xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 26b32974)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static struct file_operations kvm_chardev_ops;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165 
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (WARN_ON_ONCE(!page_count(page)))
175 		return false;
176 
177 	return is_zone_device_page(page);
178 }
179 
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188 	struct page *page;
189 
190 	if (!pfn_valid(pfn))
191 		return NULL;
192 
193 	page = pfn_to_page(pfn);
194 	if (!PageReserved(page))
195 		return page;
196 
197 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198 	if (is_zero_pfn(pfn))
199 		return page;
200 
201 	/*
202 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203 	 * perspective they are "normal" pages, albeit with slightly different
204 	 * usage rules.
205 	 */
206 	if (kvm_is_zone_device_page(page))
207 		return page;
208 
209 	return NULL;
210 }
211 
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217 	int cpu = get_cpu();
218 
219 	__this_cpu_write(kvm_running_vcpu, vcpu);
220 	preempt_notifier_register(&vcpu->preempt_notifier);
221 	kvm_arch_vcpu_load(vcpu, cpu);
222 	put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225 
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228 	preempt_disable();
229 	kvm_arch_vcpu_put(vcpu);
230 	preempt_notifier_unregister(&vcpu->preempt_notifier);
231 	__this_cpu_write(kvm_running_vcpu, NULL);
232 	preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235 
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240 
241 	/*
242 	 * We need to wait for the VCPU to reenable interrupts and get out of
243 	 * READING_SHADOW_PAGE_TABLES mode.
244 	 */
245 	if (req & KVM_REQUEST_WAIT)
246 		return mode != OUTSIDE_GUEST_MODE;
247 
248 	/*
249 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
250 	 */
251 	return mode == IN_GUEST_MODE;
252 }
253 
254 static void ack_kick(void *_completed)
255 {
256 }
257 
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260 	if (cpumask_empty(cpus))
261 		return false;
262 
263 	smp_call_function_many(cpus, ack_kick, NULL, wait);
264 	return true;
265 }
266 
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268 				  struct cpumask *tmp, int current_cpu)
269 {
270 	int cpu;
271 
272 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273 		__kvm_make_request(req, vcpu);
274 
275 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 		return;
277 
278 	/*
279 	 * Note, the vCPU could get migrated to a different pCPU at any point
280 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
281 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
282 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284 	 * after this point is also OK, as the requirement is only that KVM wait
285 	 * for vCPUs that were reading SPTEs _before_ any changes were
286 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
287 	 */
288 	if (kvm_request_needs_ipi(vcpu, req)) {
289 		cpu = READ_ONCE(vcpu->cpu);
290 		if (cpu != -1 && cpu != current_cpu)
291 			__cpumask_set_cpu(cpu, tmp);
292 	}
293 }
294 
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296 				 unsigned long *vcpu_bitmap)
297 {
298 	struct kvm_vcpu *vcpu;
299 	struct cpumask *cpus;
300 	int i, me;
301 	bool called;
302 
303 	me = get_cpu();
304 
305 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306 	cpumask_clear(cpus);
307 
308 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 		vcpu = kvm_get_vcpu(kvm, i);
310 		if (!vcpu)
311 			continue;
312 		kvm_make_vcpu_request(vcpu, req, cpus, me);
313 	}
314 
315 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 	put_cpu();
317 
318 	return called;
319 }
320 
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 				      struct kvm_vcpu *except)
323 {
324 	struct kvm_vcpu *vcpu;
325 	struct cpumask *cpus;
326 	unsigned long i;
327 	bool called;
328 	int me;
329 
330 	me = get_cpu();
331 
332 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333 	cpumask_clear(cpus);
334 
335 	kvm_for_each_vcpu(i, vcpu, kvm) {
336 		if (vcpu == except)
337 			continue;
338 		kvm_make_vcpu_request(vcpu, req, cpus, me);
339 	}
340 
341 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 	put_cpu();
343 
344 	return called;
345 }
346 
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352 
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356 	++kvm->stat.generic.remote_tlb_flush_requests;
357 
358 	/*
359 	 * We want to publish modifications to the page tables before reading
360 	 * mode. Pairs with a memory barrier in arch-specific code.
361 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
363 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364 	 *
365 	 * There is already an smp_mb__after_atomic() before
366 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367 	 * barrier here.
368 	 */
369 	if (!kvm_arch_flush_remote_tlb(kvm)
370 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371 		++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375 
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378 	kvm_arch_flush_shadow_all(kvm);
379 	kvm_arch_guest_memory_reclaimed(kvm);
380 }
381 
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384 					       gfp_t gfp_flags)
385 {
386 	gfp_flags |= mc->gfp_zero;
387 
388 	if (mc->kmem_cache)
389 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390 	else
391 		return (void *)__get_free_page(gfp_flags);
392 }
393 
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397 	void *obj;
398 
399 	if (mc->nobjs >= min)
400 		return 0;
401 
402 	if (unlikely(!mc->objects)) {
403 		if (WARN_ON_ONCE(!capacity))
404 			return -EIO;
405 
406 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407 		if (!mc->objects)
408 			return -ENOMEM;
409 
410 		mc->capacity = capacity;
411 	}
412 
413 	/* It is illegal to request a different capacity across topups. */
414 	if (WARN_ON_ONCE(mc->capacity != capacity))
415 		return -EIO;
416 
417 	while (mc->nobjs < mc->capacity) {
418 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
419 		if (!obj)
420 			return mc->nobjs >= min ? 0 : -ENOMEM;
421 		mc->objects[mc->nobjs++] = obj;
422 	}
423 	return 0;
424 }
425 
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430 
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433 	return mc->nobjs;
434 }
435 
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438 	while (mc->nobjs) {
439 		if (mc->kmem_cache)
440 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441 		else
442 			free_page((unsigned long)mc->objects[--mc->nobjs]);
443 	}
444 
445 	kvfree(mc->objects);
446 
447 	mc->objects = NULL;
448 	mc->capacity = 0;
449 }
450 
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453 	void *p;
454 
455 	if (WARN_ON(!mc->nobjs))
456 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457 	else
458 		p = mc->objects[--mc->nobjs];
459 	BUG_ON(!p);
460 	return p;
461 }
462 #endif
463 
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466 	mutex_init(&vcpu->mutex);
467 	vcpu->cpu = -1;
468 	vcpu->kvm = kvm;
469 	vcpu->vcpu_id = id;
470 	vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472 	rcuwait_init(&vcpu->wait);
473 #endif
474 	kvm_async_pf_vcpu_init(vcpu);
475 
476 	kvm_vcpu_set_in_spin_loop(vcpu, false);
477 	kvm_vcpu_set_dy_eligible(vcpu, false);
478 	vcpu->preempted = false;
479 	vcpu->ready = false;
480 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481 	vcpu->last_used_slot = NULL;
482 
483 	/* Fill the stats id string for the vcpu */
484 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485 		 task_pid_nr(current), id);
486 }
487 
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490 	kvm_arch_vcpu_destroy(vcpu);
491 	kvm_dirty_ring_free(&vcpu->dirty_ring);
492 
493 	/*
494 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495 	 * the vcpu->pid pointer, and at destruction time all file descriptors
496 	 * are already gone.
497 	 */
498 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
499 
500 	free_page((unsigned long)vcpu->run);
501 	kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503 
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506 	unsigned long i;
507 	struct kvm_vcpu *vcpu;
508 
509 	kvm_for_each_vcpu(i, vcpu, kvm) {
510 		kvm_vcpu_destroy(vcpu);
511 		xa_erase(&kvm->vcpu_array, i);
512 	}
513 
514 	atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517 
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521 	return container_of(mn, struct kvm, mmu_notifier);
522 }
523 
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525 					      struct mm_struct *mm,
526 					      unsigned long start, unsigned long end)
527 {
528 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 	int idx;
530 
531 	idx = srcu_read_lock(&kvm->srcu);
532 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533 	srcu_read_unlock(&kvm->srcu, idx);
534 }
535 
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537 
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539 			     unsigned long end);
540 
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542 
543 struct kvm_hva_range {
544 	unsigned long start;
545 	unsigned long end;
546 	pte_t pte;
547 	hva_handler_t handler;
548 	on_lock_fn_t on_lock;
549 	on_unlock_fn_t on_unlock;
550 	bool flush_on_ret;
551 	bool may_block;
552 };
553 
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563 
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566 
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
569 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570 	     node;							     \
571 	     node = interval_tree_iter_next(node, start, last))	     \
572 
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574 						  const struct kvm_hva_range *range)
575 {
576 	bool ret = false, locked = false;
577 	struct kvm_gfn_range gfn_range;
578 	struct kvm_memory_slot *slot;
579 	struct kvm_memslots *slots;
580 	int i, idx;
581 
582 	if (WARN_ON_ONCE(range->end <= range->start))
583 		return 0;
584 
585 	/* A null handler is allowed if and only if on_lock() is provided. */
586 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587 			 IS_KVM_NULL_FN(range->handler)))
588 		return 0;
589 
590 	idx = srcu_read_lock(&kvm->srcu);
591 
592 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593 		struct interval_tree_node *node;
594 
595 		slots = __kvm_memslots(kvm, i);
596 		kvm_for_each_memslot_in_hva_range(node, slots,
597 						  range->start, range->end - 1) {
598 			unsigned long hva_start, hva_end;
599 
600 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601 			hva_start = max(range->start, slot->userspace_addr);
602 			hva_end = min(range->end, slot->userspace_addr +
603 						  (slot->npages << PAGE_SHIFT));
604 
605 			/*
606 			 * To optimize for the likely case where the address
607 			 * range is covered by zero or one memslots, don't
608 			 * bother making these conditional (to avoid writes on
609 			 * the second or later invocation of the handler).
610 			 */
611 			gfn_range.pte = range->pte;
612 			gfn_range.may_block = range->may_block;
613 
614 			/*
615 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 			 */
618 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 			gfn_range.slot = slot;
621 
622 			if (!locked) {
623 				locked = true;
624 				KVM_MMU_LOCK(kvm);
625 				if (!IS_KVM_NULL_FN(range->on_lock))
626 					range->on_lock(kvm, range->start, range->end);
627 				if (IS_KVM_NULL_FN(range->handler))
628 					break;
629 			}
630 			ret |= range->handler(kvm, &gfn_range);
631 		}
632 	}
633 
634 	if (range->flush_on_ret && ret)
635 		kvm_flush_remote_tlbs(kvm);
636 
637 	if (locked) {
638 		KVM_MMU_UNLOCK(kvm);
639 		if (!IS_KVM_NULL_FN(range->on_unlock))
640 			range->on_unlock(kvm);
641 	}
642 
643 	srcu_read_unlock(&kvm->srcu, idx);
644 
645 	/* The notifiers are averse to booleans. :-( */
646 	return (int)ret;
647 }
648 
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650 						unsigned long start,
651 						unsigned long end,
652 						pte_t pte,
653 						hva_handler_t handler)
654 {
655 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
656 	const struct kvm_hva_range range = {
657 		.start		= start,
658 		.end		= end,
659 		.pte		= pte,
660 		.handler	= handler,
661 		.on_lock	= (void *)kvm_null_fn,
662 		.on_unlock	= (void *)kvm_null_fn,
663 		.flush_on_ret	= true,
664 		.may_block	= false,
665 	};
666 
667 	return __kvm_handle_hva_range(kvm, &range);
668 }
669 
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671 							 unsigned long start,
672 							 unsigned long end,
673 							 hva_handler_t handler)
674 {
675 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 	const struct kvm_hva_range range = {
677 		.start		= start,
678 		.end		= end,
679 		.pte		= __pte(0),
680 		.handler	= handler,
681 		.on_lock	= (void *)kvm_null_fn,
682 		.on_unlock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= false,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range);
688 }
689 
690 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
691 {
692 	/*
693 	 * Skipping invalid memslots is correct if and only change_pte() is
694 	 * surrounded by invalidate_range_{start,end}(), which is currently
695 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
696 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
697 	 * doesn't hold references to the old PFN.
698 	 */
699 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
700 
701 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
702 		return false;
703 
704 	return kvm_set_spte_gfn(kvm, range);
705 }
706 
707 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
708 					struct mm_struct *mm,
709 					unsigned long address,
710 					pte_t pte)
711 {
712 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
713 
714 	trace_kvm_set_spte_hva(address);
715 
716 	/*
717 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
718 	 * If mmu_invalidate_in_progress is zero, then no in-progress
719 	 * invalidations, including this one, found a relevant memslot at
720 	 * start(); rechecking memslots here is unnecessary.  Note, a false
721 	 * positive (count elevated by a different invalidation) is sub-optimal
722 	 * but functionally ok.
723 	 */
724 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
725 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
726 		return;
727 
728 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
729 }
730 
731 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
732 			      unsigned long end)
733 {
734 	/*
735 	 * The count increase must become visible at unlock time as no
736 	 * spte can be established without taking the mmu_lock and
737 	 * count is also read inside the mmu_lock critical section.
738 	 */
739 	kvm->mmu_invalidate_in_progress++;
740 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
741 		kvm->mmu_invalidate_range_start = start;
742 		kvm->mmu_invalidate_range_end = end;
743 	} else {
744 		/*
745 		 * Fully tracking multiple concurrent ranges has diminishing
746 		 * returns. Keep things simple and just find the minimal range
747 		 * which includes the current and new ranges. As there won't be
748 		 * enough information to subtract a range after its invalidate
749 		 * completes, any ranges invalidated concurrently will
750 		 * accumulate and persist until all outstanding invalidates
751 		 * complete.
752 		 */
753 		kvm->mmu_invalidate_range_start =
754 			min(kvm->mmu_invalidate_range_start, start);
755 		kvm->mmu_invalidate_range_end =
756 			max(kvm->mmu_invalidate_range_end, end);
757 	}
758 }
759 
760 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
761 					const struct mmu_notifier_range *range)
762 {
763 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
764 	const struct kvm_hva_range hva_range = {
765 		.start		= range->start,
766 		.end		= range->end,
767 		.pte		= __pte(0),
768 		.handler	= kvm_unmap_gfn_range,
769 		.on_lock	= kvm_mmu_invalidate_begin,
770 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
771 		.flush_on_ret	= true,
772 		.may_block	= mmu_notifier_range_blockable(range),
773 	};
774 
775 	trace_kvm_unmap_hva_range(range->start, range->end);
776 
777 	/*
778 	 * Prevent memslot modification between range_start() and range_end()
779 	 * so that conditionally locking provides the same result in both
780 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
781 	 * adjustments will be imbalanced.
782 	 *
783 	 * Pairs with the decrement in range_end().
784 	 */
785 	spin_lock(&kvm->mn_invalidate_lock);
786 	kvm->mn_active_invalidate_count++;
787 	spin_unlock(&kvm->mn_invalidate_lock);
788 
789 	/*
790 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
791 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
792 	 * each cache's lock.  There are relatively few caches in existence at
793 	 * any given time, and the caches themselves can check for hva overlap,
794 	 * i.e. don't need to rely on memslot overlap checks for performance.
795 	 * Because this runs without holding mmu_lock, the pfn caches must use
796 	 * mn_active_invalidate_count (see above) instead of
797 	 * mmu_invalidate_in_progress.
798 	 */
799 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
800 					  hva_range.may_block);
801 
802 	__kvm_handle_hva_range(kvm, &hva_range);
803 
804 	return 0;
805 }
806 
807 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
808 			    unsigned long end)
809 {
810 	/*
811 	 * This sequence increase will notify the kvm page fault that
812 	 * the page that is going to be mapped in the spte could have
813 	 * been freed.
814 	 */
815 	kvm->mmu_invalidate_seq++;
816 	smp_wmb();
817 	/*
818 	 * The above sequence increase must be visible before the
819 	 * below count decrease, which is ensured by the smp_wmb above
820 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
821 	 */
822 	kvm->mmu_invalidate_in_progress--;
823 }
824 
825 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
826 					const struct mmu_notifier_range *range)
827 {
828 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
829 	const struct kvm_hva_range hva_range = {
830 		.start		= range->start,
831 		.end		= range->end,
832 		.pte		= __pte(0),
833 		.handler	= (void *)kvm_null_fn,
834 		.on_lock	= kvm_mmu_invalidate_end,
835 		.on_unlock	= (void *)kvm_null_fn,
836 		.flush_on_ret	= false,
837 		.may_block	= mmu_notifier_range_blockable(range),
838 	};
839 	bool wake;
840 
841 	__kvm_handle_hva_range(kvm, &hva_range);
842 
843 	/* Pairs with the increment in range_start(). */
844 	spin_lock(&kvm->mn_invalidate_lock);
845 	wake = (--kvm->mn_active_invalidate_count == 0);
846 	spin_unlock(&kvm->mn_invalidate_lock);
847 
848 	/*
849 	 * There can only be one waiter, since the wait happens under
850 	 * slots_lock.
851 	 */
852 	if (wake)
853 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
854 
855 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
856 }
857 
858 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
859 					      struct mm_struct *mm,
860 					      unsigned long start,
861 					      unsigned long end)
862 {
863 	trace_kvm_age_hva(start, end);
864 
865 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
866 }
867 
868 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
869 					struct mm_struct *mm,
870 					unsigned long start,
871 					unsigned long end)
872 {
873 	trace_kvm_age_hva(start, end);
874 
875 	/*
876 	 * Even though we do not flush TLB, this will still adversely
877 	 * affect performance on pre-Haswell Intel EPT, where there is
878 	 * no EPT Access Bit to clear so that we have to tear down EPT
879 	 * tables instead. If we find this unacceptable, we can always
880 	 * add a parameter to kvm_age_hva so that it effectively doesn't
881 	 * do anything on clear_young.
882 	 *
883 	 * Also note that currently we never issue secondary TLB flushes
884 	 * from clear_young, leaving this job up to the regular system
885 	 * cadence. If we find this inaccurate, we might come up with a
886 	 * more sophisticated heuristic later.
887 	 */
888 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
889 }
890 
891 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
892 				       struct mm_struct *mm,
893 				       unsigned long address)
894 {
895 	trace_kvm_test_age_hva(address);
896 
897 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
898 					     kvm_test_age_gfn);
899 }
900 
901 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
902 				     struct mm_struct *mm)
903 {
904 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
905 	int idx;
906 
907 	idx = srcu_read_lock(&kvm->srcu);
908 	kvm_flush_shadow_all(kvm);
909 	srcu_read_unlock(&kvm->srcu, idx);
910 }
911 
912 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
913 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
914 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
915 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
916 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
917 	.clear_young		= kvm_mmu_notifier_clear_young,
918 	.test_young		= kvm_mmu_notifier_test_young,
919 	.change_pte		= kvm_mmu_notifier_change_pte,
920 	.release		= kvm_mmu_notifier_release,
921 };
922 
923 static int kvm_init_mmu_notifier(struct kvm *kvm)
924 {
925 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927 }
928 
929 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
930 
931 static int kvm_init_mmu_notifier(struct kvm *kvm)
932 {
933 	return 0;
934 }
935 
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937 
938 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
939 static int kvm_pm_notifier_call(struct notifier_block *bl,
940 				unsigned long state,
941 				void *unused)
942 {
943 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944 
945 	return kvm_arch_pm_notifier(kvm, state);
946 }
947 
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
952 	kvm->pm_notifier.priority = INT_MAX;
953 	register_pm_notifier(&kvm->pm_notifier);
954 }
955 
956 static void kvm_destroy_pm_notifier(struct kvm *kvm)
957 {
958 	unregister_pm_notifier(&kvm->pm_notifier);
959 }
960 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
961 static void kvm_init_pm_notifier(struct kvm *kvm)
962 {
963 }
964 
965 static void kvm_destroy_pm_notifier(struct kvm *kvm)
966 {
967 }
968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969 
970 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971 {
972 	if (!memslot->dirty_bitmap)
973 		return;
974 
975 	kvfree(memslot->dirty_bitmap);
976 	memslot->dirty_bitmap = NULL;
977 }
978 
979 /* This does not remove the slot from struct kvm_memslots data structures */
980 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981 {
982 	kvm_destroy_dirty_bitmap(slot);
983 
984 	kvm_arch_free_memslot(kvm, slot);
985 
986 	kfree(slot);
987 }
988 
989 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
990 {
991 	struct hlist_node *idnode;
992 	struct kvm_memory_slot *memslot;
993 	int bkt;
994 
995 	/*
996 	 * The same memslot objects live in both active and inactive sets,
997 	 * arbitrarily free using index '1' so the second invocation of this
998 	 * function isn't operating over a structure with dangling pointers
999 	 * (even though this function isn't actually touching them).
