1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 250 struct cpumask *tmp, int current_cpu) 251 { 252 int cpu; 253 254 kvm_make_request(req, vcpu); 255 256 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 257 return; 258 259 /* 260 * Note, the vCPU could get migrated to a different pCPU at any point 261 * after kvm_request_needs_ipi(), which could result in sending an IPI 262 * to the previous pCPU. But, that's OK because the purpose of the IPI 263 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 264 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 265 * after this point is also OK, as the requirement is only that KVM wait 266 * for vCPUs that were reading SPTEs _before_ any changes were 267 * finalized. See kvm_vcpu_kick() for more details on handling requests. 268 */ 269 if (kvm_request_needs_ipi(vcpu, req)) { 270 cpu = READ_ONCE(vcpu->cpu); 271 if (cpu != -1 && cpu != current_cpu) 272 __cpumask_set_cpu(cpu, tmp); 273 } 274 } 275 276 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 277 unsigned long *vcpu_bitmap) 278 { 279 struct kvm_vcpu *vcpu; 280 struct cpumask *cpus; 281 int i, me; 282 bool called; 283 284 me = get_cpu(); 285 286 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 287 cpumask_clear(cpus); 288 289 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 290 vcpu = kvm_get_vcpu(kvm, i); 291 if (!vcpu) 292 continue; 293 kvm_make_vcpu_request(vcpu, req, cpus, me); 294 } 295 296 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 297 put_cpu(); 298 299 return called; 300 } 301 302 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 303 struct kvm_vcpu *except) 304 { 305 struct kvm_vcpu *vcpu; 306 struct cpumask *cpus; 307 unsigned long i; 308 bool called; 309 int me; 310 311 me = get_cpu(); 312 313 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 314 cpumask_clear(cpus); 315 316 kvm_for_each_vcpu(i, vcpu, kvm) { 317 if (vcpu == except) 318 continue; 319 kvm_make_vcpu_request(vcpu, req, cpus, me); 320 } 321 322 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 323 put_cpu(); 324 325 return called; 326 } 327 328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 329 { 330 return kvm_make_all_cpus_request_except(kvm, req, NULL); 331 } 332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 333 334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 335 void kvm_flush_remote_tlbs(struct kvm *kvm) 336 { 337 ++kvm->stat.generic.remote_tlb_flush_requests; 338 339 /* 340 * We want to publish modifications to the page tables before reading 341 * mode. Pairs with a memory barrier in arch-specific code. 342 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 343 * and smp_mb in walk_shadow_page_lockless_begin/end. 344 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 345 * 346 * There is already an smp_mb__after_atomic() before 347 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 348 * barrier here. 349 */ 350 if (!kvm_arch_flush_remote_tlb(kvm) 351 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 352 ++kvm->stat.generic.remote_tlb_flush; 353 } 354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 355 #endif 356 357 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 358 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 359 gfp_t gfp_flags) 360 { 361 gfp_flags |= mc->gfp_zero; 362 363 if (mc->kmem_cache) 364 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 365 else 366 return (void *)__get_free_page(gfp_flags); 367 } 368 369 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 370 { 371 void *obj; 372 373 if (mc->nobjs >= min) 374 return 0; 375 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 376 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 377 if (!obj) 378 return mc->nobjs >= min ? 0 : -ENOMEM; 379 mc->objects[mc->nobjs++] = obj; 380 } 381 return 0; 382 } 383 384 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 385 { 386 return mc->nobjs; 387 } 388 389 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 390 { 391 while (mc->nobjs) { 392 if (mc->kmem_cache) 393 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 394 else 395 free_page((unsigned long)mc->objects[--mc->nobjs]); 396 } 397 } 398 399 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 400 { 401 void *p; 402 403 if (WARN_ON(!mc->nobjs)) 404 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 405 else 406 p = mc->objects[--mc->nobjs]; 407 BUG_ON(!p); 408 return p; 409 } 410 #endif 411 412 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 413 { 414 mutex_init(&vcpu->mutex); 415 vcpu->cpu = -1; 416 vcpu->kvm = kvm; 417 vcpu->vcpu_id = id; 418 vcpu->pid = NULL; 419 #ifndef __KVM_HAVE_ARCH_WQP 420 rcuwait_init(&vcpu->wait); 421 #endif 422 kvm_async_pf_vcpu_init(vcpu); 423 424 kvm_vcpu_set_in_spin_loop(vcpu, false); 425 kvm_vcpu_set_dy_eligible(vcpu, false); 426 vcpu->preempted = false; 427 vcpu->ready = false; 428 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 429 vcpu->last_used_slot = NULL; 430 } 431 432 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 433 { 434 kvm_dirty_ring_free(&vcpu->dirty_ring); 435 kvm_arch_vcpu_destroy(vcpu); 436 437 /* 438 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 439 * the vcpu->pid pointer, and at destruction time all file descriptors 440 * are already gone. 441 */ 442 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 443 444 free_page((unsigned long)vcpu->run); 445 kmem_cache_free(kvm_vcpu_cache, vcpu); 446 } 447 448 void kvm_destroy_vcpus(struct kvm *kvm) 449 { 450 unsigned long i; 451 struct kvm_vcpu *vcpu; 452 453 kvm_for_each_vcpu(i, vcpu, kvm) { 454 kvm_vcpu_destroy(vcpu); 455 xa_erase(&kvm->vcpu_array, i); 456 } 457 458 atomic_set(&kvm->online_vcpus, 0); 459 } 460 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 461 462 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 463 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 464 { 465 return container_of(mn, struct kvm, mmu_notifier); 466 } 467 468 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 469 struct mm_struct *mm, 470 unsigned long start, unsigned long end) 471 { 472 struct kvm *kvm = mmu_notifier_to_kvm(mn); 473 int idx; 474 475 idx = srcu_read_lock(&kvm->srcu); 476 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 477 srcu_read_unlock(&kvm->srcu, idx); 478 } 479 480 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 481 482 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 483 unsigned long end); 484 485 struct kvm_hva_range { 486 unsigned long start; 487 unsigned long end; 488 pte_t pte; 489 hva_handler_t handler; 490 on_lock_fn_t on_lock; 491 bool flush_on_ret; 492 bool may_block; 493 }; 494 495 /* 496 * Use a dedicated stub instead of NULL to indicate that there is no callback 497 * function/handler. The compiler technically can't guarantee that a real 498 * function will have a non-zero address, and so it will generate code to 499 * check for !NULL, whereas comparing against a stub will be elided at compile 500 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 501 */ 502 static void kvm_null_fn(void) 503 { 504 505 } 506 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 507 508 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 509 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 510 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 511 node; \ 512 node = interval_tree_iter_next(node, start, last)) \ 513 514 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 515 const struct kvm_hva_range *range) 516 { 517 bool ret = false, locked = false; 518 struct kvm_gfn_range gfn_range; 519 struct kvm_memory_slot *slot; 520 struct kvm_memslots *slots; 521 int i, idx; 522 523 if (WARN_ON_ONCE(range->end <= range->start)) 524 return 0; 525 526 /* A null handler is allowed if and only if on_lock() is provided. */ 527 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 528 IS_KVM_NULL_FN(range->handler))) 529 return 0; 530 531 idx = srcu_read_lock(&kvm->srcu); 532 533 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 534 struct interval_tree_node *node; 535 536 slots = __kvm_memslots(kvm, i); 537 kvm_for_each_memslot_in_hva_range(node, slots, 538 range->start, range->end - 1) { 539 unsigned long hva_start, hva_end; 540 541 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 542 hva_start = max(range->start, slot->userspace_addr); 543 hva_end = min(range->end, slot->userspace_addr + 544 (slot->npages << PAGE_SHIFT)); 545 546 /* 547 * To optimize for the likely case where the address 548 * range is covered by zero or one memslots, don't 549 * bother making these conditional (to avoid writes on 550 * the second or later invocation of the handler). 551 */ 552 gfn_range.pte = range->pte; 553 gfn_range.may_block = range->may_block; 554 555 /* 556 * {gfn(page) | page intersects with [hva_start, hva_end)} = 557 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 558 */ 559 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 560 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 561 gfn_range.slot = slot; 562 563 if (!locked) { 564 locked = true; 565 KVM_MMU_LOCK(kvm); 566 if (!IS_KVM_NULL_FN(range->on_lock)) 567 range->on_lock(kvm, range->start, range->end); 568 if (IS_KVM_NULL_FN(range->handler)) 569 break; 570 } 571 ret |= range->handler(kvm, &gfn_range); 572 } 573 } 574 575 if (range->flush_on_ret && ret) 576 kvm_flush_remote_tlbs(kvm); 577 578 if (locked) 579 KVM_MMU_UNLOCK(kvm); 580 581 srcu_read_unlock(&kvm->srcu, idx); 582 583 /* The notifiers are averse to booleans. :-( */ 584 return (int)ret; 585 } 586 587 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 588 unsigned long start, 589 unsigned long end, 590 pte_t pte, 591 hva_handler_t handler) 592 { 593 struct kvm *kvm = mmu_notifier_to_kvm(mn); 594 const struct kvm_hva_range range = { 595 .start = start, 596 .end = end, 597 .pte = pte, 598 .handler = handler, 599 .on_lock = (void *)kvm_null_fn, 600 .flush_on_ret = true, 601 .may_block = false, 602 }; 603 604 return __kvm_handle_hva_range(kvm, &range); 605 } 606 607 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 608 unsigned long start, 609 unsigned long end, 610 hva_handler_t handler) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 const struct kvm_hva_range range = { 614 .start = start, 615 .end = end, 616 .pte = __pte(0), 617 .handler = handler, 618 .on_lock = (void *)kvm_null_fn, 619 .flush_on_ret = false, 620 .may_block = false, 621 }; 622 623 return __kvm_handle_hva_range(kvm, &range); 624 } 625 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 626 struct mm_struct *mm, 627 unsigned long address, 628 pte_t pte) 629 { 630 struct kvm *kvm = mmu_notifier_to_kvm(mn); 631 632 trace_kvm_set_spte_hva(address); 633 634 /* 635 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 636 * If mmu_notifier_count is zero, then no in-progress invalidations, 637 * including this one, found a relevant memslot at start(); rechecking 638 * memslots here is unnecessary. Note, a false positive (count elevated 639 * by a different invalidation) is sub-optimal but functionally ok. 640 */ 641 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 642 if (!READ_ONCE(kvm->mmu_notifier_count)) 643 return; 644 645 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 646 } 647 648 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 649 unsigned long end) 650 { 651 /* 652 * The count increase must become visible at unlock time as no 653 * spte can be established without taking the mmu_lock and 654 * count is also read inside the mmu_lock critical section. 655 */ 656 kvm->mmu_notifier_count++; 657 if (likely(kvm->mmu_notifier_count == 1)) { 658 kvm->mmu_notifier_range_start = start; 659 kvm->mmu_notifier_range_end = end; 660 } else { 661 /* 662 * Fully tracking multiple concurrent ranges has dimishing 663 * returns. Keep things simple and just find the minimal range 664 * which includes the current and new ranges. As there won't be 665 * enough information to subtract a range after its invalidate 666 * completes, any ranges invalidated concurrently will 667 * accumulate and persist until all outstanding invalidates 668 * complete. 669 */ 670 kvm->mmu_notifier_range_start = 671 min(kvm->mmu_notifier_range_start, start); 672 kvm->mmu_notifier_range_end = 673 max(kvm->mmu_notifier_range_end, end); 674 } 675 } 676 677 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 678 const struct mmu_notifier_range *range) 679 { 680 struct kvm *kvm = mmu_notifier_to_kvm(mn); 681 const struct kvm_hva_range hva_range = { 682 .start = range->start, 683 .end = range->end, 684 .pte = __pte(0), 685 .handler = kvm_unmap_gfn_range, 686 .on_lock = kvm_inc_notifier_count, 687 .flush_on_ret = true, 688 .may_block = mmu_notifier_range_blockable(range), 689 }; 690 691 trace_kvm_unmap_hva_range(range->start, range->end); 692 693 /* 694 * Prevent memslot modification between range_start() and range_end() 695 * so that conditionally locking provides the same result in both 696 * functions. Without that guarantee, the mmu_notifier_count 697 * adjustments will be imbalanced. 698 * 699 * Pairs with the decrement in range_end(). 700 */ 701 spin_lock(&kvm->mn_invalidate_lock); 702 kvm->mn_active_invalidate_count++; 703 spin_unlock(&kvm->mn_invalidate_lock); 704 705 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 706 hva_range.may_block); 707 708 __kvm_handle_hva_range(kvm, &hva_range); 709 710 return 0; 711 } 712 713 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 714 unsigned long end) 715 { 716 /* 717 * This sequence increase will notify the kvm page fault that 718 * the page that is going to be mapped in the spte could have 719 * been freed. 720 */ 721 kvm->mmu_notifier_seq++; 722 smp_wmb(); 723 /* 724 * The above sequence increase must be visible before the 725 * below count decrease, which is ensured by the smp_wmb above 726 * in conjunction with the smp_rmb in mmu_notifier_retry(). 727 */ 728 kvm->mmu_notifier_count--; 729 } 730 731 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 732 const struct mmu_notifier_range *range) 733 { 734 struct kvm *kvm = mmu_notifier_to_kvm(mn); 735 const struct kvm_hva_range hva_range = { 736 .start = range->start, 737 .end = range->end, 738 .pte = __pte(0), 739 .handler = (void *)kvm_null_fn, 740 .on_lock = kvm_dec_notifier_count, 741 .flush_on_ret = false, 742 .may_block = mmu_notifier_range_blockable(range), 743 }; 744 bool wake; 745 746 __kvm_handle_hva_range(kvm, &hva_range); 747 748 /* Pairs with the increment in range_start(). */ 749 spin_lock(&kvm->mn_invalidate_lock); 750 wake = (--kvm->mn_active_invalidate_count == 0); 751 spin_unlock(&kvm->mn_invalidate_lock); 752 753 /* 754 * There can only be one waiter, since the wait happens under 755 * slots_lock. 756 */ 757 if (wake) 758 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 759 760 BUG_ON(kvm->mmu_notifier_count < 0); 761 } 762 763 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 764 struct mm_struct *mm, 765 unsigned long start, 766 unsigned long end) 767 { 768 trace_kvm_age_hva(start, end); 769 770 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 771 } 772 773 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 774 struct mm_struct *mm, 775 unsigned long start, 776 unsigned long end) 777 { 778 trace_kvm_age_hva(start, end); 779 780 /* 781 * Even though we do not flush TLB, this will still adversely 782 * affect performance on pre-Haswell Intel EPT, where there is 783 * no EPT Access Bit to clear so that we have to tear down EPT 784 * tables instead. If we find this unacceptable, we can always 785 * add a parameter to kvm_age_hva so that it effectively doesn't 786 * do anything on clear_young. 787 * 788 * Also note that currently we never issue secondary TLB flushes 789 * from clear_young, leaving this job up to the regular system 790 * cadence. If we find this inaccurate, we might come up with a 791 * more sophisticated heuristic later. 792 */ 793 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 794 } 795 796 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 797 struct mm_struct *mm, 798 unsigned long address) 799 { 800 trace_kvm_test_age_hva(address); 801 802 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 803 kvm_test_age_gfn); 804 } 805 806 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 807 struct mm_struct *mm) 808 { 809 struct kvm *kvm = mmu_notifier_to_kvm(mn); 810 int idx; 811 812 idx = srcu_read_lock(&kvm->srcu); 813 kvm_arch_flush_shadow_all(kvm); 814 srcu_read_unlock(&kvm->srcu, idx); 815 } 816 817 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 818 .invalidate_range = kvm_mmu_notifier_invalidate_range, 819 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 820 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 821 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 822 .clear_young = kvm_mmu_notifier_clear_young, 823 .test_young = kvm_mmu_notifier_test_young, 824 .change_pte = kvm_mmu_notifier_change_pte, 825 .release = kvm_mmu_notifier_release, 826 }; 827 828 static int kvm_init_mmu_notifier(struct kvm *kvm) 829 { 830 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 831 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 832 } 833 834 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 835 836 static int kvm_init_mmu_notifier(struct kvm *kvm) 837 { 838 return 0; 839 } 840 841 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 842 843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 844 static int kvm_pm_notifier_call(struct notifier_block *bl, 845 unsigned long state, 846 void *unused) 847 { 848 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 849 850 return kvm_arch_pm_notifier(kvm, state); 851 } 852 853 static void kvm_init_pm_notifier(struct kvm *kvm) 854 { 855 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 856 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 857 kvm->pm_notifier.priority = INT_MAX; 858 register_pm_notifier(&kvm->pm_notifier); 859 } 860 861 static void kvm_destroy_pm_notifier(struct kvm *kvm) 862 { 863 unregister_pm_notifier(&kvm->pm_notifier); 864 } 865 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 866 static void kvm_init_pm_notifier(struct kvm *kvm) 867 { 868 } 869 870 static void kvm_destroy_pm_notifier(struct kvm *kvm) 871 { 872 } 873 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 874 875 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 876 { 877 if (!memslot->dirty_bitmap) 878 return; 879 880 kvfree(memslot->dirty_bitmap); 881 memslot->dirty_bitmap = NULL; 882 } 883 884 /* This does not remove the slot from struct kvm_memslots data structures */ 885 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 886 { 887 kvm_destroy_dirty_bitmap(slot); 888 889 kvm_arch_free_memslot(kvm, slot); 890 891 kfree(slot); 892 } 893 894 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 895 { 896 struct hlist_node *idnode; 897 struct kvm_memory_slot *memslot; 898 int bkt; 899 900 /* 901 * The same memslot objects live in both active and inactive sets, 902 * arbitrarily free using index '1' so the second invocation of this 903 * function isn't operating over a structure with dangling pointers 904 * (even though this function isn't actually touching them). 