636 goto out; 4637 4638 r = 0; 4639 break; 4640 } 4641 case KVM_CHECK_EXTENSION: 4642 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4643 break; 4644 case KVM_RESET_DIRTY_RINGS: 4645 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4646 break; 4647 case KVM_GET_STATS_FD: 4648 r = kvm_vm_ioctl_get_stats_fd(kvm); 4649 break; 4650 default: 4651 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4652 } 4653 out: 4654 return r; 4655 } 4656 4657 #ifdef CONFIG_KVM_COMPAT 4658 struct compat_kvm_dirty_log { 4659 __u32 slot; 4660 __u32 padding1; 4661 union { 4662 compat_uptr_t dirty_bitmap; /* one bit per page */ 4663 __u64 padding2; 4664 }; 4665 }; 4666 4667 struct compat_kvm_clear_dirty_log { 4668 __u32 slot; 4669 __u32 num_pages; 4670 __u64 first_page; 4671 union { 4672 compat_uptr_t dirty_bitmap; /* one bit per page */ 4673 __u64 padding2; 4674 }; 4675 }; 4676 4677 static long kvm_vm_compat_ioctl(struct file *filp, 4678 unsigned int ioctl, unsigned long arg) 4679 { 4680 struct kvm *kvm = filp->private_data; 4681 int r; 4682 4683 if (kvm->mm != current->mm || kvm->vm_dead) 4684 return -EIO; 4685 switch (ioctl) { 4686 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4687 case KVM_CLEAR_DIRTY_LOG: { 4688 struct compat_kvm_clear_dirty_log compat_log; 4689 struct kvm_clear_dirty_log log; 4690 4691 if (copy_from_user(&compat_log, (void __user *)arg, 4692 sizeof(compat_log))) 4693 return -EFAULT; 4694 log.slot = compat_log.slot; 4695 log.num_pages = compat_log.num_pages; 4696 log.first_page = compat_log.first_page; 4697 log.padding2 = compat_log.padding2; 4698 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4699 4700 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4701 break; 4702 } 4703 #endif 4704 case KVM_GET_DIRTY_LOG: { 4705 struct compat_kvm_dirty_log compat_log; 4706 struct kvm_dirty_log log; 4707 4708 if (copy_from_user(&compat_log, (void __user *)arg, 4709 sizeof(compat_log))) 4710 return -EFAULT; 4711 log.slot = compat_log.slot; 4712 log.padding1 = compat_log.padding1; 4713 log.padding2 = compat_log.padding2; 4714 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4715 4716 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4717 break; 4718 } 4719 default: 4720 r = kvm_vm_ioctl(filp, ioctl, arg); 4721 } 4722 return r; 4723 } 4724 #endif 4725 4726 static struct file_operations kvm_vm_fops = { 4727 .release = kvm_vm_release, 4728 .unlocked_ioctl = kvm_vm_ioctl, 4729 .llseek = noop_llseek, 4730 KVM_COMPAT(kvm_vm_compat_ioctl), 4731 }; 4732 4733 bool file_is_kvm(struct file *file) 4734 { 4735 return file && file->f_op == &kvm_vm_fops; 4736 } 4737 EXPORT_SYMBOL_GPL(file_is_kvm); 4738 4739 static int kvm_dev_ioctl_create_vm(unsigned long type) 4740 { 4741 int r; 4742 struct kvm *kvm; 4743 struct file *file; 4744 4745 kvm = kvm_create_vm(type); 4746 if (IS_ERR(kvm)) 4747 return PTR_ERR(kvm); 4748 #ifdef CONFIG_KVM_MMIO 4749 r = kvm_coalesced_mmio_init(kvm); 4750 if (r < 0) 4751 goto put_kvm; 4752 #endif 4753 r = get_unused_fd_flags(O_CLOEXEC); 4754 if (r < 0) 4755 goto put_kvm; 4756 4757 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4758 "kvm-%d", task_pid_nr(current)); 4759 4760 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4761 if (IS_ERR(file)) { 4762 put_unused_fd(r); 4763 r = PTR_ERR(file); 4764 goto put_kvm; 4765 } 4766 4767 /* 4768 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4769 * already set, with ->release() being kvm_vm_release(). In error 4770 * cases it will be called by the final fput(file) and will take 4771 * care of doing kvm_put_kvm(kvm). 