1000 	 */
1001 	if (!slots->node_idx)
1002 		return;
1003 
1004 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1005 		kvm_free_memslot(kvm, memslot);
1006 }
1007 
1008 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1009 {
1010 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1011 	case KVM_STATS_TYPE_INSTANT:
1012 		return 0444;
1013 	case KVM_STATS_TYPE_CUMULATIVE:
1014 	case KVM_STATS_TYPE_PEAK:
1015 	default:
1016 		return 0644;
1017 	}
1018 }
1019 
1020 
1021 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1022 {
1023 	int i;
1024 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025 				      kvm_vcpu_stats_header.num_desc;
1026 
1027 	if (IS_ERR(kvm->debugfs_dentry))
1028 		return;
1029 
1030 	debugfs_remove_recursive(kvm->debugfs_dentry);
1031 
1032 	if (kvm->debugfs_stat_data) {
1033 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1034 			kfree(kvm->debugfs_stat_data[i]);
1035 		kfree(kvm->debugfs_stat_data);
1036 	}
1037 }
1038 
1039 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1040 {
1041 	static DEFINE_MUTEX(kvm_debugfs_lock);
1042 	struct dentry *dent;
1043 	char dir_name[ITOA_MAX_LEN * 2];
1044 	struct kvm_stat_data *stat_data;
1045 	const struct _kvm_stats_desc *pdesc;
1046 	int i, ret = -ENOMEM;
1047 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1048 				      kvm_vcpu_stats_header.num_desc;
1049 
1050 	if (!debugfs_initialized())
1051 		return 0;
1052 
1053 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1054 	mutex_lock(&kvm_debugfs_lock);
1055 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1056 	if (dent) {
1057 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1058 		dput(dent);
1059 		mutex_unlock(&kvm_debugfs_lock);
1060 		return 0;
1061 	}
1062 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1063 	mutex_unlock(&kvm_debugfs_lock);
1064 	if (IS_ERR(dent))
1065 		return 0;
1066 
1067 	kvm->debugfs_dentry = dent;
1068 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1069 					 sizeof(*kvm->debugfs_stat_data),
1070 					 GFP_KERNEL_ACCOUNT);
1071 	if (!kvm->debugfs_stat_data)
1072 		goto out_err;
1073 
1074 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1075 		pdesc = &kvm_vm_stats_desc[i];
1076 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077 		if (!stat_data)
1078 			goto out_err;
1079 
1080 		stat_data->kvm = kvm;
1081 		stat_data->desc = pdesc;
1082 		stat_data->kind = KVM_STAT_VM;
1083 		kvm->debugfs_stat_data[i] = stat_data;
1084 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1085 				    kvm->debugfs_dentry, stat_data,
1086 				    &stat_fops_per_vm);
1087 	}
1088 
1089 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1090 		pdesc = &kvm_vcpu_stats_desc[i];
1091 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1092 		if (!stat_data)
1093 			goto out_err;
1094 
1095 		stat_data->kvm = kvm;
1096 		stat_data->desc = pdesc;
1097 		stat_data->kind = KVM_STAT_VCPU;
1098 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1099 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1100 				    kvm->debugfs_dentry, stat_data,
1101 				    &stat_fops_per_vm);
1102 	}
1103 
1104 	ret = kvm_arch_create_vm_debugfs(kvm);
1105 	if (ret)
1106 		goto out_err;
1107 
1108 	return 0;
1109 out_err:
1110 	kvm_destroy_vm_debugfs(kvm);
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Called after the VM is otherwise initialized, but just before adding it to
1116  * the vm_list.
1117  */
1118 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119 {
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Called just after removing the VM from the vm_list, but before doing any
1125  * other destruction.
1126  */
1127 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128 {
1129 }
1130 
1131 /*
1132  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133  * be setup already, so we can create arch-specific debugfs entries under it.
1134  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135  * a per-arch destroy interface is not needed.
1136  */
1137 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138 {
1139 	return 0;
1140 }
1141 
1142 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1143 {
1144 	struct kvm *kvm = kvm_arch_alloc_vm();
1145 	struct kvm_memslots *slots;
1146 	int r = -ENOMEM;
1147 	int i, j;
1148 
1149 	if (!kvm)
1150 		return ERR_PTR(-ENOMEM);
1151 
1152 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1153 	__module_get(kvm_chardev_ops.owner);
1154 
1155 	KVM_MMU_LOCK_INIT(kvm);
1156 	mmgrab(current->mm);
1157 	kvm->mm = current->mm;
1158 	kvm_eventfd_init(kvm);
1159 	mutex_init(&kvm->lock);
1160 	mutex_init(&kvm->irq_lock);
1161 	mutex_init(&kvm->slots_lock);
1162 	mutex_init(&kvm->slots_arch_lock);
1163 	spin_lock_init(&kvm->mn_invalidate_lock);
1164 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1165 	xa_init(&kvm->vcpu_array);
1166 
1167 	INIT_LIST_HEAD(&kvm->gpc_list);
1168 	spin_lock_init(&kvm->gpc_lock);
1169 
1170 	INIT_LIST_HEAD(&kvm->devices);
1171 	kvm->max_vcpus = KVM_MAX_VCPUS;
1172 
1173 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1174 
1175 	/*
1176 	 * Force subsequent debugfs file creations to fail if the VM directory
1177 	 * is not created (by kvm_create_vm_debugfs()).
1178 	 */
1179 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1180 
1181 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1182 		 task_pid_nr(current));
1183 
1184 	if (init_srcu_struct(&kvm->srcu))
1185 		goto out_err_no_srcu;
1186 	if (init_srcu_struct(&kvm->irq_srcu))
1187 		goto out_err_no_irq_srcu;
1188 
1189 	refcount_set(&kvm->users_count, 1);
1190 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1191 		for (j = 0; j < 2; j++) {
1192 			slots = &kvm->__memslots[i][j];
1193 
1194 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1195 			slots->hva_tree = RB_ROOT_CACHED;
1196 			slots->gfn_tree = RB_ROOT;
1197 			hash_init(slots->id_hash);
1198 			slots->node_idx = j;
1199 
1200 			/* Generations must be different for each address space. */
1201 			slots->generation = i;
1202 		}
1203 
1204 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1205 	}
1206 
1207 	for (i = 0; i < KVM_NR_BUSES; i++) {
1208 		rcu_assign_pointer(kvm->buses[i],
1209 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1210 		if (!kvm->buses[i])
1211 			goto out_err_no_arch_destroy_vm;
1212 	}
1213 
1214 	r = kvm_arch_init_vm(kvm, type);
1215 	if (r)
1216 		goto out_err_no_arch_destroy_vm;
1217 
1218 	r = hardware_enable_all();
1219 	if (r)
1220 		goto out_err_no_disable;
1221 
1222 #ifdef CONFIG_HAVE_KVM_IRQFD
1223 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1224 #endif
1225 
1226 	r = kvm_init_mmu_notifier(kvm);
1227 	if (r)
1228 		goto out_err_no_mmu_notifier;
1229 
1230 	r = kvm_coalesced_mmio_init(kvm);
1231 	if (r < 0)
1232 		goto out_no_coalesced_mmio;
1233 
1234 	r = kvm_create_vm_debugfs(kvm, fdname);
1235 	if (r)
1236 		goto out_err_no_debugfs;
1237 
1238 	r = kvm_arch_post_init_vm(kvm);
1239 	if (r)
1240 		goto out_err;
1241 
1242 	mutex_lock(&kvm_lock);
1243 	list_add(&kvm->vm_list, &vm_list);
1244 	mutex_unlock(&kvm_lock);
1245 
1246 	preempt_notifier_inc();
1247 	kvm_init_pm_notifier(kvm);
1248 
1249 	return kvm;
1250 
1251 out_err:
1252 	kvm_destroy_vm_debugfs(kvm);
1253 out_err_no_debugfs:
1254 	kvm_coalesced_mmio_free(kvm);
1255 out_no_coalesced_mmio:
1256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1257 	if (kvm->mmu_notifier.ops)
1258 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1259 #endif
1260 out_err_no_mmu_notifier:
1261 	hardware_disable_all();
1262 out_err_no_disable:
1263 	kvm_arch_destroy_vm(kvm);
1264 out_err_no_arch_destroy_vm:
1265 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1266 	for (i = 0; i < KVM_NR_BUSES; i++)
1267 		kfree(kvm_get_bus(kvm, i));
1268 	cleanup_srcu_struct(&kvm->irq_srcu);
1269 out_err_no_irq_srcu:
1270 	cleanup_srcu_struct(&kvm->srcu);
1271 out_err_no_srcu:
1272 	kvm_arch_free_vm(kvm);
1273 	mmdrop(current->mm);
1274 	module_put(kvm_chardev_ops.owner);
1275 	return ERR_PTR(r);
1276 }
1277 
1278 static void kvm_destroy_devices(struct kvm *kvm)
1279 {
1280 	struct kvm_device *dev, *tmp;
1281 
1282 	/*
1283 	 * We do not need to take the kvm->lock here, because nobody else
1284 	 * has a reference to the struct kvm at this point and therefore
1285 	 * cannot access the devices list anyhow.
1286 	 */
1287 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1288 		list_del(&dev->vm_node);
1289 		dev->ops->destroy(dev);
1290 	}
1291 }
1292 
1293 static void kvm_destroy_vm(struct kvm *kvm)
1294 {
1295 	int i;
1296 	struct mm_struct *mm = kvm->mm;
1297 
1298 	kvm_destroy_pm_notifier(kvm);
1299 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1300 	kvm_destroy_vm_debugfs(kvm);
1301 	kvm_arch_sync_events(kvm);
1302 	mutex_lock(&kvm_lock);
1303 	list_del(&kvm->vm_list);
1304 	mutex_unlock(&kvm_lock);
1305 	kvm_arch_pre_destroy_vm(kvm);
1306 
1307 	kvm_free_irq_routing(kvm);
1308 	for (i = 0; i < KVM_NR_BUSES; i++) {
1309 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1310 
1311 		if (bus)
1312 			kvm_io_bus_destroy(bus);
1313 		kvm->buses[i] = NULL;
1314 	}
1315 	kvm_coalesced_mmio_free(kvm);
1316 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1317 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1318 	/*
1319 	 * At this point, pending calls to invalidate_range_start()
1320 	 * have completed but no more MMU notifiers will run, so
1321 	 * mn_active_invalidate_count may remain unbalanced.
1322 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1323 	 * last reference on KVM has been dropped, but freeing
1324 	 * memslots would deadlock without this manual intervention.
1325 	 */
1326 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1327 	kvm->mn_active_invalidate_count = 0;
1328 #else
1329 	kvm_flush_shadow_all(kvm);
1330 #endif
1331 	kvm_arch_destroy_vm(kvm);
1332 	kvm_destroy_devices(kvm);
1333 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1334 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1335 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1336 	}
1337 	cleanup_srcu_struct(&kvm->irq_srcu);
1338 	cleanup_srcu_struct(&kvm->srcu);
1339 	kvm_arch_free_vm(kvm);
1340 	preempt_notifier_dec();
1341 	hardware_disable_all();
1342 	mmdrop(mm);
1343 	module_put(kvm_chardev_ops.owner);
1344 }
1345 
1346 void kvm_get_kvm(struct kvm *kvm)
1347 {
1348 	refcount_inc(&kvm->users_count);
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1351 
1352 /*
1353  * Make sure the vm is not during destruction, which is a safe version of
1354  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1355  */
1356 bool kvm_get_kvm_safe(struct kvm *kvm)
1357 {
1358 	return refcount_inc_not_zero(&kvm->users_count);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1361 
1362 void kvm_put_kvm(struct kvm *kvm)
1363 {
1364 	if (refcount_dec_and_test(&kvm->users_count))
1365 		kvm_destroy_vm(kvm);
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1368 
1369 /*
1370  * Used to put a reference that was taken on behalf of an object associated
1371  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1372  * of the new file descriptor fails and the reference cannot be transferred to
1373  * its final owner.  In such cases, the caller is still actively using @kvm and
1374  * will fail miserably if the refcount unexpectedly hits zero.
1375  */
1376 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1377 {
1378 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1381 
1382 static int kvm_vm_release(struct inode *inode, struct file *filp)
1383 {
1384 	struct kvm *kvm = filp->private_data;
1385 
1386 	kvm_irqfd_release(kvm);
1387 
1388 	kvm_put_kvm(kvm);
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Allocation size is twice as large as the actual dirty bitmap size.
1394  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1395  */
1396 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1397 {
1398 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1399 
1400 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1401 	if (!memslot->dirty_bitmap)
1402 		return -ENOMEM;
1403 
1404 	return 0;
1405 }
1406 
1407 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1408 {
1409 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1410 	int node_idx_inactive = active->node_idx ^ 1;
1411 
1412 	return &kvm->__memslots[as_id][node_idx_inactive];
1413 }
1414 
1415 /*
1416  * Helper to get the address space ID when one of memslot pointers may be NULL.
1417  * This also serves as a sanity that at least one of the pointers is non-NULL,
1418  * and that their address space IDs don't diverge.
1419  */
1420 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1421 				  struct kvm_memory_slot *b)
1422 {
1423 	if (WARN_ON_ONCE(!a && !b))
1424 		return 0;
1425 
1426 	if (!a)
1427 		return b->as_id;
1428 	if (!b)
1429 		return a->as_id;
1430 
1431 	WARN_ON_ONCE(a->as_id != b->as_id);
1432 	return a->as_id;
1433 }
1434 
1435 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1436 				struct kvm_memory_slot *slot)
1437 {
1438 	struct rb_root *gfn_tree = &slots->gfn_tree;
1439 	struct rb_node **node, *parent;
1440 	int idx = slots->node_idx;
1441 
1442 	parent = NULL;
1443 	for (node = &gfn_tree->rb_node; *node; ) {
1444 		struct kvm_memory_slot *tmp;
1445 
1446 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1447 		parent = *node;
1448 		if (slot->base_gfn < tmp->base_gfn)
1449 			node = &(*node)->rb_left;
1450 		else if (slot->base_gfn > tmp->base_gfn)
1451 			node = &(*node)->rb_right;
1452 		else
1453 			BUG();
1454 	}
1455 
1456 	rb_link_node(&slot->gfn_node[idx], parent, node);
1457 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1458 }
1459 
1460 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1461 			       struct kvm_memory_slot *slot)
1462 {
1463 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1464 }
1465 
1466 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1467 				 struct kvm_memory_slot *old,
1468 				 struct kvm_memory_slot *new)
1469 {
1470 	int idx = slots->node_idx;
1471 
1472 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1473 
1474 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1475 			&slots->gfn_tree);
1476 }
1477 
1478 /*
1479  * Replace @old with @new in the inactive memslots.
1480  *
1481  * With NULL @old this simply adds @new.
1482  * With NULL @new this simply removes @old.
1483  *
1484  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1485  * appropriately.
1486  */
1487 static void kvm_replace_memslot(struct kvm *kvm,
1488 				struct kvm_memory_slot *old,
1489 				struct kvm_memory_slot *new)
1490 {
1491 	int as_id = kvm_memslots_get_as_id(old, new);
1492 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1493 	int idx = slots->node_idx;
1494 
1495 	if (old) {
1496 		hash_del(&old->id_node[idx]);
1497 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1498 
1499 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1500 			atomic_long_set(&slots->last_used_slot, (long)new);
1501 
1502 		if (!new) {
1503 			kvm_erase_gfn_node(slots, old);
1504 			return;
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * Initialize @new's hva range.  Do this even when replacing an @old
1510 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1511 	 */
1512 	new->hva_node[idx].start = new->userspace_addr;
1513 	new->hva_node[idx].last = new->userspace_addr +
1514 				  (new->npages << PAGE_SHIFT) - 1;
1515 
1516 	/*
1517 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1518 	 * hva_node needs to be swapped with remove+insert even though hva can't
1519 	 * change when replacing an existing slot.
1520 	 */
1521 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1522 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1523 
1524 	/*
1525 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1526 	 * switch the node in the gfn tree instead of removing the old and
1527 	 * inserting the new as two separate operations. Replacement is a
1528 	 * single O(1) operation versus two O(log(n)) operations for
1529 	 * remove+insert.
1530 	 */
1531 	if (old && old->base_gfn == new->base_gfn) {
1532 		kvm_replace_gfn_node(slots, old, new);
1533 	} else {
1534 		if (old)
1535 			kvm_erase_gfn_node(slots, old);
1536 		kvm_insert_gfn_node(slots, new);
1537 	}
1538 }
1539 
1540 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1541 {
1542 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1543 
1544 #ifdef __KVM_HAVE_READONLY_MEM
1545 	valid_flags |= KVM_MEM_READONLY;
1546 #endif
1547 
1548 	if (mem->flags & ~valid_flags)
1549 		return -EINVAL;
1550 
1551 	return 0;
1552 }
1553 
1554 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1555 {
1556 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557 
1558 	/* Grab the generation from the activate memslots. */
1559 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1560 
1561 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1562 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1563 
1564 	/*
1565 	 * Do not store the new memslots while there are invalidations in
1566 	 * progress, otherwise the locking in invalidate_range_start and
1567 	 * invalidate_range_end will be unbalanced.
1568 	 */
1569 	spin_lock(&kvm->mn_invalidate_lock);
1570 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1571 	while (kvm->mn_active_invalidate_count) {
1572 		set_current_state(TASK_UNINTERRUPTIBLE);
1573 		spin_unlock(&kvm->mn_invalidate_lock);
1574 		schedule();
1575 		spin_lock(&kvm->mn_invalidate_lock);
1576 	}
1577 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1578 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1579 	spin_unlock(&kvm->mn_invalidate_lock);
1580 
1581 	/*
1582 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1583 	 * SRCU below in order to avoid deadlock with another thread
1584 	 * acquiring the slots_arch_lock in an srcu critical section.
1585 	 */
1586 	mutex_unlock(&kvm->slots_arch_lock);
1587 
1588 	synchronize_srcu_expedited(&kvm->srcu);
1589 
1590 	/*
1591 	 * Increment the new memslot generation a second time, dropping the
1592 	 * update in-progress flag and incrementing the generation based on
1593 	 * the number of address spaces.  This provides a unique and easily
1594 	 * identifiable generation number while the memslots are in flux.
1595 	 */
1596 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1597 
1598 	/*
1599 	 * Generations must be unique even across address spaces.  We do not need
1600 	 * a global counter for that, instead the generation space is evenly split
1601 	 * across address spaces.  For example, with two address spaces, address
1602 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1603 	 * use generations 1, 3, 5, ...
1604 	 */
1605 	gen += KVM_ADDRESS_SPACE_NUM;
1606 
1607 	kvm_arch_memslots_updated(kvm, gen);
1608 
1609 	slots->generation = gen;
1610 }
1611 
1612 static int kvm_prepare_memory_region(struct kvm *kvm,
1613 				     const struct kvm_memory_slot *old,
1614 				     struct kvm_memory_slot *new,
1615 				     enum kvm_mr_change change)
1616 {
1617 	int r;
1618 
1619 	/*
1620 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1621 	 * will be freed on "commit".  If logging is enabled in both old and
1622 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1623 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1624 	 * new bitmap.
1625 	 */
1626 	if (change != KVM_MR_DELETE) {
1627 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1628 			new->dirty_bitmap = NULL;
1629 		else if (old && old->dirty_bitmap)
1630 			new->dirty_bitmap = old->dirty_bitmap;
1631 		else if (kvm_use_dirty_bitmap(kvm)) {
1632 			r = kvm_alloc_dirty_bitmap(new);
1633 			if (r)
1634 				return r;
1635 
1636 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1637 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1638 		}
1639 	}
1640 
1641 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1642 
1643 	/* Free the bitmap on failure if it was allocated above. */
1644 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1645 		kvm_destroy_dirty_bitmap(new);
1646 
1647 	return r;
1648 }
1649 
1650 static void kvm_commit_memory_region(struct kvm *kvm,
1651 				     struct kvm_memory_slot *old,
1652 				     const struct kvm_memory_slot *new,
1653 				     enum kvm_mr_change change)
1654 {
1655 	int old_flags = old ? old->flags : 0;
1656 	int new_flags = new ? new->flags : 0;
1657 	/*
1658 	 * Update the total number of memslot pages before calling the arch
1659 	 * hook so that architectures can consume the result directly.
1660 	 */
1661 	if (change == KVM_MR_DELETE)
1662 		kvm->nr_memslot_pages -= old->npages;
1663 	else if (change == KVM_MR_CREATE)
1664 		kvm->nr_memslot_pages += new->npages;
1665 
1666 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1667 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1668 		atomic_set(&kvm->nr_memslots_dirty_logging,
1669 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1670 	}
1671 
1672 	kvm_arch_commit_memory_region(kvm, old, new, change);
1673 
1674 	switch (change) {
1675 	case KVM_MR_CREATE:
1676 		/* Nothing more to do. */
1677 		break;
1678 	case KVM_MR_DELETE:
1679 		/* Free the old memslot and all its metadata. */
1680 		kvm_free_memslot(kvm, old);
1681 		break;
1682 	case KVM_MR_MOVE:
1683 	case KVM_MR_FLAGS_ONLY:
1684 		/*
1685 		 * Free the dirty bitmap as needed; the below check encompasses
1686 		 * both the flags and whether a ring buffer is being used)
1687 		 */
1688 		if (old->dirty_bitmap && !new->dirty_bitmap)
1689 			kvm_destroy_dirty_bitmap(old);
1690 
1691 		/*
1692 		 * The final quirk.  Free the detached, old slot, but only its
1693 		 * memory, not any metadata.  Metadata, including arch specific
1694 		 * data, may be reused by @new.
1695 		 */
1696 		kfree(old);
1697 		break;
1698 	default:
1699 		BUG();
1700 	}
1701 }
1702 
1703 /*
1704  * Activate @new, which must be installed in the inactive slots by the caller,
1705  * by swapping the active slots and then propagating @new to @old once @old is
1706  * unreachable and can be safely modified.
