1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 180 return false; 181 182 return is_zone_device_page(pfn_to_page(pfn)); 183 } 184 185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 186 { 187 /* 188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 189 * perspective they are "normal" pages, albeit with slightly different 190 * usage rules. 191 */ 192 if (pfn_valid(pfn)) 193 return PageReserved(pfn_to_page(pfn)) && 194 !is_zero_pfn(pfn) && 195 !kvm_is_zone_device_pfn(pfn); 196 197 return true; 198 } 199 200 /* 201 * Switches to specified vcpu, until a matching vcpu_put() 202 */ 203 void vcpu_load(struct kvm_vcpu *vcpu) 204 { 205 int cpu = get_cpu(); 206 207 __this_cpu_write(kvm_running_vcpu, vcpu); 208 preempt_notifier_register(&vcpu->preempt_notifier); 209 kvm_arch_vcpu_load(vcpu, cpu); 210 put_cpu(); 211 } 212 EXPORT_SYMBOL_GPL(vcpu_load); 213 214 void vcpu_put(struct kvm_vcpu *vcpu) 215 { 216 preempt_disable(); 217 kvm_arch_vcpu_put(vcpu); 218 preempt_notifier_unregister(&vcpu->preempt_notifier); 219 __this_cpu_write(kvm_running_vcpu, NULL); 220 preempt_enable(); 221 } 222 EXPORT_SYMBOL_GPL(vcpu_put); 223 224 /* TODO: merge with kvm_arch_vcpu_should_kick */ 225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 226 { 227 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 228 229 /* 230 * We need to wait for the VCPU to reenable interrupts and get out of 231 * READING_SHADOW_PAGE_TABLES mode. 232 */ 233 if (req & KVM_REQUEST_WAIT) 234 return mode != OUTSIDE_GUEST_MODE; 235 236 /* 237 * Need to kick a running VCPU, but otherwise there is nothing to do. 238 */ 239 return mode == IN_GUEST_MODE; 240 } 241 242 static void ack_flush(void *_completed) 243 { 244 } 245 246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 247 { 248 if (cpumask_empty(cpus)) 249 return false; 250 251 smp_call_function_many(cpus, ack_flush, NULL, wait); 252 return true; 253 } 254 255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 256 struct cpumask *tmp, int current_cpu) 257 { 258 int cpu; 259 260 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 261 __kvm_make_request(req, vcpu); 262 263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 264 return; 265 266 /* 267 * Note, the vCPU could get migrated to a different pCPU at any point 268 * after kvm_request_needs_ipi(), which could result in sending an IPI 269 * to the previous pCPU. But, that's OK because the purpose of the IPI 270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 272 * after this point is also OK, as the requirement is only that KVM wait 273 * for vCPUs that were reading SPTEs _before_ any changes were 274 * finalized. See kvm_vcpu_kick() for more details on handling requests. 275 */ 276 if (kvm_request_needs_ipi(vcpu, req)) { 277 cpu = READ_ONCE(vcpu->cpu); 278 if (cpu != -1 && cpu != current_cpu) 279 __cpumask_set_cpu(cpu, tmp); 280 } 281 } 282 283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 284 unsigned long *vcpu_bitmap) 285 { 286 struct kvm_vcpu *vcpu; 287 struct cpumask *cpus; 288 int i, me; 289 bool called; 290 291 me = get_cpu(); 292 293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 294 cpumask_clear(cpus); 295 296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 297 vcpu = kvm_get_vcpu(kvm, i); 298 if (!vcpu) 299 continue; 300 kvm_make_vcpu_request(vcpu, req, cpus, me); 301 } 302 303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 304 put_cpu(); 305 306 return called; 307 } 308 309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 310 struct kvm_vcpu *except) 311 { 312 struct kvm_vcpu *vcpu; 313 struct cpumask *cpus; 314 unsigned long i; 315 bool called; 316 int me; 317 318 me = get_cpu(); 319 320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 321 cpumask_clear(cpus); 322 323 kvm_for_each_vcpu(i, vcpu, kvm) { 324 if (vcpu == except) 325 continue; 326 kvm_make_vcpu_request(vcpu, req, cpus, me); 327 } 328 329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 330 put_cpu(); 331 332 return called; 333 } 334 335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 336 { 337 return kvm_make_all_cpus_request_except(kvm, req, NULL); 338 } 339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 340 341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 342 void kvm_flush_remote_tlbs(struct kvm *kvm) 343 { 344 ++kvm->stat.generic.remote_tlb_flush_requests; 345 346 /* 347 * We want to publish modifications to the page tables before reading 348 * mode. Pairs with a memory barrier in arch-specific code. 349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 350 * and smp_mb in walk_shadow_page_lockless_begin/end. 351 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 352 * 353 * There is already an smp_mb__after_atomic() before 354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 355 * barrier here. 356 */ 357 if (!kvm_arch_flush_remote_tlb(kvm) 358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 359 ++kvm->stat.generic.remote_tlb_flush; 360 } 361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 362 #endif 363 364 static void kvm_flush_shadow_all(struct kvm *kvm) 365 { 366 kvm_arch_flush_shadow_all(kvm); 367 kvm_arch_guest_memory_reclaimed(kvm); 368 } 369 370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 372 gfp_t gfp_flags) 373 { 374 gfp_flags |= mc->gfp_zero; 375 376 if (mc->kmem_cache) 377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 378 else 379 return (void *)__get_free_page(gfp_flags); 380 } 381 382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 383 { 384 void *obj; 385 386 if (mc->nobjs >= min) 387 return 0; 388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 390 if (!obj) 391 return mc->nobjs >= min ? 0 : -ENOMEM; 392 mc->objects[mc->nobjs++] = obj; 393 } 394 return 0; 395 } 396 397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 398 { 399 return mc->nobjs; 400 } 401 402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 403 { 404 while (mc->nobjs) { 405 if (mc->kmem_cache) 406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 407 else 408 free_page((unsigned long)mc->objects[--mc->nobjs]); 409 } 410 } 411 412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 413 { 414 void *p; 415 416 if (WARN_ON(!mc->nobjs)) 417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 418 else 419 p = mc->objects[--mc->nobjs]; 420 BUG_ON(!p); 421 return p; 422 } 423 #endif 424 425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 426 { 427 mutex_init(&vcpu->mutex); 428 vcpu->cpu = -1; 429 vcpu->kvm = kvm; 430 vcpu->vcpu_id = id; 431 vcpu->pid = NULL; 432 #ifndef __KVM_HAVE_ARCH_WQP 433 rcuwait_init(&vcpu->wait); 434 #endif 435 kvm_async_pf_vcpu_init(vcpu); 436 437 kvm_vcpu_set_in_spin_loop(vcpu, false); 438 kvm_vcpu_set_dy_eligible(vcpu, false); 439 vcpu->preempted = false; 440 vcpu->ready = false; 441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 442 vcpu->last_used_slot = NULL; 443 } 444 445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 446 { 447 kvm_arch_vcpu_destroy(vcpu); 448 kvm_dirty_ring_free(&vcpu->dirty_ring); 449 450 /* 451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 452 * the vcpu->pid pointer, and at destruction time all file descriptors 453 * are already gone. 454 */ 455 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 456 457 free_page((unsigned long)vcpu->run); 458 kmem_cache_free(kvm_vcpu_cache, vcpu); 459 } 460 461 void kvm_destroy_vcpus(struct kvm *kvm) 462 { 463 unsigned long i; 464 struct kvm_vcpu *vcpu; 465 466 kvm_for_each_vcpu(i, vcpu, kvm) { 467 kvm_vcpu_destroy(vcpu); 468 xa_erase(&kvm->vcpu_array, i); 469 } 470 471 atomic_set(&kvm->online_vcpus, 0); 472 } 473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 474 475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 477 { 478 return container_of(mn, struct kvm, mmu_notifier); 479 } 480 481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 482 struct mm_struct *mm, 483 unsigned long start, unsigned long end) 484 { 485 struct kvm *kvm = mmu_notifier_to_kvm(mn); 486 int idx; 487 488 idx = srcu_read_lock(&kvm->srcu); 489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 490 srcu_read_unlock(&kvm->srcu, idx); 491 } 492 493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 494 495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 496 unsigned long end); 497 498 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 499 500 struct kvm_hva_range { 501 unsigned long start; 502 unsigned long end; 503 pte_t pte; 504 hva_handler_t handler; 505 on_lock_fn_t on_lock; 506 on_unlock_fn_t on_unlock; 507 bool flush_on_ret; 508 bool may_block; 509 }; 510 511 /* 512 * Use a dedicated stub instead of NULL to indicate that there is no callback 513 * function/handler. The compiler technically can't guarantee that a real 514 * function will have a non-zero address, and so it will generate code to 515 * check for !NULL, whereas comparing against a stub will be elided at compile 516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 517 */ 518 static void kvm_null_fn(void) 519 { 520 521 } 522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 523 524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 527 node; \ 528 node = interval_tree_iter_next(node, start, last)) \ 529 530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 531 const struct kvm_hva_range *range) 532 { 533 bool ret = false, locked = false; 534 struct kvm_gfn_range gfn_range; 535 struct kvm_memory_slot *slot; 536 struct kvm_memslots *slots; 537 int i, idx; 538 539 if (WARN_ON_ONCE(range->end <= range->start)) 540 return 0; 541 542 /* A null handler is allowed if and only if on_lock() is provided. */ 543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 544 IS_KVM_NULL_FN(range->handler))) 545 return 0; 546 547 idx = srcu_read_lock(&kvm->srcu); 548 549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 550 struct interval_tree_node *node; 551 552 slots = __kvm_memslots(kvm, i); 553 kvm_for_each_memslot_in_hva_range(node, slots, 554 range->start, range->end - 1) { 555 unsigned long hva_start, hva_end; 556 557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 558 hva_start = max(range->start, slot->userspace_addr); 559 hva_end = min(range->end, slot->userspace_addr + 560 (slot->npages << PAGE_SHIFT)); 561 562 /* 563 * To optimize for the likely case where the address 564 * range is covered by zero or one memslots, don't 565 * bother making these conditional (to avoid writes on 566 * the second or later invocation of the handler). 567 */ 568 gfn_range.pte = range->pte; 569 gfn_range.may_block = range->may_block; 570 571 /* 572 * {gfn(page) | page intersects with [hva_start, hva_end)} = 573 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 574 */ 575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 577 gfn_range.slot = slot; 578 579 if (!locked) { 580 locked = true; 581 KVM_MMU_LOCK(kvm); 582 if (!IS_KVM_NULL_FN(range->on_lock)) 583 range->on_lock(kvm, range->start, range->end); 584 if (IS_KVM_NULL_FN(range->handler)) 585 break; 586 } 587 ret |= range->handler(kvm, &gfn_range); 588 } 589 } 590 591 if (range->flush_on_ret && ret) 592 kvm_flush_remote_tlbs(kvm); 593 594 if (locked) { 595 KVM_MMU_UNLOCK(kvm); 596 if (!IS_KVM_NULL_FN(range->on_unlock)) 597 range->on_unlock(kvm); 598 } 599 600 srcu_read_unlock(&kvm->srcu, idx); 601 602 /* The notifiers are averse to booleans. :-( */ 603 return (int)ret; 604 } 605 606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 607 unsigned long start, 608 unsigned long end, 609 pte_t pte, 610 hva_handler_t handler) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 const struct kvm_hva_range range = { 614 .start = start, 615 .end = end, 616 .pte = pte, 617 .handler = handler, 618 .on_lock = (void *)kvm_null_fn, 619 .on_unlock = (void *)kvm_null_fn, 620 .flush_on_ret = true, 621 .may_block = false, 622 }; 623 624 return __kvm_handle_hva_range(kvm, &range); 625 } 626 627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 628 unsigned long start, 629 unsigned long end, 630 hva_handler_t handler) 631 { 632 struct kvm *kvm = mmu_notifier_to_kvm(mn); 633 const struct kvm_hva_range range = { 634 .start = start, 635 .end = end, 636 .pte = __pte(0), 637 .handler = handler, 638 .on_lock = (void *)kvm_null_fn, 639 .on_unlock = (void *)kvm_null_fn, 640 .flush_on_ret = false, 641 .may_block = false, 642 }; 643 644 return __kvm_handle_hva_range(kvm, &range); 645 } 646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 647 struct mm_struct *mm, 648 unsigned long address, 649 pte_t pte) 650 { 651 struct kvm *kvm = mmu_notifier_to_kvm(mn); 652 653 trace_kvm_set_spte_hva(address); 654 655 /* 656 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 657 * If mmu_notifier_count is zero, then no in-progress invalidations, 658 * including this one, found a relevant memslot at start(); rechecking 659 * memslots here is unnecessary. Note, a false positive (count elevated 660 * by a different invalidation) is sub-optimal but functionally ok. 661 */ 662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 663 if (!READ_ONCE(kvm->mmu_notifier_count)) 664 return; 665 666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 667 } 668 669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 670 unsigned long end) 671 { 672 /* 673 * The count increase must become visible at unlock time as no 674 * spte can be established without taking the mmu_lock and 675 * count is also read inside the mmu_lock critical section. 676 */ 677 kvm->mmu_notifier_count++; 678 if (likely(kvm->mmu_notifier_count == 1)) { 679 kvm->mmu_notifier_range_start = start; 680 kvm->mmu_notifier_range_end = end; 681 } else { 682 /* 683 * Fully tracking multiple concurrent ranges has diminishing 684 * returns. Keep things simple and just find the minimal range 685 * which includes the current and new ranges. As there won't be 686 * enough information to subtract a range after its invalidate 687 * completes, any ranges invalidated concurrently will 688 * accumulate and persist until all outstanding invalidates 689 * complete. 690 */ 691 kvm->mmu_notifier_range_start = 692 min(kvm->mmu_notifier_range_start, start); 693 kvm->mmu_notifier_range_end = 694 max(kvm->mmu_notifier_range_end, end); 695 } 696 } 697 698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 699 const struct mmu_notifier_range *range) 700 { 701 struct kvm *kvm = mmu_notifier_to_kvm(mn); 702 const struct kvm_hva_range hva_range = { 703 .start = range->start, 704 .end = range->end, 705 .pte = __pte(0), 706 .handler = kvm_unmap_gfn_range, 707 .on_lock = kvm_inc_notifier_count, 708 .on_unlock = kvm_arch_guest_memory_reclaimed, 709 .flush_on_ret = true, 710 .may_block = mmu_notifier_range_blockable(range), 711 }; 712 713 trace_kvm_unmap_hva_range(range->start, range->end); 714 715 /* 716 * Prevent memslot modification between range_start() and range_end() 717 * so that conditionally locking provides the same result in both 718 * functions. Without that guarantee, the mmu_notifier_count 719 * adjustments will be imbalanced. 720 * 721 * Pairs with the decrement in range_end(). 722 */ 723 spin_lock(&kvm->mn_invalidate_lock); 724 kvm->mn_active_invalidate_count++; 725 spin_unlock(&kvm->mn_invalidate_lock); 726 727 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 728 hva_range.may_block); 729 730 __kvm_handle_hva_range(kvm, &hva_range); 731 732 return 0; 733 } 734 735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 736 unsigned long end) 737 { 738 /* 739 * This sequence increase will notify the kvm page fault that 740 * the page that is going to be mapped in the spte could have 741 * been freed. 742 */ 743 kvm->mmu_notifier_seq++; 744 smp_wmb(); 745 /* 746 * The above sequence increase must be visible before the 747 * below count decrease, which is ensured by the smp_wmb above 748 * in conjunction with the smp_rmb in mmu_notifier_retry(). 749 */ 750 kvm->mmu_notifier_count--; 751 } 752 753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_hva_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .pte = __pte(0), 761 .handler = (void *)kvm_null_fn, 762 .on_lock = kvm_dec_notifier_count, 763 .on_unlock = (void *)kvm_null_fn, 764 .flush_on_ret = false, 765 .may_block = mmu_notifier_range_blockable(range), 766 }; 767 bool wake; 768 769 __kvm_handle_hva_range(kvm, &hva_range); 770 771 /* Pairs with the increment in range_start(). */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 wake = (--kvm->mn_active_invalidate_count == 0); 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * There can only be one waiter, since the wait happens under 778 * slots_lock. 779 */ 780 if (wake) 781 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 782 783 BUG_ON(kvm->mmu_notifier_count < 0); 784 } 785 786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 787 struct mm_struct *mm, 788 unsigned long start, 789 unsigned long end) 790 { 791 trace_kvm_age_hva(start, end); 792 793 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 794 } 795 796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 797 struct mm_struct *mm, 798 unsigned long start, 799 unsigned long end) 800 { 801 trace_kvm_age_hva(start, end); 802 803 /* 804 * Even though we do not flush TLB, this will still adversely 805 * affect performance on pre-Haswell Intel EPT, where there is 806 * no EPT Access Bit to clear so that we have to tear down EPT 807 * tables instead. If we find this unacceptable, we can always 808 * add a parameter to kvm_age_hva so that it effectively doesn't 809 * do anything on clear_young. 810 * 811 * Also note that currently we never issue secondary TLB flushes 812 * from clear_young, leaving this job up to the regular system 813 * cadence. If we find this inaccurate, we might come up with a 814 * more sophisticated heuristic later. 815 */ 816 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 817 } 818 819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 820 struct mm_struct *mm, 821 unsigned long address) 822 { 823 trace_kvm_test_age_hva(address); 824 825 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 826 kvm_test_age_gfn); 827 } 828 829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 830 struct mm_struct *mm) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 int idx; 834 835 idx = srcu_read_lock(&kvm->srcu); 836 kvm_flush_shadow_all(kvm); 837 srcu_read_unlock(&kvm->srcu, idx); 838 } 839 840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 841 .invalidate_range = kvm_mmu_notifier_invalidate_range, 842 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 843 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 844 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 845 .clear_young = kvm_mmu_notifier_clear_young, 846 .test_young = kvm_mmu_notifier_test_young, 847 .change_pte = kvm_mmu_notifier_change_pte, 848 .release = kvm_mmu_notifier_release, 849 }; 850 851 static int kvm_init_mmu_notifier(struct kvm *kvm) 852 { 853 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 854 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 855 } 856 857 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 858 859 static int kvm_init_mmu_notifier(struct kvm *kvm) 860 { 861 return 0; 862 } 863 864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 865 866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 867 static int kvm_pm_notifier_call(struct notifier_block *bl, 868 unsigned long state, 869 void *unused) 870 { 871 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 872 873 return kvm_arch_pm_notifier(kvm, state); 874 } 875 876 static void kvm_init_pm_notifier(struct kvm *kvm) 877 { 878 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 879 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 880 kvm->pm_notifier.priority = INT_MAX; 881 register_pm_notifier(&kvm->pm_notifier); 882 } 883 884 static void kvm_destroy_pm_notifier(struct kvm *kvm) 885 { 886 unregister_pm_notifier(&kvm->pm_notifier); 887 } 888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 889 static void kvm_init_pm_notifier(struct kvm *kvm) 890 { 891 } 892 893 static void kvm_destroy_pm_notifier(struct kvm *kvm) 894 { 895 } 896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 897 898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 899 { 900 if (!memslot->dirty_bitmap) 901 return; 902 903 kvfree(memslot->dirty_bitmap); 904 memslot->dirty_bitmap = NULL; 905 } 906 907 /* This does not remove the slot from struct kvm_memslots data structures */ 908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 909 { 910 kvm_destroy_dirty_bitmap(slot); 911 912 kvm_arch_free_memslot(kvm, slot); 913 914 kfree(slot); 915 } 916 917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 918 { 919 struct hlist_node *idnode; 920 struct kvm_memory_slot *memslot; 921 int bkt; 922 923 /* 924 * The same memslot objects live in both active and inactive sets, 925 * arbitrarily free using index '1' so the second invocation of this 926 * function isn't operating over a structure with dangling pointers 927 * (even though this function isn't actually touching them). 