4772 */ 4773 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4774 put_unused_fd(r); 4775 fput(file); 4776 return -ENOMEM; 4777 } 4778 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4779 4780 fd_install(r, file); 4781 return r; 4782 4783 put_kvm: 4784 kvm_put_kvm(kvm); 4785 return r; 4786 } 4787 4788 static long kvm_dev_ioctl(struct file *filp, 4789 unsigned int ioctl, unsigned long arg) 4790 { 4791 long r = -EINVAL; 4792 4793 switch (ioctl) { 4794 case KVM_GET_API_VERSION: 4795 if (arg) 4796 goto out; 4797 r = KVM_API_VERSION; 4798 break; 4799 case KVM_CREATE_VM: 4800 r = kvm_dev_ioctl_create_vm(arg); 4801 break; 4802 case KVM_CHECK_EXTENSION: 4803 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4804 break; 4805 case KVM_GET_VCPU_MMAP_SIZE: 4806 if (arg) 4807 goto out; 4808 r = PAGE_SIZE; /* struct kvm_run */ 4809 #ifdef CONFIG_X86 4810 r += PAGE_SIZE; /* pio data page */ 4811 #endif 4812 #ifdef CONFIG_KVM_MMIO 4813 r += PAGE_SIZE; /* coalesced mmio ring page */ 4814 #endif 4815 break; 4816 case KVM_TRACE_ENABLE: 4817 case KVM_TRACE_PAUSE: 4818 case KVM_TRACE_DISABLE: 4819 r = -EOPNOTSUPP; 4820 break; 4821 default: 4822 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4823 } 4824 out: 4825 return r; 4826 } 4827 4828 static struct file_operations kvm_chardev_ops = { 4829 .unlocked_ioctl = kvm_dev_ioctl, 4830 .llseek = noop_llseek, 4831 KVM_COMPAT(kvm_dev_ioctl), 4832 }; 4833 4834 static struct miscdevice kvm_dev = { 4835 KVM_MINOR, 4836 "kvm", 4837 &kvm_chardev_ops, 4838 }; 4839 4840 static void hardware_enable_nolock(void *junk) 4841 { 4842 int cpu = raw_smp_processor_id(); 4843 int r; 4844 4845 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4846 return; 4847 4848 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4849 4850 r = kvm_arch_hardware_enable(); 4851 4852 if (r) { 4853 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4854 atomic_inc(&hardware_enable_failed); 4855 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4856 } 4857 } 4858 4859 static int kvm_starting_cpu(unsigned int cpu) 4860 { 4861 raw_spin_lock(&kvm_count_lock); 4862 if (kvm_usage_count) 4863 hardware_enable_nolock(NULL); 4864 raw_spin_unlock(&kvm_count_lock); 4865 return 0; 4866 } 4867 4868 static void hardware_disable_nolock(void *junk) 4869 { 4870 int cpu = raw_smp_processor_id(); 4871 4872 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4873 return; 4874 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4875 kvm_arch_hardware_disable(); 4876 } 4877 4878 static int kvm_dying_cpu(unsigned int cpu) 4879 { 4880 raw_spin_lock(&kvm_count_lock); 4881 if (kvm_usage_count) 4882 hardware_disable_nolock(NULL); 4883 raw_spin_unlock(&kvm_count_lock); 4884 return 0; 4885 } 4886 4887 static void hardware_disable_all_nolock(void) 4888 { 4889 BUG_ON(!kvm_usage_count); 4890 4891 kvm_usage_count--; 4892 if (!kvm_usage_count) 4893 on_each_cpu(hardware_disable_nolock, NULL, 1); 4894 } 4895 4896 static void hardware_disable_all(void) 4897 { 4898 raw_spin_lock(&kvm_count_lock); 4899 hardware_disable_all_nolock(); 4900 raw_spin_unlock(&kvm_count_lock); 4901 } 4902 4903 static int hardware_enable_all(void) 4904 { 4905 int r = 0; 4906 4907 raw_spin_lock(&kvm_count_lock); 4908 4909 kvm_usage_count++; 4910 if (kvm_usage_count == 1) { 4911 atomic_set(&hardware_enable_failed, 0); 4912 on_each_cpu(hardware_enable_nolock, NULL, 1); 4913 4914 if (atomic_read(&hardware_enable_failed)) { 4915 hardware_disable_all_nolock(); 4916 r = -EBUSY; 4917 } 4918 } 4919 4920 raw_spin_unlock(&kvm_count_lock); 4921 4922 return r; 4923 } 4924 4925 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4926 void *v) 4927 { 4928 /* 4929 * Some (well, at least mine) BIOSes hang on reboot if 4930 * in vmx root mode. 4931 * 4932 * And Intel TXT required VMX off for all cpu when system shutdown. 4933 */ 4934 pr_info("kvm: exiting hardware virtualization\n"); 4935 kvm_rebooting = true; 4936 on_each_cpu(hardware_disable_nolock, NULL, 1); 4937 return NOTIFY_OK; 4938 } 4939 4940 static struct notifier_block kvm_reboot_notifier = { 4941 .notifier_call = kvm_reboot, 4942 .priority = 0, 4943 }; 4944 4945 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4946 { 4947 int i; 4948 4949 for (i = 0; i < bus->dev_count; i++) { 4950 struct kvm_io_device *pos = bus->range[i].dev; 4951 4952 kvm_iodevice_destructor(pos); 4953 } 4954 kfree(bus); 4955 } 4956 4957 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4958 const struct kvm_io_range *r2) 4959 { 4960 gpa_t