xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 26721b02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164 	/*
165 	 * The metadata used by is_zone_device_page() to determine whether or
166 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
168 	 * page_count() is zero to help detect bad usage of this helper.
169 	 */
170 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 		return false;
172 
173 	return is_zone_device_page(pfn_to_page(pfn));
174 }
175 
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178 	/*
179 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 	 * perspective they are "normal" pages, albeit with slightly different
181 	 * usage rules.
182 	 */
183 	if (pfn_valid(pfn))
184 		return PageReserved(pfn_to_page(pfn)) &&
185 		       !is_zero_pfn(pfn) &&
186 		       !kvm_is_zone_device_pfn(pfn);
187 
188 	return true;
189 }
190 
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193 	struct page *page = pfn_to_page(pfn);
194 
195 	if (!PageTransCompoundMap(page))
196 		return false;
197 
198 	return is_transparent_hugepage(compound_head(page));
199 }
200 
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206 	int cpu = get_cpu();
207 
208 	__this_cpu_write(kvm_running_vcpu, vcpu);
209 	preempt_notifier_register(&vcpu->preempt_notifier);
210 	kvm_arch_vcpu_load(vcpu, cpu);
211 	put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214 
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217 	preempt_disable();
218 	kvm_arch_vcpu_put(vcpu);
219 	preempt_notifier_unregister(&vcpu->preempt_notifier);
220 	__this_cpu_write(kvm_running_vcpu, NULL);
221 	preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224 
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229 
230 	/*
231 	 * We need to wait for the VCPU to reenable interrupts and get out of
232 	 * READING_SHADOW_PAGE_TABLES mode.
233 	 */
234 	if (req & KVM_REQUEST_WAIT)
235 		return mode != OUTSIDE_GUEST_MODE;
236 
237 	/*
238 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 	 */
240 	return mode == IN_GUEST_MODE;
241 }
242 
243 static void ack_flush(void *_completed)
244 {
245 }
246 
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249 	if (unlikely(!cpus))
250 		cpus = cpu_online_mask;
251 
252 	if (cpumask_empty(cpus))
253 		return false;
254 
255 	smp_call_function_many(cpus, ack_flush, NULL, wait);
256 	return true;
257 }
258 
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 				 struct kvm_vcpu *except,
261 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263 	int i, cpu, me;
264 	struct kvm_vcpu *vcpu;
265 	bool called;
266 
267 	me = get_cpu();
268 
269 	kvm_for_each_vcpu(i, vcpu, kvm) {
270 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 		    vcpu == except)
272 			continue;
273 
274 		kvm_make_request(req, vcpu);
275 		cpu = vcpu->cpu;
276 
277 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 			continue;
279 
280 		if (tmp != NULL && cpu != -1 && cpu != me &&
281 		    kvm_request_needs_ipi(vcpu, req))
282 			__cpumask_set_cpu(cpu, tmp);
283 	}
284 
285 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 	put_cpu();
287 
288 	return called;
289 }
290 
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 				      struct kvm_vcpu *except)
293 {
294 	cpumask_var_t cpus;
295 	bool called;
296 
297 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298 
299 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300 
301 	free_cpumask_var(cpus);
302 	return called;
303 }
304 
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309 
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313 	/*
314 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 	 * kvm_make_all_cpus_request.
316 	 */
317 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318 
319 	/*
320 	 * We want to publish modifications to the page tables before reading
321 	 * mode. Pairs with a memory barrier in arch-specific code.
322 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 	 *
326 	 * There is already an smp_mb__after_atomic() before
327 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 	 * barrier here.
329 	 */
330 	if (!kvm_arch_flush_remote_tlb(kvm)
331 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 		++kvm->stat.remote_tlb_flush;
333 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337 
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342 
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345 					       gfp_t gfp_flags)
346 {
347 	gfp_flags |= mc->gfp_zero;
348 
349 	if (mc->kmem_cache)
350 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351 	else
352 		return (void *)__get_free_page(gfp_flags);
353 }
354 
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357 	void *obj;
358 
359 	if (mc->nobjs >= min)
360 		return 0;
361 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363 		if (!obj)
364 			return mc->nobjs >= min ? 0 : -ENOMEM;
365 		mc->objects[mc->nobjs++] = obj;
366 	}
367 	return 0;
368 }
369 
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372 	return mc->nobjs;
373 }
374 
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377 	while (mc->nobjs) {
378 		if (mc->kmem_cache)
379 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380 		else
381 			free_page((unsigned long)mc->objects[--mc->nobjs]);
382 	}
383 }
384 
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387 	void *p;
388 
389 	if (WARN_ON(!mc->nobjs))
390 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391 	else
392 		p = mc->objects[--mc->nobjs];
393 	BUG_ON(!p);
394 	return p;
395 }
396 #endif
397 
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400 	mutex_init(&vcpu->mutex);
401 	vcpu->cpu = -1;
402 	vcpu->kvm = kvm;
403 	vcpu->vcpu_id = id;
404 	vcpu->pid = NULL;
405 	rcuwait_init(&vcpu->wait);
406 	kvm_async_pf_vcpu_init(vcpu);
407 
408 	vcpu->pre_pcpu = -1;
409 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410 
411 	kvm_vcpu_set_in_spin_loop(vcpu, false);
412 	kvm_vcpu_set_dy_eligible(vcpu, false);
413 	vcpu->preempted = false;
414 	vcpu->ready = false;
415 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417 
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420 	kvm_arch_vcpu_destroy(vcpu);
421 
422 	/*
423 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424 	 * the vcpu->pid pointer, and at destruction time all file descriptors
425 	 * are already gone.
426 	 */
427 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
428 
429 	free_page((unsigned long)vcpu->run);
430 	kmem_cache_free(kvm_vcpu_cache, vcpu);
431 }
432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
433 
434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
436 {
437 	return container_of(mn, struct kvm, mmu_notifier);
438 }
439 
440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441 					      struct mm_struct *mm,
442 					      unsigned long start, unsigned long end)
443 {
444 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
445 	int idx;
446 
447 	idx = srcu_read_lock(&kvm->srcu);
448 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449 	srcu_read_unlock(&kvm->srcu, idx);
450 }
451 
452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453 					struct mm_struct *mm,
454 					unsigned long address,
455 					pte_t pte)
456 {
457 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 	int idx;
459 
460 	idx = srcu_read_lock(&kvm->srcu);
461 	spin_lock(&kvm->mmu_lock);
462 	kvm->mmu_notifier_seq++;
463 
464 	if (kvm_set_spte_hva(kvm, address, pte))
465 		kvm_flush_remote_tlbs(kvm);
466 
467 	spin_unlock(&kvm->mmu_lock);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472 					const struct mmu_notifier_range *range)
473 {
474 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
475 	int need_tlb_flush = 0, idx;
476 
477 	idx = srcu_read_lock(&kvm->srcu);
478 	spin_lock(&kvm->mmu_lock);
479 	/*
480 	 * The count increase must become visible at unlock time as no
481 	 * spte can be established without taking the mmu_lock and
482 	 * count is also read inside the mmu_lock critical section.
483 	 */
484 	kvm->mmu_notifier_count++;
485 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
486 	need_tlb_flush |= kvm->tlbs_dirty;
487 	/* we've to flush the tlb before the pages can be freed */
488 	if (need_tlb_flush)
489 		kvm_flush_remote_tlbs(kvm);
490 
491 	spin_unlock(&kvm->mmu_lock);
492 	srcu_read_unlock(&kvm->srcu, idx);
493 
494 	return 0;
495 }
496 
497 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
498 					const struct mmu_notifier_range *range)
499 {
500 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
501 
502 	spin_lock(&kvm->mmu_lock);
503 	/*
504 	 * This sequence increase will notify the kvm page fault that
505 	 * the page that is going to be mapped in the spte could have
506 	 * been freed.
507 	 */
508 	kvm->mmu_notifier_seq++;
509 	smp_wmb();
510 	/*
511 	 * The above sequence increase must be visible before the
512 	 * below count decrease, which is ensured by the smp_wmb above
513 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
514 	 */
515 	kvm->mmu_notifier_count--;
516 	spin_unlock(&kvm->mmu_lock);
517 
518 	BUG_ON(kvm->mmu_notifier_count < 0);
519 }
520 
521 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
522 					      struct mm_struct *mm,
523 					      unsigned long start,
524 					      unsigned long end)
525 {
526 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
527 	int young, idx;
528 
529 	idx = srcu_read_lock(&kvm->srcu);
530 	spin_lock(&kvm->mmu_lock);
531 
532 	young = kvm_age_hva(kvm, start, end);
533 	if (young)
534 		kvm_flush_remote_tlbs(kvm);
535 
536 	spin_unlock(&kvm->mmu_lock);
537 	srcu_read_unlock(&kvm->srcu, idx);
538 
539 	return young;
540 }
541 
542 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
543 					struct mm_struct *mm,
544 					unsigned long start,
545 					unsigned long end)
546 {
547 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
548 	int young, idx;
549 
550 	idx = srcu_read_lock(&kvm->srcu);
551 	spin_lock(&kvm->mmu_lock);
552 	/*
553 	 * Even though we do not flush TLB, this will still adversely
554 	 * affect performance on pre-Haswell Intel EPT, where there is
555 	 * no EPT Access Bit to clear so that we have to tear down EPT
556 	 * tables instead. If we find this unacceptable, we can always
557 	 * add a parameter to kvm_age_hva so that it effectively doesn't
558 	 * do anything on clear_young.
559 	 *
560 	 * Also note that currently we never issue secondary TLB flushes
561 	 * from clear_young, leaving this job up to the regular system
562 	 * cadence. If we find this inaccurate, we might come up with a
563 	 * more sophisticated heuristic later.
564 	 */
565 	young = kvm_age_hva(kvm, start, end);
566 	spin_unlock(&kvm->mmu_lock);
567 	srcu_read_unlock(&kvm->srcu, idx);
568 
569 	return young;
570 }
571 
572 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
573 				       struct mm_struct *mm,
574 				       unsigned long address)
575 {
576 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
577 	int young, idx;
578 
579 	idx = srcu_read_lock(&kvm->srcu);
580 	spin_lock(&kvm->mmu_lock);
581 	young = kvm_test_age_hva(kvm, address);
582 	spin_unlock(&kvm->mmu_lock);
583 	srcu_read_unlock(&kvm->srcu, idx);
584 
585 	return young;
586 }
587 
588 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
589 				     struct mm_struct *mm)
590 {
591 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
592 	int idx;
593 
594 	idx = srcu_read_lock(&kvm->srcu);
595 	kvm_arch_flush_shadow_all(kvm);
596 	srcu_read_unlock(&kvm->srcu, idx);
597 }
598 
599 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
600 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
601 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
602 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
603 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
604 	.clear_young		= kvm_mmu_notifier_clear_young,
605 	.test_young		= kvm_mmu_notifier_test_young,
606 	.change_pte		= kvm_mmu_notifier_change_pte,
607 	.release		= kvm_mmu_notifier_release,
608 };
609 
610 static int kvm_init_mmu_notifier(struct kvm *kvm)
611 {
612 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
613 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
614 }
615 
616 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
617 
618 static int kvm_init_mmu_notifier(struct kvm *kvm)
619 {
620 	return 0;
621 }
622 
623 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
624 
625 static struct kvm_memslots *kvm_alloc_memslots(void)
626 {
627 	int i;
628 	struct kvm_memslots *slots;
629 
630 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
631 	if (!slots)
632 		return NULL;
633 
634 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
635 		slots->id_to_index[i] = -1;
636 
637 	return slots;
638 }
639 
640 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
641 {
642 	if (!memslot->dirty_bitmap)
643 		return;
644 
645 	kvfree(memslot->dirty_bitmap);
646 	memslot->dirty_bitmap = NULL;
647 }
648 
649 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
650 {
651 	kvm_destroy_dirty_bitmap(slot);
652 
653 	kvm_arch_free_memslot(kvm, slot);
654 
655 	slot->flags = 0;
656 	slot->npages = 0;
657 }
658 
659 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
660 {
661 	struct kvm_memory_slot *memslot;
662 
663 	if (!slots)
664 		return;
665 
666 	kvm_for_each_memslot(memslot, slots)
667 		kvm_free_memslot(kvm, memslot);
668 
669 	kvfree(slots);
670 }
671 
672 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
673 {
674 	int i;
675 
676 	if (!kvm->debugfs_dentry)
677 		return;
678 
679 	debugfs_remove_recursive(kvm->debugfs_dentry);
680 
681 	if (kvm->debugfs_stat_data) {
682 		for (i = 0; i < kvm_debugfs_num_entries; i++)
683 			kfree(kvm->debugfs_stat_data[i]);
684 		kfree(kvm->debugfs_stat_data);
685 	}
686 }
687 
688 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
689 {
690 	char dir_name[ITOA_MAX_LEN * 2];
691 	struct kvm_stat_data *stat_data;
692 	struct kvm_stats_debugfs_item *p;
693 
694 	if (!debugfs_initialized())
695 		return 0;
696 
697 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
698 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
699 
700 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
701 					 sizeof(*kvm->debugfs_stat_data),
702 					 GFP_KERNEL_ACCOUNT);
703 	if (!kvm->debugfs_stat_data)
704 		return -ENOMEM;
705 
706 	for (p = debugfs_entries; p->name; p++) {
707 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
708 		if (!stat_data)
709 			return -ENOMEM;
710 
711 		stat_data->kvm = kvm;
712 		stat_data->dbgfs_item = p;
713 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
714 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
715 				    kvm->debugfs_dentry, stat_data,
716 				    &stat_fops_per_vm);
717 	}
718 	return 0;
719 }
720 
721 /*
722  * Called after the VM is otherwise initialized, but just before adding it to
723  * the vm_list.
724  */
725 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
726 {
727 	return 0;
728 }
729 
730 /*
731  * Called just after removing the VM from the vm_list, but before doing any
732  * other destruction.
733  */
734 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
735 {
736 }
737 
738 static struct kvm *kvm_create_vm(unsigned long type)
739 {
740 	struct kvm *kvm = kvm_arch_alloc_vm();
741 	int r = -ENOMEM;
742 	int i;
743 
744 	if (!kvm)
745 		return ERR_PTR(-ENOMEM);
746 
747 	spin_lock_init(&kvm->mmu_lock);
748 	mmgrab(current->mm);
749 	kvm->mm = current->mm;
750 	kvm_eventfd_init(kvm);
751 	mutex_init(&kvm->lock);
752 	mutex_init(&kvm->irq_lock);
753 	mutex_init(&kvm->slots_lock);
754 	INIT_LIST_HEAD(&kvm->devices);
755 
756 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
757 
758 	if (init_srcu_struct(&kvm->srcu))
759 		goto out_err_no_srcu;
760 	if (init_srcu_struct(&kvm->irq_srcu))
761 		goto out_err_no_irq_srcu;
762 
763 	refcount_set(&kvm->users_count, 1);
764 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
765 		struct kvm_memslots *slots = kvm_alloc_memslots();
766 
767 		if (!slots)
768 			goto out_err_no_arch_destroy_vm;
769 		/* Generations must be different for each address space. */
770 		slots->generation = i;
771 		rcu_assign_pointer(kvm->memslots[i], slots);
772 	}
773 
774 	for (i = 0; i < KVM_NR_BUSES; i++) {
775 		rcu_assign_pointer(kvm->buses[i],
776 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
777 		if (!kvm->buses[i])
778 			goto out_err_no_arch_destroy_vm;
779 	}
780 
781 	kvm->max_halt_poll_ns = halt_poll_ns;
782 
783 	r = kvm_arch_init_vm(kvm, type);
784 	if (r)
785 		goto out_err_no_arch_destroy_vm;
786 
787 	r = hardware_enable_all();
788 	if (r)
789 		goto out_err_no_disable;
790 
791 #ifdef CONFIG_HAVE_KVM_IRQFD
792 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
793 #endif
794 
795 	r = kvm_init_mmu_notifier(kvm);
796 	if (r)
797 		goto out_err_no_mmu_notifier;
798 
799 	r = kvm_arch_post_init_vm(kvm);
800 	if (r)
801 		goto out_err;
802 
803 	mutex_lock(&kvm_lock);
804 	list_add(&kvm->vm_list, &vm_list);
805 	mutex_unlock(&kvm_lock);
806 
807 	preempt_notifier_inc();
808 
809 	return kvm;
810 
811 out_err:
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 	if (kvm->mmu_notifier.ops)
814 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
815 #endif
816 out_err_no_mmu_notifier:
817 	hardware_disable_all();
818 out_err_no_disable:
819 	kvm_arch_destroy_vm(kvm);
820 out_err_no_arch_destroy_vm:
821 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
822 	for (i = 0; i < KVM_NR_BUSES; i++)
823 		kfree(kvm_get_bus(kvm, i));
824 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826 	cleanup_srcu_struct(&kvm->irq_srcu);
827 out_err_no_irq_srcu:
828 	cleanup_srcu_struct(&kvm->srcu);
829 out_err_no_srcu:
830 	kvm_arch_free_vm(kvm);
831 	mmdrop(current->mm);
832 	return ERR_PTR(r);
833 }
834 
835 static void kvm_destroy_devices(struct kvm *kvm)
836 {
837 	struct kvm_device *dev, *tmp;
838 
839 	/*
840 	 * We do not need to take the kvm->lock here, because nobody else
841 	 * has a reference to the struct kvm at this point and therefore
842 	 * cannot access the devices list anyhow.