905 */ 906 if (!slots->node_idx) 907 return; 908 909 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 910 kvm_free_memslot(kvm, memslot); 911 } 912 913 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 914 { 915 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 916 case KVM_STATS_TYPE_INSTANT: 917 return 0444; 918 case KVM_STATS_TYPE_CUMULATIVE: 919 case KVM_STATS_TYPE_PEAK: 920 default: 921 return 0644; 922 } 923 } 924 925 926 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 927 { 928 int i; 929 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 930 kvm_vcpu_stats_header.num_desc; 931 932 if (!kvm->debugfs_dentry) 933 return; 934 935 debugfs_remove_recursive(kvm->debugfs_dentry); 936 937 if (kvm->debugfs_stat_data) { 938 for (i = 0; i < kvm_debugfs_num_entries; i++) 939 kfree(kvm->debugfs_stat_data[i]); 940 kfree(kvm->debugfs_stat_data); 941 } 942 } 943 944 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 945 { 946 static DEFINE_MUTEX(kvm_debugfs_lock); 947 struct dentry *dent; 948 char dir_name[ITOA_MAX_LEN * 2]; 949 struct kvm_stat_data *stat_data; 950 const struct _kvm_stats_desc *pdesc; 951 int i, ret; 952 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 953 kvm_vcpu_stats_header.num_desc; 954 955 if (!debugfs_initialized()) 956 return 0; 957 958 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 959 mutex_lock(&kvm_debugfs_lock); 960 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 961 if (dent) { 962 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 963 dput(dent); 964 mutex_unlock(&kvm_debugfs_lock); 965 return 0; 966 } 967 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 968 mutex_unlock(&kvm_debugfs_lock); 969 if (IS_ERR(dent)) 970 return 0; 971 972 kvm->debugfs_dentry = dent; 973 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 974 sizeof(*kvm->debugfs_stat_data), 975 GFP_KERNEL_ACCOUNT); 976 if (!kvm->debugfs_stat_data) 977 return -ENOMEM; 978 979 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 980 pdesc = &kvm_vm_stats_desc[i]; 981 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 982 if (!stat_data) 983 return -ENOMEM; 984 985 stat_data->kvm = kvm; 986 stat_data->desc = pdesc; 987 stat_data->kind = KVM_STAT_VM; 988 kvm->debugfs_stat_data[i] = stat_data; 989 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 990 kvm->debugfs_dentry, stat_data, 991 &stat_fops_per_vm); 992 } 993 994 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 995 pdesc = &kvm_vcpu_stats_desc[i]; 996 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 997 if (!stat_data) 998 return -ENOMEM; 999 1000 stat_data->kvm = kvm; 1001 stat_data->desc = pdesc; 1002 stat_data->kind = KVM_STAT_VCPU; 1003 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1004 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1005 kvm->debugfs_dentry, stat_data, 1006 &stat_fops_per_vm); 1007 } 1008 1009 ret = kvm_arch_create_vm_debugfs(kvm); 1010 if (ret) { 1011 kvm_destroy_vm_debugfs(kvm); 1012 return i; 1013 } 1014 1015 return 0; 1016 } 1017 1018 /* 1019 * Called after the VM is otherwise initialized, but just before adding it to 1020 * the vm_list. 1021 */ 1022 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1023 { 1024 return 0; 1025 } 1026 1027 /* 1028 * Called just after removing the VM from the vm_list, but before doing any 1029 * other destruction. 1030 */ 1031 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1032 { 1033 } 1034 1035 /* 1036 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1037 * be setup already, so we can create arch-specific debugfs entries under it. 1038 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1039 * a per-arch destroy interface is not needed. 1040 */ 1041 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1042 { 1043 return 0; 1044 } 1045 1046 static struct kvm *kvm_create_vm(unsigned long type) 1047 { 1048 struct kvm *kvm = kvm_arch_alloc_vm(); 1049 struct kvm_memslots *slots; 1050 int r = -ENOMEM; 1051 int i, j; 1052 1053 if (!kvm) 1054 return ERR_PTR(-ENOMEM); 1055 1056 KVM_MMU_LOCK_INIT(kvm); 1057 mmgrab(current->mm); 1058 kvm->mm = current->mm; 1059 kvm_eventfd_init(kvm); 1060 mutex_init(&kvm->lock); 1061 mutex_init(&kvm->irq_lock); 1062 mutex_init(&kvm->slots_lock); 1063 mutex_init(&kvm->slots_arch_lock); 1064 spin_lock_init(&kvm->mn_invalidate_lock); 1065 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1066 xa_init(&kvm->vcpu_array); 1067 1068 INIT_LIST_HEAD(&kvm->gpc_list); 1069 spin_lock_init(&kvm->gpc_lock); 1070 1071 INIT_LIST_HEAD(&kvm->devices); 1072 1073 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1074 1075 if (init_srcu_struct(&kvm->srcu)) 1076 goto out_err_no_srcu; 1077 if (init_srcu_struct(&kvm->irq_srcu)) 1078 goto out_err_no_irq_srcu; 1079 1080 refcount_set(&kvm->users_count, 1); 1081 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1082 for (j = 0; j < 2; j++) { 1083 slots = &kvm->__memslots[i][j]; 1084 1085 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1086 slots->hva_tree = RB_ROOT_CACHED; 1087 slots->gfn_tree = RB_ROOT; 1088 hash_init(slots->id_hash); 1089 slots->node_idx = j; 1090 1091 /* Generations must be different for each address space. */ 1092 slots->generation = i; 1093 } 1094 1095 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1096 } 1097 1098 for (i = 0; i < KVM_NR_BUSES; i++) { 1099 rcu_assign_pointer(kvm->buses[i], 1100 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1101 if (!kvm->buses[i]) 1102 goto out_err_no_arch_destroy_vm; 1103 } 1104 1105 kvm->max_halt_poll_ns = halt_poll_ns; 1106 1107 r = kvm_arch_init_vm(kvm, type); 1108 if (r) 1109 goto out_err_no_arch_destroy_vm; 1110 1111 r = hardware_enable_all(); 1112 if (r) 1113 goto out_err_no_disable; 1114 1115 #ifdef CONFIG_HAVE_KVM_IRQFD 1116 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1117 #endif 1118 1119 r = kvm_init_mmu_notifier(kvm); 1120 if (r) 1121 goto out_err_no_mmu_notifier; 1122 1123 r = kvm_arch_post_init_vm(kvm); 1124 if (r) 1125 goto out_err; 1126 1127 mutex_lock(&kvm_lock); 1128 list_add(&kvm->vm_list, &vm_list); 1129 mutex_unlock(&kvm_lock); 1130 1131 preempt_notifier_inc(); 1132 kvm_init_pm_notifier(kvm); 1133 1134 return kvm; 1135 1136 out_err: 1137 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1138 if (kvm->mmu_notifier.ops) 1139 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1140 #endif 1141 out_err_no_mmu_notifier: 1142 hardware_disable_all(); 1143 out_err_no_disable: 1144 kvm_arch_destroy_vm(kvm); 1145 out_err_no_arch_destroy_vm: 1146 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1147 for (i = 0; i < KVM_NR_BUSES; i++) 1148 kfree(kvm_get_bus(kvm, i)); 1149 cleanup_srcu_struct(&kvm->irq_srcu); 1150 out_err_no_irq_srcu: 1151 cleanup_srcu_struct(&kvm->srcu); 1152 out_err_no_srcu: 1153 kvm_arch_free_vm(kvm); 1154 mmdrop(current->mm); 1155 return ERR_PTR(r); 1156 } 1157 1158 static void kvm_destroy_devices(struct kvm *kvm) 1159 { 1160 struct kvm_device *dev, *tmp; 1161 1162 /* 1163 * We do not need to take the kvm->lock here, because nobody else 1164 * has a reference to the struct kvm at this point and therefore 1165 * cannot access the devices list anyhow. 1166 */ 1167 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1168 list_del(&dev->vm_node); 1169 dev->ops->destroy(dev); 1170 } 1171 } 1172 1173 static void kvm_destroy_vm(struct kvm *kvm) 1174 { 1175 int i; 1176 struct mm_struct *mm = kvm->mm; 1177 1178 kvm_destroy_pm_notifier(kvm); 1179 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1180 kvm_destroy_vm_debugfs(kvm); 1181 kvm_arch_sync_events(kvm); 1182 mutex_lock(&kvm_lock); 1183 list_del(&kvm->vm_list); 1184 mutex_unlock(&kvm_lock); 1185 kvm_arch_pre_destroy_vm(kvm); 1186 1187 kvm_free_irq_routing(kvm); 1188 for (i = 0; i < KVM_NR_BUSES; i++) { 1189 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1190 1191 if (bus) 1192 kvm_io_bus_destroy(bus); 1193 kvm->buses[i] = NULL; 1194 } 1195 kvm_coalesced_mmio_free(kvm); 1196 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1197 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1198 /* 1199 * At this point, pending calls to invalidate_range_start() 1200 * have completed but no more MMU notifiers will run, so 1201 * mn_active_invalidate_count may remain unbalanced. 1202 * No threads can be waiting in install_new_memslots as the 1203 * last reference on KVM has been dropped, but freeing 1204 * memslots would deadlock without this manual intervention. 1205 */ 1206 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1207 kvm->mn_active_invalidate_count = 0; 1208 #else 1209 kvm_arch_flush_shadow_all(kvm); 1210 #endif 1211 kvm_arch_destroy_vm(kvm); 1212 kvm_destroy_devices(kvm); 1213 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1214 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1215 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1216 } 1217 cleanup_srcu_struct(&kvm->irq_srcu); 1218 cleanup_srcu_struct(&kvm->srcu); 1219 kvm_arch_free_vm(kvm); 1220 preempt_notifier_dec(); 1221 hardware_disable_all(); 1222 mmdrop(mm); 1223 } 1224 1225 void kvm_get_kvm(struct kvm *kvm) 1226 { 1227 refcount_inc(&kvm->users_count); 1228 } 1229 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1230 1231 /* 1232 * Make sure the vm is not during destruction, which is a safe version of 1233 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1234 */ 1235 bool kvm_get_kvm_safe(struct kvm *kvm) 1236 { 1237 return refcount_inc_not_zero(&kvm->users_count); 1238 } 1239 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1240 1241 void kvm_put_kvm(struct kvm *kvm) 1242 { 1243 if (refcount_dec_and_test(&kvm->users_count)) 1244 kvm_destroy_vm(kvm); 1245 } 1246 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1247 1248 /* 1249 * Used to put a reference that was taken on behalf of an object associated 1250 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1251 * of the new file descriptor fails and the reference cannot be transferred to 1252 * its final owner. In such cases, the caller is still actively using @kvm and 1253 * will fail miserably if the refcount unexpectedly hits zero. 1254 */ 1255 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1256 { 1257 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1258 } 1259 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1260 1261 static int kvm_vm_release(struct inode *inode, struct file *filp) 1262 { 1263 struct kvm *kvm = filp->private_data; 1264 1265 kvm_irqfd_release(kvm); 1266 1267 kvm_put_kvm(kvm); 1268 return 0; 1269 } 1270 1271 /* 1272 * Allocation size is twice as large as the actual dirty bitmap size. 1273 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1274 */ 1275 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1276 { 1277 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1278 1279 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1280 if (!memslot->dirty_bitmap) 1281 return -ENOMEM; 1282 1283 return 0; 1284 } 1285 1286 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1287 { 1288 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1289 int node_idx_inactive = active->node_idx ^ 1; 1290 1291 return &kvm->__memslots[as_id][node_idx_inactive]; 1292 } 1293 1294 /* 1295 * Helper to get the address space ID when one of memslot pointers may be NULL. 1296 * This also serves as a sanity that at least one of the pointers is non-NULL, 1297 * and that their address space IDs don't diverge. 1298 */ 1299 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1300 struct kvm_memory_slot *b) 1301 { 1302 if (WARN_ON_ONCE(!a && !b)) 1303 return 0; 1304 1305 if (!a) 1306 return b->as_id; 1307 if (!b) 1308 return a->as_id; 1309 1310 WARN_ON_ONCE(a->as_id != b->as_id); 1311 return a->as_id; 1312 } 1313 1314 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1315 struct kvm_memory_slot *slot) 1316 { 1317 struct rb_root *gfn_tree = &slots->gfn_tree; 1318 struct rb_node **node, *parent; 1319 int idx = slots->node_idx; 1320 1321 parent = NULL; 1322 for (node = &gfn_tree->rb_node; *node; ) { 1323 struct kvm_memory_slot *tmp; 1324 1325 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1326 parent = *node; 1327 if (slot->base_gfn < tmp->base_gfn) 1328 node = &(*node)->rb_left; 1329 else if (slot->base_gfn > tmp->base_gfn) 1330 node = &(*node)->rb_right; 1331 else 1332 BUG(); 1333 } 1334 1335 rb_link_node(&slot->gfn_node[idx], parent, node); 1336 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1337 } 1338 1339 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1340 struct kvm_memory_slot *slot) 1341 { 1342 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1343 } 1344 1345 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1346 struct kvm_memory_slot *old, 1347 struct kvm_memory_slot *new) 1348 { 1349 int idx = slots->node_idx; 1350 1351 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1352 1353 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1354 &slots->gfn_tree); 1355 } 1356 1357 /* 1358 * Replace @old with @new in the inactive memslots. 1359 * 1360 * With NULL @old this simply adds @new. 1361 * With NULL @new this simply removes @old. 1362 * 1363 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1364 * appropriately. 1365 */ 1366 static void kvm_replace_memslot(struct kvm *kvm, 1367 struct kvm_memory_slot *old, 1368 struct kvm_memory_slot *new) 1369 { 1370 int as_id = kvm_memslots_get_as_id(old, new); 1371 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1372 int idx = slots->node_idx; 1373 1374 if (old) { 1375 hash_del(&old->id_node[idx]); 1376 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1377 1378 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1379 atomic_long_set(&slots->last_used_slot, (long)new); 1380 1381 if (!new) { 1382 kvm_erase_gfn_node(slots, old); 1383 return; 1384 } 1385 } 1386 1387 /* 1388 * Initialize @new's hva range. Do this even when replacing an @old 1389 * slot, kvm_copy_memslot() deliberately does not touch node data. 1390 */ 1391 new->hva_node[idx].start = new->userspace_addr; 1392 new->hva_node[idx].last = new->userspace_addr + 1393 (new->npages << PAGE_SHIFT) - 1; 1394 1395 /* 1396 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1397 * hva_node needs to be swapped with remove+insert even though hva can't 1398 * change when replacing an existing slot. 1399 */ 1400 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1401 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1402 1403 /* 1404 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1405 * switch the node in the gfn tree instead of removing the old and 1406 * inserting the new as two separate operations. Replacement is a 1407 * single O(1) operation versus two O(log(n)) operations for 1408 * remove+insert. 1409 */ 1410 if (old && old->base_gfn == new->base_gfn) { 1411 kvm_replace_gfn_node(slots, old, new); 1412 } else { 1413 if (old) 1414 kvm_erase_gfn_node(slots, old); 1415 kvm_insert_gfn_node(slots, new); 1416 } 1417 } 1418 1419 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1420 { 1421 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1422 1423 #ifdef __KVM_HAVE_READONLY_MEM 1424 valid_flags |= KVM_MEM_READONLY; 1425 #endif 1426 1427 if (mem->flags & ~valid_flags) 1428 return -EINVAL; 1429 1430 return 0; 1431 } 1432 1433 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1434 { 1435 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1436 1437 /* Grab the generation from the activate memslots. */ 1438 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1439 1440 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1441 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1442 1443 /* 1444 * Do not store the new memslots while there are invalidations in 1445 * progress, otherwise the locking in invalidate_range_start and 1446 * invalidate_range_end will be unbalanced. 1447 */ 1448 spin_lock(&kvm->mn_invalidate_lock); 1449 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1450 while (kvm->mn_active_invalidate_count) { 1451 set_current_state(TASK_UNINTERRUPTIBLE); 1452 spin_unlock(&kvm->mn_invalidate_lock); 1453 schedule(); 1454 spin_lock(&kvm->mn_invalidate_lock); 1455 } 1456 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1457 rcu_assign_pointer(kvm->memslots[as_id], slots); 1458 spin_unlock(&kvm->mn_invalidate_lock); 1459 1460 /* 1461 * Acquired in kvm_set_memslot. Must be released before synchronize 1462 * SRCU below in order to avoid deadlock with another thread 1463 * acquiring the slots_arch_lock in an srcu critical section. 1464 */ 1465 mutex_unlock(&kvm->slots_arch_lock); 1466 1467 synchronize_srcu_expedited(&kvm->srcu); 1468 1469 /* 1470 * Increment the new memslot generation a second time, dropping the 1471 * update in-progress flag and incrementing the generation based on 1472 * the number of address spaces. This provides a unique and easily 1473 * identifiable generation number while the memslots are in flux. 1474 */ 1475 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1476 1477 /* 1478 * Generations must be unique even across address spaces. We do not need 1479 * a global counter for that, instead the generation space is evenly split 1480 * across address spaces. For example, with two address spaces, address 1481 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1482 * use generations 1, 3, 5, ... 1483 */ 1484 gen += KVM_ADDRESS_SPACE_NUM; 1485 1486 kvm_arch_memslots_updated(kvm, gen); 1487 1488 slots->generation = gen; 1489 } 1490 1491 static int kvm_prepare_memory_region(struct kvm *kvm, 1492 const struct kvm_memory_slot *old, 1493 struct kvm_memory_slot *new, 1494 enum kvm_mr_change change) 1495 { 1496 int r; 1497 1498 /* 1499 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1500 * will be freed on "commit". If logging is enabled in both old and 1501 * new, reuse the existing bitmap. If logging is enabled only in the 1502 * new and KVM isn't using a ring buffer, allocate and initialize a 1503 * new bitmap. 1504 */ 1505 if (change != KVM_MR_DELETE) { 1506 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1507 new->dirty_bitmap = NULL; 1508 else if (old && old->dirty_bitmap) 1509 new->dirty_bitmap = old->dirty_bitmap; 1510 else if (!kvm->dirty_ring_size) { 1511 r = kvm_alloc_dirty_bitmap(new); 1512 if (r) 1513 return r; 1514 1515 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1516 bitmap_set(new->dirty_bitmap, 0, new->npages); 1517 } 1518 } 1519 1520 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1521 1522 /* Free the bitmap on failure if it was allocated above. */ 1523 if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap) 1524 kvm_destroy_dirty_bitmap(new); 1525 1526 return r; 1527 } 1528 1529 static void kvm_commit_memory_region(struct kvm *kvm, 1530 struct kvm_memory_slot *old, 1531 const struct kvm_memory_slot *new, 1532 enum kvm_mr_change change) 1533 { 1534 /* 1535 * Update the total number of memslot pages before calling the arch 1536 * hook so that architectures can consume the result directly. 1537 */ 1538 if (change == KVM_MR_DELETE) 1539 kvm->nr_memslot_pages -= old->npages; 1540 else if (change == KVM_MR_CREATE) 1541 kvm->nr_memslot_pages += new->npages; 1542 1543 kvm_arch_commit_memory_region(kvm, old, new, change); 1544 1545 switch (change) { 1546 case KVM_MR_CREATE: 1547 /* Nothing more to do. */ 1548 break; 1549 case KVM_MR_DELETE: 1550 /* Free the old memslot and all its metadata. */ 1551 kvm_free_memslot(kvm, old); 1552 break; 1553 case KVM_MR_MOVE: 1554 case KVM_MR_FLAGS_ONLY: 1555 /* 1556 * Free the dirty bitmap as needed; the below check encompasses 1557 * both the flags and whether a ring buffer is being used) 1558 */ 1559 if (old->dirty_bitmap && !new->dirty_bitmap) 1560 kvm_destroy_dirty_bitmap(old); 1561 1562 /* 1563 * The final quirk. Free the detached, old slot, but only its 1564 * memory, not any metadata. Metadata, including arch specific 1565 * data, may be reused by @new. 1566 */ 1567 kfree(old); 1568 break; 1569 default: 1570 BUG(); 1571 } 1572 } 1573 1574 /* 1575 * Activate @new, which must be installed in the inactive slots by the caller, 1576 * by swapping the active slots and then propagating @new to @old once @old is 1577 * unreachable and can be safely modified. 1578 * 1579 * With NULL @old this simply adds @new to @active (while swapping the sets). 1580 * With NULL @new this simply removes @old from @active and frees it 1581 * (while also swapping the sets). 