928 */ 929 if (!slots->node_idx) 930 return; 931 932 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 933 kvm_free_memslot(kvm, memslot); 934 } 935 936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 937 { 938 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 939 case KVM_STATS_TYPE_INSTANT: 940 return 0444; 941 case KVM_STATS_TYPE_CUMULATIVE: 942 case KVM_STATS_TYPE_PEAK: 943 default: 944 return 0644; 945 } 946 } 947 948 949 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 950 { 951 int i; 952 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 953 kvm_vcpu_stats_header.num_desc; 954 955 if (IS_ERR(kvm->debugfs_dentry)) 956 return; 957 958 debugfs_remove_recursive(kvm->debugfs_dentry); 959 960 if (kvm->debugfs_stat_data) { 961 for (i = 0; i < kvm_debugfs_num_entries; i++) 962 kfree(kvm->debugfs_stat_data[i]); 963 kfree(kvm->debugfs_stat_data); 964 } 965 } 966 967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 968 { 969 static DEFINE_MUTEX(kvm_debugfs_lock); 970 struct dentry *dent; 971 char dir_name[ITOA_MAX_LEN * 2]; 972 struct kvm_stat_data *stat_data; 973 const struct _kvm_stats_desc *pdesc; 974 int i, ret; 975 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 976 kvm_vcpu_stats_header.num_desc; 977 978 if (!debugfs_initialized()) 979 return 0; 980 981 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 982 mutex_lock(&kvm_debugfs_lock); 983 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 984 if (dent) { 985 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 986 dput(dent); 987 mutex_unlock(&kvm_debugfs_lock); 988 return 0; 989 } 990 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 991 mutex_unlock(&kvm_debugfs_lock); 992 if (IS_ERR(dent)) 993 return 0; 994 995 kvm->debugfs_dentry = dent; 996 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 997 sizeof(*kvm->debugfs_stat_data), 998 GFP_KERNEL_ACCOUNT); 999 if (!kvm->debugfs_stat_data) 1000 return -ENOMEM; 1001 1002 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1003 pdesc = &kvm_vm_stats_desc[i]; 1004 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1005 if (!stat_data) 1006 return -ENOMEM; 1007 1008 stat_data->kvm = kvm; 1009 stat_data->desc = pdesc; 1010 stat_data->kind = KVM_STAT_VM; 1011 kvm->debugfs_stat_data[i] = stat_data; 1012 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1013 kvm->debugfs_dentry, stat_data, 1014 &stat_fops_per_vm); 1015 } 1016 1017 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1018 pdesc = &kvm_vcpu_stats_desc[i]; 1019 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1020 if (!stat_data) 1021 return -ENOMEM; 1022 1023 stat_data->kvm = kvm; 1024 stat_data->desc = pdesc; 1025 stat_data->kind = KVM_STAT_VCPU; 1026 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1027 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1028 kvm->debugfs_dentry, stat_data, 1029 &stat_fops_per_vm); 1030 } 1031 1032 ret = kvm_arch_create_vm_debugfs(kvm); 1033 if (ret) { 1034 kvm_destroy_vm_debugfs(kvm); 1035 return i; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Called after the VM is otherwise initialized, but just before adding it to 1043 * the vm_list. 1044 */ 1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1046 { 1047 return 0; 1048 } 1049 1050 /* 1051 * Called just after removing the VM from the vm_list, but before doing any 1052 * other destruction. 1053 */ 1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1055 { 1056 } 1057 1058 /* 1059 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1060 * be setup already, so we can create arch-specific debugfs entries under it. 1061 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1062 * a per-arch destroy interface is not needed. 1063 */ 1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1065 { 1066 return 0; 1067 } 1068 1069 static struct kvm *kvm_create_vm(unsigned long type) 1070 { 1071 struct kvm *kvm = kvm_arch_alloc_vm(); 1072 struct kvm_memslots *slots; 1073 int r = -ENOMEM; 1074 int i, j; 1075 1076 if (!kvm) 1077 return ERR_PTR(-ENOMEM); 1078 1079 KVM_MMU_LOCK_INIT(kvm); 1080 mmgrab(current->mm); 1081 kvm->mm = current->mm; 1082 kvm_eventfd_init(kvm); 1083 mutex_init(&kvm->lock); 1084 mutex_init(&kvm->irq_lock); 1085 mutex_init(&kvm->slots_lock); 1086 mutex_init(&kvm->slots_arch_lock); 1087 spin_lock_init(&kvm->mn_invalidate_lock); 1088 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1089 xa_init(&kvm->vcpu_array); 1090 1091 INIT_LIST_HEAD(&kvm->gpc_list); 1092 spin_lock_init(&kvm->gpc_lock); 1093 1094 INIT_LIST_HEAD(&kvm->devices); 1095 kvm->max_vcpus = KVM_MAX_VCPUS; 1096 1097 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1098 1099 /* 1100 * Force subsequent debugfs file creations to fail if the VM directory 1101 * is not created (by kvm_create_vm_debugfs()). 1102 */ 1103 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1104 1105 if (init_srcu_struct(&kvm->srcu)) 1106 goto out_err_no_srcu; 1107 if (init_srcu_struct(&kvm->irq_srcu)) 1108 goto out_err_no_irq_srcu; 1109 1110 refcount_set(&kvm->users_count, 1); 1111 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1112 for (j = 0; j < 2; j++) { 1113 slots = &kvm->__memslots[i][j]; 1114 1115 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1116 slots->hva_tree = RB_ROOT_CACHED; 1117 slots->gfn_tree = RB_ROOT; 1118 hash_init(slots->id_hash); 1119 slots->node_idx = j; 1120 1121 /* Generations must be different for each address space. */ 1122 slots->generation = i; 1123 } 1124 1125 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1126 } 1127 1128 for (i = 0; i < KVM_NR_BUSES; i++) { 1129 rcu_assign_pointer(kvm->buses[i], 1130 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1131 if (!kvm->buses[i]) 1132 goto out_err_no_arch_destroy_vm; 1133 } 1134 1135 kvm->max_halt_poll_ns = halt_poll_ns; 1136 1137 r = kvm_arch_init_vm(kvm, type); 1138 if (r) 1139 goto out_err_no_arch_destroy_vm; 1140 1141 r = hardware_enable_all(); 1142 if (r) 1143 goto out_err_no_disable; 1144 1145 #ifdef CONFIG_HAVE_KVM_IRQFD 1146 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1147 #endif 1148 1149 r = kvm_init_mmu_notifier(kvm); 1150 if (r) 1151 goto out_err_no_mmu_notifier; 1152 1153 r = kvm_arch_post_init_vm(kvm); 1154 if (r) 1155 goto out_err; 1156 1157 mutex_lock(&kvm_lock); 1158 list_add(&kvm->vm_list, &vm_list); 1159 mutex_unlock(&kvm_lock); 1160 1161 preempt_notifier_inc(); 1162 kvm_init_pm_notifier(kvm); 1163 1164 /* 1165 * When the fd passed to this ioctl() is opened it pins the module, 1166 * but try_module_get() also prevents getting a reference if the module 1167 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1168 */ 1169 if (!try_module_get(kvm_chardev_ops.owner)) { 1170 r = -ENODEV; 1171 goto out_err; 1172 } 1173 1174 return kvm; 1175 1176 out_err: 1177 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1178 if (kvm->mmu_notifier.ops) 1179 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1180 #endif 1181 out_err_no_mmu_notifier: 1182 hardware_disable_all(); 1183 out_err_no_disable: 1184 kvm_arch_destroy_vm(kvm); 1185 out_err_no_arch_destroy_vm: 1186 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1187 for (i = 0; i < KVM_NR_BUSES; i++) 1188 kfree(kvm_get_bus(kvm, i)); 1189 cleanup_srcu_struct(&kvm->irq_srcu); 1190 out_err_no_irq_srcu: 1191 cleanup_srcu_struct(&kvm->srcu); 1192 out_err_no_srcu: 1193 kvm_arch_free_vm(kvm); 1194 mmdrop(current->mm); 1195 return ERR_PTR(r); 1196 } 1197 1198 static void kvm_destroy_devices(struct kvm *kvm) 1199 { 1200 struct kvm_device *dev, *tmp; 1201 1202 /* 1203 * We do not need to take the kvm->lock here, because nobody else 1204 * has a reference to the struct kvm at this point and therefore 1205 * cannot access the devices list anyhow. 1206 */ 1207 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1208 list_del(&dev->vm_node); 1209 dev->ops->destroy(dev); 1210 } 1211 } 1212 1213 static void kvm_destroy_vm(struct kvm *kvm) 1214 { 1215 int i; 1216 struct mm_struct *mm = kvm->mm; 1217 1218 kvm_destroy_pm_notifier(kvm); 1219 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1220 kvm_destroy_vm_debugfs(kvm); 1221 kvm_arch_sync_events(kvm); 1222 mutex_lock(&kvm_lock); 1223 list_del(&kvm->vm_list); 1224 mutex_unlock(&kvm_lock); 1225 kvm_arch_pre_destroy_vm(kvm); 1226 1227 kvm_free_irq_routing(kvm); 1228 for (i = 0; i < KVM_NR_BUSES; i++) { 1229 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1230 1231 if (bus) 1232 kvm_io_bus_destroy(bus); 1233 kvm->buses[i] = NULL; 1234 } 1235 kvm_coalesced_mmio_free(kvm); 1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1237 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1238 /* 1239 * At this point, pending calls to invalidate_range_start() 1240 * have completed but no more MMU notifiers will run, so 1241 * mn_active_invalidate_count may remain unbalanced. 1242 * No threads can be waiting in install_new_memslots as the 1243 * last reference on KVM has been dropped, but freeing 1244 * memslots would deadlock without this manual intervention. 1245 */ 1246 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1247 kvm->mn_active_invalidate_count = 0; 1248 #else 1249 kvm_flush_shadow_all(kvm); 1250 #endif 1251 kvm_arch_destroy_vm(kvm); 1252 kvm_destroy_devices(kvm); 1253 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1254 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1255 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1256 } 1257 cleanup_srcu_struct(&kvm->irq_srcu); 1258 cleanup_srcu_struct(&kvm->srcu); 1259 kvm_arch_free_vm(kvm); 1260 preempt_notifier_dec(); 1261 hardware_disable_all(); 1262 mmdrop(mm); 1263 module_put(kvm_chardev_ops.owner); 1264 } 1265 1266 void kvm_get_kvm(struct kvm *kvm) 1267 { 1268 refcount_inc(&kvm->users_count); 1269 } 1270 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1271 1272 /* 1273 * Make sure the vm is not during destruction, which is a safe version of 1274 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1275 */ 1276 bool kvm_get_kvm_safe(struct kvm *kvm) 1277 { 1278 return refcount_inc_not_zero(&kvm->users_count); 1279 } 1280 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1281 1282 void kvm_put_kvm(struct kvm *kvm) 1283 { 1284 if (refcount_dec_and_test(&kvm->users_count)) 1285 kvm_destroy_vm(kvm); 1286 } 1287 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1288 1289 /* 1290 * Used to put a reference that was taken on behalf of an object associated 1291 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1292 * of the new file descriptor fails and the reference cannot be transferred to 1293 * its final owner. In such cases, the caller is still actively using @kvm and 1294 * will fail miserably if the refcount unexpectedly hits zero. 1295 */ 1296 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1297 { 1298 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1299 } 1300 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1301 1302 static int kvm_vm_release(struct inode *inode, struct file *filp) 1303 { 1304 struct kvm *kvm = filp->private_data; 1305 1306 kvm_irqfd_release(kvm); 1307 1308 kvm_put_kvm(kvm); 1309 return 0; 1310 } 1311 1312 /* 1313 * Allocation size is twice as large as the actual dirty bitmap size. 1314 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1315 */ 1316 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1317 { 1318 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1319 1320 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1321 if (!memslot->dirty_bitmap) 1322 return -ENOMEM; 1323 1324 return 0; 1325 } 1326 1327 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1328 { 1329 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1330 int node_idx_inactive = active->node_idx ^ 1; 1331 1332 return &kvm->__memslots[as_id][node_idx_inactive]; 1333 } 1334 1335 /* 1336 * Helper to get the address space ID when one of memslot pointers may be NULL. 1337 * This also serves as a sanity that at least one of the pointers is non-NULL, 1338 * and that their address space IDs don't diverge. 1339 */ 1340 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1341 struct kvm_memory_slot *b) 1342 { 1343 if (WARN_ON_ONCE(!a && !b)) 1344 return 0; 1345 1346 if (!a) 1347 return b->as_id; 1348 if (!b) 1349 return a->as_id; 1350 1351 WARN_ON_ONCE(a->as_id != b->as_id); 1352 return a->as_id; 1353 } 1354 1355 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1356 struct kvm_memory_slot *slot) 1357 { 1358 struct rb_root *gfn_tree = &slots->gfn_tree; 1359 struct rb_node **node, *parent; 1360 int idx = slots->node_idx; 1361 1362 parent = NULL; 1363 for (node = &gfn_tree->rb_node; *node; ) { 1364 struct kvm_memory_slot *tmp; 1365 1366 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1367 parent = *node; 1368 if (slot->base_gfn < tmp->base_gfn) 1369 node = &(*node)->rb_left; 1370 else if (slot->base_gfn > tmp->base_gfn) 1371 node = &(*node)->rb_right; 1372 else 1373 BUG(); 1374 } 1375 1376 rb_link_node(&slot->gfn_node[idx], parent, node); 1377 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1378 } 1379 1380 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1381 struct kvm_memory_slot *slot) 1382 { 1383 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1384 } 1385 1386 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1387 struct kvm_memory_slot *old, 1388 struct kvm_memory_slot *new) 1389 { 1390 int idx = slots->node_idx; 1391 1392 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1393 1394 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1395 &slots->gfn_tree); 1396 } 1397 1398 /* 1399 * Replace @old with @new in the inactive memslots. 1400 * 1401 * With NULL @old this simply adds @new. 1402 * With NULL @new this simply removes @old. 1403 * 1404 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1405 * appropriately. 1406 */ 1407 static void kvm_replace_memslot(struct kvm *kvm, 1408 struct kvm_memory_slot *old, 1409 struct kvm_memory_slot *new) 1410 { 1411 int as_id = kvm_memslots_get_as_id(old, new); 1412 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1413 int idx = slots->node_idx; 1414 1415 if (old) { 1416 hash_del(&old->id_node[idx]); 1417 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1418 1419 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1420 atomic_long_set(&slots->last_used_slot, (long)new); 1421 1422 if (!new) { 1423 kvm_erase_gfn_node(slots, old); 1424 return; 1425 } 1426 } 1427 1428 /* 1429 * Initialize @new's hva range. Do this even when replacing an @old 1430 * slot, kvm_copy_memslot() deliberately does not touch node data. 1431 */ 1432 new->hva_node[idx].start = new->userspace_addr; 1433 new->hva_node[idx].last = new->userspace_addr + 1434 (new->npages << PAGE_SHIFT) - 1; 1435 1436 /* 1437 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1438 * hva_node needs to be swapped with remove+insert even though hva can't 1439 * change when replacing an existing slot. 1440 */ 1441 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1442 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1443 1444 /* 1445 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1446 * switch the node in the gfn tree instead of removing the old and 1447 * inserting the new as two separate operations. Replacement is a 1448 * single O(1) operation versus two O(log(n)) operations for 1449 * remove+insert. 1450 */ 1451 if (old && old->base_gfn == new->base_gfn) { 1452 kvm_replace_gfn_node(slots, old, new); 1453 } else { 1454 if (old) 1455 kvm_erase_gfn_node(slots, old); 1456 kvm_insert_gfn_node(slots, new); 1457 } 1458 } 1459 1460 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1461 { 1462 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1463 1464 #ifdef __KVM_HAVE_READONLY_MEM 1465 valid_flags |= KVM_MEM_READONLY; 1466 #endif 1467 1468 if (mem->flags & ~valid_flags) 1469 return -EINVAL; 1470 1471 return 0; 1472 } 1473 1474 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1475 { 1476 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1477 1478 /* Grab the generation from the activate memslots. */ 1479 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1480 1481 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1482 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1483 1484 /* 1485 * Do not store the new memslots while there are invalidations in 1486 * progress, otherwise the locking in invalidate_range_start and 1487 * invalidate_range_end will be unbalanced. 1488 */ 1489 spin_lock(&kvm->mn_invalidate_lock); 1490 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1491 while (kvm->mn_active_invalidate_count) { 1492 set_current_state(TASK_UNINTERRUPTIBLE); 1493 spin_unlock(&kvm->mn_invalidate_lock); 1494 schedule(); 1495 spin_lock(&kvm->mn_invalidate_lock); 1496 } 1497 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1498 rcu_assign_pointer(kvm->memslots[as_id], slots); 1499 spin_unlock(&kvm->mn_invalidate_lock); 1500 1501 /* 1502 * Acquired in kvm_set_memslot. Must be released before synchronize 1503 * SRCU below in order to avoid deadlock with another thread 1504 * acquiring the slots_arch_lock in an srcu critical section. 1505 */ 1506 mutex_unlock(&kvm->slots_arch_lock); 1507 1508 synchronize_srcu_expedited(&kvm->srcu); 1509 1510 /* 1511 * Increment the new memslot generation a second time, dropping the 1512 * update in-progress flag and incrementing the generation based on 1513 * the number of address spaces. This provides a unique and easily 1514 * identifiable generation number while the memslots are in flux. 1515 */ 1516 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1517 1518 /* 1519 * Generations must be unique even across address spaces. We do not need 1520 * a global counter for that, instead the generation space is evenly split 1521 * across address spaces. For example, with two address spaces, address 1522 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1523 * use generations 1, 3, 5, ... 1524 */ 1525 gen += KVM_ADDRESS_SPACE_NUM; 1526 1527 kvm_arch_memslots_updated(kvm, gen); 1528 1529 slots->generation = gen; 1530 } 1531 1532 static int kvm_prepare_memory_region(struct kvm *kvm, 1533 const struct kvm_memory_slot *old, 1534 struct kvm_memory_slot *new, 1535 enum kvm_mr_change change) 1536 { 1537 int r; 1538 1539 /* 1540 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1541 * will be freed on "commit". If logging is enabled in both old and 1542 * new, reuse the existing bitmap. If logging is enabled only in the 1543 * new and KVM isn't using a ring buffer, allocate and initialize a 1544 * new bitmap. 1545 */ 1546 if (change != KVM_MR_DELETE) { 1547 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1548 new->dirty_bitmap = NULL; 1549 else if (old && old->dirty_bitmap) 1550 new->dirty_bitmap = old->dirty_bitmap; 1551 else if (!kvm->dirty_ring_size) { 1552 r = kvm_alloc_dirty_bitmap(new); 1553 if (r) 1554 return r; 1555 1556 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1557 bitmap_set(new->dirty_bitmap, 0, new->npages); 1558 } 1559 } 1560 1561 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1562 1563 /* Free the bitmap on failure if it was allocated above. */ 1564 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1565 kvm_destroy_dirty_bitmap(new); 1566 1567 return r; 1568 } 1569 1570 static void kvm_commit_memory_region(struct kvm *kvm, 1571 struct kvm_memory_slot *old, 1572 const struct kvm_memory_slot *new, 1573 enum kvm_mr_change change) 1574 { 1575 /* 1576 * Update the total number of memslot pages before calling the arch 1577 * hook so that architectures can consume the result directly. 