1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 MODULE_AUTHOR("Qumranet"); 67 MODULE_LICENSE("GPL"); 68 69 /* Architectures should define their poll value according to the halt latency */ 70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 72 73 /* Default doubles per-vcpu halt_poll_ns. */ 74 static unsigned int halt_poll_ns_grow = 2; 75 module_param(halt_poll_ns_grow, int, S_IRUGO); 76 77 /* Default resets per-vcpu halt_poll_ns . */ 78 static unsigned int halt_poll_ns_shrink; 79 module_param(halt_poll_ns_shrink, int, S_IRUGO); 80 81 /* 82 * Ordering of locks: 83 * 84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 85 */ 86 87 DEFINE_SPINLOCK(kvm_lock); 88 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 89 LIST_HEAD(vm_list); 90 91 static cpumask_var_t cpus_hardware_enabled; 92 static int kvm_usage_count; 93 static atomic_t hardware_enable_failed; 94 95 struct kmem_cache *kvm_vcpu_cache; 96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 97 98 static __read_mostly struct preempt_ops kvm_preempt_ops; 99 100 struct dentry *kvm_debugfs_dir; 101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 102 103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 104 unsigned long arg); 105 #ifdef CONFIG_KVM_COMPAT 106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 107 unsigned long arg); 108 #endif 109 static int hardware_enable_all(void); 110 static void hardware_disable_all(void); 111 112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 113 114 static void kvm_release_pfn_dirty(pfn_t pfn); 115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 116 117 __visible bool kvm_rebooting; 118 EXPORT_SYMBOL_GPL(kvm_rebooting); 119 120 static bool largepages_enabled = true; 121 122 bool kvm_is_reserved_pfn(pfn_t pfn) 123 { 124 if (pfn_valid(pfn)) 125 return PageReserved(pfn_to_page(pfn)); 126 127 return true; 128 } 129 130 /* 131 * Switches to specified vcpu, until a matching vcpu_put() 132 */ 133 int vcpu_load(struct kvm_vcpu *vcpu) 134 { 135 int cpu; 136 137 if (mutex_lock_killable(&vcpu->mutex)) 138 return -EINTR; 139 cpu = get_cpu(); 140 preempt_notifier_register(&vcpu->preempt_notifier); 141 kvm_arch_vcpu_load(vcpu, cpu); 142 put_cpu(); 143 return 0; 144 } 145 146 void vcpu_put(struct kvm_vcpu *vcpu) 147 { 148 preempt_disable(); 149 kvm_arch_vcpu_put(vcpu); 150 preempt_notifier_unregister(&vcpu->preempt_notifier); 151 preempt_enable(); 152 mutex_unlock(&vcpu->mutex); 153 } 154 155 static void ack_flush(void *_completed) 156 { 157 } 158 159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 160 { 161 int i, cpu, me; 162 cpumask_var_t cpus; 163 bool called = true; 164 struct kvm_vcpu *vcpu; 165 166 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 167 168 me = get_cpu(); 169 kvm_for_each_vcpu(i, vcpu, kvm) { 170 kvm_make_request(req, vcpu); 171 cpu = vcpu->cpu; 172 173 /* Set ->requests bit before we read ->mode */ 174 smp_mb(); 175 176 if (cpus != NULL && cpu != -1 && cpu != me && 177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 178 cpumask_set_cpu(cpu, cpus); 179 } 180 if (unlikely(cpus == NULL)) 181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 182 else if (!cpumask_empty(cpus)) 183 smp_call_function_many(cpus, ack_flush, NULL, 1); 184 else 185 called = false; 186 put_cpu(); 187 free_cpumask_var(cpus); 188 return called; 189 } 190 191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 192 void kvm_flush_remote_tlbs(struct kvm *kvm) 193 { 194 long dirty_count = kvm->tlbs_dirty; 195 196 smp_mb(); 197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 198 ++kvm->stat.remote_tlb_flush; 199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 200 } 201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 202 #endif 203 204 void kvm_reload_remote_mmus(struct kvm *kvm) 205 { 206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 207 } 208 209 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 210 { 211 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 212 } 213 214 void kvm_make_scan_ioapic_request(struct kvm *kvm) 215 { 216 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 217 } 218 219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 220 { 221 struct page *page; 222 int r; 223 224 mutex_init(&vcpu->mutex); 225 vcpu->cpu = -1; 226 vcpu->kvm = kvm; 227 vcpu->vcpu_id = id; 228 vcpu->pid = NULL; 229 vcpu->halt_poll_ns = 0; 230 init_waitqueue_head(&vcpu->wq); 231 kvm_async_pf_vcpu_init(vcpu); 232 233 vcpu->pre_pcpu = -1; 234 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 235 236 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 237 if (!page) { 238 r = -ENOMEM; 239 goto fail; 240 } 241 vcpu->run = page_address(page); 242 243 kvm_vcpu_set_in_spin_loop(vcpu, false); 244 kvm_vcpu_set_dy_eligible(vcpu, false); 245 vcpu->preempted = false; 246 247 r = kvm_arch_vcpu_init(vcpu); 248 if (r < 0) 249 goto fail_free_run; 250 return 0; 251 252 fail_free_run: 253 free_page((unsigned long)vcpu->run); 254 fail: 255 return r; 256 } 257 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 258 259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 260 { 261 put_pid(vcpu->pid); 262 kvm_arch_vcpu_uninit(vcpu); 263 free_page((unsigned long)vcpu->run); 264 } 265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 266 267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 269 { 270 return container_of(mn, struct kvm, mmu_notifier); 271 } 272 273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 274 struct mm_struct *mm, 275 unsigned long address) 276 { 277 struct kvm *kvm = mmu_notifier_to_kvm(mn); 278 int need_tlb_flush, idx; 279 280 /* 281 * When ->invalidate_page runs, the linux pte has been zapped 282 * already but the page is still allocated until 283 * ->invalidate_page returns. So if we increase the sequence 284 * here the kvm page fault will notice if the spte can't be 285 * established because the page is going to be freed. If 286 * instead the kvm page fault establishes the spte before 287 * ->invalidate_page runs, kvm_unmap_hva will release it 288 * before returning. 289 * 290 * The sequence increase only need to be seen at spin_unlock 291 * time, and not at spin_lock time. 292 * 293 * Increasing the sequence after the spin_unlock would be 294 * unsafe because the kvm page fault could then establish the 295 * pte after kvm_unmap_hva returned, without noticing the page 296 * is going to be freed. 297 */ 298 idx = srcu_read_lock(&kvm->srcu); 299 spin_lock(&kvm->mmu_lock); 300 301 kvm->mmu_notifier_seq++; 302 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 303 /* we've to flush the tlb before the pages can be freed */ 304 if (need_tlb_flush) 305 kvm_flush_remote_tlbs(kvm); 306 307 spin_unlock(&kvm->mmu_lock); 308 309 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 310 311 srcu_read_unlock(&kvm->srcu, idx); 312 } 313 314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 315 struct mm_struct *mm, 316 unsigned long address, 317 pte_t pte) 318 { 319 struct kvm *kvm = mmu_notifier_to_kvm(mn); 320 int idx; 321 322 idx = srcu_read_lock(&kvm->srcu); 323 spin_lock(&kvm->mmu_lock); 324 kvm->mmu_notifier_seq++; 325 kvm_set_spte_hva(kvm, address, pte); 326 spin_unlock(&kvm->mmu_lock); 327 srcu_read_unlock(&kvm->srcu, idx); 328 } 329 330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 331 struct mm_struct *mm, 332 unsigned long start, 333 unsigned long end) 334 { 335 struct kvm *kvm = mmu_notifier_to_kvm(mn); 336 int need_tlb_flush = 0, idx; 337 338 idx = srcu_read_lock(&kvm->srcu); 339 spin_lock(&kvm->mmu_lock); 340 /* 341 * The count increase must become visible at unlock time as no 342 * spte can be established without taking the mmu_lock and 343 * count is also read inside the mmu_lock critical section. 344 */ 345 kvm->mmu_notifier_count++; 346 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 347 need_tlb_flush |= kvm->tlbs_dirty; 348 /* we've to flush the tlb before the pages can be freed */ 349 if (need_tlb_flush) 350 kvm_flush_remote_tlbs(kvm); 351 352 spin_unlock(&kvm->mmu_lock); 353 srcu_read_unlock(&kvm->srcu, idx); 354 } 355 356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 357 struct mm_struct *mm, 358 unsigned long start, 359 unsigned long end) 360 { 361 struct kvm *kvm = mmu_notifier_to_kvm(mn); 362 363 spin_lock(&kvm->mmu_lock); 364 /* 365 * This sequence increase will notify the kvm page fault that 366 * the page that is going to be mapped in the spte could have 367 * been freed. 368 */ 369 kvm->mmu_notifier_seq++; 370 smp_wmb(); 371 /* 372 * The above sequence increase must be visible before the 373 * below count decrease, which is ensured by the smp_wmb above 374 * in conjunction with the smp_rmb in mmu_notifier_retry(). 375 */ 376 kvm->mmu_notifier_count--; 377 spin_unlock(&kvm->mmu_lock); 378 379 BUG_ON(kvm->mmu_notifier_count < 0); 380 } 381 382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 383 struct mm_struct *mm, 384 unsigned long start, 385 unsigned long end) 386 { 387 struct kvm *kvm = mmu_notifier_to_kvm(mn); 388 int young, idx; 389 390 idx = srcu_read_lock(&kvm->srcu); 391 spin_lock(&kvm->mmu_lock); 392 393 young = kvm_age_hva(kvm, start, end); 394 if (young) 395 kvm_flush_remote_tlbs(kvm); 396 397 spin_unlock(&kvm->mmu_lock); 398 srcu_read_unlock(&kvm->srcu, idx); 399 400 return young; 401 } 402 403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 404 struct mm_struct *mm, 405 unsigned long start, 406 unsigned long end) 407 { 408 struct kvm *kvm = mmu_notifier_to_kvm(mn); 409 int young, idx; 410 411 idx = srcu_read_lock(&kvm->srcu); 412 spin_lock(&kvm->mmu_lock); 413 /* 414 * Even though we do not flush TLB, this will still adversely 415 * affect performance on pre-Haswell Intel EPT, where there is 416 * no EPT Access Bit to clear so that we have to tear down EPT 417 * tables instead. If we find this unacceptable, we can always 418 * add a parameter to kvm_age_hva so that it effectively doesn't 419 * do anything on clear_young. 420 * 421 * Also note that currently we never issue secondary TLB flushes 422 * from clear_young, leaving this job up to the regular system 423 * cadence. If we find this inaccurate, we might come up with a 424 * more sophisticated heuristic later. 425 */ 426 young = kvm_age_hva(kvm, start, end); 427 spin_unlock(&kvm->mmu_lock); 428 srcu_read_unlock(&kvm->srcu, idx); 429 430 return young; 431 } 432 433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 434 struct mm_struct *mm, 435 unsigned long address) 436 { 437 struct kvm *kvm = mmu_notifier_to_kvm(mn); 438 int young, idx; 439 440 idx = srcu_read_lock(&kvm->srcu); 441 spin_lock(&kvm->mmu_lock); 442 young = kvm_test_age_hva(kvm, address); 443 spin_unlock(&kvm->mmu_lock); 444 srcu_read_unlock(&kvm->srcu, idx); 445 446 return young; 447 } 448 449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 450 struct mm_struct *mm) 451 { 452 struct kvm *kvm = mmu_notifier_to_kvm(mn); 453 int idx; 454 455 idx = srcu_read_lock(&kvm->srcu); 456 kvm_arch_flush_shadow_all(kvm); 457 srcu_read_unlock(&kvm->srcu, idx); 458 } 459 460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 461 .invalidate_page = kvm_mmu_notifier_invalidate_page, 462 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 463 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 464 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 465 .clear_young = kvm_mmu_notifier_clear_young, 466 .test_young = kvm_mmu_notifier_test_young, 467 .change_pte = kvm_mmu_notifier_change_pte, 468 .release = kvm_mmu_notifier_release, 469 }; 470 471 static int kvm_init_mmu_notifier(struct kvm *kvm) 472 { 473 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 474 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 475 } 476 477 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 478 479 static int kvm_init_mmu_notifier(struct kvm *kvm) 480 { 481 return 0; 482 } 483 484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 485 486 static struct kvm_memslots *kvm_alloc_memslots(void) 487 { 488 int i; 489 struct kvm_memslots *slots; 490 491 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 492 if (!slots) 493 return NULL; 494 495 /* 496 * Init kvm generation close to the maximum to easily test the 497 * code of handling generation number wrap-around. 