1582 */ 1583 static void kvm_activate_memslot(struct kvm *kvm, 1584 struct kvm_memory_slot *old, 1585 struct kvm_memory_slot *new) 1586 { 1587 int as_id = kvm_memslots_get_as_id(old, new); 1588 1589 kvm_swap_active_memslots(kvm, as_id); 1590 1591 /* Propagate the new memslot to the now inactive memslots. */ 1592 kvm_replace_memslot(kvm, old, new); 1593 } 1594 1595 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1596 const struct kvm_memory_slot *src) 1597 { 1598 dest->base_gfn = src->base_gfn; 1599 dest->npages = src->npages; 1600 dest->dirty_bitmap = src->dirty_bitmap; 1601 dest->arch = src->arch; 1602 dest->userspace_addr = src->userspace_addr; 1603 dest->flags = src->flags; 1604 dest->id = src->id; 1605 dest->as_id = src->as_id; 1606 } 1607 1608 static void kvm_invalidate_memslot(struct kvm *kvm, 1609 struct kvm_memory_slot *old, 1610 struct kvm_memory_slot *invalid_slot) 1611 { 1612 /* 1613 * Mark the current slot INVALID. As with all memslot modifications, 1614 * this must be done on an unreachable slot to avoid modifying the 1615 * current slot in the active tree. 1616 */ 1617 kvm_copy_memslot(invalid_slot, old); 1618 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1619 kvm_replace_memslot(kvm, old, invalid_slot); 1620 1621 /* 1622 * Activate the slot that is now marked INVALID, but don't propagate 1623 * the slot to the now inactive slots. The slot is either going to be 1624 * deleted or recreated as a new slot. 1625 */ 1626 kvm_swap_active_memslots(kvm, old->as_id); 1627 1628 /* 1629 * From this point no new shadow pages pointing to a deleted, or moved, 1630 * memslot will be created. Validation of sp->gfn happens in: 1631 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1632 * - kvm_is_visible_gfn (mmu_check_root) 1633 */ 1634 kvm_arch_flush_shadow_memslot(kvm, old); 1635 1636 /* Was released by kvm_swap_active_memslots, reacquire. */ 1637 mutex_lock(&kvm->slots_arch_lock); 1638 1639 /* 1640 * Copy the arch-specific field of the newly-installed slot back to the 1641 * old slot as the arch data could have changed between releasing 1642 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1643 * above. Writers are required to retrieve memslots *after* acquiring 1644 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1645 */ 1646 old->arch = invalid_slot->arch; 1647 } 1648 1649 static void kvm_create_memslot(struct kvm *kvm, 1650 struct kvm_memory_slot *new) 1651 { 1652 /* Add the new memslot to the inactive set and activate. */ 1653 kvm_replace_memslot(kvm, NULL, new); 1654 kvm_activate_memslot(kvm, NULL, new); 1655 } 1656 1657 static void kvm_delete_memslot(struct kvm *kvm, 1658 struct kvm_memory_slot *old, 1659 struct kvm_memory_slot *invalid_slot) 1660 { 1661 /* 1662 * Remove the old memslot (in the inactive memslots) by passing NULL as 1663 * the "new" slot, and for the invalid version in the active slots. 1664 */ 1665 kvm_replace_memslot(kvm, old, NULL); 1666 kvm_activate_memslot(kvm, invalid_slot, NULL); 1667 } 1668 1669 static void kvm_move_memslot(struct kvm *kvm, 1670 struct kvm_memory_slot *old, 1671 struct kvm_memory_slot *new, 1672 struct kvm_memory_slot *invalid_slot) 1673 { 1674 /* 1675 * Replace the old memslot in the inactive slots, and then swap slots 1676 * and replace the current INVALID with the new as well. 1677 */ 1678 kvm_replace_memslot(kvm, old, new); 1679 kvm_activate_memslot(kvm, invalid_slot, new); 1680 } 1681 1682 static void kvm_update_flags_memslot(struct kvm *kvm, 1683 struct kvm_memory_slot *old, 1684 struct kvm_memory_slot *new) 1685 { 1686 /* 1687 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1688 * an intermediate step. Instead, the old memslot is simply replaced 1689 * with a new, updated copy in both memslot sets. 1690 */ 1691 kvm_replace_memslot(kvm, old, new); 1692 kvm_activate_memslot(kvm, old, new); 1693 } 1694 1695 static int kvm_set_memslot(struct kvm *kvm, 1696 struct kvm_memory_slot *old, 1697 struct kvm_memory_slot *new, 1698 enum kvm_mr_change change) 1699 { 1700 struct kvm_memory_slot *invalid_slot; 1701 int r; 1702 1703 /* 1704 * Released in kvm_swap_active_memslots. 1705 * 1706 * Must be held from before the current memslots are copied until 1707 * after the new memslots are installed with rcu_assign_pointer, 1708 * then released before the synchronize srcu in kvm_swap_active_memslots. 1709 * 1710 * When modifying memslots outside of the slots_lock, must be held 1711 * before reading the pointer to the current memslots until after all 1712 * changes to those memslots are complete. 1713 * 1714 * These rules ensure that installing new memslots does not lose 1715 * changes made to the previous memslots. 1716 */ 1717 mutex_lock(&kvm->slots_arch_lock); 1718 1719 /* 1720 * Invalidate the old slot if it's being deleted or moved. This is 1721 * done prior to actually deleting/moving the memslot to allow vCPUs to 1722 * continue running by ensuring there are no mappings or shadow pages 1723 * for the memslot when it is deleted/moved. Without pre-invalidation 1724 * (and without a lock), a window would exist between effecting the 1725 * delete/move and committing the changes in arch code where KVM or a 1726 * guest could access a non-existent memslot. 1727 * 1728 * Modifications are done on a temporary, unreachable slot. The old 1729 * slot needs to be preserved in case a later step fails and the 1730 * invalidation needs to be reverted. 1731 */ 1732 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1733 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1734 if (!invalid_slot) { 1735 mutex_unlock(&kvm->slots_arch_lock); 1736 return -ENOMEM; 1737 } 1738 kvm_invalidate_memslot(kvm, old, invalid_slot); 1739 } 1740 1741 r = kvm_prepare_memory_region(kvm, old, new, change); 1742 if (r) { 1743 /* 1744 * For DELETE/MOVE, revert the above INVALID change. No 1745 * modifications required since the original slot was preserved 1746 * in the inactive slots. Changing the active memslots also 1747 * release slots_arch_lock. 1748 */ 1749 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1750 kvm_activate_memslot(kvm, invalid_slot, old); 1751 kfree(invalid_slot); 1752 } else { 1753 mutex_unlock(&kvm->slots_arch_lock); 1754 } 1755 return r; 1756 } 1757 1758 /* 1759 * For DELETE and MOVE, the working slot is now active as the INVALID 1760 * version of the old slot. MOVE is particularly special as it reuses 1761 * the old slot and returns a copy of the old slot (in working_slot). 1762 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1763 * old slot is detached but otherwise preserved. 1764 */ 1765 if (change == KVM_MR_CREATE) 1766 kvm_create_memslot(kvm, new); 1767 else if (change == KVM_MR_DELETE) 1768 kvm_delete_memslot(kvm, old, invalid_slot); 1769 else if (change == KVM_MR_MOVE) 1770 kvm_move_memslot(kvm, old, new, invalid_slot); 1771 else if (change == KVM_MR_FLAGS_ONLY) 1772 kvm_update_flags_memslot(kvm, old, new); 1773 else 1774 BUG(); 1775 1776 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1777 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1778 kfree(invalid_slot); 1779 1780 /* 1781 * No need to refresh new->arch, changes after dropping slots_arch_lock 1782 * will directly hit the final, active memsot. Architectures are 1783 * responsible for knowing that new->arch may be stale. 1784 */ 1785 kvm_commit_memory_region(kvm, old, new, change); 1786 1787 return 0; 1788 } 1789 1790 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1791 gfn_t start, gfn_t end) 1792 { 1793 struct kvm_memslot_iter iter; 1794 1795 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1796 if (iter.slot->id != id) 1797 return true; 1798 } 1799 1800 return false; 1801 } 1802 1803 /* 1804 * Allocate some memory and give it an address in the guest physical address 1805 * space. 1806 * 1807 * Discontiguous memory is allowed, mostly for framebuffers. 1808 * 1809 * Must be called holding kvm->slots_lock for write. 1810 */ 1811 int __kvm_set_memory_region(struct kvm *kvm, 1812 const struct kvm_userspace_memory_region *mem) 1813 { 1814 struct kvm_memory_slot *old, *new; 1815 struct kvm_memslots *slots; 1816 enum kvm_mr_change change; 1817 unsigned long npages; 1818 gfn_t base_gfn; 1819 int as_id, id; 1820 int r; 1821 1822 r = check_memory_region_flags(mem); 1823 if (r) 1824 return r; 1825 1826 as_id = mem->slot >> 16; 1827 id = (u16)mem->slot; 1828 1829 /* General sanity checks */ 1830 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1831 (mem->memory_size != (unsigned long)mem->memory_size)) 1832 return -EINVAL; 1833 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1834 return -EINVAL; 1835 /* We can read the guest memory with __xxx_user() later on. */ 1836 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1837 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1838 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1839 mem->memory_size)) 1840 return -EINVAL; 1841 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1842 return -EINVAL; 1843 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1844 return -EINVAL; 1845 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1846 return -EINVAL; 1847 1848 slots = __kvm_memslots(kvm, as_id); 1849 1850 /* 1851 * Note, the old memslot (and the pointer itself!) may be invalidated 1852 * and/or destroyed by kvm_set_memslot(). 1853 */ 1854 old = id_to_memslot(slots, id); 1855 1856 if (!mem->memory_size) { 1857 if (!old || !old->npages) 1858 return -EINVAL; 1859 1860 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1861 return -EIO; 1862 1863 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1864 } 1865 1866 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1867 npages = (mem->memory_size >> PAGE_SHIFT); 1868 1869 if (!old || !old->npages) { 1870 change = KVM_MR_CREATE; 1871 1872 /* 1873 * To simplify KVM internals, the total number of pages across 1874 * all memslots must fit in an unsigned long. 1875 */ 1876 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1877 return -EINVAL; 1878 } else { /* Modify an existing slot. */ 1879 if ((mem->userspace_addr != old->userspace_addr) || 1880 (npages != old->npages) || 1881 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1882 return -EINVAL; 1883 1884 if (base_gfn != old->base_gfn) 1885 change = KVM_MR_MOVE; 1886 else if (mem->flags != old->flags) 1887 change = KVM_MR_FLAGS_ONLY; 1888 else /* Nothing to change. */ 1889 return 0; 1890 } 1891 1892 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1893 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1894 return -EEXIST; 1895 1896 /* Allocate a slot that will persist in the memslot. */ 1897 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1898 if (!new) 1899 return -ENOMEM; 1900 1901 new->as_id = as_id; 1902 new->id = id; 1903 new->base_gfn = base_gfn; 1904 new->npages = npages; 1905 new->flags = mem->flags; 1906 new->userspace_addr = mem->userspace_addr; 1907 1908 r = kvm_set_memslot(kvm, old, new, change); 1909 if (r) 1910 kfree(new); 1911 return r; 1912 } 1913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1914 1915 int kvm_set_memory_region(struct kvm *kvm, 1916 const struct kvm_userspace_memory_region *mem) 1917 { 1918 int r; 1919 1920 mutex_lock(&kvm->slots_lock); 1921 r = __kvm_set_memory_region(kvm, mem); 1922 mutex_unlock(&kvm->slots_lock); 1923 return r; 1924 } 1925 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1926 1927 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1928 struct kvm_userspace_memory_region *mem) 1929 { 1930 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1931 return -EINVAL; 1932 1933 return kvm_set_memory_region(kvm, mem); 1934 } 1935 1936 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1937 /** 1938 * kvm_get_dirty_log - get a snapshot of dirty pages 1939 * @kvm: pointer to kvm instance 1940 * @log: slot id and address to which we copy the log 1941 * @is_dirty: set to '1' if any dirty pages were found 1942 * @memslot: set to the associated memslot, always valid on success 1943 */ 1944 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1945 int *is_dirty, struct kvm_memory_slot **memslot) 1946 { 1947 struct kvm_memslots *slots; 1948 int i, as_id, id; 1949 unsigned long n; 1950 unsigned long any = 0; 1951 1952 /* Dirty ring tracking is exclusive to dirty log tracking */ 1953 if (kvm->dirty_ring_size) 1954 return -ENXIO; 1955 1956 *memslot = NULL; 1957 *is_dirty = 0; 1958 1959 as_id = log->slot >> 16; 1960 id = (u16)log->slot; 1961 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1962 return -EINVAL; 1963 1964 slots = __kvm_memslots(kvm, as_id); 1965 *memslot = id_to_memslot(slots, id); 1966 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1967 return -ENOENT; 1968 1969 kvm_arch_sync_dirty_log(kvm, *memslot); 1970 1971 n = kvm_dirty_bitmap_bytes(*memslot); 1972 1973 for (i = 0; !any && i < n/sizeof(long); ++i) 1974 any = (*memslot)->dirty_bitmap[i]; 1975 1976 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1977 return -EFAULT; 1978 1979 if (any) 1980 *is_dirty = 1; 1981 return 0; 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1984 1985 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1986 /** 1987 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1988 * and reenable dirty page tracking for the corresponding pages. 1989 * @kvm: pointer to kvm instance 1990 * @log: slot id and address to which we copy the log 1991 * 1992 * We need to keep it in mind that VCPU threads can write to the bitmap 1993 * concurrently. So, to avoid losing track of dirty pages we keep the 1994 * following order: 1995 * 1996 * 1. Take a snapshot of the bit and clear it if needed. 1997 * 2. Write protect the corresponding page. 1998 * 3. Copy the snapshot to the userspace. 1999 * 4. Upon return caller flushes TLB's if needed. 2000 * 2001 * Between 2 and 4, the guest may write to the page using the remaining TLB 2002 * entry. This is not a problem because the page is reported dirty using 2003 * the snapshot taken before and step 4 ensures that writes done after 2004 * exiting to userspace will be logged for the next call. 2005 * 2006 */ 2007 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2008 { 2009 struct kvm_memslots *slots; 2010 struct kvm_memory_slot *memslot; 2011 int i, as_id, id; 2012 unsigned long n; 2013 unsigned long *dirty_bitmap; 2014 unsigned long *dirty_bitmap_buffer; 2015 bool flush; 2016 2017 /* Dirty ring tracking is exclusive to dirty log tracking */ 2018 if (kvm->dirty_ring_size) 2019 return -ENXIO; 2020 2021 as_id = log->slot >> 16; 2022 id = (u16)log->slot; 2023 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2024 return -EINVAL; 2025 2026 slots = __kvm_memslots(kvm, as_id); 2027 memslot = id_to_memslot(slots, id); 2028 if (!memslot || !memslot->dirty_bitmap) 2029 return -ENOENT; 2030 2031 dirty_bitmap = memslot->dirty_bitmap; 2032 2033 kvm_arch_sync_dirty_log(kvm, memslot); 2034 2035 n = kvm_dirty_bitmap_bytes(memslot); 2036 flush = false; 2037 if (kvm->manual_dirty_log_protect) { 2038 /* 2039 * Unlike kvm_get_dirty_log, we always return false in *flush, 2040 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2041 * is some code duplication between this function and 2042 * kvm_get_dirty_log, but hopefully all architecture 2043 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2044 * can be eliminated. 2045 */ 2046 dirty_bitmap_buffer = dirty_bitmap; 2047 } else { 2048 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2049 memset(dirty_bitmap_buffer, 0, n); 2050 2051 KVM_MMU_LOCK(kvm); 2052 for (i = 0; i < n / sizeof(long); i++) { 2053 unsigned long mask; 2054 gfn_t offset; 2055 2056 if (!dirty_bitmap[i]) 2057 continue; 2058 2059 flush = true; 2060 mask = xchg(&dirty_bitmap[i], 0); 2061 dirty_bitmap_buffer[i] = mask; 2062 2063 offset = i * BITS_PER_LONG; 2064 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2065 offset, mask); 2066 } 2067 KVM_MMU_UNLOCK(kvm); 2068 } 2069 2070 if (flush) 2071 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2072 2073 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2074 return -EFAULT; 2075 return 0; 2076 } 2077 2078 2079 /** 2080 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2081 * @kvm: kvm instance 2082 * @log: slot id and address to which we copy the log 2083 * 2084 * Steps 1-4 below provide general overview of dirty page logging. See 2085 * kvm_get_dirty_log_protect() function description for additional details. 2086 * 2087 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2088 * always flush the TLB (step 4) even if previous step failed and the dirty 2089 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2090 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2091 * writes will be marked dirty for next log read. 2092 * 2093 * 1. Take a snapshot of the bit and clear it if needed. 2094 * 2. Write protect the corresponding page. 2095 * 3. Copy the snapshot to the userspace. 2096 * 4. Flush TLB's if needed. 2097 */ 2098 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2099 struct kvm_dirty_log *log) 2100 { 2101 int r; 2102 2103 mutex_lock(&kvm->slots_lock); 2104 2105 r = kvm_get_dirty_log_protect(kvm, log); 2106 2107 mutex_unlock(&kvm->slots_lock); 2108 return r; 2109 } 2110 2111 /** 2112 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2113 * and reenable dirty page tracking for the corresponding pages. 2114 * @kvm: pointer to kvm instance 2115 * @log: slot id and address from which to fetch the bitmap of dirty pages 2116 */ 2117 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2118 struct kvm_clear_dirty_log *log) 2119 { 2120 struct kvm_memslots *slots; 2121 struct kvm_memory_slot *memslot; 2122 int as_id, id; 2123 gfn_t offset; 2124 unsigned long i, n; 2125 unsigned long *dirty_bitmap; 2126 unsigned long *dirty_bitmap_buffer; 2127 bool flush; 2128 2129 /* Dirty ring tracking is exclusive to dirty log tracking */ 2130 if (kvm->dirty_ring_size) 2131 return -ENXIO; 2132 2133 as_id = log->slot >> 16; 2134 id = (u16)log->slot; 2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2136 return -EINVAL; 2137 2138 if (log->first_page & 63) 2139 return -EINVAL; 2140 2141 slots = __kvm_memslots(kvm, as_id); 2142 memslot = id_to_memslot(slots, id); 2143 if (!memslot || !memslot->dirty_bitmap) 2144 return -ENOENT; 2145 2146 dirty_bitmap = memslot->dirty_bitmap; 2147 2148 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2149 2150 if (log->first_page > memslot->npages || 2151 log->num_pages > memslot->npages - log->first_page || 2152 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2153 return -EINVAL; 2154 2155 kvm_arch_sync_dirty_log(kvm, memslot); 2156 2157 flush = false; 2158 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2159 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2160 return -EFAULT; 2161 2162 KVM_MMU_LOCK(kvm); 2163 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2164 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2165 i++, offset += BITS_PER_LONG) { 2166 unsigned long mask = *dirty_bitmap_buffer++; 2167 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2168 if (!mask) 2169 continue; 2170 2171 mask &= atomic_long_fetch_andnot(mask, p); 2172 2173 /* 2174 * mask contains the bits that really have been cleared. This 2175 * never includes any bits beyond the length of the memslot (if 2176 * the length is not aligned to 64 pages), therefore it is not 2177 * a problem if userspace sets them in log->dirty_bitmap. 