addr1 = r1->addr; 4961 gpa_t addr2 = r2->addr; 4962 4963 if (addr1 < addr2) 4964 return -1; 4965 4966 /* If r2->len == 0, match the exact address. If r2->len != 0, 4967 * accept any overlapping write. Any order is acceptable for 4968 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4969 * we process all of them. 4970 */ 4971 if (r2->len) { 4972 addr1 += r1->len; 4973 addr2 += r2->len; 4974 } 4975 4976 if (addr1 > addr2) 4977 return 1; 4978 4979 return 0; 4980 } 4981 4982 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4983 { 4984 return kvm_io_bus_cmp(p1, p2); 4985 } 4986 4987 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4988 gpa_t addr, int len) 4989 { 4990 struct kvm_io_range *range, key; 4991 int off; 4992 4993 key = (struct kvm_io_range) { 4994 .addr = addr, 4995 .len = len, 4996 }; 4997 4998 range = bsearch(&key, bus->range, bus->dev_count, 4999 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5000 if (range == NULL) 5001 return -ENOENT; 5002 5003 off = range - bus->range; 5004 5005 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5006 off--; 5007 5008 return off; 5009 } 5010 5011 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5012 struct kvm_io_range *range, const void *val) 5013 { 5014 int idx; 5015 5016 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5017 if (idx < 0) 5018 return -EOPNOTSUPP; 5019 5020 while (idx < bus->dev_count && 5021 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5022 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5023 range->len, val)) 5024 return idx; 5025 idx++; 5026 } 5027 5028 return -EOPNOTSUPP; 5029 } 5030 5031 /* kvm_io_bus_write - called under kvm->slots_lock */ 5032 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5033 int len, const void *val) 5034 { 5035 struct kvm_io_bus *bus; 5036 struct kvm_io_range range; 5037 int r; 5038 5039 range = (struct kvm_io_range) { 5040 .addr = addr, 5041 .len = len, 5042 }; 5043 5044 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5045 if (!bus) 5046 return -ENOMEM; 5047 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5048 return r < 0 ? r : 0; 5049 } 5050 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5051 5052 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5053 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5054 gpa_t addr, int len, const void *val, long cookie) 5055 { 5056 struct kvm_io_bus *bus; 5057 struct kvm_io_range range; 5058 5059 range = (struct kvm_io_range) { 5060 .addr = addr, 5061 .len = len, 5062 }; 5063 5064 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5065 if (!bus) 5066 return -ENOMEM; 5067 5068 /* First try the device referenced by cookie. */ 5069 if ((cookie >= 0) && (cookie < bus->dev_count) && 5070 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5071 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5072 val)) 5073 return cookie; 5074 5075 /* 5076 * cookie contained garbage; fall back to search and return the 5077 * correct cookie value. 5078 */ 5079 return __kvm_io_bus_write(vcpu, bus, &range, val); 5080 } 5081 5082 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5083 struct kvm_io_range *range, void *val) 5084 { 5085 int idx; 5086 5087 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5088 if (idx < 0) 5089 return -EOPNOTSUPP; 5090 5091 while (idx < bus->dev_count && 5092 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5093 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5094 range->len, val)) 5095 return idx; 5096 idx++; 5097 } 5098 5099 return -EOPNOTSUPP; 5100 } 5101 5102 /* kvm_io_bus_read - called under kvm->slots_lock */ 5103 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5104 int len, void *val) 5105 { 5106 struct kvm_io_bus *bus; 5107 struct kvm_io_range range; 5108 int r; 5109 5110 range = (struct kvm_io_range) { 5111 .addr = addr, 5112 .len = len, 5113 }; 5114 5115 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5116 if (!bus) 5117 return -ENOMEM; 5118 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5119 return r < 0 ? r : 0; 5120 } 5121 5122 /* Caller must hold slots_lock. */ 5123 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5124 int len, struct kvm_io_device *dev) 5125 { 5126 int i; 5127 struct kvm_io_bus *new_bus, *bus; 5128 struct kvm_io_range range; 5129 5130 bus = kvm_get_bus(kvm, bus_idx); 5131 if (!bus) 5132 return -ENOMEM; 5133 5134 /* exclude ioeventfd which is limited by maximum fd */ 5135 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5136 return -ENOSPC; 5137 5138 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5139 GFP_KERNEL_ACCOUNT); 5140 if (!new_bus) 5141 return -ENOMEM; 5142 5143 range = (struct kvm_io_range) { 5144 .addr = addr, 5145 .len = len, 5146 .dev = dev, 5147 }; 5148 5149 for (i = 0; i < bus->dev_count; i++) 5150 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5151 break; 5152 5153 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5154 new_bus->dev_count++; 5155 new_bus->range[i] = range; 5156 memcpy(new_bus->range + i + 1, bus->range + i, 5157 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5158 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5159 synchronize_srcu_expedited(&kvm->srcu); 5160 kfree(bus); 5161 5162 return 0; 5163 } 5164 5165 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5166 struct kvm_io_device *dev) 5167 { 5168 int i, j; 5169 struct kvm_io_bus *new_bus, *bus; 5170 5171 lockdep_assert_held(&kvm->slots_lock); 5172 5173 bus = kvm_get_bus(kvm, bus_idx); 5174 if (!bus) 5175 return 0; 5176 5177 for (i = 0; i < bus->dev_count; i++) { 5178 if (bus->range[i].dev == dev) { 5179 break; 5180 } 5181 } 5182 5183 if (i == bus->dev_count) 5184 return 0; 5185 5186 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5187 GFP_KERNEL_ACCOUNT); 5188 if (new_bus) { 5189 memcpy(new_bus, bus, struct_size(bus, range, i)); 5190 new_bus->dev_count--; 5191 memcpy(new_bus->range + i, bus->range + i + 1, 5192 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5193 } 5194 5195 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5196 synchronize_srcu_expedited(&kvm->srcu); 5197 5198 /* Destroy the old bus _after_ installing the (null) bus. */ 5199 if (!new_bus) { 5200 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5201 for (j = 0; j < bus->dev_count; j++) { 5202 if (j == i) 5203 continue; 5204 kvm_iodevice_destructor(bus->range[j].dev); 5205 } 5206 } 5207 5208 kfree(bus); 5209 return new_bus ? 0 : -ENOMEM; 5210 } 5211 5212 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5213 gpa_t addr) 5214 { 5215 struct kvm_io_bus *bus; 5216 int dev_idx, srcu_idx; 5217 struct kvm_io_device *iodev = NULL; 5218 5219 srcu_idx = srcu_read_lock(&kvm->srcu); 5220 5221 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5222 if (!bus) 5223 goto out_unlock; 5224 5225 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5226 if (dev_idx < 0) 5227 goto out_unlock; 5228 5229 iodev = bus->range[dev_idx].dev; 5230 5231 out_unlock: 5232 srcu_read_unlock(&kvm->srcu, srcu_idx); 5233 5234 return iodev; 5235 } 5236 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5237 5238 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5239 int (*get)(void *, u64 *), int (*set)(void *, u64), 5240 const char *fmt) 5241 { 5242 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5243 inode->i_private; 5244 5245 /* 5246 * The debugfs files are a reference to the kvm struct which 5247 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5248 * avoids the race between open and the removal of the debugfs directory. 