498 */ 499 slots->generation = -150; 500 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 501 slots->id_to_index[i] = slots->memslots[i].id = i; 502 503 return slots; 504 } 505 506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 507 { 508 if (!memslot->dirty_bitmap) 509 return; 510 511 kvfree(memslot->dirty_bitmap); 512 memslot->dirty_bitmap = NULL; 513 } 514 515 /* 516 * Free any memory in @free but not in @dont. 517 */ 518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 519 struct kvm_memory_slot *dont) 520 { 521 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 522 kvm_destroy_dirty_bitmap(free); 523 524 kvm_arch_free_memslot(kvm, free, dont); 525 526 free->npages = 0; 527 } 528 529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 530 { 531 struct kvm_memory_slot *memslot; 532 533 if (!slots) 534 return; 535 536 kvm_for_each_memslot(memslot, slots) 537 kvm_free_memslot(kvm, memslot, NULL); 538 539 kvfree(slots); 540 } 541 542 static struct kvm *kvm_create_vm(unsigned long type) 543 { 544 int r, i; 545 struct kvm *kvm = kvm_arch_alloc_vm(); 546 547 if (!kvm) 548 return ERR_PTR(-ENOMEM); 549 550 r = kvm_arch_init_vm(kvm, type); 551 if (r) 552 goto out_err_no_disable; 553 554 r = hardware_enable_all(); 555 if (r) 556 goto out_err_no_disable; 557 558 #ifdef CONFIG_HAVE_KVM_IRQFD 559 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 560 #endif 561 562 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 563 564 r = -ENOMEM; 565 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 566 kvm->memslots[i] = kvm_alloc_memslots(); 567 if (!kvm->memslots[i]) 568 goto out_err_no_srcu; 569 } 570 571 if (init_srcu_struct(&kvm->srcu)) 572 goto out_err_no_srcu; 573 if (init_srcu_struct(&kvm->irq_srcu)) 574 goto out_err_no_irq_srcu; 575 for (i = 0; i < KVM_NR_BUSES; i++) { 576 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 577 GFP_KERNEL); 578 if (!kvm->buses[i]) 579 goto out_err; 580 } 581 582 spin_lock_init(&kvm->mmu_lock); 583 kvm->mm = current->mm; 584 atomic_inc(&kvm->mm->mm_count); 585 kvm_eventfd_init(kvm); 586 mutex_init(&kvm->lock); 587 mutex_init(&kvm->irq_lock); 588 mutex_init(&kvm->slots_lock); 589 atomic_set(&kvm->users_count, 1); 590 INIT_LIST_HEAD(&kvm->devices); 591 592 r = kvm_init_mmu_notifier(kvm); 593 if (r) 594 goto out_err; 595 596 spin_lock(&kvm_lock); 597 list_add(&kvm->vm_list, &vm_list); 598 spin_unlock(&kvm_lock); 599 600 preempt_notifier_inc(); 601 602 return kvm; 603 604 out_err: 605 cleanup_srcu_struct(&kvm->irq_srcu); 606 out_err_no_irq_srcu: 607 cleanup_srcu_struct(&kvm->srcu); 608 out_err_no_srcu: 609 hardware_disable_all(); 610 out_err_no_disable: 611 for (i = 0; i < KVM_NR_BUSES; i++) 612 kfree(kvm->buses[i]); 613 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 614 kvm_free_memslots(kvm, kvm->memslots[i]); 615 kvm_arch_free_vm(kvm); 616 return ERR_PTR(r); 617 } 618 619 /* 620 * Avoid using vmalloc for a small buffer. 621 * Should not be used when the size is statically known. 622 */ 623 void *kvm_kvzalloc(unsigned long size) 624 { 625 if (size > PAGE_SIZE) 626 return vzalloc(size); 627 else 628 return kzalloc(size, GFP_KERNEL); 629 } 630 631 static void kvm_destroy_devices(struct kvm *kvm) 632 { 633 struct list_head *node, *tmp; 634 635 list_for_each_safe(node, tmp, &kvm->devices) { 636 struct kvm_device *dev = 637 list_entry(node, struct kvm_device, vm_node); 638 639 list_del(node); 640 dev->ops->destroy(dev); 641 } 642 } 643 644 static void kvm_destroy_vm(struct kvm *kvm) 645 { 646 int i; 647 struct mm_struct *mm = kvm->mm; 648 649 kvm_arch_sync_events(kvm); 650 spin_lock(&kvm_lock); 651 list_del(&kvm->vm_list); 652 spin_unlock(&kvm_lock); 653 kvm_free_irq_routing(kvm); 654 for (i = 0; i < KVM_NR_BUSES; i++) 655 kvm_io_bus_destroy(kvm->buses[i]); 656 kvm_coalesced_mmio_free(kvm); 657 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 658 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 659 #else 660 kvm_arch_flush_shadow_all(kvm); 661 #endif 662 kvm_arch_destroy_vm(kvm); 663 kvm_destroy_devices(kvm); 664 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 665 kvm_free_memslots(kvm, kvm->memslots[i]); 666 cleanup_srcu_struct(&kvm->irq_srcu); 667 cleanup_srcu_struct(&kvm->srcu); 668 kvm_arch_free_vm(kvm); 669 preempt_notifier_dec(); 670 hardware_disable_all(); 671 mmdrop(mm); 672 } 673 674 void kvm_get_kvm(struct kvm *kvm) 675 { 676 atomic_inc(&kvm->users_count); 677 } 678 EXPORT_SYMBOL_GPL(kvm_get_kvm); 679 680 void kvm_put_kvm(struct kvm *kvm) 681 { 682 if (atomic_dec_and_test(&kvm->users_count)) 683 kvm_destroy_vm(kvm); 684 } 685 EXPORT_SYMBOL_GPL(kvm_put_kvm); 686 687 688 static int kvm_vm_release(struct inode *inode, struct file *filp) 689 { 690 struct kvm *kvm = filp->private_data; 691 692 kvm_irqfd_release(kvm); 693 694 kvm_put_kvm(kvm); 695 return 0; 696 } 697 698 /* 699 * Allocation size is twice as large as the actual dirty bitmap size. 700 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 701 */ 702 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 703 { 704 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 705 706 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 707 if (!memslot->dirty_bitmap) 708 return -ENOMEM; 709 710 return 0; 711 } 712 713 /* 714 * Insert memslot and re-sort memslots based on their GFN, 715 * so binary search could be used to lookup GFN. 716 * Sorting algorithm takes advantage of having initially 717 * sorted array and known changed memslot position. 718 */ 719 static void update_memslots(struct kvm_memslots *slots, 720 struct kvm_memory_slot *new) 721 { 722 int id = new->id; 723 int i = slots->id_to_index[id]; 724 struct kvm_memory_slot *mslots = slots->memslots; 725 726 WARN_ON(mslots[i].id != id); 727 if (!new->npages) { 728 WARN_ON(!mslots[i].npages); 729 if (mslots[i].npages) 730 slots->used_slots--; 731 } else { 732 if (!mslots[i].npages) 733 slots->used_slots++; 734 } 735 736 while (i < KVM_MEM_SLOTS_NUM - 1 && 737 new->base_gfn <= mslots[i + 1].base_gfn) { 738 if (!mslots[i + 1].npages) 739 break; 740 mslots[i] = mslots[i + 1]; 741 slots->id_to_index[mslots[i].id] = i; 742 i++; 743 } 744 745 /* 746 * The ">=" is needed when creating a slot with base_gfn == 0, 747 * so that it moves before all those with base_gfn == npages == 0. 748 * 749 * On the other hand, if new->npages is zero, the above loop has 750 * already left i pointing to the beginning of the empty part of 751 * mslots, and the ">=" would move the hole backwards in this 752 * case---which is wrong. So skip the loop when deleting a slot. 753 */ 754 if (new->npages) { 755 while (i > 0 && 756 new->base_gfn >= mslots[i - 1].base_gfn) { 757 mslots[i] = mslots[i - 1]; 758 slots->id_to_index[mslots[i].id] = i; 759 i--; 760 } 761 } else 762 WARN_ON_ONCE(i != slots->used_slots); 763 764 mslots[i] = *new; 765 slots->id_to_index[mslots[i].id] = i; 766 } 767 768 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 769 { 770 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 771 772 #ifdef __KVM_HAVE_READONLY_MEM 773 valid_flags |= KVM_MEM_READONLY; 774 #endif 775 776 if (mem->flags & ~valid_flags) 777 return -EINVAL; 778 779 return 0; 780 } 781 782 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 783 int as_id, struct kvm_memslots *slots) 784 { 785 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 786 787 /* 788 * Set the low bit in the generation, which disables SPTE caching 789 * until the end of synchronize_srcu_expedited. 790 */ 791 WARN_ON(old_memslots->generation & 1); 792 slots->generation = old_memslots->generation + 1; 793 794 rcu_assign_pointer(kvm->memslots[as_id], slots); 795 synchronize_srcu_expedited(&kvm->srcu); 796 797 /* 798 * Increment the new memslot generation a second time. This prevents 799 * vm exits that race with memslot updates from caching a memslot 800 * generation that will (potentially) be valid forever. 801 */ 802 slots->generation++; 803 804 kvm_arch_memslots_updated(kvm, slots); 805 806 return old_memslots; 807 } 808 809 /* 810 * Allocate some memory and give it an address in the guest physical address 811 * space. 812 * 813 * Discontiguous memory is allowed, mostly for framebuffers. 814 * 815 * Must be called holding kvm->slots_lock for write. 816 */ 817 int __kvm_set_memory_region(struct kvm *kvm, 818 const struct kvm_userspace_memory_region *mem) 819 { 820 int r; 821 gfn_t base_gfn; 822 unsigned long npages; 823 struct kvm_memory_slot *slot; 824 struct kvm_memory_slot old, new; 825 struct kvm_memslots *slots = NULL, *old_memslots; 826 int as_id, id; 827 enum kvm_mr_change change; 828 829 r = check_memory_region_flags(mem); 830 if (r) 831 goto out; 832 833 r = -EINVAL; 834 as_id = mem->slot >> 16; 835 id = (u16)mem->slot; 836 837 /* General sanity checks */ 838 if (mem->memory_size & (PAGE_SIZE - 1)) 839 goto out; 840 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 841 goto out; 842 /* We can read the guest memory with __xxx_user() later on. */ 843 if ((id < KVM_USER_MEM_SLOTS) && 844 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 845 !access_ok(VERIFY_WRITE, 846 (void __user *)(unsigned long)mem->userspace_addr, 847 mem->memory_size))) 848 goto out; 849 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 850 goto out; 851 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 852 goto out; 853 854 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 855 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 856 npages = mem->memory_size >> PAGE_SHIFT; 857 858 if (npages > KVM_MEM_MAX_NR_PAGES) 859 goto out; 860 861 new = old = *slot; 862 863 new.id = id; 864 new.base_gfn = base_gfn; 865 new.npages = npages; 866 new.flags = mem->flags; 867 868 if (npages) { 869 if (!old.npages) 870 change = KVM_MR_CREATE; 871 else { /* Modify an existing slot. */ 872 if ((mem->userspace_addr != old.userspace_addr) || 873 (npages != old.npages) || 874 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 875 goto out; 876 877 if (base_gfn != old.base_gfn) 878 change = KVM_MR_MOVE; 879 else if (new.flags != old.flags) 880 change = KVM_MR_FLAGS_ONLY; 881 else { /* Nothing to change. */ 882 r = 0; 883 goto out; 884 } 885 } 886 } else { 887 if (!old.npages) 888 goto out; 889 890 change = KVM_MR_DELETE; 891 new.base_gfn = 0; 892 new.flags = 0; 893 } 894 895 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 896 /* Check for overlaps */ 897 r = -EEXIST; 898 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 899 if ((slot->id >= KVM_USER_MEM_SLOTS) || 900 (slot->id == id)) 901 continue; 902 if (!((base_gfn + npages <= slot->base_gfn) || 903 (base_gfn >= slot->base_gfn + slot->npages))) 904 goto out; 905 } 906 } 907 908 /* Free page dirty bitmap if unneeded */ 909 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 910 new.dirty_bitmap = NULL; 911 912 r = -ENOMEM; 913 if (change == KVM_MR_CREATE) { 914 new.userspace_addr = mem->userspace_addr; 915 916 if (kvm_arch_create_memslot(kvm, &new, npages)) 917 goto out_free; 918 } 919 920 /* Allocate page dirty bitmap if needed */ 921 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 922 if (kvm_create_dirty_bitmap(&new) < 0) 923 goto out_free; 924 } 925 926 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 927 if (!slots) 928 goto out_free; 929 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 930 931 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 932 slot = id_to_memslot(slots, id); 933 slot->flags |= KVM_MEMSLOT_INVALID; 934 935 old_memslots = install_new_memslots(kvm, as_id, slots); 936 937 /* slot was deleted or moved, clear iommu mapping */ 938 kvm_iommu_unmap_pages(kvm, &old); 939 /* From this point no new shadow pages pointing to a deleted, 940 * or moved, memslot will be created. 