1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 MODULE_AUTHOR("Qumranet"); 67 MODULE_LICENSE("GPL"); 68 69 /* halt polling only reduces halt latency by 5-7 us, 500us is enough */ 70 static unsigned int halt_poll_ns = 500000; 71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 72 73 /* Default doubles per-vcpu halt_poll_ns. */ 74 static unsigned int halt_poll_ns_grow = 2; 75 module_param(halt_poll_ns_grow, int, S_IRUGO); 76 77 /* Default resets per-vcpu halt_poll_ns . */ 78 static unsigned int halt_poll_ns_shrink; 79 module_param(halt_poll_ns_shrink, int, S_IRUGO); 80 81 /* 82 * Ordering of locks: 83 * 84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 85 */ 86 87 DEFINE_SPINLOCK(kvm_lock); 88 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 89 LIST_HEAD(vm_list); 90 91 static cpumask_var_t cpus_hardware_enabled; 92 static int kvm_usage_count; 93 static atomic_t hardware_enable_failed; 94 95 struct kmem_cache *kvm_vcpu_cache; 96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 97 98 static __read_mostly struct preempt_ops kvm_preempt_ops; 99 100 struct dentry *kvm_debugfs_dir; 101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 102 103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 104 unsigned long arg); 105 #ifdef CONFIG_KVM_COMPAT 106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 107 unsigned long arg); 108 #endif 109 static int hardware_enable_all(void); 110 static void hardware_disable_all(void); 111 112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 113 114 static void kvm_release_pfn_dirty(pfn_t pfn); 115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 116 117 __visible bool kvm_rebooting; 118 EXPORT_SYMBOL_GPL(kvm_rebooting); 119 120 static bool largepages_enabled = true; 121 122 bool kvm_is_reserved_pfn(pfn_t pfn) 123 { 124 if (pfn_valid(pfn)) 125 return PageReserved(pfn_to_page(pfn)); 126 127 return true; 128 } 129 130 /* 131 * Switches to specified vcpu, until a matching vcpu_put() 132 */ 133 int vcpu_load(struct kvm_vcpu *vcpu) 134 { 135 int cpu; 136 137 if (mutex_lock_killable(&vcpu->mutex)) 138 return -EINTR; 139 cpu = get_cpu(); 140 preempt_notifier_register(&vcpu->preempt_notifier); 141 kvm_arch_vcpu_load(vcpu, cpu); 142 put_cpu(); 143 return 0; 144 } 145 146 void vcpu_put(struct kvm_vcpu *vcpu) 147 { 148 preempt_disable(); 149 kvm_arch_vcpu_put(vcpu); 150 preempt_notifier_unregister(&vcpu->preempt_notifier); 151 preempt_enable(); 152 mutex_unlock(&vcpu->mutex); 153 } 154 155 static void ack_flush(void *_completed) 156 { 157 } 158 159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 160 { 161 int i, cpu, me; 162 cpumask_var_t cpus; 163 bool called = true; 164 struct kvm_vcpu *vcpu; 165 166 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 167 168 me = get_cpu(); 169 kvm_for_each_vcpu(i, vcpu, kvm) { 170 kvm_make_request(req, vcpu); 171 cpu = vcpu->cpu; 172 173 /* Set ->requests bit before we read ->mode */ 174 smp_mb(); 175 176 if (cpus != NULL && cpu != -1 && cpu != me && 177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 178 cpumask_set_cpu(cpu, cpus); 179 } 180 if (unlikely(cpus == NULL)) 181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 182 else if (!cpumask_empty(cpus)) 183 smp_call_function_many(cpus, ack_flush, NULL, 1); 184 else 185 called = false; 186 put_cpu(); 187 free_cpumask_var(cpus); 188 return called; 189 } 190 191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 192 void kvm_flush_remote_tlbs(struct kvm *kvm) 193 { 194 long dirty_count = kvm->tlbs_dirty; 195 196 smp_mb(); 197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 198 ++kvm->stat.remote_tlb_flush; 199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 200 } 201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 202 #endif 203 204 void kvm_reload_remote_mmus(struct kvm *kvm) 205 { 206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 207 } 208 209 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 210 { 211 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 212 } 213 214 void kvm_make_scan_ioapic_request(struct kvm *kvm) 215 { 216 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 217 } 218 219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 220 { 221 struct page *page; 222 int r; 223 224 mutex_init(&vcpu->mutex); 225 vcpu->cpu = -1; 226 vcpu->kvm = kvm; 227 vcpu->vcpu_id = id; 228 vcpu->pid = NULL; 229 vcpu->halt_poll_ns = 0; 230 init_waitqueue_head(&vcpu->wq); 231 kvm_async_pf_vcpu_init(vcpu); 232 233 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 234 if (!page) { 235 r = -ENOMEM; 236 goto fail; 237 } 238 vcpu->run = page_address(page); 239 240 kvm_vcpu_set_in_spin_loop(vcpu, false); 241 kvm_vcpu_set_dy_eligible(vcpu, false); 242 vcpu->preempted = false; 243 244 r = kvm_arch_vcpu_init(vcpu); 245 if (r < 0) 246 goto fail_free_run; 247 return 0; 248 249 fail_free_run: 250 free_page((unsigned long)vcpu->run); 251 fail: 252 return r; 253 } 254 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 255 256 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 257 { 258 put_pid(vcpu->pid); 259 kvm_arch_vcpu_uninit(vcpu); 260 free_page((unsigned long)vcpu->run); 261 } 262 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 263 264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 265 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 266 { 267 return container_of(mn, struct kvm, mmu_notifier); 268 } 269 270 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 271 struct mm_struct *mm, 272 unsigned long address) 273 { 274 struct kvm *kvm = mmu_notifier_to_kvm(mn); 275 int need_tlb_flush, idx; 276 277 /* 278 * When ->invalidate_page runs, the linux pte has been zapped 279 * already but the page is still allocated until 280 * ->invalidate_page returns. So if we increase the sequence 281 * here the kvm page fault will notice if the spte can't be 282 * established because the page is going to be freed. If 283 * instead the kvm page fault establishes the spte before 284 * ->invalidate_page runs, kvm_unmap_hva will release it 285 * before returning. 286 * 287 * The sequence increase only need to be seen at spin_unlock 288 * time, and not at spin_lock time. 289 * 290 * Increasing the sequence after the spin_unlock would be 291 * unsafe because the kvm page fault could then establish the 292 * pte after kvm_unmap_hva returned, without noticing the page 293 * is going to be freed. 294 */ 295 idx = srcu_read_lock(&kvm->srcu); 296 spin_lock(&kvm->mmu_lock); 297 298 kvm->mmu_notifier_seq++; 299 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 300 /* we've to flush the tlb before the pages can be freed */ 301 if (need_tlb_flush) 302 kvm_flush_remote_tlbs(kvm); 303 304 spin_unlock(&kvm->mmu_lock); 305 306 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 307 308 srcu_read_unlock(&kvm->srcu, idx); 309 } 310 311 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 312 struct mm_struct *mm, 313 unsigned long address, 314 pte_t pte) 315 { 316 struct kvm *kvm = mmu_notifier_to_kvm(mn); 317 int idx; 318 319 idx = srcu_read_lock(&kvm->srcu); 320 spin_lock(&kvm->mmu_lock); 321 kvm->mmu_notifier_seq++; 322 kvm_set_spte_hva(kvm, address, pte); 323 spin_unlock(&kvm->mmu_lock); 324 srcu_read_unlock(&kvm->srcu, idx); 325 } 326 327 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 328 struct mm_struct *mm, 329 unsigned long start, 330 unsigned long end) 331 { 332 struct kvm *kvm = mmu_notifier_to_kvm(mn); 333 int need_tlb_flush = 0, idx; 334 335 idx = srcu_read_lock(&kvm->srcu); 336 spin_lock(&kvm->mmu_lock); 337 /* 338 * The count increase must become visible at unlock time as no 339 * spte can be established without taking the mmu_lock and 340 * count is also read inside the mmu_lock critical section. 341 */ 342 kvm->mmu_notifier_count++; 343 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 344 need_tlb_flush |= kvm->tlbs_dirty; 345 /* we've to flush the tlb before the pages can be freed */ 346 if (need_tlb_flush) 347 kvm_flush_remote_tlbs(kvm); 348 349 spin_unlock(&kvm->mmu_lock); 350 srcu_read_unlock(&kvm->srcu, idx); 351 } 352 353 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 354 struct mm_struct *mm, 355 unsigned long start, 356 unsigned long end) 357 { 358 struct kvm *kvm = mmu_notifier_to_kvm(mn); 359 360 spin_lock(&kvm->mmu_lock); 361 /* 362 * This sequence increase will notify the kvm page fault that 363 * the page that is going to be mapped in the spte could have 364 * been freed. 365 */ 366 kvm->mmu_notifier_seq++; 367 smp_wmb(); 368 /* 369 * The above sequence increase must be visible before the 370 * below count decrease, which is ensured by the smp_wmb above 371 * in conjunction with the smp_rmb in mmu_notifier_retry(). 372 */ 373 kvm->mmu_notifier_count--; 374 spin_unlock(&kvm->mmu_lock); 375 376 BUG_ON(kvm->mmu_notifier_count < 0); 377 } 378 379 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 380 struct mm_struct *mm, 381 unsigned long start, 382 unsigned long end) 383 { 384 struct kvm *kvm = mmu_notifier_to_kvm(mn); 385 int young, idx; 386 387 idx = srcu_read_lock(&kvm->srcu); 388 spin_lock(&kvm->mmu_lock); 389 390 young = kvm_age_hva(kvm, start, end); 391 if (young) 392 kvm_flush_remote_tlbs(kvm); 393 394 spin_unlock(&kvm->mmu_lock); 395 srcu_read_unlock(&kvm->srcu, idx); 396 397 return young; 398 } 399 400 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 401 struct mm_struct *mm, 402 unsigned long start, 403 unsigned long end) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 int young, idx; 407 408 idx = srcu_read_lock(&kvm->srcu); 409 spin_lock(&kvm->mmu_lock); 410 /* 411 * Even though we do not flush TLB, this will still adversely 412 * affect performance on pre-Haswell Intel EPT, where there is 413 * no EPT Access Bit to clear so that we have to tear down EPT 414 * tables instead. If we find this unacceptable, we can always 415 * add a parameter to kvm_age_hva so that it effectively doesn't 416 * do anything on clear_young. 417 * 418 * Also note that currently we never issue secondary TLB flushes 419 * from clear_young, leaving this job up to the regular system 420 * cadence. If we find this inaccurate, we might come up with a 421 * more sophisticated heuristic later. 422 */ 423 young = kvm_age_hva(kvm, start, end); 424 spin_unlock(&kvm->mmu_lock); 425 srcu_read_unlock(&kvm->srcu, idx); 426 427 return young; 428 } 429 430 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 431 struct mm_struct *mm, 432 unsigned long address) 433 { 434 struct kvm *kvm = mmu_notifier_to_kvm(mn); 435 int young, idx; 436 437 idx = srcu_read_lock(&kvm->srcu); 438 spin_lock(&kvm->mmu_lock); 439 young = kvm_test_age_hva(kvm, address); 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 447 struct mm_struct *mm) 448 { 449 struct kvm *kvm = mmu_notifier_to_kvm(mn); 450 int idx; 451 452 idx = srcu_read_lock(&kvm->srcu); 453 kvm_arch_flush_shadow_all(kvm); 454 srcu_read_unlock(&kvm->srcu, idx); 455 } 456 457 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 458 .invalidate_page = kvm_mmu_notifier_invalidate_page, 459 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 460 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 461 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 462 .clear_young = kvm_mmu_notifier_clear_young, 463 .test_young = kvm_mmu_notifier_test_young, 464 .change_pte = kvm_mmu_notifier_change_pte, 465 .release = kvm_mmu_notifier_release, 466 }; 467 468 static int kvm_init_mmu_notifier(struct kvm *kvm) 469 { 470 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 471 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 472 } 473 474 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 475 476 static int kvm_init_mmu_notifier(struct kvm *kvm) 477 { 478 return 0; 479 } 480 481 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 482 483 static struct kvm_memslots *kvm_alloc_memslots(void) 484 { 485 int i; 486 struct kvm_memslots *slots; 487 488 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 489 if (!slots) 490 return NULL; 491 492 /* 493 * Init kvm generation close to the maximum to easily test the 494 * code of handling generation number wrap-around. 