1578 */ 1579 if (change == KVM_MR_DELETE) 1580 kvm->nr_memslot_pages -= old->npages; 1581 else if (change == KVM_MR_CREATE) 1582 kvm->nr_memslot_pages += new->npages; 1583 1584 kvm_arch_commit_memory_region(kvm, old, new, change); 1585 1586 switch (change) { 1587 case KVM_MR_CREATE: 1588 /* Nothing more to do. */ 1589 break; 1590 case KVM_MR_DELETE: 1591 /* Free the old memslot and all its metadata. */ 1592 kvm_free_memslot(kvm, old); 1593 break; 1594 case KVM_MR_MOVE: 1595 case KVM_MR_FLAGS_ONLY: 1596 /* 1597 * Free the dirty bitmap as needed; the below check encompasses 1598 * both the flags and whether a ring buffer is being used) 1599 */ 1600 if (old->dirty_bitmap && !new->dirty_bitmap) 1601 kvm_destroy_dirty_bitmap(old); 1602 1603 /* 1604 * The final quirk. Free the detached, old slot, but only its 1605 * memory, not any metadata. Metadata, including arch specific 1606 * data, may be reused by @new. 1607 */ 1608 kfree(old); 1609 break; 1610 default: 1611 BUG(); 1612 } 1613 } 1614 1615 /* 1616 * Activate @new, which must be installed in the inactive slots by the caller, 1617 * by swapping the active slots and then propagating @new to @old once @old is 1618 * unreachable and can be safely modified. 1619 * 1620 * With NULL @old this simply adds @new to @active (while swapping the sets). 1621 * With NULL @new this simply removes @old from @active and frees it 1622 * (while also swapping the sets). 1623 */ 1624 static void kvm_activate_memslot(struct kvm *kvm, 1625 struct kvm_memory_slot *old, 1626 struct kvm_memory_slot *new) 1627 { 1628 int as_id = kvm_memslots_get_as_id(old, new); 1629 1630 kvm_swap_active_memslots(kvm, as_id); 1631 1632 /* Propagate the new memslot to the now inactive memslots. */ 1633 kvm_replace_memslot(kvm, old, new); 1634 } 1635 1636 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1637 const struct kvm_memory_slot *src) 1638 { 1639 dest->base_gfn = src->base_gfn; 1640 dest->npages = src->npages; 1641 dest->dirty_bitmap = src->dirty_bitmap; 1642 dest->arch = src->arch; 1643 dest->userspace_addr = src->userspace_addr; 1644 dest->flags = src->flags; 1645 dest->id = src->id; 1646 dest->as_id = src->as_id; 1647 } 1648 1649 static void kvm_invalidate_memslot(struct kvm *kvm, 1650 struct kvm_memory_slot *old, 1651 struct kvm_memory_slot *invalid_slot) 1652 { 1653 /* 1654 * Mark the current slot INVALID. As with all memslot modifications, 1655 * this must be done on an unreachable slot to avoid modifying the 1656 * current slot in the active tree. 1657 */ 1658 kvm_copy_memslot(invalid_slot, old); 1659 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1660 kvm_replace_memslot(kvm, old, invalid_slot); 1661 1662 /* 1663 * Activate the slot that is now marked INVALID, but don't propagate 1664 * the slot to the now inactive slots. The slot is either going to be 1665 * deleted or recreated as a new slot. 1666 */ 1667 kvm_swap_active_memslots(kvm, old->as_id); 1668 1669 /* 1670 * From this point no new shadow pages pointing to a deleted, or moved, 1671 * memslot will be created. Validation of sp->gfn happens in: 1672 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1673 * - kvm_is_visible_gfn (mmu_check_root) 1674 */ 1675 kvm_arch_flush_shadow_memslot(kvm, old); 1676 kvm_arch_guest_memory_reclaimed(kvm); 1677 1678 /* Was released by kvm_swap_active_memslots, reacquire. */ 1679 mutex_lock(&kvm->slots_arch_lock); 1680 1681 /* 1682 * Copy the arch-specific field of the newly-installed slot back to the 1683 * old slot as the arch data could have changed between releasing 1684 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1685 * above. Writers are required to retrieve memslots *after* acquiring 1686 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1687 */ 1688 old->arch = invalid_slot->arch; 1689 } 1690 1691 static void kvm_create_memslot(struct kvm *kvm, 1692 struct kvm_memory_slot *new) 1693 { 1694 /* Add the new memslot to the inactive set and activate. */ 1695 kvm_replace_memslot(kvm, NULL, new); 1696 kvm_activate_memslot(kvm, NULL, new); 1697 } 1698 1699 static void kvm_delete_memslot(struct kvm *kvm, 1700 struct kvm_memory_slot *old, 1701 struct kvm_memory_slot *invalid_slot) 1702 { 1703 /* 1704 * Remove the old memslot (in the inactive memslots) by passing NULL as 1705 * the "new" slot, and for the invalid version in the active slots. 1706 */ 1707 kvm_replace_memslot(kvm, old, NULL); 1708 kvm_activate_memslot(kvm, invalid_slot, NULL); 1709 } 1710 1711 static void kvm_move_memslot(struct kvm *kvm, 1712 struct kvm_memory_slot *old, 1713 struct kvm_memory_slot *new, 1714 struct kvm_memory_slot *invalid_slot) 1715 { 1716 /* 1717 * Replace the old memslot in the inactive slots, and then swap slots 1718 * and replace the current INVALID with the new as well. 1719 */ 1720 kvm_replace_memslot(kvm, old, new); 1721 kvm_activate_memslot(kvm, invalid_slot, new); 1722 } 1723 1724 static void kvm_update_flags_memslot(struct kvm *kvm, 1725 struct kvm_memory_slot *old, 1726 struct kvm_memory_slot *new) 1727 { 1728 /* 1729 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1730 * an intermediate step. Instead, the old memslot is simply replaced 1731 * with a new, updated copy in both memslot sets. 1732 */ 1733 kvm_replace_memslot(kvm, old, new); 1734 kvm_activate_memslot(kvm, old, new); 1735 } 1736 1737 static int kvm_set_memslot(struct kvm *kvm, 1738 struct kvm_memory_slot *old, 1739 struct kvm_memory_slot *new, 1740 enum kvm_mr_change change) 1741 { 1742 struct kvm_memory_slot *invalid_slot; 1743 int r; 1744 1745 /* 1746 * Released in kvm_swap_active_memslots. 1747 * 1748 * Must be held from before the current memslots are copied until 1749 * after the new memslots are installed with rcu_assign_pointer, 1750 * then released before the synchronize srcu in kvm_swap_active_memslots. 1751 * 1752 * When modifying memslots outside of the slots_lock, must be held 1753 * before reading the pointer to the current memslots until after all 1754 * changes to those memslots are complete. 1755 * 1756 * These rules ensure that installing new memslots does not lose 1757 * changes made to the previous memslots. 1758 */ 1759 mutex_lock(&kvm->slots_arch_lock); 1760 1761 /* 1762 * Invalidate the old slot if it's being deleted or moved. This is 1763 * done prior to actually deleting/moving the memslot to allow vCPUs to 1764 * continue running by ensuring there are no mappings or shadow pages 1765 * for the memslot when it is deleted/moved. Without pre-invalidation 1766 * (and without a lock), a window would exist between effecting the 1767 * delete/move and committing the changes in arch code where KVM or a 1768 * guest could access a non-existent memslot. 1769 * 1770 * Modifications are done on a temporary, unreachable slot. The old 1771 * slot needs to be preserved in case a later step fails and the 1772 * invalidation needs to be reverted. 1773 */ 1774 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1775 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1776 if (!invalid_slot) { 1777 mutex_unlock(&kvm->slots_arch_lock); 1778 return -ENOMEM; 1779 } 1780 kvm_invalidate_memslot(kvm, old, invalid_slot); 1781 } 1782 1783 r = kvm_prepare_memory_region(kvm, old, new, change); 1784 if (r) { 1785 /* 1786 * For DELETE/MOVE, revert the above INVALID change. No 1787 * modifications required since the original slot was preserved 1788 * in the inactive slots. Changing the active memslots also 1789 * release slots_arch_lock. 1790 */ 1791 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1792 kvm_activate_memslot(kvm, invalid_slot, old); 1793 kfree(invalid_slot); 1794 } else { 1795 mutex_unlock(&kvm->slots_arch_lock); 1796 } 1797 return r; 1798 } 1799 1800 /* 1801 * For DELETE and MOVE, the working slot is now active as the INVALID 1802 * version of the old slot. MOVE is particularly special as it reuses 1803 * the old slot and returns a copy of the old slot (in working_slot). 1804 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1805 * old slot is detached but otherwise preserved. 1806 */ 1807 if (change == KVM_MR_CREATE) 1808 kvm_create_memslot(kvm, new); 1809 else if (change == KVM_MR_DELETE) 1810 kvm_delete_memslot(kvm, old, invalid_slot); 1811 else if (change == KVM_MR_MOVE) 1812 kvm_move_memslot(kvm, old, new, invalid_slot); 1813 else if (change == KVM_MR_FLAGS_ONLY) 1814 kvm_update_flags_memslot(kvm, old, new); 1815 else 1816 BUG(); 1817 1818 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1819 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1820 kfree(invalid_slot); 1821 1822 /* 1823 * No need to refresh new->arch, changes after dropping slots_arch_lock 1824 * will directly hit the final, active memslot. Architectures are 1825 * responsible for knowing that new->arch may be stale. 1826 */ 1827 kvm_commit_memory_region(kvm, old, new, change); 1828 1829 return 0; 1830 } 1831 1832 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1833 gfn_t start, gfn_t end) 1834 { 1835 struct kvm_memslot_iter iter; 1836 1837 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1838 if (iter.slot->id != id) 1839 return true; 1840 } 1841 1842 return false; 1843 } 1844 1845 /* 1846 * Allocate some memory and give it an address in the guest physical address 1847 * space. 1848 * 1849 * Discontiguous memory is allowed, mostly for framebuffers. 1850 * 1851 * Must be called holding kvm->slots_lock for write. 1852 */ 1853 int __kvm_set_memory_region(struct kvm *kvm, 1854 const struct kvm_userspace_memory_region *mem) 1855 { 1856 struct kvm_memory_slot *old, *new; 1857 struct kvm_memslots *slots; 1858 enum kvm_mr_change change; 1859 unsigned long npages; 1860 gfn_t base_gfn; 1861 int as_id, id; 1862 int r; 1863 1864 r = check_memory_region_flags(mem); 1865 if (r) 1866 return r; 1867 1868 as_id = mem->slot >> 16; 1869 id = (u16)mem->slot; 1870 1871 /* General sanity checks */ 1872 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1873 (mem->memory_size != (unsigned long)mem->memory_size)) 1874 return -EINVAL; 1875 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1876 return -EINVAL; 1877 /* We can read the guest memory with __xxx_user() later on. */ 1878 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1879 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1880 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1881 mem->memory_size)) 1882 return -EINVAL; 1883 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1884 return -EINVAL; 1885 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1886 return -EINVAL; 1887 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1888 return -EINVAL; 1889 1890 slots = __kvm_memslots(kvm, as_id); 1891 1892 /* 1893 * Note, the old memslot (and the pointer itself!) may be invalidated 1894 * and/or destroyed by kvm_set_memslot(). 1895 */ 1896 old = id_to_memslot(slots, id); 1897 1898 if (!mem->memory_size) { 1899 if (!old || !old->npages) 1900 return -EINVAL; 1901 1902 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1903 return -EIO; 1904 1905 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1906 } 1907 1908 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1909 npages = (mem->memory_size >> PAGE_SHIFT); 1910 1911 if (!old || !old->npages) { 1912 change = KVM_MR_CREATE; 1913 1914 /* 1915 * To simplify KVM internals, the total number of pages across 1916 * all memslots must fit in an unsigned long. 1917 */ 1918 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1919 return -EINVAL; 1920 } else { /* Modify an existing slot. */ 1921 if ((mem->userspace_addr != old->userspace_addr) || 1922 (npages != old->npages) || 1923 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1924 return -EINVAL; 1925 1926 if (base_gfn != old->base_gfn) 1927 change = KVM_MR_MOVE; 1928 else if (mem->flags != old->flags) 1929 change = KVM_MR_FLAGS_ONLY; 1930 else /* Nothing to change. */ 1931 return 0; 1932 } 1933 1934 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1935 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1936 return -EEXIST; 1937 1938 /* Allocate a slot that will persist in the memslot. */ 1939 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1940 if (!new) 1941 return -ENOMEM; 1942 1943 new->as_id = as_id; 1944 new->id = id; 1945 new->base_gfn = base_gfn; 1946 new->npages = npages; 1947 new->flags = mem->flags; 1948 new->userspace_addr = mem->userspace_addr; 1949 1950 r = kvm_set_memslot(kvm, old, new, change); 1951 if (r) 1952 kfree(new); 1953 return r; 1954 } 1955 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1956 1957 int kvm_set_memory_region(struct kvm *kvm, 1958 const struct kvm_userspace_memory_region *mem) 1959 { 1960 int r; 1961 1962 mutex_lock(&kvm->slots_lock); 1963 r = __kvm_set_memory_region(kvm, mem); 1964 mutex_unlock(&kvm->slots_lock); 1965 return r; 1966 } 1967 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1968 1969 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1970 struct kvm_userspace_memory_region *mem) 1971 { 1972 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1973 return -EINVAL; 1974 1975 return kvm_set_memory_region(kvm, mem); 1976 } 1977 1978 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1979 /** 1980 * kvm_get_dirty_log - get a snapshot of dirty pages 1981 * @kvm: pointer to kvm instance 1982 * @log: slot id and address to which we copy the log 1983 * @is_dirty: set to '1' if any dirty pages were found 1984 * @memslot: set to the associated memslot, always valid on success 1985 */ 1986 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1987 int *is_dirty, struct kvm_memory_slot **memslot) 1988 { 1989 struct kvm_memslots *slots; 1990 int i, as_id, id; 1991 unsigned long n; 1992 unsigned long any = 0; 1993 1994 /* Dirty ring tracking is exclusive to dirty log tracking */ 1995 if (kvm->dirty_ring_size) 1996 return -ENXIO; 1997 1998 *memslot = NULL; 1999 *is_dirty = 0; 2000 2001 as_id = log->slot >> 16; 2002 id = (u16)log->slot; 2003 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2004 return -EINVAL; 2005 2006 slots = __kvm_memslots(kvm, as_id); 2007 *memslot = id_to_memslot(slots, id); 2008 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2009 return -ENOENT; 2010 2011 kvm_arch_sync_dirty_log(kvm, *memslot); 2012 2013 n = kvm_dirty_bitmap_bytes(*memslot); 2014 2015 for (i = 0; !any && i < n/sizeof(long); ++i) 2016 any = (*memslot)->dirty_bitmap[i]; 2017 2018 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2019 return -EFAULT; 2020 2021 if (any) 2022 *is_dirty = 1; 2023 return 0; 2024 } 2025 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2026 2027 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2028 /** 2029 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2030 * and reenable dirty page tracking for the corresponding pages. 2031 * @kvm: pointer to kvm instance 2032 * @log: slot id and address to which we copy the log 2033 * 2034 * We need to keep it in mind that VCPU threads can write to the bitmap 2035 * concurrently. So, to avoid losing track of dirty pages we keep the 2036 * following order: 2037 * 2038 * 1. Take a snapshot of the bit and clear it if needed. 2039 * 2. Write protect the corresponding page. 2040 * 3. Copy the snapshot to the userspace. 2041 * 4. Upon return caller flushes TLB's if needed. 2042 * 2043 * Between 2 and 4, the guest may write to the page using the remaining TLB 2044 * entry. This is not a problem because the page is reported dirty using 2045 * the snapshot taken before and step 4 ensures that writes done after 2046 * exiting to userspace will be logged for the next call. 2047 * 2048 */ 2049 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2050 { 2051 struct kvm_memslots *slots; 2052 struct kvm_memory_slot *memslot; 2053 int i, as_id, id; 2054 unsigned long n; 2055 unsigned long *dirty_bitmap; 2056 unsigned long *dirty_bitmap_buffer; 2057 bool flush; 2058 2059 /* Dirty ring tracking is exclusive to dirty log tracking */ 2060 if (kvm->dirty_ring_size) 2061 return -ENXIO; 2062 2063 as_id = log->slot >> 16; 2064 id = (u16)log->slot; 2065 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2066 return -EINVAL; 2067 2068 slots = __kvm_memslots(kvm, as_id); 2069 memslot = id_to_memslot(slots, id); 2070 if (!memslot || !memslot->dirty_bitmap) 2071 return -ENOENT; 2072 2073 dirty_bitmap = memslot->dirty_bitmap; 2074 2075 kvm_arch_sync_dirty_log(kvm, memslot); 2076 2077 n = kvm_dirty_bitmap_bytes(memslot); 2078 flush = false; 2079 if (kvm->manual_dirty_log_protect) { 2080 /* 2081 * Unlike kvm_get_dirty_log, we always return false in *flush, 2082 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2083 * is some code duplication between this function and 2084 * kvm_get_dirty_log, but hopefully all architecture 2085 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2086 * can be eliminated. 2087 */ 2088 dirty_bitmap_buffer = dirty_bitmap; 2089 } else { 2090 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2091 memset(dirty_bitmap_buffer, 0, n); 2092 2093 KVM_MMU_LOCK(kvm); 2094 for (i = 0; i < n / sizeof(long); i++) { 2095 unsigned long mask; 2096 gfn_t offset; 2097 2098 if (!dirty_bitmap[i]) 2099 continue; 2100 2101 flush = true; 2102 mask = xchg(&dirty_bitmap[i], 0); 2103 dirty_bitmap_buffer[i] = mask; 2104 2105 offset = i * BITS_PER_LONG; 2106 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2107 offset, mask); 2108 } 2109 KVM_MMU_UNLOCK(kvm); 2110 } 2111 2112 if (flush) 2113 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2114 2115 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2116 return -EFAULT; 2117 return 0; 2118 } 2119 2120 2121 /** 2122 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2123 * @kvm: kvm instance 2124 * @log: slot id and address to which we copy the log 2125 * 2126 * Steps 1-4 below provide general overview of dirty page logging. See 2127 * kvm_get_dirty_log_protect() function description for additional details. 2128 * 2129 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2130 * always flush the TLB (step 4) even if previous step failed and the dirty 2131 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2132 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2133 * writes will be marked dirty for next log read. 2134 * 2135 * 1. Take a snapshot of the bit and clear it if needed. 2136 * 2. Write protect the corresponding page. 2137 * 3. Copy the snapshot to the userspace. 2138 * 4. Flush TLB's if needed. 2139 */ 2140 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2141 struct kvm_dirty_log *log) 2142 { 2143 int r; 2144 2145 mutex_lock(&kvm->slots_lock); 2146 2147 r = kvm_get_dirty_log_protect(kvm, log); 2148 2149 mutex_unlock(&kvm->slots_lock); 2150 return r; 2151 } 2152 2153 /** 2154 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2155 * and reenable dirty page tracking for the corresponding pages. 