2178 */ 2179 if (mask) { 2180 flush = true; 2181 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2182 offset, mask); 2183 } 2184 } 2185 KVM_MMU_UNLOCK(kvm); 2186 2187 if (flush) 2188 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2189 2190 return 0; 2191 } 2192 2193 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2194 struct kvm_clear_dirty_log *log) 2195 { 2196 int r; 2197 2198 mutex_lock(&kvm->slots_lock); 2199 2200 r = kvm_clear_dirty_log_protect(kvm, log); 2201 2202 mutex_unlock(&kvm->slots_lock); 2203 return r; 2204 } 2205 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2206 2207 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2208 { 2209 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2210 } 2211 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2212 2213 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2214 { 2215 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2216 u64 gen = slots->generation; 2217 struct kvm_memory_slot *slot; 2218 2219 /* 2220 * This also protects against using a memslot from a different address space, 2221 * since different address spaces have different generation numbers. 2222 */ 2223 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2224 vcpu->last_used_slot = NULL; 2225 vcpu->last_used_slot_gen = gen; 2226 } 2227 2228 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2229 if (slot) 2230 return slot; 2231 2232 /* 2233 * Fall back to searching all memslots. We purposely use 2234 * search_memslots() instead of __gfn_to_memslot() to avoid 2235 * thrashing the VM-wide last_used_slot in kvm_memslots. 2236 */ 2237 slot = search_memslots(slots, gfn, false); 2238 if (slot) { 2239 vcpu->last_used_slot = slot; 2240 return slot; 2241 } 2242 2243 return NULL; 2244 } 2245 2246 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2247 { 2248 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2249 2250 return kvm_is_visible_memslot(memslot); 2251 } 2252 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2253 2254 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2255 { 2256 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2257 2258 return kvm_is_visible_memslot(memslot); 2259 } 2260 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2261 2262 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2263 { 2264 struct vm_area_struct *vma; 2265 unsigned long addr, size; 2266 2267 size = PAGE_SIZE; 2268 2269 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2270 if (kvm_is_error_hva(addr)) 2271 return PAGE_SIZE; 2272 2273 mmap_read_lock(current->mm); 2274 vma = find_vma(current->mm, addr); 2275 if (!vma) 2276 goto out; 2277 2278 size = vma_kernel_pagesize(vma); 2279 2280 out: 2281 mmap_read_unlock(current->mm); 2282 2283 return size; 2284 } 2285 2286 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2287 { 2288 return slot->flags & KVM_MEM_READONLY; 2289 } 2290 2291 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2292 gfn_t *nr_pages, bool write) 2293 { 2294 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2295 return KVM_HVA_ERR_BAD; 2296 2297 if (memslot_is_readonly(slot) && write) 2298 return KVM_HVA_ERR_RO_BAD; 2299 2300 if (nr_pages) 2301 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2302 2303 return __gfn_to_hva_memslot(slot, gfn); 2304 } 2305 2306 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2307 gfn_t *nr_pages) 2308 { 2309 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2310 } 2311 2312 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2313 gfn_t gfn) 2314 { 2315 return gfn_to_hva_many(slot, gfn, NULL); 2316 } 2317 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2318 2319 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2320 { 2321 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2322 } 2323 EXPORT_SYMBOL_GPL(gfn_to_hva); 2324 2325 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2326 { 2327 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2328 } 2329 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2330 2331 /* 2332 * Return the hva of a @gfn and the R/W attribute if possible. 2333 * 2334 * @slot: the kvm_memory_slot which contains @gfn 2335 * @gfn: the gfn to be translated 2336 * @writable: used to return the read/write attribute of the @slot if the hva 2337 * is valid and @writable is not NULL 2338 */ 2339 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2340 gfn_t gfn, bool *writable) 2341 { 2342 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2343 2344 if (!kvm_is_error_hva(hva) && writable) 2345 *writable = !memslot_is_readonly(slot); 2346 2347 return hva; 2348 } 2349 2350 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2351 { 2352 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2353 2354 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2355 } 2356 2357 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2358 { 2359 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2360 2361 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2362 } 2363 2364 static inline int check_user_page_hwpoison(unsigned long addr) 2365 { 2366 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2367 2368 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2369 return rc == -EHWPOISON; 2370 } 2371 2372 /* 2373 * The fast path to get the writable pfn which will be stored in @pfn, 2374 * true indicates success, otherwise false is returned. It's also the 2375 * only part that runs if we can in atomic context. 2376 */ 2377 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2378 bool *writable, kvm_pfn_t *pfn) 2379 { 2380 struct page *page[1]; 2381 2382 /* 2383 * Fast pin a writable pfn only if it is a write fault request 2384 * or the caller allows to map a writable pfn for a read fault 2385 * request. 2386 */ 2387 if (!(write_fault || writable)) 2388 return false; 2389 2390 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2391 *pfn = page_to_pfn(page[0]); 2392 2393 if (writable) 2394 *writable = true; 2395 return true; 2396 } 2397 2398 return false; 2399 } 2400 2401 /* 2402 * The slow path to get the pfn of the specified host virtual address, 2403 * 1 indicates success, -errno is returned if error is detected. 2404 */ 2405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2406 bool *writable, kvm_pfn_t *pfn) 2407 { 2408 unsigned int flags = FOLL_HWPOISON; 2409 struct page *page; 2410 int npages = 0; 2411 2412 might_sleep(); 2413 2414 if (writable) 2415 *writable = write_fault; 2416 2417 if (write_fault) 2418 flags |= FOLL_WRITE; 2419 if (async) 2420 flags |= FOLL_NOWAIT; 2421 2422 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2423 if (npages != 1) 2424 return npages; 2425 2426 /* map read fault as writable if possible */ 2427 if (unlikely(!write_fault) && writable) { 2428 struct page *wpage; 2429 2430 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2431 *writable = true; 2432 put_page(page); 2433 page = wpage; 2434 } 2435 } 2436 *pfn = page_to_pfn(page); 2437 return npages; 2438 } 2439 2440 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2441 { 2442 if (unlikely(!(vma->vm_flags & VM_READ))) 2443 return false; 2444 2445 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2446 return false; 2447 2448 return true; 2449 } 2450 2451 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2452 { 2453 if (kvm_is_reserved_pfn(pfn)) 2454 return 1; 2455 return get_page_unless_zero(pfn_to_page(pfn)); 2456 } 2457 2458 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2459 unsigned long addr, bool write_fault, 2460 bool *writable, kvm_pfn_t *p_pfn) 2461 { 2462 kvm_pfn_t pfn; 2463 pte_t *ptep; 2464 spinlock_t *ptl; 2465 int r; 2466 2467 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2468 if (r) { 2469 /* 2470 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2471 * not call the fault handler, so do it here. 2472 */ 2473 bool unlocked = false; 2474 r = fixup_user_fault(current->mm, addr, 2475 (write_fault ? FAULT_FLAG_WRITE : 0), 2476 &unlocked); 2477 if (unlocked) 2478 return -EAGAIN; 2479 if (r) 2480 return r; 2481 2482 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2483 if (r) 2484 return r; 2485 } 2486 2487 if (write_fault && !pte_write(*ptep)) { 2488 pfn = KVM_PFN_ERR_RO_FAULT; 2489 goto out; 2490 } 2491 2492 if (writable) 2493 *writable = pte_write(*ptep); 2494 pfn = pte_pfn(*ptep); 2495 2496 /* 2497 * Get a reference here because callers of *hva_to_pfn* and 2498 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2499 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2500 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2501 * simply do nothing for reserved pfns. 2502 * 2503 * Whoever called remap_pfn_range is also going to call e.g. 2504 * unmap_mapping_range before the underlying pages are freed, 2505 * causing a call to our MMU notifier. 2506 * 2507 * Certain IO or PFNMAP mappings can be backed with valid 2508 * struct pages, but be allocated without refcounting e.g., 2509 * tail pages of non-compound higher order allocations, which 2510 * would then underflow the refcount when the caller does the 2511 * required put_page. Don't allow those pages here. 2512 */ 2513 if (!kvm_try_get_pfn(pfn)) 2514 r = -EFAULT; 2515 2516 out: 2517 pte_unmap_unlock(ptep, ptl); 2518 *p_pfn = pfn; 2519 2520 return r; 2521 } 2522 2523 /* 2524 * Pin guest page in memory and return its pfn. 2525 * @addr: host virtual address which maps memory to the guest 2526 * @atomic: whether this function can sleep 2527 * @async: whether this function need to wait IO complete if the 2528 * host page is not in the memory 2529 * @write_fault: whether we should get a writable host page 2530 * @writable: whether it allows to map a writable host page for !@write_fault 2531 * 2532 * The function will map a writable host page for these two cases: 2533 * 1): @write_fault = true 2534 * 2): @write_fault = false && @writable, @writable will tell the caller 2535 * whether the mapping is writable. 2536 */ 2537 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2538 bool write_fault, bool *writable) 2539 { 2540 struct vm_area_struct *vma; 2541 kvm_pfn_t pfn = 0; 2542 int npages, r; 2543 2544 /* we can do it either atomically or asynchronously, not both */ 2545 BUG_ON(atomic && async); 2546 2547 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2548 return pfn; 2549 2550 if (atomic) 2551 return KVM_PFN_ERR_FAULT; 2552 2553 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2554 if (npages == 1) 2555 return pfn; 2556 2557 mmap_read_lock(current->mm); 2558 if (npages == -EHWPOISON || 2559 (!async && check_user_page_hwpoison(addr))) { 2560 pfn = KVM_PFN_ERR_HWPOISON; 2561 goto exit; 2562 } 2563 2564 retry: 2565 vma = vma_lookup(current->mm, addr); 2566 2567 if (vma == NULL) 2568 pfn = KVM_PFN_ERR_FAULT; 2569 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2570 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2571 if (r == -EAGAIN) 2572 goto retry; 2573 if (r < 0) 2574 pfn = KVM_PFN_ERR_FAULT; 2575 } else { 2576 if (async && vma_is_valid(vma, write_fault)) 2577 *async = true; 2578 pfn = KVM_PFN_ERR_FAULT; 2579 } 2580 exit: 2581 mmap_read_unlock(current->mm); 2582 return pfn; 2583 } 2584 2585 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2586 bool atomic, bool *async, bool write_fault, 2587 bool *writable, hva_t *hva) 2588 { 2589 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2590 2591 if (hva) 2592 *hva = addr; 2593 2594 if (addr == KVM_HVA_ERR_RO_BAD) { 2595 if (writable) 2596 *writable = false; 2597 return KVM_PFN_ERR_RO_FAULT; 2598 } 2599 2600 if (kvm_is_error_hva(addr)) { 2601 if (writable) 2602 *writable = false; 2603 return KVM_PFN_NOSLOT; 2604 } 2605 2606 /* Do not map writable pfn in the readonly memslot. */ 2607 if (writable && memslot_is_readonly(slot)) { 2608 *writable = false; 2609 writable = NULL; 2610 } 2611 2612 return hva_to_pfn(addr, atomic, async, write_fault, 2613 writable); 2614 } 2615 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2616 2617 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2618 bool *writable) 2619 { 2620 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2621 write_fault, writable, NULL); 2622 } 2623 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2624 2625 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2626 { 2627 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2628 } 2629 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2630 2631 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2632 { 2633 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2634 } 2635 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2636 2637 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2638 { 2639 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2640 } 2641 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2642 2643 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2644 { 2645 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2646 } 2647 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2648 2649 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2650 { 2651 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2652 } 2653 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2654 2655 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2656 struct page **pages, int nr_pages) 2657 { 2658 unsigned long addr; 2659 gfn_t entry = 0; 2660 2661 addr = gfn_to_hva_many(slot, gfn, &entry); 2662 if (kvm_is_error_hva(addr)) 2663 return -1; 2664 2665 if (entry < nr_pages) 2666 return 0; 2667 2668 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2669 } 2670 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2671 2672 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2673 { 2674 if (is_error_noslot_pfn(pfn)) 2675 return KVM_ERR_PTR_BAD_PAGE; 2676 2677 if (kvm_is_reserved_pfn(pfn)) { 2678 WARN_ON(1); 2679 return KVM_ERR_PTR_BAD_PAGE; 2680 } 2681 2682 return pfn_to_page(pfn); 2683 } 2684 2685 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2686 { 2687 kvm_pfn_t pfn; 2688 2689 pfn = gfn_to_pfn(kvm, gfn); 2690 2691 return kvm_pfn_to_page(pfn); 2692 } 2693 EXPORT_SYMBOL_GPL(gfn_to_page); 2694 2695 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2696 { 2697 if (pfn == 0) 2698 return; 2699 2700 if (dirty) 2701 kvm_release_pfn_dirty(pfn); 2702 else 2703 kvm_release_pfn_clean(pfn); 2704 } 2705 2706 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2707 { 2708 kvm_pfn_t pfn; 2709 void *hva = NULL; 2710 struct page *page = KVM_UNMAPPED_PAGE; 2711 2712 if (!map) 2713 return -EINVAL; 2714 2715 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2716 if (is_error_noslot_pfn(pfn)) 2717 return -EINVAL; 2718 2719 if (pfn_valid(pfn)) { 2720 page = pfn_to_page(pfn); 2721 hva = kmap(page); 2722 #ifdef CONFIG_HAS_IOMEM 2723 } else { 2724 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2725 #endif 2726 } 2727 2728 if (!hva) 2729 return -EFAULT; 2730 2731 map->page = page; 2732 map->hva = hva; 2733 map->pfn = pfn; 2734 map->gfn = gfn; 2735 2736 return 0; 2737 } 2738 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2739 2740 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2741 { 2742 if (!map) 2743 return; 2744 2745 if (!map->hva) 2746 return; 2747 2748 if (map->page != KVM_UNMAPPED_PAGE) 2749 kunmap(map->page); 2750 #ifdef CONFIG_HAS_IOMEM 2751 else 2752 memunmap(map->hva); 2753 #endif 2754 2755 if (dirty) 2756 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2757 2758 kvm_release_pfn(map->pfn, dirty); 2759 2760 map->hva = NULL; 2761 map->page = NULL; 2762 } 2763 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2764 2765 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2766 { 2767 kvm_pfn_t pfn; 2768 2769 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2770 2771 return kvm_pfn_to_page(pfn); 2772 } 2773 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2774 2775 void kvm_release_page_clean(struct page *page) 2776 { 2777 WARN_ON(is_error_page(page)); 2778 2779 kvm_release_pfn_clean(page_to_pfn(page)); 2780 } 2781 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2782 2783 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2784 { 2785 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2786 put_page(pfn_to_page(pfn)); 2787 } 2788 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2789 2790 void kvm_release_page_dirty(struct page *page) 2791 { 2792 WARN_ON(is_error_page(page)); 2793 2794 kvm_release_pfn_dirty(page_to_pfn(page)); 2795 } 2796 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2797 2798 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2799 { 2800 kvm_set_pfn_dirty(pfn); 2801 kvm_release_pfn_clean(pfn); 2802 } 2803 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2804 2805 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2806 { 2807 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2808 SetPageDirty(pfn_to_page(pfn)); 2809 } 2810 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2811 2812 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2813 { 2814 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2815 mark_page_accessed(pfn_to_page(pfn)); 2816 } 2817 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2818 2819 static int next_segment(unsigned long len, int offset) 2820 { 2821 if (len > PAGE_SIZE - offset) 2822 return PAGE_SIZE - offset; 2823 else 2824 return len; 2825 } 2826 2827 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2828 void *data, int offset, int len) 2829 { 2830 int r; 2831 unsigned long addr; 2832 2833 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2834 if (kvm_is_error_hva(addr)) 2835 return -EFAULT; 2836 r = __copy_from_user(data, (void __user *)addr + offset, len); 2837 if (r) 2838 return -EFAULT; 2839 return 0; 2840 } 2841 2842 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2843 int len) 2844 { 2845 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2846 2847 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2848 } 2849 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2850 2851 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2852 int offset, int len) 2853 { 2854 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2855 2856 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2857 } 2858 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2859 2860 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2861 { 2862 gfn_t gfn = gpa >> PAGE_SHIFT; 2863 int seg; 2864 int offset = offset_in_page(gpa); 2865 int ret; 2866 2867 while ((seg = next_segment(len, offset)) != 0) { 2868 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2869 if (ret < 0) 2870 return ret; 2871 offset = 0; 2872 len -= seg; 2873 data += seg; 2874 ++gfn; 2875 } 2876 return 0; 2877 } 2878 EXPORT_SYMBOL_GPL(kvm_read_guest); 2879 2880 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2881 { 2882 gfn_t gfn = gpa >> PAGE_SHIFT; 2883 int seg; 2884 int offset = offset_in_page(gpa); 2885 int ret; 2886 2887 while ((seg = next_segment(len, offset)) != 0) { 2888 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2889 if (ret < 0) 2890 return ret; 2891 offset = 0; 2892 len -= seg; 2893 data += seg; 2894 ++gfn; 2895 } 2896 return 0; 2897 } 2898 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2899 2900 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2901 void *data, int offset, unsigned long len) 2902 { 2903 int r; 2904 unsigned long addr; 2905 2906 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2907 if (kvm_is_error_hva(addr)) 2908 return -EFAULT; 2909 pagefault_disable(); 2910 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2911 pagefault_enable(); 2912 if (r) 2913 return -EFAULT; 2914 return 0; 2915 } 2916 2917 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2918 void *data, unsigned long len) 2919 { 2920 gfn_t gfn = gpa >> PAGE_SHIFT; 2921 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2922 int offset = offset_in_page(gpa); 2923 2924 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2925 } 2926 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2927 2928 static int __kvm_write_guest_page(struct kvm *kvm, 2929 struct kvm_memory_slot *memslot, gfn_t gfn, 2930 const void *data, int