941 * 942 * validation of sp->gfn happens in: 943 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 944 * - kvm_is_visible_gfn (mmu_check_roots) 945 */ 946 kvm_arch_flush_shadow_memslot(kvm, slot); 947 948 /* 949 * We can re-use the old_memslots from above, the only difference 950 * from the currently installed memslots is the invalid flag. This 951 * will get overwritten by update_memslots anyway. 952 */ 953 slots = old_memslots; 954 } 955 956 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 957 if (r) 958 goto out_slots; 959 960 /* actual memory is freed via old in kvm_free_memslot below */ 961 if (change == KVM_MR_DELETE) { 962 new.dirty_bitmap = NULL; 963 memset(&new.arch, 0, sizeof(new.arch)); 964 } 965 966 update_memslots(slots, &new); 967 old_memslots = install_new_memslots(kvm, as_id, slots); 968 969 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 970 971 kvm_free_memslot(kvm, &old, &new); 972 kvfree(old_memslots); 973 974 /* 975 * IOMMU mapping: New slots need to be mapped. Old slots need to be 976 * un-mapped and re-mapped if their base changes. Since base change 977 * unmapping is handled above with slot deletion, mapping alone is 978 * needed here. Anything else the iommu might care about for existing 979 * slots (size changes, userspace addr changes and read-only flag 980 * changes) is disallowed above, so any other attribute changes getting 981 * here can be skipped. 982 */ 983 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 984 r = kvm_iommu_map_pages(kvm, &new); 985 return r; 986 } 987 988 return 0; 989 990 out_slots: 991 kvfree(slots); 992 out_free: 993 kvm_free_memslot(kvm, &new, &old); 994 out: 995 return r; 996 } 997 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 998 999 int kvm_set_memory_region(struct kvm *kvm, 1000 const struct kvm_userspace_memory_region *mem) 1001 { 1002 int r; 1003 1004 mutex_lock(&kvm->slots_lock); 1005 r = __kvm_set_memory_region(kvm, mem); 1006 mutex_unlock(&kvm->slots_lock); 1007 return r; 1008 } 1009 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1010 1011 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1012 struct kvm_userspace_memory_region *mem) 1013 { 1014 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1015 return -EINVAL; 1016 1017 return kvm_set_memory_region(kvm, mem); 1018 } 1019 1020 int kvm_get_dirty_log(struct kvm *kvm, 1021 struct kvm_dirty_log *log, int *is_dirty) 1022 { 1023 struct kvm_memslots *slots; 1024 struct kvm_memory_slot *memslot; 1025 int r, i, as_id, id; 1026 unsigned long n; 1027 unsigned long any = 0; 1028 1029 r = -EINVAL; 1030 as_id = log->slot >> 16; 1031 id = (u16)log->slot; 1032 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1033 goto out; 1034 1035 slots = __kvm_memslots(kvm, as_id); 1036 memslot = id_to_memslot(slots, id); 1037 r = -ENOENT; 1038 if (!memslot->dirty_bitmap) 1039 goto out; 1040 1041 n = kvm_dirty_bitmap_bytes(memslot); 1042 1043 for (i = 0; !any && i < n/sizeof(long); ++i) 1044 any = memslot->dirty_bitmap[i]; 1045 1046 r = -EFAULT; 1047 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1048 goto out; 1049 1050 if (any) 1051 *is_dirty = 1; 1052 1053 r = 0; 1054 out: 1055 return r; 1056 } 1057 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1058 1059 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1060 /** 1061 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1062 * are dirty write protect them for next write. 1063 * @kvm: pointer to kvm instance 1064 * @log: slot id and address to which we copy the log 1065 * @is_dirty: flag set if any page is dirty 1066 * 1067 * We need to keep it in mind that VCPU threads can write to the bitmap 1068 * concurrently. So, to avoid losing track of dirty pages we keep the 1069 * following order: 1070 * 1071 * 1. Take a snapshot of the bit and clear it if needed. 1072 * 2. Write protect the corresponding page. 1073 * 3. Copy the snapshot to the userspace. 1074 * 4. Upon return caller flushes TLB's if needed. 1075 * 1076 * Between 2 and 4, the guest may write to the page using the remaining TLB 1077 * entry. This is not a problem because the page is reported dirty using 1078 * the snapshot taken before and step 4 ensures that writes done after 1079 * exiting to userspace will be logged for the next call. 1080 * 1081 */ 1082 int kvm_get_dirty_log_protect(struct kvm *kvm, 1083 struct kvm_dirty_log *log, bool *is_dirty) 1084 { 1085 struct kvm_memslots *slots; 1086 struct kvm_memory_slot *memslot; 1087 int r, i, as_id, id; 1088 unsigned long n; 1089 unsigned long *dirty_bitmap; 1090 unsigned long *dirty_bitmap_buffer; 1091 1092 r = -EINVAL; 1093 as_id = log->slot >> 16; 1094 id = (u16)log->slot; 1095 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1096 goto out; 1097 1098 slots = __kvm_memslots(kvm, as_id); 1099 memslot = id_to_memslot(slots, id); 1100 1101 dirty_bitmap = memslot->dirty_bitmap; 1102 r = -ENOENT; 1103 if (!dirty_bitmap) 1104 goto out; 1105 1106 n = kvm_dirty_bitmap_bytes(memslot); 1107 1108 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1109 memset(dirty_bitmap_buffer, 0, n); 1110 1111 spin_lock(&kvm->mmu_lock); 1112 *is_dirty = false; 1113 for (i = 0; i < n / sizeof(long); i++) { 1114 unsigned long mask; 1115 gfn_t offset; 1116 1117 if (!dirty_bitmap[i]) 1118 continue; 1119 1120 *is_dirty = true; 1121 1122 mask = xchg(&dirty_bitmap[i], 0); 1123 dirty_bitmap_buffer[i] = mask; 1124 1125 if (mask) { 1126 offset = i * BITS_PER_LONG; 1127 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1128 offset, mask); 1129 } 1130 } 1131 1132 spin_unlock(&kvm->mmu_lock); 1133 1134 r = -EFAULT; 1135 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1136 goto out; 1137 1138 r = 0; 1139 out: 1140 return r; 1141 } 1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1143 #endif 1144 1145 bool kvm_largepages_enabled(void) 1146 { 1147 return largepages_enabled; 1148 } 1149 1150 void kvm_disable_largepages(void) 1151 { 1152 largepages_enabled = false; 1153 } 1154 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1155 1156 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1157 { 1158 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1159 } 1160 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1161 1162 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1163 { 1164 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1165 } 1166 1167 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1168 { 1169 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1170 1171 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1172 memslot->flags & KVM_MEMSLOT_INVALID) 1173 return 0; 1174 1175 return 1; 1176 } 1177 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1178 1179 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1180 { 1181 struct vm_area_struct *vma; 1182 unsigned long addr, size; 1183 1184 size = PAGE_SIZE; 1185 1186 addr = gfn_to_hva(kvm, gfn); 1187 if (kvm_is_error_hva(addr)) 1188 return PAGE_SIZE; 1189 1190 down_read(¤t->mm->mmap_sem); 1191 vma = find_vma(current->mm, addr); 1192 if (!vma) 1193 goto out; 1194 1195 size = vma_kernel_pagesize(vma); 1196 1197 out: 1198 up_read(¤t->mm->mmap_sem); 1199 1200 return size; 1201 } 1202 1203 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1204 { 1205 return slot->flags & KVM_MEM_READONLY; 1206 } 1207 1208 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1209 gfn_t *nr_pages, bool write) 1210 { 1211 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1212 return KVM_HVA_ERR_BAD; 1213 1214 if (memslot_is_readonly(slot) && write) 1215 return KVM_HVA_ERR_RO_BAD; 1216 1217 if (nr_pages) 1218 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1219 1220 return __gfn_to_hva_memslot(slot, gfn); 1221 } 1222 1223 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1224 gfn_t *nr_pages) 1225 { 1226 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1227 } 1228 1229 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1230 gfn_t gfn) 1231 { 1232 return gfn_to_hva_many(slot, gfn, NULL); 1233 } 1234 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1235 1236 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1237 { 1238 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1239 } 1240 EXPORT_SYMBOL_GPL(gfn_to_hva); 1241 1242 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1243 { 1244 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1245 } 1246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1247 1248 /* 1249 * If writable is set to false, the hva returned by this function is only 1250 * allowed to be read. 1251 */ 1252 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1253 gfn_t gfn, bool *writable) 1254 { 1255 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1256 1257 if (!kvm_is_error_hva(hva) && writable) 1258 *writable = !memslot_is_readonly(slot); 1259 1260 return hva; 1261 } 1262 1263 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1264 { 1265 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1266 1267 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1268 } 1269 1270 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1271 { 1272 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1273 1274 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1275 } 1276 1277 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1278 unsigned long start, int write, struct page **page) 1279 { 1280 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1281 1282 if (write) 1283 flags |= FOLL_WRITE; 1284 1285 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1286 } 1287 1288 static inline int check_user_page_hwpoison(unsigned long addr) 1289 { 1290 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1291 1292 rc = __get_user_pages(current, current->mm, addr, 1, 1293 flags, NULL, NULL, NULL); 1294 return rc == -EHWPOISON; 1295 } 1296 1297 /* 1298 * The atomic path to get the writable pfn which will be stored in @pfn, 1299 * true indicates success, otherwise false is returned. 1300 */ 1301 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1302 bool write_fault, bool *writable, pfn_t *pfn) 1303 { 1304 struct page *page[1]; 1305 int npages; 1306 1307 if (!(async || atomic)) 1308 return false; 1309 1310 /* 1311 * Fast pin a writable pfn only if it is a write fault request 1312 * or the caller allows to map a writable pfn for a read fault 1313 * request. 1314 */ 1315 if (!(write_fault || writable)) 1316 return false; 1317 1318 npages = __get_user_pages_fast(addr, 1, 1, page); 1319 if (npages == 1) { 1320 *pfn = page_to_pfn(page[0]); 1321 1322 if (writable) 1323 *writable = true; 1324 return true; 1325 } 1326 1327 return false; 1328 } 1329 1330 /* 1331 * The slow path to get the pfn of the specified host virtual address, 1332 * 1 indicates success, -errno is returned if error is detected. 1333 */ 1334 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1335 bool *writable, pfn_t *pfn) 1336 { 1337 struct page *page[1]; 1338 int npages = 0; 1339 1340 might_sleep(); 1341 1342 if (writable) 1343 *writable = write_fault; 1344 1345 if (async) { 1346 down_read(¤t->mm->mmap_sem); 1347 npages = get_user_page_nowait(current, current->mm, 1348 addr, write_fault, page); 1349 up_read(¤t->mm->mmap_sem); 1350 } else 1351 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1352 write_fault, 0, page, 1353 FOLL_TOUCH|FOLL_HWPOISON); 1354 if (npages != 1) 1355 return npages; 1356 1357 /* map read fault as writable if possible */ 1358 if (unlikely(!write_fault) && writable) { 1359 struct page *wpage[1]; 1360 1361 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1362 if (npages == 1) { 1363 *writable = true; 1364 put_page(page[0]); 1365 page[0] = wpage[0]; 1366 } 1367 1368 npages = 1; 1369 } 1370 *pfn = page_to_pfn(page[0]); 1371 return npages; 1372 } 1373 1374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1375 { 1376 if (unlikely(!