1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) { 106 int reserved; 107 struct page *tail = pfn_to_page(pfn); 108 struct page *head = compound_trans_head(tail); 109 reserved = PageReserved(head); 110 if (head != tail) { 111 /* 112 * "head" is not a dangling pointer 113 * (compound_trans_head takes care of that) 114 * but the hugepage may have been splitted 115 * from under us (and we may not hold a 116 * reference count on the head page so it can 117 * be reused before we run PageReferenced), so 118 * we've to check PageTail before returning 119 * what we just read. 120 */ 121 smp_rmb(); 122 if (PageTail(tail)) 123 return reserved; 124 } 125 return PageReserved(tail); 126 } 127 128 return true; 129 } 130 131 /* 132 * Switches to specified vcpu, until a matching vcpu_put() 133 */ 134 int vcpu_load(struct kvm_vcpu *vcpu) 135 { 136 int cpu; 137 138 if (mutex_lock_killable(&vcpu->mutex)) 139 return -EINTR; 140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 141 /* The thread running this VCPU changed. */ 142 struct pid *oldpid = vcpu->pid; 143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 144 rcu_assign_pointer(vcpu->pid, newpid); 145 synchronize_rcu(); 146 put_pid(oldpid); 147 } 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 return 0; 153 } 154 155 void vcpu_put(struct kvm_vcpu *vcpu) 156 { 157 preempt_disable(); 158 kvm_arch_vcpu_put(vcpu); 159 preempt_notifier_unregister(&vcpu->preempt_notifier); 160 preempt_enable(); 161 mutex_unlock(&vcpu->mutex); 162 } 163 164 static void ack_flush(void *_completed) 165 { 166 } 167 168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 169 { 170 int i, cpu, me; 171 cpumask_var_t cpus; 172 bool called = true; 173 struct kvm_vcpu *vcpu; 174 175 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 176 177 me = get_cpu(); 178 kvm_for_each_vcpu(i, vcpu, kvm) { 179 kvm_make_request(req, vcpu); 180 cpu = vcpu->cpu; 181 182 /* Set ->requests bit before we read ->mode */ 183 smp_mb(); 184 185 if (cpus != NULL && cpu != -1 && cpu != me && 186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 187 cpumask_set_cpu(cpu, cpus); 188 } 189 if (unlikely(cpus == NULL)) 190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 191 else if (!cpumask_empty(cpus)) 192 smp_call_function_many(cpus, ack_flush, NULL, 1); 193 else 194 called = false; 195 put_cpu(); 196 free_cpumask_var(cpus); 197 return called; 198 } 199 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 long dirty_count = kvm->tlbs_dirty; 203 204 smp_mb(); 205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 206 ++kvm->stat.remote_tlb_flush; 207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 208 } 209 210 void kvm_reload_remote_mmus(struct kvm *kvm) 211 { 212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 213 } 214 215 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 216 { 217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 218 } 219 220 void kvm_make_scan_ioapic_request(struct kvm *kvm) 221 { 222 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 223 } 224 225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 226 { 227 struct page *page; 228 int r; 229 230 mutex_init(&vcpu->mutex); 231 vcpu->cpu = -1; 232 vcpu->kvm = kvm; 233 vcpu->vcpu_id = id; 234 vcpu->pid = NULL; 235 init_waitqueue_head(&vcpu->wq); 236 kvm_async_pf_vcpu_init(vcpu); 237 238 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 239 if (!page) { 240 r = -ENOMEM; 241 goto fail; 242 } 243 vcpu->run = page_address(page); 244 245 kvm_vcpu_set_in_spin_loop(vcpu, false); 246 kvm_vcpu_set_dy_eligible(vcpu, false); 247 vcpu->preempted = false; 248 249 r = kvm_arch_vcpu_init(vcpu); 250 if (r < 0) 251 goto fail_free_run; 252 return 0; 253 254 fail_free_run: 255 free_page((unsigned long)vcpu->run); 256 fail: 257 return r; 258 } 259 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 260 261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 262 { 263 put_pid(vcpu->pid); 264 kvm_arch_vcpu_uninit(vcpu); 265 free_page((unsigned long)vcpu->run); 266 } 267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 268 269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 271 { 272 return container_of(mn, struct kvm, mmu_notifier); 273 } 274 275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 276 struct mm_struct *mm, 277 unsigned long address) 278 { 279 struct kvm *kvm = mmu_notifier_to_kvm(mn); 280 int need_tlb_flush, idx; 281 282 /* 283 * When ->invalidate_page runs, the linux pte has been zapped 284 * already but the page is still allocated until 285 * ->invalidate_page returns. So if we increase the sequence 286 * here the kvm page fault will notice if the spte can't be 287 * established because the page is going to be freed. If 288 * instead the kvm page fault establishes the spte before 289 * ->invalidate_page runs, kvm_unmap_hva will release it 290 * before returning. 291 * 292 * The sequence increase only need to be seen at spin_unlock 293 * time, and not at spin_lock time. 294 * 295 * Increasing the sequence after the spin_unlock would be 296 * unsafe because the kvm page fault could then establish the 297 * pte after kvm_unmap_hva returned, without noticing the page 298 * is going to be freed. 299 */ 300 idx = srcu_read_lock(&kvm->srcu); 301 spin_lock(&kvm->mmu_lock); 302 303 kvm->mmu_notifier_seq++; 304 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 305 /* we've to flush the tlb before the pages can be freed */ 306 if (need_tlb_flush) 307 kvm_flush_remote_tlbs(kvm); 308 309 spin_unlock(&kvm->mmu_lock); 310 srcu_read_unlock(&kvm->srcu, idx); 311 } 312 313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 314 struct mm_struct *mm, 315 unsigned long address, 316 pte_t pte) 317 { 318 struct kvm *kvm = mmu_notifier_to_kvm(mn); 319 int idx; 320 321 idx = srcu_read_lock(&kvm->srcu); 322 spin_lock(&kvm->mmu_lock); 323 kvm->mmu_notifier_seq++; 324 kvm_set_spte_hva(kvm, address, pte); 325 spin_unlock(&kvm->mmu_lock); 326 srcu_read_unlock(&kvm->srcu, idx); 327 } 328 329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 330 struct mm_struct *mm, 331 unsigned long start, 332 unsigned long end) 333 { 334 struct kvm *kvm = mmu_notifier_to_kvm(mn); 335 int need_tlb_flush = 0, idx; 336 337 idx = srcu_read_lock(&kvm->srcu); 338 spin_lock(&kvm->mmu_lock); 339 /* 340 * The count increase must become visible at unlock time as no 341 * spte can be established without taking the mmu_lock and 342 * count is also read inside the mmu_lock critical section. 343 */ 344 kvm->mmu_notifier_count++; 345 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 346 need_tlb_flush |= kvm->tlbs_dirty; 347 /* we've to flush the tlb before the pages can be freed */ 348 if (need_tlb_flush) 349 kvm_flush_remote_tlbs(kvm); 350 351 spin_unlock(&kvm->mmu_lock); 352 srcu_read_unlock(&kvm->srcu, idx); 353 } 354 355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 356 struct mm_struct *mm, 357 unsigned long start, 358 unsigned long end) 359 { 360 struct kvm *kvm = mmu_notifier_to_kvm(mn); 361 362 spin_lock(&kvm->mmu_lock); 363 /* 364 * This sequence increase will notify the kvm page fault that 365 * the page that is going to be mapped in the spte could have 366 * been freed. 367 */ 368 kvm->mmu_notifier_seq++; 369 smp_wmb(); 370 /* 371 * The above sequence increase must be visible before the 372 * below count decrease, which is ensured by the smp_wmb above 373 * in conjunction with the smp_rmb in mmu_notifier_retry(). 374 */ 375 kvm->mmu_notifier_count--; 376 spin_unlock(&kvm->mmu_lock); 377 378 BUG_ON(kvm->mmu_notifier_count < 0); 379 } 380 381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 382 struct mm_struct *mm, 383 unsigned long address) 384 { 385 struct kvm *kvm = mmu_notifier_to_kvm(mn); 386 int young, idx; 387 388 idx = srcu_read_lock(&kvm->srcu); 389 spin_lock(&kvm->mmu_lock); 390 391 young = kvm_age_hva(kvm, address); 392 if (young) 393 kvm_flush_remote_tlbs(kvm); 394 395 spin_unlock(&kvm->mmu_lock); 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return young; 399 } 400 401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 402 struct mm_struct *mm, 403 unsigned long address) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 int young, idx; 407 408 idx = srcu_read_lock(&kvm->srcu); 409 spin_lock(&kvm->mmu_lock); 410 young = kvm_test_age_hva(kvm, address); 411 spin_unlock(&kvm->mmu_lock); 412 srcu_read_unlock(&kvm->srcu, idx); 413 414 return young; 415 } 416 417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 418 struct mm_struct *mm) 419 { 420 struct kvm *kvm = mmu_notifier_to_kvm(mn); 421 int idx; 422 423 idx = srcu_read_lock(&kvm->srcu); 424 kvm_arch_flush_shadow_all(kvm); 425 srcu_read_unlock(&kvm->srcu, idx); 426 } 427 428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 429 .invalidate_page = kvm_mmu_notifier_invalidate_page, 430 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 431 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 432 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 433 .test_young = kvm_mmu_notifier_test_young, 434 .change_pte = kvm_mmu_notifier_change_pte, 435 .release = kvm_mmu_notifier_release, 436 }; 437 438 static int kvm_init_mmu_notifier(struct kvm *kvm) 439 { 440 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 441 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 442 } 443 444 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 445 446 static int kvm_init_mmu_notifier(struct kvm *kvm) 447 { 448 return 0; 449 } 450 451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 452 453 static void kvm_init_memslots_id(struct kvm *kvm) 454 { 455 int i; 456 struct kvm_memslots *slots = kvm->memslots; 457 458 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 459 slots->id_to_index[i] = slots->memslots[i].id = i; 460 } 461 462 static struct kvm *kvm_create_vm(unsigned long type) 463 { 464 int r, i; 465 struct kvm *kvm = kvm_arch_alloc_vm(); 466 467 if (!kvm) 468 return ERR_PTR(-ENOMEM); 469 470 r = kvm_arch_init_vm(kvm, type); 471 if (r) 472 goto out_err_nodisable; 473 474 r = hardware_enable_all(); 475 if (r) 476 goto out_err_nodisable; 477 478 #ifdef CONFIG_HAVE_KVM_IRQCHIP 479 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 480 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 481 #endif 482 483 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 484 485 r = -ENOMEM; 486 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 487 if (!kvm->memslots) 488 goto out_err_nosrcu; 489 kvm_init_memslots_id(kvm); 490 if (init_srcu_struct(&kvm->srcu)) 491 goto out_err_nosrcu; 492 for (i = 0; i < KVM_NR_BUSES; i++) { 493 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 494 GFP_KERNEL); 495 if (!kvm->buses[i]) 496 goto out_err; 497 } 498 499 spin_lock_init(&kvm->mmu_lock); 500 kvm->mm = current->mm; 501 atomic_inc(&kvm->mm->mm_count); 502 kvm_eventfd_init(kvm); 503 mutex_init(&kvm->lock); 504 mutex_init(&kvm->irq_lock); 505 mutex_init(&kvm->slots_lock); 506 atomic_set(&kvm->users_count, 1); 507 INIT_LIST_HEAD(&kvm->devices); 508 509 r = kvm_init_mmu_notifier(kvm); 510 if (r) 511 goto out_err; 512 513 raw_spin_lock(&kvm_lock); 514 list_add(&kvm->vm_list, &vm_list); 515 raw_spin_unlock(&kvm_lock); 516 517 return kvm; 518 519 out_err: 520 cleanup_srcu_struct(&kvm->srcu); 521 out_err_nosrcu: 522 hardware_disable_all(); 523 out_err_nodisable: 524 for (i = 0; i < KVM_NR_BUSES; i++) 525 kfree(kvm->buses[i]); 526 kfree(kvm->memslots); 527 kvm_arch_free_vm(kvm); 528 return ERR_PTR(r); 529 } 530 531 /* 532 * Avoid using vmalloc for a small buffer. 