5249 */ 5250 if (!kvm_get_kvm_safe(stat_data->kvm)) 5251 return -ENOENT; 5252 5253 if (simple_attr_open(inode, file, get, 5254 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5255 ? set : NULL, 5256 fmt)) { 5257 kvm_put_kvm(stat_data->kvm); 5258 return -ENOMEM; 5259 } 5260 5261 return 0; 5262 } 5263 5264 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5265 { 5266 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5267 inode->i_private; 5268 5269 simple_attr_release(inode, file); 5270 kvm_put_kvm(stat_data->kvm); 5271 5272 return 0; 5273 } 5274 5275 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5276 { 5277 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5278 5279 return 0; 5280 } 5281 5282 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5283 { 5284 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5285 5286 return 0; 5287 } 5288 5289 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5290 { 5291 unsigned long i; 5292 struct kvm_vcpu *vcpu; 5293 5294 *val = 0; 5295 5296 kvm_for_each_vcpu(i, vcpu, kvm) 5297 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5298 5299 return 0; 5300 } 5301 5302 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5303 { 5304 unsigned long i; 5305 struct kvm_vcpu *vcpu; 5306 5307 kvm_for_each_vcpu(i, vcpu, kvm) 5308 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5309 5310 return 0; 5311 } 5312 5313 static int kvm_stat_data_get(void *data, u64 *val) 5314 { 5315 int r = -EFAULT; 5316 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5317 5318 switch (stat_data->kind) { 5319 case KVM_STAT_VM: 5320 r = kvm_get_stat_per_vm(stat_data->kvm, 5321 stat_data->desc->desc.offset, val); 5322 break; 5323 case KVM_STAT_VCPU: 5324 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5325 stat_data->desc->desc.offset, val); 5326 break; 5327 } 5328 5329 return r; 5330 } 5331 5332 static int kvm_stat_data_clear(void *data, u64 val) 5333 { 5334 int r = -EFAULT; 5335 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5336 5337 if (val) 5338 return -EINVAL; 5339 5340 switch (stat_data->kind) { 5341 case KVM_STAT_VM: 5342 r = kvm_clear_stat_per_vm(stat_data->kvm, 5343 stat_data->desc->desc.offset); 5344 break; 5345 case KVM_STAT_VCPU: 5346 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5347 stat_data->desc->desc.offset); 5348 break; 5349 } 5350 5351 return r; 5352 } 5353 5354 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5355 { 5356 __simple_attr_check_format("%llu\n", 0ull); 5357 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5358 kvm_stat_data_clear, "%llu\n"); 5359 } 5360 5361 static const struct file_operations stat_fops_per_vm = { 5362 .owner = THIS_MODULE, 5363 .open = kvm_stat_data_open, 5364 .release = kvm_debugfs_release, 5365 .read = simple_attr_read, 5366 .write = simple_attr_write, 5367 .llseek = no_llseek, 5368 }; 5369 5370 static int vm_stat_get(void *_offset, u64 *val) 5371 { 5372 unsigned offset = (long)_offset; 5373 struct kvm *kvm; 5374 u64 tmp_val; 5375 5376 *val = 0; 5377 mutex_lock(&kvm_lock); 5378 list_for_each_entry(kvm, &vm_list, vm_list) { 5379 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5380 *val += tmp_val; 5381 } 5382 mutex_unlock(&kvm_lock); 5383 return 0; 5384 } 5385 5386 static int vm_stat_clear(void *_offset, u64 val) 5387 { 5388 unsigned offset = (long)_offset; 5389 struct kvm *kvm; 5390 5391 if (val) 5392 return -EINVAL; 5393 5394 mutex_lock(&kvm_lock); 5395 list_for_each_entry(kvm, &vm_list, vm_list) { 5396 kvm_clear_stat_per_vm(kvm, offset); 5397 } 5398 mutex_unlock(&kvm_lock); 5399 5400 return 0; 5401 } 5402 5403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5404 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5405 5406 static int vcpu_stat_get(void *_offset, u64 *val) 5407 { 5408 unsigned offset = (long)_offset; 5409 struct kvm *kvm; 5410 u64 tmp_val; 5411 5412 *val = 0; 5413 mutex_lock(&kvm_lock); 5414 list_for_each_entry(kvm, &vm_list, vm_list) { 5415 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5416 *val += tmp_val; 5417 } 5418 mutex_unlock(&kvm_lock); 5419 return 0; 5420 } 5421 5422 static int vcpu_stat_clear(void *_offset, u64 val) 5423 { 5424 unsigned offset = (long)_offset; 5425 struct kvm *kvm; 5426 5427 if (val) 5428 return -EINVAL; 5429 5430 mutex_lock(&kvm_lock); 5431 list_for_each_entry(kvm, &vm_list, vm_list) { 5432 kvm_clear_stat_per_vcpu(kvm, offset); 5433 } 5434 mutex_unlock(&kvm_lock); 5435 5436 return 0; 5437 } 5438 5439 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5440 "%llu\n"); 5441 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5442 