843 	 */
844 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
845 		list_del(&dev->vm_node);
846 		dev->ops->destroy(dev);
847 	}
848 }
849 
850 static void kvm_destroy_vm(struct kvm *kvm)
851 {
852 	int i;
853 	struct mm_struct *mm = kvm->mm;
854 
855 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
856 	kvm_destroy_vm_debugfs(kvm);
857 	kvm_arch_sync_events(kvm);
858 	mutex_lock(&kvm_lock);
859 	list_del(&kvm->vm_list);
860 	mutex_unlock(&kvm_lock);
861 	kvm_arch_pre_destroy_vm(kvm);
862 
863 	kvm_free_irq_routing(kvm);
864 	for (i = 0; i < KVM_NR_BUSES; i++) {
865 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
866 
867 		if (bus)
868 			kvm_io_bus_destroy(bus);
869 		kvm->buses[i] = NULL;
870 	}
871 	kvm_coalesced_mmio_free(kvm);
872 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
873 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
874 #else
875 	kvm_arch_flush_shadow_all(kvm);
876 #endif
877 	kvm_arch_destroy_vm(kvm);
878 	kvm_destroy_devices(kvm);
879 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
880 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
881 	cleanup_srcu_struct(&kvm->irq_srcu);
882 	cleanup_srcu_struct(&kvm->srcu);
883 	kvm_arch_free_vm(kvm);
884 	preempt_notifier_dec();
885 	hardware_disable_all();
886 	mmdrop(mm);
887 }
888 
889 void kvm_get_kvm(struct kvm *kvm)
890 {
891 	refcount_inc(&kvm->users_count);
892 }
893 EXPORT_SYMBOL_GPL(kvm_get_kvm);
894 
895 void kvm_put_kvm(struct kvm *kvm)
896 {
897 	if (refcount_dec_and_test(&kvm->users_count))
898 		kvm_destroy_vm(kvm);
899 }
900 EXPORT_SYMBOL_GPL(kvm_put_kvm);
901 
902 /*
903  * Used to put a reference that was taken on behalf of an object associated
904  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
905  * of the new file descriptor fails and the reference cannot be transferred to
906  * its final owner.  In such cases, the caller is still actively using @kvm and
907  * will fail miserably if the refcount unexpectedly hits zero.
908  */
909 void kvm_put_kvm_no_destroy(struct kvm *kvm)
910 {
911 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
912 }
913 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
914 
915 static int kvm_vm_release(struct inode *inode, struct file *filp)
916 {
917 	struct kvm *kvm = filp->private_data;
918 
919 	kvm_irqfd_release(kvm);
920 
921 	kvm_put_kvm(kvm);
922 	return 0;
923 }
924 
925 /*
926  * Allocation size is twice as large as the actual dirty bitmap size.
927  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
928  */
929 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
930 {
931 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
932 
933 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
934 	if (!memslot->dirty_bitmap)
935 		return -ENOMEM;
936 
937 	return 0;
938 }
939 
940 /*
941  * Delete a memslot by decrementing the number of used slots and shifting all
942  * other entries in the array forward one spot.
943  */
944 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
945 				      struct kvm_memory_slot *memslot)
946 {
947 	struct kvm_memory_slot *mslots = slots->memslots;
948 	int i;
949 
950 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
951 		return;
952 
953 	slots->used_slots--;
954 
955 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
956 		atomic_set(&slots->lru_slot, 0);
957 
958 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
959 		mslots[i] = mslots[i + 1];
960 		slots->id_to_index[mslots[i].id] = i;
961 	}
962 	mslots[i] = *memslot;
963 	slots->id_to_index[memslot->id] = -1;
964 }
965 
966 /*
967  * "Insert" a new memslot by incrementing the number of used slots.  Returns
968  * the new slot's initial index into the memslots array.
969  */
970 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
971 {
972 	return slots->used_slots++;
973 }
974 
975 /*
976  * Move a changed memslot backwards in the array by shifting existing slots
977  * with a higher GFN toward the front of the array.  Note, the changed memslot
978  * itself is not preserved in the array, i.e. not swapped at this time, only
979  * its new index into the array is tracked.  Returns the changed memslot's
980  * current index into the memslots array.
981  */
982 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
983 					    struct kvm_memory_slot *memslot)
984 {
985 	struct kvm_memory_slot *mslots = slots->memslots;
986 	int i;
987 
988 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
989 	    WARN_ON_ONCE(!slots->used_slots))
990 		return -1;
991 
992 	/*
993 	 * Move the target memslot backward in the array by shifting existing
994 	 * memslots with a higher GFN (than the target memslot) towards the
995 	 * front of the array.
996 	 */
997 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
998 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
999 			break;
1000 
1001 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1002 
1003 		/* Shift the next memslot forward one and update its index. */
1004 		mslots[i] = mslots[i + 1];
1005 		slots->id_to_index[mslots[i].id] = i;
1006 	}
1007 	return i;
1008 }
1009 
1010 /*
1011  * Move a changed memslot forwards in the array by shifting existing slots with
1012  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1013  * is not preserved in the array, i.e. not swapped at this time, only its new
1014  * index into the array is tracked.  Returns the changed memslot's final index
1015  * into the memslots array.
1016  */
1017 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1018 					   struct kvm_memory_slot *memslot,
1019 					   int start)
1020 {
1021 	struct kvm_memory_slot *mslots = slots->memslots;
1022 	int i;
1023 
1024 	for (i = start; i > 0; i--) {
1025 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1026 			break;
1027 
1028 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1029 
1030 		/* Shift the next memslot back one and update its index. */
1031 		mslots[i] = mslots[i - 1];
1032 		slots->id_to_index[mslots[i].id] = i;
1033 	}
1034 	return i;
1035 }
1036 
1037 /*
1038  * Re-sort memslots based on their GFN to account for an added, deleted, or
1039  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1040  * memslot lookup.
1041  *
1042  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1043  * at memslots[0] has the highest GFN.
1044  *
1045  * The sorting algorithm takes advantage of having initially sorted memslots
1046  * and knowing the position of the changed memslot.  Sorting is also optimized
1047  * by not swapping the updated memslot and instead only shifting other memslots
1048  * and tracking the new index for the update memslot.  Only once its final
1049  * index is known is the updated memslot copied into its position in the array.
1050  *
1051  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1052  *    the end of the array.
1053  *
1054  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1055  *    end of the array and then it forward to its correct location.
1056  *
1057  *  - When moving a memslot, the algorithm first moves the updated memslot
1058  *    backward to handle the scenario where the memslot's GFN was changed to a
1059  *    lower value.  update_memslots() then falls through and runs the same flow
1060  *    as creating a memslot to move the memslot forward to handle the scenario
1061  *    where its GFN was changed to a higher value.
1062  *
1063  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1064  * historical reasons.  Originally, invalid memslots where denoted by having
1065  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1066  * to the end of the array.  The current algorithm uses dedicated logic to
1067  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1068  *
1069  * The other historical motiviation for highest->lowest was to improve the
1070  * performance of memslot lookup.  KVM originally used a linear search starting
1071  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1072  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1073  * single memslot above the 4gb boundary.  As the largest memslot is also the
1074  * most likely to be referenced, sorting it to the front of the array was
1075  * advantageous.  The current binary search starts from the middle of the array
1076  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1077  */
1078 static void update_memslots(struct kvm_memslots *slots,
1079 			    struct kvm_memory_slot *memslot,
1080 			    enum kvm_mr_change change)
1081 {
1082 	int i;
1083 
1084 	if (change == KVM_MR_DELETE) {
1085 		kvm_memslot_delete(slots, memslot);
1086 	} else {
1087 		if (change == KVM_MR_CREATE)
1088 			i = kvm_memslot_insert_back(slots);
1089 		else
1090 			i = kvm_memslot_move_backward(slots, memslot);
1091 		i = kvm_memslot_move_forward(slots, memslot, i);
1092 
1093 		/*
1094 		 * Copy the memslot to its new position in memslots and update
1095 		 * its index accordingly.
1096 		 */
1097 		slots->memslots[i] = *memslot;
1098 		slots->id_to_index[memslot->id] = i;
1099 	}
1100 }
1101 
1102 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1103 {
1104 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1105 
1106 #ifdef __KVM_HAVE_READONLY_MEM
1107 	valid_flags |= KVM_MEM_READONLY;
1108 #endif
1109 
1110 	if (mem->flags & ~valid_flags)
1111 		return -EINVAL;
1112 
1113 	return 0;
1114 }
1115 
1116 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1117 		int as_id, struct kvm_memslots *slots)
1118 {
1119 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1120 	u64 gen = old_memslots->generation;
1121 
1122 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1123 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1124 
1125 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1126 	synchronize_srcu_expedited(&kvm->srcu);
1127 
1128 	/*
1129 	 * Increment the new memslot generation a second time, dropping the
1130 	 * update in-progress flag and incrementing the generation based on
1131 	 * the number of address spaces.  This provides a unique and easily
1132 	 * identifiable generation number while the memslots are in flux.
1133 	 */
1134 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1135 
1136 	/*
1137 	 * Generations must be unique even across address spaces.  We do not need
1138 	 * a global counter for that, instead the generation space is evenly split
1139 	 * across address spaces.  For example, with two address spaces, address
1140 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1141 	 * use generations 1, 3, 5, ...
1142 	 */
1143 	gen += KVM_ADDRESS_SPACE_NUM;
1144 
1145 	kvm_arch_memslots_updated(kvm, gen);
1146 
1147 	slots->generation = gen;
1148 
1149 	return old_memslots;
1150 }
1151 
1152 /*
1153  * Note, at a minimum, the current number of used slots must be allocated, even
1154  * when deleting a memslot, as we need a complete duplicate of the memslots for
1155  * use when invalidating a memslot prior to deleting/moving the memslot.
1156  */
1157 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1158 					     enum kvm_mr_change change)
1159 {
1160 	struct kvm_memslots *slots;
1161 	size_t old_size, new_size;
1162 
1163 	old_size = sizeof(struct kvm_memslots) +
1164 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1165 
1166 	if (change == KVM_MR_CREATE)
1167 		new_size = old_size + sizeof(struct kvm_memory_slot);
1168 	else
1169 		new_size = old_size;
1170 
1171 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1172 	if (likely(slots))
1173 		memcpy(slots, old, old_size);
1174 
1175 	return slots;
1176 }
1177 
1178 static int kvm_set_memslot(struct kvm *kvm,
1179 			   const struct kvm_userspace_memory_region *mem,
1180 			   struct kvm_memory_slot *old,
1181 			   struct kvm_memory_slot *new, int as_id,
1182 			   enum kvm_mr_change change)
1183 {
1184 	struct kvm_memory_slot *slot;
1185 	struct kvm_memslots *slots;
1186 	int r;
1187 
1188 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1189 	if (!slots)
1190 		return -ENOMEM;
1191 
1192 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1193 		/*
1194 		 * Note, the INVALID flag needs to be in the appropriate entry
1195 		 * in the freshly allocated memslots, not in @old or @new.
1196 		 */
1197 		slot = id_to_memslot(slots, old->id);
1198 		slot->flags |= KVM_MEMSLOT_INVALID;
1199 
1200 		/*
1201 		 * We can re-use the old memslots, the only difference from the
1202 		 * newly installed memslots is the invalid flag, which will get
1203 		 * dropped by update_memslots anyway.  We'll also revert to the
1204 		 * old memslots if preparing the new memory region fails.
1205 		 */
1206 		slots = install_new_memslots(kvm, as_id, slots);
1207 
1208 		/* From this point no new shadow pages pointing to a deleted,
1209 		 * or moved, memslot will be created.
1210 		 *
1211 		 * validation of sp->gfn happens in:
1212 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1213 		 *	- kvm_is_visible_gfn (mmu_check_root)
1214 		 */
1215 		kvm_arch_flush_shadow_memslot(kvm, slot);
1216 	}
1217 
1218 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1219 	if (r)
1220 		goto out_slots;
1221 
1222 	update_memslots(slots, new, change);
1223 	slots = install_new_memslots(kvm, as_id, slots);
1224 
1225 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1226 
1227 	kvfree(slots);
1228 	return 0;
1229 
1230 out_slots:
1231 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1232 		slots = install_new_memslots(kvm, as_id, slots);
1233 	kvfree(slots);
1234 	return r;
1235 }
1236 
1237 static int kvm_delete_memslot(struct kvm *kvm,
1238 			      const struct kvm_userspace_memory_region *mem,
1239 			      struct kvm_memory_slot *old, int as_id)
1240 {
1241 	struct kvm_memory_slot new;
1242 	int r;
1243 
1244 	if (!old->npages)
1245 		return -EINVAL;
1246 
1247 	memset(&new, 0, sizeof(new));
1248 	new.id = old->id;
1249 
1250 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1251 	if (r)
1252 		return r;
1253 
1254 	kvm_free_memslot(kvm, old);
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Allocate some memory and give it an address in the guest physical address
1260  * space.
1261  *
1262  * Discontiguous memory is allowed, mostly for framebuffers.
1263  *
1264  * Must be called holding kvm->slots_lock for write.
1265  */
1266 int __kvm_set_memory_region(struct kvm *kvm,
1267 			    const struct kvm_userspace_memory_region *mem)
1268 {
1269 	struct kvm_memory_slot old, new;
1270 	struct kvm_memory_slot *tmp;
1271 	enum kvm_mr_change change;
1272 	int as_id, id;
1273 	int r;
1274 
1275 	r = check_memory_region_flags(mem);
1276 	if (r)
1277 		return r;
1278 
1279 	as_id = mem->slot >> 16;
1280 	id = (u16)mem->slot;
1281 
1282 	/* General sanity checks */
1283 	if (mem->memory_size & (PAGE_SIZE - 1))
1284 		return -EINVAL;
1285 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1286 		return -EINVAL;
1287 	/* We can read the guest memory with __xxx_user() later on. */
1288 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1289 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1290 			mem->memory_size))
1291 		return -EINVAL;
1292 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1293 		return -EINVAL;
1294 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1295 		return -EINVAL;
1296 
1297 	/*
1298 	 * Make a full copy of the old memslot, the pointer will become stale
1299 	 * when the memslots are re-sorted by update_memslots(), and the old
1300 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1301 	 * to free its resources and for arch specific behavior.