offset, int len) 2931 { 2932 int r; 2933 unsigned long addr; 2934 2935 addr = gfn_to_hva_memslot(memslot, gfn); 2936 if (kvm_is_error_hva(addr)) 2937 return -EFAULT; 2938 r = __copy_to_user((void __user *)addr + offset, data, len); 2939 if (r) 2940 return -EFAULT; 2941 mark_page_dirty_in_slot(kvm, memslot, gfn); 2942 return 0; 2943 } 2944 2945 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2946 const void *data, int offset, int len) 2947 { 2948 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2949 2950 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2951 } 2952 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2953 2954 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2955 const void *data, int offset, int len) 2956 { 2957 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2958 2959 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2960 } 2961 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2962 2963 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2964 unsigned long len) 2965 { 2966 gfn_t gfn = gpa >> PAGE_SHIFT; 2967 int seg; 2968 int offset = offset_in_page(gpa); 2969 int ret; 2970 2971 while ((seg = next_segment(len, offset)) != 0) { 2972 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2973 if (ret < 0) 2974 return ret; 2975 offset = 0; 2976 len -= seg; 2977 data += seg; 2978 ++gfn; 2979 } 2980 return 0; 2981 } 2982 EXPORT_SYMBOL_GPL(kvm_write_guest); 2983 2984 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2985 unsigned long len) 2986 { 2987 gfn_t gfn = gpa >> PAGE_SHIFT; 2988 int seg; 2989 int offset = offset_in_page(gpa); 2990 int ret; 2991 2992 while ((seg = next_segment(len, offset)) != 0) { 2993 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2994 if (ret < 0) 2995 return ret; 2996 offset = 0; 2997 len -= seg; 2998 data += seg; 2999 ++gfn; 3000 } 3001 return 0; 3002 } 3003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3004 3005 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3006 struct gfn_to_hva_cache *ghc, 3007 gpa_t gpa, unsigned long len) 3008 { 3009 int offset = offset_in_page(gpa); 3010 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3011 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3012 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3013 gfn_t nr_pages_avail; 3014 3015 /* Update ghc->generation before performing any error checks. */ 3016 ghc->generation = slots->generation; 3017 3018 if (start_gfn > end_gfn) { 3019 ghc->hva = KVM_HVA_ERR_BAD; 3020 return -EINVAL; 3021 } 3022 3023 /* 3024 * If the requested region crosses two memslots, we still 3025 * verify that the entire region is valid here. 3026 */ 3027 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3028 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3029 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3030 &nr_pages_avail); 3031 if (kvm_is_error_hva(ghc->hva)) 3032 return -EFAULT; 3033 } 3034 3035 /* Use the slow path for cross page reads and writes. */ 3036 if (nr_pages_needed == 1) 3037 ghc->hva += offset; 3038 else 3039 ghc->memslot = NULL; 3040 3041 ghc->gpa = gpa; 3042 ghc->len = len; 3043 return 0; 3044 } 3045 3046 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3047 gpa_t gpa, unsigned long len) 3048 { 3049 struct kvm_memslots *slots = kvm_memslots(kvm); 3050 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3051 } 3052 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3053 3054 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3055 void *data, unsigned int offset, 3056 unsigned long len) 3057 { 3058 struct kvm_memslots *slots = kvm_memslots(kvm); 3059 int r; 3060 gpa_t gpa = ghc->gpa + offset; 3061 3062 if (WARN_ON_ONCE(len + offset > ghc->len)) 3063 return -EINVAL; 3064 3065 if (slots->generation != ghc->generation) { 3066 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3067 return -EFAULT; 3068 } 3069 3070 if (kvm_is_error_hva(ghc->hva)) 3071 return -EFAULT; 3072 3073 if (unlikely(!ghc->memslot)) 3074 return kvm_write_guest(kvm, gpa, data, len); 3075 3076 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3077 if (r) 3078 return -EFAULT; 3079 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3080 3081 return 0; 3082 } 3083 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3084 3085 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3086 void *data, unsigned long len) 3087 { 3088 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3089 } 3090 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3091 3092 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3093 void *data, unsigned int offset, 3094 unsigned long len) 3095 { 3096 struct kvm_memslots *slots = kvm_memslots(kvm); 3097 int r; 3098 gpa_t gpa = ghc->gpa + offset; 3099 3100 if (WARN_ON_ONCE(len + offset > ghc->len)) 3101 return -EINVAL; 3102 3103 if (slots->generation != ghc->generation) { 3104 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3105 return -EFAULT; 3106 } 3107 3108 if (kvm_is_error_hva(ghc->hva)) 3109 return -EFAULT; 3110 3111 if (unlikely(!ghc->memslot)) 3112 return kvm_read_guest(kvm, gpa, data, len); 3113 3114 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3115 if (r) 3116 return -EFAULT; 3117 3118 return 0; 3119 } 3120 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3121 3122 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3123 void *data, unsigned long len) 3124 { 3125 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3126 } 3127 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3128 3129 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3130 { 3131 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3132 gfn_t gfn = gpa >> PAGE_SHIFT; 3133 int seg; 3134 int offset = offset_in_page(gpa); 3135 int ret; 3136 3137 while ((seg = next_segment(len, offset)) != 0) { 3138 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3139 if (ret < 0) 3140 return ret; 3141 offset = 0; 3142 len -= seg; 3143 ++gfn; 3144 } 3145 return 0; 3146 } 3147 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3148 3149 void mark_page_dirty_in_slot(struct kvm *kvm, 3150 const struct kvm_memory_slot *memslot, 3151 gfn_t gfn) 3152 { 3153 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3154 3155 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3156 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3157 return; 3158 #endif 3159 3160 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3161 unsigned long rel_gfn = gfn - memslot->base_gfn; 3162 u32 slot = (memslot->as_id << 16) | memslot->id; 3163 3164 if (kvm->dirty_ring_size) 3165 kvm_dirty_ring_push(&vcpu->dirty_ring, 3166 slot, rel_gfn); 3167 else 3168 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3169 } 3170 } 3171 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3172 3173 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3174 { 3175 struct kvm_memory_slot *memslot; 3176 3177 memslot = gfn_to_memslot(kvm, gfn); 3178 mark_page_dirty_in_slot(kvm, memslot, gfn); 3179 } 3180 EXPORT_SYMBOL_GPL(mark_page_dirty); 3181 3182 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3183 { 3184 struct kvm_memory_slot *memslot; 3185 3186 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3187 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3188 } 3189 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3190 3191 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3192 { 3193 if (!vcpu->sigset_active) 3194 return; 3195 3196 /* 3197 * This does a lockless modification of ->real_blocked, which is fine 3198 * because, only current can change ->real_blocked and all readers of 3199 * ->real_blocked don't care as long ->real_blocked is always a subset 3200 * of ->blocked. 3201 */ 3202 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3203 } 3204 3205 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3206 { 3207 if (!vcpu->sigset_active) 3208 return; 3209 3210 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3211 sigemptyset(¤t->real_blocked); 3212 } 3213 3214 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3215 { 3216 unsigned int old, val, grow, grow_start; 3217 3218 old = val = vcpu->halt_poll_ns; 3219 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3220 grow = READ_ONCE(halt_poll_ns_grow); 3221 if (!grow) 3222 goto out; 3223 3224 val *= grow; 3225 if (val < grow_start) 3226 val = grow_start; 3227 3228 if (val > vcpu->kvm->max_halt_poll_ns) 3229 val = vcpu->kvm->max_halt_poll_ns; 3230 3231 vcpu->halt_poll_ns = val; 3232 out: 3233 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3234 } 3235 3236 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3237 { 3238 unsigned int old, val, shrink, grow_start; 3239 3240 old = val = vcpu->halt_poll_ns; 3241 shrink = READ_ONCE(halt_poll_ns_shrink); 3242 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3243 if (shrink == 0) 3244 val = 0; 3245 else 3246 val /= shrink; 3247 3248 if (val < grow_start) 3249 val = 0; 3250 3251 vcpu->halt_poll_ns = val; 3252 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3253 } 3254 3255 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3256 { 3257 int ret = -EINTR; 3258 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3259 3260 if (kvm_arch_vcpu_runnable(vcpu)) { 3261 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3262 goto out; 3263 } 3264 if (kvm_cpu_has_pending_timer(vcpu)) 3265 goto out; 3266 if (signal_pending(current)) 3267 goto out; 3268 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3269 goto out; 3270 3271 ret = 0; 3272 out: 3273 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3274 return ret; 3275 } 3276 3277 /* 3278 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3279 * pending. This is mostly used when halting a vCPU, but may also be used 3280 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3281 */ 3282 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3283 { 3284 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3285 bool waited = false; 3286 3287 vcpu->stat.generic.blocking = 1; 3288 3289 kvm_arch_vcpu_blocking(vcpu); 3290 3291 prepare_to_rcuwait(wait); 3292 for (;;) { 3293 set_current_state(TASK_INTERRUPTIBLE); 3294 3295 if (kvm_vcpu_check_block(vcpu) < 0) 3296 break; 3297 3298 waited = true; 3299 schedule(); 3300 } 3301 finish_rcuwait(wait); 3302 3303 kvm_arch_vcpu_unblocking(vcpu); 3304 3305 vcpu->stat.generic.blocking = 0; 3306 3307 return waited; 3308 } 3309 3310 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3311 ktime_t end, bool success) 3312 { 3313 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3314 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3315 3316 ++vcpu->stat.generic.halt_attempted_poll; 3317 3318 if (success) { 3319 ++vcpu->stat.generic.halt_successful_poll; 3320 3321 if (!vcpu_valid_wakeup(vcpu)) 3322 ++vcpu->stat.generic.halt_poll_invalid; 3323 3324 stats->halt_poll_success_ns += poll_ns; 3325 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3326 } else { 3327 stats->halt_poll_fail_ns += poll_ns; 3328 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3329 } 3330 } 3331 3332 /* 3333 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3334 * polling is enabled, busy wait for a short time before blocking to avoid the 3335 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3336 * is halted. 3337 */ 3338 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3339 { 3340 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3341 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3342 ktime_t start, cur, poll_end; 3343 bool waited = false; 3344 u64 halt_ns; 3345 3346 start = cur = poll_end = ktime_get(); 3347 if (do_halt_poll) { 3348 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3349 3350 do { 3351 /* 3352 * This sets KVM_REQ_UNHALT if an interrupt 3353 * arrives. 3354 */ 3355 if (kvm_vcpu_check_block(vcpu) < 0) 3356 goto out; 3357 cpu_relax(); 3358 poll_end = cur = ktime_get(); 3359 } while (kvm_vcpu_can_poll(cur, stop)); 3360 } 3361 3362 waited = kvm_vcpu_block(vcpu); 3363 3364 cur = ktime_get(); 3365 if (waited) { 3366 vcpu->stat.generic.halt_wait_ns += 3367 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3368 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3369 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3370 } 3371 out: 3372 /* The total time the vCPU was "halted", including polling time. */ 3373 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3374 3375 /* 3376 * Note, halt-polling is considered successful so long as the vCPU was 3377 * never actually scheduled out, i.e. even if the wake event arrived 3378 * after of the halt-polling loop itself, but before the full wait. 3379 */ 3380 if (do_halt_poll) 3381 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3382 3383 if (halt_poll_allowed) { 3384 if (!vcpu_valid_wakeup(vcpu)) { 3385 shrink_halt_poll_ns(vcpu); 3386 } else if (vcpu->kvm->max_halt_poll_ns) { 3387 if (halt_ns <= vcpu->halt_poll_ns) 3388 ; 3389 /* we had a long block, shrink polling */ 3390 else if (vcpu->halt_poll_ns && 3391 halt_ns > vcpu->kvm->max_halt_poll_ns) 3392 shrink_halt_poll_ns(vcpu); 3393 /* we had a short halt and our poll time is too small */ 3394 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3395 halt_ns < vcpu->kvm->max_halt_poll_ns) 3396 grow_halt_poll_ns(vcpu); 3397 } else { 3398 vcpu->halt_poll_ns = 0; 3399 } 3400 } 3401 3402 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3403 } 3404 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3405 3406 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3407 { 3408 if (__kvm_vcpu_wake_up(vcpu)) { 3409 WRITE_ONCE(vcpu->ready, true); 3410 ++vcpu->stat.generic.halt_wakeup; 3411 return true; 3412 } 3413 3414 return false; 3415 } 3416 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3417 3418 #ifndef CONFIG_S390 3419 /* 3420 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3421 */ 3422 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3423 { 3424 int me, cpu; 3425 3426 if (kvm_vcpu_wake_up(vcpu)) 3427 return; 3428 3429 me = get_cpu(); 3430 /* 3431 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3432 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3433 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3434 * within the vCPU thread itself. 3435 */ 3436 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3437 if (vcpu->mode == IN_GUEST_MODE) 3438 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3439 goto out; 3440 } 3441 3442 /* 3443 * Note, the vCPU could get migrated to a different pCPU at any point 3444 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3445 * IPI to the previous pCPU. But, that's ok because the purpose of the 3446 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3447 * vCPU also requires it to leave IN_GUEST_MODE. 3448 */ 3449 if (kvm_arch_vcpu_should_kick(vcpu)) { 3450 cpu = READ_ONCE(vcpu->cpu); 3451 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3452 smp_send_reschedule(cpu); 3453 } 3454 out: 3455 put_cpu(); 3456 } 3457 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3458 #endif /* !CONFIG_S390 */ 3459 3460 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3461 { 3462 struct pid *pid; 3463 struct task_struct *task = NULL; 3464 int ret = 0; 3465 3466 rcu_read_lock(); 3467 pid = rcu_dereference(target->pid); 3468 if (pid) 3469 task = get_pid_task(pid, PIDTYPE_PID); 3470 rcu_read_unlock(); 3471 if (!task) 3472 return ret; 3473 ret = yield_to(task, 1); 3474 put_task_struct(task); 3475 3476 return ret; 3477 } 3478 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3479 3480 /* 3481 * Helper that checks whether a VCPU is eligible for directed yield. 3482 * Most eligible candidate to yield is decided by following heuristics: 3483 * 3484 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3485 * (preempted lock holder), indicated by @in_spin_loop. 3486 * Set at the beginning and cleared at the end of interception/PLE handler. 3487 * 3488 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3489 * chance last time (mostly it has become eligible now since we have probably 3490 * yielded to lockholder in last iteration. This is done by toggling 3491 * @dy_eligible each time a VCPU checked for eligibility.) 3492 * 3493 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3494 * to preempted lock-holder could result in wrong VCPU selection and CPU 3495 * burning. Giving priority for a potential lock-holder increases lock 3496 * progress. 3497 * 3498 * Since algorithm is based on heuristics, accessing another VCPU data without 3499 * locking does not harm. It may result in trying to yield to same VCPU, fail 3500 * and continue with next VCPU and so on. 3501 */ 3502 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3503 { 3504 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3505 bool eligible; 3506 3507 eligible = !vcpu->spin_loop.in_spin_loop || 3508 vcpu->spin_loop.dy_eligible; 3509 3510 if (vcpu->spin_loop.in_spin_loop) 3511 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3512 3513 return eligible; 3514 #else 3515 return true; 3516 #endif 3517 } 3518 3519 /* 3520 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3521 * a vcpu_load/vcpu_put pair. However, for most architectures 3522 * kvm_arch_vcpu_runnable does not require vcpu_load. 3523 */ 3524 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3525 { 3526 return kvm_arch_vcpu_runnable(vcpu); 3527 } 3528 3529 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3530 { 3531 if (kvm_arch_dy_runnable(vcpu)) 3532 return true; 3533 3534 #ifdef CONFIG_KVM_ASYNC_PF 3535 if (!list_empty_careful(&vcpu->async_pf.done)) 3536 return true; 3537 #endif 3538 3539 return false; 3540 } 3541 3542 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3543 { 3544 return false; 3545 } 3546 3547 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3548 { 3549 struct kvm *kvm = me->kvm; 3550 struct kvm_vcpu *vcpu; 3551 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3552 unsigned long i; 3553 int yielded = 0; 3554 int try = 3; 3555 int pass; 3556 3557 kvm_vcpu_set_in_spin_loop(me, true); 3558 /* 3559 * We boost the priority of a VCPU that is runnable but not 3560 * currently running, because it got preempted by something 3561 * else and called schedule in __vcpu_run. Hopefully that 3562 * VCPU is holding the lock that we need and will release it. 3563 * We approximate round-robin by starting at the last boosted VCPU. 3564 */ 3565 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3566 kvm_for_each_vcpu(i, vcpu, kvm) { 3567 if (!pass && i <= last_boosted_vcpu) { 3568 i = last_boosted_vcpu; 3569 continue; 3570 } else if (pass && i > last_boosted_vcpu) 3571 break; 3572 if (!READ_ONCE(vcpu->ready)) 3573 continue; 3574 if (vcpu == me) 3575 continue; 3576 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3577 continue; 3578 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3579 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3580 !kvm_arch_vcpu_in_kernel(vcpu)) 3581 continue; 3582 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3583 continue; 3584 3585 yielded = kvm_vcpu_yield_to(vcpu); 3586 if (yielded > 0) { 3587 kvm->last_boosted_vcpu = i; 3588 break; 3589 } else if (yielded < 0) { 3590 try--; 3591 if (!try) 3592 break; 3593 } 3594 } 3595 } 3596 kvm_vcpu_set_in_spin_loop(me, false); 3597 3598 /* Ensure vcpu is not eligible during next spinloop */ 3599 kvm_vcpu_set_dy_eligible(me, false); 3600 } 3601 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3602 3603 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3604 { 3605 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3606 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3607 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3608 kvm->dirty_ring_size / PAGE_SIZE); 3609 #else 3610 return false; 3611 #endif 3612 } 3613 3614 