(vma->vm_flags & VM_READ))) 1377 return false; 1378 1379 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1380 return false; 1381 1382 return true; 1383 } 1384 1385 /* 1386 * Pin guest page in memory and return its pfn. 1387 * @addr: host virtual address which maps memory to the guest 1388 * @atomic: whether this function can sleep 1389 * @async: whether this function need to wait IO complete if the 1390 * host page is not in the memory 1391 * @write_fault: whether we should get a writable host page 1392 * @writable: whether it allows to map a writable host page for !@write_fault 1393 * 1394 * The function will map a writable host page for these two cases: 1395 * 1): @write_fault = true 1396 * 2): @write_fault = false && @writable, @writable will tell the caller 1397 * whether the mapping is writable. 1398 */ 1399 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1400 bool write_fault, bool *writable) 1401 { 1402 struct vm_area_struct *vma; 1403 pfn_t pfn = 0; 1404 int npages; 1405 1406 /* we can do it either atomically or asynchronously, not both */ 1407 BUG_ON(atomic && async); 1408 1409 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1410 return pfn; 1411 1412 if (atomic) 1413 return KVM_PFN_ERR_FAULT; 1414 1415 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1416 if (npages == 1) 1417 return pfn; 1418 1419 down_read(¤t->mm->mmap_sem); 1420 if (npages == -EHWPOISON || 1421 (!async && check_user_page_hwpoison(addr))) { 1422 pfn = KVM_PFN_ERR_HWPOISON; 1423 goto exit; 1424 } 1425 1426 vma = find_vma_intersection(current->mm, addr, addr + 1); 1427 1428 if (vma == NULL) 1429 pfn = KVM_PFN_ERR_FAULT; 1430 else if ((vma->vm_flags & VM_PFNMAP)) { 1431 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1432 vma->vm_pgoff; 1433 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1434 } else { 1435 if (async && vma_is_valid(vma, write_fault)) 1436 *async = true; 1437 pfn = KVM_PFN_ERR_FAULT; 1438 } 1439 exit: 1440 up_read(¤t->mm->mmap_sem); 1441 return pfn; 1442 } 1443 1444 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1445 bool *async, bool write_fault, bool *writable) 1446 { 1447 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1448 1449 if (addr == KVM_HVA_ERR_RO_BAD) 1450 return KVM_PFN_ERR_RO_FAULT; 1451 1452 if (kvm_is_error_hva(addr)) 1453 return KVM_PFN_NOSLOT; 1454 1455 /* Do not map writable pfn in the readonly memslot. */ 1456 if (writable && memslot_is_readonly(slot)) { 1457 *writable = false; 1458 writable = NULL; 1459 } 1460 1461 return hva_to_pfn(addr, atomic, async, write_fault, 1462 writable); 1463 } 1464 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1465 1466 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1467 bool *writable) 1468 { 1469 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1470 write_fault, writable); 1471 } 1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1473 1474 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1475 { 1476 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1477 } 1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1479 1480 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1481 { 1482 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1483 } 1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1485 1486 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1487 { 1488 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1489 } 1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1491 1492 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1493 { 1494 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1495 } 1496 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1497 1498 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1499 { 1500 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1501 } 1502 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1503 1504 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1505 { 1506 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1507 } 1508 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1509 1510 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1511 struct page **pages, int nr_pages) 1512 { 1513 unsigned long addr; 1514 gfn_t entry; 1515 1516 addr = gfn_to_hva_many(slot, gfn, &entry); 1517 if (kvm_is_error_hva(addr)) 1518 return -1; 1519 1520 if (entry < nr_pages) 1521 return 0; 1522 1523 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1524 } 1525 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1526 1527 static struct page *kvm_pfn_to_page(pfn_t pfn) 1528 { 1529 if (is_error_noslot_pfn(pfn)) 1530 return KVM_ERR_PTR_BAD_PAGE; 1531 1532 if (kvm_is_reserved_pfn(pfn)) { 1533 WARN_ON(1); 1534 return KVM_ERR_PTR_BAD_PAGE; 1535 } 1536 1537 return pfn_to_page(pfn); 1538 } 1539 1540 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1541 { 1542 pfn_t pfn; 1543 1544 pfn = gfn_to_pfn(kvm, gfn); 1545 1546 return kvm_pfn_to_page(pfn); 1547 } 1548 EXPORT_SYMBOL_GPL(gfn_to_page); 1549 1550 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1551 { 1552 pfn_t pfn; 1553 1554 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1555 1556 return kvm_pfn_to_page(pfn); 1557 } 1558 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1559 1560 void kvm_release_page_clean(struct page *page) 1561 { 1562 WARN_ON(is_error_page(page)); 1563 1564 kvm_release_pfn_clean(page_to_pfn(page)); 1565 } 1566 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1567 1568 void kvm_release_pfn_clean(pfn_t pfn) 1569 { 1570 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1571 put_page(pfn_to_page(pfn)); 1572 } 1573 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1574 1575 void kvm_release_page_dirty(struct page *page) 1576 { 1577 WARN_ON(is_error_page(page)); 1578 1579 kvm_release_pfn_dirty(page_to_pfn(page)); 1580 } 1581 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1582 1583 static void kvm_release_pfn_dirty(pfn_t pfn) 1584 { 1585 kvm_set_pfn_dirty(pfn); 1586 kvm_release_pfn_clean(pfn); 1587 } 1588 1589 void kvm_set_pfn_dirty(pfn_t pfn) 1590 { 1591 if (!kvm_is_reserved_pfn(pfn)) { 1592 struct page *page = pfn_to_page(pfn); 1593 1594 if (!PageReserved(page)) 1595 SetPageDirty(page); 1596 } 1597 } 1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1599 1600 void kvm_set_pfn_accessed(pfn_t pfn) 1601 { 1602 if (!kvm_is_reserved_pfn(pfn)) 1603 mark_page_accessed(pfn_to_page(pfn)); 1604 } 1605 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1606 1607 void kvm_get_pfn(pfn_t pfn) 1608 { 1609 if (!kvm_is_reserved_pfn(pfn)) 1610 get_page(pfn_to_page(pfn)); 1611 } 1612 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1613 1614 static int next_segment(unsigned long len, int offset) 1615 { 1616 if (len > PAGE_SIZE - offset) 1617 return PAGE_SIZE - offset; 1618 else 1619 return len; 1620 } 1621 1622 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1623 void *data, int offset, int len) 1624 { 1625 int r; 1626 unsigned long addr; 1627 1628 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1629 if (kvm_is_error_hva(addr)) 1630 return -EFAULT; 1631 r = __copy_from_user(data, (void __user *)addr + offset, len); 1632 if (r) 1633 return -EFAULT; 1634 return 0; 1635 } 1636 1637 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1638 int len) 1639 { 1640 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1641 1642 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1643 } 1644 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1645 1646 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1647 int offset, int len) 1648 { 1649 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1650 1651 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1652 } 1653 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1654 1655 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1656 { 1657 gfn_t gfn = gpa >> PAGE_SHIFT; 1658 int seg; 1659 int offset = offset_in_page(gpa); 1660 int ret; 1661 1662 while ((seg = next_segment(len, offset)) != 0) { 1663 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1664 if (ret < 0) 1665 return ret; 1666 offset = 0; 1667 len -= seg; 1668 data += seg; 1669 ++gfn; 1670 } 1671 return 0; 1672 } 1673 EXPORT_SYMBOL_GPL(kvm_read_guest); 1674 1675 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1676 { 1677 gfn_t gfn = gpa >> PAGE_SHIFT; 1678 int seg; 1679 int offset = offset_in_page(gpa); 1680 int ret; 1681 1682 while ((seg = next_segment(len, offset)) != 0) { 1683 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1684 if (ret < 0) 1685 return ret; 1686 offset = 0; 1687 len -= seg; 1688 data += seg; 1689 ++gfn; 1690 } 1691 return 0; 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1694 1695 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1696 void *data, int offset, unsigned long len) 1697 { 1698 int r; 1699 unsigned long addr; 1700 1701 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1702 if (kvm_is_error_hva(addr)) 1703 return -EFAULT; 1704 pagefault_disable(); 1705 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1706 pagefault_enable(); 1707 if (r) 1708 return -EFAULT; 1709 return 0; 1710 } 1711 1712 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1713 unsigned long len) 1714 { 1715 gfn_t gfn = gpa >> PAGE_SHIFT; 1716 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1717 int offset = offset_in_page(gpa); 1718 1719 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1720 } 1721 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1722 1723 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1724 void *data, unsigned long len) 1725 { 1726 gfn_t gfn = gpa >> PAGE_SHIFT; 1727 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1728 int offset = offset_in_page(gpa); 1729 1730 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1731 } 1732 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1733 1734 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1735 const void *data, int offset, int len) 1736 { 1737 int r; 1738 unsigned long addr; 1739 1740 addr = gfn_to_hva_memslot(memslot, gfn); 1741 if (kvm_is_error_hva(addr)) 1742 return -EFAULT; 1743 r = __copy_to_user((void __user *)addr + offset, data, len); 1744 if (r) 1745 return -EFAULT; 1746 mark_page_dirty_in_slot(memslot, gfn); 1747 return 0; 1748 } 1749 1750 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1751 const void *data, int offset, int len) 1752 { 1753 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1754 1755 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1756 } 1757 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1758 1759 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1760 const void *data, int offset, int len) 1761 { 1762 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1763 1764 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1767 1768 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1769 unsigned long len) 1770 { 1771 gfn_t gfn = gpa >> PAGE_SHIFT; 1772 int seg; 1773 int offset = offset_in_page(gpa); 1774 int ret; 1775 1776 while ((seg = next_segment(len, offset)) != 0) { 1777 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1778 if (ret < 0) 1779 return ret; 1780 offset = 0; 1781 len -= seg; 1782 data += seg; 1783 ++gfn; 1784 } 1785 return 0; 1786 } 1787 EXPORT_SYMBOL_GPL(kvm_write_guest); 1788 1789 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1790 unsigned long len) 1791 { 1792 gfn_t gfn = gpa >> PAGE_SHIFT; 1793 int seg; 1794 int offset = offset_in_page(gpa); 1795 int ret; 1796 1797 while ((seg = next_segment(len, offset)) != 0) { 1798 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1799 if (ret < 0) 1800 return ret; 1801 offset = 0; 1802 len -= seg; 1803 data += seg; 1804 ++gfn; 1805 } 1806 return 0; 1807 } 1808 