533 * Should not be used when the size is statically known. 534 */ 535 void *kvm_kvzalloc(unsigned long size) 536 { 537 if (size > PAGE_SIZE) 538 return vzalloc(size); 539 else 540 return kzalloc(size, GFP_KERNEL); 541 } 542 543 void kvm_kvfree(const void *addr) 544 { 545 if (is_vmalloc_addr(addr)) 546 vfree(addr); 547 else 548 kfree(addr); 549 } 550 551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 552 { 553 if (!memslot->dirty_bitmap) 554 return; 555 556 kvm_kvfree(memslot->dirty_bitmap); 557 memslot->dirty_bitmap = NULL; 558 } 559 560 /* 561 * Free any memory in @free but not in @dont. 562 */ 563 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 564 struct kvm_memory_slot *dont) 565 { 566 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 567 kvm_destroy_dirty_bitmap(free); 568 569 kvm_arch_free_memslot(free, dont); 570 571 free->npages = 0; 572 } 573 574 void kvm_free_physmem(struct kvm *kvm) 575 { 576 struct kvm_memslots *slots = kvm->memslots; 577 struct kvm_memory_slot *memslot; 578 579 kvm_for_each_memslot(memslot, slots) 580 kvm_free_physmem_slot(memslot, NULL); 581 582 kfree(kvm->memslots); 583 } 584 585 static void kvm_destroy_devices(struct kvm *kvm) 586 { 587 struct list_head *node, *tmp; 588 589 list_for_each_safe(node, tmp, &kvm->devices) { 590 struct kvm_device *dev = 591 list_entry(node, struct kvm_device, vm_node); 592 593 list_del(node); 594 dev->ops->destroy(dev); 595 } 596 } 597 598 static void kvm_destroy_vm(struct kvm *kvm) 599 { 600 int i; 601 struct mm_struct *mm = kvm->mm; 602 603 kvm_arch_sync_events(kvm); 604 raw_spin_lock(&kvm_lock); 605 list_del(&kvm->vm_list); 606 raw_spin_unlock(&kvm_lock); 607 kvm_free_irq_routing(kvm); 608 for (i = 0; i < KVM_NR_BUSES; i++) 609 kvm_io_bus_destroy(kvm->buses[i]); 610 kvm_coalesced_mmio_free(kvm); 611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 612 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 613 #else 614 kvm_arch_flush_shadow_all(kvm); 615 #endif 616 kvm_arch_destroy_vm(kvm); 617 kvm_destroy_devices(kvm); 618 kvm_free_physmem(kvm); 619 cleanup_srcu_struct(&kvm->srcu); 620 kvm_arch_free_vm(kvm); 621 hardware_disable_all(); 622 mmdrop(mm); 623 } 624 625 void kvm_get_kvm(struct kvm *kvm) 626 { 627 atomic_inc(&kvm->users_count); 628 } 629 EXPORT_SYMBOL_GPL(kvm_get_kvm); 630 631 void kvm_put_kvm(struct kvm *kvm) 632 { 633 if (atomic_dec_and_test(&kvm->users_count)) 634 kvm_destroy_vm(kvm); 635 } 636 EXPORT_SYMBOL_GPL(kvm_put_kvm); 637 638 639 static int kvm_vm_release(struct inode *inode, struct file *filp) 640 { 641 struct kvm *kvm = filp->private_data; 642 643 kvm_irqfd_release(kvm); 644 645 kvm_put_kvm(kvm); 646 return 0; 647 } 648 649 /* 650 * Allocation size is twice as large as the actual dirty bitmap size. 651 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 652 */ 653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 654 { 655 #ifndef CONFIG_S390 656 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 657 658 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 659 if (!memslot->dirty_bitmap) 660 return -ENOMEM; 661 662 #endif /* !CONFIG_S390 */ 663 return 0; 664 } 665 666 static int cmp_memslot(const void *slot1, const void *slot2) 667 { 668 struct kvm_memory_slot *s1, *s2; 669 670 s1 = (struct kvm_memory_slot *)slot1; 671 s2 = (struct kvm_memory_slot *)slot2; 672 673 if (s1->npages < s2->npages) 674 return 1; 675 if (s1->npages > s2->npages) 676 return -1; 677 678 return 0; 679 } 680 681 /* 682 * Sort the memslots base on its size, so the larger slots 683 * will get better fit. 684 */ 685 static void sort_memslots(struct kvm_memslots *slots) 686 { 687 int i; 688 689 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 690 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 691 692 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 693 slots->id_to_index[slots->memslots[i].id] = i; 694 } 695 696 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 697 u64 last_generation) 698 { 699 if (new) { 700 int id = new->id; 701 struct kvm_memory_slot *old = id_to_memslot(slots, id); 702 unsigned long npages = old->npages; 703 704 *old = *new; 705 if (new->npages != npages) 706 sort_memslots(slots); 707 } 708 709 slots->generation = last_generation + 1; 710 } 711 712 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 713 { 714 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 715 716 #ifdef KVM_CAP_READONLY_MEM 717 valid_flags |= KVM_MEM_READONLY; 718 #endif 719 720 if (mem->flags & ~valid_flags) 721 return -EINVAL; 722 723 return 0; 724 } 725 726 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 727 struct kvm_memslots *slots, struct kvm_memory_slot *new) 728 { 729 struct kvm_memslots *old_memslots = kvm->memslots; 730 731 update_memslots(slots, new, kvm->memslots->generation); 732 rcu_assign_pointer(kvm->memslots, slots); 733 synchronize_srcu_expedited(&kvm->srcu); 734 return old_memslots; 735 } 736 737 /* 738 * Allocate some memory and give it an address in the guest physical address 739 * space. 740 * 741 * Discontiguous memory is allowed, mostly for framebuffers. 742 * 743 * Must be called holding mmap_sem for write. 744 */ 745 int __kvm_set_memory_region(struct kvm *kvm, 746 struct kvm_userspace_memory_region *mem) 747 { 748 int r; 749 gfn_t base_gfn; 750 unsigned long npages; 751 struct kvm_memory_slot *slot; 752 struct kvm_memory_slot old, new; 753 struct kvm_memslots *slots = NULL, *old_memslots; 754 enum kvm_mr_change change; 755 756 r = check_memory_region_flags(mem); 757 if (r) 758 goto out; 759 760 r = -EINVAL; 761 /* General sanity checks */ 762 if (mem->memory_size & (PAGE_SIZE - 1)) 763 goto out; 764 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 765 goto out; 766 /* We can read the guest memory with __xxx_user() later on. */ 767 if ((mem->slot < KVM_USER_MEM_SLOTS) && 768 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 769 !access_ok(VERIFY_WRITE, 770 (void __user *)(unsigned long)mem->userspace_addr, 771 mem->memory_size))) 772 goto out; 773 if (mem->slot >= KVM_MEM_SLOTS_NUM) 774 goto out; 775 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 776 goto out; 777 778 slot = id_to_memslot(kvm->memslots, mem->slot); 779 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 780 npages = mem->memory_size >> PAGE_SHIFT; 781 782 r = -EINVAL; 783 if (npages > KVM_MEM_MAX_NR_PAGES) 784 goto out; 785 786 if (!npages) 787 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 788 789 new = old = *slot; 790 791 new.id = mem->slot; 792 new.base_gfn = base_gfn; 793 new.npages = npages; 794 new.flags = mem->flags; 795 796 r = -EINVAL; 797 if (npages) { 798 if (!old.npages) 799 change = KVM_MR_CREATE; 800 else { /* Modify an existing slot. */ 801 if ((mem->userspace_addr != old.userspace_addr) || 802 (npages != old.npages) || 803 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 804 goto out; 805 806 if (base_gfn != old.base_gfn) 807 change = KVM_MR_MOVE; 808 else if (new.flags != old.flags) 809 change = KVM_MR_FLAGS_ONLY; 810 else { /* Nothing to change. */ 811 r = 0; 812 goto out; 813 } 814 } 815 } else if (old.npages) { 816 change = KVM_MR_DELETE; 817 } else /* Modify a non-existent slot: disallowed. */ 818 goto out; 819 820 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 821 /* Check for overlaps */ 822 r = -EEXIST; 823 kvm_for_each_memslot(slot, kvm->memslots) { 824 if ((slot->id >= KVM_USER_MEM_SLOTS) || 825 (slot->id == mem->slot)) 826 continue; 827 if (!((base_gfn + npages <= slot->base_gfn) || 828 (base_gfn >= slot->base_gfn + slot->npages))) 829 goto out; 830 } 831 } 832 833 /* Free page dirty bitmap if unneeded */ 834 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 835 new.dirty_bitmap = NULL; 836 837 r = -ENOMEM; 838 if (change == KVM_MR_CREATE) { 839 new.userspace_addr = mem->userspace_addr; 840 841 if (kvm_arch_create_memslot(&new, npages)) 842 goto out_free; 843 } 844 845 /* Allocate page dirty bitmap if needed */ 846 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 847 if (kvm_create_dirty_bitmap(&new) < 0) 848 goto out_free; 849 } 850 851 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 852 r = -ENOMEM; 853 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 854 GFP_KERNEL); 855 if (!slots) 856 goto out_free; 857 slot = id_to_memslot(slots, mem->slot); 858 slot->flags |= KVM_MEMSLOT_INVALID; 859 860 old_memslots = install_new_memslots(kvm, slots, NULL); 861 862 /* slot was deleted or moved, clear iommu mapping */ 863 kvm_iommu_unmap_pages(kvm, &old); 864 /* From this point no new shadow pages pointing to a deleted, 865 * or moved, memslot will be created. 