2156 * @kvm: pointer to kvm instance 2157 * @log: slot id and address from which to fetch the bitmap of dirty pages 2158 */ 2159 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2160 struct kvm_clear_dirty_log *log) 2161 { 2162 struct kvm_memslots *slots; 2163 struct kvm_memory_slot *memslot; 2164 int as_id, id; 2165 gfn_t offset; 2166 unsigned long i, n; 2167 unsigned long *dirty_bitmap; 2168 unsigned long *dirty_bitmap_buffer; 2169 bool flush; 2170 2171 /* Dirty ring tracking is exclusive to dirty log tracking */ 2172 if (kvm->dirty_ring_size) 2173 return -ENXIO; 2174 2175 as_id = log->slot >> 16; 2176 id = (u16)log->slot; 2177 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2178 return -EINVAL; 2179 2180 if (log->first_page & 63) 2181 return -EINVAL; 2182 2183 slots = __kvm_memslots(kvm, as_id); 2184 memslot = id_to_memslot(slots, id); 2185 if (!memslot || !memslot->dirty_bitmap) 2186 return -ENOENT; 2187 2188 dirty_bitmap = memslot->dirty_bitmap; 2189 2190 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2191 2192 if (log->first_page > memslot->npages || 2193 log->num_pages > memslot->npages - log->first_page || 2194 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2195 return -EINVAL; 2196 2197 kvm_arch_sync_dirty_log(kvm, memslot); 2198 2199 flush = false; 2200 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2201 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2202 return -EFAULT; 2203 2204 KVM_MMU_LOCK(kvm); 2205 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2206 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2207 i++, offset += BITS_PER_LONG) { 2208 unsigned long mask = *dirty_bitmap_buffer++; 2209 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2210 if (!mask) 2211 continue; 2212 2213 mask &= atomic_long_fetch_andnot(mask, p); 2214 2215 /* 2216 * mask contains the bits that really have been cleared. This 2217 * never includes any bits beyond the length of the memslot (if 2218 * the length is not aligned to 64 pages), therefore it is not 2219 * a problem if userspace sets them in log->dirty_bitmap. 2220 */ 2221 if (mask) { 2222 flush = true; 2223 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2224 offset, mask); 2225 } 2226 } 2227 KVM_MMU_UNLOCK(kvm); 2228 2229 if (flush) 2230 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2231 2232 return 0; 2233 } 2234 2235 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2236 struct kvm_clear_dirty_log *log) 2237 { 2238 int r; 2239 2240 mutex_lock(&kvm->slots_lock); 2241 2242 r = kvm_clear_dirty_log_protect(kvm, log); 2243 2244 mutex_unlock(&kvm->slots_lock); 2245 return r; 2246 } 2247 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2248 2249 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2250 { 2251 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2252 } 2253 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2254 2255 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2256 { 2257 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2258 u64 gen = slots->generation; 2259 struct kvm_memory_slot *slot; 2260 2261 /* 2262 * This also protects against using a memslot from a different address space, 2263 * since different address spaces have different generation numbers. 2264 */ 2265 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2266 vcpu->last_used_slot = NULL; 2267 vcpu->last_used_slot_gen = gen; 2268 } 2269 2270 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2271 if (slot) 2272 return slot; 2273 2274 /* 2275 * Fall back to searching all memslots. We purposely use 2276 * search_memslots() instead of __gfn_to_memslot() to avoid 2277 * thrashing the VM-wide last_used_slot in kvm_memslots. 2278 */ 2279 slot = search_memslots(slots, gfn, false); 2280 if (slot) { 2281 vcpu->last_used_slot = slot; 2282 return slot; 2283 } 2284 2285 return NULL; 2286 } 2287 2288 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2289 { 2290 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2291 2292 return kvm_is_visible_memslot(memslot); 2293 } 2294 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2295 2296 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2297 { 2298 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2299 2300 return kvm_is_visible_memslot(memslot); 2301 } 2302 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2303 2304 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2305 { 2306 struct vm_area_struct *vma; 2307 unsigned long addr, size; 2308 2309 size = PAGE_SIZE; 2310 2311 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2312 if (kvm_is_error_hva(addr)) 2313 return PAGE_SIZE; 2314 2315 mmap_read_lock(current->mm); 2316 vma = find_vma(current->mm, addr); 2317 if (!vma) 2318 goto out; 2319 2320 size = vma_kernel_pagesize(vma); 2321 2322 out: 2323 mmap_read_unlock(current->mm); 2324 2325 return size; 2326 } 2327 2328 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2329 { 2330 return slot->flags & KVM_MEM_READONLY; 2331 } 2332 2333 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2334 gfn_t *nr_pages, bool write) 2335 { 2336 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2337 return KVM_HVA_ERR_BAD; 2338 2339 if (memslot_is_readonly(slot) && write) 2340 return KVM_HVA_ERR_RO_BAD; 2341 2342 if (nr_pages) 2343 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2344 2345 return __gfn_to_hva_memslot(slot, gfn); 2346 } 2347 2348 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2349 gfn_t *nr_pages) 2350 { 2351 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2352 } 2353 2354 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2355 gfn_t gfn) 2356 { 2357 return gfn_to_hva_many(slot, gfn, NULL); 2358 } 2359 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2360 2361 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2362 { 2363 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2364 } 2365 EXPORT_SYMBOL_GPL(gfn_to_hva); 2366 2367 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2368 { 2369 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2370 } 2371 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2372 2373 /* 2374 * Return the hva of a @gfn and the R/W attribute if possible. 2375 * 2376 * @slot: the kvm_memory_slot which contains @gfn 2377 * @gfn: the gfn to be translated 2378 * @writable: used to return the read/write attribute of the @slot if the hva 2379 * is valid and @writable is not NULL 2380 */ 2381 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2382 gfn_t gfn, bool *writable) 2383 { 2384 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2385 2386 if (!kvm_is_error_hva(hva) && writable) 2387 *writable = !memslot_is_readonly(slot); 2388 2389 return hva; 2390 } 2391 2392 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2393 { 2394 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2395 2396 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2397 } 2398 2399 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2400 { 2401 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2402 2403 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2404 } 2405 2406 static inline int check_user_page_hwpoison(unsigned long addr) 2407 { 2408 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2409 2410 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2411 return rc == -EHWPOISON; 2412 } 2413 2414 /* 2415 * The fast path to get the writable pfn which will be stored in @pfn, 2416 * true indicates success, otherwise false is returned. It's also the 2417 * only part that runs if we can in atomic context. 2418 */ 2419 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2420 bool *writable, kvm_pfn_t *pfn) 2421 { 2422 struct page *page[1]; 2423 2424 /* 2425 * Fast pin a writable pfn only if it is a write fault request 2426 * or the caller allows to map a writable pfn for a read fault 2427 * request. 2428 */ 2429 if (!(write_fault || writable)) 2430 return false; 2431 2432 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2433 *pfn = page_to_pfn(page[0]); 2434 2435 if (writable) 2436 *writable = true; 2437 return true; 2438 } 2439 2440 return false; 2441 } 2442 2443 /* 2444 * The slow path to get the pfn of the specified host virtual address, 2445 * 1 indicates success, -errno is returned if error is detected. 2446 */ 2447 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2448 bool *writable, kvm_pfn_t *pfn) 2449 { 2450 unsigned int flags = FOLL_HWPOISON; 2451 struct page *page; 2452 int npages = 0; 2453 2454 might_sleep(); 2455 2456 if (writable) 2457 *writable = write_fault; 2458 2459 if (write_fault) 2460 flags |= FOLL_WRITE; 2461 if (async) 2462 flags |= FOLL_NOWAIT; 2463 2464 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2465 if (npages != 1) 2466 return npages; 2467 2468 /* map read fault as writable if possible */ 2469 if (unlikely(!write_fault) && writable) { 2470 struct page *wpage; 2471 2472 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2473 *writable = true; 2474 put_page(page); 2475 page = wpage; 2476 } 2477 } 2478 *pfn = page_to_pfn(page); 2479 return npages; 2480 } 2481 2482 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2483 { 2484 if (unlikely(!(vma->vm_flags & VM_READ))) 2485 return false; 2486 2487 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2488 return false; 2489 2490 return true; 2491 } 2492 2493 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2494 { 2495 if (kvm_is_reserved_pfn(pfn)) 2496 return 1; 2497 return get_page_unless_zero(pfn_to_page(pfn)); 2498 } 2499 2500 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2501 unsigned long addr, bool write_fault, 2502 bool *writable, kvm_pfn_t *p_pfn) 2503 { 2504 kvm_pfn_t pfn; 2505 pte_t *ptep; 2506 spinlock_t *ptl; 2507 int r; 2508 2509 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2510 if (r) { 2511 /* 2512 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2513 * not call the fault handler, so do it here. 2514 */ 2515 bool unlocked = false; 2516 r = fixup_user_fault(current->mm, addr, 2517 (write_fault ? FAULT_FLAG_WRITE : 0), 2518 &unlocked); 2519 if (unlocked) 2520 return -EAGAIN; 2521 if (r) 2522 return r; 2523 2524 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2525 if (r) 2526 return r; 2527 } 2528 2529 if (write_fault && !pte_write(*ptep)) { 2530 pfn = KVM_PFN_ERR_RO_FAULT; 2531 goto out; 2532 } 2533 2534 if (writable) 2535 *writable = pte_write(*ptep); 2536 pfn = pte_pfn(*ptep); 2537 2538 /* 2539 * Get a reference here because callers of *hva_to_pfn* and 2540 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2541 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2542 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2543 * simply do nothing for reserved pfns. 2544 * 2545 * Whoever called remap_pfn_range is also going to call e.g. 2546 * unmap_mapping_range before the underlying pages are freed, 2547 * causing a call to our MMU notifier. 2548 * 2549 * Certain IO or PFNMAP mappings can be backed with valid 2550 * struct pages, but be allocated without refcounting e.g., 2551 * tail pages of non-compound higher order allocations, which 2552 * would then underflow the refcount when the caller does the 2553 * required put_page. Don't allow those pages here. 2554 */ 2555 if (!kvm_try_get_pfn(pfn)) 2556 r = -EFAULT; 2557 2558 out: 2559 pte_unmap_unlock(ptep, ptl); 2560 *p_pfn = pfn; 2561 2562 return r; 2563 } 2564 2565 /* 2566 * Pin guest page in memory and return its pfn. 2567 * @addr: host virtual address which maps memory to the guest 2568 * @atomic: whether this function can sleep 2569 * @async: whether this function need to wait IO complete if the 2570 * host page is not in the memory 2571 * @write_fault: whether we should get a writable host page 2572 * @writable: whether it allows to map a writable host page for !@write_fault 2573 * 2574 * The function will map a writable host page for these two cases: 2575 * 1): @write_fault = true 2576 * 2): @write_fault = false && @writable, @writable will tell the caller 2577 * whether the mapping is writable. 2578 */ 2579 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2580 bool write_fault, bool *writable) 2581 { 2582 struct vm_area_struct *vma; 2583 kvm_pfn_t pfn = 0; 2584 int npages, r; 2585 2586 /* we can do it either atomically or asynchronously, not both */ 2587 BUG_ON(atomic && async); 2588 2589 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2590 return pfn; 2591 2592 if (atomic) 2593 return KVM_PFN_ERR_FAULT; 2594 2595 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2596 if (npages == 1) 2597 return pfn; 2598 2599 mmap_read_lock(current->mm); 2600 if (npages == -EHWPOISON || 2601 (!async && check_user_page_hwpoison(addr))) { 2602 pfn = KVM_PFN_ERR_HWPOISON; 2603 goto exit; 2604 } 2605 2606 retry: 2607 vma = vma_lookup(current->mm, addr); 2608 2609 if (vma == NULL) 2610 pfn = KVM_PFN_ERR_FAULT; 2611 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2612 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2613 if (r == -EAGAIN) 2614 goto retry; 2615 if (r < 0) 2616 pfn = KVM_PFN_ERR_FAULT; 2617 } else { 2618 if (async && vma_is_valid(vma, write_fault)) 2619 *async = true; 2620 pfn = KVM_PFN_ERR_FAULT; 2621 } 2622 exit: 2623 mmap_read_unlock(current->mm); 2624 return pfn; 2625 } 2626 2627 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2628 bool atomic, bool *async, bool write_fault, 2629 bool *writable, hva_t *hva) 2630 { 2631 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2632 2633 if (hva) 2634 *hva = addr; 2635 2636 if (addr == KVM_HVA_ERR_RO_BAD) { 2637 if (writable) 2638 *writable = false; 2639 return KVM_PFN_ERR_RO_FAULT; 2640 } 2641 2642 if (kvm_is_error_hva(addr)) { 2643 if (writable) 2644 *writable = false; 2645 return KVM_PFN_NOSLOT; 2646 } 2647 2648 /* Do not map writable pfn in the readonly memslot. */ 2649 if (writable && memslot_is_readonly(slot)) { 2650 *writable = false; 2651 writable = NULL; 2652 } 2653 2654 return hva_to_pfn(addr, atomic, async, write_fault, 2655 writable); 2656 } 2657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2658 2659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2660 bool *writable) 2661 { 2662 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2663 write_fault, writable, NULL); 2664 } 2665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2666 2667 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2668 { 2669 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2670 } 2671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2672 2673 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2674 { 2675 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2676 } 2677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2678 2679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2680 { 2681 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2682 } 2683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2684 2685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2686 { 2687 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2688 } 2689 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2690 2691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2692 { 2693 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2694 } 2695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2696 2697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2698 struct page **pages, int nr_pages) 2699 { 2700 unsigned long addr; 2701 gfn_t entry = 0; 2702 2703 addr = gfn_to_hva_many(slot, gfn, &entry); 2704 if (kvm_is_error_hva(addr)) 2705 return -1; 2706 2707 if (entry < nr_pages) 2708 return 0; 2709 2710 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2711 } 2712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2713 2714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2715 { 2716 if (is_error_noslot_pfn(pfn)) 2717 return KVM_ERR_PTR_BAD_PAGE; 2718 2719 if (kvm_is_reserved_pfn(pfn)) { 2720 WARN_ON(1); 2721 return KVM_ERR_PTR_BAD_PAGE; 2722 } 2723 2724 return pfn_to_page(pfn); 2725 } 2726 2727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2728 { 2729 kvm_pfn_t pfn; 2730 2731 pfn = gfn_to_pfn(kvm, gfn); 2732 2733 return kvm_pfn_to_page(pfn); 2734 } 2735 EXPORT_SYMBOL_GPL(gfn_to_page); 2736 2737 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2738 { 2739 if (pfn == 0) 2740 return; 2741 2742 if (dirty) 2743 kvm_release_pfn_dirty(pfn); 2744 else 2745 kvm_release_pfn_clean(pfn); 2746 } 2747 2748 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2749 { 2750 kvm_pfn_t pfn; 2751 void *hva = NULL; 2752 struct page *page = KVM_UNMAPPED_PAGE; 2753 2754 if (!map) 2755 return -EINVAL; 2756 2757 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2758 if (is_error_noslot_pfn(pfn)) 2759 return -EINVAL; 2760 2761 if (pfn_valid(pfn)) { 2762 page = pfn_to_page(pfn); 2763 hva = kmap(page); 2764 #ifdef CONFIG_HAS_IOMEM 2765 } else { 2766 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2767 #endif 2768 } 2769 2770 if (!hva) 2771 return -EFAULT; 2772 2773 map->page = page; 2774 map->hva = hva; 2775 map->pfn = pfn; 2776 map->gfn = gfn; 2777 2778 return 0; 2779 } 2780 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2781 2782 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2783 { 2784 if (!map) 2785 return; 2786 2787 if (!map->hva) 2788 return; 2789 2790 if (map->page != KVM_UNMAPPED_PAGE) 2791 kunmap(map->page); 2792 #ifdef CONFIG_HAS_IOMEM 2793 else 2794 memunmap(map->hva); 2795 #endif 2796 2797 if (dirty) 2798 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2799 2800 kvm_release_pfn(map->pfn, dirty); 2801 2802 map->hva = NULL; 2803 map->page = NULL; 2804 } 2805 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2806 2807 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2808 { 2809 kvm_pfn_t pfn; 2810 2811 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2812 2813 return kvm_pfn_to_page(pfn); 2814 } 2815 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2816 2817 void kvm_release_page_clean(struct page *page) 2818 { 2819 WARN_ON(is_error_page(page)); 2820 2821 kvm_release_pfn_clean(page_to_pfn(page)); 2822 } 2823 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2824 2825 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2826 { 2827 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2828 put_page(pfn_to_page(pfn)); 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2831 2832 void kvm_release_page_dirty(struct page *page) 2833 { 2834 WARN_ON(is_error_page(page)); 2835 2836 kvm_release_pfn_dirty(page_to_pfn(page)); 2837 } 2838 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2839 2840 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2841 { 2842 kvm_set_pfn_dirty(pfn); 2843 kvm_release_pfn_clean(pfn); 2844 } 2845 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2846 2847 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2848 { 2849 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2850 SetPageDirty(pfn_to_page(pfn)); 2851 } 2852 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2853 2854 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2855 { 2856 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2857 mark_page_accessed(pfn_to_page(pfn)); 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2860 2861 static int next_segment(unsigned long len, int offset) 2862 { 2863 if (len > PAGE_SIZE - offset) 2864 return PAGE_SIZE - offset; 2865 else 2866 return len; 2867 } 2868 2869 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2870 void *data, int offset, int len) 2871 { 2872 int r; 2873 unsigned long addr; 2874 2875 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2876 if (kvm_is_error_hva(addr)) 2877 return -EFAULT; 2878 r = __copy_from_user(data, (void __user *)addr + offset, len); 2879 if (r) 2880 return -EFAULT; 2881 return 0; 2882 } 2883 2884 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2885 int len) 2886 { 2887 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2888 2889 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2890 } 2891 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2892 2893 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2894 int offset, int len) 2895 { 2896 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2897 2898 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2899 } 2900 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2901 2902 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2903 { 2904 gfn_t gfn = gpa >> PAGE_SHIFT; 2905 int seg; 2906 int offset = offset_in_page(gpa); 2907 int ret; 2908 2909 while ((seg = next_segment(len, offset)) != 0) { 2910 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2911 if (ret < 0) 2912 return ret; 2913 offset = 0; 2914 len -= seg; 2915 data += seg; 2916 ++gfn; 2917 } 2918 return 0; 2919 } 2920 EXPORT_SYMBOL_GPL(kvm_read_guest); 2921 2922 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2923 { 2924 gfn_t gfn = gpa >> PAGE_SHIFT; 2925 int seg; 2926 