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1809 1810 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1811 gpa_t gpa, unsigned long len) 1812 { 1813 struct kvm_memslots *slots = kvm_memslots(kvm); 1814 int offset = offset_in_page(gpa); 1815 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1816 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1817 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1818 gfn_t nr_pages_avail; 1819 1820 ghc->gpa = gpa; 1821 ghc->generation = slots->generation; 1822 ghc->len = len; 1823 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1824 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1825 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1826 ghc->hva += offset; 1827 } else { 1828 /* 1829 * If the requested region crosses two memslots, we still 1830 * verify that the entire region is valid here. 1831 */ 1832 while (start_gfn <= end_gfn) { 1833 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1834 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1835 &nr_pages_avail); 1836 if (kvm_is_error_hva(ghc->hva)) 1837 return -EFAULT; 1838 start_gfn += nr_pages_avail; 1839 } 1840 /* Use the slow path for cross page reads and writes. */ 1841 ghc->memslot = NULL; 1842 } 1843 return 0; 1844 } 1845 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1846 1847 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1848 void *data, unsigned long len) 1849 { 1850 struct kvm_memslots *slots = kvm_memslots(kvm); 1851 int r; 1852 1853 BUG_ON(len > ghc->len); 1854 1855 if (slots->generation != ghc->generation) 1856 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1857 1858 if (unlikely(!ghc->memslot)) 1859 return kvm_write_guest(kvm, ghc->gpa, data, len); 1860 1861 if (kvm_is_error_hva(ghc->hva)) 1862 return -EFAULT; 1863 1864 r = __copy_to_user((void __user *)ghc->hva, data, len); 1865 if (r) 1866 return -EFAULT; 1867 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1868 1869 return 0; 1870 } 1871 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1872 1873 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1874 void *data, unsigned long len) 1875 { 1876 struct kvm_memslots *slots = kvm_memslots(kvm); 1877 int r; 1878 1879 BUG_ON(len > ghc->len); 1880 1881 if (slots->generation != ghc->generation) 1882 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1883 1884 if (unlikely(!ghc->memslot)) 1885 return kvm_read_guest(kvm, ghc->gpa, data, len); 1886 1887 if (kvm_is_error_hva(ghc->hva)) 1888 return -EFAULT; 1889 1890 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1891 if (r) 1892 return -EFAULT; 1893 1894 return 0; 1895 } 1896 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1897 1898 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1899 { 1900 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1901 1902 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1903 } 1904 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1905 1906 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1907 { 1908 gfn_t gfn = gpa >> PAGE_SHIFT; 1909 int seg; 1910 int offset = offset_in_page(gpa); 1911 int ret; 1912 1913 while ((seg = next_segment(len, offset)) != 0) { 1914 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1915 if (ret < 0) 1916 return ret; 1917 offset = 0; 1918 len -= seg; 1919 ++gfn; 1920 } 1921 return 0; 1922 } 1923 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1924 1925 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 1926 gfn_t gfn) 1927 { 1928 if (memslot && memslot->dirty_bitmap) { 1929 unsigned long rel_gfn = gfn - memslot->base_gfn; 1930 1931 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1932 } 1933 } 1934 1935 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1936 { 1937 struct kvm_memory_slot *memslot; 1938 1939 memslot = gfn_to_memslot(kvm, gfn); 1940 mark_page_dirty_in_slot(memslot, gfn); 1941 } 1942 EXPORT_SYMBOL_GPL(mark_page_dirty); 1943 1944 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 1945 { 1946 struct kvm_memory_slot *memslot; 1947 1948 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1949 mark_page_dirty_in_slot(memslot, gfn); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 1952 1953 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 1954 { 1955 int old, val; 1956 1957 old = val = vcpu->halt_poll_ns; 1958 /* 10us base */ 1959 if (val == 0 && halt_poll_ns_grow) 1960 val = 10000; 1961 else 1962 val *= halt_poll_ns_grow; 1963 1964 vcpu->halt_poll_ns = val; 1965 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 1966 } 1967 1968 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 1969 { 1970 int old, val; 1971 1972 old = val = vcpu->halt_poll_ns; 1973 if (halt_poll_ns_shrink == 0) 1974 val = 0; 1975 else 1976 val /= halt_poll_ns_shrink; 1977 1978 vcpu->halt_poll_ns = val; 1979 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 1980 } 1981 1982 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 1983 { 1984 if (kvm_arch_vcpu_runnable(vcpu)) { 1985 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1986 return -EINTR; 1987 } 1988 if (kvm_cpu_has_pending_timer(vcpu)) 1989 return -EINTR; 1990 if (signal_pending(current)) 1991 return -EINTR; 1992 1993 return 0; 1994 } 1995 1996 /* 1997 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1998 */ 1999 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2000 { 2001 ktime_t start, cur; 2002 DEFINE_WAIT(wait); 2003 bool waited = false; 2004 u64 block_ns; 2005 2006 start = cur = ktime_get(); 2007 if (vcpu->halt_poll_ns) { 2008 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2009 2010 ++vcpu->stat.halt_attempted_poll; 2011 do { 2012 /* 2013 * This sets KVM_REQ_UNHALT if an interrupt 2014 * arrives. 2015 */ 2016 if (kvm_vcpu_check_block(vcpu) < 0) { 2017 ++vcpu->stat.halt_successful_poll; 2018 goto out; 2019 } 2020 cur = ktime_get(); 2021 } while (single_task_running() && ktime_before(cur, stop)); 2022 } 2023 2024 kvm_arch_vcpu_blocking(vcpu); 2025 2026 for (;;) { 2027 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2028 2029 if (kvm_vcpu_check_block(vcpu) < 0) 2030 break; 2031 2032 waited = true; 2033 schedule(); 2034 } 2035 2036 finish_wait(&vcpu->wq, &wait); 2037 cur = ktime_get(); 2038 2039 kvm_arch_vcpu_unblocking(vcpu); 2040 out: 2041 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2042 2043 if (halt_poll_ns) { 2044 if (block_ns <= vcpu->halt_poll_ns) 2045 ; 2046 /* we had a long block, shrink polling */ 2047 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2048 shrink_halt_poll_ns(vcpu); 2049 /* we had a short halt and our poll time is too small */ 2050 else if (vcpu->halt_poll_ns < halt_poll_ns && 2051 block_ns < halt_poll_ns) 2052 grow_halt_poll_ns(vcpu); 2053 } else 2054 vcpu->halt_poll_ns = 0; 2055 2056 trace_kvm_vcpu_wakeup(block_ns, waited); 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2059 2060 #ifndef CONFIG_S390 2061 /* 2062 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2063 */ 2064 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2065 { 2066 int me; 2067 int cpu = vcpu->cpu; 2068 wait_queue_head_t *wqp; 2069 2070 wqp = kvm_arch_vcpu_wq(vcpu); 2071 if (waitqueue_active(wqp)) { 2072 wake_up_interruptible(wqp); 2073 ++vcpu->stat.halt_wakeup; 2074 } 2075 2076 me = get_cpu(); 2077 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2078 if (kvm_arch_vcpu_should_kick(vcpu)) 2079 smp_send_reschedule(cpu); 2080 put_cpu(); 2081 } 2082 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2083 #endif /* !CONFIG_S390 */ 2084 2085 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2086 { 2087 struct pid *pid; 2088 struct task_struct *task = NULL; 2089 int ret = 0; 2090 2091 rcu_read_lock(); 2092 pid = rcu_dereference(target->pid); 2093 if (pid) 2094 task = get_pid_task(pid, PIDTYPE_PID); 2095 rcu_read_unlock(); 2096 if (!task) 2097 return ret; 2098 ret = yield_to(task, 1); 2099 put_task_struct(task); 2100 2101 return ret; 2102 } 2103 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2104 2105 /* 2106 * Helper that checks whether a VCPU is eligible for directed yield. 2107 * Most eligible candidate to yield is decided by following heuristics: 2108 * 2109 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2110 * (preempted lock holder), indicated by @in_spin_loop. 2111 * Set at the beiginning and cleared at the end of interception/PLE handler. 2112 * 2113 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2114 * chance last time (mostly it has become eligible now since we have probably 2115 * yielded to lockholder in last iteration. This is done by toggling 2116 * @dy_eligible each time a VCPU checked for eligibility.) 2117 * 2118 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2119 * to preempted lock-holder could result in wrong VCPU selection and CPU 2120 * burning. Giving priority for a potential lock-holder increases lock 2121 * progress. 2122 * 2123 * Since algorithm is based on heuristics, accessing another VCPU data without 2124 * locking does not harm. It may result in trying to yield to same VCPU, fail 2125 * and continue with next VCPU and so on. 2126 */ 2127 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2128 { 2129 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2130 bool eligible; 2131 2132 eligible = !vcpu->spin_loop.in_spin_loop || 2133 vcpu->spin_loop.dy_eligible; 2134 2135 if (vcpu->spin_loop.in_spin_loop) 2136 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2137 2138 return eligible; 2139 #else 2140 return true; 2141 #endif 2142 } 2143 2144 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2145 { 2146 struct kvm *kvm = me->kvm; 2147 struct kvm_vcpu *vcpu; 2148 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2149 int yielded = 0; 2150 int try = 3; 2151 int pass; 2152 int i; 2153 2154 kvm_vcpu_set_in_spin_loop(me, true); 2155 /* 2156 * We boost the priority of a VCPU that is runnable but not 2157 * currently running, because it got preempted by something 2158 * else and called schedule in __vcpu_run. Hopefully that 2159 * VCPU is holding the lock that we need and will release it. 2160 * We approximate round-robin by starting at the last boosted VCPU. 2161 */ 2162 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2163 kvm_for_each_vcpu(i, vcpu, kvm) { 2164 if (!pass && i <= last_boosted_vcpu) { 2165 i = last_boosted_vcpu; 2166 continue; 2167 } else if (pass && i > last_boosted_vcpu) 2168 break; 2169 if (!ACCESS_ONCE(vcpu->preempted)) 2170 continue; 2171 if (vcpu == me) 2172 continue; 2173 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2174 continue; 2175 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2176 continue; 2177 2178 yielded = kvm_vcpu_yield_to(vcpu); 2179 if (yielded > 0) { 2180 kvm->last_boosted_vcpu = i; 2181 break; 2182 } else if (yielded < 0) { 2183 try--; 2184 if (!try) 2185 break; 2186 } 2187 } 2188 } 2189 kvm_vcpu_set_in_spin_loop(me, false); 2190 2191 /* Ensure vcpu is not eligible during next spinloop */ 2192 kvm_vcpu_set_dy_eligible(me, false); 2193 } 2194 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2195 2196 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2197 { 2198 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2199 struct page *page; 2200 2201 if (vmf->pgoff == 0) 2202 page = virt_to_page(vcpu->run); 2203 #ifdef CONFIG_X86 2204 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2205 page = virt_to_page(vcpu->arch.pio_data); 2206 #endif 2207 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2208 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2209 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2210 #endif 2211 else 2212 return kvm_arch_vcpu_fault(vcpu, vmf); 2213 get_page(page); 2214 vmf->page = page; 2215 return 0; 2216 } 2217 2218 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2219 .fault = kvm_vcpu_fault, 2220 }; 2221 2222 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2223 { 2224 vma->vm_ops = &kvm_vcpu_vm_ops; 2225 return 0; 2226 } 2227 2228 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2229 { 2230 struct kvm_vcpu *vcpu = filp->private_data; 2231 2232 kvm_put_kvm(vcpu->kvm); 2233 return 0; 2234 } 2235 2236 static struct file_operations kvm_vcpu_fops = { 2237 .release = kvm_vcpu_release, 2238 .unlocked_ioctl = kvm_vcpu_ioctl, 2239 #ifdef CONFIG_KVM_COMPAT 2240 .compat_ioctl = kvm_vcpu_compat_ioctl, 2241 #endif 2242 .mmap = kvm_vcpu_mmap, 2243 .llseek = noop_llseek, 2244 }; 2245 2246 /* 2247 * Allocates an inode for the vcpu. 2248 */ 2249 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2250 { 2251 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2252 } 2253 2254 /* 2255 * Creates some virtual cpus. Good luck creating more than one. 2256 */ 2257 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2258 { 2259 int r; 2260 struct kvm_vcpu *vcpu, *v; 2261 2262 if (id >= KVM_MAX_VCPUS) 2263 return -EINVAL; 2264 2265 vcpu = kvm_arch_vcpu_create(kvm, id); 2266 if (IS_ERR(vcpu)) 2267 return PTR_ERR(vcpu); 2268 2269 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2270 2271 r = kvm_arch_vcpu_setup(vcpu); 2272 if (r) 2273 goto vcpu_destroy; 2274 2275 mutex_lock(&kvm->lock); 2276 if (!kvm_vcpu_compatible(vcpu)) { 2277 r = -EINVAL; 2278 goto unlock_vcpu_destroy; 2279 } 2280 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2281 r = -EINVAL; 2282 goto unlock_vcpu_destroy; 2283 } 2284 2285 kvm_for_each_vcpu(r, v, kvm) 2286 if (v->vcpu_id == id) { 2287 r = -EEXIST; 2288 goto unlock_vcpu_destroy; 2289 } 2290 2291 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2292 2293 /* Now it's all set up, let userspace reach it */ 2294 kvm_get_kvm(kvm); 2295 r = create_vcpu_fd(vcpu); 2296 if (r < 0) { 2297 kvm_put_kvm(kvm); 2298 goto unlock_vcpu_destroy; 2299 } 2300 2301 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2302 2303 /* 2304 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2305 * before kvm->online_vcpu's incremented value. 2306 */ 2307 smp_wmb(); 2308 atomic_inc(&kvm->online_vcpus); 2309 2310 mutex_unlock(&kvm->lock); 2311 kvm_arch_vcpu_postcreate(vcpu); 2312 return r; 2313 2314 unlock_vcpu_destroy: 2315 mutex_unlock(&kvm->lock); 2316 vcpu_destroy: 2317 kvm_arch_vcpu_destroy(vcpu); 2318 return r; 2319 } 2320 2321 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2322 { 2323 if (sigset) { 2324 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2325 vcpu->sigset_active = 1; 2326 vcpu->sigset = *sigset; 2327 } else 2328 vcpu->sigset_active = 0; 2329 return 0; 2330 } 2331 2332 static long kvm_vcpu_ioctl(struct file *filp, 2333 unsigned int ioctl, unsigned long arg) 2334 { 2335 struct kvm_vcpu *vcpu = filp->private_data; 2336 void __user *argp = (void __user *)arg; 2337 int r; 2338 struct kvm_fpu *fpu = NULL; 2339 struct kvm_sregs *kvm_sregs = NULL; 2340 2341 if (vcpu->kvm->mm != current->mm) 2342 return -EIO; 2343 2344 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2345 return -EINVAL; 2346 2347 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2348 /* 2349 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2350 * so vcpu_load() would break it. 2351 */ 2352 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2353 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2354 #endif 2355 2356 2357 r = vcpu_load(vcpu); 2358 if (r) 2359 return r; 2360 switch (ioctl) { 2361 case KVM_RUN: 2362 r = -EINVAL; 2363 if (arg) 2364 goto out; 2365 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2366 /* The thread running this VCPU changed. */ 2367 struct pid *oldpid = vcpu->pid; 2368 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2369 2370 rcu_assign_pointer(vcpu->pid, newpid); 2371 if (oldpid) 2372 synchronize_rcu(); 2373 put_pid(oldpid); 2374 } 2375 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2376 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2377 break; 2378 case KVM_GET_REGS: { 2379 struct kvm_regs *kvm_regs; 2380 2381 r = -ENOMEM; 2382 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2383 if (!kvm_regs) 2384 goto out; 2385 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2386 if (r) 2387 goto out_free1; 2388 r = -EFAULT; 2389 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2390 goto out_free1; 2391 r = 0; 2392 out_free1: 2393 kfree(kvm_regs); 2394 break; 2395 } 2396 case KVM_SET_REGS: { 2397 struct kvm_regs *kvm_regs; 2398 2399 r = -ENOMEM; 2400 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2401 if (IS_ERR(kvm_regs)) { 2402 r = PTR_ERR(kvm_regs); 2403 goto out; 2404 } 2405 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2406 kfree(kvm_regs); 2407 break; 2408 } 2409 case KVM_GET_SREGS: { 2410 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2411 r = -ENOMEM; 2412 if (!kvm_sregs) 2413 goto out; 2414 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2415 if (r) 2416 goto out; 2417 r = -EFAULT; 2418 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2419 goto out; 2420 r = 0; 2421 break; 2422 } 2423 case KVM_SET_SREGS: { 2424 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2425 if (IS_ERR(kvm_sregs)) { 2426 r = PTR_ERR(kvm_sregs); 2427 kvm_sregs = NULL; 2428 goto out; 2429 } 2430 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2431 break; 2432 } 2433 case KVM_GET_MP_STATE: { 2434 struct kvm_mp_state mp_state; 2435 2436 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2437 if (r) 2438 goto out; 2439 r = -EFAULT; 2440 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2441 goto out; 2442 r = 0; 2443 break; 2444 } 2445 case KVM_SET_MP_STATE: { 2446 struct kvm_mp_state mp_state; 2447 2448 r = -EFAULT; 2449 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2450 goto out; 2451 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2452 break; 2453 } 2454 case KVM_TRANSLATE: { 2455 struct kvm_translation tr; 2456 2457 r = -EFAULT; 2458 if (copy_from_user(&tr, argp, sizeof(tr))) 2459 goto out; 2460 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2461 if (r) 2462 goto out; 2463 r = -EFAULT; 2464 if (copy_to_user(argp, &tr, sizeof(tr))) 2465 goto out; 2466 r = 0; 2467 break; 2468 } 2469 case KVM_SET_GUEST_DEBUG: { 2470 struct kvm_guest_debug dbg; 2471 2472 r = -EFAULT; 2473 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2474 goto out; 2475 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2476 break; 2477 } 2478 case KVM_SET_SIGNAL_MASK: { 2479 struct kvm_signal_mask __user *sigmask_arg = argp; 2480 struct kvm_signal_mask kvm_sigmask; 2481 sigset_t sigset, *p; 2482 2483 p = NULL; 2484 if (argp) { 2485 r = -EFAULT; 2486 if (copy_from_user(&kvm_sigmask, argp, 2487 sizeof(kvm_sigmask))) 2488 goto out; 2489 r = -EINVAL; 2490 if (kvm_sigmask.len != sizeof(sigset)) 2491 goto out; 2492 r = -EFAULT; 2493 if (copy_from_user(&sigset, sigmask_arg->sigset, 2494 sizeof(sigset))) 2495 goto out; 2496 p = &sigset; 2497 } 2498 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2499 break; 2500 } 2501 case KVM_GET_FPU: { 2502 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2503 r = -ENOMEM; 2504 if (!fpu) 2505 goto out; 2506 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2507 if (r) 2508 goto out; 2509 r = -EFAULT; 2510 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2511 goto out; 2512 r = 0; 2513 break; 2514 } 2515 case KVM_SET_FPU: { 2516 fpu = memdup_user(argp, sizeof(*fpu)); 2517 if (IS_ERR(fpu)) { 2518 r = PTR_ERR(fpu); 2519 fpu = NULL; 2520 goto out; 2521 } 2522 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2523 break; 2524 } 2525 default: 2526 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2527 } 2528 out: 2529 vcpu_put(vcpu); 2530 kfree(fpu); 2531 kfree(kvm_sregs); 2532 return r; 2533 } 2534 2535 #ifdef CONFIG_KVM_COMPAT 2536 static long kvm_vcpu_compat_ioctl(struct file *filp, 2537 unsigned int ioctl, unsigned long arg) 2538 { 2539 struct kvm_vcpu *vcpu = filp->private_data; 2540 void __user *argp = compat_ptr(arg); 2541 int r; 2542 2543 if (vcpu->kvm->mm != current->mm) 2544 return -EIO; 2545 2546 switch (ioctl) { 2547 case KVM_SET_SIGNAL_MASK: { 2548 struct kvm_signal_mask __user *sigmask_arg = argp; 2549 struct kvm_signal_mask kvm_sigmask; 2550 compat_sigset_t csigset; 2551 sigset_t sigset; 2552 2553 if (argp) { 2554 r = -EFAULT; 2555 if (copy_from_user(&kvm_sigmask, argp, 2556 sizeof(kvm_sigmask))) 2557 goto out; 2558 r = -EINVAL; 2559 if (kvm_sigmask.len != sizeof(csigset)) 2560 goto out; 2561 r = -EFAULT; 2562 if (copy_from_user(&csigset, sigmask_arg->sigset, 2563 sizeof(csigset))) 2564 goto out; 2565 sigset_from_compat(&sigset, &csigset); 2566 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2567 } else 2568 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2569 break; 2570 } 2571 default: 2572 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2573 } 2574 2575 out: 2576 return r; 2577 } 2578 #endif 2579 2580 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2581 int (*accessor)(struct kvm_device *dev, 2582 struct kvm_device_attr *attr), 2583 unsigned long arg) 2584 { 2585 struct kvm_device_attr attr; 2586 2587 if (!accessor) 2588 return -EPERM; 2589 2590 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2591 return -EFAULT; 2592 2593 return accessor(dev, &attr); 2594 } 2595 2596 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2597 unsigned long arg) 2598 { 2599 struct kvm_device *dev = filp->private_data; 2600 2601 switch (ioctl) { 2602 case KVM_SET_DEVICE_ATTR: 2603 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2604 case KVM_GET_DEVICE_ATTR: 2605 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2606 case KVM_HAS_DEVICE_ATTR: 2607 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2608 default: 2609 if (dev->ops->ioctl) 2610 return dev->ops->ioctl(dev, ioctl, arg); 2611 2612 return -ENOTTY; 2613 } 2614 } 2615 2616 static int kvm_device_release(struct inode *inode, struct file *filp) 2617 { 2618 struct kvm_device *dev = filp->private_data; 2619 struct kvm *kvm = dev->kvm; 2620 2621 kvm_put_kvm(kvm); 2622 return 0; 2623 } 2624 2625 static const struct file_operations kvm_device_fops = { 2626 .unlocked_ioctl = kvm_device_ioctl, 2627 #ifdef CONFIG_KVM_COMPAT 2628 .compat_ioctl = kvm_device_ioctl, 2629 #endif 2630 .release = kvm_device_release, 2631 }; 2632 2633 struct kvm_device *kvm_device_from_filp(struct file *filp) 2634 { 2635 if (filp->f_op != &kvm_device_fops) 2636 return NULL; 2637 2638 return filp->private_data; 2639 } 2640 2641 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2642 #ifdef CONFIG_KVM_MPIC 2643 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2644 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2645 #endif 2646 2647 #ifdef CONFIG_KVM_XICS 2648 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2649 #endif 2650 }; 2651 2652 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2653 { 2654 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2655 return -ENOSPC; 2656 2657 if (kvm_device_ops_table[type] != NULL) 2658 return -EEXIST; 2659 2660 kvm_device_ops_table[type] = ops; 2661 return 0; 2662 } 2663 2664 void kvm_unregister_device_ops(u32 type) 2665 { 2666 if (kvm_device_ops_table[type] != NULL) 2667 kvm_device_ops_table[type] = NULL; 2668 } 2669 2670 static int kvm_ioctl_create_device(struct kvm *kvm, 2671 struct kvm_create_device *cd) 2672 { 2673 struct kvm_device_ops *ops = NULL; 2674 struct kvm_device *dev; 2675 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2676 int ret; 2677 2678 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2679 return -ENODEV; 2680 2681 ops = kvm_device_ops_table[cd->type]; 2682 if (ops == NULL) 2683 return -ENODEV; 2684 2685 if (test) 2686 return 0; 2687 2688 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2689 if (!dev) 2690 return -ENOMEM; 2691 2692 dev->ops = ops; 2693 dev->kvm = kvm; 2694 2695 ret = ops->create(dev, cd->type); 2696 if (ret < 0) { 2697 kfree(dev); 2698 return ret; 2699 } 