866 * 867 * validation of sp->gfn happens in: 868 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 869 * - kvm_is_visible_gfn (mmu_check_roots) 870 */ 871 kvm_arch_flush_shadow_memslot(kvm, slot); 872 slots = old_memslots; 873 } 874 875 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 876 if (r) 877 goto out_slots; 878 879 r = -ENOMEM; 880 /* 881 * We can re-use the old_memslots from above, the only difference 882 * from the currently installed memslots is the invalid flag. This 883 * will get overwritten by update_memslots anyway. 884 */ 885 if (!slots) { 886 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 887 GFP_KERNEL); 888 if (!slots) 889 goto out_free; 890 } 891 892 /* 893 * IOMMU mapping: New slots need to be mapped. Old slots need to be 894 * un-mapped and re-mapped if their base changes. Since base change 895 * unmapping is handled above with slot deletion, mapping alone is 896 * needed here. Anything else the iommu might care about for existing 897 * slots (size changes, userspace addr changes and read-only flag 898 * changes) is disallowed above, so any other attribute changes getting 899 * here can be skipped. 900 */ 901 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 902 r = kvm_iommu_map_pages(kvm, &new); 903 if (r) 904 goto out_slots; 905 } 906 907 /* actual memory is freed via old in kvm_free_physmem_slot below */ 908 if (change == KVM_MR_DELETE) { 909 new.dirty_bitmap = NULL; 910 memset(&new.arch, 0, sizeof(new.arch)); 911 } 912 913 old_memslots = install_new_memslots(kvm, slots, &new); 914 915 kvm_arch_commit_memory_region(kvm, mem, &old, change); 916 917 kvm_free_physmem_slot(&old, &new); 918 kfree(old_memslots); 919 920 return 0; 921 922 out_slots: 923 kfree(slots); 924 out_free: 925 kvm_free_physmem_slot(&new, &old); 926 out: 927 return r; 928 } 929 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 930 931 int kvm_set_memory_region(struct kvm *kvm, 932 struct kvm_userspace_memory_region *mem) 933 { 934 int r; 935 936 mutex_lock(&kvm->slots_lock); 937 r = __kvm_set_memory_region(kvm, mem); 938 mutex_unlock(&kvm->slots_lock); 939 return r; 940 } 941 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 942 943 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 944 struct kvm_userspace_memory_region *mem) 945 { 946 if (mem->slot >= KVM_USER_MEM_SLOTS) 947 return -EINVAL; 948 return kvm_set_memory_region(kvm, mem); 949 } 950 951 int kvm_get_dirty_log(struct kvm *kvm, 952 struct kvm_dirty_log *log, int *is_dirty) 953 { 954 struct kvm_memory_slot *memslot; 955 int r, i; 956 unsigned long n; 957 unsigned long any = 0; 958 959 r = -EINVAL; 960 if (log->slot >= KVM_USER_MEM_SLOTS) 961 goto out; 962 963 memslot = id_to_memslot(kvm->memslots, log->slot); 964 r = -ENOENT; 965 if (!memslot->dirty_bitmap) 966 goto out; 967 968 n = kvm_dirty_bitmap_bytes(memslot); 969 970 for (i = 0; !any && i < n/sizeof(long); ++i) 971 any = memslot->dirty_bitmap[i]; 972 973 r = -EFAULT; 974 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 975 goto out; 976 977 if (any) 978 *is_dirty = 1; 979 980 r = 0; 981 out: 982 return r; 983 } 984 985 bool kvm_largepages_enabled(void) 986 { 987 return largepages_enabled; 988 } 989 990 void kvm_disable_largepages(void) 991 { 992 largepages_enabled = false; 993 } 994 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 995 996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 997 { 998 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 999 } 1000 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1001 1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1003 { 1004 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1005 1006 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1007 memslot->flags & KVM_MEMSLOT_INVALID) 1008 return 0; 1009 1010 return 1; 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1013 1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1015 { 1016 struct vm_area_struct *vma; 1017 unsigned long addr, size; 1018 1019 size = PAGE_SIZE; 1020 1021 addr = gfn_to_hva(kvm, gfn); 1022 if (kvm_is_error_hva(addr)) 1023 return PAGE_SIZE; 1024 1025 down_read(¤t->mm->mmap_sem); 1026 vma = find_vma(current->mm, addr); 1027 if (!vma) 1028 goto out; 1029 1030 size = vma_kernel_pagesize(vma); 1031 1032 out: 1033 up_read(¤t->mm->mmap_sem); 1034 1035 return size; 1036 } 1037 1038 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1039 { 1040 return slot->flags & KVM_MEM_READONLY; 1041 } 1042 1043 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1044 gfn_t *nr_pages, bool write) 1045 { 1046 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1047 return KVM_HVA_ERR_BAD; 1048 1049 if (memslot_is_readonly(slot) && write) 1050 return KVM_HVA_ERR_RO_BAD; 1051 1052 if (nr_pages) 1053 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1054 1055 return __gfn_to_hva_memslot(slot, gfn); 1056 } 1057 1058 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1059 gfn_t *nr_pages) 1060 { 1061 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1062 } 1063 1064 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1065 gfn_t gfn) 1066 { 1067 return gfn_to_hva_many(slot, gfn, NULL); 1068 } 1069 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1070 1071 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1072 { 1073 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1074 } 1075 EXPORT_SYMBOL_GPL(gfn_to_hva); 1076 1077 /* 1078 * The hva returned by this function is only allowed to be read. 1079 * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). 1080 */ 1081 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) 1082 { 1083 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); 1084 } 1085 1086 static int kvm_read_hva(void *data, void __user *hva, int len) 1087 { 1088 return __copy_from_user(data, hva, len); 1089 } 1090 1091 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1092 { 1093 return __copy_from_user_inatomic(data, hva, len); 1094 } 1095 1096 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1097 unsigned long start, int write, struct page **page) 1098 { 1099 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1100 1101 if (write) 1102 flags |= FOLL_WRITE; 1103 1104 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1105 } 1106 1107 static inline int check_user_page_hwpoison(unsigned long addr) 1108 { 1109 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1110 1111 rc = __get_user_pages(current, current->mm, addr, 1, 1112 flags, NULL, NULL, NULL); 1113 return rc == -EHWPOISON; 1114 } 1115 1116 /* 1117 * The atomic path to get the writable pfn which will be stored in @pfn, 1118 * true indicates success, otherwise false is returned. 1119 */ 1120 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1121 bool write_fault, bool *writable, pfn_t *pfn) 1122 { 1123 struct page *page[1]; 1124 int npages; 1125 1126 if (!(async || atomic)) 1127 return false; 1128 1129 /* 1130 * Fast pin a writable pfn only if it is a write fault request 1131 * or the caller allows to map a writable pfn for a read fault 1132 * request. 1133 */ 1134 if (!(write_fault || writable)) 1135 return false; 1136 1137 npages = __get_user_pages_fast(addr, 1, 1, page); 1138 if (npages == 1) { 1139 *pfn = page_to_pfn(page[0]); 1140 1141 if (writable) 1142 *writable = true; 1143 return true; 1144 } 1145 1146 return false; 1147 } 1148 1149 /* 1150 * The slow path to get the pfn of the specified host virtual address, 1151 * 1 indicates success, -errno is returned if error is detected. 1152 */ 1153 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1154 bool *writable, pfn_t *pfn) 1155 { 1156 struct page *page[1]; 1157 int npages = 0; 1158 1159 might_sleep(); 1160 1161 if (writable) 1162 *writable = write_fault; 1163 1164 if (async) { 1165 down_read(¤t->mm->mmap_sem); 1166 npages = get_user_page_nowait(current, current->mm, 1167 addr, write_fault, page); 1168 up_read(¤t->mm->mmap_sem); 1169 } else 1170 npages = get_user_pages_fast(addr, 1, write_fault, 1171 page); 1172 if (npages != 1) 1173 return npages; 1174 1175 /* map read fault as writable if possible */ 1176 if (unlikely(!write_fault) && writable) { 1177 struct page *wpage[1]; 1178 1179 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1180 if (npages == 1) { 1181 *writable = true; 1182 put_page(page[0]); 1183 page[0] = wpage[0]; 1184 } 1185 1186 npages = 1; 1187 } 1188 *pfn = page_to_pfn(page[0]); 1189 return npages; 1190 } 1191 1192 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1193 { 1194 if (unlikely(!(vma->vm_flags & VM_READ))) 1195 return false; 1196 1197 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1198 return false; 1199 1200 return true; 1201 } 1202 1203 /* 1204 * Pin guest page in memory and return its pfn. 1205 * @addr: host virtual address which maps memory to the guest 1206 * @atomic: whether this function can sleep 1207 * @async: whether this function need to wait IO complete if the 1208 * host page is not in the memory 1209 * @write_fault: whether we should get a writable host page 1210 * @writable: whether it allows to map a writable host page for !@write_fault 1211 * 1212 * The function will map a writable host page for these two cases: 1213 * 1): @write_fault = true 1214 * 2): @write_fault = false && @writable, @writable will tell the caller 1215 * whether the mapping is writable. 