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3615 { 3616 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3617 struct page *page; 3618 3619 if (vmf->pgoff == 0) 3620 page = virt_to_page(vcpu->run); 3621 #ifdef CONFIG_X86 3622 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3623 page = virt_to_page(vcpu->arch.pio_data); 3624 #endif 3625 #ifdef CONFIG_KVM_MMIO 3626 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3627 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3628 #endif 3629 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3630 page = kvm_dirty_ring_get_page( 3631 &vcpu->dirty_ring, 3632 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3633 else 3634 return kvm_arch_vcpu_fault(vcpu, vmf); 3635 get_page(page); 3636 vmf->page = page; 3637 return 0; 3638 } 3639 3640 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3641 .fault = kvm_vcpu_fault, 3642 }; 3643 3644 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3645 { 3646 struct kvm_vcpu *vcpu = file->private_data; 3647 unsigned long pages = vma_pages(vma); 3648 3649 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3650 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3651 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3652 return -EINVAL; 3653 3654 vma->vm_ops = &kvm_vcpu_vm_ops; 3655 return 0; 3656 } 3657 3658 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3659 { 3660 struct kvm_vcpu *vcpu = filp->private_data; 3661 3662 kvm_put_kvm(vcpu->kvm); 3663 return 0; 3664 } 3665 3666 static struct file_operations kvm_vcpu_fops = { 3667 .release = kvm_vcpu_release, 3668 .unlocked_ioctl = kvm_vcpu_ioctl, 3669 .mmap = kvm_vcpu_mmap, 3670 .llseek = noop_llseek, 3671 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3672 }; 3673 3674 /* 3675 * Allocates an inode for the vcpu. 3676 */ 3677 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3678 { 3679 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3680 3681 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3682 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3683 } 3684 3685 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3686 { 3687 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3688 struct dentry *debugfs_dentry; 3689 char dir_name[ITOA_MAX_LEN * 2]; 3690 3691 if (!debugfs_initialized()) 3692 return; 3693 3694 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3695 debugfs_dentry = debugfs_create_dir(dir_name, 3696 vcpu->kvm->debugfs_dentry); 3697 3698 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3699 #endif 3700 } 3701 3702 /* 3703 * Creates some virtual cpus. Good luck creating more than one. 3704 */ 3705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3706 { 3707 int r; 3708 struct kvm_vcpu *vcpu; 3709 struct page *page; 3710 3711 if (id >= KVM_MAX_VCPU_IDS) 3712 return -EINVAL; 3713 3714 mutex_lock(&kvm->lock); 3715 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3716 mutex_unlock(&kvm->lock); 3717 return -EINVAL; 3718 } 3719 3720 kvm->created_vcpus++; 3721 mutex_unlock(&kvm->lock); 3722 3723 r = kvm_arch_vcpu_precreate(kvm, id); 3724 if (r) 3725 goto vcpu_decrement; 3726 3727 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3728 if (!vcpu) { 3729 r = -ENOMEM; 3730 goto vcpu_decrement; 3731 } 3732 3733 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3734 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3735 if (!page) { 3736 r = -ENOMEM; 3737 goto vcpu_free; 3738 } 3739 vcpu->run = page_address(page); 3740 3741 kvm_vcpu_init(vcpu, kvm, id); 3742 3743 r = kvm_arch_vcpu_create(vcpu); 3744 if (r) 3745 goto vcpu_free_run_page; 3746 3747 if (kvm->dirty_ring_size) { 3748 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3749 id, kvm->dirty_ring_size); 3750 if (r) 3751 goto arch_vcpu_destroy; 3752 } 3753 3754 mutex_lock(&kvm->lock); 3755 if (kvm_get_vcpu_by_id(kvm, id)) { 3756 r = -EEXIST; 3757 goto unlock_vcpu_destroy; 3758 } 3759 3760 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3761 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3762 BUG_ON(r == -EBUSY); 3763 if (r) 3764 goto unlock_vcpu_destroy; 3765 3766 /* Fill the stats id string for the vcpu */ 3767 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3768 task_pid_nr(current), id); 3769 3770 /* Now it's all set up, let userspace reach it */ 3771 kvm_get_kvm(kvm); 3772 r = create_vcpu_fd(vcpu); 3773 if (r < 0) { 3774 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3775 kvm_put_kvm_no_destroy(kvm); 3776 goto unlock_vcpu_destroy; 3777 } 3778 3779 /* 3780 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3781 * pointer before kvm->online_vcpu's incremented value. 3782 */ 3783 smp_wmb(); 3784 atomic_inc(&kvm->online_vcpus); 3785 3786 mutex_unlock(&kvm->lock); 3787 kvm_arch_vcpu_postcreate(vcpu); 3788 kvm_create_vcpu_debugfs(vcpu); 3789 return r; 3790 3791 unlock_vcpu_destroy: 3792 mutex_unlock(&kvm->lock); 3793 kvm_dirty_ring_free(&vcpu->dirty_ring); 3794 arch_vcpu_destroy: 3795 kvm_arch_vcpu_destroy(vcpu); 3796 vcpu_free_run_page: 3797 free_page((unsigned long)vcpu->run); 3798 vcpu_free: 3799 kmem_cache_free(kvm_vcpu_cache, vcpu); 3800 vcpu_decrement: 3801 mutex_lock(&kvm->lock); 3802 kvm->created_vcpus--; 3803 mutex_unlock(&kvm->lock); 3804 return r; 3805 } 3806 3807 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3808 { 3809 if (sigset) { 3810 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3811 vcpu->sigset_active = 1; 3812 vcpu->sigset = *sigset; 3813 } else 3814 vcpu->sigset_active = 0; 3815 return 0; 3816 } 3817 3818 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3819 size_t size, loff_t *offset) 3820 { 3821 struct kvm_vcpu *vcpu = file->private_data; 3822 3823 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3824 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3825 sizeof(vcpu->stat), user_buffer, size, offset); 3826 } 3827 3828 static const struct file_operations kvm_vcpu_stats_fops = { 3829 .read = kvm_vcpu_stats_read, 3830 .llseek = noop_llseek, 3831 }; 3832 3833 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3834 { 3835 int fd; 3836 struct file *file; 3837 char name[15 + ITOA_MAX_LEN + 1]; 3838 3839 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3840 3841 fd = get_unused_fd_flags(O_CLOEXEC); 3842 if (fd < 0) 3843 return fd; 3844 3845 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3846 if (IS_ERR(file)) { 3847 put_unused_fd(fd); 3848 return PTR_ERR(file); 3849 } 3850 file->f_mode |= FMODE_PREAD; 3851 fd_install(fd, file); 3852 3853 return fd; 3854 } 3855 3856 static long kvm_vcpu_ioctl(struct file *filp, 3857 unsigned int ioctl, unsigned long arg) 3858 { 3859 struct kvm_vcpu *vcpu = filp->private_data; 3860 void __user *argp = (void __user *)arg; 3861 int r; 3862 struct kvm_fpu *fpu = NULL; 3863 struct kvm_sregs *kvm_sregs = NULL; 3864 3865 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3866 return -EIO; 3867 3868 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3869 return -EINVAL; 3870 3871 /* 3872 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3873 * execution; mutex_lock() would break them. 3874 */ 3875 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3876 if (r != -ENOIOCTLCMD) 3877 return r; 3878 3879 if (mutex_lock_killable(&vcpu->mutex)) 3880 return -EINTR; 3881 switch (ioctl) { 3882 case KVM_RUN: { 3883 struct pid *oldpid; 3884 r = -EINVAL; 3885 if (arg) 3886 goto out; 3887 oldpid = rcu_access_pointer(vcpu->pid); 3888 if (unlikely(oldpid != task_pid(current))) { 3889 /* The thread running this VCPU changed. */ 3890 struct pid *newpid; 3891 3892 r = kvm_arch_vcpu_run_pid_change(vcpu); 3893 if (r) 3894 break; 3895 3896 newpid = get_task_pid(current, PIDTYPE_PID); 3897 rcu_assign_pointer(vcpu->pid, newpid); 3898 if (oldpid) 3899 synchronize_rcu(); 3900 put_pid(oldpid); 3901 } 3902 r = kvm_arch_vcpu_ioctl_run(vcpu); 3903 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3904 break; 3905 } 3906 case KVM_GET_REGS: { 3907 struct kvm_regs *kvm_regs; 3908 3909 r = -ENOMEM; 3910 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3911 if (!kvm_regs) 3912 goto out; 3913 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3914 if (r) 3915 goto out_free1; 3916 r = -EFAULT; 3917 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3918 goto out_free1; 3919 r = 0; 3920 out_free1: 3921 kfree(kvm_regs); 3922 break; 3923 } 3924 case KVM_SET_REGS: { 3925 struct kvm_regs *kvm_regs; 3926 3927 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3928 if (IS_ERR(kvm_regs)) { 3929 r = PTR_ERR(kvm_regs); 3930 goto out; 3931 } 3932 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3933 kfree(kvm_regs); 3934 break; 3935 } 3936 case KVM_GET_SREGS: { 3937 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3938 GFP_KERNEL_ACCOUNT); 3939 r = -ENOMEM; 3940 if (!kvm_sregs) 3941 goto out; 3942 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3943 if (r) 3944 goto out; 3945 r = -EFAULT; 3946 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3947 goto out; 3948 r = 0; 3949 break; 3950 } 3951 case KVM_SET_SREGS: { 3952 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3953 if (IS_ERR(kvm_sregs)) { 3954 r = PTR_ERR(kvm_sregs); 3955 kvm_sregs = NULL; 3956 goto out; 3957 } 3958 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3959 break; 3960 } 3961 case KVM_GET_MP_STATE: { 3962 struct kvm_mp_state mp_state; 3963 3964 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3965 if (r) 3966 goto out; 3967 r = -EFAULT; 3968 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3969 goto out; 3970 r = 0; 3971 break; 3972 } 3973 case KVM_SET_MP_STATE: { 3974 struct kvm_mp_state mp_state; 3975 3976 r = -EFAULT; 3977 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3978 goto out; 3979 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3980 break; 3981 } 3982 case KVM_TRANSLATE: { 3983 struct kvm_translation tr; 3984 3985 r = -EFAULT; 3986 if (copy_from_user(&tr, argp, sizeof(tr))) 3987 goto out; 3988 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3989 if (r) 3990 goto out; 3991 r = -EFAULT; 3992 if (copy_to_user(argp, &tr, sizeof(tr))) 3993 goto out; 3994 r = 0; 3995 break; 3996 } 3997 case KVM_SET_GUEST_DEBUG: { 3998 struct kvm_guest_debug dbg; 3999 4000 r = -EFAULT; 4001 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4002 goto out; 4003 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4004 break; 4005 } 4006 case KVM_SET_SIGNAL_MASK: { 4007 struct kvm_signal_mask __user *sigmask_arg = argp; 4008 struct kvm_signal_mask kvm_sigmask; 4009 sigset_t sigset, *p; 4010 4011 p = NULL; 4012 if (argp) { 4013 r = -EFAULT; 4014 if (copy_from_user(&kvm_sigmask, argp, 4015 sizeof(kvm_sigmask))) 4016 goto out; 4017 r = -EINVAL; 4018 if (kvm_sigmask.len != sizeof(sigset)) 4019 goto out; 4020 r = -EFAULT; 4021 if (copy_from_user(&sigset, sigmask_arg->sigset, 4022 sizeof(sigset))) 4023 goto out; 4024 p = &sigset; 4025 } 4026 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4027 break; 4028 } 4029 case KVM_GET_FPU: { 4030 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4031 r = -ENOMEM; 4032 if (!fpu) 4033 goto out; 4034 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4035 if (r) 4036 goto out; 4037 r = -EFAULT; 4038 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4039 goto out; 4040 r = 0; 4041 break; 4042 } 4043 case KVM_SET_FPU: { 4044 fpu = memdup_user(argp, sizeof(*fpu)); 4045 if (IS_ERR(fpu)) { 4046 r = PTR_ERR(fpu); 4047 fpu = NULL; 4048 goto out; 4049 } 4050 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4051 break; 4052 } 4053 case KVM_GET_STATS_FD: { 4054 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4055 break; 4056 } 4057 default: 4058 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4059 } 4060 out: 4061 mutex_unlock(&vcpu->mutex); 4062 kfree(fpu); 4063 kfree(kvm_sregs); 4064 return r; 4065 } 4066 4067 #ifdef CONFIG_KVM_COMPAT 4068 static long kvm_vcpu_compat_ioctl(struct file *filp, 4069 unsigned int ioctl, unsigned long arg) 4070 { 4071 struct kvm_vcpu *vcpu = filp->private_data; 4072 void __user *argp = compat_ptr(arg); 4073 int r; 4074 4075 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4076 return -EIO; 4077 4078 switch (ioctl) { 4079 case KVM_SET_SIGNAL_MASK: { 4080 struct kvm_signal_mask __user *sigmask_arg = argp; 4081 struct kvm_signal_mask kvm_sigmask; 4082 sigset_t sigset; 4083 4084 if (argp) { 4085 r = -EFAULT; 4086 if (copy_from_user(&kvm_sigmask, argp, 4087 sizeof(kvm_sigmask))) 4088 goto out; 4089 r = -EINVAL; 4090 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4091 goto out; 4092 r = -EFAULT; 4093 if (get_compat_sigset(&sigset, 4094 (compat_sigset_t __user *)sigmask_arg->sigset)) 4095 goto out; 4096 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4097 } else 4098 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4099 break; 4100 } 4101 default: 4102 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4103 } 4104 4105 out: 4106 return r; 4107 } 4108 #endif 4109 4110 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4111 { 4112 struct kvm_device *dev = filp->private_data; 4113 4114 if (dev->ops->mmap) 4115 return dev->ops->mmap(dev, vma); 4116 4117 return -ENODEV; 4118 } 4119 4120 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4121 int (*accessor)(struct kvm_device *dev, 4122 struct kvm_device_attr *attr), 4123 unsigned long arg) 4124 { 4125 struct kvm_device_attr attr; 4126 4127 if (!accessor) 4128 return -EPERM; 4129 4130 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4131 return -EFAULT; 4132 4133 return accessor(dev, &attr); 4134 } 4135 4136 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4137 unsigned long arg) 4138 { 4139 struct kvm_device *dev = filp->private_data; 4140 4141 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4142 return -EIO; 4143 4144 switch (ioctl) { 4145 case KVM_SET_DEVICE_ATTR: 4146 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4147 case KVM_GET_DEVICE_ATTR: 4148 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4149 case KVM_HAS_DEVICE_ATTR: 4150 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4151 default: 4152 if (dev->ops->ioctl) 4153 return dev->ops->ioctl(dev, ioctl, arg); 4154 4155 return -ENOTTY; 4156 } 4157 } 4158 4159 static int kvm_device_release(struct inode *inode, struct file *filp) 4160 { 4161 struct kvm_device *dev = filp->private_data; 4162 struct kvm *kvm = dev->kvm; 4163 4164 if (dev->ops->release) { 4165 mutex_lock(&kvm->lock); 4166 list_del(&dev->vm_node); 4167 dev->ops->release(dev); 4168 mutex_unlock(&kvm->lock); 4169 } 4170 4171 kvm_put_kvm(kvm); 4172 return 0; 4173 } 4174 4175 static const struct file_operations kvm_device_fops = { 4176 .unlocked_ioctl = kvm_device_ioctl, 4177 .release = kvm_device_release, 4178 KVM_COMPAT(kvm_device_ioctl), 4179 .mmap = kvm_device_mmap, 4180 }; 4181 4182 struct kvm_device *kvm_device_from_filp(struct file *filp) 4183 { 4184 if (filp->f_op != &kvm_device_fops) 4185 return NULL; 4186 4187 return filp->private_data; 4188 } 4189 4190 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4191 #ifdef CONFIG_KVM_MPIC 4192 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4193 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4194 #endif 4195 }; 4196 4197 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4198 { 4199 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4200 return -ENOSPC; 4201 4202 if (kvm_device_ops_table[type] != NULL) 4203 return -EEXIST; 4204 4205 kvm_device_ops_table[type] = ops; 4206 return 0; 4207 } 4208 4209 void kvm_unregister_device_ops(u32 type) 4210 { 4211 if (kvm_device_ops_table[type] != NULL) 4212 kvm_device_ops_table[type] = NULL; 4213 } 4214 4215 static int kvm_ioctl_create_device(struct kvm *kvm, 4216 struct kvm_create_device *cd) 4217 { 4218 const struct kvm_device_ops *ops = NULL; 4219 struct kvm_device *dev; 4220 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4221 int type; 4222 int ret; 4223 4224 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4225 return -ENODEV; 4226 4227 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4228 ops = kvm_device_ops_table[type]; 4229 if (ops == NULL) 4230 return -ENODEV; 4231 4232 if (test) 4233 return 0; 4234 4235 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4236 if (!dev) 4237 return -ENOMEM; 4238 4239 dev->ops = ops; 4240 dev->kvm = kvm; 4241 4242 mutex_lock(&kvm->lock); 4243 ret = ops->create(dev, type); 4244 if (ret < 0) { 4245 mutex_unlock(&kvm->lock); 4246 kfree(dev); 4247 return ret; 4248 } 4249 list_add(&dev->vm_node, &kvm->devices); 4250 mutex_unlock(&kvm->lock); 4251 4252 if (ops->init) 4253 ops->init(dev); 4254 4255 kvm_get_kvm(kvm); 4256 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4257 if (ret < 0) { 4258 kvm_put_kvm_no_destroy(kvm); 4259 mutex_lock(&kvm->lock); 4260 list_del(&dev->vm_node); 4261 mutex_unlock(&kvm->lock); 4262 ops->destroy(dev); 4263 return ret; 4264 } 4265 4266 cd->fd = ret; 4267 return 0; 4268 } 4269 4270 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4271 { 4272 switch (arg) { 4273 case KVM_CAP_USER_MEMORY: 4274 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4275 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4276 case KVM_CAP_INTERNAL_ERROR_DATA: 4277 #ifdef CONFIG_HAVE_KVM_MSI 4278 case KVM_CAP_SIGNAL_MSI: 4279 #endif 4280 #ifdef CONFIG_HAVE_KVM_IRQFD 4281 case KVM_CAP_IRQFD: 4282 case KVM_CAP_IRQFD_RESAMPLE: 4283 #endif 4284 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4285 case KVM_CAP_CHECK_EXTENSION_VM: 4286 case KVM_CAP_ENABLE_CAP_VM: 4287 case KVM_CAP_HALT_POLL: 4288 return 1; 4289 #ifdef CONFIG_KVM_MMIO 4290 case KVM_CAP_COALESCED_MMIO: 4291 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4292 case KVM_CAP_COALESCED_PIO: 4293 return 1; 4294 #endif 4295 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4296 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4297 return KVM_DIRTY_LOG_MANUAL_CAPS; 4298 #endif 4299 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4300 case KVM_CAP_IRQ_ROUTING: 4301 return KVM_MAX_IRQ_ROUTES; 4302 #endif 4303 #if KVM_ADDRESS_SPACE_NUM > 1 4304 case KVM_CAP_MULTI_ADDRESS_SPACE: 4305 return KVM_ADDRESS_SPACE_NUM; 4306 #endif 4307 case KVM_CAP_NR_MEMSLOTS: 4308 return KVM_USER_MEM_SLOTS; 4309 case KVM_CAP_DIRTY_LOG_RING: 4310 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4311 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4312 #else 4313 return 0; 4314 #endif 4315 case KVM_CAP_BINARY_STATS_FD: 4316 return 1; 4317 default: 4318 break; 4319 } 4320 return kvm_vm_ioctl_check_extension(kvm, arg); 4321 } 4322 4323 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4324 { 4325 int r; 4326 4327 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4328 return -EINVAL; 4329 4330 /* the size should be power of 2 */ 4331 if (!size || (size & (size - 1))) 4332 return -EINVAL; 4333 4334 /* Should be bigger to keep the reserved entries, or a page */ 4335 if (size < kvm_dirty_ring_get_rsvd_entries() * 4336 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4337 return -EINVAL; 4338 4339 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4340 sizeof(struct kvm_dirty_gfn)) 4341 return -E2BIG; 4342 4343 /* We only allow it to set once */ 4344 if (kvm->dirty_ring_size) 4345 return -EINVAL; 4346 4347 mutex_lock(&kvm->lock); 4348 4349 if (kvm->created_vcpus) { 4350 /* We don't allow to change this value after vcpu created */ 4351 r = -EINVAL; 4352 } else { 4353 kvm->dirty_ring_size = size; 4354 r = 0; 4355 } 4356 4357 mutex_unlock(&kvm->lock); 4358 return r; 4359 } 4360 4361 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4362 { 4363 unsigned long i; 4364 struct kvm_vcpu *vcpu; 4365 int cleared = 0; 4366 4367 if (!kvm->dirty_ring_size) 4368 return -EINVAL; 4369 4370 mutex_lock(&kvm->slots_lock); 4371 4372 kvm_for_each_vcpu(i, vcpu, kvm) 