2700 2701 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2702 if (ret < 0) { 2703 ops->destroy(dev); 2704 return ret; 2705 } 2706 2707 list_add(&dev->vm_node, &kvm->devices); 2708 kvm_get_kvm(kvm); 2709 cd->fd = ret; 2710 return 0; 2711 } 2712 2713 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2714 { 2715 switch (arg) { 2716 case KVM_CAP_USER_MEMORY: 2717 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2718 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2719 case KVM_CAP_INTERNAL_ERROR_DATA: 2720 #ifdef CONFIG_HAVE_KVM_MSI 2721 case KVM_CAP_SIGNAL_MSI: 2722 #endif 2723 #ifdef CONFIG_HAVE_KVM_IRQFD 2724 case KVM_CAP_IRQFD: 2725 case KVM_CAP_IRQFD_RESAMPLE: 2726 #endif 2727 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2728 case KVM_CAP_CHECK_EXTENSION_VM: 2729 return 1; 2730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2731 case KVM_CAP_IRQ_ROUTING: 2732 return KVM_MAX_IRQ_ROUTES; 2733 #endif 2734 #if KVM_ADDRESS_SPACE_NUM > 1 2735 case KVM_CAP_MULTI_ADDRESS_SPACE: 2736 return KVM_ADDRESS_SPACE_NUM; 2737 #endif 2738 default: 2739 break; 2740 } 2741 return kvm_vm_ioctl_check_extension(kvm, arg); 2742 } 2743 2744 static long kvm_vm_ioctl(struct file *filp, 2745 unsigned int ioctl, unsigned long arg) 2746 { 2747 struct kvm *kvm = filp->private_data; 2748 void __user *argp = (void __user *)arg; 2749 int r; 2750 2751 if (kvm->mm != current->mm) 2752 return -EIO; 2753 switch (ioctl) { 2754 case KVM_CREATE_VCPU: 2755 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2756 break; 2757 case KVM_SET_USER_MEMORY_REGION: { 2758 struct kvm_userspace_memory_region kvm_userspace_mem; 2759 2760 r = -EFAULT; 2761 if (copy_from_user(&kvm_userspace_mem, argp, 2762 sizeof(kvm_userspace_mem))) 2763 goto out; 2764 2765 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2766 break; 2767 } 2768 case KVM_GET_DIRTY_LOG: { 2769 struct kvm_dirty_log log; 2770 2771 r = -EFAULT; 2772 if (copy_from_user(&log, argp, sizeof(log))) 2773 goto out; 2774 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2775 break; 2776 } 2777 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2778 case KVM_REGISTER_COALESCED_MMIO: { 2779 struct kvm_coalesced_mmio_zone zone; 2780 2781 r = -EFAULT; 2782 if (copy_from_user(&zone, argp, sizeof(zone))) 2783 goto out; 2784 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2785 break; 2786 } 2787 case KVM_UNREGISTER_COALESCED_MMIO: { 2788 struct kvm_coalesced_mmio_zone zone; 2789 2790 r = -EFAULT; 2791 if (copy_from_user(&zone, argp, sizeof(zone))) 2792 goto out; 2793 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2794 break; 2795 } 2796 #endif 2797 case KVM_IRQFD: { 2798 struct kvm_irqfd data; 2799 2800 r = -EFAULT; 2801 if (copy_from_user(&data, argp, sizeof(data))) 2802 goto out; 2803 r = kvm_irqfd(kvm, &data); 2804 break; 2805 } 2806 case KVM_IOEVENTFD: { 2807 struct kvm_ioeventfd data; 2808 2809 r = -EFAULT; 2810 if (copy_from_user(&data, argp, sizeof(data))) 2811 goto out; 2812 r = kvm_ioeventfd(kvm, &data); 2813 break; 2814 } 2815 #ifdef CONFIG_HAVE_KVM_MSI 2816 case KVM_SIGNAL_MSI: { 2817 struct kvm_msi msi; 2818 2819 r = -EFAULT; 2820 if (copy_from_user(&msi, argp, sizeof(msi))) 2821 goto out; 2822 r = kvm_send_userspace_msi(kvm, &msi); 2823 break; 2824 } 2825 #endif 2826 #ifdef __KVM_HAVE_IRQ_LINE 2827 case KVM_IRQ_LINE_STATUS: 2828 case KVM_IRQ_LINE: { 2829 struct kvm_irq_level irq_event; 2830 2831 r = -EFAULT; 2832 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2833 goto out; 2834 2835 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2836 ioctl == KVM_IRQ_LINE_STATUS); 2837 if (r) 2838 goto out; 2839 2840 r = -EFAULT; 2841 if (ioctl == KVM_IRQ_LINE_STATUS) { 2842 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2843 goto out; 2844 } 2845 2846 r = 0; 2847 break; 2848 } 2849 #endif 2850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2851 case KVM_SET_GSI_ROUTING: { 2852 struct kvm_irq_routing routing; 2853 struct kvm_irq_routing __user *urouting; 2854 struct kvm_irq_routing_entry *entries; 2855 2856 r = -EFAULT; 2857 if (copy_from_user(&routing, argp, sizeof(routing))) 2858 goto out; 2859 r = -EINVAL; 2860 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2861 goto out; 2862 if (routing.flags) 2863 goto out; 2864 r = -ENOMEM; 2865 entries = vmalloc(routing.nr * sizeof(*entries)); 2866 if (!entries) 2867 goto out; 2868 r = -EFAULT; 2869 urouting = argp; 2870 if (copy_from_user(entries, urouting->entries, 2871 routing.nr * sizeof(*entries))) 2872 goto out_free_irq_routing; 2873 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2874 routing.flags); 2875 out_free_irq_routing: 2876 vfree(entries); 2877 break; 2878 } 2879 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2880 case KVM_CREATE_DEVICE: { 2881 struct kvm_create_device cd; 2882 2883 r = -EFAULT; 2884 if (copy_from_user(&cd, argp, sizeof(cd))) 2885 goto out; 2886 2887 r = kvm_ioctl_create_device(kvm, &cd); 2888 if (r) 2889 goto out; 2890 2891 r = -EFAULT; 2892 if (copy_to_user(argp, &cd, sizeof(cd))) 2893 goto out; 2894 2895 r = 0; 2896 break; 2897 } 2898 case KVM_CHECK_EXTENSION: 2899 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2900 break; 2901 default: 2902 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2903 } 2904 out: 2905 return r; 2906 } 2907 2908 #ifdef CONFIG_KVM_COMPAT 2909 struct compat_kvm_dirty_log { 2910 __u32 slot; 2911 __u32 padding1; 2912 union { 2913 compat_uptr_t dirty_bitmap; /* one bit per page */ 2914 __u64 padding2; 2915 }; 2916 }; 2917 2918 static long kvm_vm_compat_ioctl(struct file *filp, 2919 unsigned int ioctl, unsigned long arg) 2920 { 2921 struct kvm *kvm = filp->private_data; 2922 int r; 2923 2924 if (kvm->mm != current->mm) 2925 return -EIO; 2926 switch (ioctl) { 2927 case KVM_GET_DIRTY_LOG: { 2928 struct compat_kvm_dirty_log compat_log; 2929 struct kvm_dirty_log log; 2930 2931 r = -EFAULT; 2932 if (copy_from_user(&compat_log, (void __user *)arg, 2933 sizeof(compat_log))) 2934 goto out; 2935 log.slot = compat_log.slot; 2936 log.padding1 = compat_log.padding1; 2937 log.padding2 = compat_log.padding2; 2938 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2939 2940 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2941 break; 2942 } 2943 default: 2944 r = kvm_vm_ioctl(filp, ioctl, arg); 2945 } 2946 2947 out: 2948 return r; 2949 } 2950 #endif 2951 2952 static struct file_operations kvm_vm_fops = { 2953 .release = kvm_vm_release, 2954 .unlocked_ioctl = kvm_vm_ioctl, 2955 #ifdef CONFIG_KVM_COMPAT 2956 .compat_ioctl = kvm_vm_compat_ioctl, 2957 #endif 2958 .llseek = noop_llseek, 2959 }; 2960 2961 static int kvm_dev_ioctl_create_vm(unsigned long type) 2962 { 2963 int r; 2964 struct kvm *kvm; 2965 2966 kvm = kvm_create_vm(type); 2967 if (IS_ERR(kvm)) 2968 return PTR_ERR(kvm); 2969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2970 r = kvm_coalesced_mmio_init(kvm); 2971 if (r < 0) { 2972 kvm_put_kvm(kvm); 2973 return r; 2974 } 2975 #endif 2976 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2977 if (r < 0) 2978 kvm_put_kvm(kvm); 2979 2980 return r; 2981 } 2982 2983 static long kvm_dev_ioctl(struct file *filp, 2984 unsigned int ioctl, unsigned long arg) 2985 { 2986 long r = -EINVAL; 2987 2988 switch (ioctl) { 2989 case KVM_GET_API_VERSION: 2990 if (arg) 2991 goto out; 2992 r = KVM_API_VERSION; 2993 break; 2994 case KVM_CREATE_VM: 2995 r = kvm_dev_ioctl_create_vm(arg); 2996 break; 2997 case KVM_CHECK_EXTENSION: 2998 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2999 break; 3000 case KVM_GET_VCPU_MMAP_SIZE: 3001 if (arg) 3002 goto out; 3003 r = PAGE_SIZE; /* struct kvm_run */ 3004 #ifdef CONFIG_X86 3005 r += PAGE_SIZE; /* pio data page */ 3006 #endif 3007 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3008 r += PAGE_SIZE; /* coalesced mmio ring page */ 3009 #endif 3010 break; 3011 case KVM_TRACE_ENABLE: 3012 case KVM_TRACE_PAUSE: 3013 case KVM_TRACE_DISABLE: 3014 r = -EOPNOTSUPP; 3015 break; 3016 default: 3017 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3018 } 3019 out: 3020 return r; 3021 } 3022 3023 static struct file_operations kvm_chardev_ops = { 3024 .unlocked_ioctl = kvm_dev_ioctl, 3025 .compat_ioctl = kvm_dev_ioctl, 3026 .llseek = noop_llseek, 3027 }; 3028 3029 static struct miscdevice kvm_dev = { 3030 KVM_MINOR, 3031 "kvm", 3032 &kvm_chardev_ops, 3033 }; 3034 3035 static void hardware_enable_nolock(void *junk) 3036 { 3037 int cpu = raw_smp_processor_id(); 3038 int r; 3039 3040 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3041 return; 3042 3043 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3044 3045 r = kvm_arch_hardware_enable(); 3046 3047 if (r) { 3048 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3049 atomic_inc(&hardware_enable_failed); 3050 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3051 } 3052 } 3053 3054 static void hardware_enable(void) 3055 { 3056 raw_spin_lock(&kvm_count_lock); 3057 if (kvm_usage_count) 3058 hardware_enable_nolock(NULL); 3059 raw_spin_unlock(&kvm_count_lock); 3060 } 3061 3062 static void hardware_disable_nolock(void *junk) 3063 { 3064 int cpu = raw_smp_processor_id(); 3065 3066 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3067 return; 3068 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3069 kvm_arch_hardware_disable(); 3070 } 3071 3072 static void hardware_disable(void) 3073 { 3074 raw_spin_lock(&kvm_count_lock); 3075 if (kvm_usage_count) 3076 hardware_disable_nolock(NULL); 3077 raw_spin_unlock(&kvm_count_lock); 3078 } 3079 3080 static void hardware_disable_all_nolock(void) 3081 { 3082 BUG_ON(!kvm_usage_count); 3083 3084 kvm_usage_count--; 3085 if (!kvm_usage_count) 3086 on_each_cpu(hardware_disable_nolock, NULL, 1); 3087 } 3088 3089 static void hardware_disable_all(void) 3090 { 3091 raw_spin_lock(&kvm_count_lock); 3092 hardware_disable_all_nolock(); 3093 raw_spin_unlock(&kvm_count_lock); 3094 } 3095 3096 static int hardware_enable_all(void) 3097 { 3098 int r = 0; 3099 3100 raw_spin_lock(&kvm_count_lock); 3101 3102 kvm_usage_count++; 3103 if (kvm_usage_count == 1) { 3104 atomic_set(&hardware_enable_failed, 0); 3105 on_each_cpu(hardware_enable_nolock, NULL, 1); 3106 3107 if (atomic_read(&hardware_enable_failed)) { 3108 hardware_disable_all_nolock(); 3109 r = -EBUSY; 3110 } 3111 } 3112 3113 raw_spin_unlock(&kvm_count_lock); 3114 3115 return r; 3116 } 3117 3118 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 3119 void *v) 3120 { 3121 val &= ~CPU_TASKS_FROZEN; 3122 switch (val) { 3123 case CPU_DYING: 3124 hardware_disable(); 3125 break; 3126 case CPU_STARTING: 3127 hardware_enable(); 3128 break; 3129 } 3130 return NOTIFY_OK; 3131 } 3132 3133 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3134 void *v) 3135 { 3136 /* 3137 * Some (well, at least mine) BIOSes hang on reboot if 3138 * in vmx root mode. 3139 * 3140 * And Intel TXT required VMX off for all cpu when system shutdown. 