1707  *
1708  * With NULL @old this simply adds @new to @active (while swapping the sets).
1709  * With NULL @new this simply removes @old from @active and frees it
1710  * (while also swapping the sets).
1711  */
1712 static void kvm_activate_memslot(struct kvm *kvm,
1713 				 struct kvm_memory_slot *old,
1714 				 struct kvm_memory_slot *new)
1715 {
1716 	int as_id = kvm_memslots_get_as_id(old, new);
1717 
1718 	kvm_swap_active_memslots(kvm, as_id);
1719 
1720 	/* Propagate the new memslot to the now inactive memslots. */
1721 	kvm_replace_memslot(kvm, old, new);
1722 }
1723 
1724 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1725 			     const struct kvm_memory_slot *src)
1726 {
1727 	dest->base_gfn = src->base_gfn;
1728 	dest->npages = src->npages;
1729 	dest->dirty_bitmap = src->dirty_bitmap;
1730 	dest->arch = src->arch;
1731 	dest->userspace_addr = src->userspace_addr;
1732 	dest->flags = src->flags;
1733 	dest->id = src->id;
1734 	dest->as_id = src->as_id;
1735 }
1736 
1737 static void kvm_invalidate_memslot(struct kvm *kvm,
1738 				   struct kvm_memory_slot *old,
1739 				   struct kvm_memory_slot *invalid_slot)
1740 {
1741 	/*
1742 	 * Mark the current slot INVALID.  As with all memslot modifications,
1743 	 * this must be done on an unreachable slot to avoid modifying the
1744 	 * current slot in the active tree.
1745 	 */
1746 	kvm_copy_memslot(invalid_slot, old);
1747 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1748 	kvm_replace_memslot(kvm, old, invalid_slot);
1749 
1750 	/*
1751 	 * Activate the slot that is now marked INVALID, but don't propagate
1752 	 * the slot to the now inactive slots. The slot is either going to be
1753 	 * deleted or recreated as a new slot.
1754 	 */
1755 	kvm_swap_active_memslots(kvm, old->as_id);
1756 
1757 	/*
1758 	 * From this point no new shadow pages pointing to a deleted, or moved,
1759 	 * memslot will be created.  Validation of sp->gfn happens in:
1760 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1761 	 *	- kvm_is_visible_gfn (mmu_check_root)
1762 	 */
1763 	kvm_arch_flush_shadow_memslot(kvm, old);
1764 	kvm_arch_guest_memory_reclaimed(kvm);
1765 
1766 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1767 	mutex_lock(&kvm->slots_arch_lock);
1768 
1769 	/*
1770 	 * Copy the arch-specific field of the newly-installed slot back to the
1771 	 * old slot as the arch data could have changed between releasing
1772 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1773 	 * above.  Writers are required to retrieve memslots *after* acquiring
1774 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1775 	 */
1776 	old->arch = invalid_slot->arch;
1777 }
1778 
1779 static void kvm_create_memslot(struct kvm *kvm,
1780 			       struct kvm_memory_slot *new)
1781 {
1782 	/* Add the new memslot to the inactive set and activate. */
1783 	kvm_replace_memslot(kvm, NULL, new);
1784 	kvm_activate_memslot(kvm, NULL, new);
1785 }
1786 
1787 static void kvm_delete_memslot(struct kvm *kvm,
1788 			       struct kvm_memory_slot *old,
1789 			       struct kvm_memory_slot *invalid_slot)
1790 {
1791 	/*
1792 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1793 	 * the "new" slot, and for the invalid version in the active slots.
1794 	 */
1795 	kvm_replace_memslot(kvm, old, NULL);
1796 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1797 }
1798 
1799 static void kvm_move_memslot(struct kvm *kvm,
1800 			     struct kvm_memory_slot *old,
1801 			     struct kvm_memory_slot *new,
1802 			     struct kvm_memory_slot *invalid_slot)
1803 {
1804 	/*
1805 	 * Replace the old memslot in the inactive slots, and then swap slots
1806 	 * and replace the current INVALID with the new as well.
1807 	 */
1808 	kvm_replace_memslot(kvm, old, new);
1809 	kvm_activate_memslot(kvm, invalid_slot, new);
1810 }
1811 
1812 static void kvm_update_flags_memslot(struct kvm *kvm,
1813 				     struct kvm_memory_slot *old,
1814 				     struct kvm_memory_slot *new)
1815 {
1816 	/*
1817 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1818 	 * an intermediate step. Instead, the old memslot is simply replaced
1819 	 * with a new, updated copy in both memslot sets.
1820 	 */
1821 	kvm_replace_memslot(kvm, old, new);
1822 	kvm_activate_memslot(kvm, old, new);
1823 }
1824 
1825 static int kvm_set_memslot(struct kvm *kvm,
1826 			   struct kvm_memory_slot *old,
1827 			   struct kvm_memory_slot *new,
1828 			   enum kvm_mr_change change)
1829 {
1830 	struct kvm_memory_slot *invalid_slot;
1831 	int r;
1832 
1833 	/*
1834 	 * Released in kvm_swap_active_memslots().
1835 	 *
1836 	 * Must be held from before the current memslots are copied until after
1837 	 * the new memslots are installed with rcu_assign_pointer, then
1838 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1839 	 *
1840 	 * When modifying memslots outside of the slots_lock, must be held
1841 	 * before reading the pointer to the current memslots until after all
1842 	 * changes to those memslots are complete.
1843 	 *
1844 	 * These rules ensure that installing new memslots does not lose
1845 	 * changes made to the previous memslots.
1846 	 */
1847 	mutex_lock(&kvm->slots_arch_lock);
1848 
1849 	/*
1850 	 * Invalidate the old slot if it's being deleted or moved.  This is
1851 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1852 	 * continue running by ensuring there are no mappings or shadow pages
1853 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1854 	 * (and without a lock), a window would exist between effecting the
1855 	 * delete/move and committing the changes in arch code where KVM or a
1856 	 * guest could access a non-existent memslot.
1857 	 *
1858 	 * Modifications are done on a temporary, unreachable slot.  The old
1859 	 * slot needs to be preserved in case a later step fails and the
1860 	 * invalidation needs to be reverted.
1861 	 */
1862 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1863 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1864 		if (!invalid_slot) {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 			return -ENOMEM;
1867 		}
1868 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1869 	}
1870 
1871 	r = kvm_prepare_memory_region(kvm, old, new, change);
1872 	if (r) {
1873 		/*
1874 		 * For DELETE/MOVE, revert the above INVALID change.  No
1875 		 * modifications required since the original slot was preserved
1876 		 * in the inactive slots.  Changing the active memslots also
1877 		 * release slots_arch_lock.
1878 		 */
1879 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1880 			kvm_activate_memslot(kvm, invalid_slot, old);
1881 			kfree(invalid_slot);
1882 		} else {
1883 			mutex_unlock(&kvm->slots_arch_lock);
1884 		}
1885 		return r;
1886 	}
1887 
1888 	/*
1889 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1890 	 * version of the old slot.  MOVE is particularly special as it reuses
1891 	 * the old slot and returns a copy of the old slot (in working_slot).
1892 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1893 	 * old slot is detached but otherwise preserved.
1894 	 */
1895 	if (change == KVM_MR_CREATE)
1896 		kvm_create_memslot(kvm, new);
1897 	else if (change == KVM_MR_DELETE)
1898 		kvm_delete_memslot(kvm, old, invalid_slot);
1899 	else if (change == KVM_MR_MOVE)
1900 		kvm_move_memslot(kvm, old, new, invalid_slot);
1901 	else if (change == KVM_MR_FLAGS_ONLY)
1902 		kvm_update_flags_memslot(kvm, old, new);
1903 	else
1904 		BUG();
1905 
1906 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1907 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1908 		kfree(invalid_slot);
1909 
1910 	/*
1911 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1912 	 * will directly hit the final, active memslot.  Architectures are
1913 	 * responsible for knowing that new->arch may be stale.
1914 	 */
1915 	kvm_commit_memory_region(kvm, old, new, change);
1916 
1917 	return 0;
1918 }
1919 
1920 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1921 				      gfn_t start, gfn_t end)
1922 {
1923 	struct kvm_memslot_iter iter;
1924 
1925 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1926 		if (iter.slot->id != id)
1927 			return true;
1928 	}
1929 
1930 	return false;
1931 }
1932 
1933 /*
1934  * Allocate some memory and give it an address in the guest physical address
1935  * space.
1936  *
1937  * Discontiguous memory is allowed, mostly for framebuffers.
1938  *
1939  * Must be called holding kvm->slots_lock for write.
1940  */
1941 int __kvm_set_memory_region(struct kvm *kvm,
1942 			    const struct kvm_userspace_memory_region *mem)
1943 {
1944 	struct kvm_memory_slot *old, *new;
1945 	struct kvm_memslots *slots;
1946 	enum kvm_mr_change change;
1947 	unsigned long npages;
1948 	gfn_t base_gfn;
1949 	int as_id, id;
1950 	int r;
1951 
1952 	r = check_memory_region_flags(mem);
1953 	if (r)
1954 		return r;
1955 
1956 	as_id = mem->slot >> 16;
1957 	id = (u16)mem->slot;
1958 
1959 	/* General sanity checks */
1960 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1961 	    (mem->memory_size != (unsigned long)mem->memory_size))
1962 		return -EINVAL;
1963 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1964 		return -EINVAL;
1965 	/* We can read the guest memory with __xxx_user() later on. */
1966 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1967 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1968 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1969 			mem->memory_size))
1970 		return -EINVAL;
1971 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1972 		return -EINVAL;
1973 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 		return -EINVAL;
1975 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976 		return -EINVAL;
1977 
1978 	slots = __kvm_memslots(kvm, as_id);
1979 
1980 	/*
1981 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1982 	 * and/or destroyed by kvm_set_memslot().
1983 	 */
1984 	old = id_to_memslot(slots, id);
1985 
1986 	if (!mem->memory_size) {
1987 		if (!old || !old->npages)
1988 			return -EINVAL;
1989 
1990 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991 			return -EIO;
1992 
1993 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1994 	}
1995 
1996 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997 	npages = (mem->memory_size >> PAGE_SHIFT);
1998 
1999 	if (!old || !old->npages) {
2000 		change = KVM_MR_CREATE;
2001 
2002 		/*
2003 		 * To simplify KVM internals, the total number of pages across
2004 		 * all memslots must fit in an unsigned long.
2005 		 */
2006 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007 			return -EINVAL;
2008 	} else { /* Modify an existing slot. */
2009 		if ((mem->userspace_addr != old->userspace_addr) ||
2010 		    (npages != old->npages) ||
2011 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2012 			return -EINVAL;
2013 
2014 		if (base_gfn != old->base_gfn)
2015 			change = KVM_MR_MOVE;
2016 		else if (mem->flags != old->flags)
2017 			change = KVM_MR_FLAGS_ONLY;
2018 		else /* Nothing to change. */
2019 			return 0;
2020 	}
2021 
2022 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2023 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2024 		return -EEXIST;
2025 
2026 	/* Allocate a slot that will persist in the memslot. */
2027 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2028 	if (!new)
2029 		return -ENOMEM;
2030 
2031 	new->as_id = as_id;
2032 	new->id = id;
2033 	new->base_gfn = base_gfn;
2034 	new->npages = npages;
2035 	new->flags = mem->flags;
2036 	new->userspace_addr = mem->userspace_addr;
2037 
2038 	r = kvm_set_memslot(kvm, old, new, change);
2039 	if (r)
2040 		kfree(new);
2041 	return r;
2042 }
2043 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2044 
2045 int kvm_set_memory_region(struct kvm *kvm,
2046 			  const struct kvm_userspace_memory_region *mem)
2047 {
2048 	int r;
2049 
2050 	mutex_lock(&kvm->slots_lock);
2051 	r = __kvm_set_memory_region(kvm, mem);
2052 	mutex_unlock(&kvm->slots_lock);
2053 	return r;
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2056 
2057 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2058 					  struct kvm_userspace_memory_region *mem)
2059 {
2060 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2061 		return -EINVAL;
2062 
2063 	return kvm_set_memory_region(kvm, mem);
2064 }
2065 
2066 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2067 /**
2068  * kvm_get_dirty_log - get a snapshot of dirty pages
2069  * @kvm:	pointer to kvm instance
2070  * @log:	slot id and address to which we copy the log
2071  * @is_dirty:	set to '1' if any dirty pages were found
2072  * @memslot:	set to the associated memslot, always valid on success
2073  */
2074 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2075 		      int *is_dirty, struct kvm_memory_slot **memslot)
2076 {
2077 	struct kvm_memslots *slots;
2078 	int i, as_id, id;
2079 	unsigned long n;
2080 	unsigned long any = 0;
2081 
2082 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2083 	if (!kvm_use_dirty_bitmap(kvm))
2084 		return -ENXIO;
2085 
2086 	*memslot = NULL;
2087 	*is_dirty = 0;
2088 
2089 	as_id = log->slot >> 16;
2090 	id = (u16)log->slot;
2091 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2092 		return -EINVAL;
2093 
2094 	slots = __kvm_memslots(kvm, as_id);
2095 	*memslot = id_to_memslot(slots, id);
2096 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2097 		return -ENOENT;
2098 
2099 	kvm_arch_sync_dirty_log(kvm, *memslot);
2100 
2101 	n = kvm_dirty_bitmap_bytes(*memslot);
2102 
2103 	for (i = 0; !any && i < n/sizeof(long); ++i)
2104 		any = (*memslot)->dirty_bitmap[i];
2105 
2106 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2107 		return -EFAULT;
2108 
2109 	if (any)
2110 		*is_dirty = 1;
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2114 
2115 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2116 /**
2117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2118  *	and reenable dirty page tracking for the corresponding pages.
2119  * @kvm:	pointer to kvm instance
2120  * @log:	slot id and address to which we copy the log
2121  *
2122  * We need to keep it in mind that VCPU threads can write to the bitmap
2123  * concurrently. So, to avoid losing track of dirty pages we keep the
2124  * following order:
2125  *
2126  *    1. Take a snapshot of the bit and clear it if needed.
2127  *    2. Write protect the corresponding page.
2128  *    3. Copy the snapshot to the userspace.
2129  *    4. Upon return caller flushes TLB's if needed.
2130  *
2131  * Between 2 and 4, the guest may write to the page using the remaining TLB
2132  * entry.  This is not a problem because the page is reported dirty using
2133  * the snapshot taken before and step 4 ensures that writes done after
2134  * exiting to userspace will be logged for the next call.
2135  *
2136  */
2137 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2138 {
2139 	struct kvm_memslots *slots;
2140 	struct kvm_memory_slot *memslot;
2141 	int i, as_id, id;
2142 	unsigned long n;
2143 	unsigned long *dirty_bitmap;
2144 	unsigned long *dirty_bitmap_buffer;
2145 	bool flush;
2146 
2147 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2148 	if (!kvm_use_dirty_bitmap(kvm))
2149 		return -ENXIO;
2150 
2151 	as_id = log->slot >> 16;
2152 	id = (u16)log->slot;
2153 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2154 		return -EINVAL;
2155 
2156 	slots = __kvm_memslots(kvm, as_id);
2157 	memslot = id_to_memslot(slots, id);
2158 	if (!memslot || !memslot->dirty_bitmap)
2159 		return -ENOENT;
2160 
2161 	dirty_bitmap = memslot->dirty_bitmap;
2162 
2163 	kvm_arch_sync_dirty_log(kvm, memslot);
2164 
2165 	n = kvm_dirty_bitmap_bytes(memslot);
2166 	flush = false;
2167 	if (kvm->manual_dirty_log_protect) {
2168 		/*
2169 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2170 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2171 		 * is some code duplication between this function and
2172 		 * kvm_get_dirty_log, but hopefully all architecture
2173 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2174 		 * can be eliminated.
2175 		 */
2176 		dirty_bitmap_buffer = dirty_bitmap;
2177 	} else {
2178 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2179 		memset(dirty_bitmap_buffer, 0, n);
2180 
2181 		KVM_MMU_LOCK(kvm);
2182 		for (i = 0; i < n / sizeof(long); i++) {
2183 			unsigned long mask;
2184 			gfn_t offset;
2185 
2186 			if (!dirty_bitmap[i])
2187 				continue;
2188 
2189 			flush = true;
2190 			mask = xchg(&dirty_bitmap[i], 0);
2191 			dirty_bitmap_buffer[i] = mask;
2192 
2193 			offset = i * BITS_PER_LONG;
2194 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2195 								offset, mask);
2196 		}
2197 		KVM_MMU_UNLOCK(kvm);
2198 	}
2199 
2200 	if (flush)
2201 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2202 
2203 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2204 		return -EFAULT;
2205 	return 0;
2206 }
2207 
2208 
2209 /**
2210  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2211  * @kvm: kvm instance
2212  * @log: slot id and address to which we copy the log
2213  *
2214  * Steps 1-4 below provide general overview of dirty page logging. See
2215  * kvm_get_dirty_log_protect() function description for additional details.
2216  *
2217  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2218  * always flush the TLB (step 4) even if previous step failed  and the dirty
2219  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2220  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2221  * writes will be marked dirty for next log read.
2222  *
2223  *   1. Take a snapshot of the bit and clear it if needed.
2224  *   2. Write protect the corresponding page.
2225  *   3. Copy the snapshot to the userspace.
2226  *   4. Flush TLB's if needed.
2227  */
2228 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2229 				      struct kvm_dirty_log *log)
2230 {
2231 	int r;
2232 
2233 	mutex_lock(&kvm->slots_lock);
2234 
2235 	r = kvm_get_dirty_log_protect(kvm, log);
2236 
2237 	mutex_unlock(&kvm->slots_lock);
2238 	return r;
2239 }
2240 
2241 /**
2242  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2243  *	and reenable dirty page tracking for the corresponding pages.
2244  * @kvm:	pointer to kvm instance
2245  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2246  */
2247 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2248 				       struct kvm_clear_dirty_log *log)
2249 {
2250 	struct kvm_memslots *slots;
2251 	struct kvm_memory_slot *memslot;
2252 	int as_id, id;
2253 	gfn_t offset;
2254 	unsigned long i, n;
2255 	unsigned long *dirty_bitmap;
2256 	unsigned long *dirty_bitmap_buffer;
2257 	bool flush;
2258 
2259 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2260 	if (!kvm_use_dirty_bitmap(kvm))
2261 		return -ENXIO;
2262 
2263 	as_id = log->slot >> 16;
2264 	id = (u16)log->slot;
2265 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2266 		return -EINVAL;
2267 
2268 	if (log->first_page & 63)
2269 		return -EINVAL;
2270 
2271 	slots = __kvm_memslots(kvm, as_id);
2272 	memslot = id_to_memslot(slots, id);
2273 	if (!memslot || !memslot->dirty_bitmap)
2274 		return -ENOENT;
2275 
2276 	dirty_bitmap = memslot->dirty_bitmap;
2277 
2278 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2279 
2280 	if (log->first_page > memslot->npages ||
2281 	    log->num_pages > memslot->npages - log->first_page ||
2282 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2283 	    return -EINVAL;
2284 
2285 	kvm_arch_sync_dirty_log(kvm, memslot);
2286 
2287 	flush = false;
2288 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2289 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2290 		return -EFAULT;
2291 
2292 	KVM_MMU_LOCK(kvm);
2293 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2294 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2295 	     i++, offset += BITS_PER_LONG) {
2296 		unsigned long mask = *dirty_bitmap_buffer++;
2297 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2298 		if (!mask)
2299 			continue;
2300 
2301 		mask &= atomic_long_fetch_andnot(mask, p);
2302 
2303 		/*
2304 		 * mask contains the bits that really have been cleared.  This
2305 		 * never includes any bits beyond the length of the memslot (if
2306 		 * the length is not aligned to 64 pages), therefore it is not
2307 		 * a problem if userspace sets them in log->dirty_bitmap.
2308 		*/
2309 		if (mask) {
2310 			flush = true;
2311 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2312 								offset, mask);
2313 		}
2314 	}
2315 	KVM_MMU_UNLOCK(kvm);
2316 
2317 	if (flush)
2318 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2319 
2320 	return 0;
2321 }
2322 
2323 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2324 					struct kvm_clear_dirty_log *log)
2325 {
2326 	int r;
2327 
2328 	mutex_lock(&kvm->slots_lock);
2329 
2330 	r = kvm_clear_dirty_log_protect(kvm, log);
2331 
2332 	mutex_unlock(&kvm->slots_lock);
2333 	return r;
2334 }
2335 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2336 
2337 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2338 {
2339 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2340 }
2341 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2342 
2343 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2344 {
2345 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2346 	u64 gen = slots->generation;
2347 	struct kvm_memory_slot *slot;
2348 
2349 	/*
2350 	 * This also protects against using a memslot from a different address space,
2351 	 * since different address spaces have different generation numbers.