1302 	 */
1303 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1304 	if (tmp) {
1305 		old = *tmp;
1306 		tmp = NULL;
1307 	} else {
1308 		memset(&old, 0, sizeof(old));
1309 		old.id = id;
1310 	}
1311 
1312 	if (!mem->memory_size)
1313 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1314 
1315 	new.id = id;
1316 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1317 	new.npages = mem->memory_size >> PAGE_SHIFT;
1318 	new.flags = mem->flags;
1319 	new.userspace_addr = mem->userspace_addr;
1320 
1321 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1322 		return -EINVAL;
1323 
1324 	if (!old.npages) {
1325 		change = KVM_MR_CREATE;
1326 		new.dirty_bitmap = NULL;
1327 		memset(&new.arch, 0, sizeof(new.arch));
1328 	} else { /* Modify an existing slot. */
1329 		if ((new.userspace_addr != old.userspace_addr) ||
1330 		    (new.npages != old.npages) ||
1331 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1332 			return -EINVAL;
1333 
1334 		if (new.base_gfn != old.base_gfn)
1335 			change = KVM_MR_MOVE;
1336 		else if (new.flags != old.flags)
1337 			change = KVM_MR_FLAGS_ONLY;
1338 		else /* Nothing to change. */
1339 			return 0;
1340 
1341 		/* Copy dirty_bitmap and arch from the current memslot. */
1342 		new.dirty_bitmap = old.dirty_bitmap;
1343 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1344 	}
1345 
1346 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1347 		/* Check for overlaps */
1348 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1349 			if (tmp->id == id)
1350 				continue;
1351 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1352 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1353 				return -EEXIST;
1354 		}
1355 	}
1356 
1357 	/* Allocate/free page dirty bitmap as needed */
1358 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1359 		new.dirty_bitmap = NULL;
1360 	else if (!new.dirty_bitmap) {
1361 		r = kvm_alloc_dirty_bitmap(&new);
1362 		if (r)
1363 			return r;
1364 
1365 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1366 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1367 	}
1368 
1369 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1370 	if (r)
1371 		goto out_bitmap;
1372 
1373 	if (old.dirty_bitmap && !new.dirty_bitmap)
1374 		kvm_destroy_dirty_bitmap(&old);
1375 	return 0;
1376 
1377 out_bitmap:
1378 	if (new.dirty_bitmap && !old.dirty_bitmap)
1379 		kvm_destroy_dirty_bitmap(&new);
1380 	return r;
1381 }
1382 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1383 
1384 int kvm_set_memory_region(struct kvm *kvm,
1385 			  const struct kvm_userspace_memory_region *mem)
1386 {
1387 	int r;
1388 
1389 	mutex_lock(&kvm->slots_lock);
1390 	r = __kvm_set_memory_region(kvm, mem);
1391 	mutex_unlock(&kvm->slots_lock);
1392 	return r;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1395 
1396 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1397 					  struct kvm_userspace_memory_region *mem)
1398 {
1399 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1400 		return -EINVAL;
1401 
1402 	return kvm_set_memory_region(kvm, mem);
1403 }
1404 
1405 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1406 /**
1407  * kvm_get_dirty_log - get a snapshot of dirty pages
1408  * @kvm:	pointer to kvm instance
1409  * @log:	slot id and address to which we copy the log
1410  * @is_dirty:	set to '1' if any dirty pages were found
1411  * @memslot:	set to the associated memslot, always valid on success
1412  */
1413 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1414 		      int *is_dirty, struct kvm_memory_slot **memslot)
1415 {
1416 	struct kvm_memslots *slots;
1417 	int i, as_id, id;
1418 	unsigned long n;
1419 	unsigned long any = 0;
1420 
1421 	*memslot = NULL;
1422 	*is_dirty = 0;
1423 
1424 	as_id = log->slot >> 16;
1425 	id = (u16)log->slot;
1426 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1427 		return -EINVAL;
1428 
1429 	slots = __kvm_memslots(kvm, as_id);
1430 	*memslot = id_to_memslot(slots, id);
1431 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1432 		return -ENOENT;
1433 
1434 	kvm_arch_sync_dirty_log(kvm, *memslot);
1435 
1436 	n = kvm_dirty_bitmap_bytes(*memslot);
1437 
1438 	for (i = 0; !any && i < n/sizeof(long); ++i)
1439 		any = (*memslot)->dirty_bitmap[i];
1440 
1441 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1442 		return -EFAULT;
1443 
1444 	if (any)
1445 		*is_dirty = 1;
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1449 
1450 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1451 /**
1452  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1453  *	and reenable dirty page tracking for the corresponding pages.
1454  * @kvm:	pointer to kvm instance
1455  * @log:	slot id and address to which we copy the log
1456  *
1457  * We need to keep it in mind that VCPU threads can write to the bitmap
1458  * concurrently. So, to avoid losing track of dirty pages we keep the
1459  * following order:
1460  *
1461  *    1. Take a snapshot of the bit and clear it if needed.
1462  *    2. Write protect the corresponding page.
1463  *    3. Copy the snapshot to the userspace.
1464  *    4. Upon return caller flushes TLB's if needed.
1465  *
1466  * Between 2 and 4, the guest may write to the page using the remaining TLB
1467  * entry.  This is not a problem because the page is reported dirty using
1468  * the snapshot taken before and step 4 ensures that writes done after
1469  * exiting to userspace will be logged for the next call.
1470  *
1471  */
1472 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1473 {
1474 	struct kvm_memslots *slots;
1475 	struct kvm_memory_slot *memslot;
1476 	int i, as_id, id;
1477 	unsigned long n;
1478 	unsigned long *dirty_bitmap;
1479 	unsigned long *dirty_bitmap_buffer;
1480 	bool flush;
1481 
1482 	as_id = log->slot >> 16;
1483 	id = (u16)log->slot;
1484 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1485 		return -EINVAL;
1486 
1487 	slots = __kvm_memslots(kvm, as_id);
1488 	memslot = id_to_memslot(slots, id);
1489 	if (!memslot || !memslot->dirty_bitmap)
1490 		return -ENOENT;
1491 
1492 	dirty_bitmap = memslot->dirty_bitmap;
1493 
1494 	kvm_arch_sync_dirty_log(kvm, memslot);
1495 
1496 	n = kvm_dirty_bitmap_bytes(memslot);
1497 	flush = false;
1498 	if (kvm->manual_dirty_log_protect) {
1499 		/*
1500 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1501 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1502 		 * is some code duplication between this function and
1503 		 * kvm_get_dirty_log, but hopefully all architecture
1504 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1505 		 * can be eliminated.
1506 		 */
1507 		dirty_bitmap_buffer = dirty_bitmap;
1508 	} else {
1509 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1510 		memset(dirty_bitmap_buffer, 0, n);
1511 
1512 		spin_lock(&kvm->mmu_lock);
1513 		for (i = 0; i < n / sizeof(long); i++) {
1514 			unsigned long mask;
1515 			gfn_t offset;
1516 
1517 			if (!dirty_bitmap[i])
1518 				continue;
1519 
1520 			flush = true;
1521 			mask = xchg(&dirty_bitmap[i], 0);
1522 			dirty_bitmap_buffer[i] = mask;
1523 
1524 			offset = i * BITS_PER_LONG;
1525 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1526 								offset, mask);
1527 		}
1528 		spin_unlock(&kvm->mmu_lock);
1529 	}
1530 
1531 	if (flush)
1532 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1533 
1534 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1535 		return -EFAULT;
1536 	return 0;
1537 }
1538 
1539 
1540 /**
1541  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1542  * @kvm: kvm instance
1543  * @log: slot id and address to which we copy the log
1544  *
1545  * Steps 1-4 below provide general overview of dirty page logging. See
1546  * kvm_get_dirty_log_protect() function description for additional details.
1547  *
1548  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1549  * always flush the TLB (step 4) even if previous step failed  and the dirty
1550  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1551  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1552  * writes will be marked dirty for next log read.
1553  *
1554  *   1. Take a snapshot of the bit and clear it if needed.
1555  *   2. Write protect the corresponding page.
1556  *   3. Copy the snapshot to the userspace.
1557  *   4. Flush TLB's if needed.
1558  */
1559 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1560 				      struct kvm_dirty_log *log)
1561 {
1562 	int r;
1563 
1564 	mutex_lock(&kvm->slots_lock);
1565 
1566 	r = kvm_get_dirty_log_protect(kvm, log);
1567 
1568 	mutex_unlock(&kvm->slots_lock);
1569 	return r;
1570 }
1571 
1572 /**
1573  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1574  *	and reenable dirty page tracking for the corresponding pages.
1575  * @kvm:	pointer to kvm instance
1576  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1577  */
1578 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1579 				       struct kvm_clear_dirty_log *log)
1580 {
1581 	struct kvm_memslots *slots;
1582 	struct kvm_memory_slot *memslot;
1583 	int as_id, id;
1584 	gfn_t offset;
1585 	unsigned long i, n;
1586 	unsigned long *dirty_bitmap;
1587 	unsigned long *dirty_bitmap_buffer;
1588 	bool flush;
1589 
1590 	as_id = log->slot >> 16;
1591 	id = (u16)log->slot;
1592 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1593 		return -EINVAL;
1594 
1595 	if (log->first_page & 63)
1596 		return -EINVAL;
1597 
1598 	slots = __kvm_memslots(kvm, as_id);
1599 	memslot = id_to_memslot(slots, id);
1600 	if (!memslot || !memslot->dirty_bitmap)
1601 		return -ENOENT;
1602 
1603 	dirty_bitmap = memslot->dirty_bitmap;
1604 
1605 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1606 
1607 	if (log->first_page > memslot->npages ||
1608 	    log->num_pages > memslot->npages - log->first_page ||
1609 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1610 	    return -EINVAL;
1611 
1612 	kvm_arch_sync_dirty_log(kvm, memslot);
1613 
1614 	flush = false;
1615 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1616 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1617 		return -EFAULT;
1618 
1619 	spin_lock(&kvm->mmu_lock);
1620 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1621 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1622 	     i++, offset += BITS_PER_LONG) {
1623 		unsigned long mask = *dirty_bitmap_buffer++;
1624 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1625 		if (!mask)
1626 			continue;
1627 
1628 		mask &= atomic_long_fetch_andnot(mask, p);
1629 
1630 		/*
1631 		 * mask contains the bits that really have been cleared.  This
1632 		 * never includes any bits beyond the length of the memslot (if
1633 		 * the length is not aligned to 64 pages), therefore it is not
1634 		 * a problem if userspace sets them in log->dirty_bitmap.
1635 		*/
1636 		if (mask) {
1637 			flush = true;
1638 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1639 								offset, mask);
1640 		}
1641 	}
1642 	spin_unlock(&kvm->mmu_lock);
1643 
1644 	if (flush)
1645 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1646 
1647 	return 0;
1648 }
1649 
1650 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1651 					struct kvm_clear_dirty_log *log)
1652 {
1653 	int r;
1654 
1655 	mutex_lock(&kvm->slots_lock);
1656 
1657 	r = kvm_clear_dirty_log_protect(kvm, log);
1658 
1659 	mutex_unlock(&kvm->slots_lock);
1660 	return r;
1661 }
1662 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1663 
1664 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1665 {
1666 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1669 
1670 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1671 {
1672 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1675 
1676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1677 {
1678 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1679 
1680 	return kvm_is_visible_memslot(memslot);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1683 
1684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1685 {
1686 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1687 
1688 	return kvm_is_visible_memslot(memslot);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1691 
1692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694 	struct vm_area_struct *vma;
1695 	unsigned long addr, size;
1696 
1697 	size = PAGE_SIZE;
1698 
1699 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1700 	if (kvm_is_error_hva(addr))
1701 		return PAGE_SIZE;
1702 
1703 	mmap_read_lock(current->mm);
1704 	vma = find_vma(current->mm, addr);
1705 	if (!vma)
1706 		goto out;
1707 
1708 	size = vma_kernel_pagesize(vma);
1709 
1710 out:
1711 	mmap_read_unlock(current->mm);
1712 
1713 	return size;
1714 }
1715 
1716 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1717 {
1718 	return slot->flags & KVM_MEM_READONLY;
1719 }
1720 
1721 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1722 				       gfn_t *nr_pages, bool write)
1723 {
1724 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1725 		return KVM_HVA_ERR_BAD;
1726 
1727 	if (memslot_is_readonly(slot) && write)
1728 		return KVM_HVA_ERR_RO_BAD;
1729 
1730 	if (nr_pages)
1731 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1732 
1733 	return __gfn_to_hva_memslot(slot, gfn);
1734 }
1735 
1736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1737 				     gfn_t *nr_pages)
1738 {
1739 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1740 }
1741 
1742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1743 					gfn_t gfn)
1744 {
1745 	return gfn_to_hva_many(slot, gfn, NULL);
1746 }
1747 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1748 
1749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1750 {
1751 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1752 }
1753 EXPORT_SYMBOL_GPL(gfn_to_hva);
1754 
1755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1756 {
1757 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1760 
1761 /*
1762  * Return the hva of a @gfn and the R/W attribute if possible.
1763  *
1764  * @slot: the kvm_memory_slot which contains @gfn
1765  * @gfn: the gfn to be translated
1766  * @writable: used to return the read/write attribute of the @slot if the hva
1767  * is valid and @writable is not NULL
1768  */
1769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1770 				      gfn_t gfn, bool *writable)
1771 {
1772 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1773 
1774 	if (!kvm_is_error_hva(hva) && writable)
1775 		*writable = !memslot_is_readonly(slot);
1776 
1777 	return hva;
1778 }
1779 
1780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1781 {
1782 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1783 
1784 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1785 }
1786 
1787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1788 {
1789 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1790 
1791 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1792 }
1793 
1794 static inline int check_user_page_hwpoison(unsigned long addr)
1795 {
1796 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1797 
1798 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1799 	return rc == -EHWPOISON;
1800 }
1801 
1802 /*
1803  * The fast path to get the writable pfn which will be stored in @pfn,
1804  * true indicates success, otherwise false is returned.  It's also the
1805  * only part that runs if we can in atomic context.
1806  */
1807 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1808 			    bool *writable, kvm_pfn_t *pfn)
1809 {
1810 	struct page *page[1];
1811 
1812 	/*
1813 	 * Fast pin a writable pfn only if it is a write fault request
1814 	 * or the caller allows to map a writable pfn for a read fault
1815 	 * request.
1816 	 */
1817 	if (!(write_fault || writable))
1818 		return false;
1819 
1820 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1821 		*pfn = page_to_pfn(page[0]);
1822 
1823 		if (writable)
1824 			*writable = true;
1825 		return true;
1826 	}
1827 
1828 	return false;
1829 }
1830 
1831 /*
1832  * The slow path to get the pfn of the specified host virtual address,
1833  * 1 indicates success, -errno is returned if error is detected.
1834  */
1835 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1836 			   bool *writable, kvm_pfn_t *pfn)
1837 {
1838 	unsigned int flags = FOLL_HWPOISON;
1839 	struct page *page;
1840 	int npages = 0;
1841 
1842 	might_sleep();
1843 
1844 	if (writable)
1845 		*writable = write_fault;
1846 
1847 	if (write_fault)
1848 		flags |= FOLL_WRITE;
1849 	if (async)
1850 		flags |= FOLL_NOWAIT;
1851 
1852 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1853 	if (npages != 1)
1854 		return npages;
1855 
1856 	/* map read fault as writable if possible */
1857 	if (unlikely(!write_fault) && writable) {
1858 		struct page *wpage;
1859 
1860 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1861 			*writable = true;
1862 			put_page(page);
1863 			page = wpage;
1864 		}
1865 	}
1866 	*pfn = page_to_pfn(page);
1867 	return npages;
1868 }
1869 
1870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1871 {
1872 	if (unlikely(!(vma->vm_flags & VM_READ)))
1873 		return false;
1874 
1875 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1876 		return false;
1877 
1878 	return true;
1879 }
1880 
1881 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1882 			       unsigned long addr, bool *async,
1883 			       bool write_fault, bool *writable,
1884 			       kvm_pfn_t *p_pfn)
1885 {
1886 	unsigned long pfn;
1887 	int r;
1888 
1889 	r = follow_pfn(vma, addr, &pfn);
1890 	if (r) {
1891 		/*
1892 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1893 		 * not call the fault handler, so do it here.
1894 		 */
1895 		bool unlocked = false;
1896 		r = fixup_user_fault(current->mm, addr,
1897 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1898 				     &unlocked);
1899 		if (unlocked)
1900 			return -EAGAIN;
1901 		if (r)
1902 			return r;
1903 
1904 		r = follow_pfn(vma, addr, &pfn);
1905 		if (r)
1906 			return r;
1907 
1908 	}
1909 
1910 	if (writable)
1911 		*writable = true;
1912 
1913 	/*
1914 	 * Get a reference here because callers of *hva_to_pfn* and
1915 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1916 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1917 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1918 	 * simply do nothing for reserved pfns.
1919 	 *
1920 	 * Whoever called remap_pfn_range is also going to call e.g.
1921 	 * unmap_mapping_range before the underlying pages are freed,
1922 	 * causing a call to our MMU notifier.
1923 	 */
1924 	kvm_get_pfn(pfn);
1925 
1926 	*p_pfn = pfn;
1927 	return 0;
1928 }
1929 
1930 /*
1931  * Pin guest page in memory and return its pfn.
1932  * @addr: host virtual address which maps memory to the guest
1933  * @atomic: whether this function can sleep
1934  * @async: whether this function need to wait IO complete if the
1935  *         host page is not in the memory
1936  * @write_fault: whether we should get a writable host page
1937  * @writable: whether it allows to map a writable host page for !@write_fault
1938  *
1939  * The function will map a writable host page for these two cases:
1940  * 1): @write_fault = true
1941  * 2): @write_fault = false && @writable, @writable will tell the caller
1942  *     whether the mapping is writable.