1216 */ 1217 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1218 bool write_fault, bool *writable) 1219 { 1220 struct vm_area_struct *vma; 1221 pfn_t pfn = 0; 1222 int npages; 1223 1224 /* we can do it either atomically or asynchronously, not both */ 1225 BUG_ON(atomic && async); 1226 1227 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1228 return pfn; 1229 1230 if (atomic) 1231 return KVM_PFN_ERR_FAULT; 1232 1233 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1234 if (npages == 1) 1235 return pfn; 1236 1237 down_read(¤t->mm->mmap_sem); 1238 if (npages == -EHWPOISON || 1239 (!async && check_user_page_hwpoison(addr))) { 1240 pfn = KVM_PFN_ERR_HWPOISON; 1241 goto exit; 1242 } 1243 1244 vma = find_vma_intersection(current->mm, addr, addr + 1); 1245 1246 if (vma == NULL) 1247 pfn = KVM_PFN_ERR_FAULT; 1248 else if ((vma->vm_flags & VM_PFNMAP)) { 1249 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1250 vma->vm_pgoff; 1251 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1252 } else { 1253 if (async && vma_is_valid(vma, write_fault)) 1254 *async = true; 1255 pfn = KVM_PFN_ERR_FAULT; 1256 } 1257 exit: 1258 up_read(¤t->mm->mmap_sem); 1259 return pfn; 1260 } 1261 1262 static pfn_t 1263 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1264 bool *async, bool write_fault, bool *writable) 1265 { 1266 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1267 1268 if (addr == KVM_HVA_ERR_RO_BAD) 1269 return KVM_PFN_ERR_RO_FAULT; 1270 1271 if (kvm_is_error_hva(addr)) 1272 return KVM_PFN_NOSLOT; 1273 1274 /* Do not map writable pfn in the readonly memslot. */ 1275 if (writable && memslot_is_readonly(slot)) { 1276 *writable = false; 1277 writable = NULL; 1278 } 1279 1280 return hva_to_pfn(addr, atomic, async, write_fault, 1281 writable); 1282 } 1283 1284 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1285 bool write_fault, bool *writable) 1286 { 1287 struct kvm_memory_slot *slot; 1288 1289 if (async) 1290 *async = false; 1291 1292 slot = gfn_to_memslot(kvm, gfn); 1293 1294 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1295 writable); 1296 } 1297 1298 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1299 { 1300 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1301 } 1302 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1303 1304 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1305 bool write_fault, bool *writable) 1306 { 1307 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1310 1311 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1312 { 1313 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1314 } 1315 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1316 1317 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1318 bool *writable) 1319 { 1320 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1321 } 1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1323 1324 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1325 { 1326 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1327 } 1328 1329 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1330 { 1331 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1332 } 1333 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1334 1335 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1336 int nr_pages) 1337 { 1338 unsigned long addr; 1339 gfn_t entry; 1340 1341 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1342 if (kvm_is_error_hva(addr)) 1343 return -1; 1344 1345 if (entry < nr_pages) 1346 return 0; 1347 1348 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1349 } 1350 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1351 1352 static struct page *kvm_pfn_to_page(pfn_t pfn) 1353 { 1354 if (is_error_noslot_pfn(pfn)) 1355 return KVM_ERR_PTR_BAD_PAGE; 1356 1357 if (kvm_is_mmio_pfn(pfn)) { 1358 WARN_ON(1); 1359 return KVM_ERR_PTR_BAD_PAGE; 1360 } 1361 1362 return pfn_to_page(pfn); 1363 } 1364 1365 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1366 { 1367 pfn_t pfn; 1368 1369 pfn = gfn_to_pfn(kvm, gfn); 1370 1371 return kvm_pfn_to_page(pfn); 1372 } 1373 1374 EXPORT_SYMBOL_GPL(gfn_to_page); 1375 1376 void kvm_release_page_clean(struct page *page) 1377 { 1378 WARN_ON(is_error_page(page)); 1379 1380 kvm_release_pfn_clean(page_to_pfn(page)); 1381 } 1382 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1383 1384 void kvm_release_pfn_clean(pfn_t pfn) 1385 { 1386 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1387 put_page(pfn_to_page(pfn)); 1388 } 1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1390 1391 void kvm_release_page_dirty(struct page *page) 1392 { 1393 WARN_ON(is_error_page(page)); 1394 1395 kvm_release_pfn_dirty(page_to_pfn(page)); 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1398 1399 void kvm_release_pfn_dirty(pfn_t pfn) 1400 { 1401 kvm_set_pfn_dirty(pfn); 1402 kvm_release_pfn_clean(pfn); 1403 } 1404 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1405 1406 void kvm_set_page_dirty(struct page *page) 1407 { 1408 kvm_set_pfn_dirty(page_to_pfn(page)); 1409 } 1410 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1411 1412 void kvm_set_pfn_dirty(pfn_t pfn) 1413 { 1414 if (!kvm_is_mmio_pfn(pfn)) { 1415 struct page *page = pfn_to_page(pfn); 1416 if (!PageReserved(page)) 1417 SetPageDirty(page); 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1421 1422 void kvm_set_pfn_accessed(pfn_t pfn) 1423 { 1424 if (!kvm_is_mmio_pfn(pfn)) 1425 mark_page_accessed(pfn_to_page(pfn)); 1426 } 1427 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1428 1429 void kvm_get_pfn(pfn_t pfn) 1430 { 1431 if (!kvm_is_mmio_pfn(pfn)) 1432 get_page(pfn_to_page(pfn)); 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1435 1436 static int next_segment(unsigned long len, int offset) 1437 { 1438 if (len > PAGE_SIZE - offset) 1439 return PAGE_SIZE - offset; 1440 else 1441 return len; 1442 } 1443 1444 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1445 int len) 1446 { 1447 int r; 1448 unsigned long addr; 1449 1450 addr = gfn_to_hva_read(kvm, gfn); 1451 if (kvm_is_error_hva(addr)) 1452 return -EFAULT; 1453 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1454 if (r) 1455 return -EFAULT; 1456 return 0; 1457 } 1458 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1459 1460 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1461 { 1462 gfn_t gfn = gpa >> PAGE_SHIFT; 1463 int seg; 1464 int offset = offset_in_page(gpa); 1465 int ret; 1466 1467 while ((seg = next_segment(len, offset)) != 0) { 1468 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1469 if (ret < 0) 1470 return ret; 1471 offset = 0; 1472 len -= seg; 1473 data += seg; 1474 ++gfn; 1475 } 1476 return 0; 1477 } 1478 EXPORT_SYMBOL_GPL(kvm_read_guest); 1479 1480 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1481 unsigned long len) 1482 { 1483 int r; 1484 unsigned long addr; 1485 gfn_t gfn = gpa >> PAGE_SHIFT; 1486 int offset = offset_in_page(gpa); 1487 1488 addr = gfn_to_hva_read(kvm, gfn); 1489 if (kvm_is_error_hva(addr)) 1490 return -EFAULT; 1491 pagefault_disable(); 1492 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1493 pagefault_enable(); 1494 if (r) 1495 return -EFAULT; 1496 return 0; 1497 } 1498 EXPORT_SYMBOL(kvm_read_guest_atomic); 1499 1500 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1501 int offset, int len) 1502 { 1503 int r; 1504 unsigned long addr; 1505 1506 addr = gfn_to_hva(kvm, gfn); 1507 if (kvm_is_error_hva(addr)) 1508 return -EFAULT; 1509 r = __copy_to_user((void __user *)addr + offset, data, len); 1510 if (r) 1511 return -EFAULT; 1512 mark_page_dirty(kvm, gfn); 1513 return 0; 1514 } 1515 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1516 1517 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1518 unsigned long len) 1519 { 1520 gfn_t gfn = gpa >> PAGE_SHIFT; 1521 int seg; 1522 int offset = offset_in_page(gpa); 1523 int ret; 1524 1525 while ((seg = next_segment(len, offset)) != 0) { 1526 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1527 if (ret < 0) 1528 return ret; 1529 offset = 0; 1530 len -= seg; 1531 data += seg; 1532 ++gfn; 1533 } 1534 return 0; 1535 } 1536 1537 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1538 gpa_t gpa, unsigned long len) 1539 { 1540 struct kvm_memslots *slots = kvm_memslots(kvm); 1541 int offset = offset_in_page(gpa); 1542 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1543 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1544 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1545 gfn_t nr_pages_avail; 1546 1547 ghc->gpa = gpa; 1548 ghc->generation = slots->generation; 1549 ghc->len = len; 1550 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1551 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1552 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1553 ghc->hva += offset; 1554 } else { 1555 /* 1556 * If the requested region crosses two memslots, we still 1557 * verify that the entire region is valid here. 1558 */ 1559 while (start_gfn <= end_gfn) { 1560 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1561 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1562 &nr_pages_avail); 1563 if (kvm_is_error_hva(ghc->hva)) 1564 return -EFAULT; 1565 start_gfn += nr_pages_avail; 1566 } 1567 /* Use the slow path for cross page reads and writes. */ 1568 ghc->memslot = NULL; 1569 } 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1573 1574 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1575 void *data, unsigned long len) 1576 { 1577 struct kvm_memslots *slots = kvm_memslots(kvm); 1578 int r; 1579 1580 BUG_ON(len > ghc->len); 1581 1582 if (slots->generation != ghc->generation) 1583 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1584 1585 if (unlikely(!ghc->memslot)) 1586 return kvm_write_guest(kvm, ghc->gpa, data, len); 1587 1588 if (kvm_is_error_hva(ghc->hva)) 1589 return -EFAULT; 1590 1591 r = __copy_to_user((void __user *)ghc->hva, data, len); 1592 if (r) 1593 return -EFAULT; 1594 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1595 1596 return 0; 1597 } 1598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1599 1600 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1601 void *data, unsigned long len) 1602 { 1603 struct kvm_memslots *slots = kvm_memslots(kvm); 1604 int r; 1605 1606 BUG_ON(len > ghc->len); 1607 1608 if (slots->generation != ghc->generation) 1609 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1610 1611 if (unlikely(!ghc->memslot)) 1612 return kvm_read_guest(kvm, ghc->gpa, data, len); 1613 1614 if (kvm_is_error_hva(ghc->hva)) 1615 return -EFAULT; 1616 1617 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1618 if (r) 1619 return -EFAULT; 1620 1621 return 0; 1622 } 1623 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1624 1625 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1626 { 1627 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1628 offset, len); 