2352 	 */
2353 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2354 		vcpu->last_used_slot = NULL;
2355 		vcpu->last_used_slot_gen = gen;
2356 	}
2357 
2358 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2359 	if (slot)
2360 		return slot;
2361 
2362 	/*
2363 	 * Fall back to searching all memslots. We purposely use
2364 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2365 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2366 	 */
2367 	slot = search_memslots(slots, gfn, false);
2368 	if (slot) {
2369 		vcpu->last_used_slot = slot;
2370 		return slot;
2371 	}
2372 
2373 	return NULL;
2374 }
2375 
2376 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2377 {
2378 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2379 
2380 	return kvm_is_visible_memslot(memslot);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2383 
2384 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2385 {
2386 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2387 
2388 	return kvm_is_visible_memslot(memslot);
2389 }
2390 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2391 
2392 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2393 {
2394 	struct vm_area_struct *vma;
2395 	unsigned long addr, size;
2396 
2397 	size = PAGE_SIZE;
2398 
2399 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2400 	if (kvm_is_error_hva(addr))
2401 		return PAGE_SIZE;
2402 
2403 	mmap_read_lock(current->mm);
2404 	vma = find_vma(current->mm, addr);
2405 	if (!vma)
2406 		goto out;
2407 
2408 	size = vma_kernel_pagesize(vma);
2409 
2410 out:
2411 	mmap_read_unlock(current->mm);
2412 
2413 	return size;
2414 }
2415 
2416 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2417 {
2418 	return slot->flags & KVM_MEM_READONLY;
2419 }
2420 
2421 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2422 				       gfn_t *nr_pages, bool write)
2423 {
2424 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2425 		return KVM_HVA_ERR_BAD;
2426 
2427 	if (memslot_is_readonly(slot) && write)
2428 		return KVM_HVA_ERR_RO_BAD;
2429 
2430 	if (nr_pages)
2431 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2432 
2433 	return __gfn_to_hva_memslot(slot, gfn);
2434 }
2435 
2436 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2437 				     gfn_t *nr_pages)
2438 {
2439 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2440 }
2441 
2442 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2443 					gfn_t gfn)
2444 {
2445 	return gfn_to_hva_many(slot, gfn, NULL);
2446 }
2447 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2448 
2449 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2450 {
2451 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2452 }
2453 EXPORT_SYMBOL_GPL(gfn_to_hva);
2454 
2455 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2456 {
2457 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2460 
2461 /*
2462  * Return the hva of a @gfn and the R/W attribute if possible.
2463  *
2464  * @slot: the kvm_memory_slot which contains @gfn
2465  * @gfn: the gfn to be translated
2466  * @writable: used to return the read/write attribute of the @slot if the hva
2467  * is valid and @writable is not NULL
2468  */
2469 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2470 				      gfn_t gfn, bool *writable)
2471 {
2472 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2473 
2474 	if (!kvm_is_error_hva(hva) && writable)
2475 		*writable = !memslot_is_readonly(slot);
2476 
2477 	return hva;
2478 }
2479 
2480 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2481 {
2482 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2483 
2484 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2485 }
2486 
2487 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2488 {
2489 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2490 
2491 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2492 }
2493 
2494 static inline int check_user_page_hwpoison(unsigned long addr)
2495 {
2496 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2497 
2498 	rc = get_user_pages(addr, 1, flags, NULL);
2499 	return rc == -EHWPOISON;
2500 }
2501 
2502 /*
2503  * The fast path to get the writable pfn which will be stored in @pfn,
2504  * true indicates success, otherwise false is returned.  It's also the
2505  * only part that runs if we can in atomic context.
2506  */
2507 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2508 			    bool *writable, kvm_pfn_t *pfn)
2509 {
2510 	struct page *page[1];
2511 
2512 	/*
2513 	 * Fast pin a writable pfn only if it is a write fault request
2514 	 * or the caller allows to map a writable pfn for a read fault
2515 	 * request.
2516 	 */
2517 	if (!(write_fault || writable))
2518 		return false;
2519 
2520 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2521 		*pfn = page_to_pfn(page[0]);
2522 
2523 		if (writable)
2524 			*writable = true;
2525 		return true;
2526 	}
2527 
2528 	return false;
2529 }
2530 
2531 /*
2532  * The slow path to get the pfn of the specified host virtual address,
2533  * 1 indicates success, -errno is returned if error is detected.
2534  */
2535 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2536 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2537 {
2538 	unsigned int flags = FOLL_HWPOISON;
2539 	struct page *page;
2540 	int npages;
2541 
2542 	might_sleep();
2543 
2544 	if (writable)
2545 		*writable = write_fault;
2546 
2547 	if (write_fault)
2548 		flags |= FOLL_WRITE;
2549 	if (async)
2550 		flags |= FOLL_NOWAIT;
2551 	if (interruptible)
2552 		flags |= FOLL_INTERRUPTIBLE;
2553 
2554 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2555 	if (npages != 1)
2556 		return npages;
2557 
2558 	/* map read fault as writable if possible */
2559 	if (unlikely(!write_fault) && writable) {
2560 		struct page *wpage;
2561 
2562 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2563 			*writable = true;
2564 			put_page(page);
2565 			page = wpage;
2566 		}
2567 	}
2568 	*pfn = page_to_pfn(page);
2569 	return npages;
2570 }
2571 
2572 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2573 {
2574 	if (unlikely(!(vma->vm_flags & VM_READ)))
2575 		return false;
2576 
2577 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2578 		return false;
2579 
2580 	return true;
2581 }
2582 
2583 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2584 {
2585 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2586 
2587 	if (!page)
2588 		return 1;
2589 
2590 	return get_page_unless_zero(page);
2591 }
2592 
2593 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2594 			       unsigned long addr, bool write_fault,
2595 			       bool *writable, kvm_pfn_t *p_pfn)
2596 {
2597 	kvm_pfn_t pfn;
2598 	pte_t *ptep;
2599 	pte_t pte;
2600 	spinlock_t *ptl;
2601 	int r;
2602 
2603 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2604 	if (r) {
2605 		/*
2606 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2607 		 * not call the fault handler, so do it here.
2608 		 */
2609 		bool unlocked = false;
2610 		r = fixup_user_fault(current->mm, addr,
2611 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2612 				     &unlocked);
2613 		if (unlocked)
2614 			return -EAGAIN;
2615 		if (r)
2616 			return r;
2617 
2618 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2619 		if (r)
2620 			return r;
2621 	}
2622 
2623 	pte = ptep_get(ptep);
2624 
2625 	if (write_fault && !pte_write(pte)) {
2626 		pfn = KVM_PFN_ERR_RO_FAULT;
2627 		goto out;
2628 	}
2629 
2630 	if (writable)
2631 		*writable = pte_write(pte);
2632 	pfn = pte_pfn(pte);
2633 
2634 	/*
2635 	 * Get a reference here because callers of *hva_to_pfn* and
2636 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2637 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2638 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2639 	 * simply do nothing for reserved pfns.
2640 	 *
2641 	 * Whoever called remap_pfn_range is also going to call e.g.
2642 	 * unmap_mapping_range before the underlying pages are freed,
2643 	 * causing a call to our MMU notifier.
2644 	 *
2645 	 * Certain IO or PFNMAP mappings can be backed with valid
2646 	 * struct pages, but be allocated without refcounting e.g.,
2647 	 * tail pages of non-compound higher order allocations, which
2648 	 * would then underflow the refcount when the caller does the
2649 	 * required put_page. Don't allow those pages here.
2650 	 */
2651 	if (!kvm_try_get_pfn(pfn))
2652 		r = -EFAULT;
2653 
2654 out:
2655 	pte_unmap_unlock(ptep, ptl);
2656 	*p_pfn = pfn;
2657 
2658 	return r;
2659 }
2660 
2661 /*
2662  * Pin guest page in memory and return its pfn.
2663  * @addr: host virtual address which maps memory to the guest
2664  * @atomic: whether this function can sleep
2665  * @interruptible: whether the process can be interrupted by non-fatal signals
2666  * @async: whether this function need to wait IO complete if the
2667  *         host page is not in the memory
2668  * @write_fault: whether we should get a writable host page
2669  * @writable: whether it allows to map a writable host page for !@write_fault
2670  *
2671  * The function will map a writable host page for these two cases:
2672  * 1): @write_fault = true
2673  * 2): @write_fault = false && @writable, @writable will tell the caller
2674  *     whether the mapping is writable.
2675  */
2676 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2677 		     bool *async, bool write_fault, bool *writable)
2678 {
2679 	struct vm_area_struct *vma;
2680 	kvm_pfn_t pfn;
2681 	int npages, r;
2682 
2683 	/* we can do it either atomically or asynchronously, not both */
2684 	BUG_ON(atomic && async);
2685 
2686 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2687 		return pfn;
2688 
2689 	if (atomic)
2690 		return KVM_PFN_ERR_FAULT;
2691 
2692 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2693 				 writable, &pfn);
2694 	if (npages == 1)
2695 		return pfn;
2696 	if (npages == -EINTR)
2697 		return KVM_PFN_ERR_SIGPENDING;
2698 
2699 	mmap_read_lock(current->mm);
2700 	if (npages == -EHWPOISON ||
2701 	      (!async && check_user_page_hwpoison(addr))) {
2702 		pfn = KVM_PFN_ERR_HWPOISON;
2703 		goto exit;
2704 	}
2705 
2706 retry:
2707 	vma = vma_lookup(current->mm, addr);
2708 
2709 	if (vma == NULL)
2710 		pfn = KVM_PFN_ERR_FAULT;
2711 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2712 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2713 		if (r == -EAGAIN)
2714 			goto retry;
2715 		if (r < 0)
2716 			pfn = KVM_PFN_ERR_FAULT;
2717 	} else {
2718 		if (async && vma_is_valid(vma, write_fault))
2719 			*async = true;
2720 		pfn = KVM_PFN_ERR_FAULT;
2721 	}
2722 exit:
2723 	mmap_read_unlock(current->mm);
2724 	return pfn;
2725 }
2726 
2727 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2728 			       bool atomic, bool interruptible, bool *async,
2729 			       bool write_fault, bool *writable, hva_t *hva)
2730 {
2731 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2732 
2733 	if (hva)
2734 		*hva = addr;
2735 
2736 	if (addr == KVM_HVA_ERR_RO_BAD) {
2737 		if (writable)
2738 			*writable = false;
2739 		return KVM_PFN_ERR_RO_FAULT;
2740 	}
2741 
2742 	if (kvm_is_error_hva(addr)) {
2743 		if (writable)
2744 			*writable = false;
2745 		return KVM_PFN_NOSLOT;
2746 	}
2747 
2748 	/* Do not map writable pfn in the readonly memslot. */
2749 	if (writable && memslot_is_readonly(slot)) {
2750 		*writable = false;
2751 		writable = NULL;
2752 	}
2753 
2754 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2755 			  writable);
2756 }
2757 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2758 
2759 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2760 		      bool *writable)
2761 {
2762 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2763 				    NULL, write_fault, writable, NULL);
2764 }
2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2766 
2767 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2768 {
2769 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2770 				    NULL, NULL);
2771 }
2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2773 
2774 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2775 {
2776 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2777 				    NULL, NULL);
2778 }
2779 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2780 
2781 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2782 {
2783 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2784 }
2785 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2786 
2787 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2788 {
2789 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2790 }
2791 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2792 
2793 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2794 {
2795 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2798 
2799 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2800 			    struct page **pages, int nr_pages)
2801 {
2802 	unsigned long addr;
2803 	gfn_t entry = 0;
2804 
2805 	addr = gfn_to_hva_many(slot, gfn, &entry);
2806 	if (kvm_is_error_hva(addr))
2807 		return -1;
2808 
2809 	if (entry < nr_pages)
2810 		return 0;
2811 
2812 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2813 }
2814 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2815 
2816 /*
2817  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2818  * backed by 'struct page'.  A valid example is if the backing memslot is
2819  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2820  * been elevated by gfn_to_pfn().
2821  */
2822 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2823 {
2824 	struct page *page;
2825 	kvm_pfn_t pfn;
2826 
2827 	pfn = gfn_to_pfn(kvm, gfn);
2828 
2829 	if (is_error_noslot_pfn(pfn))
2830 		return KVM_ERR_PTR_BAD_PAGE;
2831 
2832 	page = kvm_pfn_to_refcounted_page(pfn);
2833 	if (!page)
2834 		return KVM_ERR_PTR_BAD_PAGE;
2835 
2836 	return page;
2837 }
2838 EXPORT_SYMBOL_GPL(gfn_to_page);
2839 
2840 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2841 {
2842 	if (dirty)
2843 		kvm_release_pfn_dirty(pfn);
2844 	else
2845 		kvm_release_pfn_clean(pfn);
2846 }
2847 
2848 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2849 {
2850 	kvm_pfn_t pfn;
2851 	void *hva = NULL;
2852 	struct page *page = KVM_UNMAPPED_PAGE;
2853 
2854 	if (!map)
2855 		return -EINVAL;
2856 
2857 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2858 	if (is_error_noslot_pfn(pfn))
2859 		return -EINVAL;
2860 
2861 	if (pfn_valid(pfn)) {
2862 		page = pfn_to_page(pfn);
2863 		hva = kmap(page);
2864 #ifdef CONFIG_HAS_IOMEM
2865 	} else {
2866 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2867 #endif
2868 	}
2869 
2870 	if (!hva)
2871 		return -EFAULT;
2872 
2873 	map->page = page;
2874 	map->hva = hva;
2875 	map->pfn = pfn;
2876 	map->gfn = gfn;
2877 
2878 	return 0;
2879 }
2880 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2881 
2882 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2883 {
2884 	if (!map)
2885 		return;
2886 
2887 	if (!map->hva)
2888 		return;
2889 
2890 	if (map->page != KVM_UNMAPPED_PAGE)
2891 		kunmap(map->page);
2892 #ifdef CONFIG_HAS_IOMEM
2893 	else
2894 		memunmap(map->hva);
2895 #endif
2896 
2897 	if (dirty)
2898 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2899 
2900 	kvm_release_pfn(map->pfn, dirty);
2901 
2902 	map->hva = NULL;
2903 	map->page = NULL;
2904 }
2905 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2906 
2907 static bool kvm_is_ad_tracked_page(struct page *page)
2908 {
2909 	/*
2910 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2911 	 * touched (e.g. set dirty) except by its owner".
2912 	 */
2913 	return !PageReserved(page);
2914 }
2915 
2916 static void kvm_set_page_dirty(struct page *page)
2917 {
2918 	if (kvm_is_ad_tracked_page(page))
2919 		SetPageDirty(page);
2920 }
2921 
2922 static void kvm_set_page_accessed(struct page *page)
2923 {
2924 	if (kvm_is_ad_tracked_page(page))
2925 		mark_page_accessed(page);
2926 }
2927 
2928 void kvm_release_page_clean(struct page *page)
2929 {
2930 	WARN_ON(is_error_page(page));
2931 
2932 	kvm_set_page_accessed(page);
2933 	put_page(page);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2936 
2937 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2938 {
2939 	struct page *page;
2940 
2941 	if (is_error_noslot_pfn(pfn))
2942 		return;
2943 
2944 	page = kvm_pfn_to_refcounted_page(pfn);
2945 	if (!page)
2946 		return;
2947 
2948 	kvm_release_page_clean(page);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2951 
2952 void kvm_release_page_dirty(struct page *page)
2953 {
2954 	WARN_ON(is_error_page(page));
2955 
2956 	kvm_set_page_dirty(page);
2957 	kvm_release_page_clean(page);
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2960 
2961 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2962 {
2963 	struct page *page;
2964 
2965 	if (is_error_noslot_pfn(pfn))
2966 		return;
2967 
2968 	page = kvm_pfn_to_refcounted_page(pfn);
2969 	if (!page)
2970 		return;
2971 
2972 	kvm_release_page_dirty(page);
2973 }
2974 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2975 
2976 /*
2977  * Note, checking for an error/noslot pfn is the caller's responsibility when
2978  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2979  * "set" helpers are not to be used when the pfn might point at garbage.
2980  */
2981 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2982 {
2983 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2984 		return;
2985 
2986 	if (pfn_valid(pfn))
2987 		kvm_set_page_dirty(pfn_to_page(pfn));
2988 }
2989 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2990 
2991 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2992 {
2993 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2994 		return;
2995 
2996 	if (pfn_valid(pfn))
2997 		kvm_set_page_accessed(pfn_to_page(pfn));
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3000 
3001 static int next_segment(unsigned long len, int offset)
3002 {
3003 	if (len > PAGE_SIZE - offset)
3004 		return PAGE_SIZE - offset;
3005 	else
3006 		return len;
3007 }
3008 
3009 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3010 				 void *data, int offset, int len)
3011 {
3012 	int r;
3013 	unsigned long addr;
3014 
3015 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3016 	if (kvm_is_error_hva(addr))
3017 		return -EFAULT;
3018 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3019 	if (r)
3020 		return -EFAULT;
3021 	return 0;
3022 }
3023 
3024 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3025 			int len)
3026 {
3027 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3028 
3029 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3030 }
3031 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3032 
3033 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3034 			     int offset, int len)
3035 {
3036 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3037 
3038 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3041 
3042 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3043 {
3044 	gfn_t gfn = gpa >> PAGE_SHIFT;
3045 	int seg;
3046 	int offset = offset_in_page(gpa);
3047 	int ret;
3048 
3049 	while ((seg = next_segment(len, offset)) != 0) {
3050 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3051 		if (ret < 0)
3052 			return ret;
3053 		offset = 0;
3054 		len -= seg;
3055 		data += seg;
3056 		++gfn;
3057 	}
3058 	return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_read_guest);
3061 
3062 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3063 {
3064 	gfn_t gfn = gpa >> PAGE_SHIFT;
3065 	int seg;
3066 	int offset = offset_in_page(gpa);
3067 	int ret;
3068 
3069 	while ((seg = next_segment(len, offset)) != 0) {
3070 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3071 		if (ret < 0)
3072 			return ret;
3073 		offset = 0;
3074 		len -= seg;
3075 		data += seg;
3076 		++gfn;
3077 	}
3078 	return 0;
3079 }
3080 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3081 
3082 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3083 			           void *data, int offset, unsigned long len)
3084 {
3085 	int r;
3086 	unsigned long addr;
3087 
3088 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3089 	if (kvm_is_error_hva(addr))
3090 		return -EFAULT;
3091 	pagefault_disable();
3092 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3093 	pagefault_enable();
3094 	if (r)
3095 		return -EFAULT;
3096 	return 0;
3097 }
3098 
3099 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3100 			       void *data, unsigned long len)
3101 {
3102 	gfn_t gfn = gpa >> PAGE_SHIFT;
3103 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3104 	int offset = offset_in_page(gpa);
3105 
3106 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3107 }
3108 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3109 
3110 static int __kvm_write_guest_page(struct kvm *kvm,
3111 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3112 			          const void *data, int offset, int len)
3113 {
3114 	int r;
3115 	unsigned long addr;
3116 
3117 	addr = gfn_to_hva_memslot(memslot, gfn);
3118 	if (kvm_is_error_hva(addr))
3119 		return -EFAULT;
3120 	r = __copy_to_user((void __user *)addr + offset, data, len);
3121 	if (r)
3122 		return -EFAULT;
3123 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3124 	return 0;
3125 }
3126 
3127 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3128 			 const void *data, int offset, int len)
3129 {
3130 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3131 
3132 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3135 
3136 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3137 			      const void *data, int offset, int len)
3138 {
3139 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3140 
3141 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3144 
3145 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3146 		    unsigned long len)
3147 {
3148 	gfn_t gfn = gpa >> PAGE_SHIFT;
3149 	int seg;
3150 	int offset = offset_in_page(gpa);
3151 	int ret;
3152 
3153 	while ((seg = next_segment(len, offset)) != 0) {
3154 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3155 		if (ret < 0)
3156 			return ret;
3157 		offset = 0;
3158 		len -= seg;
3159 		data += seg;
3160 		++gfn;
3161 	}
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(kvm_write_guest);
3165 
3166 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3167 		         unsigned long len)
3168 {
3169 	gfn_t gfn = gpa >> PAGE_SHIFT;
3170 	int seg;
3171 	int offset = offset_in_page(gpa);
3172 	int ret;
3173 
3174 	while ((seg = next_segment(len, offset)) != 0) {
3175 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3176 		if (ret < 0)
3177 			return ret;
3178 		offset = 0;
3179 		len -= seg;
3180 		data += seg;
3181 		++gfn;
3182 	}
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3186 
3187 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3188 				       struct gfn_to_hva_cache *ghc,
3189 				       gpa_t gpa, unsigned long len)
3190 {
3191 	int offset = offset_in_page(gpa);
3192 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3193 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3194 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3195 	gfn_t nr_pages_avail;
3196 
3197 	/* Update ghc->generation before performing any error checks. */
3198 	ghc->generation = slots->generation;
3199 
3200 	if (start_gfn > end_gfn) {
3201 		ghc->hva = KVM_HVA_ERR_BAD;
3202 		return -EINVAL;
3203 	}
3204 
3205 	/*
3206 	 * If the requested region crosses two memslots, we still
3207 	 * verify that the entire region is valid here.