5443 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5444 { 5445 struct kobj_uevent_env *env; 5446 unsigned long long created, active; 5447 5448 if (!kvm_dev.this_device || !kvm) 5449 return; 5450 5451 mutex_lock(&kvm_lock); 5452 if (type == KVM_EVENT_CREATE_VM) { 5453 kvm_createvm_count++; 5454 kvm_active_vms++; 5455 } else if (type == KVM_EVENT_DESTROY_VM) { 5456 kvm_active_vms--; 5457 } 5458 created = kvm_createvm_count; 5459 active = kvm_active_vms; 5460 mutex_unlock(&kvm_lock); 5461 5462 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5463 if (!env) 5464 return; 5465 5466 add_uevent_var(env, "CREATED=%llu", created); 5467 add_uevent_var(env, "COUNT=%llu", active); 5468 5469 if (type == KVM_EVENT_CREATE_VM) { 5470 add_uevent_var(env, "EVENT=create"); 5471 kvm->userspace_pid = task_pid_nr(current); 5472 } else if (type == KVM_EVENT_DESTROY_VM) { 5473 add_uevent_var(env, "EVENT=destroy"); 5474 } 5475 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5476 5477 if (kvm->debugfs_dentry) { 5478 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5479 5480 if (p) { 5481 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5482 if (!IS_ERR(tmp)) 5483 add_uevent_var(env, "STATS_PATH=%s", tmp); 5484 kfree(p); 5485 } 5486 } 5487 /* no need for checks, since we are adding at most only 5 keys */ 5488 env->envp[env->envp_idx++] = NULL; 5489 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5490 kfree(env); 5491 } 5492 5493 static void kvm_init_debug(void) 5494 { 5495 const struct file_operations *fops; 5496 const struct _kvm_stats_desc *pdesc; 5497 int i; 5498 5499 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5500 5501 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5502 pdesc = &kvm_vm_stats_desc[i]; 5503 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5504 fops = &vm_stat_fops; 5505 else 5506 fops = &vm_stat_readonly_fops; 5507 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5508 kvm_debugfs_dir, 5509 (void *)(long)pdesc->desc.offset, fops); 5510 } 5511 5512 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5513 pdesc = &kvm_vcpu_stats_desc[i]; 5514 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5515 fops = &vcpu_stat_fops; 5516 else 5517 fops = &vcpu_stat_readonly_fops; 5518 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5519 kvm_debugfs_dir, 5520 (void *)(long)pdesc->desc.offset, fops); 5521 } 5522 } 5523 5524 static int kvm_suspend(void) 5525 { 5526 if (kvm_usage_count) 5527 hardware_disable_nolock(NULL); 5528 return 0; 5529 } 5530 5531 static void kvm_resume(void) 5532 { 5533 if (kvm_usage_count) { 5534 #ifdef CONFIG_LOCKDEP 5535 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5536 #endif 5537 hardware_enable_nolock(NULL); 5538 } 5539 } 5540 5541 static struct syscore_ops kvm_syscore_ops = { 5542 .suspend = kvm_suspend, 5543 .resume = kvm_resume, 5544 }; 5545 5546 static inline 5547 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5548 { 5549 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5550 } 5551 5552 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5553 { 5554 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5555 5556 WRITE_ONCE(vcpu->preempted, false); 5557 WRITE_ONCE(vcpu->ready, false); 5558 5559 __this_cpu_write(kvm_running_vcpu, vcpu); 5560 kvm_arch_sched_in(vcpu, cpu); 5561 kvm_arch_vcpu_load(vcpu, cpu); 5562 } 5563 5564 static void kvm_sched_out(struct preempt_notifier *pn, 5565 struct task_struct *next) 5566 { 5567 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5568 5569 if (current->on_rq) { 5570 WRITE_ONCE(vcpu->preempted, true); 5571 WRITE_ONCE(vcpu->ready, true); 5572 } 5573 kvm_arch_vcpu_put(vcpu); 5574 __this_cpu_write(kvm_running_vcpu, NULL); 5575 } 5576 5577 /** 5578 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5579 * 5580 * We can disable preemption locally around accessing the per-CPU variable, 5581 * and use the resolved vcpu pointer after enabling preemption again, 5582 * because even if the current thread is migrated to another CPU, reading 5583 * the per-CPU value later will give us the same value as we update the 5584 * per-CPU variable in the preempt notifier handlers. 