1943  */
1944 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1945 			bool write_fault, bool *writable)
1946 {
1947 	struct vm_area_struct *vma;
1948 	kvm_pfn_t pfn = 0;
1949 	int npages, r;
1950 
1951 	/* we can do it either atomically or asynchronously, not both */
1952 	BUG_ON(atomic && async);
1953 
1954 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1955 		return pfn;
1956 
1957 	if (atomic)
1958 		return KVM_PFN_ERR_FAULT;
1959 
1960 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1961 	if (npages == 1)
1962 		return pfn;
1963 
1964 	mmap_read_lock(current->mm);
1965 	if (npages == -EHWPOISON ||
1966 	      (!async && check_user_page_hwpoison(addr))) {
1967 		pfn = KVM_PFN_ERR_HWPOISON;
1968 		goto exit;
1969 	}
1970 
1971 retry:
1972 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1973 
1974 	if (vma == NULL)
1975 		pfn = KVM_PFN_ERR_FAULT;
1976 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1977 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1978 		if (r == -EAGAIN)
1979 			goto retry;
1980 		if (r < 0)
1981 			pfn = KVM_PFN_ERR_FAULT;
1982 	} else {
1983 		if (async && vma_is_valid(vma, write_fault))
1984 			*async = true;
1985 		pfn = KVM_PFN_ERR_FAULT;
1986 	}
1987 exit:
1988 	mmap_read_unlock(current->mm);
1989 	return pfn;
1990 }
1991 
1992 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1993 			       bool atomic, bool *async, bool write_fault,
1994 			       bool *writable)
1995 {
1996 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1997 
1998 	if (addr == KVM_HVA_ERR_RO_BAD) {
1999 		if (writable)
2000 			*writable = false;
2001 		return KVM_PFN_ERR_RO_FAULT;
2002 	}
2003 
2004 	if (kvm_is_error_hva(addr)) {
2005 		if (writable)
2006 			*writable = false;
2007 		return KVM_PFN_NOSLOT;
2008 	}
2009 
2010 	/* Do not map writable pfn in the readonly memslot. */
2011 	if (writable && memslot_is_readonly(slot)) {
2012 		*writable = false;
2013 		writable = NULL;
2014 	}
2015 
2016 	return hva_to_pfn(addr, atomic, async, write_fault,
2017 			  writable);
2018 }
2019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2020 
2021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2022 		      bool *writable)
2023 {
2024 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2025 				    write_fault, writable);
2026 }
2027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2028 
2029 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2030 {
2031 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2032 }
2033 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2034 
2035 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2036 {
2037 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2038 }
2039 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2040 
2041 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2042 {
2043 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2046 
2047 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2048 {
2049 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2050 }
2051 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2052 
2053 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2054 {
2055 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2058 
2059 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2060 			    struct page **pages, int nr_pages)
2061 {
2062 	unsigned long addr;
2063 	gfn_t entry = 0;
2064 
2065 	addr = gfn_to_hva_many(slot, gfn, &entry);
2066 	if (kvm_is_error_hva(addr))
2067 		return -1;
2068 
2069 	if (entry < nr_pages)
2070 		return 0;
2071 
2072 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2075 
2076 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2077 {
2078 	if (is_error_noslot_pfn(pfn))
2079 		return KVM_ERR_PTR_BAD_PAGE;
2080 
2081 	if (kvm_is_reserved_pfn(pfn)) {
2082 		WARN_ON(1);
2083 		return KVM_ERR_PTR_BAD_PAGE;
2084 	}
2085 
2086 	return pfn_to_page(pfn);
2087 }
2088 
2089 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2090 {
2091 	kvm_pfn_t pfn;
2092 
2093 	pfn = gfn_to_pfn(kvm, gfn);
2094 
2095 	return kvm_pfn_to_page(pfn);
2096 }
2097 EXPORT_SYMBOL_GPL(gfn_to_page);
2098 
2099 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2100 {
2101 	if (pfn == 0)
2102 		return;
2103 
2104 	if (cache)
2105 		cache->pfn = cache->gfn = 0;
2106 
2107 	if (dirty)
2108 		kvm_release_pfn_dirty(pfn);
2109 	else
2110 		kvm_release_pfn_clean(pfn);
2111 }
2112 
2113 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2114 				 struct gfn_to_pfn_cache *cache, u64 gen)
2115 {
2116 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2117 
2118 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2119 	cache->gfn = gfn;
2120 	cache->dirty = false;
2121 	cache->generation = gen;
2122 }
2123 
2124 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2125 			 struct kvm_host_map *map,
2126 			 struct gfn_to_pfn_cache *cache,
2127 			 bool atomic)
2128 {
2129 	kvm_pfn_t pfn;
2130 	void *hva = NULL;
2131 	struct page *page = KVM_UNMAPPED_PAGE;
2132 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2133 	u64 gen = slots->generation;
2134 
2135 	if (!map)
2136 		return -EINVAL;
2137 
2138 	if (cache) {
2139 		if (!cache->pfn || cache->gfn != gfn ||
2140 			cache->generation != gen) {
2141 			if (atomic)
2142 				return -EAGAIN;
2143 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2144 		}
2145 		pfn = cache->pfn;
2146 	} else {
2147 		if (atomic)
2148 			return -EAGAIN;
2149 		pfn = gfn_to_pfn_memslot(slot, gfn);
2150 	}
2151 	if (is_error_noslot_pfn(pfn))
2152 		return -EINVAL;
2153 
2154 	if (pfn_valid(pfn)) {
2155 		page = pfn_to_page(pfn);
2156 		if (atomic)
2157 			hva = kmap_atomic(page);
2158 		else
2159 			hva = kmap(page);
2160 #ifdef CONFIG_HAS_IOMEM
2161 	} else if (!atomic) {
2162 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2163 	} else {
2164 		return -EINVAL;
2165 #endif
2166 	}
2167 
2168 	if (!hva)
2169 		return -EFAULT;
2170 
2171 	map->page = page;
2172 	map->hva = hva;
2173 	map->pfn = pfn;
2174 	map->gfn = gfn;
2175 
2176 	return 0;
2177 }
2178 
2179 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2180 		struct gfn_to_pfn_cache *cache, bool atomic)
2181 {
2182 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2183 			cache, atomic);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2186 
2187 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2188 {
2189 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2190 		NULL, false);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2193 
2194 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2195 			struct kvm_host_map *map,
2196 			struct gfn_to_pfn_cache *cache,
2197 			bool dirty, bool atomic)
2198 {
2199 	if (!map)
2200 		return;
2201 
2202 	if (!map->hva)
2203 		return;
2204 
2205 	if (map->page != KVM_UNMAPPED_PAGE) {
2206 		if (atomic)
2207 			kunmap_atomic(map->hva);
2208 		else
2209 			kunmap(map->page);
2210 	}
2211 #ifdef CONFIG_HAS_IOMEM
2212 	else if (!atomic)
2213 		memunmap(map->hva);
2214 	else
2215 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2216 #endif
2217 
2218 	if (dirty)
2219 		mark_page_dirty_in_slot(memslot, map->gfn);
2220 
2221 	if (cache)
2222 		cache->dirty |= dirty;
2223 	else
2224 		kvm_release_pfn(map->pfn, dirty, NULL);
2225 
2226 	map->hva = NULL;
2227 	map->page = NULL;
2228 }
2229 
2230 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2231 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2232 {
2233 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2234 			cache, dirty, atomic);
2235 	return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2238 
2239 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2240 {
2241 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2242 			dirty, false);
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2245 
2246 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2247 {
2248 	kvm_pfn_t pfn;
2249 
2250 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2251 
2252 	return kvm_pfn_to_page(pfn);
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2255 
2256 void kvm_release_page_clean(struct page *page)
2257 {
2258 	WARN_ON(is_error_page(page));
2259 
2260 	kvm_release_pfn_clean(page_to_pfn(page));
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2263 
2264 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2265 {
2266 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2267 		put_page(pfn_to_page(pfn));
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2270 
2271 void kvm_release_page_dirty(struct page *page)
2272 {
2273 	WARN_ON(is_error_page(page));
2274 
2275 	kvm_release_pfn_dirty(page_to_pfn(page));
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2278 
2279 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2280 {
2281 	kvm_set_pfn_dirty(pfn);
2282 	kvm_release_pfn_clean(pfn);
2283 }
2284 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2285 
2286 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2287 {
2288 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2289 		SetPageDirty(pfn_to_page(pfn));
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2292 
2293 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2294 {
2295 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2296 		mark_page_accessed(pfn_to_page(pfn));
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2299 
2300 void kvm_get_pfn(kvm_pfn_t pfn)
2301 {
2302 	if (!kvm_is_reserved_pfn(pfn))
2303 		get_page(pfn_to_page(pfn));
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2306 
2307 static int next_segment(unsigned long len, int offset)
2308 {
2309 	if (len > PAGE_SIZE - offset)
2310 		return PAGE_SIZE - offset;
2311 	else
2312 		return len;
2313 }
2314 
2315 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2316 				 void *data, int offset, int len)
2317 {
2318 	int r;
2319 	unsigned long addr;
2320 
2321 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2322 	if (kvm_is_error_hva(addr))
2323 		return -EFAULT;
2324 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2325 	if (r)
2326 		return -EFAULT;
2327 	return 0;
2328 }
2329 
2330 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2331 			int len)
2332 {
2333 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2334 
2335 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2338 
2339 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2340 			     int offset, int len)
2341 {
2342 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2343 
2344 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2347 
2348 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2349 {
2350 	gfn_t gfn = gpa >> PAGE_SHIFT;
2351 	int seg;
2352 	int offset = offset_in_page(gpa);
2353 	int ret;
2354 
2355 	while ((seg = next_segment(len, offset)) != 0) {
2356 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2357 		if (ret < 0)
2358 			return ret;
2359 		offset = 0;
2360 		len -= seg;
2361 		data += seg;
2362 		++gfn;
2363 	}
2364 	return 0;
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_read_guest);
2367 
2368 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2369 {
2370 	gfn_t gfn = gpa >> PAGE_SHIFT;
2371 	int seg;
2372 	int offset = offset_in_page(gpa);
2373 	int ret;
2374 
2375 	while ((seg = next_segment(len, offset)) != 0) {
2376 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2377 		if (ret < 0)
2378 			return ret;
2379 		offset = 0;
2380 		len -= seg;
2381 		data += seg;
2382 		++gfn;
2383 	}
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2387 
2388 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2389 			           void *data, int offset, unsigned long len)
2390 {
2391 	int r;
2392 	unsigned long addr;
2393 
2394 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2395 	if (kvm_is_error_hva(addr))
2396 		return -EFAULT;
2397 	pagefault_disable();
2398 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2399 	pagefault_enable();
2400 	if (r)
2401 		return -EFAULT;
2402 	return 0;
2403 }
2404 
2405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2406 			       void *data, unsigned long len)
2407 {
2408 	gfn_t gfn = gpa >> PAGE_SHIFT;
2409 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2410 	int offset = offset_in_page(gpa);
2411 
2412 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2415 
2416 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2417 			          const void *data, int offset, int len)
2418 {
2419 	int r;
2420 	unsigned long addr;
2421 
2422 	addr = gfn_to_hva_memslot(memslot, gfn);
2423 	if (kvm_is_error_hva(addr))
2424 		return -EFAULT;
2425 	r = __copy_to_user((void __user *)addr + offset, data, len);
2426 	if (r)
2427 		return -EFAULT;
2428 	mark_page_dirty_in_slot(memslot, gfn);
2429 	return 0;
2430 }
2431 
2432 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2433 			 const void *data, int offset, int len)
2434 {
2435 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2436 
2437 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2440 
2441 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2442 			      const void *data, int offset, int len)
2443 {
2444 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2445 
2446 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2447 }
2448 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2449 
2450 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2451 		    unsigned long len)
2452 {
2453 	gfn_t gfn = gpa >> PAGE_SHIFT;
2454 	int seg;
2455 	int offset = offset_in_page(gpa);
2456 	int ret;
2457 
2458 	while ((seg = next_segment(len, offset)) != 0) {
2459 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2460 		if (ret < 0)
2461 			return ret;
2462 		offset = 0;
2463 		len -= seg;
2464 		data += seg;
2465 		++gfn;
2466 	}
2467 	return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_write_guest);
2470 
2471 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2472 		         unsigned long len)
2473 {
2474 	gfn_t gfn = gpa >> PAGE_SHIFT;
2475 	int seg;
2476 	int offset = offset_in_page(gpa);
2477 	int ret;
2478 
2479 	while ((seg = next_segment(len, offset)) != 0) {
2480 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2481 		if (ret < 0)
2482 			return ret;
2483 		offset = 0;
2484 		len -= seg;
2485 		data += seg;
2486 		++gfn;
2487 	}
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2491 
2492 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2493 				       struct gfn_to_hva_cache *ghc,
2494 				       gpa_t gpa, unsigned long len)
2495 {
2496 	int offset = offset_in_page(gpa);
2497 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2498 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2499 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2500 	gfn_t nr_pages_avail;
2501 
2502 	/* Update ghc->generation before performing any error checks. */
2503 	ghc->generation = slots->generation;
2504 
2505 	if (start_gfn > end_gfn) {
2506 		ghc->hva = KVM_HVA_ERR_BAD;
2507 		return -EINVAL;
2508 	}
2509 
2510 	/*
2511 	 * If the requested region crosses two memslots, we still
2512 	 * verify that the entire region is valid here.
2513 	 */
2514 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2515 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2516 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2517 					   &nr_pages_avail);
2518 		if (kvm_is_error_hva(ghc->hva))
2519 			return -EFAULT;
2520 	}
2521 
2522 	/* Use the slow path for cross page reads and writes. */
2523 	if (nr_pages_needed == 1)
2524 		ghc->hva += offset;
2525 	else
2526 		ghc->memslot = NULL;
2527 
2528 	ghc->gpa = gpa;
2529 	ghc->len = len;
2530 	return 0;
2531 }
2532 
2533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2534 			      gpa_t gpa, unsigned long len)
2535 {
2536 	struct kvm_memslots *slots = kvm_memslots(kvm);
2537 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2540 
2541 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542 				  void *data, unsigned int offset,
2543 				  unsigned long len)
2544 {
2545 	struct kvm_memslots *slots = kvm_memslots(kvm);
2546 	int r;
2547 	gpa_t gpa = ghc->gpa + offset;
2548 
2549 	BUG_ON(len + offset > ghc->len);
2550 
2551 	if (slots->generation != ghc->generation) {
2552 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2553 			return -EFAULT;
2554 	}
2555 
2556 	if (kvm_is_error_hva(ghc->hva))
2557 		return -EFAULT;
2558 
2559 	if (unlikely(!ghc->memslot))
2560 		return kvm_write_guest(kvm, gpa, data, len);
2561 
2562 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2563 	if (r)
2564 		return -EFAULT;
2565 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2566 
2567 	return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2570 
2571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2572 			   void *data, unsigned long len)
2573 {
2574 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2577 
2578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2579 				 void *data, unsigned int offset,
2580 				 unsigned long len)
2581 {
2582 	struct kvm_memslots *slots = kvm_memslots(kvm);
2583 	int r;
2584 	gpa_t gpa = ghc->gpa + offset;
2585 
2586 	BUG_ON(len + offset > ghc->len);
2587 
2588 	if (slots->generation != ghc->generation) {
2589 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2590 			return -EFAULT;
2591 	}
2592 
2593 	if (kvm_is_error_hva(ghc->hva))
2594 		return -EFAULT;
2595 
2596 	if (unlikely(!ghc->memslot))
2597 		return kvm_read_guest(kvm, gpa, data, len);
2598 
2599 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2600 	if (r)
2601 		return -EFAULT;
2602 
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2606 
2607 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2608 			  void *data, unsigned long len)
2609 {
2610 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2611 }
2612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2613 
2614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2615 {
2616 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2617 
2618 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2619 }
2620 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2621 
2622 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2623 {
2624 	gfn_t gfn = gpa >> PAGE_SHIFT;
2625 	int seg;
2626 	int offset = offset_in_page(gpa);
2627 	int ret;
2628 
2629 	while ((seg = next_segment(len, offset)) != 0) {
2630 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2631 		if (ret < 0)
2632 			return ret;
2633 		offset = 0;
2634 		len -= seg;
2635 		++gfn;
2636 	}
2637 	return 0;
2638 }
2639 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2640 
2641 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2642 				    gfn_t gfn)
2643 {
2644 	if (memslot && memslot->dirty_bitmap) {
2645 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2646 
2647 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2648 	}
2649 }
2650 
2651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2652 {
2653 	struct kvm_memory_slot *memslot;
2654 
2655 	memslot = gfn_to_memslot(kvm, gfn);
2656 	mark_page_dirty_in_slot(memslot, gfn);
2657 }
2658 EXPORT_SYMBOL_GPL(mark_page_dirty);
2659 
2660 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2661 {
2662 	struct kvm_memory_slot *memslot;
2663 
2664 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2665 	mark_page_dirty_in_slot(memslot, gfn);
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2668 
2669 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2670 {
2671 	if (!vcpu->sigset_active)
2672 		return;
2673 
2674 	/*
2675 	 * This does a lockless modification of ->real_blocked, which is fine
2676 	 * because, only current can change ->real_blocked and all readers of
2677 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2678 	 * of ->blocked.