3208 	 */
3209 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3210 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3211 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3212 					   &nr_pages_avail);
3213 		if (kvm_is_error_hva(ghc->hva))
3214 			return -EFAULT;
3215 	}
3216 
3217 	/* Use the slow path for cross page reads and writes. */
3218 	if (nr_pages_needed == 1)
3219 		ghc->hva += offset;
3220 	else
3221 		ghc->memslot = NULL;
3222 
3223 	ghc->gpa = gpa;
3224 	ghc->len = len;
3225 	return 0;
3226 }
3227 
3228 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3229 			      gpa_t gpa, unsigned long len)
3230 {
3231 	struct kvm_memslots *slots = kvm_memslots(kvm);
3232 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3233 }
3234 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3235 
3236 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3237 				  void *data, unsigned int offset,
3238 				  unsigned long len)
3239 {
3240 	struct kvm_memslots *slots = kvm_memslots(kvm);
3241 	int r;
3242 	gpa_t gpa = ghc->gpa + offset;
3243 
3244 	if (WARN_ON_ONCE(len + offset > ghc->len))
3245 		return -EINVAL;
3246 
3247 	if (slots->generation != ghc->generation) {
3248 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3249 			return -EFAULT;
3250 	}
3251 
3252 	if (kvm_is_error_hva(ghc->hva))
3253 		return -EFAULT;
3254 
3255 	if (unlikely(!ghc->memslot))
3256 		return kvm_write_guest(kvm, gpa, data, len);
3257 
3258 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3259 	if (r)
3260 		return -EFAULT;
3261 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3262 
3263 	return 0;
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3266 
3267 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3268 			   void *data, unsigned long len)
3269 {
3270 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3273 
3274 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3275 				 void *data, unsigned int offset,
3276 				 unsigned long len)
3277 {
3278 	struct kvm_memslots *slots = kvm_memslots(kvm);
3279 	int r;
3280 	gpa_t gpa = ghc->gpa + offset;
3281 
3282 	if (WARN_ON_ONCE(len + offset > ghc->len))
3283 		return -EINVAL;
3284 
3285 	if (slots->generation != ghc->generation) {
3286 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3287 			return -EFAULT;
3288 	}
3289 
3290 	if (kvm_is_error_hva(ghc->hva))
3291 		return -EFAULT;
3292 
3293 	if (unlikely(!ghc->memslot))
3294 		return kvm_read_guest(kvm, gpa, data, len);
3295 
3296 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3297 	if (r)
3298 		return -EFAULT;
3299 
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3303 
3304 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3305 			  void *data, unsigned long len)
3306 {
3307 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3308 }
3309 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3310 
3311 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3312 {
3313 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3314 	gfn_t gfn = gpa >> PAGE_SHIFT;
3315 	int seg;
3316 	int offset = offset_in_page(gpa);
3317 	int ret;
3318 
3319 	while ((seg = next_segment(len, offset)) != 0) {
3320 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3321 		if (ret < 0)
3322 			return ret;
3323 		offset = 0;
3324 		len -= seg;
3325 		++gfn;
3326 	}
3327 	return 0;
3328 }
3329 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3330 
3331 void mark_page_dirty_in_slot(struct kvm *kvm,
3332 			     const struct kvm_memory_slot *memslot,
3333 		 	     gfn_t gfn)
3334 {
3335 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3336 
3337 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3338 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3339 		return;
3340 
3341 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3342 #endif
3343 
3344 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3345 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3346 		u32 slot = (memslot->as_id << 16) | memslot->id;
3347 
3348 		if (kvm->dirty_ring_size && vcpu)
3349 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3350 		else if (memslot->dirty_bitmap)
3351 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3352 	}
3353 }
3354 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3355 
3356 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3357 {
3358 	struct kvm_memory_slot *memslot;
3359 
3360 	memslot = gfn_to_memslot(kvm, gfn);
3361 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3362 }
3363 EXPORT_SYMBOL_GPL(mark_page_dirty);
3364 
3365 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3366 {
3367 	struct kvm_memory_slot *memslot;
3368 
3369 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3370 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3371 }
3372 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3373 
3374 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3375 {
3376 	if (!vcpu->sigset_active)
3377 		return;
3378 
3379 	/*
3380 	 * This does a lockless modification of ->real_blocked, which is fine
3381 	 * because, only current can change ->real_blocked and all readers of
3382 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3383 	 * of ->blocked.
3384 	 */
3385 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3386 }
3387 
3388 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3389 {
3390 	if (!vcpu->sigset_active)
3391 		return;
3392 
3393 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3394 	sigemptyset(&current->real_blocked);
3395 }
3396 
3397 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3398 {
3399 	unsigned int old, val, grow, grow_start;
3400 
3401 	old = val = vcpu->halt_poll_ns;
3402 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3403 	grow = READ_ONCE(halt_poll_ns_grow);
3404 	if (!grow)
3405 		goto out;
3406 
3407 	val *= grow;
3408 	if (val < grow_start)
3409 		val = grow_start;
3410 
3411 	vcpu->halt_poll_ns = val;
3412 out:
3413 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3414 }
3415 
3416 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3417 {
3418 	unsigned int old, val, shrink, grow_start;
3419 
3420 	old = val = vcpu->halt_poll_ns;
3421 	shrink = READ_ONCE(halt_poll_ns_shrink);
3422 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3423 	if (shrink == 0)
3424 		val = 0;
3425 	else
3426 		val /= shrink;
3427 
3428 	if (val < grow_start)
3429 		val = 0;
3430 
3431 	vcpu->halt_poll_ns = val;
3432 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3433 }
3434 
3435 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3436 {
3437 	int ret = -EINTR;
3438 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3439 
3440 	if (kvm_arch_vcpu_runnable(vcpu))
3441 		goto out;
3442 	if (kvm_cpu_has_pending_timer(vcpu))
3443 		goto out;
3444 	if (signal_pending(current))
3445 		goto out;
3446 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3447 		goto out;
3448 
3449 	ret = 0;
3450 out:
3451 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3452 	return ret;
3453 }
3454 
3455 /*
3456  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3457  * pending.  This is mostly used when halting a vCPU, but may also be used
3458  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3459  */
3460 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3461 {
3462 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3463 	bool waited = false;
3464 
3465 	vcpu->stat.generic.blocking = 1;
3466 
3467 	preempt_disable();
3468 	kvm_arch_vcpu_blocking(vcpu);
3469 	prepare_to_rcuwait(wait);
3470 	preempt_enable();
3471 
3472 	for (;;) {
3473 		set_current_state(TASK_INTERRUPTIBLE);
3474 
3475 		if (kvm_vcpu_check_block(vcpu) < 0)
3476 			break;
3477 
3478 		waited = true;
3479 		schedule();
3480 	}
3481 
3482 	preempt_disable();
3483 	finish_rcuwait(wait);
3484 	kvm_arch_vcpu_unblocking(vcpu);
3485 	preempt_enable();
3486 
3487 	vcpu->stat.generic.blocking = 0;
3488 
3489 	return waited;
3490 }
3491 
3492 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3493 					  ktime_t end, bool success)
3494 {
3495 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3496 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3497 
3498 	++vcpu->stat.generic.halt_attempted_poll;
3499 
3500 	if (success) {
3501 		++vcpu->stat.generic.halt_successful_poll;
3502 
3503 		if (!vcpu_valid_wakeup(vcpu))
3504 			++vcpu->stat.generic.halt_poll_invalid;
3505 
3506 		stats->halt_poll_success_ns += poll_ns;
3507 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3508 	} else {
3509 		stats->halt_poll_fail_ns += poll_ns;
3510 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3511 	}
3512 }
3513 
3514 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3515 {
3516 	struct kvm *kvm = vcpu->kvm;
3517 
3518 	if (kvm->override_halt_poll_ns) {
3519 		/*
3520 		 * Ensure kvm->max_halt_poll_ns is not read before
3521 		 * kvm->override_halt_poll_ns.
3522 		 *
3523 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3524 		 */
3525 		smp_rmb();
3526 		return READ_ONCE(kvm->max_halt_poll_ns);
3527 	}
3528 
3529 	return READ_ONCE(halt_poll_ns);
3530 }
3531 
3532 /*
3533  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3534  * polling is enabled, busy wait for a short time before blocking to avoid the
3535  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3536  * is halted.
3537  */
3538 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3539 {
3540 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3541 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3542 	ktime_t start, cur, poll_end;
3543 	bool waited = false;
3544 	bool do_halt_poll;
3545 	u64 halt_ns;
3546 
3547 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3548 		vcpu->halt_poll_ns = max_halt_poll_ns;
3549 
3550 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3551 
3552 	start = cur = poll_end = ktime_get();
3553 	if (do_halt_poll) {
3554 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3555 
3556 		do {
3557 			if (kvm_vcpu_check_block(vcpu) < 0)
3558 				goto out;
3559 			cpu_relax();
3560 			poll_end = cur = ktime_get();
3561 		} while (kvm_vcpu_can_poll(cur, stop));
3562 	}
3563 
3564 	waited = kvm_vcpu_block(vcpu);
3565 
3566 	cur = ktime_get();
3567 	if (waited) {
3568 		vcpu->stat.generic.halt_wait_ns +=
3569 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3570 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3571 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3572 	}
3573 out:
3574 	/* The total time the vCPU was "halted", including polling time. */
3575 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3576 
3577 	/*
3578 	 * Note, halt-polling is considered successful so long as the vCPU was
3579 	 * never actually scheduled out, i.e. even if the wake event arrived
3580 	 * after of the halt-polling loop itself, but before the full wait.
3581 	 */
3582 	if (do_halt_poll)
3583 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3584 
3585 	if (halt_poll_allowed) {
3586 		/* Recompute the max halt poll time in case it changed. */
3587 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3588 
3589 		if (!vcpu_valid_wakeup(vcpu)) {
3590 			shrink_halt_poll_ns(vcpu);
3591 		} else if (max_halt_poll_ns) {
3592 			if (halt_ns <= vcpu->halt_poll_ns)
3593 				;
3594 			/* we had a long block, shrink polling */
3595 			else if (vcpu->halt_poll_ns &&
3596 				 halt_ns > max_halt_poll_ns)
3597 				shrink_halt_poll_ns(vcpu);
3598 			/* we had a short halt and our poll time is too small */
3599 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3600 				 halt_ns < max_halt_poll_ns)
3601 				grow_halt_poll_ns(vcpu);
3602 		} else {
3603 			vcpu->halt_poll_ns = 0;
3604 		}
3605 	}
3606 
3607 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3610 
3611 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3612 {
3613 	if (__kvm_vcpu_wake_up(vcpu)) {
3614 		WRITE_ONCE(vcpu->ready, true);
3615 		++vcpu->stat.generic.halt_wakeup;
3616 		return true;
3617 	}
3618 
3619 	return false;
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3622 
3623 #ifndef CONFIG_S390
3624 /*
3625  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3626  */
3627 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3628 {
3629 	int me, cpu;
3630 
3631 	if (kvm_vcpu_wake_up(vcpu))
3632 		return;
3633 
3634 	me = get_cpu();
3635 	/*
3636 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3637 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3638 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3639 	 * within the vCPU thread itself.
3640 	 */
3641 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3642 		if (vcpu->mode == IN_GUEST_MODE)
3643 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3644 		goto out;
3645 	}
3646 
3647 	/*
3648 	 * Note, the vCPU could get migrated to a different pCPU at any point
3649 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3650 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3651 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3652 	 * vCPU also requires it to leave IN_GUEST_MODE.
3653 	 */
3654 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3655 		cpu = READ_ONCE(vcpu->cpu);
3656 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3657 			smp_send_reschedule(cpu);
3658 	}
3659 out:
3660 	put_cpu();
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3663 #endif /* !CONFIG_S390 */
3664 
3665 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3666 {
3667 	struct pid *pid;
3668 	struct task_struct *task = NULL;
3669 	int ret = 0;
3670 
3671 	rcu_read_lock();
3672 	pid = rcu_dereference(target->pid);
3673 	if (pid)
3674 		task = get_pid_task(pid, PIDTYPE_PID);
3675 	rcu_read_unlock();
3676 	if (!task)
3677 		return ret;
3678 	ret = yield_to(task, 1);
3679 	put_task_struct(task);
3680 
3681 	return ret;
3682 }
3683 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3684 
3685 /*
3686  * Helper that checks whether a VCPU is eligible for directed yield.
3687  * Most eligible candidate to yield is decided by following heuristics:
3688  *
3689  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3690  *  (preempted lock holder), indicated by @in_spin_loop.
3691  *  Set at the beginning and cleared at the end of interception/PLE handler.
3692  *
3693  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3694  *  chance last time (mostly it has become eligible now since we have probably
3695  *  yielded to lockholder in last iteration. This is done by toggling
3696  *  @dy_eligible each time a VCPU checked for eligibility.)
3697  *
3698  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3699  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3700  *  burning. Giving priority for a potential lock-holder increases lock
3701  *  progress.
3702  *
3703  *  Since algorithm is based on heuristics, accessing another VCPU data without
3704  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3705  *  and continue with next VCPU and so on.
3706  */
3707 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3708 {
3709 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3710 	bool eligible;
3711 
3712 	eligible = !vcpu->spin_loop.in_spin_loop ||
3713 		    vcpu->spin_loop.dy_eligible;
3714 
3715 	if (vcpu->spin_loop.in_spin_loop)
3716 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3717 
3718 	return eligible;
3719 #else
3720 	return true;
3721 #endif
3722 }
3723 
3724 /*
3725  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3726  * a vcpu_load/vcpu_put pair.  However, for most architectures
3727  * kvm_arch_vcpu_runnable does not require vcpu_load.
3728  */
3729 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3730 {
3731 	return kvm_arch_vcpu_runnable(vcpu);
3732 }
3733 
3734 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3735 {
3736 	if (kvm_arch_dy_runnable(vcpu))
3737 		return true;
3738 
3739 #ifdef CONFIG_KVM_ASYNC_PF
3740 	if (!list_empty_careful(&vcpu->async_pf.done))
3741 		return true;
3742 #endif
3743 
3744 	return false;
3745 }
3746 
3747 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3748 {
3749 	return false;
3750 }
3751 
3752 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3753 {
3754 	struct kvm *kvm = me->kvm;
3755 	struct kvm_vcpu *vcpu;
3756 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3757 	unsigned long i;
3758 	int yielded = 0;
3759 	int try = 3;
3760 	int pass;
3761 
3762 	kvm_vcpu_set_in_spin_loop(me, true);
3763 	/*
3764 	 * We boost the priority of a VCPU that is runnable but not
3765 	 * currently running, because it got preempted by something
3766 	 * else and called schedule in __vcpu_run.  Hopefully that
3767 	 * VCPU is holding the lock that we need and will release it.
3768 	 * We approximate round-robin by starting at the last boosted VCPU.
3769 	 */
3770 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3771 		kvm_for_each_vcpu(i, vcpu, kvm) {
3772 			if (!pass && i <= last_boosted_vcpu) {
3773 				i = last_boosted_vcpu;
3774 				continue;
3775 			} else if (pass && i > last_boosted_vcpu)
3776 				break;
3777 			if (!READ_ONCE(vcpu->ready))
3778 				continue;
3779 			if (vcpu == me)
3780 				continue;
3781 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3782 				continue;
3783 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3784 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3785 			    !kvm_arch_vcpu_in_kernel(vcpu))
3786 				continue;
3787 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3788 				continue;
3789 
3790 			yielded = kvm_vcpu_yield_to(vcpu);
3791 			if (yielded > 0) {
3792 				kvm->last_boosted_vcpu = i;
3793 				break;
3794 			} else if (yielded < 0) {
3795 				try--;
3796 				if (!try)
3797 					break;
3798 			}
3799 		}
3800 	}
3801 	kvm_vcpu_set_in_spin_loop(me, false);
3802 
3803 	/* Ensure vcpu is not eligible during next spinloop */
3804 	kvm_vcpu_set_dy_eligible(me, false);
3805 }
3806 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3807 
3808 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3809 {
3810 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3811 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3812 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3813 	     kvm->dirty_ring_size / PAGE_SIZE);
3814 #else
3815 	return false;
3816 #endif
3817 }
3818 
3819 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3820 {
3821 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3822 	struct page *page;
3823 
3824 	if (vmf->pgoff == 0)
3825 		page = virt_to_page(vcpu->run);
3826 #ifdef CONFIG_X86
3827 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3828 		page = virt_to_page(vcpu->arch.pio_data);
3829 #endif
3830 #ifdef CONFIG_KVM_MMIO
3831 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3832 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3833 #endif
3834 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3835 		page = kvm_dirty_ring_get_page(
3836 		    &vcpu->dirty_ring,
3837 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3838 	else
3839 		return kvm_arch_vcpu_fault(vcpu, vmf);
3840 	get_page(page);
3841 	vmf->page = page;
3842 	return 0;
3843 }
3844 
3845 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3846 	.fault = kvm_vcpu_fault,
3847 };
3848 
3849 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3850 {
3851 	struct kvm_vcpu *vcpu = file->private_data;
3852 	unsigned long pages = vma_pages(vma);
3853 
3854 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3855 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3856 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3857 		return -EINVAL;
3858 
3859 	vma->vm_ops = &kvm_vcpu_vm_ops;
3860 	return 0;
3861 }
3862 
3863 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3864 {
3865 	struct kvm_vcpu *vcpu = filp->private_data;
3866 
3867 	kvm_put_kvm(vcpu->kvm);
3868 	return 0;
3869 }
3870 
3871 static const struct file_operations kvm_vcpu_fops = {
3872 	.release        = kvm_vcpu_release,
3873 	.unlocked_ioctl = kvm_vcpu_ioctl,
3874 	.mmap           = kvm_vcpu_mmap,
3875 	.llseek		= noop_llseek,
3876 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3877 };
3878 
3879 /*
3880  * Allocates an inode for the vcpu.
3881  */
3882 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3883 {
3884 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3885 
3886 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3887 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3888 }
3889 
3890 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3891 static int vcpu_get_pid(void *data, u64 *val)
3892 {
3893 	struct kvm_vcpu *vcpu = data;
3894 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3895 	return 0;
3896 }
3897 
3898 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3899 
3900 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3901 {
3902 	struct dentry *debugfs_dentry;
3903 	char dir_name[ITOA_MAX_LEN * 2];
3904 
3905 	if (!debugfs_initialized())
3906 		return;
3907 
3908 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3909 	debugfs_dentry = debugfs_create_dir(dir_name,
3910 					    vcpu->kvm->debugfs_dentry);
3911 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3912 			    &vcpu_get_pid_fops);
3913 
3914 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3915 }
3916 #endif
3917 
3918 /*
3919  * Creates some virtual cpus.  Good luck creating more than one.
3920  */
3921 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3922 {
3923 	int r;
3924 	struct kvm_vcpu *vcpu;
3925 	struct page *page;
3926 
3927 	if (id >= KVM_MAX_VCPU_IDS)
3928 		return -EINVAL;
3929 
3930 	mutex_lock(&kvm->lock);
3931 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3932 		mutex_unlock(&kvm->lock);
3933 		return -EINVAL;
3934 	}
3935 
3936 	r = kvm_arch_vcpu_precreate(kvm, id);
3937 	if (r) {
3938 		mutex_unlock(&kvm->lock);
3939 		return r;
3940 	}
3941 
3942 	kvm->created_vcpus++;
3943 	mutex_unlock(&kvm->lock);
3944 
3945 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3946 	if (!vcpu) {
3947 		r = -ENOMEM;
3948 		goto vcpu_decrement;
3949 	}
3950 
3951 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3952 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3953 	if (!page) {
3954 		r = -ENOMEM;
3955 		goto vcpu_free;
3956 	}
3957 	vcpu->run = page_address(page);
3958 
3959 	kvm_vcpu_init(vcpu, kvm, id);
3960 
3961 	r = kvm_arch_vcpu_create(vcpu);
3962 	if (r)
3963 		goto vcpu_free_run_page;
3964 
3965 	if (kvm->dirty_ring_size) {
3966 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3967 					 id, kvm->dirty_ring_size);
3968 		if (r)
3969 			goto arch_vcpu_destroy;
3970 	}
3971 
3972 	mutex_lock(&kvm->lock);
3973 
3974 #ifdef CONFIG_LOCKDEP
3975 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3976 	mutex_lock(&vcpu->mutex);
3977 	mutex_unlock(&vcpu->mutex);
3978 #endif
3979 
3980 	if (kvm_get_vcpu_by_id(kvm, id)) {
3981 		r = -EEXIST;
3982 		goto unlock_vcpu_destroy;
3983 	}
3984 
3985 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3986 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3987 	if (r)
3988 		goto unlock_vcpu_destroy;
3989 
3990 	/* Now it's all set up, let userspace reach it */
3991 	kvm_get_kvm(kvm);
3992 	r = create_vcpu_fd(vcpu);
3993 	if (r < 0)
3994 		goto kvm_put_xa_release;
3995 
3996 	if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3997 		r = -EINVAL;
3998 		goto kvm_put_xa_release;
3999 	}
4000 
4001 	/*
4002 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4003 	 * pointer before kvm->online_vcpu's incremented value.