int offset = offset_in_page(gpa); 2927 int ret; 2928 2929 while ((seg = next_segment(len, offset)) != 0) { 2930 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2931 if (ret < 0) 2932 return ret; 2933 offset = 0; 2934 len -= seg; 2935 data += seg; 2936 ++gfn; 2937 } 2938 return 0; 2939 } 2940 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2941 2942 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2943 void *data, int offset, unsigned long len) 2944 { 2945 int r; 2946 unsigned long addr; 2947 2948 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2949 if (kvm_is_error_hva(addr)) 2950 return -EFAULT; 2951 pagefault_disable(); 2952 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2953 pagefault_enable(); 2954 if (r) 2955 return -EFAULT; 2956 return 0; 2957 } 2958 2959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2960 void *data, unsigned long len) 2961 { 2962 gfn_t gfn = gpa >> PAGE_SHIFT; 2963 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2964 int offset = offset_in_page(gpa); 2965 2966 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2967 } 2968 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2969 2970 static int __kvm_write_guest_page(struct kvm *kvm, 2971 struct kvm_memory_slot *memslot, gfn_t gfn, 2972 const void *data, int offset, int len) 2973 { 2974 int r; 2975 unsigned long addr; 2976 2977 addr = gfn_to_hva_memslot(memslot, gfn); 2978 if (kvm_is_error_hva(addr)) 2979 return -EFAULT; 2980 r = __copy_to_user((void __user *)addr + offset, data, len); 2981 if (r) 2982 return -EFAULT; 2983 mark_page_dirty_in_slot(kvm, memslot, gfn); 2984 return 0; 2985 } 2986 2987 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2988 const void *data, int offset, int len) 2989 { 2990 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2991 2992 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2993 } 2994 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2995 2996 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2997 const void *data, int offset, int len) 2998 { 2999 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3000 3001 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3002 } 3003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3004 3005 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3006 unsigned long len) 3007 { 3008 gfn_t gfn = gpa >> PAGE_SHIFT; 3009 int seg; 3010 int offset = offset_in_page(gpa); 3011 int ret; 3012 3013 while ((seg = next_segment(len, offset)) != 0) { 3014 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3015 if (ret < 0) 3016 return ret; 3017 offset = 0; 3018 len -= seg; 3019 data += seg; 3020 ++gfn; 3021 } 3022 return 0; 3023 } 3024 EXPORT_SYMBOL_GPL(kvm_write_guest); 3025 3026 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3027 unsigned long len) 3028 { 3029 gfn_t gfn = gpa >> PAGE_SHIFT; 3030 int seg; 3031 int offset = offset_in_page(gpa); 3032 int ret; 3033 3034 while ((seg = next_segment(len, offset)) != 0) { 3035 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3036 if (ret < 0) 3037 return ret; 3038 offset = 0; 3039 len -= seg; 3040 data += seg; 3041 ++gfn; 3042 } 3043 return 0; 3044 } 3045 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3046 3047 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3048 struct gfn_to_hva_cache *ghc, 3049 gpa_t gpa, unsigned long len) 3050 { 3051 int offset = offset_in_page(gpa); 3052 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3053 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3054 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3055 gfn_t nr_pages_avail; 3056 3057 /* Update ghc->generation before performing any error checks. */ 3058 ghc->generation = slots->generation; 3059 3060 if (start_gfn > end_gfn) { 3061 ghc->hva = KVM_HVA_ERR_BAD; 3062 return -EINVAL; 3063 } 3064 3065 /* 3066 * If the requested region crosses two memslots, we still 3067 * verify that the entire region is valid here. 3068 */ 3069 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3070 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3071 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3072 &nr_pages_avail); 3073 if (kvm_is_error_hva(ghc->hva)) 3074 return -EFAULT; 3075 } 3076 3077 /* Use the slow path for cross page reads and writes. */ 3078 if (nr_pages_needed == 1) 3079 ghc->hva += offset; 3080 else 3081 ghc->memslot = NULL; 3082 3083 ghc->gpa = gpa; 3084 ghc->len = len; 3085 return 0; 3086 } 3087 3088 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3089 gpa_t gpa, unsigned long len) 3090 { 3091 struct kvm_memslots *slots = kvm_memslots(kvm); 3092 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3093 } 3094 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3095 3096 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3097 void *data, unsigned int offset, 3098 unsigned long len) 3099 { 3100 struct kvm_memslots *slots = kvm_memslots(kvm); 3101 int r; 3102 gpa_t gpa = ghc->gpa + offset; 3103 3104 if (WARN_ON_ONCE(len + offset > ghc->len)) 3105 return -EINVAL; 3106 3107 if (slots->generation != ghc->generation) { 3108 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3109 return -EFAULT; 3110 } 3111 3112 if (kvm_is_error_hva(ghc->hva)) 3113 return -EFAULT; 3114 3115 if (unlikely(!ghc->memslot)) 3116 return kvm_write_guest(kvm, gpa, data, len); 3117 3118 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3119 if (r) 3120 return -EFAULT; 3121 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3122 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3126 3127 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3128 void *data, unsigned long len) 3129 { 3130 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3133 3134 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3135 void *data, unsigned int offset, 3136 unsigned long len) 3137 { 3138 struct kvm_memslots *slots = kvm_memslots(kvm); 3139 int r; 3140 gpa_t gpa = ghc->gpa + offset; 3141 3142 if (WARN_ON_ONCE(len + offset > ghc->len)) 3143 return -EINVAL; 3144 3145 if (slots->generation != ghc->generation) { 3146 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3147 return -EFAULT; 3148 } 3149 3150 if (kvm_is_error_hva(ghc->hva)) 3151 return -EFAULT; 3152 3153 if (unlikely(!ghc->memslot)) 3154 return kvm_read_guest(kvm, gpa, data, len); 3155 3156 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3157 if (r) 3158 return -EFAULT; 3159 3160 return 0; 3161 } 3162 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3163 3164 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3165 void *data, unsigned long len) 3166 { 3167 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3168 } 3169 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3170 3171 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3172 { 3173 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3174 gfn_t gfn = gpa >> PAGE_SHIFT; 3175 int seg; 3176 int offset = offset_in_page(gpa); 3177 int ret; 3178 3179 while ((seg = next_segment(len, offset)) != 0) { 3180 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3181 if (ret < 0) 3182 return ret; 3183 offset = 0; 3184 len -= seg; 3185 ++gfn; 3186 } 3187 return 0; 3188 } 3189 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3190 3191 void mark_page_dirty_in_slot(struct kvm *kvm, 3192 const struct kvm_memory_slot *memslot, 3193 gfn_t gfn) 3194 { 3195 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3196 3197 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3198 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3199 return; 3200 #endif 3201 3202 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3203 unsigned long rel_gfn = gfn - memslot->base_gfn; 3204 u32 slot = (memslot->as_id << 16) | memslot->id; 3205 3206 if (kvm->dirty_ring_size) 3207 kvm_dirty_ring_push(&vcpu->dirty_ring, 3208 slot, rel_gfn); 3209 else 3210 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3211 } 3212 } 3213 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3214 3215 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3216 { 3217 struct kvm_memory_slot *memslot; 3218 3219 memslot = gfn_to_memslot(kvm, gfn); 3220 mark_page_dirty_in_slot(kvm, memslot, gfn); 3221 } 3222 EXPORT_SYMBOL_GPL(mark_page_dirty); 3223 3224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3225 { 3226 struct kvm_memory_slot *memslot; 3227 3228 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3229 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3230 } 3231 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3232 3233 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3234 { 3235 if (!vcpu->sigset_active) 3236 return; 3237 3238 /* 3239 * This does a lockless modification of ->real_blocked, which is fine 3240 * because, only current can change ->real_blocked and all readers of 3241 * ->real_blocked don't care as long ->real_blocked is always a subset 3242 * of ->blocked. 3243 */ 3244 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3245 } 3246 3247 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3248 { 3249 if (!vcpu->sigset_active) 3250 return; 3251 3252 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3253 sigemptyset(¤t->real_blocked); 3254 } 3255 3256 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3257 { 3258 unsigned int old, val, grow, grow_start; 3259 3260 old = val = vcpu->halt_poll_ns; 3261 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3262 grow = READ_ONCE(halt_poll_ns_grow); 3263 if (!grow) 3264 goto out; 3265 3266 val *= grow; 3267 if (val < grow_start) 3268 val = grow_start; 3269 3270 if (val > vcpu->kvm->max_halt_poll_ns) 3271 val = vcpu->kvm->max_halt_poll_ns; 3272 3273 vcpu->halt_poll_ns = val; 3274 out: 3275 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3276 } 3277 3278 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3279 { 3280 unsigned int old, val, shrink, grow_start; 3281 3282 old = val = vcpu->halt_poll_ns; 3283 shrink = READ_ONCE(halt_poll_ns_shrink); 3284 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3285 if (shrink == 0) 3286 val = 0; 3287 else 3288 val /= shrink; 3289 3290 if (val < grow_start) 3291 val = 0; 3292 3293 vcpu->halt_poll_ns = val; 3294 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3295 } 3296 3297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3298 { 3299 int ret = -EINTR; 3300 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3301 3302 if (kvm_arch_vcpu_runnable(vcpu)) { 3303 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3304 goto out; 3305 } 3306 if (kvm_cpu_has_pending_timer(vcpu)) 3307 goto out; 3308 if (signal_pending(current)) 3309 goto out; 3310 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3311 goto out; 3312 3313 ret = 0; 3314 out: 3315 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3316 return ret; 3317 } 3318 3319 /* 3320 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3321 * pending. This is mostly used when halting a vCPU, but may also be used 3322 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3323 */ 3324 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3325 { 3326 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3327 bool waited = false; 3328 3329 vcpu->stat.generic.blocking = 1; 3330 3331 kvm_arch_vcpu_blocking(vcpu); 3332 3333 prepare_to_rcuwait(wait); 3334 for (;;) { 3335 set_current_state(TASK_INTERRUPTIBLE); 3336 3337 if (kvm_vcpu_check_block(vcpu) < 0) 3338 break; 3339 3340 waited = true; 3341 schedule(); 3342 } 3343 finish_rcuwait(wait); 3344 3345 kvm_arch_vcpu_unblocking(vcpu); 3346 3347 vcpu->stat.generic.blocking = 0; 3348 3349 return waited; 3350 } 3351 3352 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3353 ktime_t end, bool success) 3354 { 3355 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3356 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3357 3358 ++vcpu->stat.generic.halt_attempted_poll; 3359 3360 if (success) { 3361 ++vcpu->stat.generic.halt_successful_poll; 3362 3363 if (!vcpu_valid_wakeup(vcpu)) 3364 ++vcpu->stat.generic.halt_poll_invalid; 3365 3366 stats->halt_poll_success_ns += poll_ns; 3367 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3368 } else { 3369 stats->halt_poll_fail_ns += poll_ns; 3370 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3371 } 3372 } 3373 3374 /* 3375 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3376 * polling is enabled, busy wait for a short time before blocking to avoid the 3377 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3378 * is halted. 3379 */ 3380 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3381 { 3382 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3383 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3384 ktime_t start, cur, poll_end; 3385 bool waited = false; 3386 u64 halt_ns; 3387 3388 start = cur = poll_end = ktime_get(); 3389 if (do_halt_poll) { 3390 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3391 3392 do { 3393 /* 3394 * This sets KVM_REQ_UNHALT if an interrupt 3395 * arrives. 3396 */ 3397 if (kvm_vcpu_check_block(vcpu) < 0) 3398 goto out; 3399 cpu_relax(); 3400 poll_end = cur = ktime_get(); 3401 } while (kvm_vcpu_can_poll(cur, stop)); 3402 } 3403 3404 waited = kvm_vcpu_block(vcpu); 3405 3406 cur = ktime_get(); 3407 if (waited) { 3408 vcpu->stat.generic.halt_wait_ns += 3409 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3410 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3411 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3412 } 3413 out: 3414 /* The total time the vCPU was "halted", including polling time. */ 3415 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3416 3417 /* 3418 * Note, halt-polling is considered successful so long as the vCPU was 3419 * never actually scheduled out, i.e. even if the wake event arrived 3420 * after of the halt-polling loop itself, but before the full wait. 3421 */ 3422 if (do_halt_poll) 3423 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3424 3425 if (halt_poll_allowed) { 3426 if (!vcpu_valid_wakeup(vcpu)) { 3427 shrink_halt_poll_ns(vcpu); 3428 } else if (vcpu->kvm->max_halt_poll_ns) { 3429 if (halt_ns <= vcpu->halt_poll_ns) 3430 ; 3431 /* we had a long block, shrink polling */ 3432 else if (vcpu->halt_poll_ns && 3433 halt_ns > vcpu->kvm->max_halt_poll_ns) 3434 shrink_halt_poll_ns(vcpu); 3435 /* we had a short halt and our poll time is too small */ 3436 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3437 halt_ns < vcpu->kvm->max_halt_poll_ns) 3438 grow_halt_poll_ns(vcpu); 3439 } else { 3440 vcpu->halt_poll_ns = 0; 3441 } 3442 } 3443 3444 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3445 } 3446 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3447 3448 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3449 { 3450 if (__kvm_vcpu_wake_up(vcpu)) { 3451 WRITE_ONCE(vcpu->ready, true); 3452 ++vcpu->stat.generic.halt_wakeup; 3453 return true; 3454 } 3455 3456 return false; 3457 } 3458 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3459 3460 #ifndef CONFIG_S390 3461 /* 3462 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3463 */ 3464 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3465 { 3466 int me, cpu; 3467 3468 if (kvm_vcpu_wake_up(vcpu)) 3469 return; 3470 3471 me = get_cpu(); 3472 /* 3473 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3474 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3475 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3476 * within the vCPU thread itself. 3477 */ 3478 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3479 if (vcpu->mode == IN_GUEST_MODE) 3480 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3481 goto out; 3482 } 3483 3484 /* 3485 * Note, the vCPU could get migrated to a different pCPU at any point 3486 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3487 * IPI to the previous pCPU. But, that's ok because the purpose of the 3488 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3489 * vCPU also requires it to leave IN_GUEST_MODE. 3490 */ 3491 if (kvm_arch_vcpu_should_kick(vcpu)) { 3492 cpu = READ_ONCE(vcpu->cpu); 3493 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3494 smp_send_reschedule(cpu); 3495 } 3496 out: 3497 put_cpu(); 3498 } 3499 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3500 #endif /* !CONFIG_S390 */ 3501 3502 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3503 { 3504 struct pid *pid; 3505 struct task_struct *task = NULL; 3506 int ret = 0; 3507 3508 rcu_read_lock(); 3509 pid = rcu_dereference(target->pid); 3510 if (pid) 3511 task = get_pid_task(pid, PIDTYPE_PID); 3512 rcu_read_unlock(); 3513 if (!task) 3514 return ret; 3515 ret = yield_to(task, 1); 3516 put_task_struct(task); 3517 3518 return ret; 3519 } 3520 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3521 3522 /* 3523 * Helper that checks whether a VCPU is eligible for directed yield. 3524 * Most eligible candidate to yield is decided by following heuristics: 3525 * 3526 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3527 * (preempted lock holder), indicated by @in_spin_loop. 3528 * Set at the beginning and cleared at the end of interception/PLE handler. 3529 * 3530 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3531 * chance last time (mostly it has become eligible now since we have probably 3532 * yielded to lockholder in last iteration. This is done by toggling 3533 * @dy_eligible each time a VCPU checked for eligibility.) 3534 * 3535 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3536 * to preempted lock-holder could result in wrong VCPU selection and CPU 3537 * burning. Giving priority for a potential lock-holder increases lock 3538 * progress. 