495 */ 496 slots->generation = -150; 497 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 498 slots->id_to_index[i] = slots->memslots[i].id = i; 499 500 return slots; 501 } 502 503 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 504 { 505 if (!memslot->dirty_bitmap) 506 return; 507 508 kvfree(memslot->dirty_bitmap); 509 memslot->dirty_bitmap = NULL; 510 } 511 512 /* 513 * Free any memory in @free but not in @dont. 514 */ 515 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 516 struct kvm_memory_slot *dont) 517 { 518 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 519 kvm_destroy_dirty_bitmap(free); 520 521 kvm_arch_free_memslot(kvm, free, dont); 522 523 free->npages = 0; 524 } 525 526 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 527 { 528 struct kvm_memory_slot *memslot; 529 530 if (!slots) 531 return; 532 533 kvm_for_each_memslot(memslot, slots) 534 kvm_free_memslot(kvm, memslot, NULL); 535 536 kvfree(slots); 537 } 538 539 static struct kvm *kvm_create_vm(unsigned long type) 540 { 541 int r, i; 542 struct kvm *kvm = kvm_arch_alloc_vm(); 543 544 if (!kvm) 545 return ERR_PTR(-ENOMEM); 546 547 r = kvm_arch_init_vm(kvm, type); 548 if (r) 549 goto out_err_no_disable; 550 551 r = hardware_enable_all(); 552 if (r) 553 goto out_err_no_disable; 554 555 #ifdef CONFIG_HAVE_KVM_IRQFD 556 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 557 #endif 558 559 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 560 561 r = -ENOMEM; 562 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 563 kvm->memslots[i] = kvm_alloc_memslots(); 564 if (!kvm->memslots[i]) 565 goto out_err_no_srcu; 566 } 567 568 if (init_srcu_struct(&kvm->srcu)) 569 goto out_err_no_srcu; 570 if (init_srcu_struct(&kvm->irq_srcu)) 571 goto out_err_no_irq_srcu; 572 for (i = 0; i < KVM_NR_BUSES; i++) { 573 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 574 GFP_KERNEL); 575 if (!kvm->buses[i]) 576 goto out_err; 577 } 578 579 spin_lock_init(&kvm->mmu_lock); 580 kvm->mm = current->mm; 581 atomic_inc(&kvm->mm->mm_count); 582 kvm_eventfd_init(kvm); 583 mutex_init(&kvm->lock); 584 mutex_init(&kvm->irq_lock); 585 mutex_init(&kvm->slots_lock); 586 atomic_set(&kvm->users_count, 1); 587 INIT_LIST_HEAD(&kvm->devices); 588 589 r = kvm_init_mmu_notifier(kvm); 590 if (r) 591 goto out_err; 592 593 spin_lock(&kvm_lock); 594 list_add(&kvm->vm_list, &vm_list); 595 spin_unlock(&kvm_lock); 596 597 preempt_notifier_inc(); 598 599 return kvm; 600 601 out_err: 602 cleanup_srcu_struct(&kvm->irq_srcu); 603 out_err_no_irq_srcu: 604 cleanup_srcu_struct(&kvm->srcu); 605 out_err_no_srcu: 606 hardware_disable_all(); 607 out_err_no_disable: 608 for (i = 0; i < KVM_NR_BUSES; i++) 609 kfree(kvm->buses[i]); 610 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 611 kvm_free_memslots(kvm, kvm->memslots[i]); 612 kvm_arch_free_vm(kvm); 613 return ERR_PTR(r); 614 } 615 616 /* 617 * Avoid using vmalloc for a small buffer. 618 * Should not be used when the size is statically known. 619 */ 620 void *kvm_kvzalloc(unsigned long size) 621 { 622 if (size > PAGE_SIZE) 623 return vzalloc(size); 624 else 625 return kzalloc(size, GFP_KERNEL); 626 } 627 628 static void kvm_destroy_devices(struct kvm *kvm) 629 { 630 struct list_head *node, *tmp; 631 632 list_for_each_safe(node, tmp, &kvm->devices) { 633 struct kvm_device *dev = 634 list_entry(node, struct kvm_device, vm_node); 635 636 list_del(node); 637 dev->ops->destroy(dev); 638 } 639 } 640 641 static void kvm_destroy_vm(struct kvm *kvm) 642 { 643 int i; 644 struct mm_struct *mm = kvm->mm; 645 646 kvm_arch_sync_events(kvm); 647 spin_lock(&kvm_lock); 648 list_del(&kvm->vm_list); 649 spin_unlock(&kvm_lock); 650 kvm_free_irq_routing(kvm); 651 for (i = 0; i < KVM_NR_BUSES; i++) 652 kvm_io_bus_destroy(kvm->buses[i]); 653 kvm_coalesced_mmio_free(kvm); 654 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 655 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 656 #else 657 kvm_arch_flush_shadow_all(kvm); 658 #endif 659 kvm_arch_destroy_vm(kvm); 660 kvm_destroy_devices(kvm); 661 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 662 kvm_free_memslots(kvm, kvm->memslots[i]); 663 cleanup_srcu_struct(&kvm->irq_srcu); 664 cleanup_srcu_struct(&kvm->srcu); 665 kvm_arch_free_vm(kvm); 666 preempt_notifier_dec(); 667 hardware_disable_all(); 668 mmdrop(mm); 669 } 670 671 void kvm_get_kvm(struct kvm *kvm) 672 { 673 atomic_inc(&kvm->users_count); 674 } 675 EXPORT_SYMBOL_GPL(kvm_get_kvm); 676 677 void kvm_put_kvm(struct kvm *kvm) 678 { 679 if (atomic_dec_and_test(&kvm->users_count)) 680 kvm_destroy_vm(kvm); 681 } 682 EXPORT_SYMBOL_GPL(kvm_put_kvm); 683 684 685 static int kvm_vm_release(struct inode *inode, struct file *filp) 686 { 687 struct kvm *kvm = filp->private_data; 688 689 kvm_irqfd_release(kvm); 690 691 kvm_put_kvm(kvm); 692 return 0; 693 } 694 695 /* 696 * Allocation size is twice as large as the actual dirty bitmap size. 697 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 698 */ 699 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 700 { 701 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 702 703 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 704 if (!memslot->dirty_bitmap) 705 return -ENOMEM; 706 707 return 0; 708 } 709 710 /* 711 * Insert memslot and re-sort memslots based on their GFN, 712 * so binary search could be used to lookup GFN. 713 * Sorting algorithm takes advantage of having initially 714 * sorted array and known changed memslot position. 715 */ 716 static void update_memslots(struct kvm_memslots *slots, 717 struct kvm_memory_slot *new) 718 { 719 int id = new->id; 720 int i = slots->id_to_index[id]; 721 struct kvm_memory_slot *mslots = slots->memslots; 722 723 WARN_ON(mslots[i].id != id); 724 if (!new->npages) { 725 WARN_ON(!mslots[i].npages); 726 if (mslots[i].npages) 727 slots->used_slots--; 728 } else { 729 if (!mslots[i].npages) 730 slots->used_slots++; 731 } 732 733 while (i < KVM_MEM_SLOTS_NUM - 1 && 734 new->base_gfn <= mslots[i + 1].base_gfn) { 735 if (!mslots[i + 1].npages) 736 break; 737 mslots[i] = mslots[i + 1]; 738 slots->id_to_index[mslots[i].id] = i; 739 i++; 740 } 741 742 /* 743 * The ">=" is needed when creating a slot with base_gfn == 0, 744 * so that it moves before all those with base_gfn == npages == 0. 745 * 746 * On the other hand, if new->npages is zero, the above loop has 747 * already left i pointing to the beginning of the empty part of 748 * mslots, and the ">=" would move the hole backwards in this 749 * case---which is wrong. So skip the loop when deleting a slot. 750 */ 751 if (new->npages) { 752 while (i > 0 && 753 new->base_gfn >= mslots[i - 1].base_gfn) { 754 mslots[i] = mslots[i - 1]; 755 slots->id_to_index[mslots[i].id] = i; 756 i--; 757 } 758 } else 759 WARN_ON_ONCE(i != slots->used_slots); 760 761 mslots[i] = *new; 762 slots->id_to_index[mslots[i].id] = i; 763 } 764 765 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 766 { 767 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 768 769 #ifdef __KVM_HAVE_READONLY_MEM 770 valid_flags |= KVM_MEM_READONLY; 771 #endif 772 773 if (mem->flags & ~valid_flags) 774 return -EINVAL; 775 776 return 0; 777 } 778 779 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 780 int as_id, struct kvm_memslots *slots) 781 { 782 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 783 784 /* 785 * Set the low bit in the generation, which disables SPTE caching 786 * until the end of synchronize_srcu_expedited. 787 */ 788 WARN_ON(old_memslots->generation & 1); 789 slots->generation = old_memslots->generation + 1; 790 791 rcu_assign_pointer(kvm->memslots[as_id], slots); 792 synchronize_srcu_expedited(&kvm->srcu); 793 794 /* 795 * Increment the new memslot generation a second time. This prevents 796 * vm exits that race with memslot updates from caching a memslot 797 * generation that will (potentially) be valid forever. 798 */ 799 slots->generation++; 800 801 kvm_arch_memslots_updated(kvm, slots); 802 803 return old_memslots; 804 } 805 806 /* 807 * Allocate some memory and give it an address in the guest physical address 808 * space. 809 * 810 * Discontiguous memory is allowed, mostly for framebuffers. 811 * 812 * Must be called holding kvm->slots_lock for write. 813 */ 814 int __kvm_set_memory_region(struct kvm *kvm, 815 const struct kvm_userspace_memory_region *mem) 816 { 817 int r; 818 gfn_t base_gfn; 819 unsigned long npages; 820 struct kvm_memory_slot *slot; 821 struct kvm_memory_slot old, new; 822 struct kvm_memslots *slots = NULL, *old_memslots; 823 int as_id, id; 824 enum kvm_mr_change change; 825 826 r = check_memory_region_flags(mem); 827 if (r) 828 goto out; 829 830 r = -EINVAL; 831 as_id = mem->slot >> 16; 832 id = (u16)mem->slot; 833 834 /* General sanity checks */ 835 if (mem->memory_size & (PAGE_SIZE - 1)) 836 goto out; 837 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 838 goto out; 839 /* We can read the guest memory with __xxx_user() later on. */ 840 if ((id < KVM_USER_MEM_SLOTS) && 841 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 842 !access_ok(VERIFY_WRITE, 843 (void __user *)(unsigned long)mem->userspace_addr, 844 mem->memory_size))) 845 goto out; 846 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 847 goto out; 848 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 849 goto out; 850 851 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 852 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 853 npages = mem->memory_size >> PAGE_SHIFT; 854 855 if (npages > KVM_MEM_MAX_NR_PAGES) 856 goto out; 857 858 new = old = *slot; 859 860 new.id = id; 861 new.base_gfn = base_gfn; 862 new.npages = npages; 863 new.flags = mem->flags; 864 865 if (npages) { 866 if (!old.npages) 867 change = KVM_MR_CREATE; 868 else { /* Modify an existing slot. */ 869 if ((mem->userspace_addr != old.userspace_addr) || 870 (npages != old.npages) || 871 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 872 goto out; 873 874 if (base_gfn != old.base_gfn) 875 change = KVM_MR_MOVE; 876 else if (new.flags != old.flags) 877 change = KVM_MR_FLAGS_ONLY; 878 else { /* Nothing to change. */ 879 r = 0; 880 goto out; 881 } 882 } 883 } else { 884 if (!old.npages) 885 goto out; 886 887 change = KVM_MR_DELETE; 888 new.base_gfn = 0; 889 new.flags = 0; 890 } 891 892 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 893 /* Check for overlaps */ 894 r = -EEXIST; 895 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 896 if ((slot->id >= KVM_USER_MEM_SLOTS) || 897 (slot->id == id)) 898 continue; 899 if (!((base_gfn + npages <= slot->base_gfn) || 900 (base_gfn >= slot->base_gfn + slot->npages))) 901 goto out; 902 } 903 } 904 905 /* Free page dirty bitmap if unneeded */ 906 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 907 new.dirty_bitmap = NULL; 908 909 r = -ENOMEM; 910 if (change == KVM_MR_CREATE) { 911 new.userspace_addr = mem->userspace_addr; 912 913 if (kvm_arch_create_memslot(kvm, &new, npages)) 914 goto out_free; 915 } 916 917 /* Allocate page dirty bitmap if needed */ 918 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 919 if (kvm_create_dirty_bitmap(&new) < 0) 920 goto out_free; 921 } 922 923 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 924 if (!slots) 925 goto out_free; 926 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 927 928 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 929 slot = id_to_memslot(slots, id); 930 slot->flags |= KVM_MEMSLOT_INVALID; 931 932 old_memslots = install_new_memslots(kvm, as_id, slots); 933 934 /* slot was deleted or moved, clear iommu mapping */ 935 kvm_iommu_unmap_pages(kvm, &old); 936 /* From this point no new shadow pages pointing to a deleted, 937 * or moved, memslot will be created. 