4004 	 */
4005 	smp_wmb();
4006 	atomic_inc(&kvm->online_vcpus);
4007 
4008 	mutex_unlock(&kvm->lock);
4009 	kvm_arch_vcpu_postcreate(vcpu);
4010 	kvm_create_vcpu_debugfs(vcpu);
4011 	return r;
4012 
4013 kvm_put_xa_release:
4014 	kvm_put_kvm_no_destroy(kvm);
4015 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4016 unlock_vcpu_destroy:
4017 	mutex_unlock(&kvm->lock);
4018 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4019 arch_vcpu_destroy:
4020 	kvm_arch_vcpu_destroy(vcpu);
4021 vcpu_free_run_page:
4022 	free_page((unsigned long)vcpu->run);
4023 vcpu_free:
4024 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4025 vcpu_decrement:
4026 	mutex_lock(&kvm->lock);
4027 	kvm->created_vcpus--;
4028 	mutex_unlock(&kvm->lock);
4029 	return r;
4030 }
4031 
4032 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4033 {
4034 	if (sigset) {
4035 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4036 		vcpu->sigset_active = 1;
4037 		vcpu->sigset = *sigset;
4038 	} else
4039 		vcpu->sigset_active = 0;
4040 	return 0;
4041 }
4042 
4043 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4044 			      size_t size, loff_t *offset)
4045 {
4046 	struct kvm_vcpu *vcpu = file->private_data;
4047 
4048 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4049 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4050 			sizeof(vcpu->stat), user_buffer, size, offset);
4051 }
4052 
4053 static const struct file_operations kvm_vcpu_stats_fops = {
4054 	.read = kvm_vcpu_stats_read,
4055 	.llseek = noop_llseek,
4056 };
4057 
4058 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4059 {
4060 	int fd;
4061 	struct file *file;
4062 	char name[15 + ITOA_MAX_LEN + 1];
4063 
4064 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4065 
4066 	fd = get_unused_fd_flags(O_CLOEXEC);
4067 	if (fd < 0)
4068 		return fd;
4069 
4070 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4071 	if (IS_ERR(file)) {
4072 		put_unused_fd(fd);
4073 		return PTR_ERR(file);
4074 	}
4075 	file->f_mode |= FMODE_PREAD;
4076 	fd_install(fd, file);
4077 
4078 	return fd;
4079 }
4080 
4081 static long kvm_vcpu_ioctl(struct file *filp,
4082 			   unsigned int ioctl, unsigned long arg)
4083 {
4084 	struct kvm_vcpu *vcpu = filp->private_data;
4085 	void __user *argp = (void __user *)arg;
4086 	int r;
4087 	struct kvm_fpu *fpu = NULL;
4088 	struct kvm_sregs *kvm_sregs = NULL;
4089 
4090 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4091 		return -EIO;
4092 
4093 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4094 		return -EINVAL;
4095 
4096 	/*
4097 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4098 	 * execution; mutex_lock() would break them.
4099 	 */
4100 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4101 	if (r != -ENOIOCTLCMD)
4102 		return r;
4103 
4104 	if (mutex_lock_killable(&vcpu->mutex))
4105 		return -EINTR;
4106 	switch (ioctl) {
4107 	case KVM_RUN: {
4108 		struct pid *oldpid;
4109 		r = -EINVAL;
4110 		if (arg)
4111 			goto out;
4112 		oldpid = rcu_access_pointer(vcpu->pid);
4113 		if (unlikely(oldpid != task_pid(current))) {
4114 			/* The thread running this VCPU changed. */
4115 			struct pid *newpid;
4116 
4117 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4118 			if (r)
4119 				break;
4120 
4121 			newpid = get_task_pid(current, PIDTYPE_PID);
4122 			rcu_assign_pointer(vcpu->pid, newpid);
4123 			if (oldpid)
4124 				synchronize_rcu();
4125 			put_pid(oldpid);
4126 		}
4127 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4128 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4129 		break;
4130 	}
4131 	case KVM_GET_REGS: {
4132 		struct kvm_regs *kvm_regs;
4133 
4134 		r = -ENOMEM;
4135 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4136 		if (!kvm_regs)
4137 			goto out;
4138 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4139 		if (r)
4140 			goto out_free1;
4141 		r = -EFAULT;
4142 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4143 			goto out_free1;
4144 		r = 0;
4145 out_free1:
4146 		kfree(kvm_regs);
4147 		break;
4148 	}
4149 	case KVM_SET_REGS: {
4150 		struct kvm_regs *kvm_regs;
4151 
4152 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4153 		if (IS_ERR(kvm_regs)) {
4154 			r = PTR_ERR(kvm_regs);
4155 			goto out;
4156 		}
4157 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4158 		kfree(kvm_regs);
4159 		break;
4160 	}
4161 	case KVM_GET_SREGS: {
4162 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4163 				    GFP_KERNEL_ACCOUNT);
4164 		r = -ENOMEM;
4165 		if (!kvm_sregs)
4166 			goto out;
4167 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4168 		if (r)
4169 			goto out;
4170 		r = -EFAULT;
4171 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4172 			goto out;
4173 		r = 0;
4174 		break;
4175 	}
4176 	case KVM_SET_SREGS: {
4177 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4178 		if (IS_ERR(kvm_sregs)) {
4179 			r = PTR_ERR(kvm_sregs);
4180 			kvm_sregs = NULL;
4181 			goto out;
4182 		}
4183 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4184 		break;
4185 	}
4186 	case KVM_GET_MP_STATE: {
4187 		struct kvm_mp_state mp_state;
4188 
4189 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4190 		if (r)
4191 			goto out;
4192 		r = -EFAULT;
4193 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4194 			goto out;
4195 		r = 0;
4196 		break;
4197 	}
4198 	case KVM_SET_MP_STATE: {
4199 		struct kvm_mp_state mp_state;
4200 
4201 		r = -EFAULT;
4202 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4203 			goto out;
4204 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4205 		break;
4206 	}
4207 	case KVM_TRANSLATE: {
4208 		struct kvm_translation tr;
4209 
4210 		r = -EFAULT;
4211 		if (copy_from_user(&tr, argp, sizeof(tr)))
4212 			goto out;
4213 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4214 		if (r)
4215 			goto out;
4216 		r = -EFAULT;
4217 		if (copy_to_user(argp, &tr, sizeof(tr)))
4218 			goto out;
4219 		r = 0;
4220 		break;
4221 	}
4222 	case KVM_SET_GUEST_DEBUG: {
4223 		struct kvm_guest_debug dbg;
4224 
4225 		r = -EFAULT;
4226 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4227 			goto out;
4228 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4229 		break;
4230 	}
4231 	case KVM_SET_SIGNAL_MASK: {
4232 		struct kvm_signal_mask __user *sigmask_arg = argp;
4233 		struct kvm_signal_mask kvm_sigmask;
4234 		sigset_t sigset, *p;
4235 
4236 		p = NULL;
4237 		if (argp) {
4238 			r = -EFAULT;
4239 			if (copy_from_user(&kvm_sigmask, argp,
4240 					   sizeof(kvm_sigmask)))
4241 				goto out;
4242 			r = -EINVAL;
4243 			if (kvm_sigmask.len != sizeof(sigset))
4244 				goto out;
4245 			r = -EFAULT;
4246 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4247 					   sizeof(sigset)))
4248 				goto out;
4249 			p = &sigset;
4250 		}
4251 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4252 		break;
4253 	}
4254 	case KVM_GET_FPU: {
4255 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4256 		r = -ENOMEM;
4257 		if (!fpu)
4258 			goto out;
4259 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4260 		if (r)
4261 			goto out;
4262 		r = -EFAULT;
4263 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4264 			goto out;
4265 		r = 0;
4266 		break;
4267 	}
4268 	case KVM_SET_FPU: {
4269 		fpu = memdup_user(argp, sizeof(*fpu));
4270 		if (IS_ERR(fpu)) {
4271 			r = PTR_ERR(fpu);
4272 			fpu = NULL;
4273 			goto out;
4274 		}
4275 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4276 		break;
4277 	}
4278 	case KVM_GET_STATS_FD: {
4279 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4280 		break;
4281 	}
4282 	default:
4283 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4284 	}
4285 out:
4286 	mutex_unlock(&vcpu->mutex);
4287 	kfree(fpu);
4288 	kfree(kvm_sregs);
4289 	return r;
4290 }
4291 
4292 #ifdef CONFIG_KVM_COMPAT
4293 static long kvm_vcpu_compat_ioctl(struct file *filp,
4294 				  unsigned int ioctl, unsigned long arg)
4295 {
4296 	struct kvm_vcpu *vcpu = filp->private_data;
4297 	void __user *argp = compat_ptr(arg);
4298 	int r;
4299 
4300 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4301 		return -EIO;
4302 
4303 	switch (ioctl) {
4304 	case KVM_SET_SIGNAL_MASK: {
4305 		struct kvm_signal_mask __user *sigmask_arg = argp;
4306 		struct kvm_signal_mask kvm_sigmask;
4307 		sigset_t sigset;
4308 
4309 		if (argp) {
4310 			r = -EFAULT;
4311 			if (copy_from_user(&kvm_sigmask, argp,
4312 					   sizeof(kvm_sigmask)))
4313 				goto out;
4314 			r = -EINVAL;
4315 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4316 				goto out;
4317 			r = -EFAULT;
4318 			if (get_compat_sigset(&sigset,
4319 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4320 				goto out;
4321 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4322 		} else
4323 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4324 		break;
4325 	}
4326 	default:
4327 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4328 	}
4329 
4330 out:
4331 	return r;
4332 }
4333 #endif
4334 
4335 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4336 {
4337 	struct kvm_device *dev = filp->private_data;
4338 
4339 	if (dev->ops->mmap)
4340 		return dev->ops->mmap(dev, vma);
4341 
4342 	return -ENODEV;
4343 }
4344 
4345 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4346 				 int (*accessor)(struct kvm_device *dev,
4347 						 struct kvm_device_attr *attr),
4348 				 unsigned long arg)
4349 {
4350 	struct kvm_device_attr attr;
4351 
4352 	if (!accessor)
4353 		return -EPERM;
4354 
4355 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4356 		return -EFAULT;
4357 
4358 	return accessor(dev, &attr);
4359 }
4360 
4361 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4362 			     unsigned long arg)
4363 {
4364 	struct kvm_device *dev = filp->private_data;
4365 
4366 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4367 		return -EIO;
4368 
4369 	switch (ioctl) {
4370 	case KVM_SET_DEVICE_ATTR:
4371 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4372 	case KVM_GET_DEVICE_ATTR:
4373 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4374 	case KVM_HAS_DEVICE_ATTR:
4375 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4376 	default:
4377 		if (dev->ops->ioctl)
4378 			return dev->ops->ioctl(dev, ioctl, arg);
4379 
4380 		return -ENOTTY;
4381 	}
4382 }
4383 
4384 static int kvm_device_release(struct inode *inode, struct file *filp)
4385 {
4386 	struct kvm_device *dev = filp->private_data;
4387 	struct kvm *kvm = dev->kvm;
4388 
4389 	if (dev->ops->release) {
4390 		mutex_lock(&kvm->lock);
4391 		list_del(&dev->vm_node);
4392 		dev->ops->release(dev);
4393 		mutex_unlock(&kvm->lock);
4394 	}
4395 
4396 	kvm_put_kvm(kvm);
4397 	return 0;
4398 }
4399 
4400 static const struct file_operations kvm_device_fops = {
4401 	.unlocked_ioctl = kvm_device_ioctl,
4402 	.release = kvm_device_release,
4403 	KVM_COMPAT(kvm_device_ioctl),
4404 	.mmap = kvm_device_mmap,
4405 };
4406 
4407 struct kvm_device *kvm_device_from_filp(struct file *filp)
4408 {
4409 	if (filp->f_op != &kvm_device_fops)
4410 		return NULL;
4411 
4412 	return filp->private_data;
4413 }
4414 
4415 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4416 #ifdef CONFIG_KVM_MPIC
4417 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4418 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4419 #endif
4420 };
4421 
4422 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4423 {
4424 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4425 		return -ENOSPC;
4426 
4427 	if (kvm_device_ops_table[type] != NULL)
4428 		return -EEXIST;
4429 
4430 	kvm_device_ops_table[type] = ops;
4431 	return 0;
4432 }
4433 
4434 void kvm_unregister_device_ops(u32 type)
4435 {
4436 	if (kvm_device_ops_table[type] != NULL)
4437 		kvm_device_ops_table[type] = NULL;
4438 }
4439 
4440 static int kvm_ioctl_create_device(struct kvm *kvm,
4441 				   struct kvm_create_device *cd)
4442 {
4443 	const struct kvm_device_ops *ops;
4444 	struct kvm_device *dev;
4445 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4446 	int type;
4447 	int ret;
4448 
4449 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4450 		return -ENODEV;
4451 
4452 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4453 	ops = kvm_device_ops_table[type];
4454 	if (ops == NULL)
4455 		return -ENODEV;
4456 
4457 	if (test)
4458 		return 0;
4459 
4460 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4461 	if (!dev)
4462 		return -ENOMEM;
4463 
4464 	dev->ops = ops;
4465 	dev->kvm = kvm;
4466 
4467 	mutex_lock(&kvm->lock);
4468 	ret = ops->create(dev, type);
4469 	if (ret < 0) {
4470 		mutex_unlock(&kvm->lock);
4471 		kfree(dev);
4472 		return ret;
4473 	}
4474 	list_add(&dev->vm_node, &kvm->devices);
4475 	mutex_unlock(&kvm->lock);
4476 
4477 	if (ops->init)
4478 		ops->init(dev);
4479 
4480 	kvm_get_kvm(kvm);
4481 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4482 	if (ret < 0) {
4483 		kvm_put_kvm_no_destroy(kvm);
4484 		mutex_lock(&kvm->lock);
4485 		list_del(&dev->vm_node);
4486 		if (ops->release)
4487 			ops->release(dev);
4488 		mutex_unlock(&kvm->lock);
4489 		if (ops->destroy)
4490 			ops->destroy(dev);
4491 		return ret;
4492 	}
4493 
4494 	cd->fd = ret;
4495 	return 0;
4496 }
4497 
4498 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4499 {
4500 	switch (arg) {
4501 	case KVM_CAP_USER_MEMORY:
4502 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4503 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4504 	case KVM_CAP_INTERNAL_ERROR_DATA:
4505 #ifdef CONFIG_HAVE_KVM_MSI
4506 	case KVM_CAP_SIGNAL_MSI:
4507 #endif
4508 #ifdef CONFIG_HAVE_KVM_IRQFD
4509 	case KVM_CAP_IRQFD:
4510 #endif
4511 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4512 	case KVM_CAP_CHECK_EXTENSION_VM:
4513 	case KVM_CAP_ENABLE_CAP_VM:
4514 	case KVM_CAP_HALT_POLL:
4515 		return 1;
4516 #ifdef CONFIG_KVM_MMIO
4517 	case KVM_CAP_COALESCED_MMIO:
4518 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4519 	case KVM_CAP_COALESCED_PIO:
4520 		return 1;
4521 #endif
4522 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4523 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4524 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4525 #endif
4526 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4527 	case KVM_CAP_IRQ_ROUTING:
4528 		return KVM_MAX_IRQ_ROUTES;
4529 #endif
4530 #if KVM_ADDRESS_SPACE_NUM > 1
4531 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4532 		return KVM_ADDRESS_SPACE_NUM;
4533 #endif
4534 	case KVM_CAP_NR_MEMSLOTS:
4535 		return KVM_USER_MEM_SLOTS;
4536 	case KVM_CAP_DIRTY_LOG_RING:
4537 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4538 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4539 #else
4540 		return 0;
4541 #endif
4542 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4543 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4544 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4545 #else
4546 		return 0;
4547 #endif
4548 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4549 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4550 #endif
4551 	case KVM_CAP_BINARY_STATS_FD:
4552 	case KVM_CAP_SYSTEM_EVENT_DATA:
4553 		return 1;
4554 	default:
4555 		break;
4556 	}
4557 	return kvm_vm_ioctl_check_extension(kvm, arg);
4558 }
4559 
4560 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4561 {
4562 	int r;
4563 
4564 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4565 		return -EINVAL;
4566 
4567 	/* the size should be power of 2 */
4568 	if (!size || (size & (size - 1)))
4569 		return -EINVAL;
4570 
4571 	/* Should be bigger to keep the reserved entries, or a page */
4572 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4573 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4574 		return -EINVAL;
4575 
4576 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4577 	    sizeof(struct kvm_dirty_gfn))
4578 		return -E2BIG;
4579 
4580 	/* We only allow it to set once */
4581 	if (kvm->dirty_ring_size)
4582 		return -EINVAL;
4583 
4584 	mutex_lock(&kvm->lock);
4585 
4586 	if (kvm->created_vcpus) {
4587 		/* We don't allow to change this value after vcpu created */
4588 		r = -EINVAL;
4589 	} else {
4590 		kvm->dirty_ring_size = size;
4591 		r = 0;
4592 	}
4593 
4594 	mutex_unlock(&kvm->lock);
4595 	return r;
4596 }
4597 
4598 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4599 {
4600 	unsigned long i;
4601 	struct kvm_vcpu *vcpu;
4602 	int cleared = 0;
4603 
4604 	if (!kvm->dirty_ring_size)
4605 		return -EINVAL;
4606 
4607 	mutex_lock(&kvm->slots_lock);
4608 
4609 	kvm_for_each_vcpu(i, vcpu, kvm)
4610 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4611 
4612 	mutex_unlock(&kvm->slots_lock);
4613 
4614 	if (cleared)
4615 		kvm_flush_remote_tlbs(kvm);
4616 
4617 	return cleared;
4618 }
4619 
4620 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4621 						  struct kvm_enable_cap *cap)
4622 {
4623 	return -EINVAL;
4624 }
4625 
4626 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4627 {
4628 	int i;
4629 
4630 	lockdep_assert_held(&kvm->slots_lock);
4631 
4632 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4633 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4634 			return false;
4635 	}
4636 
4637 	return true;
4638 }
4639 
4640 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4641 					   struct kvm_enable_cap *cap)
4642 {
4643 	switch (cap->cap) {
4644 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4645 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4646 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4647 
4648 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4649 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4650 
4651 		if (cap->flags || (cap->args[0] & ~allowed_options))
4652 			return -EINVAL;
4653 		kvm->manual_dirty_log_protect = cap->args[0];
4654 		return 0;
4655 	}
4656 #endif
4657 	case KVM_CAP_HALT_POLL: {
4658 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4659 			return -EINVAL;
4660 
4661 		kvm->max_halt_poll_ns = cap->args[0];
4662 
4663 		/*
4664 		 * Ensure kvm->override_halt_poll_ns does not become visible
4665 		 * before kvm->max_halt_poll_ns.
4666 		 *
4667 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4668 		 */
4669 		smp_wmb();
4670 		kvm->override_halt_poll_ns = true;
4671 
4672 		return 0;
4673 	}
4674 	case KVM_CAP_DIRTY_LOG_RING:
4675 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4676 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4677 			return -EINVAL;
4678 
4679 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4680 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4681 		int r = -EINVAL;
4682 
4683 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4684 		    !kvm->dirty_ring_size || cap->flags)
4685 			return r;
4686 
4687 		mutex_lock(&kvm->slots_lock);
4688 
4689 		/*
4690 		 * For simplicity, allow enabling ring+bitmap if and only if
4691 		 * there are no memslots, e.g. to ensure all memslots allocate
4692 		 * a bitmap after the capability is enabled.