2679 	 */
2680 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2681 }
2682 
2683 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2684 {
2685 	if (!vcpu->sigset_active)
2686 		return;
2687 
2688 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2689 	sigemptyset(&current->real_blocked);
2690 }
2691 
2692 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2693 {
2694 	unsigned int old, val, grow, grow_start;
2695 
2696 	old = val = vcpu->halt_poll_ns;
2697 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2698 	grow = READ_ONCE(halt_poll_ns_grow);
2699 	if (!grow)
2700 		goto out;
2701 
2702 	val *= grow;
2703 	if (val < grow_start)
2704 		val = grow_start;
2705 
2706 	if (val > halt_poll_ns)
2707 		val = halt_poll_ns;
2708 
2709 	vcpu->halt_poll_ns = val;
2710 out:
2711 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2712 }
2713 
2714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2715 {
2716 	unsigned int old, val, shrink;
2717 
2718 	old = val = vcpu->halt_poll_ns;
2719 	shrink = READ_ONCE(halt_poll_ns_shrink);
2720 	if (shrink == 0)
2721 		val = 0;
2722 	else
2723 		val /= shrink;
2724 
2725 	vcpu->halt_poll_ns = val;
2726 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2727 }
2728 
2729 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2730 {
2731 	int ret = -EINTR;
2732 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2733 
2734 	if (kvm_arch_vcpu_runnable(vcpu)) {
2735 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2736 		goto out;
2737 	}
2738 	if (kvm_cpu_has_pending_timer(vcpu))
2739 		goto out;
2740 	if (signal_pending(current))
2741 		goto out;
2742 
2743 	ret = 0;
2744 out:
2745 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2746 	return ret;
2747 }
2748 
2749 static inline void
2750 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2751 {
2752 	if (waited)
2753 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2754 	else
2755 		vcpu->stat.halt_poll_success_ns += poll_ns;
2756 }
2757 
2758 /*
2759  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2760  */
2761 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2762 {
2763 	ktime_t start, cur, poll_end;
2764 	bool waited = false;
2765 	u64 block_ns;
2766 
2767 	kvm_arch_vcpu_blocking(vcpu);
2768 
2769 	start = cur = poll_end = ktime_get();
2770 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2771 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2772 
2773 		++vcpu->stat.halt_attempted_poll;
2774 		do {
2775 			/*
2776 			 * This sets KVM_REQ_UNHALT if an interrupt
2777 			 * arrives.
2778 			 */
2779 			if (kvm_vcpu_check_block(vcpu) < 0) {
2780 				++vcpu->stat.halt_successful_poll;
2781 				if (!vcpu_valid_wakeup(vcpu))
2782 					++vcpu->stat.halt_poll_invalid;
2783 				goto out;
2784 			}
2785 			poll_end = cur = ktime_get();
2786 		} while (single_task_running() && ktime_before(cur, stop));
2787 	}
2788 
2789 	prepare_to_rcuwait(&vcpu->wait);
2790 	for (;;) {
2791 		set_current_state(TASK_INTERRUPTIBLE);
2792 
2793 		if (kvm_vcpu_check_block(vcpu) < 0)
2794 			break;
2795 
2796 		waited = true;
2797 		schedule();
2798 	}
2799 	finish_rcuwait(&vcpu->wait);
2800 	cur = ktime_get();
2801 out:
2802 	kvm_arch_vcpu_unblocking(vcpu);
2803 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2804 
2805 	update_halt_poll_stats(
2806 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2807 
2808 	if (!kvm_arch_no_poll(vcpu)) {
2809 		if (!vcpu_valid_wakeup(vcpu)) {
2810 			shrink_halt_poll_ns(vcpu);
2811 		} else if (vcpu->kvm->max_halt_poll_ns) {
2812 			if (block_ns <= vcpu->halt_poll_ns)
2813 				;
2814 			/* we had a long block, shrink polling */
2815 			else if (vcpu->halt_poll_ns &&
2816 					block_ns > vcpu->kvm->max_halt_poll_ns)
2817 				shrink_halt_poll_ns(vcpu);
2818 			/* we had a short halt and our poll time is too small */
2819 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2820 					block_ns < vcpu->kvm->max_halt_poll_ns)
2821 				grow_halt_poll_ns(vcpu);
2822 		} else {
2823 			vcpu->halt_poll_ns = 0;
2824 		}
2825 	}
2826 
2827 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2828 	kvm_arch_vcpu_block_finish(vcpu);
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2831 
2832 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2833 {
2834 	struct rcuwait *waitp;
2835 
2836 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2837 	if (rcuwait_wake_up(waitp)) {
2838 		WRITE_ONCE(vcpu->ready, true);
2839 		++vcpu->stat.halt_wakeup;
2840 		return true;
2841 	}
2842 
2843 	return false;
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2846 
2847 #ifndef CONFIG_S390
2848 /*
2849  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2850  */
2851 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2852 {
2853 	int me;
2854 	int cpu = vcpu->cpu;
2855 
2856 	if (kvm_vcpu_wake_up(vcpu))
2857 		return;
2858 
2859 	me = get_cpu();
2860 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2861 		if (kvm_arch_vcpu_should_kick(vcpu))
2862 			smp_send_reschedule(cpu);
2863 	put_cpu();
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2866 #endif /* !CONFIG_S390 */
2867 
2868 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2869 {
2870 	struct pid *pid;
2871 	struct task_struct *task = NULL;
2872 	int ret = 0;
2873 
2874 	rcu_read_lock();
2875 	pid = rcu_dereference(target->pid);
2876 	if (pid)
2877 		task = get_pid_task(pid, PIDTYPE_PID);
2878 	rcu_read_unlock();
2879 	if (!task)
2880 		return ret;
2881 	ret = yield_to(task, 1);
2882 	put_task_struct(task);
2883 
2884 	return ret;
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2887 
2888 /*
2889  * Helper that checks whether a VCPU is eligible for directed yield.
2890  * Most eligible candidate to yield is decided by following heuristics:
2891  *
2892  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2893  *  (preempted lock holder), indicated by @in_spin_loop.
2894  *  Set at the beginning and cleared at the end of interception/PLE handler.
2895  *
2896  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2897  *  chance last time (mostly it has become eligible now since we have probably
2898  *  yielded to lockholder in last iteration. This is done by toggling
2899  *  @dy_eligible each time a VCPU checked for eligibility.)
2900  *
2901  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2902  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2903  *  burning. Giving priority for a potential lock-holder increases lock
2904  *  progress.
2905  *
2906  *  Since algorithm is based on heuristics, accessing another VCPU data without
2907  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2908  *  and continue with next VCPU and so on.
2909  */
2910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2911 {
2912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2913 	bool eligible;
2914 
2915 	eligible = !vcpu->spin_loop.in_spin_loop ||
2916 		    vcpu->spin_loop.dy_eligible;
2917 
2918 	if (vcpu->spin_loop.in_spin_loop)
2919 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2920 
2921 	return eligible;
2922 #else
2923 	return true;
2924 #endif
2925 }
2926 
2927 /*
2928  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2929  * a vcpu_load/vcpu_put pair.  However, for most architectures
2930  * kvm_arch_vcpu_runnable does not require vcpu_load.
2931  */
2932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2933 {
2934 	return kvm_arch_vcpu_runnable(vcpu);
2935 }
2936 
2937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2938 {
2939 	if (kvm_arch_dy_runnable(vcpu))
2940 		return true;
2941 
2942 #ifdef CONFIG_KVM_ASYNC_PF
2943 	if (!list_empty_careful(&vcpu->async_pf.done))
2944 		return true;
2945 #endif
2946 
2947 	return false;
2948 }
2949 
2950 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2951 {
2952 	struct kvm *kvm = me->kvm;
2953 	struct kvm_vcpu *vcpu;
2954 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2955 	int yielded = 0;
2956 	int try = 3;
2957 	int pass;
2958 	int i;
2959 
2960 	kvm_vcpu_set_in_spin_loop(me, true);
2961 	/*
2962 	 * We boost the priority of a VCPU that is runnable but not
2963 	 * currently running, because it got preempted by something
2964 	 * else and called schedule in __vcpu_run.  Hopefully that
2965 	 * VCPU is holding the lock that we need and will release it.
2966 	 * We approximate round-robin by starting at the last boosted VCPU.
2967 	 */
2968 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2969 		kvm_for_each_vcpu(i, vcpu, kvm) {
2970 			if (!pass && i <= last_boosted_vcpu) {
2971 				i = last_boosted_vcpu;
2972 				continue;
2973 			} else if (pass && i > last_boosted_vcpu)
2974 				break;
2975 			if (!READ_ONCE(vcpu->ready))
2976 				continue;
2977 			if (vcpu == me)
2978 				continue;
2979 			if (rcuwait_active(&vcpu->wait) &&
2980 			    !vcpu_dy_runnable(vcpu))
2981 				continue;
2982 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2983 				!kvm_arch_vcpu_in_kernel(vcpu))
2984 				continue;
2985 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2986 				continue;
2987 
2988 			yielded = kvm_vcpu_yield_to(vcpu);
2989 			if (yielded > 0) {
2990 				kvm->last_boosted_vcpu = i;
2991 				break;
2992 			} else if (yielded < 0) {
2993 				try--;
2994 				if (!try)
2995 					break;
2996 			}
2997 		}
2998 	}
2999 	kvm_vcpu_set_in_spin_loop(me, false);
3000 
3001 	/* Ensure vcpu is not eligible during next spinloop */
3002 	kvm_vcpu_set_dy_eligible(me, false);
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3005 
3006 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3007 {
3008 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3009 	struct page *page;
3010 
3011 	if (vmf->pgoff == 0)
3012 		page = virt_to_page(vcpu->run);
3013 #ifdef CONFIG_X86
3014 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3015 		page = virt_to_page(vcpu->arch.pio_data);
3016 #endif
3017 #ifdef CONFIG_KVM_MMIO
3018 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3019 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3020 #endif
3021 	else
3022 		return kvm_arch_vcpu_fault(vcpu, vmf);
3023 	get_page(page);
3024 	vmf->page = page;
3025 	return 0;
3026 }
3027 
3028 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3029 	.fault = kvm_vcpu_fault,
3030 };
3031 
3032 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3033 {
3034 	vma->vm_ops = &kvm_vcpu_vm_ops;
3035 	return 0;
3036 }
3037 
3038 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3039 {
3040 	struct kvm_vcpu *vcpu = filp->private_data;
3041 
3042 	kvm_put_kvm(vcpu->kvm);
3043 	return 0;
3044 }
3045 
3046 static struct file_operations kvm_vcpu_fops = {
3047 	.release        = kvm_vcpu_release,
3048 	.unlocked_ioctl = kvm_vcpu_ioctl,
3049 	.mmap           = kvm_vcpu_mmap,
3050 	.llseek		= noop_llseek,
3051 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3052 };
3053 
3054 /*
3055  * Allocates an inode for the vcpu.
3056  */
3057 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3058 {
3059 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3060 
3061 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3062 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3063 }
3064 
3065 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3066 {
3067 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3068 	struct dentry *debugfs_dentry;
3069 	char dir_name[ITOA_MAX_LEN * 2];
3070 
3071 	if (!debugfs_initialized())
3072 		return;
3073 
3074 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3075 	debugfs_dentry = debugfs_create_dir(dir_name,
3076 					    vcpu->kvm->debugfs_dentry);
3077 
3078 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3079 #endif
3080 }
3081 
3082 /*
3083  * Creates some virtual cpus.  Good luck creating more than one.
3084  */
3085 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3086 {
3087 	int r;
3088 	struct kvm_vcpu *vcpu;
3089 	struct page *page;
3090 
3091 	if (id >= KVM_MAX_VCPU_ID)
3092 		return -EINVAL;
3093 
3094 	mutex_lock(&kvm->lock);
3095 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3096 		mutex_unlock(&kvm->lock);
3097 		return -EINVAL;
3098 	}
3099 
3100 	kvm->created_vcpus++;
3101 	mutex_unlock(&kvm->lock);
3102 
3103 	r = kvm_arch_vcpu_precreate(kvm, id);
3104 	if (r)
3105 		goto vcpu_decrement;
3106 
3107 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3108 	if (!vcpu) {
3109 		r = -ENOMEM;
3110 		goto vcpu_decrement;
3111 	}
3112 
3113 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3114 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3115 	if (!page) {
3116 		r = -ENOMEM;
3117 		goto vcpu_free;
3118 	}
3119 	vcpu->run = page_address(page);
3120 
3121 	kvm_vcpu_init(vcpu, kvm, id);
3122 
3123 	r = kvm_arch_vcpu_create(vcpu);
3124 	if (r)
3125 		goto vcpu_free_run_page;
3126 
3127 	mutex_lock(&kvm->lock);
3128 	if (kvm_get_vcpu_by_id(kvm, id)) {
3129 		r = -EEXIST;
3130 		goto unlock_vcpu_destroy;
3131 	}
3132 
3133 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3134 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3135 
3136 	/* Now it's all set up, let userspace reach it */
3137 	kvm_get_kvm(kvm);
3138 	r = create_vcpu_fd(vcpu);
3139 	if (r < 0) {
3140 		kvm_put_kvm_no_destroy(kvm);
3141 		goto unlock_vcpu_destroy;
3142 	}
3143 
3144 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3145 
3146 	/*
3147 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3148 	 * before kvm->online_vcpu's incremented value.
3149 	 */
3150 	smp_wmb();
3151 	atomic_inc(&kvm->online_vcpus);
3152 
3153 	mutex_unlock(&kvm->lock);
3154 	kvm_arch_vcpu_postcreate(vcpu);
3155 	kvm_create_vcpu_debugfs(vcpu);
3156 	return r;
3157 
3158 unlock_vcpu_destroy:
3159 	mutex_unlock(&kvm->lock);
3160 	kvm_arch_vcpu_destroy(vcpu);
3161 vcpu_free_run_page:
3162 	free_page((unsigned long)vcpu->run);
3163 vcpu_free:
3164 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3165 vcpu_decrement:
3166 	mutex_lock(&kvm->lock);
3167 	kvm->created_vcpus--;
3168 	mutex_unlock(&kvm->lock);
3169 	return r;
3170 }
3171 
3172 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3173 {
3174 	if (sigset) {
3175 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3176 		vcpu->sigset_active = 1;
3177 		vcpu->sigset = *sigset;
3178 	} else
3179 		vcpu->sigset_active = 0;
3180 	return 0;
3181 }
3182 
3183 static long kvm_vcpu_ioctl(struct file *filp,
3184 			   unsigned int ioctl, unsigned long arg)
3185 {
3186 	struct kvm_vcpu *vcpu = filp->private_data;
3187 	void __user *argp = (void __user *)arg;
3188 	int r;
3189 	struct kvm_fpu *fpu = NULL;
3190 	struct kvm_sregs *kvm_sregs = NULL;
3191 
3192 	if (vcpu->kvm->mm != current->mm)
3193 		return -EIO;
3194 
3195 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3196 		return -EINVAL;
3197 
3198 	/*
3199 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3200 	 * execution; mutex_lock() would break them.