1629 } 1630 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1631 1632 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1633 { 1634 gfn_t gfn = gpa >> PAGE_SHIFT; 1635 int seg; 1636 int offset = offset_in_page(gpa); 1637 int ret; 1638 1639 while ((seg = next_segment(len, offset)) != 0) { 1640 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1641 if (ret < 0) 1642 return ret; 1643 offset = 0; 1644 len -= seg; 1645 ++gfn; 1646 } 1647 return 0; 1648 } 1649 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1650 1651 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1652 gfn_t gfn) 1653 { 1654 if (memslot && memslot->dirty_bitmap) { 1655 unsigned long rel_gfn = gfn - memslot->base_gfn; 1656 1657 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1658 } 1659 } 1660 1661 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1662 { 1663 struct kvm_memory_slot *memslot; 1664 1665 memslot = gfn_to_memslot(kvm, gfn); 1666 mark_page_dirty_in_slot(kvm, memslot, gfn); 1667 } 1668 1669 /* 1670 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1671 */ 1672 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1673 { 1674 DEFINE_WAIT(wait); 1675 1676 for (;;) { 1677 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1678 1679 if (kvm_arch_vcpu_runnable(vcpu)) { 1680 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1681 break; 1682 } 1683 if (kvm_cpu_has_pending_timer(vcpu)) 1684 break; 1685 if (signal_pending(current)) 1686 break; 1687 1688 schedule(); 1689 } 1690 1691 finish_wait(&vcpu->wq, &wait); 1692 } 1693 1694 #ifndef CONFIG_S390 1695 /* 1696 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1697 */ 1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1699 { 1700 int me; 1701 int cpu = vcpu->cpu; 1702 wait_queue_head_t *wqp; 1703 1704 wqp = kvm_arch_vcpu_wq(vcpu); 1705 if (waitqueue_active(wqp)) { 1706 wake_up_interruptible(wqp); 1707 ++vcpu->stat.halt_wakeup; 1708 } 1709 1710 me = get_cpu(); 1711 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1712 if (kvm_arch_vcpu_should_kick(vcpu)) 1713 smp_send_reschedule(cpu); 1714 put_cpu(); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1717 #endif /* !CONFIG_S390 */ 1718 1719 void kvm_resched(struct kvm_vcpu *vcpu) 1720 { 1721 if (!need_resched()) 1722 return; 1723 cond_resched(); 1724 } 1725 EXPORT_SYMBOL_GPL(kvm_resched); 1726 1727 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1728 { 1729 struct pid *pid; 1730 struct task_struct *task = NULL; 1731 bool ret = false; 1732 1733 rcu_read_lock(); 1734 pid = rcu_dereference(target->pid); 1735 if (pid) 1736 task = get_pid_task(target->pid, PIDTYPE_PID); 1737 rcu_read_unlock(); 1738 if (!task) 1739 return ret; 1740 if (task->flags & PF_VCPU) { 1741 put_task_struct(task); 1742 return ret; 1743 } 1744 ret = yield_to(task, 1); 1745 put_task_struct(task); 1746 1747 return ret; 1748 } 1749 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1750 1751 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1752 /* 1753 * Helper that checks whether a VCPU is eligible for directed yield. 1754 * Most eligible candidate to yield is decided by following heuristics: 1755 * 1756 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1757 * (preempted lock holder), indicated by @in_spin_loop. 1758 * Set at the beiginning and cleared at the end of interception/PLE handler. 1759 * 1760 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1761 * chance last time (mostly it has become eligible now since we have probably 1762 * yielded to lockholder in last iteration. This is done by toggling 1763 * @dy_eligible each time a VCPU checked for eligibility.) 1764 * 1765 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1766 * to preempted lock-holder could result in wrong VCPU selection and CPU 1767 * burning. Giving priority for a potential lock-holder increases lock 1768 * progress. 1769 * 1770 * Since algorithm is based on heuristics, accessing another VCPU data without 1771 * locking does not harm. It may result in trying to yield to same VCPU, fail 1772 * and continue with next VCPU and so on. 1773 */ 1774 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1775 { 1776 bool eligible; 1777 1778 eligible = !vcpu->spin_loop.in_spin_loop || 1779 (vcpu->spin_loop.in_spin_loop && 1780 vcpu->spin_loop.dy_eligible); 1781 1782 if (vcpu->spin_loop.in_spin_loop) 1783 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1784 1785 return eligible; 1786 } 1787 #endif 1788 1789 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1790 { 1791 struct kvm *kvm = me->kvm; 1792 struct kvm_vcpu *vcpu; 1793 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1794 int yielded = 0; 1795 int try = 3; 1796 int pass; 1797 int i; 1798 1799 kvm_vcpu_set_in_spin_loop(me, true); 1800 /* 1801 * We boost the priority of a VCPU that is runnable but not 1802 * currently running, because it got preempted by something 1803 * else and called schedule in __vcpu_run. Hopefully that 1804 * VCPU is holding the lock that we need and will release it. 1805 * We approximate round-robin by starting at the last boosted VCPU. 1806 */ 1807 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1808 kvm_for_each_vcpu(i, vcpu, kvm) { 1809 if (!pass && i <= last_boosted_vcpu) { 1810 i = last_boosted_vcpu; 1811 continue; 1812 } else if (pass && i > last_boosted_vcpu) 1813 break; 1814 if (!ACCESS_ONCE(vcpu->preempted)) 1815 continue; 1816 if (vcpu == me) 1817 continue; 1818 if (waitqueue_active(&vcpu->wq)) 1819 continue; 1820 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1821 continue; 1822 1823 yielded = kvm_vcpu_yield_to(vcpu); 1824 if (yielded > 0) { 1825 kvm->last_boosted_vcpu = i; 1826 break; 1827 } else if (yielded < 0) { 1828 try--; 1829 if (!try) 1830 break; 1831 } 1832 } 1833 } 1834 kvm_vcpu_set_in_spin_loop(me, false); 1835 1836 /* Ensure vcpu is not eligible during next spinloop */ 1837 kvm_vcpu_set_dy_eligible(me, false); 1838 } 1839 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1840 1841 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1842 { 1843 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1844 struct page *page; 1845 1846 if (vmf->pgoff == 0) 1847 page = virt_to_page(vcpu->run); 1848 #ifdef CONFIG_X86 1849 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1850 page = virt_to_page(vcpu->arch.pio_data); 1851 #endif 1852 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1853 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1854 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1855 #endif 1856 else 1857 return kvm_arch_vcpu_fault(vcpu, vmf); 1858 get_page(page); 1859 vmf->page = page; 1860 return 0; 1861 } 1862 1863 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1864 .fault = kvm_vcpu_fault, 1865 }; 1866 1867 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1868 { 1869 vma->vm_ops = &kvm_vcpu_vm_ops; 1870 return 0; 1871 } 1872 1873 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1874 { 1875 struct kvm_vcpu *vcpu = filp->private_data; 1876 1877 kvm_put_kvm(vcpu->kvm); 1878 return 0; 1879 } 1880 1881 static struct file_operations kvm_vcpu_fops = { 1882 .release = kvm_vcpu_release, 1883 .unlocked_ioctl = kvm_vcpu_ioctl, 1884 #ifdef CONFIG_COMPAT 1885 .compat_ioctl = kvm_vcpu_compat_ioctl, 1886 #endif 1887 .mmap = kvm_vcpu_mmap, 1888 .llseek = noop_llseek, 1889 }; 1890 1891 /* 1892 * Allocates an inode for the vcpu. 1893 */ 1894 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1895 { 1896 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1897 } 1898 1899 /* 1900 * Creates some virtual cpus. Good luck creating more than one. 1901 */ 1902 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1903 { 1904 int r; 1905 struct kvm_vcpu *vcpu, *v; 1906 1907 vcpu = kvm_arch_vcpu_create(kvm, id); 1908 if (IS_ERR(vcpu)) 1909 return PTR_ERR(vcpu); 1910 1911 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1912 1913 r = kvm_arch_vcpu_setup(vcpu); 1914 if (r) 1915 goto vcpu_destroy; 1916 1917 mutex_lock(&kvm->lock); 1918 if (!kvm_vcpu_compatible(vcpu)) { 1919 r = -EINVAL; 1920 goto unlock_vcpu_destroy; 1921 } 1922 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1923 r = -EINVAL; 1924 goto unlock_vcpu_destroy; 1925 } 1926 1927 kvm_for_each_vcpu(r, v, kvm) 1928 if (v->vcpu_id == id) { 1929 r = -EEXIST; 1930 goto unlock_vcpu_destroy; 1931 } 1932 1933 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1934 1935 /* Now it's all set up, let userspace reach it */ 1936 kvm_get_kvm(kvm); 1937 r = create_vcpu_fd(vcpu); 1938 if (r < 0) { 1939 kvm_put_kvm(kvm); 1940 goto unlock_vcpu_destroy; 1941 } 1942 1943 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1944 smp_wmb(); 1945 atomic_inc(&kvm->online_vcpus); 1946 1947 mutex_unlock(&kvm->lock); 1948 kvm_arch_vcpu_postcreate(vcpu); 1949 return r; 1950 1951 unlock_vcpu_destroy: 1952 mutex_unlock(&kvm->lock); 1953 vcpu_destroy: 1954 kvm_arch_vcpu_destroy(vcpu); 1955 return r; 1956 } 1957 1958 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1959 { 1960 if (sigset) { 1961 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1962 vcpu->sigset_active = 1; 1963 vcpu->sigset = *sigset; 1964 } else 1965 vcpu->sigset_active = 0; 1966 return 0; 1967 } 1968 1969 static long kvm_vcpu_ioctl(struct file *filp, 1970 unsigned int ioctl, unsigned long arg) 1971 { 1972 struct kvm_vcpu *vcpu = filp->private_data; 1973 void __user *argp = (void __user *)arg; 1974 int r; 1975 struct kvm_fpu *fpu = NULL; 1976 struct kvm_sregs *kvm_sregs = NULL; 1977 1978 if (vcpu->kvm->mm != current->mm) 1979 return -EIO; 1980 1981 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1982 /* 1983 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1984 * so vcpu_load() would break it. 1985 */ 1986 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1987 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1988 #endif 1989 1990 1991 r = vcpu_load(vcpu); 1992 if (r) 1993 return r; 1994 switch (ioctl) { 1995 case KVM_RUN: 1996 r = -EINVAL; 1997 if (arg) 1998 goto out; 1999 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2000 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2001 