4693 		 */
4694 		if (kvm_are_all_memslots_empty(kvm)) {
4695 			kvm->dirty_ring_with_bitmap = true;
4696 			r = 0;
4697 		}
4698 
4699 		mutex_unlock(&kvm->slots_lock);
4700 
4701 		return r;
4702 	}
4703 	default:
4704 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4705 	}
4706 }
4707 
4708 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4709 			      size_t size, loff_t *offset)
4710 {
4711 	struct kvm *kvm = file->private_data;
4712 
4713 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4714 				&kvm_vm_stats_desc[0], &kvm->stat,
4715 				sizeof(kvm->stat), user_buffer, size, offset);
4716 }
4717 
4718 static const struct file_operations kvm_vm_stats_fops = {
4719 	.read = kvm_vm_stats_read,
4720 	.llseek = noop_llseek,
4721 };
4722 
4723 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4724 {
4725 	int fd;
4726 	struct file *file;
4727 
4728 	fd = get_unused_fd_flags(O_CLOEXEC);
4729 	if (fd < 0)
4730 		return fd;
4731 
4732 	file = anon_inode_getfile("kvm-vm-stats",
4733 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4734 	if (IS_ERR(file)) {
4735 		put_unused_fd(fd);
4736 		return PTR_ERR(file);
4737 	}
4738 	file->f_mode |= FMODE_PREAD;
4739 	fd_install(fd, file);
4740 
4741 	return fd;
4742 }
4743 
4744 static long kvm_vm_ioctl(struct file *filp,
4745 			   unsigned int ioctl, unsigned long arg)
4746 {
4747 	struct kvm *kvm = filp->private_data;
4748 	void __user *argp = (void __user *)arg;
4749 	int r;
4750 
4751 	if (kvm->mm != current->mm || kvm->vm_dead)
4752 		return -EIO;
4753 	switch (ioctl) {
4754 	case KVM_CREATE_VCPU:
4755 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4756 		break;
4757 	case KVM_ENABLE_CAP: {
4758 		struct kvm_enable_cap cap;
4759 
4760 		r = -EFAULT;
4761 		if (copy_from_user(&cap, argp, sizeof(cap)))
4762 			goto out;
4763 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4764 		break;
4765 	}
4766 	case KVM_SET_USER_MEMORY_REGION: {
4767 		struct kvm_userspace_memory_region kvm_userspace_mem;
4768 
4769 		r = -EFAULT;
4770 		if (copy_from_user(&kvm_userspace_mem, argp,
4771 						sizeof(kvm_userspace_mem)))
4772 			goto out;
4773 
4774 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4775 		break;
4776 	}
4777 	case KVM_GET_DIRTY_LOG: {
4778 		struct kvm_dirty_log log;
4779 
4780 		r = -EFAULT;
4781 		if (copy_from_user(&log, argp, sizeof(log)))
4782 			goto out;
4783 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4784 		break;
4785 	}
4786 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4787 	case KVM_CLEAR_DIRTY_LOG: {
4788 		struct kvm_clear_dirty_log log;
4789 
4790 		r = -EFAULT;
4791 		if (copy_from_user(&log, argp, sizeof(log)))
4792 			goto out;
4793 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4794 		break;
4795 	}
4796 #endif
4797 #ifdef CONFIG_KVM_MMIO
4798 	case KVM_REGISTER_COALESCED_MMIO: {
4799 		struct kvm_coalesced_mmio_zone zone;
4800 
4801 		r = -EFAULT;
4802 		if (copy_from_user(&zone, argp, sizeof(zone)))
4803 			goto out;
4804 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4805 		break;
4806 	}
4807 	case KVM_UNREGISTER_COALESCED_MMIO: {
4808 		struct kvm_coalesced_mmio_zone zone;
4809 
4810 		r = -EFAULT;
4811 		if (copy_from_user(&zone, argp, sizeof(zone)))
4812 			goto out;
4813 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4814 		break;
4815 	}
4816 #endif
4817 	case KVM_IRQFD: {
4818 		struct kvm_irqfd data;
4819 
4820 		r = -EFAULT;
4821 		if (copy_from_user(&data, argp, sizeof(data)))
4822 			goto out;
4823 		r = kvm_irqfd(kvm, &data);
4824 		break;
4825 	}
4826 	case KVM_IOEVENTFD: {
4827 		struct kvm_ioeventfd data;
4828 
4829 		r = -EFAULT;
4830 		if (copy_from_user(&data, argp, sizeof(data)))
4831 			goto out;
4832 		r = kvm_ioeventfd(kvm, &data);
4833 		break;
4834 	}
4835 #ifdef CONFIG_HAVE_KVM_MSI
4836 	case KVM_SIGNAL_MSI: {
4837 		struct kvm_msi msi;
4838 
4839 		r = -EFAULT;
4840 		if (copy_from_user(&msi, argp, sizeof(msi)))
4841 			goto out;
4842 		r = kvm_send_userspace_msi(kvm, &msi);
4843 		break;
4844 	}
4845 #endif
4846 #ifdef __KVM_HAVE_IRQ_LINE
4847 	case KVM_IRQ_LINE_STATUS:
4848 	case KVM_IRQ_LINE: {
4849 		struct kvm_irq_level irq_event;
4850 
4851 		r = -EFAULT;
4852 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4853 			goto out;
4854 
4855 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4856 					ioctl == KVM_IRQ_LINE_STATUS);
4857 		if (r)
4858 			goto out;
4859 
4860 		r = -EFAULT;
4861 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4862 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4863 				goto out;
4864 		}
4865 
4866 		r = 0;
4867 		break;
4868 	}
4869 #endif
4870 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4871 	case KVM_SET_GSI_ROUTING: {
4872 		struct kvm_irq_routing routing;
4873 		struct kvm_irq_routing __user *urouting;
4874 		struct kvm_irq_routing_entry *entries = NULL;
4875 
4876 		r = -EFAULT;
4877 		if (copy_from_user(&routing, argp, sizeof(routing)))
4878 			goto out;
4879 		r = -EINVAL;
4880 		if (!kvm_arch_can_set_irq_routing(kvm))
4881 			goto out;
4882 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4883 			goto out;
4884 		if (routing.flags)
4885 			goto out;
4886 		if (routing.nr) {
4887 			urouting = argp;
4888 			entries = vmemdup_user(urouting->entries,
4889 					       array_size(sizeof(*entries),
4890 							  routing.nr));
4891 			if (IS_ERR(entries)) {
4892 				r = PTR_ERR(entries);
4893 				goto out;
4894 			}
4895 		}
4896 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4897 					routing.flags);
4898 		kvfree(entries);
4899 		break;
4900 	}
4901 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4902 	case KVM_CREATE_DEVICE: {
4903 		struct kvm_create_device cd;
4904 
4905 		r = -EFAULT;
4906 		if (copy_from_user(&cd, argp, sizeof(cd)))
4907 			goto out;
4908 
4909 		r = kvm_ioctl_create_device(kvm, &cd);
4910 		if (r)
4911 			goto out;
4912 
4913 		r = -EFAULT;
4914 		if (copy_to_user(argp, &cd, sizeof(cd)))
4915 			goto out;
4916 
4917 		r = 0;
4918 		break;
4919 	}
4920 	case KVM_CHECK_EXTENSION:
4921 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4922 		break;
4923 	case KVM_RESET_DIRTY_RINGS:
4924 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4925 		break;
4926 	case KVM_GET_STATS_FD:
4927 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4928 		break;
4929 	default:
4930 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4931 	}
4932 out:
4933 	return r;
4934 }
4935 
4936 #ifdef CONFIG_KVM_COMPAT
4937 struct compat_kvm_dirty_log {
4938 	__u32 slot;
4939 	__u32 padding1;
4940 	union {
4941 		compat_uptr_t dirty_bitmap; /* one bit per page */
4942 		__u64 padding2;
4943 	};
4944 };
4945 
4946 struct compat_kvm_clear_dirty_log {
4947 	__u32 slot;
4948 	__u32 num_pages;
4949 	__u64 first_page;
4950 	union {
4951 		compat_uptr_t dirty_bitmap; /* one bit per page */
4952 		__u64 padding2;
4953 	};
4954 };
4955 
4956 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4957 				     unsigned long arg)
4958 {
4959 	return -ENOTTY;
4960 }
4961 
4962 static long kvm_vm_compat_ioctl(struct file *filp,
4963 			   unsigned int ioctl, unsigned long arg)
4964 {
4965 	struct kvm *kvm = filp->private_data;
4966 	int r;
4967 
4968 	if (kvm->mm != current->mm || kvm->vm_dead)
4969 		return -EIO;
4970 
4971 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4972 	if (r != -ENOTTY)
4973 		return r;
4974 
4975 	switch (ioctl) {
4976 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4977 	case KVM_CLEAR_DIRTY_LOG: {
4978 		struct compat_kvm_clear_dirty_log compat_log;
4979 		struct kvm_clear_dirty_log log;
4980 
4981 		if (copy_from_user(&compat_log, (void __user *)arg,
4982 				   sizeof(compat_log)))
4983 			return -EFAULT;
4984 		log.slot	 = compat_log.slot;
4985 		log.num_pages	 = compat_log.num_pages;
4986 		log.first_page	 = compat_log.first_page;
4987 		log.padding2	 = compat_log.padding2;
4988 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4989 
4990 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4991 		break;
4992 	}
4993 #endif
4994 	case KVM_GET_DIRTY_LOG: {
4995 		struct compat_kvm_dirty_log compat_log;
4996 		struct kvm_dirty_log log;
4997 
4998 		if (copy_from_user(&compat_log, (void __user *)arg,
4999 				   sizeof(compat_log)))
5000 			return -EFAULT;
5001 		log.slot	 = compat_log.slot;
5002 		log.padding1	 = compat_log.padding1;
5003 		log.padding2	 = compat_log.padding2;
5004 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5005 
5006 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5007 		break;
5008 	}
5009 	default:
5010 		r = kvm_vm_ioctl(filp, ioctl, arg);
5011 	}
5012 	return r;
5013 }
5014 #endif
5015 
5016 static const struct file_operations kvm_vm_fops = {
5017 	.release        = kvm_vm_release,
5018 	.unlocked_ioctl = kvm_vm_ioctl,
5019 	.llseek		= noop_llseek,
5020 	KVM_COMPAT(kvm_vm_compat_ioctl),
5021 };
5022 
5023 bool file_is_kvm(struct file *file)
5024 {
5025 	return file && file->f_op == &kvm_vm_fops;
5026 }
5027 EXPORT_SYMBOL_GPL(file_is_kvm);
5028 
5029 static int kvm_dev_ioctl_create_vm(unsigned long type)
5030 {
5031 	char fdname[ITOA_MAX_LEN + 1];
5032 	int r, fd;
5033 	struct kvm *kvm;
5034 	struct file *file;
5035 
5036 	fd = get_unused_fd_flags(O_CLOEXEC);
5037 	if (fd < 0)
5038 		return fd;
5039 
5040 	snprintf(fdname, sizeof(fdname), "%d", fd);
5041 
5042 	kvm = kvm_create_vm(type, fdname);
5043 	if (IS_ERR(kvm)) {
5044 		r = PTR_ERR(kvm);
5045 		goto put_fd;
5046 	}
5047 
5048 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5049 	if (IS_ERR(file)) {
5050 		r = PTR_ERR(file);
5051 		goto put_kvm;
5052 	}
5053 
5054 	/*
5055 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5056 	 * already set, with ->release() being kvm_vm_release().  In error
5057 	 * cases it will be called by the final fput(file) and will take
5058 	 * care of doing kvm_put_kvm(kvm).
5059 	 */
5060 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5061 
5062 	fd_install(fd, file);
5063 	return fd;
5064 
5065 put_kvm:
5066 	kvm_put_kvm(kvm);
5067 put_fd:
5068 	put_unused_fd(fd);
5069 	return r;
5070 }
5071 
5072 static long kvm_dev_ioctl(struct file *filp,
5073 			  unsigned int ioctl, unsigned long arg)
5074 {
5075 	int r = -EINVAL;
5076 
5077 	switch (ioctl) {
5078 	case KVM_GET_API_VERSION:
5079 		if (arg)
5080 			goto out;
5081 		r = KVM_API_VERSION;
5082 		break;
5083 	case KVM_CREATE_VM:
5084 		r = kvm_dev_ioctl_create_vm(arg);
5085 		break;
5086 	case KVM_CHECK_EXTENSION:
5087 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5088 		break;
5089 	case KVM_GET_VCPU_MMAP_SIZE:
5090 		if (arg)
5091 			goto out;
5092 		r = PAGE_SIZE;     /* struct kvm_run */
5093 #ifdef CONFIG_X86
5094 		r += PAGE_SIZE;    /* pio data page */
5095 #endif
5096 #ifdef CONFIG_KVM_MMIO
5097 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5098 #endif
5099 		break;
5100 	case KVM_TRACE_ENABLE:
5101 	case KVM_TRACE_PAUSE:
5102 	case KVM_TRACE_DISABLE:
5103 		r = -EOPNOTSUPP;
5104 		break;
5105 	default:
5106 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5107 	}
5108 out:
5109 	return r;
5110 }
5111 
5112 static struct file_operations kvm_chardev_ops = {
5113 	.unlocked_ioctl = kvm_dev_ioctl,
5114 	.llseek		= noop_llseek,
5115 	KVM_COMPAT(kvm_dev_ioctl),
5116 };
5117 
5118 static struct miscdevice kvm_dev = {
5119 	KVM_MINOR,
5120 	"kvm",
5121 	&kvm_chardev_ops,
5122 };
5123 
5124 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5125 __visible bool kvm_rebooting;
5126 EXPORT_SYMBOL_GPL(kvm_rebooting);
5127 
5128 static DEFINE_PER_CPU(bool, hardware_enabled);
5129 static int kvm_usage_count;
5130 
5131 static int __hardware_enable_nolock(void)
5132 {
5133 	if (__this_cpu_read(hardware_enabled))
5134 		return 0;
5135 
5136 	if (kvm_arch_hardware_enable()) {
5137 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5138 			raw_smp_processor_id());
5139 		return -EIO;
5140 	}
5141 
5142 	__this_cpu_write(hardware_enabled, true);
5143 	return 0;
5144 }
5145 
5146 static void hardware_enable_nolock(void *failed)
5147 {
5148 	if (__hardware_enable_nolock())
5149 		atomic_inc(failed);
5150 }
5151 
5152 static int kvm_online_cpu(unsigned int cpu)
5153 {
5154 	int ret = 0;
5155 
5156 	/*
5157 	 * Abort the CPU online process if hardware virtualization cannot
5158 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5159 	 * errors when scheduled to this CPU.
5160 	 */
5161 	mutex_lock(&kvm_lock);
5162 	if (kvm_usage_count)
5163 		ret = __hardware_enable_nolock();
5164 	mutex_unlock(&kvm_lock);
5165 	return ret;
5166 }
5167 
5168 static void hardware_disable_nolock(void *junk)
5169 {
5170 	/*
5171 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5172 	 * hardware, not just CPUs that successfully enabled hardware!
5173 	 */
5174 	if (!__this_cpu_read(hardware_enabled))
5175 		return;
5176 
5177 	kvm_arch_hardware_disable();
5178 
5179 	__this_cpu_write(hardware_enabled, false);
5180 }
5181 
5182 static int kvm_offline_cpu(unsigned int cpu)
5183 {
5184 	mutex_lock(&kvm_lock);
5185 	if (kvm_usage_count)
5186 		hardware_disable_nolock(NULL);
5187 	mutex_unlock(&kvm_lock);
5188 	return 0;
5189 }
5190 
5191 static void hardware_disable_all_nolock(void)
5192 {
5193 	BUG_ON(!kvm_usage_count);
5194 
5195 	kvm_usage_count--;
5196 	if (!kvm_usage_count)
5197 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5198 }
5199 
5200 static void hardware_disable_all(void)
5201 {
5202 	cpus_read_lock();
5203 	mutex_lock(&kvm_lock);
5204 	hardware_disable_all_nolock();
5205 	mutex_unlock(&kvm_lock);
5206 	cpus_read_unlock();
5207 }
5208 
5209 static int hardware_enable_all(void)
5210 {
5211 	atomic_t failed = ATOMIC_INIT(0);
5212 	int r;
5213 
5214 	/*
5215 	 * Do not enable hardware virtualization if the system is going down.
5216 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5217 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5218 	 * after kvm_reboot() is called.  Note, this relies on system_state
5219 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5220 	 * hook instead of registering a dedicated reboot notifier (the latter
5221 	 * runs before system_state is updated).
5222 	 */
5223 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5224 	    system_state == SYSTEM_RESTART)
5225 		return -EBUSY;
5226 
5227 	/*
5228 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5229 	 * is called, and so on_each_cpu() between them includes the CPU that
5230 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5231 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5232 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5233 	 * enable hardware multiple times.
5234 	 */
5235 	cpus_read_lock();
5236 	mutex_lock(&kvm_lock);
5237 
5238 	r = 0;
5239 
5240 	kvm_usage_count++;
5241 	if (kvm_usage_count == 1) {
5242 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5243 
5244 		if (atomic_read(&failed)) {
5245 			hardware_disable_all_nolock();
5246 			r = -EBUSY;
5247 		}
5248 	}
5249 
5250 	mutex_unlock(&kvm_lock);
5251 	cpus_read_unlock();
5252 
5253 	return r;
5254 }
5255 
5256 static void kvm_shutdown(void)
5257 {
5258 	/*
5259 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5260 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5261 	 * that relevant errors and exceptions aren't entirely unexpected.
5262 	 * Some flavors of hardware virtualization need to be disabled before
5263 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5264 	 * on x86, virtualization can block INIT interrupts, which are used by
5265 	 * firmware to pull APs back under firmware control.  Note, this path
5266 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5267 	 * 100% comprehensive.
5268 	 */
5269 	pr_info("kvm: exiting hardware virtualization\n");
5270 	kvm_rebooting = true;
5271 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5272 }
5273 
5274 static int kvm_suspend(void)
5275 {
5276 	/*
5277 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5278 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5279 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5280 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5281 	 * can be preempted, but the task cannot be frozen until it has dropped
5282 	 * all locks (userspace tasks are frozen via a fake signal).
5283 	 */
5284 	lockdep_assert_not_held(&kvm_lock);
5285 	lockdep_assert_irqs_disabled();
5286 
5287 	if (kvm_usage_count)
5288 		hardware_disable_nolock(NULL);
5289 	return 0;
5290 }
5291 
5292 static void kvm_resume(void)
5293 {
5294 	lockdep_assert_not_held(&kvm_lock);
5295 	lockdep_assert_irqs_disabled();
5296 
5297 	if (kvm_usage_count)
5298 		WARN_ON_ONCE(__hardware_enable_nolock());
5299 }
5300 
5301 static struct syscore_ops kvm_syscore_ops = {
5302 	.suspend = kvm_suspend,
5303 	.resume = kvm_resume,
5304 	.shutdown = kvm_shutdown,
5305 };
5306 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5307 static int hardware_enable_all(void)
5308 {
5309 	return 0;
5310 }
5311 
5312 static void hardware_disable_all(void)
5313 {
5314 
5315 }
5316 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5317 
5318 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5319 {
5320 	int i;
5321 
5322 	for (i = 0; i < bus->dev_count; i++) {
5323 		struct kvm_io_device *pos = bus->range[i].dev;
5324 
5325 		kvm_iodevice_destructor(pos);
5326 	}
5327 	kfree(bus);
5328 }
5329 
5330 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5331 				 const struct kvm_io_range *r2)
5332 {
5333 	gpa_t addr1 = r1->addr;
5334 	gpa_t addr2 = r2->addr;
5335 
5336 	if (addr1 < addr2)
5337 		return -1;
5338 
5339 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5340 	 * accept any overlapping write.  Any order is acceptable for
5341 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5342 	 * we process all of them.
5343 	 */
5344 	if (r2->len) {
5345 		addr1 += r1->len;
5346 		addr2 += r2->len;
5347 	}
5348 
5349 	if (addr1 > addr2)
5350 		return 1;
5351 
5352 	return 0;
5353 }
5354 
5355 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5356 {
5357 	return kvm_io_bus_cmp(p1, p2);
5358 }
5359 
5360 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5361 			     gpa_t addr, int len)
5362 {
5363 	struct kvm_io_range *range, key;
5364 	int off;
5365 
5366 	key = (struct kvm_io_range) {
5367 		.addr = addr,
5368 		.len = len,
5369 	};
5370 
5371 	range = bsearch(&key, bus->range, bus->dev_count,
5372 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5373 	if (range == NULL)
5374 		return -ENOENT;
5375 
5376 	off = range - bus->range;
5377 
5378 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5379 		off--;
5380 
5381 	return off;
5382 }
5383 
5384 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5385 			      struct kvm_io_range *range, const void *val)
5386 {
5387 	int idx;
5388 
5389 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5390 	if (idx < 0)
5391 		return -EOPNOTSUPP;
5392 
5393 	while (idx < bus->dev_count &&
5394 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5395 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5396 					range->len, val))
5397 			return idx;
5398 		idx++;
5399 	}
5400 
5401 	return -EOPNOTSUPP;
5402 }
5403 
5404 /* kvm_io_bus_write - called under kvm->slots_lock */
5405 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5406 		     int len, const void *val)
5407 {
5408 	struct kvm_io_bus *bus;
5409 	struct kvm_io_range range;
5410 	int r;
5411 
5412 	range = (struct kvm_io_range) {
5413 		.addr = addr,
5414 		.len = len,
5415 	};
5416 
5417 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5418 	if (!bus)
5419 		return -ENOMEM;
5420 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5421 	return r < 0 ? r : 0;
5422 }
5423 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5424 
5425 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5426 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5427 			    gpa_t addr, int len, const void *val, long cookie)
5428 {
5429 	struct kvm_io_bus *bus;
5430 	struct kvm_io_range range;
5431 
5432 	range = (struct kvm_io_range) {
5433 		.addr = addr,
5434 		.len = len,
5435 	};
5436 
5437 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5438 	if (!bus)
5439 		return -ENOMEM;
5440 
5441 	/* First try the device referenced by cookie. */
5442 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5443 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5444 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5445 					val))
5446 			return cookie;
5447 
5448 	/*
5449 	 * cookie contained garbage; fall back to search and return the
5450 	 * correct cookie value.