3201 	 */
3202 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3203 	if (r != -ENOIOCTLCMD)
3204 		return r;
3205 
3206 	if (mutex_lock_killable(&vcpu->mutex))
3207 		return -EINTR;
3208 	switch (ioctl) {
3209 	case KVM_RUN: {
3210 		struct pid *oldpid;
3211 		r = -EINVAL;
3212 		if (arg)
3213 			goto out;
3214 		oldpid = rcu_access_pointer(vcpu->pid);
3215 		if (unlikely(oldpid != task_pid(current))) {
3216 			/* The thread running this VCPU changed. */
3217 			struct pid *newpid;
3218 
3219 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3220 			if (r)
3221 				break;
3222 
3223 			newpid = get_task_pid(current, PIDTYPE_PID);
3224 			rcu_assign_pointer(vcpu->pid, newpid);
3225 			if (oldpid)
3226 				synchronize_rcu();
3227 			put_pid(oldpid);
3228 		}
3229 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3230 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3231 		break;
3232 	}
3233 	case KVM_GET_REGS: {
3234 		struct kvm_regs *kvm_regs;
3235 
3236 		r = -ENOMEM;
3237 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3238 		if (!kvm_regs)
3239 			goto out;
3240 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3241 		if (r)
3242 			goto out_free1;
3243 		r = -EFAULT;
3244 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3245 			goto out_free1;
3246 		r = 0;
3247 out_free1:
3248 		kfree(kvm_regs);
3249 		break;
3250 	}
3251 	case KVM_SET_REGS: {
3252 		struct kvm_regs *kvm_regs;
3253 
3254 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3255 		if (IS_ERR(kvm_regs)) {
3256 			r = PTR_ERR(kvm_regs);
3257 			goto out;
3258 		}
3259 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3260 		kfree(kvm_regs);
3261 		break;
3262 	}
3263 	case KVM_GET_SREGS: {
3264 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3265 				    GFP_KERNEL_ACCOUNT);
3266 		r = -ENOMEM;
3267 		if (!kvm_sregs)
3268 			goto out;
3269 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3270 		if (r)
3271 			goto out;
3272 		r = -EFAULT;
3273 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3274 			goto out;
3275 		r = 0;
3276 		break;
3277 	}
3278 	case KVM_SET_SREGS: {
3279 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3280 		if (IS_ERR(kvm_sregs)) {
3281 			r = PTR_ERR(kvm_sregs);
3282 			kvm_sregs = NULL;
3283 			goto out;
3284 		}
3285 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3286 		break;
3287 	}
3288 	case KVM_GET_MP_STATE: {
3289 		struct kvm_mp_state mp_state;
3290 
3291 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3292 		if (r)
3293 			goto out;
3294 		r = -EFAULT;
3295 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3296 			goto out;
3297 		r = 0;
3298 		break;
3299 	}
3300 	case KVM_SET_MP_STATE: {
3301 		struct kvm_mp_state mp_state;
3302 
3303 		r = -EFAULT;
3304 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3305 			goto out;
3306 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3307 		break;
3308 	}
3309 	case KVM_TRANSLATE: {
3310 		struct kvm_translation tr;
3311 
3312 		r = -EFAULT;
3313 		if (copy_from_user(&tr, argp, sizeof(tr)))
3314 			goto out;
3315 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3316 		if (r)
3317 			goto out;
3318 		r = -EFAULT;
3319 		if (copy_to_user(argp, &tr, sizeof(tr)))
3320 			goto out;
3321 		r = 0;
3322 		break;
3323 	}
3324 	case KVM_SET_GUEST_DEBUG: {
3325 		struct kvm_guest_debug dbg;
3326 
3327 		r = -EFAULT;
3328 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3329 			goto out;
3330 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3331 		break;
3332 	}
3333 	case KVM_SET_SIGNAL_MASK: {
3334 		struct kvm_signal_mask __user *sigmask_arg = argp;
3335 		struct kvm_signal_mask kvm_sigmask;
3336 		sigset_t sigset, *p;
3337 
3338 		p = NULL;
3339 		if (argp) {
3340 			r = -EFAULT;
3341 			if (copy_from_user(&kvm_sigmask, argp,
3342 					   sizeof(kvm_sigmask)))
3343 				goto out;
3344 			r = -EINVAL;
3345 			if (kvm_sigmask.len != sizeof(sigset))
3346 				goto out;
3347 			r = -EFAULT;
3348 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3349 					   sizeof(sigset)))
3350 				goto out;
3351 			p = &sigset;
3352 		}
3353 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3354 		break;
3355 	}
3356 	case KVM_GET_FPU: {
3357 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3358 		r = -ENOMEM;
3359 		if (!fpu)
3360 			goto out;
3361 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3362 		if (r)
3363 			goto out;
3364 		r = -EFAULT;
3365 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3366 			goto out;
3367 		r = 0;
3368 		break;
3369 	}
3370 	case KVM_SET_FPU: {
3371 		fpu = memdup_user(argp, sizeof(*fpu));
3372 		if (IS_ERR(fpu)) {
3373 			r = PTR_ERR(fpu);
3374 			fpu = NULL;
3375 			goto out;
3376 		}
3377 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3378 		break;
3379 	}
3380 	default:
3381 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3382 	}
3383 out:
3384 	mutex_unlock(&vcpu->mutex);
3385 	kfree(fpu);
3386 	kfree(kvm_sregs);
3387 	return r;
3388 }
3389 
3390 #ifdef CONFIG_KVM_COMPAT
3391 static long kvm_vcpu_compat_ioctl(struct file *filp,
3392 				  unsigned int ioctl, unsigned long arg)
3393 {
3394 	struct kvm_vcpu *vcpu = filp->private_data;
3395 	void __user *argp = compat_ptr(arg);
3396 	int r;
3397 
3398 	if (vcpu->kvm->mm != current->mm)
3399 		return -EIO;
3400 
3401 	switch (ioctl) {
3402 	case KVM_SET_SIGNAL_MASK: {
3403 		struct kvm_signal_mask __user *sigmask_arg = argp;
3404 		struct kvm_signal_mask kvm_sigmask;
3405 		sigset_t sigset;
3406 
3407 		if (argp) {
3408 			r = -EFAULT;
3409 			if (copy_from_user(&kvm_sigmask, argp,
3410 					   sizeof(kvm_sigmask)))
3411 				goto out;
3412 			r = -EINVAL;
3413 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3414 				goto out;
3415 			r = -EFAULT;
3416 			if (get_compat_sigset(&sigset,
3417 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3418 				goto out;
3419 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3420 		} else
3421 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3422 		break;
3423 	}
3424 	default:
3425 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3426 	}
3427 
3428 out:
3429 	return r;
3430 }
3431 #endif
3432 
3433 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3434 {
3435 	struct kvm_device *dev = filp->private_data;
3436 
3437 	if (dev->ops->mmap)
3438 		return dev->ops->mmap(dev, vma);
3439 
3440 	return -ENODEV;
3441 }
3442 
3443 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3444 				 int (*accessor)(struct kvm_device *dev,
3445 						 struct kvm_device_attr *attr),
3446 				 unsigned long arg)
3447 {
3448 	struct kvm_device_attr attr;
3449 
3450 	if (!accessor)
3451 		return -EPERM;
3452 
3453 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3454 		return -EFAULT;
3455 
3456 	return accessor(dev, &attr);
3457 }
3458 
3459 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3460 			     unsigned long arg)
3461 {
3462 	struct kvm_device *dev = filp->private_data;
3463 
3464 	if (dev->kvm->mm != current->mm)
3465 		return -EIO;
3466 
3467 	switch (ioctl) {
3468 	case KVM_SET_DEVICE_ATTR:
3469 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3470 	case KVM_GET_DEVICE_ATTR:
3471 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3472 	case KVM_HAS_DEVICE_ATTR:
3473 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3474 	default:
3475 		if (dev->ops->ioctl)
3476 			return dev->ops->ioctl(dev, ioctl, arg);
3477 
3478 		return -ENOTTY;
3479 	}
3480 }
3481 
3482 static int kvm_device_release(struct inode *inode, struct file *filp)
3483 {
3484 	struct kvm_device *dev = filp->private_data;
3485 	struct kvm *kvm = dev->kvm;
3486 
3487 	if (dev->ops->release) {
3488 		mutex_lock(&kvm->lock);
3489 		list_del(&dev->vm_node);
3490 		dev->ops->release(dev);
3491 		mutex_unlock(&kvm->lock);
3492 	}
3493 
3494 	kvm_put_kvm(kvm);
3495 	return 0;
3496 }
3497 
3498 static const struct file_operations kvm_device_fops = {
3499 	.unlocked_ioctl = kvm_device_ioctl,
3500 	.release = kvm_device_release,
3501 	KVM_COMPAT(kvm_device_ioctl),
3502 	.mmap = kvm_device_mmap,
3503 };
3504 
3505 struct kvm_device *kvm_device_from_filp(struct file *filp)
3506 {
3507 	if (filp->f_op != &kvm_device_fops)
3508 		return NULL;
3509 
3510 	return filp->private_data;
3511 }
3512 
3513 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3514 #ifdef CONFIG_KVM_MPIC
3515 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3516 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3517 #endif
3518 };
3519 
3520 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3521 {
3522 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3523 		return -ENOSPC;
3524 
3525 	if (kvm_device_ops_table[type] != NULL)
3526 		return -EEXIST;
3527 
3528 	kvm_device_ops_table[type] = ops;
3529 	return 0;
3530 }
3531 
3532 void kvm_unregister_device_ops(u32 type)
3533 {
3534 	if (kvm_device_ops_table[type] != NULL)
3535 		kvm_device_ops_table[type] = NULL;
3536 }
3537 
3538 static int kvm_ioctl_create_device(struct kvm *kvm,
3539 				   struct kvm_create_device *cd)
3540 {
3541 	const struct kvm_device_ops *ops = NULL;
3542 	struct kvm_device *dev;
3543 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3544 	int type;
3545 	int ret;
3546 
3547 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3548 		return -ENODEV;
3549 
3550 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3551 	ops = kvm_device_ops_table[type];
3552 	if (ops == NULL)
3553 		return -ENODEV;
3554 
3555 	if (test)
3556 		return 0;
3557 
3558 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3559 	if (!dev)
3560 		return -ENOMEM;
3561 
3562 	dev->ops = ops;
3563 	dev->kvm = kvm;
3564 
3565 	mutex_lock(&kvm->lock);
3566 	ret = ops->create(dev, type);
3567 	if (ret < 0) {
3568 		mutex_unlock(&kvm->lock);
3569 		kfree(dev);
3570 		return ret;
3571 	}
3572 	list_add(&dev->vm_node, &kvm->devices);
3573 	mutex_unlock(&kvm->lock);
3574 
3575 	if (ops->init)
3576 		ops->init(dev);
3577 
3578 	kvm_get_kvm(kvm);
3579 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3580 	if (ret < 0) {
3581 		kvm_put_kvm_no_destroy(kvm);
3582 		mutex_lock(&kvm->lock);
3583 		list_del(&dev->vm_node);
3584 		mutex_unlock(&kvm->lock);
3585 		ops->destroy(dev);
3586 		return ret;
3587 	}
3588 
3589 	cd->fd = ret;
3590 	return 0;
3591 }
3592 
3593 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3594 {
3595 	switch (arg) {
3596 	case KVM_CAP_USER_MEMORY:
3597 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3598 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3599 	case KVM_CAP_INTERNAL_ERROR_DATA:
3600 #ifdef CONFIG_HAVE_KVM_MSI
3601 	case KVM_CAP_SIGNAL_MSI:
3602 #endif
3603 #ifdef CONFIG_HAVE_KVM_IRQFD
3604 	case KVM_CAP_IRQFD:
3605 	case KVM_CAP_IRQFD_RESAMPLE:
3606 #endif
3607 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3608 	case KVM_CAP_CHECK_EXTENSION_VM:
3609 	case KVM_CAP_ENABLE_CAP_VM:
3610 	case KVM_CAP_HALT_POLL:
3611 		return 1;
3612 #ifdef CONFIG_KVM_MMIO
3613 	case KVM_CAP_COALESCED_MMIO:
3614 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3615 	case KVM_CAP_COALESCED_PIO:
3616 		return 1;
3617 #endif
3618 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3619 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3620 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3621 #endif
3622 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3623 	case KVM_CAP_IRQ_ROUTING:
3624 		return KVM_MAX_IRQ_ROUTES;
3625 #endif
3626 #if KVM_ADDRESS_SPACE_NUM > 1
3627 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3628 		return KVM_ADDRESS_SPACE_NUM;
3629 #endif
3630 	case KVM_CAP_NR_MEMSLOTS:
3631 		return KVM_USER_MEM_SLOTS;
3632 	default:
3633 		break;
3634 	}
3635 	return kvm_vm_ioctl_check_extension(kvm, arg);
3636 }
3637 
3638 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3639 						  struct kvm_enable_cap *cap)
3640 {
3641 	return -EINVAL;
3642 }
3643 
3644 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3645 					   struct kvm_enable_cap *cap)
3646 {
3647 	switch (cap->cap) {
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3650 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3651 
3652 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3653 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3654 
3655 		if (cap->flags || (cap->args[0] & ~allowed_options))
3656 			return -EINVAL;
3657 		kvm->manual_dirty_log_protect = cap->args[0];
3658 		return 0;
3659 	}
3660 #endif
3661 	case KVM_CAP_HALT_POLL: {
3662 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3663 			return -EINVAL;
3664 
3665 		kvm->max_halt_poll_ns = cap->args[0];
3666 		return 0;
3667 	}
3668 	default:
3669 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3670 	}
3671 }
3672 
3673 static long kvm_vm_ioctl(struct file *filp,
3674 			   unsigned int ioctl, unsigned long arg)
3675 {
3676 	struct kvm *kvm = filp->private_data;
3677 	void __user *argp = (void __user *)arg;
3678 	int r;
3679 
3680 	if (kvm->mm != current->mm)
3681 		return -EIO;
3682 	switch (ioctl) {
3683 	case KVM_CREATE_VCPU:
3684 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3685 		break;
3686 	case KVM_ENABLE_CAP: {
3687 		struct kvm_enable_cap cap;
3688 
3689 		r = -EFAULT;
3690 		if (copy_from_user(&cap, argp, sizeof(cap)))
3691 			goto out;
3692 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3693 		break;
3694 	}
3695 	case KVM_SET_USER_MEMORY_REGION: {
3696 		struct kvm_userspace_memory_region kvm_userspace_mem;
3697 
3698 		r = -EFAULT;
3699 		if (copy_from_user(&kvm_userspace_mem, argp,
3700 						sizeof(kvm_userspace_mem)))
3701 			goto out;
3702 
3703 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3704 		break;
3705 	}
3706 	case KVM_GET_DIRTY_LOG: {
3707 		struct kvm_dirty_log log;
3708 
3709 		r = -EFAULT;
3710 		if (copy_from_user(&log, argp, sizeof(log)))
3711 			goto out;
3712 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3713 		break;
3714 	}
3715 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3716 	case KVM_CLEAR_DIRTY_LOG: {
3717 		struct kvm_clear_dirty_log log;
3718 
3719 		r = -EFAULT;
3720 		if (copy_from_user(&log, argp, sizeof(log)))
3721 			goto out;
3722 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3723 		break;
3724 	}
3725 #endif
3726 #ifdef CONFIG_KVM_MMIO
3727 	case KVM_REGISTER_COALESCED_MMIO: {
3728 		struct kvm_coalesced_mmio_zone zone;
3729 
3730 		r = -EFAULT;
3731 		if (copy_from_user(&zone, argp, sizeof(zone)))
3732 			goto out;
3733 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3734 		break;
3735 	}
3736 	case KVM_UNREGISTER_COALESCED_MMIO: {
3737 		struct kvm_coalesced_mmio_zone zone;
3738 
3739 		r = -EFAULT;
3740 		if (copy_from_user(&zone, argp, sizeof(zone)))
3741 			goto out;
3742 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3743 		break;
3744 	}
3745 #endif
3746 	case KVM_IRQFD: {
3747 		struct kvm_irqfd data;
3748 
3749 		r = -EFAULT;
3750 		if (copy_from_user(&data, argp, sizeof(data)))
3751 			goto out;
3752 		r = kvm_irqfd(kvm, &data);
3753 		break;
3754 	}
3755 	case KVM_IOEVENTFD: {
3756 		struct kvm_ioeventfd data;
3757 
3758 		r = -EFAULT;
3759 		if (copy_from_user(&data, argp, sizeof(data)))
3760 			goto out;
3761 		r = kvm_ioeventfd(kvm, &data);
3762 		break;
3763 	}
3764 #ifdef CONFIG_HAVE_KVM_MSI
3765 	case KVM_SIGNAL_MSI: {
3766 		struct kvm_msi msi;
3767 
3768 		r = -EFAULT;
3769 		if (copy_from_user(&msi, argp, sizeof(msi)))
3770 			goto out;
3771 		r = kvm_send_userspace_msi(kvm, &msi);
3772 		break;
3773 	}
3774 #endif
3775 #ifdef __KVM_HAVE_IRQ_LINE
3776 	case KVM_IRQ_LINE_STATUS:
3777 	case KVM_IRQ_LINE: {
3778 		struct kvm_irq_level irq_event;
3779 
3780 		r = -EFAULT;
3781 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3782 			goto out;
3783 
3784 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3785 					ioctl == KVM_IRQ_LINE_STATUS);
3786 		if (r)
3787 			goto out;
3788 
3789 		r = -EFAULT;
3790 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3791 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3792 				goto out;
3793 		}
3794 
3795 		r = 0;
3796 		break;
3797 	}
3798 #endif
3799 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3800 	case KVM_SET_GSI_ROUTING: {
3801 		struct kvm_irq_routing routing;
3802 		struct kvm_irq_routing __user *urouting;
3803 		struct kvm_irq_routing_entry *entries = NULL;
3804 
3805 		r = -EFAULT;
3806 		if (copy_from_user(&routing, argp, sizeof(routing)))
3807 			goto out;
3808 		r = -EINVAL;
3809 		if (!kvm_arch_can_set_irq_routing(kvm))
3810 			goto out;
3811 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3812 			goto out;
3813 		if (routing.flags)
3814 			goto out;
3815 		if (routing.nr) {
3816 			urouting = argp;
3817 			entries = vmemdup_user(urouting->entries,
3818 					       array_size(sizeof(*entries),
3819 							  routing.nr));
3820 			if (IS_ERR(entries)) {
3821 				r = PTR_ERR(entries);
3822 				goto out;
3823 			}
3824 		}
3825 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3826 					routing.flags);
3827 		kvfree(entries);
3828 		break;
3829 	}
3830 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3831 	case KVM_CREATE_DEVICE: {
3832 		struct kvm_create_device cd;
3833 
3834 		r = -EFAULT;
3835 		if (copy_from_user(&cd, argp, sizeof(cd)))
3836 			goto out;
3837 
3838 		r = kvm_ioctl_create_device(kvm, &cd);
3839 		if (r)
3840 			goto out;
3841 
3842 		r = -EFAULT;
3843 		if (copy_to_user(argp, &cd, sizeof(cd)))
3844 			goto out;
3845 
3846 		r = 0;
3847 		break;
3848 	}
3849 	case KVM_CHECK_EXTENSION:
3850 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3851 		break;
3852 	default:
3853 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3854 	}
3855 out:
3856 	return r;
3857 }
3858 
3859 #ifdef CONFIG_KVM_COMPAT
3860 struct compat_kvm_dirty_log {
3861 	__u32 slot;
3862 	__u32 padding1;
3863 	union {
3864 		compat_uptr_t dirty_bitmap; /* one bit per page */
3865 		__u64 padding2;
3866 	};
3867 };
3868 
3869 static long kvm_vm_compat_ioctl(struct file *filp,
3870 			   unsigned int ioctl, unsigned long arg)
3871 {
3872 	struct kvm *kvm = filp->private_data;
3873 	int r;
3874 
3875 	if (kvm->mm != current->mm)
3876 		return -EIO;
3877 	switch (ioctl) {
3878 	case KVM_GET_DIRTY_LOG: {
3879 		struct compat_kvm_dirty_log compat_log;
3880 		struct kvm_dirty_log log;
3881 
3882 		if (copy_from_user(&compat_log, (void __user *)arg,
3883 				   sizeof(compat_log)))
3884 			return -EFAULT;
3885 		log.slot	 = compat_log.slot;
3886 		log.padding1	 = compat_log.padding1;
3887 		log.padding2	 = compat_log.padding2;
3888 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3889 
3890 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3891 		break;
3892 	}
3893 	default:
3894 		r = kvm_vm_ioctl(filp, ioctl, arg);
3895 	}
3896 	return r;
3897 }
3898 #endif
3899 
3900 static struct file_operations kvm_vm_fops = {
3901 	.release        = kvm_vm_release,
3902 	.unlocked_ioctl = kvm_vm_ioctl,
3903 	.llseek		= noop_llseek,
3904 	KVM_COMPAT(kvm_vm_compat_ioctl),
3905 };
3906 
3907 static int kvm_dev_ioctl_create_vm(unsigned long type)
3908 {
3909 	int r;
3910 	struct kvm *kvm;
3911 	struct file *file;
3912 
3913 	kvm = kvm_create_vm(type);
3914 	if (IS_ERR(kvm))
3915 		return PTR_ERR(kvm);
3916 #ifdef CONFIG_KVM_MMIO
3917 	r = kvm_coalesced_mmio_init(kvm);
3918 	if (r < 0)
3919 		goto put_kvm;
3920 #endif
3921 	r = get_unused_fd_flags(O_CLOEXEC);
3922 	if (r < 0)
3923 		goto put_kvm;
3924 
3925 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3926 	if (IS_ERR(file)) {
3927 		put_unused_fd(r);
3928 		r = PTR_ERR(file);
3929 		goto put_kvm;
3930 	}
3931 
3932 	/*
3933 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3934 	 * already set, with ->release() being kvm_vm_release().  In error
3935 	 * cases it will be called by the final fput(file) and will take
3936 	 * care of doing kvm_put_kvm(kvm).