938 * 939 * validation of sp->gfn happens in: 940 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 941 * - kvm_is_visible_gfn (mmu_check_roots) 942 */ 943 kvm_arch_flush_shadow_memslot(kvm, slot); 944 945 /* 946 * We can re-use the old_memslots from above, the only difference 947 * from the currently installed memslots is the invalid flag. This 948 * will get overwritten by update_memslots anyway. 949 */ 950 slots = old_memslots; 951 } 952 953 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 954 if (r) 955 goto out_slots; 956 957 /* actual memory is freed via old in kvm_free_memslot below */ 958 if (change == KVM_MR_DELETE) { 959 new.dirty_bitmap = NULL; 960 memset(&new.arch, 0, sizeof(new.arch)); 961 } 962 963 update_memslots(slots, &new); 964 old_memslots = install_new_memslots(kvm, as_id, slots); 965 966 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 967 968 kvm_free_memslot(kvm, &old, &new); 969 kvfree(old_memslots); 970 971 /* 972 * IOMMU mapping: New slots need to be mapped. Old slots need to be 973 * un-mapped and re-mapped if their base changes. Since base change 974 * unmapping is handled above with slot deletion, mapping alone is 975 * needed here. Anything else the iommu might care about for existing 976 * slots (size changes, userspace addr changes and read-only flag 977 * changes) is disallowed above, so any other attribute changes getting 978 * here can be skipped. 979 */ 980 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 981 r = kvm_iommu_map_pages(kvm, &new); 982 return r; 983 } 984 985 return 0; 986 987 out_slots: 988 kvfree(slots); 989 out_free: 990 kvm_free_memslot(kvm, &new, &old); 991 out: 992 return r; 993 } 994 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 995 996 int kvm_set_memory_region(struct kvm *kvm, 997 const struct kvm_userspace_memory_region *mem) 998 { 999 int r; 1000 1001 mutex_lock(&kvm->slots_lock); 1002 r = __kvm_set_memory_region(kvm, mem); 1003 mutex_unlock(&kvm->slots_lock); 1004 return r; 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1007 1008 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1009 struct kvm_userspace_memory_region *mem) 1010 { 1011 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1012 return -EINVAL; 1013 1014 return kvm_set_memory_region(kvm, mem); 1015 } 1016 1017 int kvm_get_dirty_log(struct kvm *kvm, 1018 struct kvm_dirty_log *log, int *is_dirty) 1019 { 1020 struct kvm_memslots *slots; 1021 struct kvm_memory_slot *memslot; 1022 int r, i, as_id, id; 1023 unsigned long n; 1024 unsigned long any = 0; 1025 1026 r = -EINVAL; 1027 as_id = log->slot >> 16; 1028 id = (u16)log->slot; 1029 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1030 goto out; 1031 1032 slots = __kvm_memslots(kvm, as_id); 1033 memslot = id_to_memslot(slots, id); 1034 r = -ENOENT; 1035 if (!memslot->dirty_bitmap) 1036 goto out; 1037 1038 n = kvm_dirty_bitmap_bytes(memslot); 1039 1040 for (i = 0; !any && i < n/sizeof(long); ++i) 1041 any = memslot->dirty_bitmap[i]; 1042 1043 r = -EFAULT; 1044 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1045 goto out; 1046 1047 if (any) 1048 *is_dirty = 1; 1049 1050 r = 0; 1051 out: 1052 return r; 1053 } 1054 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1055 1056 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1057 /** 1058 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1059 * are dirty write protect them for next write. 1060 * @kvm: pointer to kvm instance 1061 * @log: slot id and address to which we copy the log 1062 * @is_dirty: flag set if any page is dirty 1063 * 1064 * We need to keep it in mind that VCPU threads can write to the bitmap 1065 * concurrently. So, to avoid losing track of dirty pages we keep the 1066 * following order: 1067 * 1068 * 1. Take a snapshot of the bit and clear it if needed. 1069 * 2. Write protect the corresponding page. 1070 * 3. Copy the snapshot to the userspace. 1071 * 4. Upon return caller flushes TLB's if needed. 1072 * 1073 * Between 2 and 4, the guest may write to the page using the remaining TLB 1074 * entry. This is not a problem because the page is reported dirty using 1075 * the snapshot taken before and step 4 ensures that writes done after 1076 * exiting to userspace will be logged for the next call. 1077 * 1078 */ 1079 int kvm_get_dirty_log_protect(struct kvm *kvm, 1080 struct kvm_dirty_log *log, bool *is_dirty) 1081 { 1082 struct kvm_memslots *slots; 1083 struct kvm_memory_slot *memslot; 1084 int r, i, as_id, id; 1085 unsigned long n; 1086 unsigned long *dirty_bitmap; 1087 unsigned long *dirty_bitmap_buffer; 1088 1089 r = -EINVAL; 1090 as_id = log->slot >> 16; 1091 id = (u16)log->slot; 1092 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1093 goto out; 1094 1095 slots = __kvm_memslots(kvm, as_id); 1096 memslot = id_to_memslot(slots, id); 1097 1098 dirty_bitmap = memslot->dirty_bitmap; 1099 r = -ENOENT; 1100 if (!dirty_bitmap) 1101 goto out; 1102 1103 n = kvm_dirty_bitmap_bytes(memslot); 1104 1105 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1106 memset(dirty_bitmap_buffer, 0, n); 1107 1108 spin_lock(&kvm->mmu_lock); 1109 *is_dirty = false; 1110 for (i = 0; i < n / sizeof(long); i++) { 1111 unsigned long mask; 1112 gfn_t offset; 1113 1114 if (!dirty_bitmap[i]) 1115 continue; 1116 1117 *is_dirty = true; 1118 1119 mask = xchg(&dirty_bitmap[i], 0); 1120 dirty_bitmap_buffer[i] = mask; 1121 1122 if (mask) { 1123 offset = i * BITS_PER_LONG; 1124 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1125 offset, mask); 1126 } 1127 } 1128 1129 spin_unlock(&kvm->mmu_lock); 1130 1131 r = -EFAULT; 1132 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1133 goto out; 1134 1135 r = 0; 1136 out: 1137 return r; 1138 } 1139 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1140 #endif 1141 1142 bool kvm_largepages_enabled(void) 1143 { 1144 return largepages_enabled; 1145 } 1146 1147 void kvm_disable_largepages(void) 1148 { 1149 largepages_enabled = false; 1150 } 1151 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1152 1153 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1154 { 1155 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1156 } 1157 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1158 1159 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1160 { 1161 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1162 } 1163 1164 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1165 { 1166 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1167 1168 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1169 memslot->flags & KVM_MEMSLOT_INVALID) 1170 return 0; 1171 1172 return 1; 1173 } 1174 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1175 1176 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1177 { 1178 struct vm_area_struct *vma; 1179 unsigned long addr, size; 1180 1181 size = PAGE_SIZE; 1182 1183 addr = gfn_to_hva(kvm, gfn); 1184 if (kvm_is_error_hva(addr)) 1185 return PAGE_SIZE; 1186 1187 down_read(¤t->mm->mmap_sem); 1188 vma = find_vma(current->mm, addr); 1189 if (!vma) 1190 goto out; 1191 1192 size = vma_kernel_pagesize(vma); 1193 1194 out: 1195 up_read(¤t->mm->mmap_sem); 1196 1197 return size; 1198 } 1199 1200 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1201 { 1202 return slot->flags & KVM_MEM_READONLY; 1203 } 1204 1205 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1206 gfn_t *nr_pages, bool write) 1207 { 1208 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1209 return KVM_HVA_ERR_BAD; 1210 1211 if (memslot_is_readonly(slot) && write) 1212 return KVM_HVA_ERR_RO_BAD; 1213 1214 if (nr_pages) 1215 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1216 1217 return __gfn_to_hva_memslot(slot, gfn); 1218 } 1219 1220 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1221 gfn_t *nr_pages) 1222 { 1223 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1224 } 1225 1226 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1227 gfn_t gfn) 1228 { 1229 return gfn_to_hva_many(slot, gfn, NULL); 1230 } 1231 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1232 1233 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1234 { 1235 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1236 } 1237 EXPORT_SYMBOL_GPL(gfn_to_hva); 1238 1239 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1240 { 1241 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1242 } 1243 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1244 1245 /* 1246 * If writable is set to false, the hva returned by this function is only 1247 * allowed to be read. 1248 */ 1249 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1250 gfn_t gfn, bool *writable) 1251 { 1252 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1253 1254 if (!kvm_is_error_hva(hva) && writable) 1255 *writable = !memslot_is_readonly(slot); 1256 1257 return hva; 1258 } 1259 1260 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1261 { 1262 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1263 1264 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1265 } 1266 1267 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1268 { 1269 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1270 1271 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1272 } 1273 1274 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1275 unsigned long start, int write, struct page **page) 1276 { 1277 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1278 1279 if (write) 1280 flags |= FOLL_WRITE; 1281 1282 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1283 } 1284 1285 static inline int check_user_page_hwpoison(unsigned long addr) 1286 { 1287 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1288 1289 rc = __get_user_pages(current, current->mm, addr, 1, 1290 flags, NULL, NULL, NULL); 1291 return rc == -EHWPOISON; 1292 } 1293 1294 /* 1295 * The atomic path to get the writable pfn which will be stored in @pfn, 1296 * true indicates success, otherwise false is returned. 1297 */ 1298 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1299 bool write_fault, bool *writable, pfn_t *pfn) 1300 { 1301 struct page *page[1]; 1302 int npages; 1303 1304 if (!(async || atomic)) 1305 return false; 1306 1307 /* 1308 * Fast pin a writable pfn only if it is a write fault request 1309 * or the caller allows to map a writable pfn for a read fault 1310 * request. 1311 */ 1312 if (!(write_fault || writable)) 1313 return false; 1314 1315 npages = __get_user_pages_fast(addr, 1, 1, page); 1316 if (npages == 1) { 1317 *pfn = page_to_pfn(page[0]); 1318 1319 if (writable) 1320 *writable = true; 1321 return true; 1322 } 1323 1324 return false; 1325 } 1326 1327 /* 1328 * The slow path to get the pfn of the specified host virtual address, 1329 * 1 indicates success, -errno is returned if error is detected. 1330 */ 1331 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1332 bool *writable, pfn_t *pfn) 1333 { 1334 struct page *page[1]; 1335 int npages = 0; 1336 1337 might_sleep(); 1338 1339 if (writable) 1340 *writable = write_fault; 1341 1342 if (async) { 1343 down_read(¤t->mm->mmap_sem); 1344 npages = get_user_page_nowait(current, current->mm, 1345 addr, write_fault, page); 1346 up_read(¤t->mm->mmap_sem); 1347 } else 1348 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1349 write_fault, 0, page, 1350 FOLL_TOUCH|FOLL_HWPOISON); 1351 if (npages != 1) 1352 return npages; 1353 1354 /* map read fault as writable if possible */ 1355 if (unlikely(!write_fault) && writable) { 1356 struct page *wpage[1]; 1357 1358 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1359 if (npages == 1) { 1360 *writable = true; 1361 put_page(page[0]); 1362 page[0] = wpage[0]; 1363 } 1364 1365 npages = 1; 1366 } 1367 *pfn = page_to_pfn(page[0]); 1368 return npages; 1369 } 1370 1371 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1372 { 1373 if (unlikely(!