break; 2002 case KVM_GET_REGS: { 2003 struct kvm_regs *kvm_regs; 2004 2005 r = -ENOMEM; 2006 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2007 if (!kvm_regs) 2008 goto out; 2009 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2010 if (r) 2011 goto out_free1; 2012 r = -EFAULT; 2013 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2014 goto out_free1; 2015 r = 0; 2016 out_free1: 2017 kfree(kvm_regs); 2018 break; 2019 } 2020 case KVM_SET_REGS: { 2021 struct kvm_regs *kvm_regs; 2022 2023 r = -ENOMEM; 2024 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2025 if (IS_ERR(kvm_regs)) { 2026 r = PTR_ERR(kvm_regs); 2027 goto out; 2028 } 2029 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2030 kfree(kvm_regs); 2031 break; 2032 } 2033 case KVM_GET_SREGS: { 2034 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2035 r = -ENOMEM; 2036 if (!kvm_sregs) 2037 goto out; 2038 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2039 if (r) 2040 goto out; 2041 r = -EFAULT; 2042 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2043 goto out; 2044 r = 0; 2045 break; 2046 } 2047 case KVM_SET_SREGS: { 2048 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2049 if (IS_ERR(kvm_sregs)) { 2050 r = PTR_ERR(kvm_sregs); 2051 kvm_sregs = NULL; 2052 goto out; 2053 } 2054 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2055 break; 2056 } 2057 case KVM_GET_MP_STATE: { 2058 struct kvm_mp_state mp_state; 2059 2060 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2061 if (r) 2062 goto out; 2063 r = -EFAULT; 2064 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2065 goto out; 2066 r = 0; 2067 break; 2068 } 2069 case KVM_SET_MP_STATE: { 2070 struct kvm_mp_state mp_state; 2071 2072 r = -EFAULT; 2073 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2074 goto out; 2075 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2076 break; 2077 } 2078 case KVM_TRANSLATE: { 2079 struct kvm_translation tr; 2080 2081 r = -EFAULT; 2082 if (copy_from_user(&tr, argp, sizeof tr)) 2083 goto out; 2084 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2085 if (r) 2086 goto out; 2087 r = -EFAULT; 2088 if (copy_to_user(argp, &tr, sizeof tr)) 2089 goto out; 2090 r = 0; 2091 break; 2092 } 2093 case KVM_SET_GUEST_DEBUG: { 2094 struct kvm_guest_debug dbg; 2095 2096 r = -EFAULT; 2097 if (copy_from_user(&dbg, argp, sizeof dbg)) 2098 goto out; 2099 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2100 break; 2101 } 2102 case KVM_SET_SIGNAL_MASK: { 2103 struct kvm_signal_mask __user *sigmask_arg = argp; 2104 struct kvm_signal_mask kvm_sigmask; 2105 sigset_t sigset, *p; 2106 2107 p = NULL; 2108 if (argp) { 2109 r = -EFAULT; 2110 if (copy_from_user(&kvm_sigmask, argp, 2111 sizeof kvm_sigmask)) 2112 goto out; 2113 r = -EINVAL; 2114 if (kvm_sigmask.len != sizeof sigset) 2115 goto out; 2116 r = -EFAULT; 2117 if (copy_from_user(&sigset, sigmask_arg->sigset, 2118 sizeof sigset)) 2119 goto out; 2120 p = &sigset; 2121 } 2122 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2123 break; 2124 } 2125 case KVM_GET_FPU: { 2126 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2127 r = -ENOMEM; 2128 if (!fpu) 2129 goto out; 2130 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2131 if (r) 2132 goto out; 2133 r = -EFAULT; 2134 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2135 goto out; 2136 r = 0; 2137 break; 2138 } 2139 case KVM_SET_FPU: { 2140 fpu = memdup_user(argp, sizeof(*fpu)); 2141 if (IS_ERR(fpu)) { 2142 r = PTR_ERR(fpu); 2143 fpu = NULL; 2144 goto out; 2145 } 2146 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2147 break; 2148 } 2149 default: 2150 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2151 } 2152 out: 2153 vcpu_put(vcpu); 2154 kfree(fpu); 2155 kfree(kvm_sregs); 2156 return r; 2157 } 2158 2159 #ifdef CONFIG_COMPAT 2160 static long kvm_vcpu_compat_ioctl(struct file *filp, 2161 unsigned int ioctl, unsigned long arg) 2162 { 2163 struct kvm_vcpu *vcpu = filp->private_data; 2164 void __user *argp = compat_ptr(arg); 2165 int r; 2166 2167 if (vcpu->kvm->mm != current->mm) 2168 return -EIO; 2169 2170 switch (ioctl) { 2171 case KVM_SET_SIGNAL_MASK: { 2172 struct kvm_signal_mask __user *sigmask_arg = argp; 2173 struct kvm_signal_mask kvm_sigmask; 2174 compat_sigset_t csigset; 2175 sigset_t sigset; 2176 2177 if (argp) { 2178 r = -EFAULT; 2179 if (copy_from_user(&kvm_sigmask, argp, 2180 sizeof kvm_sigmask)) 2181 goto out; 2182 r = -EINVAL; 2183 if (kvm_sigmask.len != sizeof csigset) 2184 goto out; 2185 r = -EFAULT; 2186 if (copy_from_user(&csigset, sigmask_arg->sigset, 2187 sizeof csigset)) 2188 goto out; 2189 sigset_from_compat(&sigset, &csigset); 2190 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2191 } else 2192 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2193 break; 2194 } 2195 default: 2196 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2197 } 2198 2199 out: 2200 return r; 2201 } 2202 #endif 2203 2204 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2205 int (*accessor)(struct kvm_device *dev, 2206 struct kvm_device_attr *attr), 2207 unsigned long arg) 2208 { 2209 struct kvm_device_attr attr; 2210 2211 if (!accessor) 2212 return -EPERM; 2213 2214 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2215 return -EFAULT; 2216 2217 return accessor(dev, &attr); 2218 } 2219 2220 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2221 unsigned long arg) 2222 { 2223 struct kvm_device *dev = filp->private_data; 2224 2225 switch (ioctl) { 2226 case KVM_SET_DEVICE_ATTR: 2227 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2228 case KVM_GET_DEVICE_ATTR: 2229 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2230 case KVM_HAS_DEVICE_ATTR: 2231 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2232 default: 2233 if (dev->ops->ioctl) 2234 return dev->ops->ioctl(dev, ioctl, arg); 2235 2236 return -ENOTTY; 2237 } 2238 } 2239 2240 static int kvm_device_release(struct inode *inode, struct file *filp) 2241 { 2242 struct kvm_device *dev = filp->private_data; 2243 struct kvm *kvm = dev->kvm; 2244 2245 kvm_put_kvm(kvm); 2246 return 0; 2247 } 2248 2249 static const struct file_operations kvm_device_fops = { 2250 .unlocked_ioctl = kvm_device_ioctl, 2251 #ifdef CONFIG_COMPAT 2252 .compat_ioctl = kvm_device_ioctl, 2253 #endif 2254 .release = kvm_device_release, 2255 }; 2256 2257 struct kvm_device *kvm_device_from_filp(struct file *filp) 2258 { 2259 if (filp->f_op != &kvm_device_fops) 2260 return NULL; 2261 2262 return filp->private_data; 2263 } 2264 2265 static int kvm_ioctl_create_device(struct kvm *kvm, 2266 struct kvm_create_device *cd) 2267 { 2268 struct kvm_device_ops *ops = NULL; 2269 struct kvm_device *dev; 2270 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2271 int ret; 2272 2273 switch (cd->type) { 2274 #ifdef CONFIG_KVM_MPIC 2275 case KVM_DEV_TYPE_FSL_MPIC_20: 2276 case KVM_DEV_TYPE_FSL_MPIC_42: 2277 ops = &kvm_mpic_ops; 2278 break; 2279 #endif 2280 #ifdef CONFIG_KVM_XICS 2281 case KVM_DEV_TYPE_XICS: 2282 ops = &kvm_xics_ops; 2283 break; 2284 #endif 2285 default: 2286 return -ENODEV; 2287 } 2288 2289 if (test) 2290 return 0; 2291 2292 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2293 if (!dev) 2294 return -ENOMEM; 2295 2296 dev->ops = ops; 2297 dev->kvm = kvm; 2298 2299 ret = ops->create(dev, cd->type); 2300 if (ret < 0) { 2301 kfree(dev); 2302 return ret; 2303 } 2304 2305 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR); 2306 if (ret < 0) { 2307 ops->destroy(dev); 2308 return ret; 2309 } 2310 2311 list_add(&dev->vm_node, &kvm->devices); 2312 kvm_get_kvm(kvm); 2313 cd->fd = ret; 2314 return 0; 2315 } 2316 2317 static long kvm_vm_ioctl(struct file *filp, 2318 unsigned int ioctl, unsigned long arg) 2319 { 2320 struct kvm *kvm = filp->private_data; 2321 void __user *argp = (void __user *)arg; 2322 int r; 2323 2324 if (kvm->mm != current->mm) 2325 return -EIO; 2326 switch (ioctl) { 2327 case KVM_CREATE_VCPU: 2328 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2329 break; 2330 case KVM_SET_USER_MEMORY_REGION: { 2331 struct kvm_userspace_memory_region kvm_userspace_mem; 2332 2333 r = -EFAULT; 2334 if (copy_from_user(&kvm_userspace_mem, argp, 2335 sizeof kvm_userspace_mem)) 2336 goto out; 2337 2338 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2339 break; 2340 } 2341 case KVM_GET_DIRTY_LOG: { 2342 struct kvm_dirty_log log; 2343 2344 r = -EFAULT; 2345 if (copy_from_user(&log, argp, sizeof log)) 2346 goto out; 2347 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2348 break; 2349 } 2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2351 case KVM_REGISTER_COALESCED_MMIO: { 2352 struct kvm_coalesced_mmio_zone zone; 2353 r = -EFAULT; 2354 if (copy_from_user(&zone, argp, sizeof zone)) 2355 goto out; 2356 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2357 break; 2358 } 2359 case KVM_UNREGISTER_COALESCED_MMIO: { 2360 struct kvm_coalesced_mmio_zone zone; 2361 r = -EFAULT; 2362 if (copy_from_user(&zone, argp, sizeof zone)) 2363 goto out; 2364 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2365 break; 2366 } 2367 #endif 2368 case KVM_IRQFD: { 2369 struct kvm_irqfd data; 2370 2371 r = -EFAULT; 2372 if (copy_from_user(&data, argp, sizeof data)) 2373 goto out; 2374 r = kvm_irqfd(kvm, &data); 2375 break; 2376 } 2377 case KVM_IOEVENTFD: { 2378 struct kvm_ioeventfd data; 2379 2380 r = -EFAULT; 2381 if (copy_from_user(&data, argp, sizeof data)) 2382 goto out; 2383 r = kvm_ioeventfd(kvm, &data); 2384 break; 2385 } 2386 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2387 case KVM_SET_BOOT_CPU_ID: 2388 r = 0; 2389 mutex_lock(&kvm->lock); 2390 if (atomic_read(&kvm->online_vcpus) != 0) 2391 r = -EBUSY; 2392 else 2393 kvm->bsp_vcpu_id = arg; 2394 mutex_unlock(&kvm->lock); 2395 break; 2396 #endif 2397 #ifdef CONFIG_HAVE_KVM_MSI 2398 case KVM_SIGNAL_MSI: { 2399 struct kvm_msi msi; 2400 2401 r = -EFAULT; 2402 if (copy_from_user(&msi, argp, sizeof msi)) 2403 goto out; 2404 r = kvm_send_userspace_msi(kvm, &msi); 2405 break; 2406 } 2407 #endif 2408 #ifdef __KVM_HAVE_IRQ_LINE 2409 case