3937 	 */
3938 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3939 		put_unused_fd(r);
3940 		fput(file);
3941 		return -ENOMEM;
3942 	}
3943 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3944 
3945 	fd_install(r, file);
3946 	return r;
3947 
3948 put_kvm:
3949 	kvm_put_kvm(kvm);
3950 	return r;
3951 }
3952 
3953 static long kvm_dev_ioctl(struct file *filp,
3954 			  unsigned int ioctl, unsigned long arg)
3955 {
3956 	long r = -EINVAL;
3957 
3958 	switch (ioctl) {
3959 	case KVM_GET_API_VERSION:
3960 		if (arg)
3961 			goto out;
3962 		r = KVM_API_VERSION;
3963 		break;
3964 	case KVM_CREATE_VM:
3965 		r = kvm_dev_ioctl_create_vm(arg);
3966 		break;
3967 	case KVM_CHECK_EXTENSION:
3968 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3969 		break;
3970 	case KVM_GET_VCPU_MMAP_SIZE:
3971 		if (arg)
3972 			goto out;
3973 		r = PAGE_SIZE;     /* struct kvm_run */
3974 #ifdef CONFIG_X86
3975 		r += PAGE_SIZE;    /* pio data page */
3976 #endif
3977 #ifdef CONFIG_KVM_MMIO
3978 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3979 #endif
3980 		break;
3981 	case KVM_TRACE_ENABLE:
3982 	case KVM_TRACE_PAUSE:
3983 	case KVM_TRACE_DISABLE:
3984 		r = -EOPNOTSUPP;
3985 		break;
3986 	default:
3987 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3988 	}
3989 out:
3990 	return r;
3991 }
3992 
3993 static struct file_operations kvm_chardev_ops = {
3994 	.unlocked_ioctl = kvm_dev_ioctl,
3995 	.llseek		= noop_llseek,
3996 	KVM_COMPAT(kvm_dev_ioctl),
3997 };
3998 
3999 static struct miscdevice kvm_dev = {
4000 	KVM_MINOR,
4001 	"kvm",
4002 	&kvm_chardev_ops,
4003 };
4004 
4005 static void hardware_enable_nolock(void *junk)
4006 {
4007 	int cpu = raw_smp_processor_id();
4008 	int r;
4009 
4010 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4011 		return;
4012 
4013 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4014 
4015 	r = kvm_arch_hardware_enable();
4016 
4017 	if (r) {
4018 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4019 		atomic_inc(&hardware_enable_failed);
4020 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4021 	}
4022 }
4023 
4024 static int kvm_starting_cpu(unsigned int cpu)
4025 {
4026 	raw_spin_lock(&kvm_count_lock);
4027 	if (kvm_usage_count)
4028 		hardware_enable_nolock(NULL);
4029 	raw_spin_unlock(&kvm_count_lock);
4030 	return 0;
4031 }
4032 
4033 static void hardware_disable_nolock(void *junk)
4034 {
4035 	int cpu = raw_smp_processor_id();
4036 
4037 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4038 		return;
4039 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4040 	kvm_arch_hardware_disable();
4041 }
4042 
4043 static int kvm_dying_cpu(unsigned int cpu)
4044 {
4045 	raw_spin_lock(&kvm_count_lock);
4046 	if (kvm_usage_count)
4047 		hardware_disable_nolock(NULL);
4048 	raw_spin_unlock(&kvm_count_lock);
4049 	return 0;
4050 }
4051 
4052 static void hardware_disable_all_nolock(void)
4053 {
4054 	BUG_ON(!kvm_usage_count);
4055 
4056 	kvm_usage_count--;
4057 	if (!kvm_usage_count)
4058 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4059 }
4060 
4061 static void hardware_disable_all(void)
4062 {
4063 	raw_spin_lock(&kvm_count_lock);
4064 	hardware_disable_all_nolock();
4065 	raw_spin_unlock(&kvm_count_lock);
4066 }
4067 
4068 static int hardware_enable_all(void)
4069 {
4070 	int r = 0;
4071 
4072 	raw_spin_lock(&kvm_count_lock);
4073 
4074 	kvm_usage_count++;
4075 	if (kvm_usage_count == 1) {
4076 		atomic_set(&hardware_enable_failed, 0);
4077 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4078 
4079 		if (atomic_read(&hardware_enable_failed)) {
4080 			hardware_disable_all_nolock();
4081 			r = -EBUSY;
4082 		}
4083 	}
4084 
4085 	raw_spin_unlock(&kvm_count_lock);
4086 
4087 	return r;
4088 }
4089 
4090 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4091 		      void *v)
4092 {
4093 	/*
4094 	 * Some (well, at least mine) BIOSes hang on reboot if
4095 	 * in vmx root mode.
4096 	 *
4097 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4098 	 */
4099 	pr_info("kvm: exiting hardware virtualization\n");
4100 	kvm_rebooting = true;
4101 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4102 	return NOTIFY_OK;
4103 }
4104 
4105 static struct notifier_block kvm_reboot_notifier = {
4106 	.notifier_call = kvm_reboot,
4107 	.priority = 0,
4108 };
4109 
4110 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4111 {
4112 	int i;
4113 
4114 	for (i = 0; i < bus->dev_count; i++) {
4115 		struct kvm_io_device *pos = bus->range[i].dev;
4116 
4117 		kvm_iodevice_destructor(pos);
4118 	}
4119 	kfree(bus);
4120 }
4121 
4122 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4123 				 const struct kvm_io_range *r2)
4124 {
4125 	gpa_t addr1 = r1->addr;
4126 	gpa_t addr2 = r2->addr;
4127 
4128 	if (addr1 < addr2)
4129 		return -1;
4130 
4131 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4132 	 * accept any overlapping write.  Any order is acceptable for
4133 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4134 	 * we process all of them.
4135 	 */
4136 	if (r2->len) {
4137 		addr1 += r1->len;
4138 		addr2 += r2->len;
4139 	}
4140 
4141 	if (addr1 > addr2)
4142 		return 1;
4143 
4144 	return 0;
4145 }
4146 
4147 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4148 {
4149 	return kvm_io_bus_cmp(p1, p2);
4150 }
4151 
4152 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4153 			     gpa_t addr, int len)
4154 {
4155 	struct kvm_io_range *range, key;
4156 	int off;
4157 
4158 	key = (struct kvm_io_range) {
4159 		.addr = addr,
4160 		.len = len,
4161 	};
4162 
4163 	range = bsearch(&key, bus->range, bus->dev_count,
4164 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4165 	if (range == NULL)
4166 		return -ENOENT;
4167 
4168 	off = range - bus->range;
4169 
4170 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4171 		off--;
4172 
4173 	return off;
4174 }
4175 
4176 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4177 			      struct kvm_io_range *range, const void *val)
4178 {
4179 	int idx;
4180 
4181 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4182 	if (idx < 0)
4183 		return -EOPNOTSUPP;
4184 
4185 	while (idx < bus->dev_count &&
4186 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4187 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4188 					range->len, val))
4189 			return idx;
4190 		idx++;
4191 	}
4192 
4193 	return -EOPNOTSUPP;
4194 }
4195 
4196 /* kvm_io_bus_write - called under kvm->slots_lock */
4197 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4198 		     int len, const void *val)
4199 {
4200 	struct kvm_io_bus *bus;
4201 	struct kvm_io_range range;
4202 	int r;
4203 
4204 	range = (struct kvm_io_range) {
4205 		.addr = addr,
4206 		.len = len,
4207 	};
4208 
4209 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4210 	if (!bus)
4211 		return -ENOMEM;
4212 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4213 	return r < 0 ? r : 0;
4214 }
4215 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4216 
4217 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4218 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4219 			    gpa_t addr, int len, const void *val, long cookie)
4220 {
4221 	struct kvm_io_bus *bus;
4222 	struct kvm_io_range range;
4223 
4224 	range = (struct kvm_io_range) {
4225 		.addr = addr,
4226 		.len = len,
4227 	};
4228 
4229 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4230 	if (!bus)
4231 		return -ENOMEM;
4232 
4233 	/* First try the device referenced by cookie. */
4234 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4235 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4236 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4237 					val))
4238 			return cookie;
4239 
4240 	/*
4241 	 * cookie contained garbage; fall back to search and return the
4242 	 * correct cookie value.
4243 	 */
4244 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4245 }
4246 
4247 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4248 			     struct kvm_io_range *range, void *val)
4249 {
4250 	int idx;
4251 
4252 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4253 	if (idx < 0)
4254 		return -EOPNOTSUPP;
4255 
4256 	while (idx < bus->dev_count &&
4257 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4258 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4259 				       range->len, val))
4260 			return idx;
4261 		idx++;
4262 	}
4263 
4264 	return -EOPNOTSUPP;
4265 }
4266 
4267 /* kvm_io_bus_read - called under kvm->slots_lock */
4268 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4269 		    int len, void *val)
4270 {
4271 	struct kvm_io_bus *bus;
4272 	struct kvm_io_range range;
4273 	int r;
4274 
4275 	range = (struct kvm_io_range) {
4276 		.addr = addr,
4277 		.len = len,
4278 	};
4279 
4280 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4281 	if (!bus)
4282 		return -ENOMEM;
4283 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4284 	return r < 0 ? r : 0;
4285 }
4286 
4287 /* Caller must hold slots_lock. */
4288 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4289 			    int len, struct kvm_io_device *dev)
4290 {
4291 	int i;
4292 	struct kvm_io_bus *new_bus, *bus;
4293 	struct kvm_io_range range;
4294 
4295 	bus = kvm_get_bus(kvm, bus_idx);
4296 	if (!bus)
4297 		return -ENOMEM;
4298 
4299 	/* exclude ioeventfd which is limited by maximum fd */
4300 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4301 		return -ENOSPC;
4302 
4303 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4304 			  GFP_KERNEL_ACCOUNT);
4305 	if (!new_bus)
4306 		return -ENOMEM;
4307 
4308 	range = (struct kvm_io_range) {
4309 		.addr = addr,
4310 		.len = len,
4311 		.dev = dev,
4312 	};
4313 
4314 	for (i = 0; i < bus->dev_count; i++)
4315 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4316 			break;
4317 
4318 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4319 	new_bus->dev_count++;
4320 	new_bus->range[i] = range;
4321 	memcpy(new_bus->range + i + 1, bus->range + i,
4322 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4323 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4324 	synchronize_srcu_expedited(&kvm->srcu);
4325 	kfree(bus);
4326 
4327 	return 0;
4328 }
4329 
4330 /* Caller must hold slots_lock. */
4331 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4332 			       struct kvm_io_device *dev)
4333 {
4334 	int i;
4335 	struct kvm_io_bus *new_bus, *bus;
4336 
4337 	bus = kvm_get_bus(kvm, bus_idx);
4338 	if (!bus)
4339 		return;
4340 
4341 	for (i = 0; i < bus->dev_count; i++)
4342 		if (bus->range[i].dev == dev) {
4343 			break;
4344 		}
4345 
4346 	if (i == bus->dev_count)
4347 		return;
4348 
4349 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4350 			  GFP_KERNEL_ACCOUNT);
4351 	if (!new_bus)  {
4352 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4353 		goto broken;
4354 	}
4355 
4356 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4357 	new_bus->dev_count--;
4358 	memcpy(new_bus->range + i, bus->range + i + 1,
4359 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4360 
4361 broken:
4362 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4363 	synchronize_srcu_expedited(&kvm->srcu);
4364 	kfree(bus);
4365 	return;
4366 }
4367 
4368 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4369 					 gpa_t addr)
4370 {
4371 	struct kvm_io_bus *bus;
4372 	int dev_idx, srcu_idx;
4373 	struct kvm_io_device *iodev = NULL;
4374 
4375 	srcu_idx = srcu_read_lock(&kvm->srcu);
4376 
4377 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4378 	if (!bus)
4379 		goto out_unlock;
4380 
4381 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4382 	if (dev_idx < 0)
4383 		goto out_unlock;
4384 
4385 	iodev = bus->range[dev_idx].dev;
4386 
4387 out_unlock:
4388 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4389 
4390 	return iodev;
4391 }
4392 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4393 
4394 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4395 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4396 			   const char *fmt)
4397 {
4398 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4399 					  inode->i_private;
4400 
4401 	/* The debugfs files are a reference to the kvm struct which
4402 	 * is still valid when kvm_destroy_vm is called.
4403 	 * To avoid the race between open and the removal of the debugfs
4404 	 * directory we test against the users count.