(vma->vm_flags & VM_READ))) 1374 return false; 1375 1376 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1377 return false; 1378 1379 return true; 1380 } 1381 1382 /* 1383 * Pin guest page in memory and return its pfn. 1384 * @addr: host virtual address which maps memory to the guest 1385 * @atomic: whether this function can sleep 1386 * @async: whether this function need to wait IO complete if the 1387 * host page is not in the memory 1388 * @write_fault: whether we should get a writable host page 1389 * @writable: whether it allows to map a writable host page for !@write_fault 1390 * 1391 * The function will map a writable host page for these two cases: 1392 * 1): @write_fault = true 1393 * 2): @write_fault = false && @writable, @writable will tell the caller 1394 * whether the mapping is writable. 1395 */ 1396 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1397 bool write_fault, bool *writable) 1398 { 1399 struct vm_area_struct *vma; 1400 pfn_t pfn = 0; 1401 int npages; 1402 1403 /* we can do it either atomically or asynchronously, not both */ 1404 BUG_ON(atomic && async); 1405 1406 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1407 return pfn; 1408 1409 if (atomic) 1410 return KVM_PFN_ERR_FAULT; 1411 1412 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1413 if (npages == 1) 1414 return pfn; 1415 1416 down_read(¤t->mm->mmap_sem); 1417 if (npages == -EHWPOISON || 1418 (!async && check_user_page_hwpoison(addr))) { 1419 pfn = KVM_PFN_ERR_HWPOISON; 1420 goto exit; 1421 } 1422 1423 vma = find_vma_intersection(current->mm, addr, addr + 1); 1424 1425 if (vma == NULL) 1426 pfn = KVM_PFN_ERR_FAULT; 1427 else if ((vma->vm_flags & VM_PFNMAP)) { 1428 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1429 vma->vm_pgoff; 1430 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1431 } else { 1432 if (async && vma_is_valid(vma, write_fault)) 1433 *async = true; 1434 pfn = KVM_PFN_ERR_FAULT; 1435 } 1436 exit: 1437 up_read(¤t->mm->mmap_sem); 1438 return pfn; 1439 } 1440 1441 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1442 bool *async, bool write_fault, bool *writable) 1443 { 1444 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1445 1446 if (addr == KVM_HVA_ERR_RO_BAD) 1447 return KVM_PFN_ERR_RO_FAULT; 1448 1449 if (kvm_is_error_hva(addr)) 1450 return KVM_PFN_NOSLOT; 1451 1452 /* Do not map writable pfn in the readonly memslot. */ 1453 if (writable && memslot_is_readonly(slot)) { 1454 *writable = false; 1455 writable = NULL; 1456 } 1457 1458 return hva_to_pfn(addr, atomic, async, write_fault, 1459 writable); 1460 } 1461 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1462 1463 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1464 bool *writable) 1465 { 1466 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1467 write_fault, writable); 1468 } 1469 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1470 1471 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1472 { 1473 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1474 } 1475 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1476 1477 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1478 { 1479 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1480 } 1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1482 1483 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1484 { 1485 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1486 } 1487 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1488 1489 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1490 { 1491 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1492 } 1493 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1494 1495 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1496 { 1497 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1498 } 1499 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1500 1501 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1502 { 1503 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1504 } 1505 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1506 1507 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1508 struct page **pages, int nr_pages) 1509 { 1510 unsigned long addr; 1511 gfn_t entry; 1512 1513 addr = gfn_to_hva_many(slot, gfn, &entry); 1514 if (kvm_is_error_hva(addr)) 1515 return -1; 1516 1517 if (entry < nr_pages) 1518 return 0; 1519 1520 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1521 } 1522 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1523 1524 static struct page *kvm_pfn_to_page(pfn_t pfn) 1525 { 1526 if (is_error_noslot_pfn(pfn)) 1527 return KVM_ERR_PTR_BAD_PAGE; 1528 1529 if (kvm_is_reserved_pfn(pfn)) { 1530 WARN_ON(1); 1531 return KVM_ERR_PTR_BAD_PAGE; 1532 } 1533 1534 return pfn_to_page(pfn); 1535 } 1536 1537 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1538 { 1539 pfn_t pfn; 1540 1541 pfn = gfn_to_pfn(kvm, gfn); 1542 1543 return kvm_pfn_to_page(pfn); 1544 } 1545 EXPORT_SYMBOL_GPL(gfn_to_page); 1546 1547 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1548 { 1549 pfn_t pfn; 1550 1551 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1552 1553 return kvm_pfn_to_page(pfn); 1554 } 1555 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1556 1557 void kvm_release_page_clean(struct page *page) 1558 { 1559 WARN_ON(is_error_page(page)); 1560 1561 kvm_release_pfn_clean(page_to_pfn(page)); 1562 } 1563 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1564 1565 void kvm_release_pfn_clean(pfn_t pfn) 1566 { 1567 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1568 put_page(pfn_to_page(pfn)); 1569 } 1570 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1571 1572 void kvm_release_page_dirty(struct page *page) 1573 { 1574 WARN_ON(is_error_page(page)); 1575 1576 kvm_release_pfn_dirty(page_to_pfn(page)); 1577 } 1578 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1579 1580 static void kvm_release_pfn_dirty(pfn_t pfn) 1581 { 1582 kvm_set_pfn_dirty(pfn); 1583 kvm_release_pfn_clean(pfn); 1584 } 1585 1586 void kvm_set_pfn_dirty(pfn_t pfn) 1587 { 1588 if (!kvm_is_reserved_pfn(pfn)) { 1589 struct page *page = pfn_to_page(pfn); 1590 1591 if (!PageReserved(page)) 1592 SetPageDirty(page); 1593 } 1594 } 1595 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1596 1597 void kvm_set_pfn_accessed(pfn_t pfn) 1598 { 1599 if (!kvm_is_reserved_pfn(pfn)) 1600 mark_page_accessed(pfn_to_page(pfn)); 1601 } 1602 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1603 1604 void kvm_get_pfn(pfn_t pfn) 1605 { 1606 if (!kvm_is_reserved_pfn(pfn)) 1607 get_page(pfn_to_page(pfn)); 1608 } 1609 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1610 1611 static int next_segment(unsigned long len, int offset) 1612 { 1613 if (len > PAGE_SIZE - offset) 1614 return PAGE_SIZE - offset; 1615 else 1616 return len; 1617 } 1618 1619 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1620 void *data, int offset, int len) 1621 { 1622 int r; 1623 unsigned long addr; 1624 1625 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1626 if (kvm_is_error_hva(addr)) 1627 return -EFAULT; 1628 r = __copy_from_user(data, (void __user *)addr + offset, len); 1629 if (r) 1630 return -EFAULT; 1631 return 0; 1632 } 1633 1634 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1635 int len) 1636 { 1637 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1638 1639 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1640 } 1641 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1642 1643 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1644 int offset, int len) 1645 { 1646 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1647 1648 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1649 } 1650 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1651 1652 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1653 { 1654 gfn_t gfn = gpa >> PAGE_SHIFT; 1655 int seg; 1656 int offset = offset_in_page(gpa); 1657 int ret; 1658 1659 while ((seg = next_segment(len, offset)) != 0) { 1660 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1661 if (ret < 0) 1662 return ret; 1663 offset = 0; 1664 len -= seg; 1665 data += seg; 1666 ++gfn; 1667 } 1668 return 0; 1669 } 1670 EXPORT_SYMBOL_GPL(kvm_read_guest); 1671 1672 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1673 { 1674 gfn_t gfn = gpa >> PAGE_SHIFT; 1675 int seg; 1676 int offset = offset_in_page(gpa); 1677 int ret; 1678 1679 while ((seg = next_segment(len, offset)) != 0) { 1680 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1681 if (ret < 0) 1682 return ret; 1683 offset = 0; 1684 len -= seg; 1685 data += seg; 1686 ++gfn; 1687 } 1688 return 0; 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1691 1692 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1693 void *data, int offset, unsigned long len) 1694 { 1695 int r; 1696 unsigned long addr; 1697 1698 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1699 if (kvm_is_error_hva(addr)) 1700 return -EFAULT; 1701 pagefault_disable(); 1702 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1703 pagefault_enable(); 1704 if (r) 1705 return -EFAULT; 1706 return 0; 1707 } 1708 1709 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1710 unsigned long len) 1711 { 1712 gfn_t gfn = gpa >> PAGE_SHIFT; 1713 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1714 int offset = offset_in_page(gpa); 1715 1716 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1717 } 1718 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1719 1720 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1721 void *data, unsigned long len) 1722 { 1723 gfn_t gfn = gpa >> PAGE_SHIFT; 1724 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1725 int offset = offset_in_page(gpa); 1726 1727 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1728 } 1729 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1730 1731 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1732 const void *data, int offset, int len) 1733 { 1734 int r; 1735 unsigned long addr; 1736 1737 addr = gfn_to_hva_memslot(memslot, gfn); 1738 if (kvm_is_error_hva(addr)) 1739 return -EFAULT; 1740 r = __copy_to_user((void __user *)addr + offset, data, len); 1741 if (r) 1742 return -EFAULT; 1743 mark_page_dirty_in_slot(memslot, gfn); 1744 return 0; 1745 } 1746 1747 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1748 const void *data, int offset, int len) 1749 { 1750 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1751 1752 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1753 } 1754 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1755 1756 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1757 const void *data, int offset, int len) 1758 { 1759 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1760 1761 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1762 } 1763 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1764 1765 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1766 unsigned long len) 1767 { 1768 gfn_t gfn = gpa >> PAGE_SHIFT; 1769 int seg; 1770 int offset = offset_in_page(gpa); 1771 int ret; 1772 1773 while ((seg = next_segment(len, offset)) != 0) { 1774 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1775 if (ret < 0) 1776 return ret; 1777 offset = 0; 1778 len -= seg; 1779 data += seg; 1780 ++gfn; 1781 } 1782 return 0; 1783 } 1784 EXPORT_SYMBOL_GPL(kvm_write_guest); 1785 1786 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1787 unsigned long len) 1788 { 1789 gfn_t gfn = gpa >> PAGE_SHIFT; 1790 int seg; 1791 int offset = offset_in_page(gpa); 1792 int ret; 1793 1794 while ((seg = next_segment(len, offset)) != 0) { 1795 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1796 if (ret < 0) 1797 return ret; 1798 offset = 0; 1799 len -= seg; 1800 data += seg; 1801 ++gfn; 1802 } 1803 return 0; 1804 } 1805 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1806 1807 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1808 gpa_t gpa, unsigned long len) 1809 { 1810 struct kvm_memslots *slots = kvm_memslots(kvm); 1811 int offset = offset_in_page(gpa); 1812 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1813 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1814 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1815 gfn_t nr_pages_avail; 1816 1817 ghc->gpa = gpa; 1818 ghc->generation = slots->generation; 1819 ghc->len = len; 1820 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1821 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1822 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1823 ghc->hva += offset; 1824 } else { 1825 /* 1826 * If the requested region crosses two memslots, we still 1827 * verify that the entire region is valid here. 1828 */ 1829 while (start_gfn <= end_gfn) { 1830 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1831 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1832 &nr_pages_avail); 1833 if (kvm_is_error_hva(ghc->hva)) 1834 return -EFAULT; 1835 start_gfn += nr_pages_avail; 1836 } 1837 /* Use the slow path for cross page reads and writes. */ 1838 ghc->memslot = NULL; 1839 } 1840 return 0; 1841 } 1842 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1843 1844 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1845 void *data, unsigned long len) 1846 { 1847 struct kvm_memslots *slots = kvm_memslots(kvm); 1848 int r; 1849 1850 BUG_ON(len > ghc->len); 1851 1852 if (slots->generation != ghc->generation) 1853 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1854 1855 if (unlikely(!ghc->memslot)) 1856 return kvm_write_guest(kvm, ghc->gpa, data, len); 1857 1858 if (kvm_is_error_hva(ghc->hva)) 1859 return -EFAULT; 1860 1861 r = __copy_to_user((void __user *)ghc->hva, data, len); 1862 if (r) 1863 return -EFAULT; 1864 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1865 1866 return 0; 1867 } 1868 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1869 1870 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1871 void *data, unsigned long len) 1872 { 1873 struct kvm_memslots *slots = kvm_memslots(kvm); 1874 int r; 1875 1876 BUG_ON(len > ghc->len); 1877 1878 if (slots->generation != ghc->generation) 1879 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1880 1881 if (unlikely(!ghc->memslot)) 1882 return kvm_read_guest(kvm, ghc->gpa, data, len); 1883 1884 if (kvm_is_error_hva(ghc->hva)) 1885 return -EFAULT; 1886 1887 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1888 if (r) 1889 return -EFAULT; 1890 1891 return 0; 1892 } 1893 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1894 1895 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1896 { 1897 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1898 1899 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1900 } 1901 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1902 1903 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1904 { 1905 gfn_t gfn = gpa >> PAGE_SHIFT; 1906 int seg; 1907 int offset = offset_in_page(gpa); 1908 int ret; 1909 1910 while ((seg = next_segment(len, offset)) != 0) { 1911 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1912 if (ret < 0) 1913 return ret; 1914 offset = 0; 1915 len -= seg; 1916 ++gfn; 1917 } 1918 return 0; 1919 } 1920 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1921 1922 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 1923 gfn_t gfn) 1924 { 1925 if (memslot && memslot->dirty_bitmap) { 1926 unsigned long rel_gfn = gfn - memslot->base_gfn; 1927 1928 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1929 } 1930 } 1931 1932 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1933 { 1934 struct kvm_memory_slot *memslot; 1935 1936 memslot = gfn_to_memslot(kvm, gfn); 1937 mark_page_dirty_in_slot(memslot, gfn); 1938 } 1939 EXPORT_SYMBOL_GPL(mark_page_dirty); 1940 1941 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 1942 { 1943 struct kvm_memory_slot *memslot; 1944 1945 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1946 mark_page_dirty_in_slot(memslot, gfn); 1947 } 1948 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 1949 1950 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 1951 { 1952 int old, val; 1953 1954 old = val = vcpu->halt_poll_ns; 1955 /* 10us base */ 1956 if (val == 0 && halt_poll_ns_grow) 1957 val = 10000; 1958 else 1959 val *= halt_poll_ns_grow; 1960 1961 vcpu->halt_poll_ns = val; 1962 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 1963 } 1964 1965 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 1966 { 1967 int old, val; 1968 1969 old = val = vcpu->halt_poll_ns; 1970 if (halt_poll_ns_shrink == 0) 1971 val = 0; 1972 else 1973 val /= halt_poll_ns_shrink; 1974 1975 vcpu->halt_poll_ns = val; 1976 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 1977 } 1978 1979 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 1980 { 1981 if (kvm_arch_vcpu_runnable(vcpu)) { 1982 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1983 return -EINTR; 1984 } 1985 if (kvm_cpu_has_pending_timer(vcpu)) 1986 return -EINTR; 1987 if (signal_pending(current)) 1988 return -EINTR; 1989 1990 return 0; 1991 } 1992 1993 /* 1994 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1995 */ 1996 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1997 { 1998 ktime_t start, cur; 1999 DEFINE_WAIT(wait); 2000 bool waited = false; 2001 u64 block_ns; 2002 2003 start = cur = ktime_get(); 2004 if (vcpu->halt_poll_ns) { 2005 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2006 2007 do { 2008 /* 2009 * This sets KVM_REQ_UNHALT if an interrupt 2010 * arrives. 2011 */ 2012 if (kvm_vcpu_check_block(vcpu) < 0) { 2013 ++vcpu->stat.halt_successful_poll; 2014 goto out; 2015 } 2016 cur = ktime_get(); 2017 } while (single_task_running() && ktime_before(cur, stop)); 2018 } 2019 2020 for (;;) { 2021 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2022 2023 if (kvm_vcpu_check_block(vcpu) < 0) 2024 break; 2025 2026 waited = true; 2027 schedule(); 2028 } 2029 2030 finish_wait(&vcpu->wq, &wait); 2031 cur = ktime_get(); 2032 2033 out: 2034 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2035 2036 if (halt_poll_ns) { 2037 if (block_ns <= vcpu->halt_poll_ns) 2038 ; 2039 /* we had a long block, shrink polling */ 2040 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2041 shrink_halt_poll_ns(vcpu); 2042 /* we had a short halt and our poll time is too small */ 2043 else if (vcpu->halt_poll_ns < halt_poll_ns && 2044 block_ns < halt_poll_ns) 2045 grow_halt_poll_ns(vcpu); 2046 } 2047 2048 trace_kvm_vcpu_wakeup(block_ns, waited); 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2051 2052 #ifndef CONFIG_S390 2053 /* 2054 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2055 */ 2056 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2057 { 2058 int me; 2059 int cpu = vcpu->cpu; 2060 wait_queue_head_t *wqp; 2061 2062 wqp = kvm_arch_vcpu_wq(vcpu); 2063 if (waitqueue_active(wqp)) { 2064 wake_up_interruptible(wqp); 2065 ++vcpu->stat.halt_wakeup; 2066 } 2067 2068 me = get_cpu(); 2069 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2070 if (kvm_arch_vcpu_should_kick(vcpu)) 2071 smp_send_reschedule(cpu); 2072 put_cpu(); 2073 } 2074 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2075 #endif /* !CONFIG_S390 */ 2076 2077 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2078 { 2079 struct pid *pid; 2080 struct task_struct *task = NULL; 2081 int ret = 0; 2082 2083 rcu_read_lock(); 2084 pid = rcu_dereference(target->pid); 2085 if (pid) 2086 task = get_pid_task(pid, PIDTYPE_PID); 2087 rcu_read_unlock(); 2088 if (!task) 2089 return ret; 2090 ret = yield_to(task, 1); 2091 put_task_struct(task); 2092 2093 return ret; 2094 } 2095 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2096 2097 /* 2098 * Helper that checks whether a VCPU is eligible for directed yield. 2099 * Most eligible candidate to yield is decided by following heuristics: 2100 * 2101 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2102 * (preempted lock holder), indicated by @in_spin_loop. 2103 * Set at the beiginning and cleared at the end of interception/PLE handler. 2104 * 2105 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2106 * chance last time (mostly it has become eligible now since we have probably 2107 * yielded to lockholder in last iteration. This is done by toggling 2108 * @dy_eligible each time a VCPU checked for eligibility.) 2109 * 2110 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2111 * to preempted lock-holder could result in wrong VCPU selection and CPU 2112 * burning. Giving priority for a potential lock-holder increases lock 2113 * progress. 2114 * 2115 * Since algorithm is based on heuristics, accessing another VCPU data without 2116 * locking does not harm. It may result in trying to yield to same VCPU, fail 2117 * and continue with next VCPU and so on. 2118 */ 2119 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2120 { 2121 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2122 bool eligible; 2123 2124 eligible = !vcpu->spin_loop.in_spin_loop || 2125 vcpu->spin_loop.dy_eligible; 2126 2127 if (vcpu->spin_loop.in_spin_loop) 2128 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2129 2130 return eligible; 2131 #else 2132 return true; 2133 #endif 2134 } 2135 2136 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2137 { 2138 struct kvm *kvm = me->kvm; 2139 struct kvm_vcpu *vcpu; 2140 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2141 int yielded = 0; 2142 int try = 3; 2143 int pass; 2144 int i; 2145 2146 kvm_vcpu_set_in_spin_loop(me, true); 2147 /* 2148 * We boost the priority of a VCPU that is runnable but not 2149 * currently running, because it got preempted by something 2150 * else and called schedule in __vcpu_run. Hopefully that 2151 * VCPU is holding the lock that we need and will release it. 2152 * We approximate round-robin by starting at the last boosted VCPU. 2153 */ 2154 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2155 kvm_for_each_vcpu(i, vcpu, kvm) { 2156 if (!pass && i <= last_boosted_vcpu) { 2157 i = last_boosted_vcpu; 2158 continue; 2159 } else if (pass && i > last_boosted_vcpu) 2160 break; 2161 if (!ACCESS_ONCE(vcpu->preempted)) 2162 continue; 2163 if (vcpu == me) 2164 continue; 2165 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2166 continue; 2167 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2168 continue; 2169 2170 yielded = kvm_vcpu_yield_to(vcpu); 2171 if (yielded > 0) { 2172 kvm->last_boosted_vcpu = i; 2173 break; 2174 } else if (yielded < 0) { 2175 try--; 2176 if (!try) 2177 break; 2178 } 2179 } 2180 } 2181 kvm_vcpu_set_in_spin_loop(me, false); 2182 2183 /* Ensure vcpu is not eligible during next spinloop */ 2184 kvm_vcpu_set_dy_eligible(me, false); 2185 } 2186 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2187 2188 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2189 { 2190 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2191 struct page *page; 2192 2193 if (vmf->pgoff == 0) 2194 page = virt_to_page(vcpu->run); 2195 #ifdef CONFIG_X86 2196 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2197 page = virt_to_page(vcpu->arch.pio_data); 2198 #endif 2199 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2200 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2201 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2202 #endif 2203 else 2204 return kvm_arch_vcpu_fault(vcpu, vmf); 2205 get_page(page); 2206 vmf->page = page; 2207 return 0; 