3539 * 3540 * Since algorithm is based on heuristics, accessing another VCPU data without 3541 * locking does not harm. It may result in trying to yield to same VCPU, fail 3542 * and continue with next VCPU and so on. 3543 */ 3544 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3545 { 3546 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3547 bool eligible; 3548 3549 eligible = !vcpu->spin_loop.in_spin_loop || 3550 vcpu->spin_loop.dy_eligible; 3551 3552 if (vcpu->spin_loop.in_spin_loop) 3553 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3554 3555 return eligible; 3556 #else 3557 return true; 3558 #endif 3559 } 3560 3561 /* 3562 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3563 * a vcpu_load/vcpu_put pair. However, for most architectures 3564 * kvm_arch_vcpu_runnable does not require vcpu_load. 3565 */ 3566 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3567 { 3568 return kvm_arch_vcpu_runnable(vcpu); 3569 } 3570 3571 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3572 { 3573 if (kvm_arch_dy_runnable(vcpu)) 3574 return true; 3575 3576 #ifdef CONFIG_KVM_ASYNC_PF 3577 if (!list_empty_careful(&vcpu->async_pf.done)) 3578 return true; 3579 #endif 3580 3581 return false; 3582 } 3583 3584 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3585 { 3586 return false; 3587 } 3588 3589 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3590 { 3591 struct kvm *kvm = me->kvm; 3592 struct kvm_vcpu *vcpu; 3593 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3594 unsigned long i; 3595 int yielded = 0; 3596 int try = 3; 3597 int pass; 3598 3599 kvm_vcpu_set_in_spin_loop(me, true); 3600 /* 3601 * We boost the priority of a VCPU that is runnable but not 3602 * currently running, because it got preempted by something 3603 * else and called schedule in __vcpu_run. Hopefully that 3604 * VCPU is holding the lock that we need and will release it. 3605 * We approximate round-robin by starting at the last boosted VCPU. 3606 */ 3607 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3608 kvm_for_each_vcpu(i, vcpu, kvm) { 3609 if (!pass && i <= last_boosted_vcpu) { 3610 i = last_boosted_vcpu; 3611 continue; 3612 } else if (pass && i > last_boosted_vcpu) 3613 break; 3614 if (!READ_ONCE(vcpu->ready)) 3615 continue; 3616 if (vcpu == me) 3617 continue; 3618 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3619 continue; 3620 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3621 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3622 !kvm_arch_vcpu_in_kernel(vcpu)) 3623 continue; 3624 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3625 continue; 3626 3627 yielded = kvm_vcpu_yield_to(vcpu); 3628 if (yielded > 0) { 3629 kvm->last_boosted_vcpu = i; 3630 break; 3631 } else if (yielded < 0) { 3632 try--; 3633 if (!try) 3634 break; 3635 } 3636 } 3637 } 3638 kvm_vcpu_set_in_spin_loop(me, false); 3639 3640 /* Ensure vcpu is not eligible during next spinloop */ 3641 kvm_vcpu_set_dy_eligible(me, false); 3642 } 3643 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3644 3645 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3646 { 3647 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3648 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3649 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3650 kvm->dirty_ring_size / PAGE_SIZE); 3651 #else 3652 return false; 3653 #endif 3654 } 3655 3656 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3657 { 3658 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3659 struct page *page; 3660 3661 if (vmf->pgoff == 0) 3662 page = virt_to_page(vcpu->run); 3663 #ifdef CONFIG_X86 3664 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3665 page = virt_to_page(vcpu->arch.pio_data); 3666 #endif 3667 #ifdef CONFIG_KVM_MMIO 3668 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3669 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3670 #endif 3671 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3672 page = kvm_dirty_ring_get_page( 3673 &vcpu->dirty_ring, 3674 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3675 else 3676 return kvm_arch_vcpu_fault(vcpu, vmf); 3677 get_page(page); 3678 vmf->page = page; 3679 return 0; 3680 } 3681 3682 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3683 .fault = kvm_vcpu_fault, 3684 }; 3685 3686 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3687 { 3688 struct kvm_vcpu *vcpu = file->private_data; 3689 unsigned long pages = vma_pages(vma); 3690 3691 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3692 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3693 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3694 return -EINVAL; 3695 3696 vma->vm_ops = &kvm_vcpu_vm_ops; 3697 return 0; 3698 } 3699 3700 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3701 { 3702 struct kvm_vcpu *vcpu = filp->private_data; 3703 3704 kvm_put_kvm(vcpu->kvm); 3705 return 0; 3706 } 3707 3708 static const struct file_operations kvm_vcpu_fops = { 3709 .release = kvm_vcpu_release, 3710 .unlocked_ioctl = kvm_vcpu_ioctl, 3711 .mmap = kvm_vcpu_mmap, 3712 .llseek = noop_llseek, 3713 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3714 }; 3715 3716 /* 3717 * Allocates an inode for the vcpu. 3718 */ 3719 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3720 { 3721 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3722 3723 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3724 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3725 } 3726 3727 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3728 { 3729 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3730 struct dentry *debugfs_dentry; 3731 char dir_name[ITOA_MAX_LEN * 2]; 3732 3733 if (!debugfs_initialized()) 3734 return; 3735 3736 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3737 debugfs_dentry = debugfs_create_dir(dir_name, 3738 vcpu->kvm->debugfs_dentry); 3739 3740 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3741 #endif 3742 } 3743 3744 /* 3745 * Creates some virtual cpus. Good luck creating more than one. 3746 */ 3747 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3748 { 3749 int r; 3750 struct kvm_vcpu *vcpu; 3751 struct page *page; 3752 3753 if (id >= KVM_MAX_VCPU_IDS) 3754 return -EINVAL; 3755 3756 mutex_lock(&kvm->lock); 3757 if (kvm->created_vcpus >= kvm->max_vcpus) { 3758 mutex_unlock(&kvm->lock); 3759 return -EINVAL; 3760 } 3761 3762 kvm->created_vcpus++; 3763 mutex_unlock(&kvm->lock); 3764 3765 r = kvm_arch_vcpu_precreate(kvm, id); 3766 if (r) 3767 goto vcpu_decrement; 3768 3769 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3770 if (!vcpu) { 3771 r = -ENOMEM; 3772 goto vcpu_decrement; 3773 } 3774 3775 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3776 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3777 if (!page) { 3778 r = -ENOMEM; 3779 goto vcpu_free; 3780 } 3781 vcpu->run = page_address(page); 3782 3783 kvm_vcpu_init(vcpu, kvm, id); 3784 3785 r = kvm_arch_vcpu_create(vcpu); 3786 if (r) 3787 goto vcpu_free_run_page; 3788 3789 if (kvm->dirty_ring_size) { 3790 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3791 id, kvm->dirty_ring_size); 3792 if (r) 3793 goto arch_vcpu_destroy; 3794 } 3795 3796 mutex_lock(&kvm->lock); 3797 if (kvm_get_vcpu_by_id(kvm, id)) { 3798 r = -EEXIST; 3799 goto unlock_vcpu_destroy; 3800 } 3801 3802 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3803 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3804 BUG_ON(r == -EBUSY); 3805 if (r) 3806 goto unlock_vcpu_destroy; 3807 3808 /* Fill the stats id string for the vcpu */ 3809 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3810 task_pid_nr(current), id); 3811 3812 /* Now it's all set up, let userspace reach it */ 3813 kvm_get_kvm(kvm); 3814 r = create_vcpu_fd(vcpu); 3815 if (r < 0) { 3816 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3817 kvm_put_kvm_no_destroy(kvm); 3818 goto unlock_vcpu_destroy; 3819 } 3820 3821 /* 3822 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3823 * pointer before kvm->online_vcpu's incremented value. 3824 */ 3825 smp_wmb(); 3826 atomic_inc(&kvm->online_vcpus); 3827 3828 mutex_unlock(&kvm->lock); 3829 kvm_arch_vcpu_postcreate(vcpu); 3830 kvm_create_vcpu_debugfs(vcpu); 3831 return r; 3832 3833 unlock_vcpu_destroy: 3834 mutex_unlock(&kvm->lock); 3835 kvm_dirty_ring_free(&vcpu->dirty_ring); 3836 arch_vcpu_destroy: 3837 kvm_arch_vcpu_destroy(vcpu); 3838 vcpu_free_run_page: 3839 free_page((unsigned long)vcpu->run); 3840 vcpu_free: 3841 kmem_cache_free(kvm_vcpu_cache, vcpu); 3842 vcpu_decrement: 3843 mutex_lock(&kvm->lock); 3844 kvm->created_vcpus--; 3845 mutex_unlock(&kvm->lock); 3846 return r; 3847 } 3848 3849 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3850 { 3851 if (sigset) { 3852 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3853 vcpu->sigset_active = 1; 3854 vcpu->sigset = *sigset; 3855 } else 3856 vcpu->sigset_active = 0; 3857 return 0; 3858 } 3859 3860 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3861 size_t size, loff_t *offset) 3862 { 3863 struct kvm_vcpu *vcpu = file->private_data; 3864 3865 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3866 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3867 sizeof(vcpu->stat), user_buffer, size, offset); 3868 } 3869 3870 static const struct file_operations kvm_vcpu_stats_fops = { 3871 .read = kvm_vcpu_stats_read, 3872 .llseek = noop_llseek, 3873 }; 3874 3875 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3876 { 3877 int fd; 3878 struct file *file; 3879 char name[15 + ITOA_MAX_LEN + 1]; 3880 3881 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3882 3883 fd = get_unused_fd_flags(O_CLOEXEC); 3884 if (fd < 0) 3885 return fd; 3886 3887 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3888 if (IS_ERR(file)) { 3889 put_unused_fd(fd); 3890 return PTR_ERR(file); 3891 } 3892 file->f_mode |= FMODE_PREAD; 3893 fd_install(fd, file); 3894 3895 return fd; 3896 } 3897 3898 static long kvm_vcpu_ioctl(struct file *filp, 3899 unsigned int ioctl, unsigned long arg) 3900 { 3901 struct kvm_vcpu *vcpu = filp->private_data; 3902 void __user *argp = (void __user *)arg; 3903 int r; 3904 struct kvm_fpu *fpu = NULL; 3905 struct kvm_sregs *kvm_sregs = NULL; 3906 3907 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3908 return -EIO; 3909 3910 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3911 return -EINVAL; 3912 3913 /* 3914 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3915 * execution; mutex_lock() would break them. 3916 */ 3917 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3918 if (r != -ENOIOCTLCMD) 3919 return r; 3920 3921 if (mutex_lock_killable(&vcpu->mutex)) 3922 return -EINTR; 3923 switch (ioctl) { 3924 case KVM_RUN: { 3925 struct pid *oldpid; 3926 r = -EINVAL; 3927 if (arg) 3928 goto out; 3929 oldpid = rcu_access_pointer(vcpu->pid); 3930 if (unlikely(oldpid != task_pid(current))) { 3931 /* The thread running this VCPU changed. */ 3932 struct pid *newpid; 3933 3934 r = kvm_arch_vcpu_run_pid_change(vcpu); 3935 if (r) 3936 break; 3937 3938 newpid = get_task_pid(current, PIDTYPE_PID); 3939 rcu_assign_pointer(vcpu->pid, newpid); 3940 if (oldpid) 3941 synchronize_rcu(); 3942 put_pid(oldpid); 3943 } 3944 r = kvm_arch_vcpu_ioctl_run(vcpu); 3945 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3946 break; 3947 } 3948 case KVM_GET_REGS: { 3949 struct kvm_regs *kvm_regs; 3950 3951 r = -ENOMEM; 3952 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3953 if (!kvm_regs) 3954 goto out; 3955 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3956 if (r) 3957 goto out_free1; 3958 r = -EFAULT; 3959 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3960 goto out_free1; 3961 r = 0; 3962 out_free1: 3963 kfree(kvm_regs); 3964 break; 3965 } 3966 case KVM_SET_REGS: { 3967 struct kvm_regs *kvm_regs; 3968 3969 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3970 if (IS_ERR(kvm_regs)) { 3971 r = PTR_ERR(kvm_regs); 3972 goto out; 3973 } 3974 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3975 kfree(kvm_regs); 3976 break; 3977 } 3978 case KVM_GET_SREGS: { 3979 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3980 GFP_KERNEL_ACCOUNT); 3981 r = -ENOMEM; 3982 if (!kvm_sregs) 3983 goto out; 3984 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3985 if (r) 3986 goto out; 3987 r = -EFAULT; 3988 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3989 goto out; 3990 r = 0; 3991 break; 3992 } 3993 case KVM_SET_SREGS: { 3994 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3995 if (IS_ERR(kvm_sregs)) { 3996 r = PTR_ERR(kvm_sregs); 3997 kvm_sregs = NULL; 3998 goto out; 3999 } 4000 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4001 break; 4002 } 4003 case KVM_GET_MP_STATE: { 4004 struct kvm_mp_state mp_state; 4005 4006 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4007 if (r) 4008 goto out; 4009 r = -EFAULT; 4010 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4011 goto out; 4012 r = 0; 4013 break; 4014 } 4015 case KVM_SET_MP_STATE: { 4016 struct kvm_mp_state mp_state; 4017 4018 r = -EFAULT; 4019 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4020 goto out; 4021 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4022 break; 4023 } 4024 case KVM_TRANSLATE: { 4025 struct kvm_translation tr; 4026 4027 r = -EFAULT; 4028 if (copy_from_user(&tr, argp, sizeof(tr))) 4029 goto out; 4030 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4031 if (r) 4032 goto out; 4033 r = -EFAULT; 4034 if (copy_to_user(argp, &tr, sizeof(tr))) 4035 goto out; 4036 r = 0; 4037 break; 4038 } 4039 case KVM_SET_GUEST_DEBUG: { 4040 struct kvm_guest_debug dbg; 4041 4042 r = -EFAULT; 4043 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4044 goto out; 4045 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4046 break; 4047 } 4048 case KVM_SET_SIGNAL_MASK: { 4049 struct kvm_signal_mask __user *sigmask_arg = argp; 4050 struct kvm_signal_mask kvm_sigmask; 4051 sigset_t sigset, *p; 4052 4053 p = NULL; 4054 if (argp) { 4055 r = -EFAULT; 4056 if (copy_from_user(&kvm_sigmask, argp, 4057 sizeof(kvm_sigmask))) 4058 goto out; 4059 r = -EINVAL; 4060 if (kvm_sigmask.len != sizeof(sigset)) 4061 goto out; 4062 r = -EFAULT; 4063 if (copy_from_user(&sigset, sigmask_arg->sigset, 4064 sizeof(sigset))) 4065 goto out; 4066 p = &sigset; 4067 } 4068 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4069 break; 4070 } 4071 case KVM_GET_FPU: { 4072 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4073 r = -ENOMEM; 4074 if (!fpu) 4075 goto out; 4076 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4077 if (r) 4078 goto out; 4079 r = -EFAULT; 4080 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4081 goto out; 4082 r = 0; 4083 break; 4084 } 4085 case KVM_SET_FPU: { 4086 fpu = memdup_user(argp, sizeof(*fpu)); 4087 if (IS_ERR(fpu)) { 4088 r = PTR_ERR(fpu); 4089 fpu = NULL; 4090 goto out; 4091 } 4092 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4093 break; 4094 } 4095 case KVM_GET_STATS_FD: { 4096 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4097 break; 4098 } 4099 default: 4100 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4101 } 4102 out: 4103 mutex_unlock(&vcpu->mutex); 4104 kfree(fpu); 4105 kfree(kvm_sregs); 4106 return r; 4107 } 4108 4109 #ifdef CONFIG_KVM_COMPAT 4110 static long kvm_vcpu_compat_ioctl(struct file *filp, 4111 unsigned int ioctl, unsigned long arg) 4112 { 4113 struct kvm_vcpu *vcpu = filp->private_data; 4114 void __user *argp = compat_ptr(arg); 4115 int r; 4116 4117 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4118 return -EIO; 4119 4120 switch (ioctl) { 4121 case KVM_SET_SIGNAL_MASK: { 4122 struct kvm_signal_mask __user *sigmask_arg = argp; 4123 struct kvm_signal_mask kvm_sigmask; 4124 sigset_t sigset; 4125 4126 if (argp) { 4127 r = -EFAULT; 4128 if (copy_from_user(&kvm_sigmask, argp, 4129 sizeof(kvm_sigmask))) 4130 goto out; 4131 r = -EINVAL; 4132 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4133 goto out; 4134 r = -EFAULT; 4135 if (get_compat_sigset(&sigset, 4136 (compat_sigset_t __user *)sigmask_arg->sigset)) 4137 goto out; 4138 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4139 } else 4140 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4141 break; 4142 } 4143 default: 4144 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4145 } 4146 4147 out: 4148 return r; 4149 } 4150 #endif 4151 4152 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4153 { 4154 struct kvm_device *dev = filp->private_data; 4155 4156 if (dev->ops->mmap) 4157 return dev->ops->mmap(dev, vma); 4158 4159 return -ENODEV; 4160 } 4161 4162 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4163 int (*accessor)(struct kvm_device *dev, 4164 struct kvm_device_attr *attr), 4165 unsigned long arg) 4166 { 4167 struct kvm_device_attr attr; 4168 4169 if (!accessor) 4170 return -EPERM; 4171 4172 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4173 return -EFAULT; 4174 4175 return accessor(dev, &attr); 4176 } 4177 4178 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4179 unsigned long arg) 4180 { 4181 struct kvm_device *dev = filp->private_data; 4182 4183 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4184 return -EIO; 4185 4186 switch (ioctl) { 4187 case KVM_SET_DEVICE_ATTR: 4188 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4189 case KVM_GET_DEVICE_ATTR: 4190 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4191 case KVM_HAS_DEVICE_ATTR: 4192 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4193 default: 4194 if (dev->ops->ioctl) 4195 return dev->ops->ioctl(dev, ioctl, arg); 4196 4197 return -ENOTTY; 4198 } 4199 } 4200 4201 static int kvm_device_release(struct inode *inode, struct file *filp) 4202 { 4203 struct kvm_device *dev = filp->private_data; 4204 struct kvm *kvm = dev->kvm; 4205 4206 if (dev->ops->release) { 4207 mutex_lock(&kvm->lock); 4208 list_del(&dev->vm_node); 4209 dev->ops->release(dev); 4210 mutex_unlock(&kvm->lock); 4211 } 4212 4213 kvm_put_kvm(kvm); 4214 return 0; 4215 } 4216 4217 static const struct file_operations kvm_device_fops = { 4218 .unlocked_ioctl = kvm_device_ioctl, 4219 .release = kvm_device_release, 4220 KVM_COMPAT(kvm_device_ioctl), 4221 .mmap = kvm_device_mmap, 4222 }; 4223 4224 struct kvm_device *kvm_device_from_filp(struct file *filp) 4225 { 4226 if (filp->f_op != &kvm_device_fops) 4227 return NULL; 4228 4229 return filp->private_data; 4230 } 4231 4232 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4233 #ifdef CONFIG_KVM_MPIC 4234 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4235 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4236 #endif 4237 }; 4238 4239 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4240 { 4241 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4242 return -ENOSPC; 4243 4244 if (kvm_device_ops_table[type] != NULL) 4245 return -EEXIST; 4246 4247 kvm_device_ops_table[type] = ops; 4248 return 0; 4249 } 4250 4251 void kvm_unregister_device_ops(u32 type) 4252 { 4253 if (kvm_device_ops_table[type] != NULL) 4254 kvm_device_ops_table[type] = NULL; 4255 } 4256 4257 static int kvm_ioctl_create_device(struct kvm *kvm, 4258 struct kvm_create_device *cd) 4259 { 4260 const struct kvm_device_ops *ops = NULL; 4261 struct kvm_device *dev; 4262 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4263 int type; 4264 int ret; 4265 4266 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4267 return -ENODEV; 4268 4269 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4270 ops = kvm_device_ops_table[type]; 4271 if (ops == NULL) 4272 return -ENODEV; 4273 4274 if (test) 4275 return 0; 4276 4277 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4278 if (!dev) 4279 return -ENOMEM; 4280 4281 dev->ops = ops; 4282 dev->kvm = kvm; 4283 4284 mutex_lock(&kvm->lock); 4285 ret = ops->create(dev, type); 4286 if (ret < 0) { 4287 mutex_unlock(&kvm->lock); 4288 kfree(dev); 4289 return ret; 4290 } 4291 list_add(&dev->vm_node, &kvm->devices); 4292 mutex_unlock(&kvm->lock); 4293 4294 if (ops->init) 4295 ops->init(dev); 4296 4297 kvm_get_kvm(kvm); 4298 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4299 if (ret < 0) { 4300 kvm_put_kvm_no_destroy(kvm); 4301 mutex_lock(&kvm->lock); 4302 list_del(&dev->vm_node); 4303 mutex_unlock(&kvm->lock); 4304 ops->destroy(dev); 4305 return ret; 4306 } 4307 4308 cd->fd = ret; 4309 return 0; 4310 } 4311 4312 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4313 { 4314 switch (arg) { 4315 case KVM_CAP_USER_MEMORY: 4316 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4317 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4318 case KVM_CAP_INTERNAL_ERROR_DATA: 4319 #ifdef CONFIG_HAVE_KVM_MSI 4320 case KVM_CAP_SIGNAL_MSI: 4321 #endif 4322 #ifdef CONFIG_HAVE_KVM_IRQFD 4323 case KVM_CAP_IRQFD: 4324 case KVM_CAP_IRQFD_RESAMPLE: 4325 #endif 4326 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4327 case KVM_CAP_CHECK_EXTENSION_VM: 4328 case KVM_CAP_ENABLE_CAP_VM: 4329 case KVM_CAP_HALT_POLL: 4330 return 1; 4331 #ifdef CONFIG_KVM_MMIO 4332 case KVM_CAP_COALESCED_MMIO: 4333 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4334 case KVM_CAP_COALESCED_PIO: 4335 return 1; 4336 #endif 4337 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4338 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4339 return KVM_DIRTY_LOG_MANUAL_CAPS; 4340 #endif 4341 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4342 case KVM_CAP_IRQ_ROUTING: 4343 return KVM_MAX_IRQ_ROUTES; 4344 #endif 4345 #if KVM_ADDRESS_SPACE_NUM > 1 4346 case KVM_CAP_MULTI_ADDRESS_SPACE: 4347 return KVM_ADDRESS_SPACE_NUM; 4348 #endif 4349 case KVM_CAP_NR_MEMSLOTS: 4350 return KVM_USER_MEM_SLOTS; 4351 case KVM_CAP_DIRTY_LOG_RING: 4352 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4353 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4354 #else 4355 return 0; 4356 #endif 4357 case KVM_CAP_BINARY_STATS_FD: 4358 case KVM_CAP_SYSTEM_EVENT_DATA: 4359 return 1; 4360 default: 4361 break; 4362 } 4363 return kvm_vm_ioctl_check_extension(kvm, arg); 4364 } 4365 4366 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4367 { 4368 int r; 4369 4370 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4371 return -EINVAL; 4372 4373 /* the size should be power of 2 */ 4374 if (!size || (size & (size - 1))) 4375 return -EINVAL; 4376 4377 /* Should be bigger to keep the reserved entries, or a page */ 4378 if (size < kvm_dirty_ring_get_rsvd_entries() * 4379 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4380 return -EINVAL; 4381 4382 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4383 sizeof(struct kvm_dirty_gfn)) 4384 return -E2BIG; 