4373 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4374 4375 mutex_unlock(&kvm->slots_lock); 4376 4377 if (cleared) 4378 kvm_flush_remote_tlbs(kvm); 4379 4380 return cleared; 4381 } 4382 4383 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4384 struct kvm_enable_cap *cap) 4385 { 4386 return -EINVAL; 4387 } 4388 4389 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4390 struct kvm_enable_cap *cap) 4391 { 4392 switch (cap->cap) { 4393 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4394 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4395 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4396 4397 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4398 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4399 4400 if (cap->flags || (cap->args[0] & ~allowed_options)) 4401 return -EINVAL; 4402 kvm->manual_dirty_log_protect = cap->args[0]; 4403 return 0; 4404 } 4405 #endif 4406 case KVM_CAP_HALT_POLL: { 4407 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4408 return -EINVAL; 4409 4410 kvm->max_halt_poll_ns = cap->args[0]; 4411 return 0; 4412 } 4413 case KVM_CAP_DIRTY_LOG_RING: 4414 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4415 default: 4416 return kvm_vm_ioctl_enable_cap(kvm, cap); 4417 } 4418 } 4419 4420 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4421 size_t size, loff_t *offset) 4422 { 4423 struct kvm *kvm = file->private_data; 4424 4425 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4426 &kvm_vm_stats_desc[0], &kvm->stat, 4427 sizeof(kvm->stat), user_buffer, size, offset); 4428 } 4429 4430 static const struct file_operations kvm_vm_stats_fops = { 4431 .read = kvm_vm_stats_read, 4432 .llseek = noop_llseek, 4433 }; 4434 4435 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4436 { 4437 int fd; 4438 struct file *file; 4439 4440 fd = get_unused_fd_flags(O_CLOEXEC); 4441 if (fd < 0) 4442 return fd; 4443 4444 file = anon_inode_getfile("kvm-vm-stats", 4445 &kvm_vm_stats_fops, kvm, O_RDONLY); 4446 if (IS_ERR(file)) { 4447 put_unused_fd(fd); 4448 return PTR_ERR(file); 4449 } 4450 file->f_mode |= FMODE_PREAD; 4451 fd_install(fd, file); 4452 4453 return fd; 4454 } 4455 4456 static long kvm_vm_ioctl(struct file *filp, 4457 unsigned int ioctl, unsigned long arg) 4458 { 4459 struct kvm *kvm = filp->private_data; 4460 void __user *argp = (void __user *)arg; 4461 int r; 4462 4463 if (kvm->mm != current->mm || kvm->vm_dead) 4464 return -EIO; 4465 switch (ioctl) { 4466 case KVM_CREATE_VCPU: 4467 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4468 break; 4469 case KVM_ENABLE_CAP: { 4470 struct kvm_enable_cap cap; 4471 4472 r = -EFAULT; 4473 if (copy_from_user(&cap, argp, sizeof(cap))) 4474 goto out; 4475 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4476 break; 4477 } 4478 case KVM_SET_USER_MEMORY_REGION: { 4479 struct kvm_userspace_memory_region kvm_userspace_mem; 4480 4481 r = -EFAULT; 4482 if (copy_from_user(&kvm_userspace_mem, argp, 4483 sizeof(kvm_userspace_mem))) 4484 goto out; 4485 4486 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4487 break; 4488 } 4489 case KVM_GET_DIRTY_LOG: { 4490 struct kvm_dirty_log log; 4491 4492 r = -EFAULT; 4493 if (copy_from_user(&log, argp, sizeof(log))) 4494 goto out; 4495 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4496 break; 4497 } 4498 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4499 case KVM_CLEAR_DIRTY_LOG: { 4500 struct kvm_clear_dirty_log log; 4501 4502 r = -EFAULT; 4503 if (copy_from_user(&log, argp, sizeof(log))) 4504 goto out; 4505 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4506 break; 4507 } 4508 #endif 4509 #ifdef CONFIG_KVM_MMIO 4510 case KVM_REGISTER_COALESCED_MMIO: { 4511 struct kvm_coalesced_mmio_zone zone; 4512 4513 r = -EFAULT; 4514 if (copy_from_user(&zone, argp, sizeof(zone))) 4515 goto out; 4516 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4517 break; 4518 } 4519 case KVM_UNREGISTER_COALESCED_MMIO: { 4520 struct kvm_coalesced_mmio_zone zone; 4521 4522 r = -EFAULT; 4523 if (copy_from_user(&zone, argp, sizeof(zone))) 4524 goto out; 4525 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4526 break; 4527 } 4528 #endif 4529 case KVM_IRQFD: { 4530 struct kvm_irqfd data; 4531 4532 r = -EFAULT; 4533 if (copy_from_user(&data, argp, sizeof(data))) 4534 goto out; 4535 r = kvm_irqfd(kvm, &data); 4536 break; 4537 } 4538 case KVM_IOEVENTFD: { 4539 struct kvm_ioeventfd data; 4540 4541 r = -EFAULT; 4542 if (copy_from_user(&data, argp, sizeof(data))) 4543 goto out; 4544 r = kvm_ioeventfd(kvm, &data); 4545 break; 4546 } 4547 #ifdef CONFIG_HAVE_KVM_MSI 4548 case KVM_SIGNAL_MSI: { 4549 struct kvm_msi msi; 4550 4551 r = -EFAULT; 4552 if (copy_from_user(&msi, argp, sizeof(msi))) 4553 goto out; 4554 r = kvm_send_userspace_msi(kvm, &msi); 4555 break; 4556 } 4557 #endif 4558 #ifdef __KVM_HAVE_IRQ_LINE 4559 case KVM_IRQ_LINE_STATUS: 4560 case KVM_IRQ_LINE: { 4561 struct kvm_irq_level irq_event; 4562 4563 r = -EFAULT; 4564 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4565 goto out; 4566 4567 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4568 ioctl == KVM_IRQ_LINE_STATUS); 4569 if (r) 4570 goto out; 4571 4572 r = -EFAULT; 4573 if (ioctl == KVM_IRQ_LINE_STATUS) { 4574 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4575 goto out; 4576 } 4577 4578 r = 0; 4579 break; 4580 } 4581 #endif 4582 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4583 case KVM_SET_GSI_ROUTING: { 4584 struct kvm_irq_routing routing; 4585 struct kvm_irq_routing __user *urouting; 4586 struct kvm_irq_routing_entry *entries = NULL; 4587 4588 r = -EFAULT; 4589 if (copy_from_user(&routing, argp, sizeof(routing))) 4590 goto out; 4591 r = -EINVAL; 4592 if (!kvm_arch_can_set_irq_routing(kvm)) 4593 goto out; 4594 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4595 goto out; 4596 if (routing.flags) 4597 goto out; 4598 if (routing.nr) { 4599 urouting = argp; 4600 entries = vmemdup_user(urouting->entries, 4601 array_size(sizeof(*entries), 4602 routing.nr)); 4603 if (IS_ERR(entries)) { 4604 r = PTR_ERR(entries); 4605 goto out; 4606 } 4607 } 4608 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4609 routing.flags); 4610 kvfree(entries); 4611 break; 4612 } 4613 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4614 case KVM_CREATE_DEVICE: { 4615 struct kvm_create_device cd; 4616 4617 r = -EFAULT; 4618 if (copy_from_user(&cd, argp, sizeof(cd))) 4619 goto out; 4620 4621 r = kvm_ioctl_create_device(kvm, &cd); 4622 if (r) 4623 goto out; 4624 4625 r = -EFAULT; 4626 if (copy_to_user(argp, &cd, sizeof(cd))) 4627 goto out; 4628 4629 r = 0; 4630 break; 4631 } 4632 case KVM_CHECK_EXTENSION: 4633 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4634 break; 4635 case KVM_RESET_DIRTY_RINGS: 4636 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4637 break; 4638 case KVM_GET_STATS_FD: 4639 r = kvm_vm_ioctl_get_stats_fd(kvm); 4640 break; 4641 default: 4642 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4643 } 4644 out: 4645 return r; 4646 } 4647 4648 #ifdef CONFIG_KVM_COMPAT 4649 struct compat_kvm_dirty_log { 4650 __u32 slot; 4651 __u32 padding1; 4652 union { 4653 compat_uptr_t dirty_bitmap; /* one bit per page */ 4654 __u64 padding2; 4655 }; 4656 }; 4657 4658 struct compat_kvm_clear_dirty_log { 4659 __u32 slot; 4660 __u32 num_pages; 4661 __u64 first_page; 4662 union { 4663 compat_uptr_t dirty_bitmap; /* one bit per page */ 4664 __u64 padding2; 4665 }; 4666 }; 4667 4668 static long kvm_vm_compat_ioctl(struct file *filp, 4669 unsigned int ioctl, unsigned long arg) 4670 { 4671 struct kvm *kvm = filp->private_data; 4672 int r; 4673 4674 if (kvm->mm != current->mm || kvm->vm_dead) 4675 return -EIO; 4676 switch (ioctl) { 4677 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4678 case KVM_CLEAR_DIRTY_LOG: { 4679 struct compat_kvm_clear_dirty_log compat_log; 4680 struct kvm_clear_dirty_log log; 4681 4682 if (copy_from_user(&compat_log, (void __user *)arg, 4683 sizeof(compat_log))) 4684 return -EFAULT; 4685 log.slot = compat_log.slot; 4686 log.num_pages = compat_log.num_pages; 4687 log.first_page = compat_log.first_page; 4688 log.padding2 = compat_log.padding2; 4689 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4690 4691 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4692 break; 4693 } 4694 #endif 4695 case KVM_GET_DIRTY_LOG: { 4696 struct compat_kvm_dirty_log compat_log; 4697 struct kvm_dirty_log log; 4698 4699 if (copy_from_user(&compat_log, (void __user *)arg, 4700 sizeof(compat_log))) 4701 return -EFAULT; 4702 log.slot = compat_log.slot; 4703 log.padding1 = compat_log.padding1; 4704 log.padding2 = compat_log.padding2; 4705 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4706 4707 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4708 break; 4709 } 4710 default: 4711 r = kvm_vm_ioctl(filp, ioctl, arg); 4712 } 4713 return r; 4714 } 4715 #endif 4716 4717 static struct file_operations kvm_vm_fops = { 4718 .release = kvm_vm_release, 4719 .unlocked_ioctl = kvm_vm_ioctl, 4720 .llseek = noop_llseek, 4721 KVM_COMPAT(kvm_vm_compat_ioctl), 4722 }; 4723 4724 bool file_is_kvm(struct file *file) 4725 { 4726 return file && file->f_op == &kvm_vm_fops; 4727 } 4728 EXPORT_SYMBOL_GPL(file_is_kvm); 4729 4730 static int kvm_dev_ioctl_create_vm(unsigned long type) 4731 { 4732 int r; 4733 struct kvm *kvm; 4734 struct file *file; 4735 4736 kvm = kvm_create_vm(type); 4737 if (IS_ERR(kvm)) 4738 return PTR_ERR(kvm); 4739 #ifdef CONFIG_KVM_MMIO 4740 r = kvm_coalesced_mmio_init(kvm); 4741 if (r < 0) 4742 goto put_kvm; 4743 #endif 4744 r = get_unused_fd_flags(O_CLOEXEC); 4745 if (r < 0) 4746 goto put_kvm; 4747 4748 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4749 "kvm-%d", task_pid_nr(current)); 4750 4751 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4752 if (IS_ERR(file)) { 4753 put_unused_fd(r); 4754 r = PTR_ERR(file); 4755 goto put_kvm; 4756 } 4757 4758 /* 4759 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4760 * already set, with ->release() being kvm_vm_release(). In error 4761 * cases it will be called by the final fput(file) and will take 4762 * care of doing kvm_put_kvm(kvm). 4763 */ 4764 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4765 put_unused_fd(r); 4766 fput(file); 4767 return -ENOMEM; 4768 } 4769 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4770 4771 fd_install(r, file); 4772 return r; 4773 4774 put_kvm: 4775 kvm_put_kvm(kvm); 4776 return r; 4777 } 4778 4779 static long kvm_dev_ioctl(struct file *filp, 4780 unsigned int ioctl, unsigned long arg) 4781 { 4782 long r = -EINVAL; 4783 4784 switch (ioctl) { 4785 case KVM_GET_API_VERSION: 4786 if (arg) 4787 goto out; 4788 r = KVM_API_VERSION; 4789 break; 4790 case KVM_CREATE_VM: 4791 r = kvm_dev_ioctl_create_vm(arg); 4792 break; 4793 case KVM_CHECK_EXTENSION: 4794 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4795 break; 4796 case KVM_GET_VCPU_MMAP_SIZE: 4797 if (arg) 4798 goto out; 4799 r = PAGE_SIZE; /* struct kvm_run */ 4800 #ifdef CONFIG_X86 4801 r += PAGE_SIZE; /* pio data page */ 4802 #endif 4803 #ifdef CONFIG_KVM_MMIO 4804 r += PAGE_SIZE; /* coalesced mmio ring page */ 4805 #endif 4806 break; 4807 case KVM_TRACE_ENABLE: 4808 case KVM_TRACE_PAUSE: 4809 case KVM_TRACE_DISABLE: 4810 r = -EOPNOTSUPP; 4811 break; 4812 default: 4813 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4814 } 4815 out: 4816 return r; 4817 } 4818 4819 static struct file_operations kvm_chardev_ops = { 4820 .unlocked_ioctl = kvm_dev_ioctl, 4821 .llseek = noop_llseek, 4822 KVM_COMPAT(kvm_dev_ioctl), 4823 }; 4824 4825 static struct miscdevice kvm_dev = { 4826 KVM_MINOR, 4827 "kvm", 4828 &kvm_chardev_ops, 4829 }; 4830 4831 static void hardware_enable_nolock(void *junk) 4832 { 4833 int cpu = raw_smp_processor_id(); 4834 int r; 4835 4836 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4837 return; 4838 4839 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4840 4841 r = kvm_arch_hardware_enable(); 4842 4843 if (r) { 4844 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4845 atomic_inc(&hardware_enable_failed); 4846 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4847 } 4848 } 4849 4850 static int kvm_starting_cpu(unsigned int cpu) 4851 { 4852 raw_spin_lock(&kvm_count_lock); 4853 if (kvm_usage_count) 4854 hardware_enable_nolock(NULL); 4855 raw_spin_unlock(&kvm_count_lock); 4856 return 0; 4857 } 4858 4859 static void hardware_disable_nolock(void *junk) 4860 { 4861 int cpu = raw_smp_processor_id(); 4862 4863 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4864 return; 4865 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4866 kvm_arch_hardware_disable(); 4867 } 4868 4869 static int kvm_dying_cpu(unsigned int cpu) 4870 { 4871 raw_spin_lock(&kvm_count_lock); 4872 if (kvm_usage_count) 4873 hardware_disable_nolock(NULL); 4874 raw_spin_unlock(&kvm_count_lock); 4875 return 0; 4876 } 4877 4878 static void hardware_disable_all_nolock(void) 4879 { 4880 BUG_ON(!kvm_usage_count); 4881 4882 kvm_usage_count--; 4883 if (!kvm_usage_count) 4884 on_each_cpu(hardware_disable_nolock, NULL, 1); 4885 } 4886 4887 static void hardware_disable_all(void) 4888 { 4889 raw_spin_lock(&kvm_count_lock); 4890 hardware_disable_all_nolock(); 4891 raw_spin_unlock(&kvm_count_lock); 4892 } 4893 4894 static int hardware_enable_all(void) 4895 { 4896 int r = 0; 4897 4898 raw_spin_lock(&kvm_count_lock); 4899 4900 kvm_usage_count++; 4901 if (kvm_usage_count == 1) { 4902 atomic_set(&hardware_enable_failed, 0); 4903 on_each_cpu(hardware_enable_nolock, NULL, 1); 4904 4905 if (atomic_read(&hardware_enable_failed)) { 4906 hardware_disable_all_nolock(); 4907 r = -EBUSY; 4908 } 4909 } 4910 4911 raw_spin_unlock(&kvm_count_lock); 4912 4913 return r; 4914 } 4915 4916 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4917 void *v) 4918 { 4919 /* 4920 * Some (well, at least mine) BIOSes hang on reboot if 4921 * in vmx root mode. 4922 * 4923 * And Intel TXT required VMX off for all cpu when system shutdown. 4924 */ 4925 pr_info("kvm: exiting hardware virtualization\n"); 4926 kvm_rebooting = true; 4927 on_each_cpu(hardware_disable_nolock, NULL, 1); 4928 return NOTIFY_OK; 4929 } 4930 4931 static struct notifier_block kvm_reboot_notifier = { 4932 .notifier_call = kvm_reboot, 4933 .priority = 0, 4934 }; 4935 4936 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4937 { 4938 int i; 4939 4940 for (i = 0; i < bus->dev_count; i++) { 4941 struct kvm_io_device *pos = bus->range[i].dev; 4942 4943 kvm_iodevice_destructor(pos); 4944 } 4945 kfree(bus); 4946 } 4947 4948 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4949 const struct kvm_io_range *r2) 4950 { 4951 gpa_t addr1 = r1->addr; 4952 gpa_t addr2 = r2->addr; 4953 4954 if (addr1 < addr2) 4955 return -1; 4956 4957 /* If r2->len == 0, match the exact address. If r2->len != 0, 4958 * accept any overlapping write. Any order is acceptable for 4959 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4960 * we process all of them. 4961 */ 4962 if (r2->len) { 4963 addr1 += r1->len; 4964 addr2 += r2->len; 4965 } 4966 4967 if (addr1 > addr2) 4968 return 1; 4969 4970 return 0; 4971 } 4972 4973 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4974 { 4975 return kvm_io_bus_cmp(p1, p2); 4976 } 4977 4978 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4979 gpa_t addr, int len) 4980 { 4981 struct kvm_io_range *range, key; 4982 int off; 4983 4984 key = (struct kvm_io_range) { 4985 .addr = addr, 4986 .len = len, 4987 }; 4988 4989 range = bsearch(&key, bus->range, bus->dev_count, 4990 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4991 if (range == NULL) 4992 return -ENOENT; 4993 4994 off = range - bus->range; 4995 4996 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4997 off--; 4998 4999 return off; 5000 } 5001 5002 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5003 struct kvm_io_range *range, const void *val) 5004 { 5005 int idx; 5006 5007 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5008 if (idx < 0) 5009 return -EOPNOTSUPP; 5010 5011 while (idx < bus->dev_count && 5012 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5013 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5014 range->len, val)) 5015 return idx; 5016 idx++; 5017 } 5018 5019 return -EOPNOTSUPP; 5020 } 5021 5022 /* kvm_io_bus_write - called under kvm->slots_lock */ 5023 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5024 int len, const void *val) 5025 { 5026 struct kvm_io_bus *bus; 5027 struct kvm_io_range range; 5028 int r; 5029 5030 range = (struct kvm_io_range) { 5031 .addr = addr, 5032 .len = len, 5033 }; 5034 5035 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5036 if (!bus) 5037 return -ENOMEM; 5038 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5039 return r < 0 ? r : 0; 5040 } 5041 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5042 5043 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5044 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5045 gpa_t addr, int len, const void *val, long cookie) 5046 { 5047 struct kvm_io_bus *bus; 5048 struct kvm_io_range range; 5049 5050 range = (struct kvm_io_range) { 5051 .addr = addr, 5052 .len = len, 5053 }; 5054 5055 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5056 if (!bus) 5057 return -ENOMEM; 5058 5059 /* First try the device referenced by cookie. */ 5060 if ((cookie >= 0) && (cookie < bus->dev_count) && 5061 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5062 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5063 val)) 5064 return cookie; 5065 5066 /* 5067 * cookie contained garbage; fall back to search and return the 5068 * correct cookie value. 5069 */ 5070 return __kvm_io_bus_write(vcpu, bus, &range, val); 5071 } 5072 5073 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5074 struct kvm_io_range *range, void *val) 5075 { 5076 int idx; 5077 5078 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5079 if (idx < 0) 5080 return -EOPNOTSUPP; 5081 5082 while (idx < bus->dev_count && 5083 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5084 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5085 range->len, val)) 5086 return idx; 5087 idx++; 5088 } 5089 5090 return -EOPNOTSUPP; 5091 } 5092 5093 /* kvm_io_bus_read - called under kvm->slots_lock */ 5094 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5095 int len, void *val) 5096 { 5097 struct kvm_io_bus *bus; 5098 struct kvm_io_range range; 5099 int r; 5100 5101 range = (struct kvm_io_range) { 5102 .addr = addr, 5103 .len = len, 5104 }; 5105 5106 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5107 if (!bus) 5108 return -ENOMEM; 5109 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5110 return r < 0 ? r : 0; 5111 } 5112 5113 /* Caller must hold slots_lock. */ 5114 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5115 int len, struct kvm_io_device *dev) 5116 { 5117 int i; 5118 struct kvm_io_bus *new_bus, *bus; 5119 struct kvm_io_range range; 5120 5121 bus = kvm_get_bus(kvm, bus_idx); 5122 if (!bus) 5123 return -ENOMEM; 5124 5125 /* exclude ioeventfd which is limited by maximum fd */ 5126 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5127 return -ENOSPC; 5128 5129 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5130 GFP_KERNEL_ACCOUNT); 5131 if (!new_bus) 5132 return -ENOMEM; 5133 5134 range = (struct kvm_io_range) { 5135 .addr = addr, 5136 .len = len, 5137 .dev = dev, 5138 }; 5139 5140 for (i = 0; i < bus->dev_count; i++) 5141 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5142 break; 5143 5144 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5145 new_bus->dev_count++; 5146 new_bus->range[i] = range; 5147 memcpy(new_bus->range + i + 1, bus->range + i, 5148 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5149 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5150 synchronize_srcu_expedited(&kvm->srcu); 5151 kfree(bus); 5152 5153 return 0; 5154 } 5155 5156 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5157 struct kvm_io_device *dev) 5158 { 5159 int i, j; 5160 struct kvm_io_bus *new_bus, *bus; 5161 5162 lockdep_assert_held(&kvm->slots_lock); 5163 5164 bus = kvm_get_bus(kvm, bus_idx); 5165 if (!bus) 5166 return 0; 5167 5168 for (i = 0; i < bus->dev_count; i++) { 5169 if (bus->range[i].dev == dev) { 5170 break; 5171 } 5172 } 5173 5174 if (i == bus->dev_count) 5175 return 0; 5176 5177 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5178 GFP_KERNEL_ACCOUNT); 5179 if (new_bus) { 5180 memcpy(new_bus, bus, struct_size(bus, range, i)); 5181 new_bus->dev_count--; 5182 memcpy(new_bus->range + i, bus->range + i + 1, 5183 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5184 } 5185 5186 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5187 synchronize_srcu_expedited(&kvm->srcu); 5188 5189 /* Destroy the old bus _after_ installing the (null) bus. */ 5190 if (!new_bus) { 5191 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5192 for (j = 0; j < bus->dev_count; j++) { 5193 if (j == i) 5194 continue; 5195 kvm_iodevice_destructor(bus->range[j].dev); 5196 } 5197 } 5198 5199 kfree(bus); 5200 return new_bus ? 