3141 */ 3142 pr_info("kvm: exiting hardware virtualization\n"); 3143 kvm_rebooting = true; 3144 on_each_cpu(hardware_disable_nolock, NULL, 1); 3145 return NOTIFY_OK; 3146 } 3147 3148 static struct notifier_block kvm_reboot_notifier = { 3149 .notifier_call = kvm_reboot, 3150 .priority = 0, 3151 }; 3152 3153 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3154 { 3155 int i; 3156 3157 for (i = 0; i < bus->dev_count; i++) { 3158 struct kvm_io_device *pos = bus->range[i].dev; 3159 3160 kvm_iodevice_destructor(pos); 3161 } 3162 kfree(bus); 3163 } 3164 3165 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3166 const struct kvm_io_range *r2) 3167 { 3168 gpa_t addr1 = r1->addr; 3169 gpa_t addr2 = r2->addr; 3170 3171 if (addr1 < addr2) 3172 return -1; 3173 3174 /* If r2->len == 0, match the exact address. If r2->len != 0, 3175 * accept any overlapping write. Any order is acceptable for 3176 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3177 * we process all of them. 3178 */ 3179 if (r2->len) { 3180 addr1 += r1->len; 3181 addr2 += r2->len; 3182 } 3183 3184 if (addr1 > addr2) 3185 return 1; 3186 3187 return 0; 3188 } 3189 3190 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3191 { 3192 return kvm_io_bus_cmp(p1, p2); 3193 } 3194 3195 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3196 gpa_t addr, int len) 3197 { 3198 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3199 .addr = addr, 3200 .len = len, 3201 .dev = dev, 3202 }; 3203 3204 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3205 kvm_io_bus_sort_cmp, NULL); 3206 3207 return 0; 3208 } 3209 3210 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3211 gpa_t addr, int len) 3212 { 3213 struct kvm_io_range *range, key; 3214 int off; 3215 3216 key = (struct kvm_io_range) { 3217 .addr = addr, 3218 .len = len, 3219 }; 3220 3221 range = bsearch(&key, bus->range, bus->dev_count, 3222 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3223 if (range == NULL) 3224 return -ENOENT; 3225 3226 off = range - bus->range; 3227 3228 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3229 off--; 3230 3231 return off; 3232 } 3233 3234 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3235 struct kvm_io_range *range, const void *val) 3236 { 3237 int idx; 3238 3239 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3240 if (idx < 0) 3241 return -EOPNOTSUPP; 3242 3243 while (idx < bus->dev_count && 3244 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3245 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3246 range->len, val)) 3247 return idx; 3248 idx++; 3249 } 3250 3251 return -EOPNOTSUPP; 3252 } 3253 3254 /* kvm_io_bus_write - called under kvm->slots_lock */ 3255 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3256 int len, const void *val) 3257 { 3258 struct kvm_io_bus *bus; 3259 struct kvm_io_range range; 3260 int r; 3261 3262 range = (struct kvm_io_range) { 3263 .addr = addr, 3264 .len = len, 3265 }; 3266 3267 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3268 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3269 return r < 0 ? r : 0; 3270 } 3271 3272 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3273 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3274 gpa_t addr, int len, const void *val, long cookie) 3275 { 3276 struct kvm_io_bus *bus; 3277 struct kvm_io_range range; 3278 3279 range = (struct kvm_io_range) { 3280 .addr = addr, 3281 .len = len, 3282 }; 3283 3284 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3285 3286 /* First try the device referenced by cookie. */ 3287 if ((cookie >= 0) && (cookie < bus->dev_count) && 3288 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3289 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3290 val)) 3291 return cookie; 3292 3293 /* 3294 * cookie contained garbage; fall back to search and return the 3295 * correct cookie value. 3296 */ 3297 return __kvm_io_bus_write(vcpu, bus, &range, val); 3298 } 3299 3300 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3301 struct kvm_io_range *range, void *val) 3302 { 3303 int idx; 3304 3305 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3306 if (idx < 0) 3307 return -EOPNOTSUPP; 3308 3309 while (idx < bus->dev_count && 3310 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3311 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3312 range->len, val)) 3313 return idx; 3314 idx++; 3315 } 3316 3317 return -EOPNOTSUPP; 3318 } 3319 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3320 3321 /* kvm_io_bus_read - called under kvm->slots_lock */ 3322 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3323 int len, void *val) 3324 { 3325 struct kvm_io_bus *bus; 3326 struct kvm_io_range range; 3327 int r; 3328 3329 range = (struct kvm_io_range) { 3330 .addr = addr, 3331 .len = len, 3332 }; 3333 3334 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3335 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3336 return r < 0 ? r : 0; 3337 } 3338 3339 3340 /* Caller must hold slots_lock. */ 3341 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3342 int len, struct kvm_io_device *dev) 3343 { 3344 struct kvm_io_bus *new_bus, *bus; 3345 3346 bus = kvm->buses[bus_idx]; 3347 /* exclude ioeventfd which is limited by maximum fd */ 3348 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3349 return -ENOSPC; 3350 3351 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3352 sizeof(struct kvm_io_range)), GFP_KERNEL); 3353 if (!new_bus) 3354 return -ENOMEM; 3355 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3356 sizeof(struct kvm_io_range))); 3357 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3358 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3359 synchronize_srcu_expedited(&kvm->srcu); 3360 kfree(bus); 3361 3362 return 0; 3363 } 3364 3365 /* Caller must hold slots_lock. */ 3366 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3367 struct kvm_io_device *dev) 3368 { 3369 int i, r; 3370 struct kvm_io_bus *new_bus, *bus; 3371 3372 bus = kvm->buses[bus_idx]; 3373 r = -ENOENT; 3374 for (i = 0; i < bus->dev_count; i++) 3375 if (bus->range[i].dev == dev) { 3376 r = 0; 3377 break; 3378 } 3379 3380 if (r) 3381 return r; 3382 3383 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3384 sizeof(struct kvm_io_range)), GFP_KERNEL); 3385 if (!new_bus) 3386 return -ENOMEM; 3387 3388 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3389 new_bus->dev_count--; 3390 memcpy(new_bus->range + i, bus->range + i + 1, 3391 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3392 3393 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3394 synchronize_srcu_expedited(&kvm->srcu); 3395 kfree(bus); 3396 return r; 3397 } 3398 3399 static struct notifier_block kvm_cpu_notifier = { 3400 .notifier_call = kvm_cpu_hotplug, 3401 }; 3402 3403 static int vm_stat_get(void *_offset, u64 *val) 3404 { 3405 unsigned offset = (long)_offset; 3406 struct kvm *kvm; 3407 3408 *val = 0; 3409 spin_lock(&kvm_lock); 3410 list_for_each_entry(kvm, &vm_list, vm_list) 3411 *val += *(u32 *)((void *)kvm + offset); 3412 spin_unlock(&kvm_lock); 3413 return 0; 3414 } 3415 3416 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3417 3418 static int vcpu_stat_get(void *_offset, u64 *val) 3419 { 3420 unsigned offset = (long)_offset; 3421 struct kvm *kvm; 3422 struct kvm_vcpu *vcpu; 3423 int i; 3424 3425 *val = 0; 3426 spin_lock(&kvm_lock); 3427 list_for_each_entry(kvm, &vm_list, vm_list) 3428 kvm_for_each_vcpu(i, vcpu, kvm) 3429 *val += *(u32 *)((void *)vcpu + offset); 3430 3431 spin_unlock(&kvm_lock); 3432 return 0; 3433 } 3434 3435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3436 3437 static const struct file_operations *stat_fops[] = { 3438 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3439 [KVM_STAT_VM] = &vm_stat_fops, 3440 }; 3441 3442 static int kvm_init_debug(void) 3443 { 3444 int r = -EEXIST; 3445 struct kvm_stats_debugfs_item *p; 3446 3447 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3448 if (kvm_debugfs_dir == NULL) 3449 goto out; 3450 3451 for (p = debugfs_entries; p->name; ++p) { 3452 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3453 (void *)(long)p->offset, 3454 stat_fops[p->kind]); 3455 if (p->dentry == NULL) 3456 goto out_dir; 3457 } 3458 3459 return 0; 3460 3461 out_dir: 3462 debugfs_remove_recursive(kvm_debugfs_dir); 3463 out: 3464 return r; 3465 } 3466 3467 static void kvm_exit_debug(void) 3468 { 3469 struct kvm_stats_debugfs_item *p; 3470 3471 for (p = debugfs_entries; p->name; ++p) 3472 debugfs_remove(p->dentry); 3473 debugfs_remove(kvm_debugfs_dir); 3474 } 3475 3476 static int kvm_suspend(void) 3477 { 3478 if (kvm_usage_count) 3479 hardware_disable_nolock(NULL); 3480 return 0; 3481 } 3482 3483 static void kvm_resume(void) 3484 { 3485 if (kvm_usage_count) { 3486 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3487 hardware_enable_nolock(NULL); 3488 } 3489 } 3490 3491 static struct syscore_ops kvm_syscore_ops = { 3492 .suspend = kvm_suspend, 3493 .resume = kvm_resume, 3494 }; 3495 3496 static inline 3497 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3498 { 3499 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3500 } 3501 3502 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3503 { 3504 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3505 3506 if (vcpu->preempted) 3507 vcpu->preempted = false; 3508 3509 kvm_arch_sched_in(vcpu, cpu); 3510 3511 kvm_arch_vcpu_load(vcpu, cpu); 3512 } 3513 3514 static void kvm_sched_out(struct preempt_notifier *pn, 3515 struct task_struct *next) 3516 { 3517 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3518 3519 if (current->state == TASK_RUNNING) 3520 vcpu->preempted = true; 3521 kvm_arch_vcpu_put(vcpu); 3522 } 3523 3524 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3525 struct module *module) 3526 { 3527 int r; 3528 int cpu; 3529 3530 r = kvm_arch_init(opaque); 3531 if (r) 3532 goto out_fail; 3533 3534 /* 3535 * kvm_arch_init makes sure there's at most one caller 3536 * for architectures that support multiple implementations, 3537 * like intel and amd on x86. 3538 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3539 * conflicts in case kvm is already setup for another implementation. 3540 */ 3541 r = kvm_irqfd_init(); 3542 if (r) 3543 goto out_irqfd; 3544 3545 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3546 r = -ENOMEM; 3547 goto out_free_0; 3548 } 3549 3550 r = kvm_arch_hardware_setup(); 3551 if (r < 0) 3552 goto out_free_0a; 3553 3554 for_each_online_cpu(cpu) { 3555 smp_call_function_single(cpu, 3556 kvm_arch_check_processor_compat, 3557 &r, 1); 3558 if (r < 0) 3559 goto out_free_1; 3560 } 3561 3562 r = register_cpu_notifier(&kvm_cpu_notifier); 3563 if (r) 3564 goto out_free_2; 3565 register_reboot_notifier(&kvm_reboot_notifier); 3566 3567 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3568 if (!vcpu_align) 3569 vcpu_align = __alignof__(struct kvm_vcpu); 3570 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3571 0, NULL); 3572 if (!kvm_vcpu_cache) { 3573 r = -ENOMEM; 3574 goto out_free_3; 3575 } 3576 3577 r = kvm_async_pf_init(); 3578 if (r) 3579 goto out_free; 3580 3581 kvm_chardev_ops.owner = module; 3582 kvm_vm_fops.owner = module; 3583 kvm_vcpu_fops.owner = module; 3584 3585 r = misc_register(&kvm_dev); 3586 if (r) { 3587 pr_err("kvm: misc device register failed\n"); 3588 goto out_unreg; 3589 } 3590 3591 register_syscore_ops(&kvm_syscore_ops); 3592 3593 kvm_preempt_ops.sched_in = kvm_sched_in; 3594 kvm_preempt_ops.sched_out = kvm_sched_out; 3595 3596 r = kvm_init_debug(); 3597 if (r) { 3598 pr_err("kvm: create debugfs files failed\n"); 3599 goto out_undebugfs; 3600 } 3601 3602 r = kvm_vfio_ops_init(); 3603 WARN_ON(r); 3604 3605 return 0; 3606 3607 out_undebugfs: 3608 unregister_syscore_ops(&kvm_syscore_ops); 3609 misc_deregister(&kvm_dev); 3610 out_unreg: 3611 kvm_async_pf_deinit(); 3612 out_free: 3613 kmem_cache_destroy(kvm_vcpu_cache); 3614 out_free_3: 3615 unregister_reboot_notifier(&kvm_reboot_notifier); 3616 unregister_cpu_notifier(&kvm_cpu_notifier); 3617 out_free_2: 3618 out_free_1: 3619 kvm_arch_hardware_unsetup(); 3620 out_free_0a: 3621 free_cpumask_var(cpus_hardware_enabled); 3622 out_free_0: 3623 kvm_irqfd_exit(); 3624 out_irqfd: 3625 kvm_arch_exit(); 3626 out_fail: 3627 return r; 3628 } 3629 EXPORT_SYMBOL_GPL(kvm_init); 3630 3631 void kvm_exit(void) 3632 { 3633 kvm_exit_debug(); 3634 misc_deregister(&kvm_dev); 3635 kmem_cache_destroy(kvm_vcpu_cache); 3636 kvm_async_pf_deinit(); 3637 unregister_syscore_ops(&kvm_syscore_ops); 3638 unregister_reboot_notifier(&kvm_reboot_notifier); 3639 unregister_cpu_notifier(&kvm_cpu_notifier); 3640 on_each_cpu(hardware_disable_nolock, NULL, 1); 3641 kvm_arch_hardware_unsetup(); 3642 kvm_arch_exit(); 3643 kvm_irqfd_exit(); 3644 free_cpumask_var(cpus_hardware_enabled); 3645 kvm_vfio_ops_exit(); 3646 } 3647 EXPORT_SYMBOL_GPL(kvm_exit); 3648