2208 } 2209 2210 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2211 .fault = kvm_vcpu_fault, 2212 }; 2213 2214 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2215 { 2216 vma->vm_ops = &kvm_vcpu_vm_ops; 2217 return 0; 2218 } 2219 2220 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2221 { 2222 struct kvm_vcpu *vcpu = filp->private_data; 2223 2224 kvm_put_kvm(vcpu->kvm); 2225 return 0; 2226 } 2227 2228 static struct file_operations kvm_vcpu_fops = { 2229 .release = kvm_vcpu_release, 2230 .unlocked_ioctl = kvm_vcpu_ioctl, 2231 #ifdef CONFIG_KVM_COMPAT 2232 .compat_ioctl = kvm_vcpu_compat_ioctl, 2233 #endif 2234 .mmap = kvm_vcpu_mmap, 2235 .llseek = noop_llseek, 2236 }; 2237 2238 /* 2239 * Allocates an inode for the vcpu. 2240 */ 2241 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2242 { 2243 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2244 } 2245 2246 /* 2247 * Creates some virtual cpus. Good luck creating more than one. 2248 */ 2249 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2250 { 2251 int r; 2252 struct kvm_vcpu *vcpu, *v; 2253 2254 if (id >= KVM_MAX_VCPUS) 2255 return -EINVAL; 2256 2257 vcpu = kvm_arch_vcpu_create(kvm, id); 2258 if (IS_ERR(vcpu)) 2259 return PTR_ERR(vcpu); 2260 2261 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2262 2263 r = kvm_arch_vcpu_setup(vcpu); 2264 if (r) 2265 goto vcpu_destroy; 2266 2267 mutex_lock(&kvm->lock); 2268 if (!kvm_vcpu_compatible(vcpu)) { 2269 r = -EINVAL; 2270 goto unlock_vcpu_destroy; 2271 } 2272 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2273 r = -EINVAL; 2274 goto unlock_vcpu_destroy; 2275 } 2276 2277 kvm_for_each_vcpu(r, v, kvm) 2278 if (v->vcpu_id == id) { 2279 r = -EEXIST; 2280 goto unlock_vcpu_destroy; 2281 } 2282 2283 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2284 2285 /* Now it's all set up, let userspace reach it */ 2286 kvm_get_kvm(kvm); 2287 r = create_vcpu_fd(vcpu); 2288 if (r < 0) { 2289 kvm_put_kvm(kvm); 2290 goto unlock_vcpu_destroy; 2291 } 2292 2293 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2294 2295 /* 2296 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2297 * before kvm->online_vcpu's incremented value. 2298 */ 2299 smp_wmb(); 2300 atomic_inc(&kvm->online_vcpus); 2301 2302 mutex_unlock(&kvm->lock); 2303 kvm_arch_vcpu_postcreate(vcpu); 2304 return r; 2305 2306 unlock_vcpu_destroy: 2307 mutex_unlock(&kvm->lock); 2308 vcpu_destroy: 2309 kvm_arch_vcpu_destroy(vcpu); 2310 return r; 2311 } 2312 2313 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2314 { 2315 if (sigset) { 2316 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2317 vcpu->sigset_active = 1; 2318 vcpu->sigset = *sigset; 2319 } else 2320 vcpu->sigset_active = 0; 2321 return 0; 2322 } 2323 2324 static long kvm_vcpu_ioctl(struct file *filp, 2325 unsigned int ioctl, unsigned long arg) 2326 { 2327 struct kvm_vcpu *vcpu = filp->private_data; 2328 void __user *argp = (void __user *)arg; 2329 int r; 2330 struct kvm_fpu *fpu = NULL; 2331 struct kvm_sregs *kvm_sregs = NULL; 2332 2333 if (vcpu->kvm->mm != current->mm) 2334 return -EIO; 2335 2336 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2337 return -EINVAL; 2338 2339 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2340 /* 2341 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2342 * so vcpu_load() would break it. 2343 */ 2344 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2345 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2346 #endif 2347 2348 2349 r = vcpu_load(vcpu); 2350 if (r) 2351 return r; 2352 switch (ioctl) { 2353 case KVM_RUN: 2354 r = -EINVAL; 2355 if (arg) 2356 goto out; 2357 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2358 /* The thread running this VCPU changed. */ 2359 struct pid *oldpid = vcpu->pid; 2360 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2361 2362 rcu_assign_pointer(vcpu->pid, newpid); 2363 if (oldpid) 2364 synchronize_rcu(); 2365 put_pid(oldpid); 2366 } 2367 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2368 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2369 break; 2370 case KVM_GET_REGS: { 2371 struct kvm_regs *kvm_regs; 2372 2373 r = -ENOMEM; 2374 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2375 if (!kvm_regs) 2376 goto out; 2377 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2378 if (r) 2379 goto out_free1; 2380 r = -EFAULT; 2381 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2382 goto out_free1; 2383 r = 0; 2384 out_free1: 2385 kfree(kvm_regs); 2386 break; 2387 } 2388 case KVM_SET_REGS: { 2389 struct kvm_regs *kvm_regs; 2390 2391 r = -ENOMEM; 2392 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2393 if (IS_ERR(kvm_regs)) { 2394 r = PTR_ERR(kvm_regs); 2395 goto out; 2396 } 2397 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2398 kfree(kvm_regs); 2399 break; 2400 } 2401 case KVM_GET_SREGS: { 2402 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2403 r = -ENOMEM; 2404 if (!kvm_sregs) 2405 goto out; 2406 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2407 if (r) 2408 goto out; 2409 r = -EFAULT; 2410 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2411 goto out; 2412 r = 0; 2413 break; 2414 } 2415 case KVM_SET_SREGS: { 2416 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2417 if (IS_ERR(kvm_sregs)) { 2418 r = PTR_ERR(kvm_sregs); 2419 kvm_sregs = NULL; 2420 goto out; 2421 } 2422 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2423 break; 2424 } 2425 case KVM_GET_MP_STATE: { 2426 struct kvm_mp_state mp_state; 2427 2428 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2429 if (r) 2430 goto out; 2431 r = -EFAULT; 2432 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2433 goto out; 2434 r = 0; 2435 break; 2436 } 2437 case KVM_SET_MP_STATE: { 2438 struct kvm_mp_state mp_state; 2439 2440 r = -EFAULT; 2441 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2442 goto out; 2443 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2444 break; 2445 } 2446 case KVM_TRANSLATE: { 2447 struct kvm_translation tr; 2448 2449 r = -EFAULT; 2450 if (copy_from_user(&tr, argp, sizeof(tr))) 2451 goto out; 2452 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2453 if (r) 2454 goto out; 2455 r = -EFAULT; 2456 if (copy_to_user(argp, &tr, sizeof(tr))) 2457 goto out; 2458 r = 0; 2459 break; 2460 } 2461 case KVM_SET_GUEST_DEBUG: { 2462 struct kvm_guest_debug dbg; 2463 2464 r = -EFAULT; 2465 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2466 goto out; 2467 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2468 break; 2469 } 2470 case KVM_SET_SIGNAL_MASK: { 2471 struct kvm_signal_mask __user *sigmask_arg = argp; 2472 struct kvm_signal_mask kvm_sigmask; 2473 sigset_t sigset, *p; 2474 2475 p = NULL; 2476 if (argp) { 2477 r = -EFAULT; 2478 if (copy_from_user(&kvm_sigmask, argp, 2479 sizeof(kvm_sigmask))) 2480 goto out; 2481 r = -EINVAL; 2482 if (kvm_sigmask.len != sizeof(sigset)) 2483 goto out; 2484 r = -EFAULT; 2485 if (copy_from_user(&sigset, sigmask_arg->sigset, 2486 sizeof(sigset))) 2487 goto out; 2488 p = &sigset; 2489 } 2490 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2491 break; 2492 } 2493 case KVM_GET_FPU: { 2494 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2495 r = -ENOMEM; 2496 if (!fpu) 2497 goto out; 2498 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2499 if (r) 2500 goto out; 2501 r = -EFAULT; 2502 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2503 goto out; 2504 r = 0; 2505 break; 2506 } 2507 case KVM_SET_FPU: { 2508 fpu = memdup_user(argp, sizeof(*fpu)); 2509 if (IS_ERR(fpu)) { 2510 r = PTR_ERR(fpu); 2511 fpu = NULL; 2512 goto out; 2513 } 2514 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2515 break; 2516 } 2517 default: 2518 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2519 } 2520 out: 2521 vcpu_put(vcpu); 2522 kfree(fpu); 2523 kfree(kvm_sregs); 2524 return r; 2525 } 2526 2527 #ifdef CONFIG_KVM_COMPAT 2528 static long kvm_vcpu_compat_ioctl(struct file *filp, 2529 unsigned int ioctl, unsigned long arg) 2530 { 2531 struct kvm_vcpu *vcpu = filp->private_data; 2532 void __user *argp = compat_ptr(arg); 2533 int r; 2534 2535 if (vcpu->kvm->mm != current->mm) 2536 return -EIO; 2537 2538 switch (ioctl) { 2539 case KVM_SET_SIGNAL_MASK: { 2540 struct kvm_signal_mask __user *sigmask_arg = argp; 2541 struct kvm_signal_mask kvm_sigmask; 2542 compat_sigset_t csigset; 2543 sigset_t sigset; 2544 2545 if (argp) { 2546 r = -EFAULT; 2547 if (copy_from_user(&kvm_sigmask, argp, 2548 sizeof(kvm_sigmask))) 2549 goto out; 2550 r = -EINVAL; 2551 if (kvm_sigmask.len != sizeof(csigset)) 2552 goto out; 2553 r = -EFAULT; 2554 if (copy_from_user(&csigset, sigmask_arg->sigset, 2555 sizeof(csigset))) 2556 goto out; 2557 sigset_from_compat(&sigset, &csigset); 2558 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2559 } else 2560 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2561 break; 2562 } 2563 default: 2564 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2565 } 2566 2567 out: 2568 return r; 2569 } 2570 #endif 2571 2572 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2573 int (*accessor)(struct kvm_device *dev, 2574 struct kvm_device_attr *attr), 2575 unsigned long arg) 2576 { 2577 struct kvm_device_attr attr; 2578 2579 if (!accessor) 2580 return -EPERM; 2581 2582 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2583 return -EFAULT; 2584 2585 return accessor(dev, &attr); 2586 } 2587 2588 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2589 unsigned long arg) 2590 { 2591 struct kvm_device *dev = filp->private_data; 2592 2593 switch (ioctl) { 2594 case KVM_SET_DEVICE_ATTR: 2595 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2596 case KVM_GET_DEVICE_ATTR: 2597 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2598 case KVM_HAS_DEVICE_ATTR: 2599 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2600 default: 2601 if (dev->ops->ioctl) 2602 return dev->ops->ioctl(dev, ioctl, arg); 2603 2604 return -ENOTTY; 2605 } 2606 } 2607 2608 static int kvm_device_release(struct inode *inode, struct file *filp) 2609 { 2610 struct kvm_device *dev = filp->private_data; 2611 struct kvm *kvm = dev->kvm; 2612 2613 kvm_put_kvm(kvm); 2614 return 0; 2615 } 2616 2617 static const struct file_operations kvm_device_fops = { 2618 .unlocked_ioctl = kvm_device_ioctl, 2619 #ifdef CONFIG_KVM_COMPAT 2620 .compat_ioctl = kvm_device_ioctl, 2621 #endif 2622 .release = kvm_device_release, 2623 }; 2624 2625 struct kvm_device *kvm_device_from_filp(struct file *filp) 2626 { 2627 if (filp->f_op != &kvm_device_fops) 2628 return NULL; 2629 2630 return filp->private_data; 2631 } 2632 2633 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2634 #ifdef CONFIG_KVM_MPIC 2635 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2636 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2637 #endif 2638 2639 #ifdef CONFIG_KVM_XICS 2640 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2641 #endif 2642 }; 2643 2644 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2645 { 2646 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2647 return -ENOSPC; 2648 2649 if (kvm_device_ops_table[type] != NULL) 2650 return -EEXIST; 2651 2652 kvm_device_ops_table[type] = ops; 2653 return 0; 2654 } 2655 2656 void kvm_unregister_device_ops(u32 type) 2657 { 2658 if (kvm_device_ops_table[type] != NULL) 2659 kvm_device_ops_table[type] = NULL; 2660 } 2661 2662 static int kvm_ioctl_create_device(struct kvm *kvm, 2663 struct kvm_create_device *cd) 2664 { 2665 struct kvm_device_ops *ops = NULL; 2666 struct kvm_device *dev; 2667 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2668 int ret; 2669 2670 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2671 return -ENODEV; 2672 2673 ops = kvm_device_ops_table[cd->type]; 2674 if (ops == NULL) 2675 return -ENODEV; 2676 2677 if (test) 