4405 	 */
4406 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4407 		return -ENOENT;
4408 
4409 	if (simple_attr_open(inode, file, get,
4410 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4411 		    ? set : NULL,
4412 		    fmt)) {
4413 		kvm_put_kvm(stat_data->kvm);
4414 		return -ENOMEM;
4415 	}
4416 
4417 	return 0;
4418 }
4419 
4420 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4421 {
4422 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4423 					  inode->i_private;
4424 
4425 	simple_attr_release(inode, file);
4426 	kvm_put_kvm(stat_data->kvm);
4427 
4428 	return 0;
4429 }
4430 
4431 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4432 {
4433 	*val = *(ulong *)((void *)kvm + offset);
4434 
4435 	return 0;
4436 }
4437 
4438 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4439 {
4440 	*(ulong *)((void *)kvm + offset) = 0;
4441 
4442 	return 0;
4443 }
4444 
4445 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4446 {
4447 	int i;
4448 	struct kvm_vcpu *vcpu;
4449 
4450 	*val = 0;
4451 
4452 	kvm_for_each_vcpu(i, vcpu, kvm)
4453 		*val += *(u64 *)((void *)vcpu + offset);
4454 
4455 	return 0;
4456 }
4457 
4458 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4459 {
4460 	int i;
4461 	struct kvm_vcpu *vcpu;
4462 
4463 	kvm_for_each_vcpu(i, vcpu, kvm)
4464 		*(u64 *)((void *)vcpu + offset) = 0;
4465 
4466 	return 0;
4467 }
4468 
4469 static int kvm_stat_data_get(void *data, u64 *val)
4470 {
4471 	int r = -EFAULT;
4472 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4473 
4474 	switch (stat_data->dbgfs_item->kind) {
4475 	case KVM_STAT_VM:
4476 		r = kvm_get_stat_per_vm(stat_data->kvm,
4477 					stat_data->dbgfs_item->offset, val);
4478 		break;
4479 	case KVM_STAT_VCPU:
4480 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4481 					  stat_data->dbgfs_item->offset, val);
4482 		break;
4483 	}
4484 
4485 	return r;
4486 }
4487 
4488 static int kvm_stat_data_clear(void *data, u64 val)
4489 {
4490 	int r = -EFAULT;
4491 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4492 
4493 	if (val)
4494 		return -EINVAL;
4495 
4496 	switch (stat_data->dbgfs_item->kind) {
4497 	case KVM_STAT_VM:
4498 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4499 					  stat_data->dbgfs_item->offset);
4500 		break;
4501 	case KVM_STAT_VCPU:
4502 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4503 					    stat_data->dbgfs_item->offset);
4504 		break;
4505 	}
4506 
4507 	return r;
4508 }
4509 
4510 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4511 {
4512 	__simple_attr_check_format("%llu\n", 0ull);
4513 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4514 				kvm_stat_data_clear, "%llu\n");
4515 }
4516 
4517 static const struct file_operations stat_fops_per_vm = {
4518 	.owner = THIS_MODULE,
4519 	.open = kvm_stat_data_open,
4520 	.release = kvm_debugfs_release,
4521 	.read = simple_attr_read,
4522 	.write = simple_attr_write,
4523 	.llseek = no_llseek,
4524 };
4525 
4526 static int vm_stat_get(void *_offset, u64 *val)
4527 {
4528 	unsigned offset = (long)_offset;
4529 	struct kvm *kvm;
4530 	u64 tmp_val;
4531 
4532 	*val = 0;
4533 	mutex_lock(&kvm_lock);
4534 	list_for_each_entry(kvm, &vm_list, vm_list) {
4535 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4536 		*val += tmp_val;
4537 	}
4538 	mutex_unlock(&kvm_lock);
4539 	return 0;
4540 }
4541 
4542 static int vm_stat_clear(void *_offset, u64 val)
4543 {
4544 	unsigned offset = (long)_offset;
4545 	struct kvm *kvm;
4546 
4547 	if (val)
4548 		return -EINVAL;
4549 
4550 	mutex_lock(&kvm_lock);
4551 	list_for_each_entry(kvm, &vm_list, vm_list) {
4552 		kvm_clear_stat_per_vm(kvm, offset);
4553 	}
4554 	mutex_unlock(&kvm_lock);
4555 
4556 	return 0;
4557 }
4558 
4559 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4560 
4561 static int vcpu_stat_get(void *_offset, u64 *val)
4562 {
4563 	unsigned offset = (long)_offset;
4564 	struct kvm *kvm;
4565 	u64 tmp_val;
4566 
4567 	*val = 0;
4568 	mutex_lock(&kvm_lock);
4569 	list_for_each_entry(kvm, &vm_list, vm_list) {
4570 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4571 		*val += tmp_val;
4572 	}
4573 	mutex_unlock(&kvm_lock);
4574 	return 0;
4575 }
4576 
4577 static int vcpu_stat_clear(void *_offset, u64 val)
4578 {
4579 	unsigned offset = (long)_offset;
4580 	struct kvm *kvm;
4581 
4582 	if (val)
4583 		return -EINVAL;
4584 
4585 	mutex_lock(&kvm_lock);
4586 	list_for_each_entry(kvm, &vm_list, vm_list) {
4587 		kvm_clear_stat_per_vcpu(kvm, offset);
4588 	}
4589 	mutex_unlock(&kvm_lock);
4590 
4591 	return 0;
4592 }
4593 
4594 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4595 			"%llu\n");
4596 
4597 static const struct file_operations *stat_fops[] = {
4598 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4599 	[KVM_STAT_VM]   = &vm_stat_fops,
4600 };
4601 
4602 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4603 {
4604 	struct kobj_uevent_env *env;
4605 	unsigned long long created, active;
4606 
4607 	if (!kvm_dev.this_device || !kvm)
4608 		return;
4609 
4610 	mutex_lock(&kvm_lock);
4611 	if (type == KVM_EVENT_CREATE_VM) {
4612 		kvm_createvm_count++;
4613 		kvm_active_vms++;
4614 	} else if (type == KVM_EVENT_DESTROY_VM) {
4615 		kvm_active_vms--;
4616 	}
4617 	created = kvm_createvm_count;
4618 	active = kvm_active_vms;
4619 	mutex_unlock(&kvm_lock);
4620 
4621 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4622 	if (!env)
4623 		return;
4624 
4625 	add_uevent_var(env, "CREATED=%llu", created);
4626 	add_uevent_var(env, "COUNT=%llu", active);
4627 
4628 	if (type == KVM_EVENT_CREATE_VM) {
4629 		add_uevent_var(env, "EVENT=create");
4630 		kvm->userspace_pid = task_pid_nr(current);
4631 	} else if (type == KVM_EVENT_DESTROY_VM) {
4632 		add_uevent_var(env, "EVENT=destroy");
4633 	}
4634 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4635 
4636 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4637 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4638 
4639 		if (p) {
4640 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4641 			if (!IS_ERR(tmp))
4642 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4643 			kfree(p);
4644 		}
4645 	}
4646 	/* no need for checks, since we are adding at most only 5 keys */
4647 	env->envp[env->envp_idx++] = NULL;
4648 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4649 	kfree(env);
4650 }
4651 
4652 static void kvm_init_debug(void)
4653 {
4654 	struct kvm_stats_debugfs_item *p;
4655 
4656 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4657 
4658 	kvm_debugfs_num_entries = 0;
4659 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4660 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4661 				    kvm_debugfs_dir, (void *)(long)p->offset,
4662 				    stat_fops[p->kind]);
4663 	}
4664 }
4665 
4666 static int kvm_suspend(void)
4667 {
4668 	if (kvm_usage_count)
4669 		hardware_disable_nolock(NULL);
4670 	return 0;
4671 }
4672 
4673 static void kvm_resume(void)
4674 {
4675 	if (kvm_usage_count) {
4676 #ifdef CONFIG_LOCKDEP
4677 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4678 #endif
4679 		hardware_enable_nolock(NULL);
4680 	}
4681 }
4682 
4683 static struct syscore_ops kvm_syscore_ops = {
4684 	.suspend = kvm_suspend,
4685 	.resume = kvm_resume,
4686 };
4687 
4688 static inline
4689 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4690 {
4691 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4692 }
4693 
4694 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4695 {
4696 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4697 
4698 	WRITE_ONCE(vcpu->preempted, false);
4699 	WRITE_ONCE(vcpu->ready, false);
4700 
4701 	__this_cpu_write(kvm_running_vcpu, vcpu);
4702 	kvm_arch_sched_in(vcpu, cpu);
4703 	kvm_arch_vcpu_load(vcpu, cpu);
4704 }
4705 
4706 static void kvm_sched_out(struct preempt_notifier *pn,
4707 			  struct task_struct *next)
4708 {
4709 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4710 
4711 	if (current->state == TASK_RUNNING) {
4712 		WRITE_ONCE(vcpu->preempted, true);
4713 		WRITE_ONCE(vcpu->ready, true);
4714 	}
4715 	kvm_arch_vcpu_put(vcpu);
4716 	__this_cpu_write(kvm_running_vcpu, NULL);
4717 }
4718 
4719 /**
4720  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4721  *
4722  * We can disable preemption locally around accessing the per-CPU variable,
4723  * and use the resolved vcpu pointer after enabling preemption again,
4724  * because even if the current thread is migrated to another CPU, reading
4725  * the per-CPU value later will give us the same value as we update the
4726  * per-CPU variable in the preempt notifier handlers.
4727  */
4728 struct kvm_vcpu *kvm_get_running_vcpu(void)
4729 {
4730 	struct kvm_vcpu *vcpu;
4731 
4732 	preempt_disable();
4733 	vcpu = __this_cpu_read(kvm_running_vcpu);
4734 	preempt_enable();
4735 
4736 	return vcpu;
4737 }
4738 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4739 
4740 /**
4741  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4742  */
4743 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4744 {
4745         return &kvm_running_vcpu;
4746 }
4747 
4748 struct kvm_cpu_compat_check {
4749 	void *opaque;
4750 	int *ret;
4751 };
4752 
4753 static void check_processor_compat(void *data)
4754 {
4755 	struct kvm_cpu_compat_check *c = data;
4756 
4757 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4758 }
4759 
4760 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4761 		  struct module *module)
4762 {
4763 	struct kvm_cpu_compat_check c;
4764 	int r;
4765 	int cpu;
4766 
4767 	r = kvm_arch_init(opaque);
4768 	if (r)
4769 		goto out_fail;
4770 
4771 	/*
4772 	 * kvm_arch_init makes sure there's at most one caller
4773 	 * for architectures that support multiple implementations,
4774 	 * like intel and amd on x86.
4775 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4776 	 * conflicts in case kvm is already setup for another implementation.
4777 	 */
4778 	r = kvm_irqfd_init();
4779 	if (r)
4780 		goto out_irqfd;
4781 
4782 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4783 		r = -ENOMEM;
4784 		goto out_free_0;
4785 	}
4786 
4787 	r = kvm_arch_hardware_setup(opaque);
4788 	if (r < 0)
4789 		goto out_free_1;
4790 
4791 	c.ret = &r;
4792 	c.opaque = opaque;
4793 	for_each_online_cpu(cpu) {
4794 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4795 		if (r < 0)
4796 			goto out_free_2;
4797 	}
4798 
4799 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4800 				      kvm_starting_cpu, kvm_dying_cpu);
4801 	if (r)
4802 		goto out_free_2;
4803 	register_reboot_notifier(&kvm_reboot_notifier);
4804 
4805 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4806 	if (!vcpu_align)
4807 		vcpu_align = __alignof__(struct kvm_vcpu);
4808 	kvm_vcpu_cache =
4809 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4810 					   SLAB_ACCOUNT,
4811 					   offsetof(struct kvm_vcpu, arch),
4812 					   sizeof_field(struct kvm_vcpu, arch),
4813 					   NULL);
4814 	if (!kvm_vcpu_cache) {
4815 		r = -ENOMEM;
4816 		goto out_free_3;
4817 	}
4818 
4819 	r = kvm_async_pf_init();
4820 	if (r)
4821 		goto out_free;
4822 
4823 	kvm_chardev_ops.owner = module;
4824 	kvm_vm_fops.owner = module;
4825 	kvm_vcpu_fops.owner = module;
4826 
4827 	r = misc_register(&kvm_dev);
4828 	if (r) {
4829 		pr_err("kvm: misc device register failed\n");
4830 		goto out_unreg;
4831 	}
4832 
4833 	register_syscore_ops(&kvm_syscore_ops);
4834 
4835 	kvm_preempt_ops.sched_in = kvm_sched_in;
4836 	kvm_preempt_ops.sched_out = kvm_sched_out;
4837 
4838 	kvm_init_debug();
4839 
4840 	r = kvm_vfio_ops_init();
4841 	WARN_ON(r);
4842 
4843 	return 0;
4844 
4845 out_unreg:
4846 	kvm_async_pf_deinit();
4847 out_free:
4848 	kmem_cache_destroy(kvm_vcpu_cache);
4849 out_free_3:
4850 	unregister_reboot_notifier(&kvm_reboot_notifier);
4851 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4852 out_free_2:
4853 	kvm_arch_hardware_unsetup();
4854 out_free_1:
4855 	free_cpumask_var(cpus_hardware_enabled);
4856 out_free_0:
4857 	kvm_irqfd_exit();
4858 out_irqfd:
4859 	kvm_arch_exit();
4860 out_fail:
4861 	return r;
4862 }
4863 EXPORT_SYMBOL_GPL(kvm_init);
4864 
4865 void kvm_exit(void)
4866 {
4867 	debugfs_remove_recursive(kvm_debugfs_dir);
4868 	misc_deregister(&kvm_dev);
4869 	kmem_cache_destroy(kvm_vcpu_cache);
4870 	kvm_async_pf_deinit();
4871 	unregister_syscore_ops(&kvm_syscore_ops);
4872 	unregister_reboot_notifier(&kvm_reboot_notifier);
4873 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4874 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4875 	kvm_arch_hardware_unsetup();
4876 	kvm_arch_exit();
4877 	kvm_irqfd_exit();
4878 	free_cpumask_var(cpus_hardware_enabled);
4879 	kvm_vfio_ops_exit();
4880 }
4881 EXPORT_SYMBOL_GPL(kvm_exit);
4882 
4883 struct kvm_vm_worker_thread_context {
4884 	struct kvm *kvm;
4885 	struct task_struct *parent;
4886 	struct completion init_done;
4887 	kvm_vm_thread_fn_t thread_fn;
4888 	uintptr_t data;
4889 	int err;
4890 };
4891 
4892 static int kvm_vm_worker_thread(void *context)
4893 {
4894 	/*
4895 	 * The init_context is allocated on the stack of the parent thread, so
4896 	 * we have to locally copy anything that is needed beyond initialization
4897 	 */
4898 	struct kvm_vm_worker_thread_context *init_context = context;
4899 	struct kvm *kvm = init_context->kvm;
4900 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4901 	uintptr_t data = init_context->data;
4902 	int err;
4903 
4904 	err = kthread_park(current);
4905 	/* kthread_park(current) is never supposed to return an error */
4906 	WARN_ON(err != 0);
4907 	if (err)
4908 		goto init_complete;
4909 
4910 	err = cgroup_attach_task_all(init_context->parent, current);
4911 	if (err) {
4912 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4913 			__func__, err);
4914 		goto init_complete;
4915 	}
4916 
4917 	set_user_nice(current, task_nice(init_context->parent));
4918 
4919 init_complete:
4920 	init_context->err = err;
4921 	complete(&init_context->init_done);
4922 	init_context = NULL;
4923 
4924 	if (err)
4925 		return err;
4926 
4927 	/* Wait to be woken up by the spawner before proceeding. */
4928 	kthread_parkme();
4929 
4930 	if (!kthread_should_stop())
4931 		err = thread_fn(kvm, data);
4932 
4933 	return err;
4934 }
4935 
4936 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4937 				uintptr_t data, const char *name,
4938 				struct task_struct **thread_ptr)
4939 {
4940 	struct kvm_vm_worker_thread_context init_context = {};
4941 	struct task_struct *thread;
4942 
4943 	*thread_ptr = NULL;
4944 	init_context.kvm = kvm;
4945 	init_context.parent = current;
4946 	init_context.thread_fn = thread_fn;
4947 	init_context.data = data;
4948 	init_completion(&init_context.init_done);
4949 
4950 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4951 			     "%s-%d", name, task_pid_nr(current));
4952 	if (IS_ERR(thread))
4953 		return PTR_ERR(thread);
4954 
4955 	/* kthread_run is never supposed to return NULL */
4956 	WARN_ON(thread == NULL);
4957 
4958 	wait_for_completion(&init_context.init_done);
4959 
4960 	if (!init_context.err)
4961 		*thread_ptr = thread;
4962 
4963 	return init_context.err;
4964 }
4965