KVM_IRQ_LINE_STATUS: 2410 case KVM_IRQ_LINE: { 2411 struct kvm_irq_level irq_event; 2412 2413 r = -EFAULT; 2414 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2415 goto out; 2416 2417 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2418 ioctl == KVM_IRQ_LINE_STATUS); 2419 if (r) 2420 goto out; 2421 2422 r = -EFAULT; 2423 if (ioctl == KVM_IRQ_LINE_STATUS) { 2424 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2425 goto out; 2426 } 2427 2428 r = 0; 2429 break; 2430 } 2431 #endif 2432 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2433 case KVM_SET_GSI_ROUTING: { 2434 struct kvm_irq_routing routing; 2435 struct kvm_irq_routing __user *urouting; 2436 struct kvm_irq_routing_entry *entries; 2437 2438 r = -EFAULT; 2439 if (copy_from_user(&routing, argp, sizeof(routing))) 2440 goto out; 2441 r = -EINVAL; 2442 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2443 goto out; 2444 if (routing.flags) 2445 goto out; 2446 r = -ENOMEM; 2447 entries = vmalloc(routing.nr * sizeof(*entries)); 2448 if (!entries) 2449 goto out; 2450 r = -EFAULT; 2451 urouting = argp; 2452 if (copy_from_user(entries, urouting->entries, 2453 routing.nr * sizeof(*entries))) 2454 goto out_free_irq_routing; 2455 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2456 routing.flags); 2457 out_free_irq_routing: 2458 vfree(entries); 2459 break; 2460 } 2461 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2462 case KVM_CREATE_DEVICE: { 2463 struct kvm_create_device cd; 2464 2465 r = -EFAULT; 2466 if (copy_from_user(&cd, argp, sizeof(cd))) 2467 goto out; 2468 2469 r = kvm_ioctl_create_device(kvm, &cd); 2470 if (r) 2471 goto out; 2472 2473 r = -EFAULT; 2474 if (copy_to_user(argp, &cd, sizeof(cd))) 2475 goto out; 2476 2477 r = 0; 2478 break; 2479 } 2480 default: 2481 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2482 if (r == -ENOTTY) 2483 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2484 } 2485 out: 2486 return r; 2487 } 2488 2489 #ifdef CONFIG_COMPAT 2490 struct compat_kvm_dirty_log { 2491 __u32 slot; 2492 __u32 padding1; 2493 union { 2494 compat_uptr_t dirty_bitmap; /* one bit per page */ 2495 __u64 padding2; 2496 }; 2497 }; 2498 2499 static long kvm_vm_compat_ioctl(struct file *filp, 2500 unsigned int ioctl, unsigned long arg) 2501 { 2502 struct kvm *kvm = filp->private_data; 2503 int r; 2504 2505 if (kvm->mm != current->mm) 2506 return -EIO; 2507 switch (ioctl) { 2508 case KVM_GET_DIRTY_LOG: { 2509 struct compat_kvm_dirty_log compat_log; 2510 struct kvm_dirty_log log; 2511 2512 r = -EFAULT; 2513 if (copy_from_user(&compat_log, (void __user *)arg, 2514 sizeof(compat_log))) 2515 goto out; 2516 log.slot = compat_log.slot; 2517 log.padding1 = compat_log.padding1; 2518 log.padding2 = compat_log.padding2; 2519 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2520 2521 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2522 break; 2523 } 2524 default: 2525 r = kvm_vm_ioctl(filp, ioctl, arg); 2526 } 2527 2528 out: 2529 return r; 2530 } 2531 #endif 2532 2533 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2534 { 2535 struct page *page[1]; 2536 unsigned long addr; 2537 int npages; 2538 gfn_t gfn = vmf->pgoff; 2539 struct kvm *kvm = vma->vm_file->private_data; 2540 2541 addr = gfn_to_hva(kvm, gfn); 2542 if (kvm_is_error_hva(addr)) 2543 return VM_FAULT_SIGBUS; 2544 2545 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2546 NULL); 2547 if (unlikely(npages != 1)) 2548 return VM_FAULT_SIGBUS; 2549 2550 vmf->page = page[0]; 2551 return 0; 2552 } 2553 2554 static const struct vm_operations_struct kvm_vm_vm_ops = { 2555 .fault = kvm_vm_fault, 2556 }; 2557 2558 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2559 { 2560 vma->vm_ops = &kvm_vm_vm_ops; 2561 return 0; 2562 } 2563 2564 static struct file_operations kvm_vm_fops = { 2565 .release = kvm_vm_release, 2566 .unlocked_ioctl = kvm_vm_ioctl, 2567 #ifdef CONFIG_COMPAT 2568 .compat_ioctl = kvm_vm_compat_ioctl, 2569 #endif 2570 .mmap = kvm_vm_mmap, 2571 .llseek = noop_llseek, 2572 }; 2573 2574 static int kvm_dev_ioctl_create_vm(unsigned long type) 2575 { 2576 int r; 2577 struct kvm *kvm; 2578 2579 kvm = kvm_create_vm(type); 2580 if (IS_ERR(kvm)) 2581 return PTR_ERR(kvm); 2582 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2583 r = kvm_coalesced_mmio_init(kvm); 2584 if (r < 0) { 2585 kvm_put_kvm(kvm); 2586 return r; 2587 } 2588 #endif 2589 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2590 if (r < 0) 2591 kvm_put_kvm(kvm); 2592 2593 return r; 2594 } 2595 2596 static long kvm_dev_ioctl_check_extension_generic(long arg) 2597 { 2598 switch (arg) { 2599 case KVM_CAP_USER_MEMORY: 2600 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2601 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2602 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2603 case KVM_CAP_SET_BOOT_CPU_ID: 2604 #endif 2605 case KVM_CAP_INTERNAL_ERROR_DATA: 2606 #ifdef CONFIG_HAVE_KVM_MSI 2607 case KVM_CAP_SIGNAL_MSI: 2608 #endif 2609 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2610 case KVM_CAP_IRQFD_RESAMPLE: 2611 #endif 2612 return 1; 2613 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2614 case KVM_CAP_IRQ_ROUTING: 2615 return KVM_MAX_IRQ_ROUTES; 2616 #endif 2617 default: 2618 break; 2619 } 2620 return kvm_dev_ioctl_check_extension(arg); 2621 } 2622 2623 static long kvm_dev_ioctl(struct file *filp, 2624 unsigned int ioctl, unsigned long arg) 2625 { 2626 long r = -EINVAL; 2627 2628 switch (ioctl) { 2629 case KVM_GET_API_VERSION: 2630 r = -EINVAL; 2631 if (arg) 2632 goto out; 2633 r = KVM_API_VERSION; 2634 break; 2635 case KVM_CREATE_VM: 2636 r = kvm_dev_ioctl_create_vm(arg); 2637 break; 2638 case KVM_CHECK_EXTENSION: 2639 r = kvm_dev_ioctl_check_extension_generic(arg); 2640 break; 2641 case KVM_GET_VCPU_MMAP_SIZE: 2642 r = -EINVAL; 2643 if (arg) 2644 goto out; 2645 r = PAGE_SIZE; /* struct kvm_run */ 2646 #ifdef CONFIG_X86 2647 r += PAGE_SIZE; /* pio data page */ 2648 #endif 2649 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2650 r += PAGE_SIZE; /* coalesced mmio ring page */ 2651 #endif 2652 break; 2653 case KVM_TRACE_ENABLE: 2654 case KVM_TRACE_PAUSE: 2655 case KVM_TRACE_DISABLE: 2656 r = -EOPNOTSUPP; 2657 break; 2658 default: 2659 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2660 } 2661 out: 2662 return r; 2663 } 2664 2665 static struct file_operations kvm_chardev_ops = { 2666 .unlocked_ioctl = kvm_dev_ioctl, 2667 .compat_ioctl = kvm_dev_ioctl, 2668 .llseek = noop_llseek, 2669 }; 2670 2671 static struct miscdevice kvm_dev = { 2672 KVM_MINOR, 2673 "kvm", 2674 &kvm_chardev_ops, 2675 }; 2676 2677 static void hardware_enable_nolock(void *junk) 2678 { 2679 int cpu = raw_smp_processor_id(); 2680 int r; 2681 2682 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2683 return; 2684 2685 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2686 2687 r = kvm_arch_hardware_enable(NULL); 2688 2689 if (r) { 2690 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2691 atomic_inc(&hardware_enable_failed); 2692 printk(KERN_INFO "kvm: enabling virtualization on " 2693 "CPU%d failed\n", cpu); 2694 } 2695 } 2696 2697 static void hardware_enable(void *junk) 2698 { 2699 raw_spin_lock(&kvm_lock); 2700 hardware_enable_nolock(junk); 2701 raw_spin_unlock(&kvm_lock); 2702 } 2703 2704 static void hardware_disable_nolock(void *junk) 2705 { 2706 int cpu = raw_smp_processor_id(); 2707 2708 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2709 return; 2710 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2711 kvm_arch_hardware_disable(NULL); 2712 } 2713 2714 static void hardware_disable(void *junk) 2715 { 2716 raw_spin_lock(&kvm_lock); 2717 hardware_disable_nolock(junk); 2718 raw_spin_unlock(&kvm_lock); 2719 } 2720 2721 static void hardware_disable_all_nolock(void) 2722 { 2723 BUG_ON(!kvm_usage_count); 2724 2725 kvm_usage_count--; 2726 if (!kvm_usage_count) 2727 on_each_cpu(hardware_disable_nolock, NULL, 1); 2728 } 2729 2730 static void hardware_disable_all(void) 2731 { 2732 raw_spin_lock(&kvm_lock); 2733 hardware_disable_all_nolock(); 2734 raw_spin_unlock(&kvm_lock); 2735 } 2736 2737 static int hardware_enable_all(void) 2738 { 2739 int r = 0; 2740 2741 raw_spin_lock(&kvm_lock); 2742 2743 kvm_usage_count++; 2744 if (kvm_usage_count == 1) { 2745 atomic_set(&hardware_enable_failed, 0); 2746 on_each_cpu(hardware_enable_nolock, NULL, 1); 2747 2748 if (atomic_read(&hardware_enable_failed)) { 2749 hardware_disable_all_nolock(); 2750 r = -EBUSY; 2751 } 2752 } 2753 2754 raw_spin_unlock(&kvm_lock); 2755 2756 return r; 2757 } 2758 2759 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2760 void *v) 2761 { 2762 int cpu = (long)v; 2763 2764 if (!kvm_usage_count) 2765 return NOTIFY_OK; 2766 2767 val &= ~CPU_TASKS_FROZEN; 2768 switch (val) { 2769 case CPU_DYING: 2770 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2771 cpu); 2772 hardware_disable(NULL); 2773 break; 2774 case CPU_STARTING: 2775 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2776 cpu); 2777 hardware_enable(NULL); 2778 break; 2779 } 2780 return NOTIFY_OK; 2781 } 2782 2783 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2784 void *v) 2785 { 2786 /* 2787 * Some (well, at least mine) BIOSes hang on reboot if 2788 * in vmx root mode. 2789 * 2790 * And Intel TXT required VMX off for all cpu when system shutdown. 