2678 return 0; 2679 2680 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2681 if (!dev) 2682 return -ENOMEM; 2683 2684 dev->ops = ops; 2685 dev->kvm = kvm; 2686 2687 ret = ops->create(dev, cd->type); 2688 if (ret < 0) { 2689 kfree(dev); 2690 return ret; 2691 } 2692 2693 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2694 if (ret < 0) { 2695 ops->destroy(dev); 2696 return ret; 2697 } 2698 2699 list_add(&dev->vm_node, &kvm->devices); 2700 kvm_get_kvm(kvm); 2701 cd->fd = ret; 2702 return 0; 2703 } 2704 2705 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2706 { 2707 switch (arg) { 2708 case KVM_CAP_USER_MEMORY: 2709 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2710 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2711 case KVM_CAP_INTERNAL_ERROR_DATA: 2712 #ifdef CONFIG_HAVE_KVM_MSI 2713 case KVM_CAP_SIGNAL_MSI: 2714 #endif 2715 #ifdef CONFIG_HAVE_KVM_IRQFD 2716 case KVM_CAP_IRQFD: 2717 case KVM_CAP_IRQFD_RESAMPLE: 2718 #endif 2719 case KVM_CAP_CHECK_EXTENSION_VM: 2720 return 1; 2721 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2722 case KVM_CAP_IRQ_ROUTING: 2723 return KVM_MAX_IRQ_ROUTES; 2724 #endif 2725 #if KVM_ADDRESS_SPACE_NUM > 1 2726 case KVM_CAP_MULTI_ADDRESS_SPACE: 2727 return KVM_ADDRESS_SPACE_NUM; 2728 #endif 2729 default: 2730 break; 2731 } 2732 return kvm_vm_ioctl_check_extension(kvm, arg); 2733 } 2734 2735 static long kvm_vm_ioctl(struct file *filp, 2736 unsigned int ioctl, unsigned long arg) 2737 { 2738 struct kvm *kvm = filp->private_data; 2739 void __user *argp = (void __user *)arg; 2740 int r; 2741 2742 if (kvm->mm != current->mm) 2743 return -EIO; 2744 switch (ioctl) { 2745 case KVM_CREATE_VCPU: 2746 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2747 break; 2748 case KVM_SET_USER_MEMORY_REGION: { 2749 struct kvm_userspace_memory_region kvm_userspace_mem; 2750 2751 r = -EFAULT; 2752 if (copy_from_user(&kvm_userspace_mem, argp, 2753 sizeof(kvm_userspace_mem))) 2754 goto out; 2755 2756 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2757 break; 2758 } 2759 case KVM_GET_DIRTY_LOG: { 2760 struct kvm_dirty_log log; 2761 2762 r = -EFAULT; 2763 if (copy_from_user(&log, argp, sizeof(log))) 2764 goto out; 2765 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2766 break; 2767 } 2768 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2769 case KVM_REGISTER_COALESCED_MMIO: { 2770 struct kvm_coalesced_mmio_zone zone; 2771 2772 r = -EFAULT; 2773 if (copy_from_user(&zone, argp, sizeof(zone))) 2774 goto out; 2775 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2776 break; 2777 } 2778 case KVM_UNREGISTER_COALESCED_MMIO: { 2779 struct kvm_coalesced_mmio_zone zone; 2780 2781 r = -EFAULT; 2782 if (copy_from_user(&zone, argp, sizeof(zone))) 2783 goto out; 2784 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2785 break; 2786 } 2787 #endif 2788 case KVM_IRQFD: { 2789 struct kvm_irqfd data; 2790 2791 r = -EFAULT; 2792 if (copy_from_user(&data, argp, sizeof(data))) 2793 goto out; 2794 r = kvm_irqfd(kvm, &data); 2795 break; 2796 } 2797 case KVM_IOEVENTFD: { 2798 struct kvm_ioeventfd data; 2799 2800 r = -EFAULT; 2801 if (copy_from_user(&data, argp, sizeof(data))) 2802 goto out; 2803 r = kvm_ioeventfd(kvm, &data); 2804 break; 2805 } 2806 #ifdef CONFIG_HAVE_KVM_MSI 2807 case KVM_SIGNAL_MSI: { 2808 struct kvm_msi msi; 2809 2810 r = -EFAULT; 2811 if (copy_from_user(&msi, argp, sizeof(msi))) 2812 goto out; 2813 r = kvm_send_userspace_msi(kvm, &msi); 2814 break; 2815 } 2816 #endif 2817 #ifdef __KVM_HAVE_IRQ_LINE 2818 case KVM_IRQ_LINE_STATUS: 2819 case KVM_IRQ_LINE: { 2820 struct kvm_irq_level irq_event; 2821 2822 r = -EFAULT; 2823 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2824 goto out; 2825 2826 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2827 ioctl == KVM_IRQ_LINE_STATUS); 2828 if (r) 2829 goto out; 2830 2831 r = -EFAULT; 2832 if (ioctl == KVM_IRQ_LINE_STATUS) { 2833 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2834 goto out; 2835 } 2836 2837 r = 0; 2838 break; 2839 } 2840 #endif 2841 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2842 case KVM_SET_GSI_ROUTING: { 2843 struct kvm_irq_routing routing; 2844 struct kvm_irq_routing __user *urouting; 2845 struct kvm_irq_routing_entry *entries; 2846 2847 r = -EFAULT; 2848 if (copy_from_user(&routing, argp, sizeof(routing))) 2849 goto out; 2850 r = -EINVAL; 2851 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2852 goto out; 2853 if (routing.flags) 2854 goto out; 2855 r = -ENOMEM; 2856 entries = vmalloc(routing.nr * sizeof(*entries)); 2857 if (!entries) 2858 goto out; 2859 r = -EFAULT; 2860 urouting = argp; 2861 if (copy_from_user(entries, urouting->entries, 2862 routing.nr * sizeof(*entries))) 2863 goto out_free_irq_routing; 2864 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2865 routing.flags); 2866 out_free_irq_routing: 2867 vfree(entries); 2868 break; 2869 } 2870 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2871 case KVM_CREATE_DEVICE: { 2872 struct kvm_create_device cd; 2873 2874 r = -EFAULT; 2875 if (copy_from_user(&cd, argp, sizeof(cd))) 2876 goto out; 2877 2878 r = kvm_ioctl_create_device(kvm, &cd); 2879 if (r) 2880 goto out; 2881 2882 r = -EFAULT; 2883 if (copy_to_user(argp, &cd, sizeof(cd))) 2884 goto out; 2885 2886 r = 0; 2887 break; 2888 } 2889 case KVM_CHECK_EXTENSION: 2890 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2891 break; 2892 default: 2893 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2894 } 2895 out: 2896 return r; 2897 } 2898 2899 #ifdef CONFIG_KVM_COMPAT 2900 struct compat_kvm_dirty_log { 2901 __u32 slot; 2902 __u32 padding1; 2903 union { 2904 compat_uptr_t dirty_bitmap; /* one bit per page */ 2905 __u64 padding2; 2906 }; 2907 }; 2908 2909 static long kvm_vm_compat_ioctl(struct file *filp, 2910 unsigned int ioctl, unsigned long arg) 2911 { 2912 struct kvm *kvm = filp->private_data; 2913 int r; 2914 2915 if (kvm->mm != current->mm) 2916 return -EIO; 2917 switch (ioctl) { 2918 case KVM_GET_DIRTY_LOG: { 2919 struct compat_kvm_dirty_log compat_log; 2920 struct kvm_dirty_log log; 2921 2922 r = -EFAULT; 2923 if (copy_from_user(&compat_log, (void __user *)arg, 2924 sizeof(compat_log))) 2925 goto out; 2926 log.slot = compat_log.slot; 2927 log.padding1 = compat_log.padding1; 2928 log.padding2 = compat_log.padding2; 2929 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2930 2931 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2932 break; 2933 } 2934 default: 2935 r = kvm_vm_ioctl(filp, ioctl, arg); 2936 } 2937 2938 out: 2939 return r; 2940 } 2941 #endif 2942 2943 static struct file_operations kvm_vm_fops = { 2944 .release = kvm_vm_release, 2945 .unlocked_ioctl = kvm_vm_ioctl, 2946 #ifdef CONFIG_KVM_COMPAT 2947 .compat_ioctl = kvm_vm_compat_ioctl, 2948 #endif 2949 .llseek = noop_llseek, 2950 }; 2951 2952 static int kvm_dev_ioctl_create_vm(unsigned long type) 2953 { 2954 int r; 2955 struct kvm *kvm; 2956 2957 kvm = kvm_create_vm(type); 2958 if (IS_ERR(kvm)) 2959 return PTR_ERR(kvm); 2960 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2961 r = kvm_coalesced_mmio_init(kvm); 2962 if (r < 0) { 2963 kvm_put_kvm(kvm); 2964 return r; 2965 } 2966 #endif 2967 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2968 if (r < 0) 2969 kvm_put_kvm(kvm); 2970 2971 return r; 2972 } 2973 2974 static long kvm_dev_ioctl(struct file *filp, 2975 unsigned int ioctl, unsigned long arg) 2976 { 2977 long r = -EINVAL; 2978 2979 switch (ioctl) { 2980 case KVM_GET_API_VERSION: 2981 if (arg) 2982 goto out; 2983 r = KVM_API_VERSION; 2984 break; 2985 case KVM_CREATE_VM: 2986 r = kvm_dev_ioctl_create_vm(arg); 2987 break; 2988 case KVM_CHECK_EXTENSION: 2989 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2990 break; 2991 case KVM_GET_VCPU_MMAP_SIZE: 2992 if (arg) 2993 goto out; 2994 r = PAGE_SIZE; /* struct kvm_run */ 2995 #ifdef CONFIG_X86 2996 r += PAGE_SIZE; /* pio data page */ 2997 #endif 2998 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2999 r += PAGE_SIZE; /* coalesced mmio ring page */ 3000 #endif 3001 break; 3002 case KVM_TRACE_ENABLE: 3003 case KVM_TRACE_PAUSE: 3004 case KVM_TRACE_DISABLE: 3005 r = -EOPNOTSUPP; 3006 break; 3007 default: 3008 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3009 } 3010 out: 3011 return r; 3012 } 3013 3014 static struct file_operations kvm_chardev_ops = { 3015 .unlocked_ioctl = kvm_dev_ioctl, 3016 .compat_ioctl = kvm_dev_ioctl, 3017 .llseek = noop_llseek, 3018 }; 3019 3020 static struct miscdevice kvm_dev = { 3021 KVM_MINOR, 3022 "kvm", 3023 &kvm_chardev_ops, 3024 }; 3025 3026 static void hardware_enable_nolock(void *junk) 3027 { 3028 int cpu = raw_smp_processor_id(); 3029 int r; 3030 3031 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3032 return; 3033 3034 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3035 3036 r = kvm_arch_hardware_enable(); 3037 3038 if (r) { 3039 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3040 atomic_inc(&hardware_enable_failed); 3041 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3042 } 3043 } 3044 3045 static void hardware_enable(void) 3046 { 3047 raw_spin_lock(&kvm_count_lock); 3048 if (kvm_usage_count) 3049 hardware_enable_nolock(NULL); 3050 raw_spin_unlock(&kvm_count_lock); 3051 } 3052 3053 static void hardware_disable_nolock(void *junk) 3054 { 3055 int cpu = raw_smp_processor_id(); 3056 3057 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3058 return; 3059 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3060 kvm_arch_hardware_disable(); 3061 } 3062 3063 static void hardware_disable(void) 3064 { 3065 raw_spin_lock(&kvm_count_lock); 3066 if (kvm_usage_count) 3067 hardware_disable_nolock(NULL); 3068 raw_spin_unlock(&kvm_count_lock); 3069 } 3070 3071 static void hardware_disable_all_nolock(void) 3072 { 3073 BUG_ON(!kvm_usage_count); 3074 3075 kvm_usage_count--; 3076 if (!kvm_usage_count) 3077 on_each_cpu(hardware_disable_nolock, NULL, 1); 3078 } 3079 3080 static void hardware_disable_all(void) 3081 { 3082 raw_spin_lock(&kvm_count_lock); 3083 hardware_disable_all_nolock(); 3084 raw_spin_unlock(&kvm_count_lock); 3085 } 3086 3087 static int hardware_enable_all(void) 3088 { 3089 int r = 0; 3090 3091 raw_spin_lock(&kvm_count_lock); 3092 3093 kvm_usage_count++; 3094 if (kvm_usage_count == 1) { 3095 atomic_set(&hardware_enable_failed, 0); 3096 on_each_cpu(hardware_enable_nolock, NULL, 1); 3097 3098 if (atomic_read(&hardware_enable_failed)) { 3099 hardware_disable_all_nolock(); 3100 r = -EBUSY; 3101 } 3102 } 3103 3104 raw_spin_unlock(&kvm_count_lock); 3105 3106 return r; 3107 } 3108 3109 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 3110 void *v) 3111 { 3112 val &= ~CPU_TASKS_FROZEN; 3113 switch (val) { 3114 case CPU_DYING: 3115 hardware_disable(); 3116 break; 3117 case CPU_STARTING: 3118 hardware_enable(); 3119 break; 3120 } 3121 return NOTIFY_OK; 3122 } 3123 3124 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3125 void *v) 3126 { 3127 /* 3128 * Some (well, at least mine) BIOSes hang on reboot if 3129 * in vmx root mode. 3130 * 3131 * And Intel TXT required VMX off for all cpu when system shutdown. 