4385 4386 /* We only allow it to set once */ 4387 if (kvm->dirty_ring_size) 4388 return -EINVAL; 4389 4390 mutex_lock(&kvm->lock); 4391 4392 if (kvm->created_vcpus) { 4393 /* We don't allow to change this value after vcpu created */ 4394 r = -EINVAL; 4395 } else { 4396 kvm->dirty_ring_size = size; 4397 r = 0; 4398 } 4399 4400 mutex_unlock(&kvm->lock); 4401 return r; 4402 } 4403 4404 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4405 { 4406 unsigned long i; 4407 struct kvm_vcpu *vcpu; 4408 int cleared = 0; 4409 4410 if (!kvm->dirty_ring_size) 4411 return -EINVAL; 4412 4413 mutex_lock(&kvm->slots_lock); 4414 4415 kvm_for_each_vcpu(i, vcpu, kvm) 4416 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4417 4418 mutex_unlock(&kvm->slots_lock); 4419 4420 if (cleared) 4421 kvm_flush_remote_tlbs(kvm); 4422 4423 return cleared; 4424 } 4425 4426 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4427 struct kvm_enable_cap *cap) 4428 { 4429 return -EINVAL; 4430 } 4431 4432 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4433 struct kvm_enable_cap *cap) 4434 { 4435 switch (cap->cap) { 4436 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4437 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4438 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4439 4440 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4441 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4442 4443 if (cap->flags || (cap->args[0] & ~allowed_options)) 4444 return -EINVAL; 4445 kvm->manual_dirty_log_protect = cap->args[0]; 4446 return 0; 4447 } 4448 #endif 4449 case KVM_CAP_HALT_POLL: { 4450 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4451 return -EINVAL; 4452 4453 kvm->max_halt_poll_ns = cap->args[0]; 4454 return 0; 4455 } 4456 case KVM_CAP_DIRTY_LOG_RING: 4457 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4458 default: 4459 return kvm_vm_ioctl_enable_cap(kvm, cap); 4460 } 4461 } 4462 4463 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4464 size_t size, loff_t *offset) 4465 { 4466 struct kvm *kvm = file->private_data; 4467 4468 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4469 &kvm_vm_stats_desc[0], &kvm->stat, 4470 sizeof(kvm->stat), user_buffer, size, offset); 4471 } 4472 4473 static const struct file_operations kvm_vm_stats_fops = { 4474 .read = kvm_vm_stats_read, 4475 .llseek = noop_llseek, 4476 }; 4477 4478 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4479 { 4480 int fd; 4481 struct file *file; 4482 4483 fd = get_unused_fd_flags(O_CLOEXEC); 4484 if (fd < 0) 4485 return fd; 4486 4487 file = anon_inode_getfile("kvm-vm-stats", 4488 &kvm_vm_stats_fops, kvm, O_RDONLY); 4489 if (IS_ERR(file)) { 4490 put_unused_fd(fd); 4491 return PTR_ERR(file); 4492 } 4493 file->f_mode |= FMODE_PREAD; 4494 fd_install(fd, file); 4495 4496 return fd; 4497 } 4498 4499 static long kvm_vm_ioctl(struct file *filp, 4500 unsigned int ioctl, unsigned long arg) 4501 { 4502 struct kvm *kvm = filp->private_data; 4503 void __user *argp = (void __user *)arg; 4504 int r; 4505 4506 if (kvm->mm != current->mm || kvm->vm_dead) 4507 return -EIO; 4508 switch (ioctl) { 4509 case KVM_CREATE_VCPU: 4510 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4511 break; 4512 case KVM_ENABLE_CAP: { 4513 struct kvm_enable_cap cap; 4514 4515 r = -EFAULT; 4516 if (copy_from_user(&cap, argp, sizeof(cap))) 4517 goto out; 4518 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4519 break; 4520 } 4521 case KVM_SET_USER_MEMORY_REGION: { 4522 struct kvm_userspace_memory_region kvm_userspace_mem; 4523 4524 r = -EFAULT; 4525 if (copy_from_user(&kvm_userspace_mem, argp, 4526 sizeof(kvm_userspace_mem))) 4527 goto out; 4528 4529 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4530 break; 4531 } 4532 case KVM_GET_DIRTY_LOG: { 4533 struct kvm_dirty_log log; 4534 4535 r = -EFAULT; 4536 if (copy_from_user(&log, argp, sizeof(log))) 4537 goto out; 4538 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4539 break; 4540 } 4541 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4542 case KVM_CLEAR_DIRTY_LOG: { 4543 struct kvm_clear_dirty_log log; 4544 4545 r = -EFAULT; 4546 if (copy_from_user(&log, argp, sizeof(log))) 4547 goto out; 4548 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4549 break; 4550 } 4551 #endif 4552 #ifdef CONFIG_KVM_MMIO 4553 case KVM_REGISTER_COALESCED_MMIO: { 4554 struct kvm_coalesced_mmio_zone zone; 4555 4556 r = -EFAULT; 4557 if (copy_from_user(&zone, argp, sizeof(zone))) 4558 goto out; 4559 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4560 break; 4561 } 4562 case KVM_UNREGISTER_COALESCED_MMIO: { 4563 struct kvm_coalesced_mmio_zone zone; 4564 4565 r = -EFAULT; 4566 if (copy_from_user(&zone, argp, sizeof(zone))) 4567 goto out; 4568 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4569 break; 4570 } 4571 #endif 4572 case KVM_IRQFD: { 4573 struct kvm_irqfd data; 4574 4575 r = -EFAULT; 4576 if (copy_from_user(&data, argp, sizeof(data))) 4577 goto out; 4578 r = kvm_irqfd(kvm, &data); 4579 break; 4580 } 4581 case KVM_IOEVENTFD: { 4582 struct kvm_ioeventfd data; 4583 4584 r = -EFAULT; 4585 if (copy_from_user(&data, argp, sizeof(data))) 4586 goto out; 4587 r = kvm_ioeventfd(kvm, &data); 4588 break; 4589 } 4590 #ifdef CONFIG_HAVE_KVM_MSI 4591 case KVM_SIGNAL_MSI: { 4592 struct kvm_msi msi; 4593 4594 r = -EFAULT; 4595 if (copy_from_user(&msi, argp, sizeof(msi))) 4596 goto out; 4597 r = kvm_send_userspace_msi(kvm, &msi); 4598 break; 4599 } 4600 #endif 4601 #ifdef __KVM_HAVE_IRQ_LINE 4602 case KVM_IRQ_LINE_STATUS: 4603 case KVM_IRQ_LINE: { 4604 struct kvm_irq_level irq_event; 4605 4606 r = -EFAULT; 4607 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4608 goto out; 4609 4610 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4611 ioctl == KVM_IRQ_LINE_STATUS); 4612 if (r) 4613 goto out; 4614 4615 r = -EFAULT; 4616 if (ioctl == KVM_IRQ_LINE_STATUS) { 4617 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4618 goto out; 4619 } 4620 4621 r = 0; 4622 break; 4623 } 4624 #endif 4625 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4626 case KVM_SET_GSI_ROUTING: { 4627 struct kvm_irq_routing routing; 4628 struct kvm_irq_routing __user *urouting; 4629 struct kvm_irq_routing_entry *entries = NULL; 4630 4631 r = -EFAULT; 4632 if (copy_from_user(&routing, argp, sizeof(routing))) 4633 goto out; 4634 r = -EINVAL; 4635 if (!kvm_arch_can_set_irq_routing(kvm)) 4636 goto out; 4637 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4638 goto out; 4639 if (routing.flags) 4640 goto out; 4641 if (routing.nr) { 4642 urouting = argp; 4643 entries = vmemdup_user(urouting->entries, 4644 array_size(sizeof(*entries), 4645 routing.nr)); 4646 if (IS_ERR(entries)) { 4647 r = PTR_ERR(entries); 4648 goto out; 4649 } 4650 } 4651 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4652 routing.flags); 4653 kvfree(entries); 4654 break; 4655 } 4656 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4657 case KVM_CREATE_DEVICE: { 4658 struct kvm_create_device cd; 4659 4660 r = -EFAULT; 4661 if (copy_from_user(&cd, argp, sizeof(cd))) 4662 goto out; 4663 4664 r = kvm_ioctl_create_device(kvm, &cd); 4665 if (r) 4666 goto out; 4667 4668 r = -EFAULT; 4669 if (copy_to_user(argp, &cd, sizeof(cd))) 4670 goto out; 4671 4672 r = 0; 4673 break; 4674 } 4675 case KVM_CHECK_EXTENSION: 4676 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4677 break; 4678 case KVM_RESET_DIRTY_RINGS: 4679 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4680 break; 4681 case KVM_GET_STATS_FD: 4682 r = kvm_vm_ioctl_get_stats_fd(kvm); 4683 break; 4684 default: 4685 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4686 } 4687 out: 4688 return r; 4689 } 4690 4691 #ifdef CONFIG_KVM_COMPAT 4692 struct compat_kvm_dirty_log { 4693 __u32 slot; 4694 __u32 padding1; 4695 union { 4696 compat_uptr_t dirty_bitmap; /* one bit per page */ 4697 __u64 padding2; 4698 }; 4699 }; 4700 4701 struct compat_kvm_clear_dirty_log { 4702 __u32 slot; 4703 __u32 num_pages; 4704 __u64 first_page; 4705 union { 4706 compat_uptr_t dirty_bitmap; /* one bit per page */ 4707 __u64 padding2; 4708 }; 4709 }; 4710 4711 static long kvm_vm_compat_ioctl(struct file *filp, 4712 unsigned int ioctl, unsigned long arg) 4713 { 4714 struct kvm *kvm = filp->private_data; 4715 int r; 4716 4717 if (kvm->mm != current->mm || kvm->vm_dead) 4718 return -EIO; 4719 switch (ioctl) { 4720 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4721 case KVM_CLEAR_DIRTY_LOG: { 4722 struct compat_kvm_clear_dirty_log compat_log; 4723 struct kvm_clear_dirty_log log; 4724 4725 if (copy_from_user(&compat_log, (void __user *)arg, 4726 sizeof(compat_log))) 4727 return -EFAULT; 4728 log.slot = compat_log.slot; 4729 log.num_pages = compat_log.num_pages; 4730 log.first_page = compat_log.first_page; 4731 log.padding2 = compat_log.padding2; 4732 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4733 4734 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4735 break; 4736 } 4737 #endif 4738 case KVM_GET_DIRTY_LOG: { 4739 struct compat_kvm_dirty_log compat_log; 4740 struct kvm_dirty_log log; 4741 4742 if (copy_from_user(&compat_log, (void __user *)arg, 4743 sizeof(compat_log))) 4744 return -EFAULT; 4745 log.slot = compat_log.slot; 4746 log.padding1 = compat_log.padding1; 4747 log.padding2 = compat_log.padding2; 4748 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4749 4750 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4751 break; 4752 } 4753 default: 4754 r = kvm_vm_ioctl(filp, ioctl, arg); 4755 } 4756 return r; 4757 } 4758 #endif 4759 4760 static const struct file_operations kvm_vm_fops = { 4761 .release = kvm_vm_release, 4762 .unlocked_ioctl = kvm_vm_ioctl, 4763 .llseek = noop_llseek, 4764 KVM_COMPAT(kvm_vm_compat_ioctl), 4765 }; 4766 4767 bool file_is_kvm(struct file *file) 4768 { 4769 return file && file->f_op == &kvm_vm_fops; 4770 } 4771 EXPORT_SYMBOL_GPL(file_is_kvm); 4772 4773 static int kvm_dev_ioctl_create_vm(unsigned long type) 4774 { 4775 int r; 4776 struct kvm *kvm; 4777 struct file *file; 4778 4779 kvm = kvm_create_vm(type); 4780 if (IS_ERR(kvm)) 4781 return PTR_ERR(kvm); 4782 #ifdef CONFIG_KVM_MMIO 4783 r = kvm_coalesced_mmio_init(kvm); 4784 if (r < 0) 4785 goto put_kvm; 4786 #endif 4787 r = get_unused_fd_flags(O_CLOEXEC); 4788 if (r < 0) 4789 goto put_kvm; 4790 4791 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4792 "kvm-%d", task_pid_nr(current)); 4793 4794 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4795 if (IS_ERR(file)) { 4796 put_unused_fd(r); 4797 r = PTR_ERR(file); 4798 goto put_kvm; 4799 } 4800 4801 /* 4802 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4803 * already set, with ->release() being kvm_vm_release(). In error 4804 * cases it will be called by the final fput(file) and will take 4805 * care of doing kvm_put_kvm(kvm). 4806 */ 4807 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4808 put_unused_fd(r); 4809 fput(file); 4810 return -ENOMEM; 4811 } 4812 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4813 4814 fd_install(r, file); 4815 return r; 4816 4817 put_kvm: 4818 kvm_put_kvm(kvm); 4819 return r; 4820 } 4821 4822 static long kvm_dev_ioctl(struct file *filp, 4823 unsigned int ioctl, unsigned long arg) 4824 { 4825 long r = -EINVAL; 4826 4827 switch (ioctl) { 4828 case KVM_GET_API_VERSION: 4829 if (arg) 4830 goto out; 4831 r = KVM_API_VERSION; 4832 break; 4833 case KVM_CREATE_VM: 4834 r = kvm_dev_ioctl_create_vm(arg); 4835 break; 4836 case KVM_CHECK_EXTENSION: 4837 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4838 break; 4839 case KVM_GET_VCPU_MMAP_SIZE: 4840 if (arg) 4841 goto out; 4842 r = PAGE_SIZE; /* struct kvm_run */ 4843 #ifdef CONFIG_X86 4844 r += PAGE_SIZE; /* pio data page */ 4845 #endif 4846 #ifdef CONFIG_KVM_MMIO 4847 r += PAGE_SIZE; /* coalesced mmio ring page */ 4848 #endif 4849 break; 4850 case KVM_TRACE_ENABLE: 4851 case KVM_TRACE_PAUSE: 4852 case KVM_TRACE_DISABLE: 4853 r = -EOPNOTSUPP; 4854 break; 4855 default: 4856 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4857 } 4858 out: 4859 return r; 4860 } 4861 4862 static struct file_operations kvm_chardev_ops = { 4863 .unlocked_ioctl = kvm_dev_ioctl, 4864 .llseek = noop_llseek, 4865 KVM_COMPAT(kvm_dev_ioctl), 4866 }; 4867 4868 static struct miscdevice kvm_dev = { 4869 KVM_MINOR, 4870 "kvm", 4871 &kvm_chardev_ops, 4872 }; 4873 4874 static void hardware_enable_nolock(void *junk) 4875 { 4876 int cpu = raw_smp_processor_id(); 4877 int r; 4878 4879 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4880 return; 4881 4882 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4883 4884 r = kvm_arch_hardware_enable(); 4885 4886 if (r) { 4887 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4888 atomic_inc(&hardware_enable_failed); 4889 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4890 } 4891 } 4892 4893 static int kvm_starting_cpu(unsigned int cpu) 4894 { 4895 raw_spin_lock(&kvm_count_lock); 4896 if (kvm_usage_count) 4897 hardware_enable_nolock(NULL); 4898 raw_spin_unlock(&kvm_count_lock); 4899 return 0; 4900 } 4901 4902 static void hardware_disable_nolock(void *junk) 4903 { 4904 int cpu = raw_smp_processor_id(); 4905 4906 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4907 return; 4908 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4909 kvm_arch_hardware_disable(); 4910 } 4911 4912 static int kvm_dying_cpu(unsigned int cpu) 4913 { 4914 raw_spin_lock(&kvm_count_lock); 4915 if (kvm_usage_count) 4916 hardware_disable_nolock(NULL); 4917 raw_spin_unlock(&kvm_count_lock); 4918 return 0; 4919 } 4920 4921 static void hardware_disable_all_nolock(void) 4922 { 4923 BUG_ON(!kvm_usage_count); 4924 4925 kvm_usage_count--; 4926 if (!kvm_usage_count) 4927 on_each_cpu(hardware_disable_nolock, NULL, 1); 4928 } 4929 4930 static void hardware_disable_all(void) 4931 { 4932 raw_spin_lock(&kvm_count_lock); 4933 hardware_disable_all_nolock(); 4934 raw_spin_unlock(&kvm_count_lock); 4935 } 4936 4937 static int hardware_enable_all(void) 4938 { 4939 int r = 0; 4940 4941 raw_spin_lock(&kvm_count_lock); 4942 4943 kvm_usage_count++; 4944 if (kvm_usage_count == 1) { 4945 atomic_set(&hardware_enable_failed, 0); 4946 on_each_cpu(hardware_enable_nolock, NULL, 1); 4947 4948 if (atomic_read(&hardware_enable_failed)) { 4949 hardware_disable_all_nolock(); 4950 r = -EBUSY; 4951 } 4952 } 4953 4954 raw_spin_unlock(&kvm_count_lock); 4955 4956 return r; 4957 } 4958 4959 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4960 void *v) 4961 { 4962 /* 4963 * Some (well, at least mine) BIOSes hang on reboot if 4964 * in vmx root mode. 4965 * 4966 * And Intel TXT required VMX off for all cpu when system shutdown. 4967 */ 4968 pr_info("kvm: exiting hardware virtualization\n"); 4969 kvm_rebooting = true; 4970 on_each_cpu(hardware_disable_nolock, NULL, 1); 4971 return NOTIFY_OK; 4972 } 4973 4974 static struct notifier_block kvm_reboot_notifier = { 4975 .notifier_call = kvm_reboot, 4976 .priority = 0, 4977 }; 4978 4979 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4980 { 4981 int i; 4982 4983 for (i = 0; i < bus->dev_count; i++) { 4984 struct kvm_io_device *pos = bus->range[i].dev; 4985 4986 kvm_iodevice_destructor(pos); 4987 } 4988 kfree(bus); 4989 } 4990 4991 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4992 const struct kvm_io_range *r2) 4993 { 4994 gpa_t addr1 = r1->addr; 4995 gpa_t addr2 = r2->addr; 4996 4997 if (addr1 < addr2) 4998 return -1; 4999 5000 /* If r2->len == 0, match the exact address. If r2->len != 0, 5001 * accept any overlapping write. Any order is acceptable for 5002 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5003 * we process all of them. 5004 */ 5005 if (r2->len) { 5006 addr1 += r1->len; 5007 addr2 += r2->len; 5008 } 5009 5010 if (addr1 > addr2) 5011 return 1; 5012 5013 return 0; 5014 } 5015 5016 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5017 { 5018 return kvm_io_bus_cmp(p1, p2); 5019 } 5020 5021 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5022 gpa_t addr, int len) 5023 { 5024 struct kvm_io_range *range, key; 5025 int off; 5026 5027 key = (struct kvm_io_range) { 5028 .addr = addr, 5029 .len = len, 5030 }; 5031 5032 range = bsearch(&key, bus->range, bus->dev_count, 5033 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5034 if (range == NULL) 5035 return -ENOENT; 5036 5037 off = range - bus->range; 5038 5039 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5040 off--; 5041 5042 return off; 5043 } 5044 5045 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5046 struct kvm_io_range *range, const void *val) 5047 { 5048 int idx; 5049 5050 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5051 if (idx < 0) 5052 return -EOPNOTSUPP; 5053 5054 while (idx < bus->dev_count && 5055 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5056 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5057 range->len, val)) 5058 return idx; 5059 idx++; 5060 } 5061 5062 return -EOPNOTSUPP; 5063 } 5064 5065 /* kvm_io_bus_write - called under kvm->slots_lock */ 5066 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5067 int len, const void *val) 5068 { 5069 struct kvm_io_bus *bus; 5070 struct kvm_io_range range; 5071 int r; 5072 5073 range = (struct kvm_io_range) { 5074 .addr = addr, 5075 .len = len, 5076 }; 5077 5078 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5079 if (!bus) 5080 return -ENOMEM; 5081 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5082 return r < 0 ? r : 0; 5083 } 5084 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5085 5086 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5087 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5088 gpa_t addr, int len, const void *val, long cookie) 5089 { 5090 struct kvm_io_bus *bus; 5091 struct kvm_io_range range; 5092 5093 range = (struct kvm_io_range) { 5094 .addr = addr, 5095 .len = len, 5096 }; 5097 5098 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5099 if (!bus) 5100 return -ENOMEM; 5101 5102 /* First try the device referenced by cookie. */ 5103 if ((cookie >= 0) && (cookie < bus->dev_count) && 5104 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5105 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5106 val)) 5107 return cookie; 5108 5109 /* 5110 * cookie contained garbage; fall back to search and return the 5111 * correct cookie value. 5112 */ 5113 return __kvm_io_bus_write(vcpu, bus, &range, val); 5114 } 5115 5116 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5117 struct kvm_io_range *range, void *val) 5118 { 5119 int idx; 5120 5121 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5122 if (idx < 0) 5123 return -EOPNOTSUPP; 5124 5125 while (idx < bus->dev_count && 5126 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5127 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5128 range->len, val)) 5129 return idx; 5130 idx++; 5131 } 5132 5133 return -EOPNOTSUPP; 5134 } 5135 5136 /* kvm_io_bus_read - called under kvm->slots_lock */ 5137 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5138 int len, void *val) 5139 { 5140 struct kvm_io_bus *bus; 5141 struct kvm_io_range range; 5142 int r; 5143 5144 range = (struct kvm_io_range) { 5145 .addr = addr, 5146 .len = len, 5147 }; 5148 5149 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5150 if (!bus) 5151 return -ENOMEM; 5152 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5153 return r < 0 ? r : 0; 5154 } 5155 5156 /* Caller must hold slots_lock. */ 5157 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5158 int len, struct kvm_io_device *dev) 5159 { 5160 int i; 5161 struct kvm_io_bus *new_bus, *bus; 5162 struct kvm_io_range range; 5163 5164 bus = kvm_get_bus(kvm, bus_idx); 5165 if (!bus) 5166 return -ENOMEM; 5167 5168 /* exclude ioeventfd which is limited by maximum fd */ 5169 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5170 return -ENOSPC; 5171 5172 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5173 GFP_KERNEL_ACCOUNT); 5174 if (!new_bus) 5175 return -ENOMEM; 5176 5177 range = (struct kvm_io_range) { 5178 .addr = addr, 5179 .len = len, 5180 .dev = dev, 5181 }; 5182 5183 for (i = 0; i < bus->dev_count; i++) 5184 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5185 break; 5186 5187 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5188 new_bus->dev_count++; 5189 new_bus->range[i] = range; 5190 memcpy(new_bus->range + i + 1, bus->range + i, 5191 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5192 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5193 synchronize_srcu_expedited(&kvm->srcu); 5194 kfree(bus); 5195 5196 return 0; 5197 } 5198 5199 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5200 struct kvm_io_device *dev) 5201 { 5202 int i, j; 5203 struct kvm_io_bus *new_bus, *bus; 5204 5205 lockdep_assert_held(&kvm->slots_lock); 5206 5207 bus = kvm_get_bus(kvm, bus_idx); 5208 if (!bus) 5209 return 0; 5210 5211 for (i = 0; i < bus->dev_count; i++) { 5212 if (bus->range[i].dev == dev) { 5213 break; 5214 } 5215 } 5216 5217 if (i == bus->dev_count) 5218 return 0; 5219 5220 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5221 GFP_KERNEL_ACCOUNT); 5222 if (new_bus) { 5223 memcpy(new_bus, bus, struct_size(bus, range, i)); 5224 new_bus->dev_count--; 5225 memcpy(new_bus->range + i, bus->range + i + 1, 5226 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5227 } 5228 5229 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5230 synchronize_srcu_expedited(&kvm->srcu); 5231 5232 /* Destroy the old bus _after_ installing the (null) bus. */ 5233 if (!new_bus) { 5234 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5235 for (j = 0; j < bus->dev_count; j++) { 5236 if (j == i) 5237 continue; 5238 kvm_iodevice_destructor(bus->range[j].dev); 5239 } 5240 } 5241 5242 kfree(bus); 5243 return new_bus ? 