0 : -ENOMEM; 5201 } 5202 5203 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5204 gpa_t addr) 5205 { 5206 struct kvm_io_bus *bus; 5207 int dev_idx, srcu_idx; 5208 struct kvm_io_device *iodev = NULL; 5209 5210 srcu_idx = srcu_read_lock(&kvm->srcu); 5211 5212 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5213 if (!bus) 5214 goto out_unlock; 5215 5216 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5217 if (dev_idx < 0) 5218 goto out_unlock; 5219 5220 iodev = bus->range[dev_idx].dev; 5221 5222 out_unlock: 5223 srcu_read_unlock(&kvm->srcu, srcu_idx); 5224 5225 return iodev; 5226 } 5227 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5228 5229 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5230 int (*get)(void *, u64 *), int (*set)(void *, u64), 5231 const char *fmt) 5232 { 5233 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5234 inode->i_private; 5235 5236 /* 5237 * The debugfs files are a reference to the kvm struct which 5238 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5239 * avoids the race between open and the removal of the debugfs directory. 5240 */ 5241 if (!kvm_get_kvm_safe(stat_data->kvm)) 5242 return -ENOENT; 5243 5244 if (simple_attr_open(inode, file, get, 5245 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5246 ? set : NULL, 5247 fmt)) { 5248 kvm_put_kvm(stat_data->kvm); 5249 return -ENOMEM; 5250 } 5251 5252 return 0; 5253 } 5254 5255 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5256 { 5257 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5258 inode->i_private; 5259 5260 simple_attr_release(inode, file); 5261 kvm_put_kvm(stat_data->kvm); 5262 5263 return 0; 5264 } 5265 5266 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5267 { 5268 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5269 5270 return 0; 5271 } 5272 5273 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5274 { 5275 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5276 5277 return 0; 5278 } 5279 5280 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5281 { 5282 unsigned long i; 5283 struct kvm_vcpu *vcpu; 5284 5285 *val = 0; 5286 5287 kvm_for_each_vcpu(i, vcpu, kvm) 5288 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5289 5290 return 0; 5291 } 5292 5293 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5294 { 5295 unsigned long i; 5296 struct kvm_vcpu *vcpu; 5297 5298 kvm_for_each_vcpu(i, vcpu, kvm) 5299 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5300 5301 return 0; 5302 } 5303 5304 static int kvm_stat_data_get(void *data, u64 *val) 5305 { 5306 int r = -EFAULT; 5307 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5308 5309 switch (stat_data->kind) { 5310 case KVM_STAT_VM: 5311 r = kvm_get_stat_per_vm(stat_data->kvm, 5312 stat_data->desc->desc.offset, val); 5313 break; 5314 case KVM_STAT_VCPU: 5315 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5316 stat_data->desc->desc.offset, val); 5317 break; 5318 } 5319 5320 return r; 5321 } 5322 5323 static int kvm_stat_data_clear(void *data, u64 val) 5324 { 5325 int r = -EFAULT; 5326 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5327 5328 if (val) 5329 return -EINVAL; 5330 5331 switch (stat_data->kind) { 5332 case KVM_STAT_VM: 5333 r = kvm_clear_stat_per_vm(stat_data->kvm, 5334 stat_data->desc->desc.offset); 5335 break; 5336 case KVM_STAT_VCPU: 5337 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5338 stat_data->desc->desc.offset); 5339 break; 5340 } 5341 5342 return r; 5343 } 5344 5345 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5346 { 5347 __simple_attr_check_format("%llu\n", 0ull); 5348 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5349 kvm_stat_data_clear, "%llu\n"); 5350 } 5351 5352 static const struct file_operations stat_fops_per_vm = { 5353 .owner = THIS_MODULE, 5354 .open = kvm_stat_data_open, 5355 .release = kvm_debugfs_release, 5356 .read = simple_attr_read, 5357 .write = simple_attr_write, 5358 .llseek = no_llseek, 5359 }; 5360 5361 static int vm_stat_get(void *_offset, u64 *val) 5362 { 5363 unsigned offset = (long)_offset; 5364 struct kvm *kvm; 5365 u64 tmp_val; 5366 5367 *val = 0; 5368 mutex_lock(&kvm_lock); 5369 list_for_each_entry(kvm, &vm_list, vm_list) { 5370 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5371 *val += tmp_val; 5372 } 5373 mutex_unlock(&kvm_lock); 5374 return 0; 5375 } 5376 5377 static int vm_stat_clear(void *_offset, u64 val) 5378 { 5379 unsigned offset = (long)_offset; 5380 struct kvm *kvm; 5381 5382 if (val) 5383 return -EINVAL; 5384 5385 mutex_lock(&kvm_lock); 5386 list_for_each_entry(kvm, &vm_list, vm_list) { 5387 kvm_clear_stat_per_vm(kvm, offset); 5388 } 5389 mutex_unlock(&kvm_lock); 5390 5391 return 0; 5392 } 5393 5394 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5395 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5396 5397 static int vcpu_stat_get(void *_offset, u64 *val) 5398 { 5399 unsigned offset = (long)_offset; 5400 struct kvm *kvm; 5401 u64 tmp_val; 5402 5403 *val = 0; 5404 mutex_lock(&kvm_lock); 5405 list_for_each_entry(kvm, &vm_list, vm_list) { 5406 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5407 *val += tmp_val; 5408 } 5409 mutex_unlock(&kvm_lock); 5410 return 0; 5411 } 5412 5413 static int vcpu_stat_clear(void *_offset, u64 val) 5414 { 5415 unsigned offset = (long)_offset; 5416 struct kvm *kvm; 5417 5418 if (val) 5419 return -EINVAL; 5420 5421 mutex_lock(&kvm_lock); 5422 list_for_each_entry(kvm, &vm_list, vm_list) { 5423 kvm_clear_stat_per_vcpu(kvm, offset); 5424 } 5425 mutex_unlock(&kvm_lock); 5426 5427 return 0; 5428 } 5429 5430 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5431 "%llu\n"); 5432 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5433 5434 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5435 { 5436 struct kobj_uevent_env *env; 5437 unsigned long long created, active; 5438 5439 if (!kvm_dev.this_device || !kvm) 5440 return; 5441 5442 mutex_lock(&kvm_lock); 5443 if (type == KVM_EVENT_CREATE_VM) { 5444 kvm_createvm_count++; 5445 kvm_active_vms++; 5446 } else if (type == KVM_EVENT_DESTROY_VM) { 5447 kvm_active_vms--; 5448 } 5449 created = kvm_createvm_count; 5450 active = kvm_active_vms; 5451 mutex_unlock(&kvm_lock); 5452 5453 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5454 if (!env) 5455 return; 5456 5457 add_uevent_var(env, "CREATED=%llu", created); 5458 add_uevent_var(env, "COUNT=%llu", active); 5459 5460 if (type == KVM_EVENT_CREATE_VM) { 5461 add_uevent_var(env, "EVENT=create"); 5462 kvm->userspace_pid = task_pid_nr(current); 5463 } else if (type == KVM_EVENT_DESTROY_VM) { 5464 add_uevent_var(env, "EVENT=destroy"); 5465 } 5466 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5467 5468 if (kvm->debugfs_dentry) { 5469 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5470 5471 if (p) { 5472 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5473 if (!IS_ERR(tmp)) 5474 add_uevent_var(env, "STATS_PATH=%s", tmp); 5475 kfree(p); 5476 } 5477 } 5478 /* no need for checks, since we are adding at most only 5 keys */ 5479 env->envp[env->envp_idx++] = NULL; 5480 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5481 kfree(env); 5482 } 5483 5484 static void kvm_init_debug(void) 5485 { 5486 const struct file_operations *fops; 5487 const struct _kvm_stats_desc *pdesc; 5488 int i; 5489 5490 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5491 5492 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5493 pdesc = &kvm_vm_stats_desc[i]; 5494 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5495 fops = &vm_stat_fops; 5496 else 5497 fops = &vm_stat_readonly_fops; 5498 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5499 kvm_debugfs_dir, 5500 (void *)(long)pdesc->desc.offset, fops); 5501 } 5502 5503 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5504 pdesc = &kvm_vcpu_stats_desc[i]; 5505 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5506 fops = &vcpu_stat_fops; 5507 else 5508 fops = &vcpu_stat_readonly_fops; 5509 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5510 kvm_debugfs_dir, 5511 (void *)(long)pdesc->desc.offset, fops); 5512 } 5513 } 5514 5515 static int kvm_suspend(void) 5516 { 5517 if (kvm_usage_count) 5518 hardware_disable_nolock(NULL); 5519 return 0; 5520 } 5521 5522 static void kvm_resume(void) 5523 { 5524 if (kvm_usage_count) { 5525 lockdep_assert_not_held(&kvm_count_lock); 5526 hardware_enable_nolock(NULL); 5527 } 5528 } 5529 5530 static struct syscore_ops kvm_syscore_ops = { 5531 .suspend = kvm_suspend, 5532 .resume = kvm_resume, 5533 }; 5534 5535 static inline 5536 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5537 { 5538 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5539 } 5540 5541 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5542 { 5543 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5544 5545 WRITE_ONCE(vcpu->preempted, false); 5546 WRITE_ONCE(vcpu->ready, false); 5547 5548 __this_cpu_write(kvm_running_vcpu, vcpu); 5549 kvm_arch_sched_in(vcpu, cpu); 5550 kvm_arch_vcpu_load(vcpu, cpu); 5551 } 5552 5553 static void kvm_sched_out(struct preempt_notifier *pn, 5554 struct task_struct *next) 5555 { 5556 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5557 5558 if (current->on_rq) { 5559 WRITE_ONCE(vcpu->preempted, true); 5560 WRITE_ONCE(vcpu->ready, true); 5561 } 5562 kvm_arch_vcpu_put(vcpu); 5563 __this_cpu_write(kvm_running_vcpu, NULL); 5564 } 5565 5566 /** 5567 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5568 * 5569 * We can disable preemption locally around accessing the per-CPU variable, 5570 * and use the resolved vcpu pointer after enabling preemption again, 5571 * because even if the current thread is migrated to another CPU, reading 5572 * the per-CPU value later will give us the same value as we update the 5573 * per-CPU variable in the preempt notifier handlers. 5574 */ 5575 struct kvm_vcpu *kvm_get_running_vcpu(void) 5576 { 5577 struct kvm_vcpu *vcpu; 5578 5579 preempt_disable(); 5580 vcpu = __this_cpu_read(kvm_running_vcpu); 5581 preempt_enable(); 5582 5583 return vcpu; 5584 } 5585 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5586 5587 /** 5588 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5589 */ 5590 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5591 { 5592 return &kvm_running_vcpu; 5593 } 5594 5595 #ifdef CONFIG_GUEST_PERF_EVENTS 5596 static unsigned int kvm_guest_state(void) 5597 { 5598 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5599 unsigned int state; 5600 5601 if (!kvm_arch_pmi_in_guest(vcpu)) 5602 return 0; 5603 5604 state = PERF_GUEST_ACTIVE; 5605 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5606 state |= PERF_GUEST_USER; 5607 5608 return state; 5609 } 5610 5611 static unsigned long kvm_guest_get_ip(void) 5612 { 5613 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5614 5615 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5616 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5617 return 0; 5618 5619 return kvm_arch_vcpu_get_ip(vcpu); 5620 } 5621 5622 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5623 .state = kvm_guest_state, 5624 .get_ip = kvm_guest_get_ip, 5625 .handle_intel_pt_intr = NULL, 5626 }; 5627 5628 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5629 { 5630 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5631 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5632 } 5633 void kvm_unregister_perf_callbacks(void) 5634 { 5635 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5636 } 5637 #endif 5638 5639 struct kvm_cpu_compat_check { 5640 void *opaque; 5641 int *ret; 5642 }; 5643 5644 static void check_processor_compat(void *data) 5645 { 5646 struct kvm_cpu_compat_check *c = data; 5647 5648 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5649 } 5650 5651 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5652 struct module *module) 5653 { 5654 struct kvm_cpu_compat_check c; 5655 int r; 5656 int cpu; 5657 5658 r = kvm_arch_init(opaque); 5659 if (r) 5660 goto out_fail; 5661 5662 /* 5663 * kvm_arch_init makes sure there's at most one caller 5664 * for architectures that support multiple implementations, 5665 * like intel and amd on x86. 5666 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5667 * conflicts in case kvm is already setup for another implementation. 5668 */ 5669 r = kvm_irqfd_init(); 5670 if (r) 5671 goto out_irqfd; 5672 5673 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5674 r = -ENOMEM; 5675 goto out_free_0; 5676 } 5677 5678 r = kvm_arch_hardware_setup(opaque); 5679 if (r < 0) 5680 goto out_free_1; 5681 5682 c.ret = &r; 5683 c.opaque = opaque; 5684 for_each_online_cpu(cpu) { 5685 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5686 if (r < 0) 5687 goto out_free_2; 5688 } 5689 5690 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5691 kvm_starting_cpu, kvm_dying_cpu); 5692 if (r) 5693 goto out_free_2; 5694 register_reboot_notifier(&kvm_reboot_notifier); 5695 5696 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5697 if (!vcpu_align) 5698 vcpu_align = __alignof__(struct kvm_vcpu); 5699 kvm_vcpu_cache = 5700 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5701 SLAB_ACCOUNT, 5702 offsetof(struct kvm_vcpu, arch), 5703 offsetofend(struct kvm_vcpu, stats_id) 5704 - offsetof(struct kvm_vcpu, arch), 5705 NULL); 5706 if (!kvm_vcpu_cache) { 5707 r = -ENOMEM; 5708 goto out_free_3; 5709 } 5710 5711 for_each_possible_cpu(cpu) { 5712 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5713 GFP_KERNEL, cpu_to_node(cpu))) { 5714 r = -ENOMEM; 5715 goto out_free_4; 5716 } 5717 } 5718 5719 r = kvm_async_pf_init(); 5720 if (r) 5721 goto out_free_5; 5722 5723 kvm_chardev_ops.owner = module; 5724 kvm_vm_fops.owner = module; 5725 kvm_vcpu_fops.owner = module; 5726 5727 r = misc_register(&kvm_dev); 5728 if (r) { 5729 pr_err("kvm: misc device register failed\n"); 5730 goto out_unreg; 5731 } 5732 5733 register_syscore_ops(&kvm_syscore_ops); 5734 5735 kvm_preempt_ops.sched_in = kvm_sched_in; 5736 kvm_preempt_ops.sched_out = kvm_sched_out; 5737 5738 kvm_init_debug(); 5739 5740 r = kvm_vfio_ops_init(); 5741 WARN_ON(r); 5742 5743 return 0; 5744 5745 out_unreg: 5746 kvm_async_pf_deinit(); 5747 out_free_5: 5748 for_each_possible_cpu(cpu) 5749 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5750 out_free_4: 5751 kmem_cache_destroy(kvm_vcpu_cache); 5752 out_free_3: 5753 unregister_reboot_notifier(&kvm_reboot_notifier); 5754 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5755 out_free_2: 5756 kvm_arch_hardware_unsetup(); 5757 out_free_1: 5758 free_cpumask_var(cpus_hardware_enabled); 5759 out_free_0: 5760 kvm_irqfd_exit(); 5761 out_irqfd: 5762 kvm_arch_exit(); 5763 out_fail: 5764 return r; 5765 } 5766 EXPORT_SYMBOL_GPL(kvm_init); 5767 5768 void kvm_exit(void) 5769 { 5770 int cpu; 5771 5772 debugfs_remove_recursive(kvm_debugfs_dir); 5773 misc_deregister(&kvm_dev); 5774 for_each_possible_cpu(cpu) 5775 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5776 kmem_cache_destroy(kvm_vcpu_cache); 5777 kvm_async_pf_deinit(); 5778 unregister_syscore_ops(&kvm_syscore_ops); 5779 unregister_reboot_notifier(&kvm_reboot_notifier); 5780 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5781 on_each_cpu(hardware_disable_nolock, NULL, 1); 5782 kvm_arch_hardware_unsetup(); 5783 kvm_arch_exit(); 5784 kvm_irqfd_exit(); 5785 free_cpumask_var(cpus_hardware_enabled); 5786 kvm_vfio_ops_exit(); 5787 } 5788 EXPORT_SYMBOL_GPL(kvm_exit); 5789 5790 struct kvm_vm_worker_thread_context { 5791 struct kvm *kvm; 5792 struct task_struct *parent; 5793 struct completion init_done; 5794 kvm_vm_thread_fn_t thread_fn; 5795 uintptr_t data; 5796 int err; 5797 }; 5798 5799 static int kvm_vm_worker_thread(void *context) 5800 { 5801 /* 5802 * The init_context is allocated on the stack of the parent thread, so 5803 * we have to locally copy anything that is needed beyond initialization 5804 */ 5805 struct kvm_vm_worker_thread_context *init_context = context; 5806 struct task_struct *parent; 5807 struct kvm *kvm = init_context->kvm; 5808 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5809 uintptr_t data = init_context->data; 5810 int err; 5811 5812 err = kthread_park(current); 5813 /* kthread_park(current) is never supposed to return an error */ 5814 WARN_ON(err != 0); 5815 if (err) 5816 goto init_complete; 5817 5818 err = cgroup_attach_task_all(init_context->parent, current); 5819 if (err) { 5820 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5821 __func__, err); 5822 goto init_complete; 5823 } 5824 5825 set_user_nice(current, task_nice(init_context->parent)); 5826 5827 init_complete: 5828 init_context->err = err; 5829 complete(&init_context->init_done); 5830 init_context = NULL; 5831 5832 if (err) 5833 goto out; 5834 5835 /* Wait to be woken up by the spawner before proceeding. */ 5836 kthread_parkme(); 5837 5838 if (!kthread_should_stop()) 5839 err = thread_fn(kvm, data); 5840 5841 out: 5842 /* 5843 * Move kthread back to its original cgroup to prevent it lingering in 5844 * the cgroup of the VM process, after the latter finishes its 5845 * execution. 5846 * 5847 * kthread_stop() waits on the 'exited' completion condition which is 5848 * set in exit_mm(), via mm_release(), in do_exit(). However, the 5849 * kthread is removed from the cgroup in the cgroup_exit() which is 5850 * called after the exit_mm(). This causes the kthread_stop() to return 5851 * before the kthread actually quits the cgroup. 5852 */ 5853 rcu_read_lock(); 5854 parent = rcu_dereference(current->real_parent); 5855 get_task_struct(parent); 5856 rcu_read_unlock(); 5857 cgroup_attach_task_all(parent, current); 5858 put_task_struct(parent); 5859 5860 return err; 5861 } 5862 5863 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5864 uintptr_t data, const char *name, 5865 struct task_struct **thread_ptr) 5866 { 5867 struct kvm_vm_worker_thread_context init_context = {}; 5868 struct task_struct *thread; 5869 5870 *thread_ptr = NULL; 5871 init_context.kvm = kvm; 5872 init_context.parent = current; 5873 init_context.thread_fn = thread_fn; 5874 init_context.data = data; 5875 init_completion(&init_context.init_done); 5876 5877 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5878 "%s-%d", name, task_pid_nr(current)); 5879 if (IS_ERR(thread)) 5880 return PTR_ERR(thread); 5881 5882 /* kthread_run is never supposed to return NULL */ 5883 WARN_ON(thread == NULL); 5884 5885 wait_for_completion(&init_context.init_done); 5886 5887 if (!init_context.err) 5888 *thread_ptr = thread; 5889 5890 return init_context.err; 5891 } 5892