2791 */ 2792 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2793 kvm_rebooting = true; 2794 on_each_cpu(hardware_disable_nolock, NULL, 1); 2795 return NOTIFY_OK; 2796 } 2797 2798 static struct notifier_block kvm_reboot_notifier = { 2799 .notifier_call = kvm_reboot, 2800 .priority = 0, 2801 }; 2802 2803 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2804 { 2805 int i; 2806 2807 for (i = 0; i < bus->dev_count; i++) { 2808 struct kvm_io_device *pos = bus->range[i].dev; 2809 2810 kvm_iodevice_destructor(pos); 2811 } 2812 kfree(bus); 2813 } 2814 2815 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2816 { 2817 const struct kvm_io_range *r1 = p1; 2818 const struct kvm_io_range *r2 = p2; 2819 2820 if (r1->addr < r2->addr) 2821 return -1; 2822 if (r1->addr + r1->len > r2->addr + r2->len) 2823 return 1; 2824 return 0; 2825 } 2826 2827 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2828 gpa_t addr, int len) 2829 { 2830 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2831 .addr = addr, 2832 .len = len, 2833 .dev = dev, 2834 }; 2835 2836 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2837 kvm_io_bus_sort_cmp, NULL); 2838 2839 return 0; 2840 } 2841 2842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2843 gpa_t addr, int len) 2844 { 2845 struct kvm_io_range *range, key; 2846 int off; 2847 2848 key = (struct kvm_io_range) { 2849 .addr = addr, 2850 .len = len, 2851 }; 2852 2853 range = bsearch(&key, bus->range, bus->dev_count, 2854 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2855 if (range == NULL) 2856 return -ENOENT; 2857 2858 off = range - bus->range; 2859 2860 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) 2861 off--; 2862 2863 return off; 2864 } 2865 2866 /* kvm_io_bus_write - called under kvm->slots_lock */ 2867 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2868 int len, const void *val) 2869 { 2870 int idx; 2871 struct kvm_io_bus *bus; 2872 struct kvm_io_range range; 2873 2874 range = (struct kvm_io_range) { 2875 .addr = addr, 2876 .len = len, 2877 }; 2878 2879 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2880 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2881 if (idx < 0) 2882 return -EOPNOTSUPP; 2883 2884 while (idx < bus->dev_count && 2885 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2886 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) 2887 return 0; 2888 idx++; 2889 } 2890 2891 return -EOPNOTSUPP; 2892 } 2893 2894 /* kvm_io_bus_read - called under kvm->slots_lock */ 2895 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2896 int len, void *val) 2897 { 2898 int idx; 2899 struct kvm_io_bus *bus; 2900 struct kvm_io_range range; 2901 2902 range = (struct kvm_io_range) { 2903 .addr = addr, 2904 .len = len, 2905 }; 2906 2907 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2908 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2909 if (idx < 0) 2910 return -EOPNOTSUPP; 2911 2912 while (idx < bus->dev_count && 2913 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2914 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) 2915 return 0; 2916 idx++; 2917 } 2918 2919 return -EOPNOTSUPP; 2920 } 2921 2922 /* Caller must hold slots_lock. */ 2923 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2924 int len, struct kvm_io_device *dev) 2925 { 2926 struct kvm_io_bus *new_bus, *bus; 2927 2928 bus = kvm->buses[bus_idx]; 2929 if (bus->dev_count > NR_IOBUS_DEVS - 1) 2930 return -ENOSPC; 2931 2932 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2933 sizeof(struct kvm_io_range)), GFP_KERNEL); 2934 if (!new_bus) 2935 return -ENOMEM; 2936 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2937 sizeof(struct kvm_io_range))); 2938 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2939 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2940 synchronize_srcu_expedited(&kvm->srcu); 2941 kfree(bus); 2942 2943 return 0; 2944 } 2945 2946 /* Caller must hold slots_lock. */ 2947 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2948 struct kvm_io_device *dev) 2949 { 2950 int i, r; 2951 struct kvm_io_bus *new_bus, *bus; 2952 2953 bus = kvm->buses[bus_idx]; 2954 r = -ENOENT; 2955 for (i = 0; i < bus->dev_count; i++) 2956 if (bus->range[i].dev == dev) { 2957 r = 0; 2958 break; 2959 } 2960 2961 if (r) 2962 return r; 2963 2964 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 2965 sizeof(struct kvm_io_range)), GFP_KERNEL); 2966 if (!new_bus) 2967 return -ENOMEM; 2968 2969 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 2970 new_bus->dev_count--; 2971 memcpy(new_bus->range + i, bus->range + i + 1, 2972 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 2973 2974 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2975 synchronize_srcu_expedited(&kvm->srcu); 2976 kfree(bus); 2977 return r; 2978 } 2979 2980 static struct notifier_block kvm_cpu_notifier = { 2981 .notifier_call = kvm_cpu_hotplug, 2982 }; 2983 2984 static int vm_stat_get(void *_offset, u64 *val) 2985 { 2986 unsigned offset = (long)_offset; 2987 struct kvm *kvm; 2988 2989 *val = 0; 2990 raw_spin_lock(&kvm_lock); 2991 list_for_each_entry(kvm, &vm_list, vm_list) 2992 *val += *(u32 *)((void *)kvm + offset); 2993 raw_spin_unlock(&kvm_lock); 2994 return 0; 2995 } 2996 2997 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2998 2999 static int vcpu_stat_get(void *_offset, u64 *val) 3000 { 3001 unsigned offset = (long)_offset; 3002 struct kvm *kvm; 3003 struct kvm_vcpu *vcpu; 3004 int i; 3005 3006 *val = 0; 3007 raw_spin_lock(&kvm_lock); 3008 list_for_each_entry(kvm, &vm_list, vm_list) 3009 kvm_for_each_vcpu(i, vcpu, kvm) 3010 *val += *(u32 *)((void *)vcpu + offset); 3011 3012 raw_spin_unlock(&kvm_lock); 3013 return 0; 3014 } 3015 3016 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3017 3018 static const struct file_operations *stat_fops[] = { 3019 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3020 [KVM_STAT_VM] = &vm_stat_fops, 3021 }; 3022 3023 static int kvm_init_debug(void) 3024 { 3025 int r = -EFAULT; 3026 struct kvm_stats_debugfs_item *p; 3027 3028 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3029 if (kvm_debugfs_dir == NULL) 3030 goto out; 3031 3032 for (p = debugfs_entries; p->name; ++p) { 3033 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3034 (void *)(long)p->offset, 3035 stat_fops[p->kind]); 3036 if (p->dentry == NULL) 3037 goto out_dir; 3038 } 3039 3040 return 0; 3041 3042 out_dir: 3043 debugfs_remove_recursive(kvm_debugfs_dir); 3044 out: 3045 return r; 3046 } 3047 3048 static void kvm_exit_debug(void) 3049 { 3050 struct kvm_stats_debugfs_item *p; 3051 3052 for (p = debugfs_entries; p->name; ++p) 3053 debugfs_remove(p->dentry); 3054 debugfs_remove(kvm_debugfs_dir); 3055 } 3056 3057 static int kvm_suspend(void) 3058 { 3059 if (kvm_usage_count) 3060 hardware_disable_nolock(NULL); 3061 return 0; 3062 } 3063 3064 static void kvm_resume(void) 3065 { 3066 if (kvm_usage_count) { 3067 WARN_ON(raw_spin_is_locked(&kvm_lock)); 3068 hardware_enable_nolock(NULL); 3069 } 3070 } 3071 3072 static struct syscore_ops kvm_syscore_ops = { 3073 .suspend = kvm_suspend, 3074 .resume = kvm_resume, 3075 }; 3076 3077 static inline 3078 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3079 { 3080 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3081 } 3082 3083 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3084 { 3085 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3086 if (vcpu->preempted) 3087 vcpu->preempted = false; 3088 3089 kvm_arch_vcpu_load(vcpu, cpu); 3090 } 3091 3092 static void kvm_sched_out(struct preempt_notifier *pn, 3093 struct task_struct *next) 3094 { 3095 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3096 3097 if (current->state == TASK_RUNNING) 3098 vcpu->preempted = true; 3099 kvm_arch_vcpu_put(vcpu); 3100 } 3101 3102 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3103 struct module *module) 3104 { 3105 int r; 3106 int cpu; 3107 3108 r = kvm_arch_init(opaque); 3109 if (r) 3110 goto out_fail; 3111 3112 /* 3113 * kvm_arch_init makes sure there's at most one caller 3114 * for architectures that support multiple implementations, 3115 * like intel and amd on x86. 3116 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3117 * conflicts in case kvm is already setup for another implementation. 3118 */ 3119 r = kvm_irqfd_init(); 3120 if (r) 3121 goto out_irqfd; 3122 3123 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3124 r = -ENOMEM; 3125 goto out_free_0; 3126 } 3127 3128 r = kvm_arch_hardware_setup(); 3129 if (r < 0) 3130 goto out_free_0a; 3131 3132 for_each_online_cpu(cpu) { 3133 smp_call_function_single(cpu, 3134 kvm_arch_check_processor_compat, 3135 &r, 1); 3136 if (r < 0) 3137 goto out_free_1; 3138 } 3139 3140 r = register_cpu_notifier(&kvm_cpu_notifier); 3141 if (r) 3142 goto out_free_2; 3143 register_reboot_notifier(&kvm_reboot_notifier); 3144 3145 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3146 if (!vcpu_align) 3147 vcpu_align = __alignof__(struct kvm_vcpu); 3148 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3149 0, NULL); 3150 if (!kvm_vcpu_cache) { 3151 r = -ENOMEM; 3152 goto out_free_3; 3153 } 3154 3155 r = kvm_async_pf_init(); 3156 if (r) 3157 goto out_free; 3158 3159 kvm_chardev_ops.owner = module; 3160 kvm_vm_fops.owner = module; 3161 kvm_vcpu_fops.owner = module; 3162 3163 r = misc_register(&kvm_dev); 3164 if (r) { 3165 printk(KERN_ERR "kvm: misc device register failed\n"); 3166 goto out_unreg; 3167 } 3168 3169 register_syscore_ops(&kvm_syscore_ops); 3170 3171 kvm_preempt_ops.sched_in = kvm_sched_in; 3172 kvm_preempt_ops.sched_out = kvm_sched_out; 3173 3174 r = kvm_init_debug(); 3175 if (r) { 3176 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3177 goto out_undebugfs; 3178 } 3179 3180 return 0; 3181 3182 out_undebugfs: 3183 unregister_syscore_ops(&kvm_syscore_ops); 3184 out_unreg: 3185 kvm_async_pf_deinit(); 3186 out_free: 3187 kmem_cache_destroy(kvm_vcpu_cache); 3188 out_free_3: 3189 unregister_reboot_notifier(&kvm_reboot_notifier); 3190 unregister_cpu_notifier(&kvm_cpu_notifier); 3191 out_free_2: 3192 out_free_1: 3193 kvm_arch_hardware_unsetup(); 3194 out_free_0a: 3195 free_cpumask_var(cpus_hardware_enabled); 3196 out_free_0: 3197 kvm_irqfd_exit(); 3198 out_irqfd: 3199 kvm_arch_exit(); 3200 out_fail: 3201 return r; 3202 } 3203 EXPORT_SYMBOL_GPL(kvm_init); 3204 3205 void kvm_exit(void) 3206 { 3207 kvm_exit_debug(); 3208 misc_deregister(&kvm_dev); 3209 kmem_cache_destroy(kvm_vcpu_cache); 3210 kvm_async_pf_deinit(); 3211 unregister_syscore_ops(&kvm_syscore_ops); 3212 unregister_reboot_notifier(&kvm_reboot_notifier); 3213 unregister_cpu_notifier(&kvm_cpu_notifier); 3214 on_each_cpu(hardware_disable_nolock, NULL, 1); 3215 kvm_arch_hardware_unsetup(); 3216 kvm_arch_exit(); 3217 kvm_irqfd_exit(); 3218 free_cpumask_var(cpus_hardware_enabled); 3219 } 3220 EXPORT_SYMBOL_GPL(kvm_exit); 3221