0 : -ENOMEM; 5244 } 5245 5246 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5247 gpa_t addr) 5248 { 5249 struct kvm_io_bus *bus; 5250 int dev_idx, srcu_idx; 5251 struct kvm_io_device *iodev = NULL; 5252 5253 srcu_idx = srcu_read_lock(&kvm->srcu); 5254 5255 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5256 if (!bus) 5257 goto out_unlock; 5258 5259 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5260 if (dev_idx < 0) 5261 goto out_unlock; 5262 5263 iodev = bus->range[dev_idx].dev; 5264 5265 out_unlock: 5266 srcu_read_unlock(&kvm->srcu, srcu_idx); 5267 5268 return iodev; 5269 } 5270 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5271 5272 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5273 int (*get)(void *, u64 *), int (*set)(void *, u64), 5274 const char *fmt) 5275 { 5276 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5277 inode->i_private; 5278 5279 /* 5280 * The debugfs files are a reference to the kvm struct which 5281 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5282 * avoids the race between open and the removal of the debugfs directory. 5283 */ 5284 if (!kvm_get_kvm_safe(stat_data->kvm)) 5285 return -ENOENT; 5286 5287 if (simple_attr_open(inode, file, get, 5288 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5289 ? set : NULL, 5290 fmt)) { 5291 kvm_put_kvm(stat_data->kvm); 5292 return -ENOMEM; 5293 } 5294 5295 return 0; 5296 } 5297 5298 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5299 { 5300 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5301 inode->i_private; 5302 5303 simple_attr_release(inode, file); 5304 kvm_put_kvm(stat_data->kvm); 5305 5306 return 0; 5307 } 5308 5309 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5310 { 5311 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5312 5313 return 0; 5314 } 5315 5316 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5317 { 5318 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5319 5320 return 0; 5321 } 5322 5323 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5324 { 5325 unsigned long i; 5326 struct kvm_vcpu *vcpu; 5327 5328 *val = 0; 5329 5330 kvm_for_each_vcpu(i, vcpu, kvm) 5331 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5332 5333 return 0; 5334 } 5335 5336 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5337 { 5338 unsigned long i; 5339 struct kvm_vcpu *vcpu; 5340 5341 kvm_for_each_vcpu(i, vcpu, kvm) 5342 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5343 5344 return 0; 5345 } 5346 5347 static int kvm_stat_data_get(void *data, u64 *val) 5348 { 5349 int r = -EFAULT; 5350 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5351 5352 switch (stat_data->kind) { 5353 case KVM_STAT_VM: 5354 r = kvm_get_stat_per_vm(stat_data->kvm, 5355 stat_data->desc->desc.offset, val); 5356 break; 5357 case KVM_STAT_VCPU: 5358 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5359 stat_data->desc->desc.offset, val); 5360 break; 5361 } 5362 5363 return r; 5364 } 5365 5366 static int kvm_stat_data_clear(void *data, u64 val) 5367 { 5368 int r = -EFAULT; 5369 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5370 5371 if (val) 5372 return -EINVAL; 5373 5374 switch (stat_data->kind) { 5375 case KVM_STAT_VM: 5376 r = kvm_clear_stat_per_vm(stat_data->kvm, 5377 stat_data->desc->desc.offset); 5378 break; 5379 case KVM_STAT_VCPU: 5380 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5381 stat_data->desc->desc.offset); 5382 break; 5383 } 5384 5385 return r; 5386 } 5387 5388 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5389 { 5390 __simple_attr_check_format("%llu\n", 0ull); 5391 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5392 kvm_stat_data_clear, "%llu\n"); 5393 } 5394 5395 static const struct file_operations stat_fops_per_vm = { 5396 .owner = THIS_MODULE, 5397 .open = kvm_stat_data_open, 5398 .release = kvm_debugfs_release, 5399 .read = simple_attr_read, 5400 .write = simple_attr_write, 5401 .llseek = no_llseek, 5402 }; 5403 5404 static int vm_stat_get(void *_offset, u64 *val) 5405 { 5406 unsigned offset = (long)_offset; 5407 struct kvm *kvm; 5408 u64 tmp_val; 5409 5410 *val = 0; 5411 mutex_lock(&kvm_lock); 5412 list_for_each_entry(kvm, &vm_list, vm_list) { 5413 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5414 *val += tmp_val; 5415 } 5416 mutex_unlock(&kvm_lock); 5417 return 0; 5418 } 5419 5420 static int vm_stat_clear(void *_offset, u64 val) 5421 { 5422 unsigned offset = (long)_offset; 5423 struct kvm *kvm; 5424 5425 if (val) 5426 return -EINVAL; 5427 5428 mutex_lock(&kvm_lock); 5429 list_for_each_entry(kvm, &vm_list, vm_list) { 5430 kvm_clear_stat_per_vm(kvm, offset); 5431 } 5432 mutex_unlock(&kvm_lock); 5433 5434 return 0; 5435 } 5436 5437 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5438 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5439 5440 static int vcpu_stat_get(void *_offset, u64 *val) 5441 { 5442 unsigned offset = (long)_offset; 5443 struct kvm *kvm; 5444 u64 tmp_val; 5445 5446 *val = 0; 5447 mutex_lock(&kvm_lock); 5448 list_for_each_entry(kvm, &vm_list, vm_list) { 5449 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5450 *val += tmp_val; 5451 } 5452 mutex_unlock(&kvm_lock); 5453 return 0; 5454 } 5455 5456 static int vcpu_stat_clear(void *_offset, u64 val) 5457 { 5458 unsigned offset = (long)_offset; 5459 struct kvm *kvm; 5460 5461 if (val) 5462 return -EINVAL; 5463 5464 mutex_lock(&kvm_lock); 5465 list_for_each_entry(kvm, &vm_list, vm_list) { 5466 kvm_clear_stat_per_vcpu(kvm, offset); 5467 } 5468 mutex_unlock(&kvm_lock); 5469 5470 return 0; 5471 } 5472 5473 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5474 "%llu\n"); 5475 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5476 5477 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5478 { 5479 struct kobj_uevent_env *env; 5480 unsigned long long created, active; 5481 5482 if (!kvm_dev.this_device || !kvm) 5483 return; 5484 5485 mutex_lock(&kvm_lock); 5486 if (type == KVM_EVENT_CREATE_VM) { 5487 kvm_createvm_count++; 5488 kvm_active_vms++; 5489 } else if (type == KVM_EVENT_DESTROY_VM) { 5490 kvm_active_vms--; 5491 } 5492 created = kvm_createvm_count; 5493 active = kvm_active_vms; 5494 mutex_unlock(&kvm_lock); 5495 5496 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5497 if (!env) 5498 return; 5499 5500 add_uevent_var(env, "CREATED=%llu", created); 5501 add_uevent_var(env, "COUNT=%llu", active); 5502 5503 if (type == KVM_EVENT_CREATE_VM) { 5504 add_uevent_var(env, "EVENT=create"); 5505 kvm->userspace_pid = task_pid_nr(current); 5506 } else if (type == KVM_EVENT_DESTROY_VM) { 5507 add_uevent_var(env, "EVENT=destroy"); 5508 } 5509 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5510 5511 if (!IS_ERR(kvm->debugfs_dentry)) { 5512 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5513 5514 if (p) { 5515 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5516 if (!IS_ERR(tmp)) 5517 add_uevent_var(env, "STATS_PATH=%s", tmp); 5518 kfree(p); 5519 } 5520 } 5521 /* no need for checks, since we are adding at most only 5 keys */ 5522 env->envp[env->envp_idx++] = NULL; 5523 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5524 kfree(env); 5525 } 5526 5527 static void kvm_init_debug(void) 5528 { 5529 const struct file_operations *fops; 5530 const struct _kvm_stats_desc *pdesc; 5531 int i; 5532 5533 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5534 5535 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5536 pdesc = &kvm_vm_stats_desc[i]; 5537 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5538 fops = &vm_stat_fops; 5539 else 5540 fops = &vm_stat_readonly_fops; 5541 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5542 kvm_debugfs_dir, 5543 (void *)(long)pdesc->desc.offset, fops); 5544 } 5545 5546 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5547 pdesc = &kvm_vcpu_stats_desc[i]; 5548 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5549 fops = &vcpu_stat_fops; 5550 else 5551 fops = &vcpu_stat_readonly_fops; 5552 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5553 kvm_debugfs_dir, 5554 (void *)(long)pdesc->desc.offset, fops); 5555 } 5556 } 5557 5558 static int kvm_suspend(void) 5559 { 5560 if (kvm_usage_count) 5561 hardware_disable_nolock(NULL); 5562 return 0; 5563 } 5564 5565 static void kvm_resume(void) 5566 { 5567 if (kvm_usage_count) { 5568 lockdep_assert_not_held(&kvm_count_lock); 5569 hardware_enable_nolock(NULL); 5570 } 5571 } 5572 5573 static struct syscore_ops kvm_syscore_ops = { 5574 .suspend = kvm_suspend, 5575 .resume = kvm_resume, 5576 }; 5577 5578 static inline 5579 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5580 { 5581 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5582 } 5583 5584 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5585 { 5586 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5587 5588 WRITE_ONCE(vcpu->preempted, false); 5589 WRITE_ONCE(vcpu->ready, false); 5590 5591 __this_cpu_write(kvm_running_vcpu, vcpu); 5592 kvm_arch_sched_in(vcpu, cpu); 5593 kvm_arch_vcpu_load(vcpu, cpu); 5594 } 5595 5596 static void kvm_sched_out(struct preempt_notifier *pn, 5597 struct task_struct *next) 5598 { 5599 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5600 5601 if (current->on_rq) { 5602 WRITE_ONCE(vcpu->preempted, true); 5603 WRITE_ONCE(vcpu->ready, true); 5604 } 5605 kvm_arch_vcpu_put(vcpu); 5606 __this_cpu_write(kvm_running_vcpu, NULL); 5607 } 5608 5609 /** 5610 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5611 * 5612 * We can disable preemption locally around accessing the per-CPU variable, 5613 * and use the resolved vcpu pointer after enabling preemption again, 5614 * because even if the current thread is migrated to another CPU, reading 5615 * the per-CPU value later will give us the same value as we update the 5616 * per-CPU variable in the preempt notifier handlers. 5617 */ 5618 struct kvm_vcpu *kvm_get_running_vcpu(void) 5619 { 5620 struct kvm_vcpu *vcpu; 5621 5622 preempt_disable(); 5623 vcpu = __this_cpu_read(kvm_running_vcpu); 5624 preempt_enable(); 5625 5626 return vcpu; 5627 } 5628 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5629 5630 /** 5631 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5632 */ 5633 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5634 { 5635 return &kvm_running_vcpu; 5636 } 5637 5638 #ifdef CONFIG_GUEST_PERF_EVENTS 5639 static unsigned int kvm_guest_state(void) 5640 { 5641 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5642 unsigned int state; 5643 5644 if (!kvm_arch_pmi_in_guest(vcpu)) 5645 return 0; 5646 5647 state = PERF_GUEST_ACTIVE; 5648 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5649 state |= PERF_GUEST_USER; 5650 5651 return state; 5652 } 5653 5654 static unsigned long kvm_guest_get_ip(void) 5655 { 5656 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5657 5658 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5659 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5660 return 0; 5661 5662 return kvm_arch_vcpu_get_ip(vcpu); 5663 } 5664 5665 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5666 .state = kvm_guest_state, 5667 .get_ip = kvm_guest_get_ip, 5668 .handle_intel_pt_intr = NULL, 5669 }; 5670 5671 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5672 { 5673 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5674 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5675 } 5676 void kvm_unregister_perf_callbacks(void) 5677 { 5678 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5679 } 5680 #endif 5681 5682 struct kvm_cpu_compat_check { 5683 void *opaque; 5684 int *ret; 5685 }; 5686 5687 static void check_processor_compat(void *data) 5688 { 5689 struct kvm_cpu_compat_check *c = data; 5690 5691 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5692 } 5693 5694 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5695 struct module *module) 5696 { 5697 struct kvm_cpu_compat_check c; 5698 int r; 5699 int cpu; 5700 5701 r = kvm_arch_init(opaque); 5702 if (r) 5703 goto out_fail; 5704 5705 /* 5706 * kvm_arch_init makes sure there's at most one caller 5707 * for architectures that support multiple implementations, 5708 * like intel and amd on x86. 5709 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5710 * conflicts in case kvm is already setup for another implementation. 5711 */ 5712 r = kvm_irqfd_init(); 5713 if (r) 5714 goto out_irqfd; 5715 5716 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5717 r = -ENOMEM; 5718 goto out_free_0; 5719 } 5720 5721 r = kvm_arch_hardware_setup(opaque); 5722 if (r < 0) 5723 goto out_free_1; 5724 5725 c.ret = &r; 5726 c.opaque = opaque; 5727 for_each_online_cpu(cpu) { 5728 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5729 if (r < 0) 5730 goto out_free_2; 5731 } 5732 5733 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5734 kvm_starting_cpu, kvm_dying_cpu); 5735 if (r) 5736 goto out_free_2; 5737 register_reboot_notifier(&kvm_reboot_notifier); 5738 5739 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5740 if (!vcpu_align) 5741 vcpu_align = __alignof__(struct kvm_vcpu); 5742 kvm_vcpu_cache = 5743 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5744 SLAB_ACCOUNT, 5745 offsetof(struct kvm_vcpu, arch), 5746 offsetofend(struct kvm_vcpu, stats_id) 5747 - offsetof(struct kvm_vcpu, arch), 5748 NULL); 5749 if (!kvm_vcpu_cache) { 5750 r = -ENOMEM; 5751 goto out_free_3; 5752 } 5753 5754 for_each_possible_cpu(cpu) { 5755 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5756 GFP_KERNEL, cpu_to_node(cpu))) { 5757 r = -ENOMEM; 5758 goto out_free_4; 5759 } 5760 } 5761 5762 r = kvm_async_pf_init(); 5763 if (r) 5764 goto out_free_5; 5765 5766 kvm_chardev_ops.owner = module; 5767 5768 r = misc_register(&kvm_dev); 5769 if (r) { 5770 pr_err("kvm: misc device register failed\n"); 5771 goto out_unreg; 5772 } 5773 5774 register_syscore_ops(&kvm_syscore_ops); 5775 5776 kvm_preempt_ops.sched_in = kvm_sched_in; 5777 kvm_preempt_ops.sched_out = kvm_sched_out; 5778 5779 kvm_init_debug(); 5780 5781 r = kvm_vfio_ops_init(); 5782 WARN_ON(r); 5783 5784 return 0; 5785 5786 out_unreg: 5787 kvm_async_pf_deinit(); 5788 out_free_5: 5789 for_each_possible_cpu(cpu) 5790 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5791 out_free_4: 5792 kmem_cache_destroy(kvm_vcpu_cache); 5793 out_free_3: 5794 unregister_reboot_notifier(&kvm_reboot_notifier); 5795 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5796 out_free_2: 5797 kvm_arch_hardware_unsetup(); 5798 out_free_1: 5799 free_cpumask_var(cpus_hardware_enabled); 5800 out_free_0: 5801 kvm_irqfd_exit(); 5802 out_irqfd: 5803 kvm_arch_exit(); 5804 out_fail: 5805 return r; 5806 } 5807 EXPORT_SYMBOL_GPL(kvm_init); 5808 5809 void kvm_exit(void) 5810 { 5811 int cpu; 5812 5813 debugfs_remove_recursive(kvm_debugfs_dir); 5814 misc_deregister(&kvm_dev); 5815 for_each_possible_cpu(cpu) 5816 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5817 kmem_cache_destroy(kvm_vcpu_cache); 5818 kvm_async_pf_deinit(); 5819 unregister_syscore_ops(&kvm_syscore_ops); 5820 unregister_reboot_notifier(&kvm_reboot_notifier); 5821 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5822 on_each_cpu(hardware_disable_nolock, NULL, 1); 5823 kvm_arch_hardware_unsetup(); 5824 kvm_arch_exit(); 5825 kvm_irqfd_exit(); 5826 free_cpumask_var(cpus_hardware_enabled); 5827 kvm_vfio_ops_exit(); 5828 } 5829 EXPORT_SYMBOL_GPL(kvm_exit); 5830 5831 struct kvm_vm_worker_thread_context { 5832 struct kvm *kvm; 5833 struct task_struct *parent; 5834 struct completion init_done; 5835 kvm_vm_thread_fn_t thread_fn; 5836 uintptr_t data; 5837 int err; 5838 }; 5839 5840 static int kvm_vm_worker_thread(void *context) 5841 { 5842 /* 5843 * The init_context is allocated on the stack of the parent thread, so 5844 * we have to locally copy anything that is needed beyond initialization 5845 */ 5846 struct kvm_vm_worker_thread_context *init_context = context; 5847 struct task_struct *parent; 5848 struct kvm *kvm = init_context->kvm; 5849 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5850 uintptr_t data = init_context->data; 5851 int err; 5852 5853 err = kthread_park(current); 5854 /* kthread_park(current) is never supposed to return an error */ 5855 WARN_ON(err != 0); 5856 if (err) 5857 goto init_complete; 5858 5859 err = cgroup_attach_task_all(init_context->parent, current); 5860 if (err) { 5861 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5862 __func__, err); 5863 goto init_complete; 5864 } 5865 5866 set_user_nice(current, task_nice(init_context->parent)); 5867 5868 init_complete: 5869 init_context->err = err; 5870 complete(&init_context->init_done); 5871 init_context = NULL; 5872 5873 if (err) 5874 goto out; 5875 5876 /* Wait to be woken up by the spawner before proceeding. */ 5877 kthread_parkme(); 5878 5879 if (!kthread_should_stop()) 5880 err = thread_fn(kvm, data); 5881 5882 out: 5883 /* 5884 * Move kthread back to its original cgroup to prevent it lingering in 5885 * the cgroup of the VM process, after the latter finishes its 5886 * execution. 5887 * 5888 * kthread_stop() waits on the 'exited' completion condition which is 5889 * set in exit_mm(), via mm_release(), in do_exit(). However, the 5890 * kthread is removed from the cgroup in the cgroup_exit() which is 5891 * called after the exit_mm(). This causes the kthread_stop() to return 5892 * before the kthread actually quits the cgroup. 5893 */ 5894 rcu_read_lock(); 5895 parent = rcu_dereference(current->real_parent); 5896 get_task_struct(parent); 5897 rcu_read_unlock(); 5898 cgroup_attach_task_all(parent, current); 5899 put_task_struct(parent); 5900 5901 return err; 5902 } 5903 5904 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5905 uintptr_t data, const char *name, 5906 struct task_struct **thread_ptr) 5907 { 5908 struct kvm_vm_worker_thread_context init_context = {}; 5909 struct task_struct *thread; 5910 5911 *thread_ptr = NULL; 5912 init_context.kvm = kvm; 5913 init_context.parent = current; 5914 init_context.thread_fn = thread_fn; 5915 init_context.data = data; 5916 init_completion(&init_context.init_done); 5917 5918 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5919 "%s-%d", name, task_pid_nr(current)); 5920 if (IS_ERR(thread)) 5921 return PTR_ERR(thread); 5922 5923 /* kthread_run is never supposed to return NULL */ 5924 WARN_ON(thread == NULL); 5925 5926 wait_for_completion(&init_context.init_done); 5927 5928 if (!init_context.err) 5929 *thread_ptr = thread; 5930 5931 return init_context.err; 5932 } 5933