5585 */ 5586 struct kvm_vcpu *kvm_get_running_vcpu(void) 5587 { 5588 struct kvm_vcpu *vcpu; 5589 5590 preempt_disable(); 5591 vcpu = __this_cpu_read(kvm_running_vcpu); 5592 preempt_enable(); 5593 5594 return vcpu; 5595 } 5596 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5597 5598 /** 5599 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5600 */ 5601 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5602 { 5603 return &kvm_running_vcpu; 5604 } 5605 5606 #ifdef CONFIG_GUEST_PERF_EVENTS 5607 static unsigned int kvm_guest_state(void) 5608 { 5609 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5610 unsigned int state; 5611 5612 if (!kvm_arch_pmi_in_guest(vcpu)) 5613 return 0; 5614 5615 state = PERF_GUEST_ACTIVE; 5616 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5617 state |= PERF_GUEST_USER; 5618 5619 return state; 5620 } 5621 5622 static unsigned long kvm_guest_get_ip(void) 5623 { 5624 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5625 5626 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5627 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5628 return 0; 5629 5630 return kvm_arch_vcpu_get_ip(vcpu); 5631 } 5632 5633 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5634 .state = kvm_guest_state, 5635 .get_ip = kvm_guest_get_ip, 5636 .handle_intel_pt_intr = NULL, 5637 }; 5638 5639 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5640 { 5641 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5642 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5643 } 5644 void kvm_unregister_perf_callbacks(void) 5645 { 5646 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5647 } 5648 #endif 5649 5650 struct kvm_cpu_compat_check { 5651 void *opaque; 5652 int *ret; 5653 }; 5654 5655 static void check_processor_compat(void *data) 5656 { 5657 struct kvm_cpu_compat_check *c = data; 5658 5659 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5660 } 5661 5662 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5663 struct module *module) 5664 { 5665 struct kvm_cpu_compat_check c; 5666 int r; 5667 int cpu; 5668 5669 r = kvm_arch_init(opaque); 5670 if (r) 5671 goto out_fail; 5672 5673 /* 5674 * kvm_arch_init makes sure there's at most one caller 5675 * for architectures that support multiple implementations, 5676 * like intel and amd on x86. 5677 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5678 * conflicts in case kvm is already setup for another implementation. 5679 */ 5680 r = kvm_irqfd_init(); 5681 if (r) 5682 goto out_irqfd; 5683 5684 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5685 r = -ENOMEM; 5686 goto out_free_0; 5687 } 5688 5689 r = kvm_arch_hardware_setup(opaque); 5690 if (r < 0) 5691 goto out_free_1; 5692 5693 c.ret = &r; 5694 c.opaque = opaque; 5695 for_each_online_cpu(cpu) { 5696 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5697 if (r < 0) 5698 goto out_free_2; 5699 } 5700 5701 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5702 kvm_starting_cpu, kvm_dying_cpu); 5703 if (r) 5704 goto out_free_2; 5705 register_reboot_notifier(&kvm_reboot_notifier); 5706 5707 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5708 if (!vcpu_align) 5709 vcpu_align = __alignof__(struct kvm_vcpu); 5710 kvm_vcpu_cache = 5711 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5712 SLAB_ACCOUNT, 5713 offsetof(struct kvm_vcpu, arch), 5714 offsetofend(struct kvm_vcpu, stats_id) 5715 - offsetof(struct kvm_vcpu, arch), 5716 NULL); 5717 if (!kvm_vcpu_cache) { 5718 r = -ENOMEM; 5719 goto out_free_3; 5720 } 5721 5722 for_each_possible_cpu(cpu) { 5723 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5724 GFP_KERNEL, cpu_to_node(cpu))) { 5725 r = -ENOMEM; 5726 goto out_free_4; 5727 } 5728 } 5729 5730 r = kvm_async_pf_init(); 5731 if (r) 5732 goto out_free_5; 5733 5734 kvm_chardev_ops.owner = module; 5735 kvm_vm_fops.owner = module; 5736 kvm_vcpu_fops.owner = module; 5737 5738 r = misc_register(&kvm_dev); 5739 if (r) { 5740 pr_err("kvm: misc device register failed\n"); 5741 goto out_unreg; 5742 } 5743 5744 register_syscore_ops(&kvm_syscore_ops); 5745 5746 kvm_preempt_ops.sched_in = kvm_sched_in; 5747 kvm_preempt_ops.sched_out = kvm_sched_out; 5748 5749 kvm_init_debug(); 5750 5751 r = kvm_vfio_ops_init(); 5752 WARN_ON(r); 5753 5754 return 0; 5755 5756 out_unreg: 5757 kvm_async_pf_deinit(); 5758 out_free_5: 5759 for_each_possible_cpu(cpu) 5760 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5761 out_free_4: 5762 kmem_cache_destroy(kvm_vcpu_cache); 5763 out_free_3: 5764 unregister_reboot_notifier(&kvm_reboot_notifier); 5765 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5766 out_free_2: 5767 kvm_arch_hardware_unsetup(); 5768 out_free_1: 5769 free_cpumask_var(cpus_hardware_enabled); 5770 out_free_0: 5771 kvm_irqfd_exit(); 5772 out_irqfd: 5773 kvm_arch_exit(); 5774 out_fail: 5775 return r; 5776 } 5777 EXPORT_SYMBOL_GPL(kvm_init); 5778 5779 void kvm_exit(void) 5780 { 5781 int cpu; 5782 5783 debugfs_remove_recursive(kvm_debugfs_dir); 5784 misc_deregister(&kvm_dev); 5785 for_each_possible_cpu(cpu) 5786 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5787 kmem_cache_destroy(kvm_vcpu_cache); 5788 kvm_async_pf_deinit(); 5789 unregister_syscore_ops(&kvm_syscore_ops); 5790 unregister_reboot_notifier(&kvm_reboot_notifier); 5791 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5792 on_each_cpu(hardware_disable_nolock, NULL, 1); 5793 kvm_arch_hardware_unsetup(); 5794 kvm_arch_exit(); 5795 kvm_irqfd_exit(); 5796 free_cpumask_var(cpus_hardware_enabled); 5797 kvm_vfio_ops_exit(); 5798 } 5799 EXPORT_SYMBOL_GPL(kvm_exit); 5800 5801 struct kvm_vm_worker_thread_context { 5802 struct kvm *kvm; 5803 struct task_struct *parent; 5804 struct completion init_done; 5805 kvm_vm_thread_fn_t thread_fn; 5806 uintptr_t data; 5807 int err; 5808 }; 5809 5810 static int kvm_vm_worker_thread(void *context) 5811 { 5812 /* 5813 * The init_context is allocated on the stack of the parent thread, so 5814 * we have to locally copy anything that is needed beyond initialization 5815 */ 5816 struct kvm_vm_worker_thread_context *init_context = context; 5817 struct kvm *kvm = init_context->kvm; 5818 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5819 uintptr_t data = init_context->data; 5820 int err; 5821 5822 err = kthread_park(current); 5823 /* kthread_park(current) is never supposed to return an error */ 5824 WARN_ON(err != 0); 5825 if (err) 5826 goto init_complete; 5827 5828 err = cgroup_attach_task_all(init_context->parent, current); 5829 if (err) { 5830 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5831 __func__, err); 5832 goto init_complete; 5833 } 5834 5835 set_user_nice(current, task_nice(init_context->parent)); 5836 5837 init_complete: 5838 init_context->err = err; 5839 complete(&init_context->init_done); 5840 init_context = NULL; 5841 5842 if (err) 5843 return err; 5844 5845 /* Wait to be woken up by the spawner before proceeding. */ 5846 kthread_parkme(); 5847 5848 if (!kthread_should_stop()) 5849 err = thread_fn(kvm, data); 5850 5851 return err; 5852 } 5853 5854 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5855 uintptr_t data, const char *name, 5856 struct task_struct **thread_ptr) 5857 { 5858 struct kvm_vm_worker_thread_context init_context = {}; 5859 struct task_struct *thread; 5860 5861 *thread_ptr = NULL; 5862 init_context.kvm = kvm; 5863 init_context.parent = current; 5864 init_context.thread_fn = thread_fn; 5865 init_context.data = data; 5866 init_completion(&init_context.init_done); 5867 5868 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5869 "%s-%d", name, task_pid_nr(current)); 5870 if (IS_ERR(thread)) 5871 return PTR_ERR(thread); 5872 5873 /* kthread_run is never supposed to return NULL */ 5874 WARN_ON(thread == NULL); 5875 5876 wait_for_completion(&init_context.init_done); 5877 5878 if (!init_context.err) 5879 *thread_ptr = thread; 5880 5881 return init_context.err; 5882 } 5883