3132 */ 3133 pr_info("kvm: exiting hardware virtualization\n"); 3134 kvm_rebooting = true; 3135 on_each_cpu(hardware_disable_nolock, NULL, 1); 3136 return NOTIFY_OK; 3137 } 3138 3139 static struct notifier_block kvm_reboot_notifier = { 3140 .notifier_call = kvm_reboot, 3141 .priority = 0, 3142 }; 3143 3144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3145 { 3146 int i; 3147 3148 for (i = 0; i < bus->dev_count; i++) { 3149 struct kvm_io_device *pos = bus->range[i].dev; 3150 3151 kvm_iodevice_destructor(pos); 3152 } 3153 kfree(bus); 3154 } 3155 3156 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3157 const struct kvm_io_range *r2) 3158 { 3159 if (r1->addr < r2->addr) 3160 return -1; 3161 if (r1->addr + r1->len > r2->addr + r2->len) 3162 return 1; 3163 return 0; 3164 } 3165 3166 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3167 { 3168 return kvm_io_bus_cmp(p1, p2); 3169 } 3170 3171 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3172 gpa_t addr, int len) 3173 { 3174 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3175 .addr = addr, 3176 .len = len, 3177 .dev = dev, 3178 }; 3179 3180 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3181 kvm_io_bus_sort_cmp, NULL); 3182 3183 return 0; 3184 } 3185 3186 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3187 gpa_t addr, int len) 3188 { 3189 struct kvm_io_range *range, key; 3190 int off; 3191 3192 key = (struct kvm_io_range) { 3193 .addr = addr, 3194 .len = len, 3195 }; 3196 3197 range = bsearch(&key, bus->range, bus->dev_count, 3198 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3199 if (range == NULL) 3200 return -ENOENT; 3201 3202 off = range - bus->range; 3203 3204 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3205 off--; 3206 3207 return off; 3208 } 3209 3210 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3211 struct kvm_io_range *range, const void *val) 3212 { 3213 int idx; 3214 3215 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3216 if (idx < 0) 3217 return -EOPNOTSUPP; 3218 3219 while (idx < bus->dev_count && 3220 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3221 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3222 range->len, val)) 3223 return idx; 3224 idx++; 3225 } 3226 3227 return -EOPNOTSUPP; 3228 } 3229 3230 /* kvm_io_bus_write - called under kvm->slots_lock */ 3231 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3232 int len, const void *val) 3233 { 3234 struct kvm_io_bus *bus; 3235 struct kvm_io_range range; 3236 int r; 3237 3238 range = (struct kvm_io_range) { 3239 .addr = addr, 3240 .len = len, 3241 }; 3242 3243 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3244 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3245 return r < 0 ? r : 0; 3246 } 3247 3248 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3249 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3250 gpa_t addr, int len, const void *val, long cookie) 3251 { 3252 struct kvm_io_bus *bus; 3253 struct kvm_io_range range; 3254 3255 range = (struct kvm_io_range) { 3256 .addr = addr, 3257 .len = len, 3258 }; 3259 3260 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3261 3262 /* First try the device referenced by cookie. */ 3263 if ((cookie >= 0) && (cookie < bus->dev_count) && 3264 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3265 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3266 val)) 3267 return cookie; 3268 3269 /* 3270 * cookie contained garbage; fall back to search and return the 3271 * correct cookie value. 3272 */ 3273 return __kvm_io_bus_write(vcpu, bus, &range, val); 3274 } 3275 3276 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3277 struct kvm_io_range *range, void *val) 3278 { 3279 int idx; 3280 3281 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3282 if (idx < 0) 3283 return -EOPNOTSUPP; 3284 3285 while (idx < bus->dev_count && 3286 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3287 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3288 range->len, val)) 3289 return idx; 3290 idx++; 3291 } 3292 3293 return -EOPNOTSUPP; 3294 } 3295 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3296 3297 /* kvm_io_bus_read - called under kvm->slots_lock */ 3298 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3299 int len, void *val) 3300 { 3301 struct kvm_io_bus *bus; 3302 struct kvm_io_range range; 3303 int r; 3304 3305 range = (struct kvm_io_range) { 3306 .addr = addr, 3307 .len = len, 3308 }; 3309 3310 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3311 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3312 return r < 0 ? r : 0; 3313 } 3314 3315 3316 /* Caller must hold slots_lock. */ 3317 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3318 int len, struct kvm_io_device *dev) 3319 { 3320 struct kvm_io_bus *new_bus, *bus; 3321 3322 bus = kvm->buses[bus_idx]; 3323 /* exclude ioeventfd which is limited by maximum fd */ 3324 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3325 return -ENOSPC; 3326 3327 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3328 sizeof(struct kvm_io_range)), GFP_KERNEL); 3329 if (!new_bus) 3330 return -ENOMEM; 3331 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3332 sizeof(struct kvm_io_range))); 3333 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3334 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3335 synchronize_srcu_expedited(&kvm->srcu); 3336 kfree(bus); 3337 3338 return 0; 3339 } 3340 3341 /* Caller must hold slots_lock. */ 3342 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3343 struct kvm_io_device *dev) 3344 { 3345 int i, r; 3346 struct kvm_io_bus *new_bus, *bus; 3347 3348 bus = kvm->buses[bus_idx]; 3349 r = -ENOENT; 3350 for (i = 0; i < bus->dev_count; i++) 3351 if (bus->range[i].dev == dev) { 3352 r = 0; 3353 break; 3354 } 3355 3356 if (r) 3357 return r; 3358 3359 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3360 sizeof(struct kvm_io_range)), GFP_KERNEL); 3361 if (!new_bus) 3362 return -ENOMEM; 3363 3364 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3365 new_bus->dev_count--; 3366 memcpy(new_bus->range + i, bus->range + i + 1, 3367 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3368 3369 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3370 synchronize_srcu_expedited(&kvm->srcu); 3371 kfree(bus); 3372 return r; 3373 } 3374 3375 static struct notifier_block kvm_cpu_notifier = { 3376 .notifier_call = kvm_cpu_hotplug, 3377 }; 3378 3379 static int vm_stat_get(void *_offset, u64 *val) 3380 { 3381 unsigned offset = (long)_offset; 3382 struct kvm *kvm; 3383 3384 *val = 0; 3385 spin_lock(&kvm_lock); 3386 list_for_each_entry(kvm, &vm_list, vm_list) 3387 *val += *(u32 *)((void *)kvm + offset); 3388 spin_unlock(&kvm_lock); 3389 return 0; 3390 } 3391 3392 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3393 3394 static int vcpu_stat_get(void *_offset, u64 *val) 3395 { 3396 unsigned offset = (long)_offset; 3397 struct kvm *kvm; 3398 struct kvm_vcpu *vcpu; 3399 int i; 3400 3401 *val = 0; 3402 spin_lock(&kvm_lock); 3403 list_for_each_entry(kvm, &vm_list, vm_list) 3404 kvm_for_each_vcpu(i, vcpu, kvm) 3405 *val += *(u32 *)((void *)vcpu + offset); 3406 3407 spin_unlock(&kvm_lock); 3408 return 0; 3409 } 3410 3411 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3412 3413 static const struct file_operations *stat_fops[] = { 3414 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3415 [KVM_STAT_VM] = &vm_stat_fops, 3416 }; 3417 3418 static int kvm_init_debug(void) 3419 { 3420 int r = -EEXIST; 3421 struct kvm_stats_debugfs_item *p; 3422 3423 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3424 if (kvm_debugfs_dir == NULL) 3425 goto out; 3426 3427 for (p = debugfs_entries; p->name; ++p) { 3428 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3429 (void *)(long)p->offset, 3430 stat_fops[p->kind]); 3431 if (p->dentry == NULL) 3432 goto out_dir; 3433 } 3434 3435 return 0; 3436 3437 out_dir: 3438 debugfs_remove_recursive(kvm_debugfs_dir); 3439 out: 3440 return r; 3441 } 3442 3443 static void kvm_exit_debug(void) 3444 { 3445 struct kvm_stats_debugfs_item *p; 3446 3447 for (p = debugfs_entries; p->name; ++p) 3448 debugfs_remove(p->dentry); 3449 debugfs_remove(kvm_debugfs_dir); 3450 } 3451 3452 static int kvm_suspend(void) 3453 { 3454 if (kvm_usage_count) 3455 hardware_disable_nolock(NULL); 3456 return 0; 3457 } 3458 3459 static void kvm_resume(void) 3460 { 3461 if (kvm_usage_count) { 3462 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3463 hardware_enable_nolock(NULL); 3464 } 3465 } 3466 3467 static struct syscore_ops kvm_syscore_ops = { 3468 .suspend = kvm_suspend, 3469 .resume = kvm_resume, 3470 }; 3471 3472 static inline 3473 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3474 { 3475 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3476 } 3477 3478 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3479 { 3480 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3481 3482 if (vcpu->preempted) 3483 vcpu->preempted = false; 3484 3485 kvm_arch_sched_in(vcpu, cpu); 3486 3487 kvm_arch_vcpu_load(vcpu, cpu); 3488 } 3489 3490 static void kvm_sched_out(struct preempt_notifier *pn, 3491 struct task_struct *next) 3492 { 3493 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3494 3495 if (current->state == TASK_RUNNING) 3496 vcpu->preempted = true; 3497 kvm_arch_vcpu_put(vcpu); 3498 } 3499 3500 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3501 struct module *module) 3502 { 3503 int r; 3504 int cpu; 3505 3506 r = kvm_arch_init(opaque); 3507 if (r) 3508 goto out_fail; 3509 3510 /* 3511 * kvm_arch_init makes sure there's at most one caller 3512 * for architectures that support multiple implementations, 3513 * like intel and amd on x86. 3514 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3515 * conflicts in case kvm is already setup for another implementation. 3516 */ 3517 r = kvm_irqfd_init(); 3518 if (r) 3519 goto out_irqfd; 3520 3521 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3522 r = -ENOMEM; 3523 goto out_free_0; 3524 } 3525 3526 r = kvm_arch_hardware_setup(); 3527 if (r < 0) 3528 goto out_free_0a; 3529 3530 for_each_online_cpu(cpu) { 3531 smp_call_function_single(cpu, 3532 kvm_arch_check_processor_compat, 3533 &r, 1); 3534 if (r < 0) 3535 goto out_free_1; 3536 } 3537 3538 r = register_cpu_notifier(&kvm_cpu_notifier); 3539 if (r) 3540 goto out_free_2; 3541 register_reboot_notifier(&kvm_reboot_notifier); 3542 3543 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3544 if (!vcpu_align) 3545 vcpu_align = __alignof__(struct kvm_vcpu); 3546 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3547 0, NULL); 3548 if (!kvm_vcpu_cache) { 3549 r = -ENOMEM; 3550 goto out_free_3; 3551 } 3552 3553 r = kvm_async_pf_init(); 3554 if (r) 3555 goto out_free; 3556 3557 kvm_chardev_ops.owner = module; 3558 kvm_vm_fops.owner = module; 3559 kvm_vcpu_fops.owner = module; 3560 3561 r = misc_register(&kvm_dev); 3562 if (r) { 3563 pr_err("kvm: misc device register failed\n"); 3564 goto out_unreg; 3565 } 3566 3567 register_syscore_ops(&kvm_syscore_ops); 3568 3569 kvm_preempt_ops.sched_in = kvm_sched_in; 3570 kvm_preempt_ops.sched_out = kvm_sched_out; 3571 3572 r = kvm_init_debug(); 3573 if (r) { 3574 pr_err("kvm: create debugfs files failed\n"); 3575 goto out_undebugfs; 3576 } 3577 3578 r = kvm_vfio_ops_init(); 3579 WARN_ON(r); 3580 3581 return 0; 3582 3583 out_undebugfs: 3584 unregister_syscore_ops(&kvm_syscore_ops); 3585 misc_deregister(&kvm_dev); 3586 out_unreg: 3587 kvm_async_pf_deinit(); 3588 out_free: 3589 kmem_cache_destroy(kvm_vcpu_cache); 3590 out_free_3: 3591 unregister_reboot_notifier(&kvm_reboot_notifier); 3592 unregister_cpu_notifier(&kvm_cpu_notifier); 3593 out_free_2: 3594 out_free_1: 3595 kvm_arch_hardware_unsetup(); 3596 out_free_0a: 3597 free_cpumask_var(cpus_hardware_enabled); 3598 out_free_0: 3599 kvm_irqfd_exit(); 3600 out_irqfd: 3601 kvm_arch_exit(); 3602 out_fail: 3603 return r; 3604 } 3605 EXPORT_SYMBOL_GPL(kvm_init); 3606 3607 void kvm_exit(void) 3608 { 3609 kvm_exit_debug(); 3610 misc_deregister(&kvm_dev); 3611 kmem_cache_destroy(kvm_vcpu_cache); 3612 kvm_async_pf_deinit(); 3613 unregister_syscore_ops(&kvm_syscore_ops); 3614 unregister_reboot_notifier(&kvm_reboot_notifier); 3615 unregister_cpu_notifier(&kvm_cpu_notifier); 3616 on_each_cpu(hardware_disable_nolock, NULL, 1); 3617 kvm_arch_hardware_unsetup(); 3618 kvm_arch_exit(); 3619 kvm_irqfd_exit(); 3620 free_cpumask_var(cpus_hardware_enabled); 3621 kvm_vfio_ops_exit(); 3622 } 3623 EXPORT_SYMBOL_GPL(kvm_exit); 3624