5451 	 */
5452 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5453 }
5454 
5455 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5456 			     struct kvm_io_range *range, void *val)
5457 {
5458 	int idx;
5459 
5460 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5461 	if (idx < 0)
5462 		return -EOPNOTSUPP;
5463 
5464 	while (idx < bus->dev_count &&
5465 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5466 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5467 				       range->len, val))
5468 			return idx;
5469 		idx++;
5470 	}
5471 
5472 	return -EOPNOTSUPP;
5473 }
5474 
5475 /* kvm_io_bus_read - called under kvm->slots_lock */
5476 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5477 		    int len, void *val)
5478 {
5479 	struct kvm_io_bus *bus;
5480 	struct kvm_io_range range;
5481 	int r;
5482 
5483 	range = (struct kvm_io_range) {
5484 		.addr = addr,
5485 		.len = len,
5486 	};
5487 
5488 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5489 	if (!bus)
5490 		return -ENOMEM;
5491 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5492 	return r < 0 ? r : 0;
5493 }
5494 
5495 /* Caller must hold slots_lock. */
5496 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5497 			    int len, struct kvm_io_device *dev)
5498 {
5499 	int i;
5500 	struct kvm_io_bus *new_bus, *bus;
5501 	struct kvm_io_range range;
5502 
5503 	bus = kvm_get_bus(kvm, bus_idx);
5504 	if (!bus)
5505 		return -ENOMEM;
5506 
5507 	/* exclude ioeventfd which is limited by maximum fd */
5508 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5509 		return -ENOSPC;
5510 
5511 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5512 			  GFP_KERNEL_ACCOUNT);
5513 	if (!new_bus)
5514 		return -ENOMEM;
5515 
5516 	range = (struct kvm_io_range) {
5517 		.addr = addr,
5518 		.len = len,
5519 		.dev = dev,
5520 	};
5521 
5522 	for (i = 0; i < bus->dev_count; i++)
5523 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5524 			break;
5525 
5526 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5527 	new_bus->dev_count++;
5528 	new_bus->range[i] = range;
5529 	memcpy(new_bus->range + i + 1, bus->range + i,
5530 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5531 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5532 	synchronize_srcu_expedited(&kvm->srcu);
5533 	kfree(bus);
5534 
5535 	return 0;
5536 }
5537 
5538 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5539 			      struct kvm_io_device *dev)
5540 {
5541 	int i, j;
5542 	struct kvm_io_bus *new_bus, *bus;
5543 
5544 	lockdep_assert_held(&kvm->slots_lock);
5545 
5546 	bus = kvm_get_bus(kvm, bus_idx);
5547 	if (!bus)
5548 		return 0;
5549 
5550 	for (i = 0; i < bus->dev_count; i++) {
5551 		if (bus->range[i].dev == dev) {
5552 			break;
5553 		}
5554 	}
5555 
5556 	if (i == bus->dev_count)
5557 		return 0;
5558 
5559 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5560 			  GFP_KERNEL_ACCOUNT);
5561 	if (new_bus) {
5562 		memcpy(new_bus, bus, struct_size(bus, range, i));
5563 		new_bus->dev_count--;
5564 		memcpy(new_bus->range + i, bus->range + i + 1,
5565 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5566 	}
5567 
5568 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5569 	synchronize_srcu_expedited(&kvm->srcu);
5570 
5571 	/* Destroy the old bus _after_ installing the (null) bus. */
5572 	if (!new_bus) {
5573 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5574 		for (j = 0; j < bus->dev_count; j++) {
5575 			if (j == i)
5576 				continue;
5577 			kvm_iodevice_destructor(bus->range[j].dev);
5578 		}
5579 	}
5580 
5581 	kfree(bus);
5582 	return new_bus ? 0 : -ENOMEM;
5583 }
5584 
5585 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5586 					 gpa_t addr)
5587 {
5588 	struct kvm_io_bus *bus;
5589 	int dev_idx, srcu_idx;
5590 	struct kvm_io_device *iodev = NULL;
5591 
5592 	srcu_idx = srcu_read_lock(&kvm->srcu);
5593 
5594 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5595 	if (!bus)
5596 		goto out_unlock;
5597 
5598 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5599 	if (dev_idx < 0)
5600 		goto out_unlock;
5601 
5602 	iodev = bus->range[dev_idx].dev;
5603 
5604 out_unlock:
5605 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5606 
5607 	return iodev;
5608 }
5609 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5610 
5611 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5612 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5613 			   const char *fmt)
5614 {
5615 	int ret;
5616 	struct kvm_stat_data *stat_data = inode->i_private;
5617 
5618 	/*
5619 	 * The debugfs files are a reference to the kvm struct which
5620         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5621         * avoids the race between open and the removal of the debugfs directory.
5622 	 */
5623 	if (!kvm_get_kvm_safe(stat_data->kvm))
5624 		return -ENOENT;
5625 
5626 	ret = simple_attr_open(inode, file, get,
5627 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5628 			       ? set : NULL, fmt);
5629 	if (ret)
5630 		kvm_put_kvm(stat_data->kvm);
5631 
5632 	return ret;
5633 }
5634 
5635 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5636 {
5637 	struct kvm_stat_data *stat_data = inode->i_private;
5638 
5639 	simple_attr_release(inode, file);
5640 	kvm_put_kvm(stat_data->kvm);
5641 
5642 	return 0;
5643 }
5644 
5645 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5646 {
5647 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5648 
5649 	return 0;
5650 }
5651 
5652 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5653 {
5654 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5655 
5656 	return 0;
5657 }
5658 
5659 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5660 {
5661 	unsigned long i;
5662 	struct kvm_vcpu *vcpu;
5663 
5664 	*val = 0;
5665 
5666 	kvm_for_each_vcpu(i, vcpu, kvm)
5667 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5668 
5669 	return 0;
5670 }
5671 
5672 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5673 {
5674 	unsigned long i;
5675 	struct kvm_vcpu *vcpu;
5676 
5677 	kvm_for_each_vcpu(i, vcpu, kvm)
5678 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5679 
5680 	return 0;
5681 }
5682 
5683 static int kvm_stat_data_get(void *data, u64 *val)
5684 {
5685 	int r = -EFAULT;
5686 	struct kvm_stat_data *stat_data = data;
5687 
5688 	switch (stat_data->kind) {
5689 	case KVM_STAT_VM:
5690 		r = kvm_get_stat_per_vm(stat_data->kvm,
5691 					stat_data->desc->desc.offset, val);
5692 		break;
5693 	case KVM_STAT_VCPU:
5694 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5695 					  stat_data->desc->desc.offset, val);
5696 		break;
5697 	}
5698 
5699 	return r;
5700 }
5701 
5702 static int kvm_stat_data_clear(void *data, u64 val)
5703 {
5704 	int r = -EFAULT;
5705 	struct kvm_stat_data *stat_data = data;
5706 
5707 	if (val)
5708 		return -EINVAL;
5709 
5710 	switch (stat_data->kind) {
5711 	case KVM_STAT_VM:
5712 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5713 					  stat_data->desc->desc.offset);
5714 		break;
5715 	case KVM_STAT_VCPU:
5716 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5717 					    stat_data->desc->desc.offset);
5718 		break;
5719 	}
5720 
5721 	return r;
5722 }
5723 
5724 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5725 {
5726 	__simple_attr_check_format("%llu\n", 0ull);
5727 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5728 				kvm_stat_data_clear, "%llu\n");
5729 }
5730 
5731 static const struct file_operations stat_fops_per_vm = {
5732 	.owner = THIS_MODULE,
5733 	.open = kvm_stat_data_open,
5734 	.release = kvm_debugfs_release,
5735 	.read = simple_attr_read,
5736 	.write = simple_attr_write,
5737 	.llseek = no_llseek,
5738 };
5739 
5740 static int vm_stat_get(void *_offset, u64 *val)
5741 {
5742 	unsigned offset = (long)_offset;
5743 	struct kvm *kvm;
5744 	u64 tmp_val;
5745 
5746 	*val = 0;
5747 	mutex_lock(&kvm_lock);
5748 	list_for_each_entry(kvm, &vm_list, vm_list) {
5749 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5750 		*val += tmp_val;
5751 	}
5752 	mutex_unlock(&kvm_lock);
5753 	return 0;
5754 }
5755 
5756 static int vm_stat_clear(void *_offset, u64 val)
5757 {
5758 	unsigned offset = (long)_offset;
5759 	struct kvm *kvm;
5760 
5761 	if (val)
5762 		return -EINVAL;
5763 
5764 	mutex_lock(&kvm_lock);
5765 	list_for_each_entry(kvm, &vm_list, vm_list) {
5766 		kvm_clear_stat_per_vm(kvm, offset);
5767 	}
5768 	mutex_unlock(&kvm_lock);
5769 
5770 	return 0;
5771 }
5772 
5773 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5774 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5775 
5776 static int vcpu_stat_get(void *_offset, u64 *val)
5777 {
5778 	unsigned offset = (long)_offset;
5779 	struct kvm *kvm;
5780 	u64 tmp_val;
5781 
5782 	*val = 0;
5783 	mutex_lock(&kvm_lock);
5784 	list_for_each_entry(kvm, &vm_list, vm_list) {
5785 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5786 		*val += tmp_val;
5787 	}
5788 	mutex_unlock(&kvm_lock);
5789 	return 0;
5790 }
5791 
5792 static int vcpu_stat_clear(void *_offset, u64 val)
5793 {
5794 	unsigned offset = (long)_offset;
5795 	struct kvm *kvm;
5796 
5797 	if (val)
5798 		return -EINVAL;
5799 
5800 	mutex_lock(&kvm_lock);
5801 	list_for_each_entry(kvm, &vm_list, vm_list) {
5802 		kvm_clear_stat_per_vcpu(kvm, offset);
5803 	}
5804 	mutex_unlock(&kvm_lock);
5805 
5806 	return 0;
5807 }
5808 
5809 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5810 			"%llu\n");
5811 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5812 
5813 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5814 {
5815 	struct kobj_uevent_env *env;
5816 	unsigned long long created, active;
5817 
5818 	if (!kvm_dev.this_device || !kvm)
5819 		return;
5820 
5821 	mutex_lock(&kvm_lock);
5822 	if (type == KVM_EVENT_CREATE_VM) {
5823 		kvm_createvm_count++;
5824 		kvm_active_vms++;
5825 	} else if (type == KVM_EVENT_DESTROY_VM) {
5826 		kvm_active_vms--;
5827 	}
5828 	created = kvm_createvm_count;
5829 	active = kvm_active_vms;
5830 	mutex_unlock(&kvm_lock);
5831 
5832 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5833 	if (!env)
5834 		return;
5835 
5836 	add_uevent_var(env, "CREATED=%llu", created);
5837 	add_uevent_var(env, "COUNT=%llu", active);
5838 
5839 	if (type == KVM_EVENT_CREATE_VM) {
5840 		add_uevent_var(env, "EVENT=create");
5841 		kvm->userspace_pid = task_pid_nr(current);
5842 	} else if (type == KVM_EVENT_DESTROY_VM) {
5843 		add_uevent_var(env, "EVENT=destroy");
5844 	}
5845 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5846 
5847 	if (!IS_ERR(kvm->debugfs_dentry)) {
5848 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5849 
5850 		if (p) {
5851 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5852 			if (!IS_ERR(tmp))
5853 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5854 			kfree(p);
5855 		}
5856 	}
5857 	/* no need for checks, since we are adding at most only 5 keys */
5858 	env->envp[env->envp_idx++] = NULL;
5859 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5860 	kfree(env);
5861 }
5862 
5863 static void kvm_init_debug(void)
5864 {
5865 	const struct file_operations *fops;
5866 	const struct _kvm_stats_desc *pdesc;
5867 	int i;
5868 
5869 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5870 
5871 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5872 		pdesc = &kvm_vm_stats_desc[i];
5873 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5874 			fops = &vm_stat_fops;
5875 		else
5876 			fops = &vm_stat_readonly_fops;
5877 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5878 				kvm_debugfs_dir,
5879 				(void *)(long)pdesc->desc.offset, fops);
5880 	}
5881 
5882 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5883 		pdesc = &kvm_vcpu_stats_desc[i];
5884 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5885 			fops = &vcpu_stat_fops;
5886 		else
5887 			fops = &vcpu_stat_readonly_fops;
5888 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5889 				kvm_debugfs_dir,
5890 				(void *)(long)pdesc->desc.offset, fops);
5891 	}
5892 }
5893 
5894 static inline
5895 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5896 {
5897 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5898 }
5899 
5900 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5901 {
5902 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5903 
5904 	WRITE_ONCE(vcpu->preempted, false);
5905 	WRITE_ONCE(vcpu->ready, false);
5906 
5907 	__this_cpu_write(kvm_running_vcpu, vcpu);
5908 	kvm_arch_sched_in(vcpu, cpu);
5909 	kvm_arch_vcpu_load(vcpu, cpu);
5910 }
5911 
5912 static void kvm_sched_out(struct preempt_notifier *pn,
5913 			  struct task_struct *next)
5914 {
5915 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5916 
5917 	if (current->on_rq) {
5918 		WRITE_ONCE(vcpu->preempted, true);
5919 		WRITE_ONCE(vcpu->ready, true);
5920 	}
5921 	kvm_arch_vcpu_put(vcpu);
5922 	__this_cpu_write(kvm_running_vcpu, NULL);
5923 }
5924 
5925 /**
5926  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5927  *
5928  * We can disable preemption locally around accessing the per-CPU variable,
5929  * and use the resolved vcpu pointer after enabling preemption again,
5930  * because even if the current thread is migrated to another CPU, reading
5931  * the per-CPU value later will give us the same value as we update the
5932  * per-CPU variable in the preempt notifier handlers.
5933  */
5934 struct kvm_vcpu *kvm_get_running_vcpu(void)
5935 {
5936 	struct kvm_vcpu *vcpu;
5937 
5938 	preempt_disable();
5939 	vcpu = __this_cpu_read(kvm_running_vcpu);
5940 	preempt_enable();
5941 
5942 	return vcpu;
5943 }
5944 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5945 
5946 /**
5947  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5948  */
5949 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5950 {
5951         return &kvm_running_vcpu;
5952 }
5953 
5954 #ifdef CONFIG_GUEST_PERF_EVENTS
5955 static unsigned int kvm_guest_state(void)
5956 {
5957 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5958 	unsigned int state;
5959 
5960 	if (!kvm_arch_pmi_in_guest(vcpu))
5961 		return 0;
5962 
5963 	state = PERF_GUEST_ACTIVE;
5964 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5965 		state |= PERF_GUEST_USER;
5966 
5967 	return state;
5968 }
5969 
5970 static unsigned long kvm_guest_get_ip(void)
5971 {
5972 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5973 
5974 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5975 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5976 		return 0;
5977 
5978 	return kvm_arch_vcpu_get_ip(vcpu);
5979 }
5980 
5981 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5982 	.state			= kvm_guest_state,
5983 	.get_ip			= kvm_guest_get_ip,
5984 	.handle_intel_pt_intr	= NULL,
5985 };
5986 
5987 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5988 {
5989 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5990 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5991 }
5992 void kvm_unregister_perf_callbacks(void)
5993 {
5994 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5995 }
5996 #endif
5997 
5998 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5999 {
6000 	int r;
6001 	int cpu;
6002 
6003 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6004 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6005 				      kvm_online_cpu, kvm_offline_cpu);
6006 	if (r)
6007 		return r;
6008 
6009 	register_syscore_ops(&kvm_syscore_ops);
6010 #endif
6011 
6012 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6013 	if (!vcpu_align)
6014 		vcpu_align = __alignof__(struct kvm_vcpu);
6015 	kvm_vcpu_cache =
6016 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6017 					   SLAB_ACCOUNT,
6018 					   offsetof(struct kvm_vcpu, arch),
6019 					   offsetofend(struct kvm_vcpu, stats_id)
6020 					   - offsetof(struct kvm_vcpu, arch),
6021 					   NULL);
6022 	if (!kvm_vcpu_cache) {
6023 		r = -ENOMEM;
6024 		goto err_vcpu_cache;
6025 	}
6026 
6027 	for_each_possible_cpu(cpu) {
6028 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6029 					    GFP_KERNEL, cpu_to_node(cpu))) {
6030 			r = -ENOMEM;
6031 			goto err_cpu_kick_mask;
6032 		}
6033 	}
6034 
6035 	r = kvm_irqfd_init();
6036 	if (r)
6037 		goto err_irqfd;
6038 
6039 	r = kvm_async_pf_init();
6040 	if (r)
6041 		goto err_async_pf;
6042 
6043 	kvm_chardev_ops.owner = module;
6044 
6045 	kvm_preempt_ops.sched_in = kvm_sched_in;
6046 	kvm_preempt_ops.sched_out = kvm_sched_out;
6047 
6048 	kvm_init_debug();
6049 
6050 	r = kvm_vfio_ops_init();
6051 	if (WARN_ON_ONCE(r))
6052 		goto err_vfio;
6053 
6054 	/*
6055 	 * Registration _must_ be the very last thing done, as this exposes
6056 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6057 	 */
6058 	r = misc_register(&kvm_dev);
6059 	if (r) {
6060 		pr_err("kvm: misc device register failed\n");
6061 		goto err_register;
6062 	}
6063 
6064 	return 0;
6065 
6066 err_register:
6067 	kvm_vfio_ops_exit();
6068 err_vfio:
6069 	kvm_async_pf_deinit();
6070 err_async_pf:
6071 	kvm_irqfd_exit();
6072 err_irqfd:
6073 err_cpu_kick_mask:
6074 	for_each_possible_cpu(cpu)
6075 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6076 	kmem_cache_destroy(kvm_vcpu_cache);
6077 err_vcpu_cache:
6078 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6079 	unregister_syscore_ops(&kvm_syscore_ops);
6080 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6081 #endif
6082 	return r;
6083 }
6084 EXPORT_SYMBOL_GPL(kvm_init);
6085 
6086 void kvm_exit(void)
6087 {
6088 	int cpu;
6089 
6090 	/*
6091 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6092 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6093 	 * to KVM while the module is being stopped.
6094 	 */
6095 	misc_deregister(&kvm_dev);
6096 
6097 	debugfs_remove_recursive(kvm_debugfs_dir);
6098 	for_each_possible_cpu(cpu)
6099 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6100 	kmem_cache_destroy(kvm_vcpu_cache);
6101 	kvm_vfio_ops_exit();
6102 	kvm_async_pf_deinit();
6103 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6104 	unregister_syscore_ops(&kvm_syscore_ops);
6105 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6106 #endif
6107 	kvm_irqfd_exit();
6108 }
6109 EXPORT_SYMBOL_GPL(kvm_exit);
6110 
6111 struct kvm_vm_worker_thread_context {
6112 	struct kvm *kvm;
6113 	struct task_struct *parent;
6114 	struct completion init_done;
6115 	kvm_vm_thread_fn_t thread_fn;
6116 	uintptr_t data;
6117 	int err;
6118 };
6119 
6120 static int kvm_vm_worker_thread(void *context)
6121 {
6122 	/*
6123 	 * The init_context is allocated on the stack of the parent thread, so
6124 	 * we have to locally copy anything that is needed beyond initialization
6125 	 */
6126 	struct kvm_vm_worker_thread_context *init_context = context;
6127 	struct task_struct *parent;
6128 	struct kvm *kvm = init_context->kvm;
6129 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6130 	uintptr_t data = init_context->data;
6131 	int err;
6132 
6133 	err = kthread_park(current);
6134 	/* kthread_park(current) is never supposed to return an error */
6135 	WARN_ON(err != 0);
6136 	if (err)
6137 		goto init_complete;
6138 
6139 	err = cgroup_attach_task_all(init_context->parent, current);
6140 	if (err) {
6141 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6142 			__func__, err);
6143 		goto init_complete;
6144 	}
6145 
6146 	set_user_nice(current, task_nice(init_context->parent));
6147 
6148 init_complete:
6149 	init_context->err = err;
6150 	complete(&init_context->init_done);
6151 	init_context = NULL;
6152 
6153 	if (err)
6154 		goto out;
6155 
6156 	/* Wait to be woken up by the spawner before proceeding. */
6157 	kthread_parkme();
6158 
6159 	if (!kthread_should_stop())
6160 		err = thread_fn(kvm, data);
6161 
6162 out:
6163 	/*
6164 	 * Move kthread back to its original cgroup to prevent it lingering in
6165 	 * the cgroup of the VM process, after the latter finishes its
6166 	 * execution.
6167 	 *
6168 	 * kthread_stop() waits on the 'exited' completion condition which is
6169 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6170 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6171 	 * called after the exit_mm(). This causes the kthread_stop() to return
6172 	 * before the kthread actually quits the cgroup.
6173 	 */
6174 	rcu_read_lock();
6175 	parent = rcu_dereference(current->real_parent);
6176 	get_task_struct(parent);
6177 	rcu_read_unlock();
6178 	cgroup_attach_task_all(parent, current);
6179 	put_task_struct(parent);
6180 
6181 	return err;
6182 }
6183 
6184 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6185 				uintptr_t data, const char *name,
6186 				struct task_struct **thread_ptr)
6187 {
6188 	struct kvm_vm_worker_thread_context init_context = {};
6189 	struct task_struct *thread;
6190 
6191 	*thread_ptr = NULL;
6192 	init_context.kvm = kvm;
6193 	init_context.parent = current;
6194 	init_context.thread_fn = thread_fn;
6195 	init_context.data = data;
6196 	init_completion(&init_context.init_done);
6197 
6198 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6199 			     "%s-%d", name, task_pid_nr(current));
6200 	if (IS_ERR(thread))
6201 		return PTR_ERR(thread);
6202 
6203 	/* kthread_run is never supposed to return NULL */
6204 	WARN_ON(thread == NULL);
6205 
6206 	wait_for_completion(&init_context.init_done);
6207 
6208 	if (!init_context.err)
6209 		*thread_ptr = thread;
6210 
6211 	return init_context.err;
6212 }
6213